Powered by Deep Web Technologies
Note: This page contains sample records for the topic "groundwater monitoring plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ICDP Complex Groundwater Monitoring Plan REV 5  

Science Conference Proceedings (OSTI)

This Groundwater Monitoring Plan, along with the Quality Assurance Project Plan for Waste Area Groups 1, 2, 3, 4, 5, 6, 7, 10, and Removal Actions, constitutes the sampling and analysis plan for groundwater and perched water monitoring at the Idaho CERCLA Disposal Facility (ICDF). A detection monitoring system was installed in the Snake River Plan Aquifer to comply with substantive requirements of "Releases from Solid Waste Management Units" of the Resource Conservation and Recovery Act. This detection monitoring wells constructed in the Snake River Plain Aquifer.

Cahn, L. S.

2007-08-09T23:59:59.000Z

2

Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

MJ Hartman; PE Dresel; JW Lindberg; DR Newcomer; EC Thornton

2000-10-18T23:59:59.000Z

3

Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954 the Resource Conservation and Recovery Act of 1976 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/frequency matrix for the entire site. The objectives of monitoring fall into three general categories plume and trend tracking, treatment/storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

Newcomer, D.R.; Thornton, E.C.; Hartman, M.J.; Dresel, P.E.

1999-10-06T23:59:59.000Z

4

Fiscal Year 2003 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

This document is an integrated monitoring plan for the Groundwater Monitoring Project. It documents well and constituent lists for the monitoring required by the Atomic Energy Act of 1954 and its implementing orders.

Hartman, Mary J.; Dresel, P. EVAN; Lindberg, Jon W.; McDonald, John P.; Newcomer, Darrell R.; Thornton, Edward C.

2002-11-01T23:59:59.000Z

5

FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders (''surveillance monitoring''); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

Hartman, Mary J; Dresel, P Evan; Lindberg, Jon W; Newcomer, Darrell R; Thornton, Edward C

2001-10-31T23:59:59.000Z

6

FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders ("surveillance monitoring"); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

2001-10-31T23:59:59.000Z

7

Monitoring Plan for RCRA Groundwater Assessment at the 216-U-12 Crib  

Science Conference Proceedings (OSTI)

This plan provides updates the ongoing RCRA interim status groundwater monitoring program for the U-12 crib and provides a proposed RCRA final status post-closure groundwater monitoring program.

Williams, Bruce A.; Chou, Charissa J.

2003-09-29T23:59:59.000Z

8

RCRA Groundwater Monitoring Plan for Single-Shell Tank Waste Management Area A-AX at the Hanford Site  

Science Conference Proceedings (OSTI)

This document describes the interim status groundwater monitoring plan for Waste Management Area A-AX.

Narbutovskih, Susan M.; Horton, Duane G.

2001-01-18T23:59:59.000Z

9

Fiscal Year 2005 Integrated Monitoring Plan for the Hanford Groundwater Performance Assessment Project  

Science Conference Proceedings (OSTI)

Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various purposes, but sampling is coordinated and data are shared among users. DOE manages these activities through the Hanford Groundwater Performance Assessment Project, which is the responsibility of Pacific Northwest National Laboratory. The groundwater project integrates monitoring for various objectives into a single sampling schedule to avoid redundancy of effort and to improve efficiency of sample collection.This report documents the purposes and objectives of groundwater monitoring at the DOE Hanford Site in southeastern Washington State.

Rieger, JoAnne T.; Hartman, Mary J.

2005-06-16T23:59:59.000Z

10

Groundwater Monitoring Guidance for the Industry Action Plan on Coal Combustion Product Management  

Science Conference Proceedings (OSTI)

The US Environmental Protection Agency (USEPA) is scheduled to release federal guidelines for management of coal combustion products (CCPs) in 2007. The utility industry has developed a voluntary Action Plan as an alternative to the federal guidelines. In either case, groundwater monitoring will be required. The purpose of this report is to provide guidance for implementing a groundwater-monitoring program at CCP management sites consistent with the Action Plan proposed by the utility industry.

2005-12-07T23:59:59.000Z

11

Groundwater Monitoring Plan for the Reactor Technology Complex Operable Unit 2-13  

SciTech Connect

This Groundwater Monitoring Plan describes the objectives, activities, and assessments that will be performed to support the on-going groundwater monitoring requirements at the Reactor Technology Complex, formerly the Test Reactor Area (TRA). The requirements for groundwater monitoring were stipulated in the Final Record of Decision for Test Reactor Area, Operable Unit 2-13, signed in December 1997. The monitoring requirements were modified by the First Five-Year Review Report for the Test Reactor Area, Operable Unit 2-13, at the Idaho National Engineering and Environmental Laboratory to focus on those contaminants of concern that warrant continued surveillance, including chromium, tritium, strontium-90, and cobalt-60. Based upon recommendations provided in the Annual Groundwater Monitoring Status Report for 2006, the groundwater monitoring frequency was reduced to annually from twice a year.

Richard P. Wells

2007-03-23T23:59:59.000Z

12

Strategic Plan for Groundwater Monitoring at the Waste Isolation Pilot Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP-03-3230 WIPP-03-3230 Strategic Plan for Groundwater Monitoring at the Waste Isolation Pilot Plant February 2003 United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico DOE/WIPP 03-3230 ii DOE/WIPP 03-3230 iii Table of Contents EXECUTIVE SUMMARY ....................................................................................... viii 1. Introduction.................................................................................................... 1 1.1 Overview .................................................................................................. 1 1.2 Historical Perspective .............................................................................. 1 1.2.1 Evolution of the Groundwater-Monitoring Well Network

13

Groundwater Monitoring and Field Sampling Plan for Operable Unit 10-08  

SciTech Connect

This plan describes the groundwater sampling and water level monitoring that will be conducted to evaluate contaminations in the Snake River Plain Aquifer entering and leaving the Idaho National Laboratory. The sampling and monitoring locations were selected to meet the data quality objectives detailed in this plan. Data for the Snake River Plain Aquifer obtained under this plan will be evaluated in the Operable Unit 10-08 Remedial Investigation/Feasibility Study report and will be used to support the Operable Unit 10-08 Sitewide groundwater model.

M. S. Roddy

2007-05-01T23:59:59.000Z

14

Monitoring Plan for RCRA Groundwater Assessment at the 216-U-12 Crib  

Science Conference Proceedings (OSTI)

This document contains a revised and updated monitoring plan for RCRA interim status groundwater assessment, site hydrogeology, and a conceptual model of the RCRA treatment, storage, and disposal unit. Monitoring under interim status is expected to continue until the 216-U-12 crib is incorporated as a chapter into the Hanford Facility RCRA Permit or administratively closed as proposed to EPA and Ecology.

Williams, Bruce A.; Chou, Charissa J.

2005-09-20T23:59:59.000Z

15

RCRA Groundwater Monitoring Plan for Single-Shell Tank Waste Management Area C at the Hanford Site  

SciTech Connect

This document describes the groundwater monitoring plan for Waste Management Area C located in the 200 East Area of the DOE Hanford Site. This plan is required under Resource Conservation and Recovery Act of 1976 (RCRA).

Horton, Duane G.; Narbutovskih, Susan M.

2001-01-01T23:59:59.000Z

16

Y-12 Groundwater Protection Program Monitoring Well Inspection and Maintenance Plan  

Science Conference Proceedings (OSTI)

This document is the third revision of the 'Monitoring Well Inspection and Maintenance Plan' for groundwater wells associated with the US Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. This plan describes the systematic approach for: (1) inspecting the physical condition of monitoring wells at Y-12; (2) identifying maintenance needs that extend the life of the well and assure well-head protection is in place, and (3) identifying wells that no longer meet acceptable monitoring-well design or well construction standards and require plugging and abandonment. The inspection and maintenance of groundwater monitoring wells is one of the primary management strategies of the Y-12 Groundwater Protection Program (GWPP) Management Plan, 'proactive stewardship of the extensive monitoring well network at Y-12' (BWXT 2004a). Effective stewardship, and a program of routine inspections of the physical condition of each monitoring well, ensures that representative water-quality monitoring and hydrologic data are able to be obtained from the well network. In accordance with the Y-12 GWPP Monitoring Optimization Plan (MOP) for Groundwater Monitoring Wells at the Y-12 National Security Complex, Oak Ridge, Tennessee (BWXT 2006b), the status designation (active or inactive) for each well determines the scope and extent of well inspections and maintenance activities. This plan, in conjunction with the above document, formalizes the GWPP approach to focus available resources on monitoring wells which provide the most useful data. This plan applies to groundwater monitoring wells associated with Y-12 and related waste management facilities located within the three hydrogeologic regimes: (1) the Bear Creek Hydrogeologic Regime (Bear Creek Regime); (2) the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime); and (3) the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of the Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV east of scarboro Road. The Chestnut Ridge Regime is directly south of Y-12 and encompasses a section of Chestnut Ridge that is bound to the west by a surface drainage feature (Dunaway Branch) and by Scarboro Road to the east. The GWPP maintains an extensive database of construction details and related information for the monitoring wells in each hydrogeologic regime in the 'Updated Subsurface Database for Bear Creek Valley, Chestnut Ridge, and parts of Bethel Valley on the US DOE Oak Ridge Reservation (BWXT 2003a). A detailed description of the hydrogeologic framework at Y-12 can be found in the GWPP Management Plan (BWXT 2004a).

None

2006-12-01T23:59:59.000Z

17

Y-12 Groundwater Protection Program Monitoring Optimization Plan For Groundwater Monitoring Wells At The U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure A.1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and groundwater quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted 'active' status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling (Section 3.0), whereas wells granted 'inactive' status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 3.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 4.0). This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes (Figure A.1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge directly south of Y-12 that is bound on the west by a surface drainage feature (Dunaway Branch) and on the east by Scarboro Road. For this plan, the Chestnut Ridge Regime includes an area known as the South Campus Facility that is located west of Scarboro Road and south of Bethel Valley Road. The GWPP maintains an extensive database of construction details and related information for the monitoring wells in each hydrogeologic regime (including wells that have been destroyed or intentionally plugged and abandoned); the most recent hardcopy version of the database was issued in February 2003 (BWXT Y-12, L.L.C. [BWXT] 2003). As specified in the Y-12 GWPP Management Plan (Babcock & Wilcox Technical Services Y-12, LLC [B&W Y-12] 2009a), this plan will be reviewed and updated every three years.

Elvado Environmental LLC

2009-12-01T23:59:59.000Z

18

Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex  

SciTech Connect

This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure A.1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and water-quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted ''active'' status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling (Section 3.0), whereas wells granted ''inactive'' status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 3.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 4.0). This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes (Figure A.1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge directly south of Y-12 that is bound on the west by a surface drainage feature (Dunaway Branch) and on the east by Scarboro Road. For this plan, the Chestnut Ridge Regime includes an area known as the South Campus Facility that is located west of Scarboro Road and south of Bethel Valley Road. The GWPP maintains an extensive database of construction details and related information for the monitoring wells in each hydrogeologic regime (including wells that have been destroyed or intentionally plugged and abandoned); the most recent hardcopy version of the database was issued in February 2003 (BWXT Y-12, L.L.C. [BWXT] 2003). This plan does not apply to temporary piezometers or other specialized groundwater monitoring/sampling devices that have been or may be installed for research purposes, hydrologic tests, pilot studies, or short-term investigations. This plan will be reviewed and updated every three years, as specified in the ''Y-12 GWPP Management Plan'' (BWXT 2004). Between scheduled updates of this plan, addenda issued by the GWPP Manager (or authorized designee) will document any substantial changes or modifications to the plan, including changes in the GWPP status designation for each monitoring well identified in the plan. The addenda, numbered in consecutive ascending order, will be forwarded to all personnel included on the distribution list for this plan. The addenda are inserted in Appendix C pending the next scheduled update of the plan, which will incorporate the information included in the addenda.

None

2006-12-01T23:59:59.000Z

19

Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee  

SciTech Connect

This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure 1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 which provide the most useful hydrologic and water-quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted ''active'' status are used by the GWPP for hydrologic monitoring and/or groundwater sampling (Section 3.0), whereas well granted ''inactive'' status are not used for either purpose. The status designation also determines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 4.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 5.0). This plan applies to groundwater monitoring wells associated with Y-12 and related waste management facilities located within three hydrogeologic regimes (Figure 1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime is directly south of Y-12 and encompasses a section of Chestnut Ridge that is bound to the west by a surface drainage feature (Dunaway Branch) and by Scarboro Road to the east. The GWPP maintains an extensive database of construction details and related information for the monitoring wells in each hydrogeologic regime (including wells that have been destroyed or intentionally plugged and abandoned); the most recent hardcopy version of the database was issued in February 2003 (BWXT Y-12, L.L.C. [BWXT] 2003). This plan does not apply to temporary piezometers or other specialized groundwater monitoring/sampling devices that have been or may be installed for research purposes, hydrologic tests, pilot studies, or short-term investigations. This plan will be reviewed and updated in accordance with the schedule required in the Y-12 GWPP Management Plan (BWXT 2001). Between scheduled updates of this plan, any substantial changes or modifications to the plan, including changes in the GWPP status designation for each monitoring well identified in the plan, will be described in addenda issued by the GWPP Manager (or authorized designee). Information included in the addenda will be incorporated into the plan during the next scheduled update.

None

2003-09-30T23:59:59.000Z

20

Groundwater monitoring program plan and conceptual site model for the Al-Tuwaitha Nuclear Research Center in Iraq.  

Science Conference Proceedings (OSTI)

The Radiation Protection Center of the Iraqi Ministry of Environment is developing a groundwater monitoring program (GMP) for the Al-Tuwaitha Nuclear Research Center located near Baghdad, Iraq. The Al-Tuwaitha Nuclear Research Center was established in about 1960 and is currently being cleaned-up and decommissioned by Iraq's Ministry of Science and Technology. This Groundwater Monitoring Program Plan (GMPP) and Conceptual Site Model (CSM) support the Radiation Protection Center by providing:A CSM describing the hydrogeologic regime and contaminant issues,recommendations for future groundwater characterization activities, anddescriptions of the organizational elements of a groundwater monitoring program. The Conceptual Site Model identifies a number of potential sources of groundwater contamination at Al-Tuwaitha. The model also identifies two water-bearing zones (a shallow groundwater zone and a regional aquifer). The depth to the shallow groundwater zone varies from approximately 7 to 10 meters (m) across the facility. The shallow groundwater zone is composed of a layer of silty sand and fine sand that does not extend laterally across the entire facility. An approximately 4-m thick layer of clay underlies the shallow groundwater zone. The depth to the regional aquifer varies from approximately 14 to 17 m across the facility. The regional aquifer is composed of interfingering layers of silty sand, fine-grained sand, and medium-grained sand. Based on the limited analyses described in this report, there is no severe contamination of the groundwater at Al-Tuwaitha with radioactive constituents. However, significant data gaps exist and this plan recommends the installation of additional groundwater monitoring wells and conducting additional types of radiological and chemical analyses.

Copland, John Robin; Cochran, John Russell

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater monitoring plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Groundwater monitoring program plan and conceptual site model for the Al-Tuwaitha Nuclear Research Center in Iraq.  

SciTech Connect

The Radiation Protection Center of the Iraqi Ministry of Environment is developing a groundwater monitoring program (GMP) for the Al-Tuwaitha Nuclear Research Center located near Baghdad, Iraq. The Al-Tuwaitha Nuclear Research Center was established in about 1960 and is currently being cleaned-up and decommissioned by Iraq's Ministry of Science and Technology. This Groundwater Monitoring Program Plan (GMPP) and Conceptual Site Model (CSM) support the Radiation Protection Center by providing:A CSM describing the hydrogeologic regime and contaminant issues,recommendations for future groundwater characterization activities, anddescriptions of the organizational elements of a groundwater monitoring program. The Conceptual Site Model identifies a number of potential sources of groundwater contamination at Al-Tuwaitha. The model also identifies two water-bearing zones (a shallow groundwater zone and a regional aquifer). The depth to the shallow groundwater zone varies from approximately 7 to 10 meters (m) across the facility. The shallow groundwater zone is composed of a layer of silty sand and fine sand that does not extend laterally across the entire facility. An approximately 4-m thick layer of clay underlies the shallow groundwater zone. The depth to the regional aquifer varies from approximately 14 to 17 m across the facility. The regional aquifer is composed of interfingering layers of silty sand, fine-grained sand, and medium-grained sand. Based on the limited analyses described in this report, there is no severe contamination of the groundwater at Al-Tuwaitha with radioactive constituents. However, significant data gaps exist and this plan recommends the installation of additional groundwater monitoring wells and conducting additional types of radiological and chemical analyses.

Copland, John Robin; Cochran, John Russell

2013-07-01T23:59:59.000Z

22

Groundwater level monitoring sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

This Sampling and Analysis Plan addresses groundwater level monitoring activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Groundwater level monitoring will be conducted at 129 sites within the WAG. All of the sites will be manually monitored on a semiannual basis. Forty-five of the 128 wells, plus one site in White Oak Lake, will also be equipped with automatic water level monitoring equipment. The 46 sites are divided into three groups. One group will be equipped for continuous monitoring of water level, conductivity, and temperature. The other two groups will be equipped for continuous monitoring of water level only. The equipment will be rotated between the two groups. The data collected from the water level monitoring will be used to support determination of the contaminant flux at WAG 6.

Not Available

1994-04-01T23:59:59.000Z

23

Groundwater quality sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of energy and managed by martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling.

Not Available

1994-03-01T23:59:59.000Z

24

Environmental Groundwater Monitoring Report  

Office of Legacy Management (LM)

-460 -460 Environmental Groundwater Monitoring Report Third Quarter, 1997 October 1997 Approved for public release; further dissemination unlimited. Environmental Restoration U.S. Department of Energy Nevada Operations Office This report has been reproduced directly from the best available copy. 1 - I : ~vailablk to DOE and DOE contractors from the. Office of Scientific - and Technical .Information, P.O. Box 62, Oak Ridge, TN 3783 1 ; prices available from (423) 576-840 1. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22 16 1, telephone (703) 487-4650. RULISON SITE GROUNDWATER MONITORING REPORT THIRD QUARTER, 1997 DOE Nevada Operations Office Las Vegas, Nevada

25

Groundwater monitoring in china  

Science Conference Proceedings (OSTI)

Groundwater accounts for 1/3 of the water resources in China and is indispensable for water supply and ecological support in many areas, especially in North China. But unreasonable groundwater development has caused some serious geo-environment problems ...

Qingcheng He; Cai Li

2006-01-01T23:59:59.000Z

26

Environmental implementation plan: Chapter 7, Groundwater protection  

SciTech Connect

The Savannah River Site (SRS) uses large quantities of groundwater for drinking, processing, and non-contact cooling. Continued industrial and residential growth along with additional agricultural irrigation in areas adjacent to SRS will increase the demand for groundwater. This increasing demand will require a comprehensive management system to ensure the needed quality and quantity of groundwater is available for all users. The Groundwater Protection Program and the Waste Management Program establish the overall framework for protecting this resource. Ground water under SRS is monitored extensively for radiological, hazardous, and water quality constituents. Groundwater quality is known to have been affected at 33 onsite locations, but none of the contaminant plumes have migrated offsite. Onsite and offsite drinking water supplies are monitored to ensure they are not impacted. The site has more than 1800 monitoring wells from which groundwater samples are analyzed for radiological and non-radiological constituents. SRS is complying with all applicable regulations related to groundwater protection, waste treatment, and waste disposal. The existing waste storage facilities are permitted or are being permitted. Existing hazardous- and mixed-waste storage facilities are being included in the site Resource Conservation and Recovery Act (RCRA) Part B Permit. Part B permitting has been initiated for many of the planned hazardous- and mixed-waste treatment and disposal facilities.

Wells, D. [comp.

1994-08-10T23:59:59.000Z

27

Monitoring probe for groundwater flow  

DOE Patents (OSTI)

A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

Looney, Brian B. (Aiken, SC); Ballard, Sanford (Albuquerque, NM)

1994-01-01T23:59:59.000Z

28

INTEC Groundwater Monitoring Report 2006  

SciTech Connect

This report summarizes 2006 perched water and groundwater monitoring activities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Laboratory (INL). During 2006, groundwater samples were collected from a total of 22 Snake River Plain Aquifer (SRPA) monitoring wells, plus six aquifer wells sampled for the Idaho CERCLA Disposal Facility (ICDF) monitoring program. In addition, perched water samples were collected from 21 perched wells and 19 suction lysimeters. Groundwater and perched water samples were analyzed for a suite of radionuclides and inorganic constituents. Laboratory results in this report are compared to drinking water maximum contaminant levels (MCLs). Such comparison is for reference only and it should be noted that the Operable Unit 3-13 Record of Decision does not require that perched water comply with drinking water standards.

J. R. Forbes S. L. Ansley M. Leecaster

2007-02-01T23:59:59.000Z

29

Groundwater surveillance plan for the Oak Ridge Reservation  

Science Conference Proceedings (OSTI)

US Department of Energy (DOE) Order 5400.1 requires the preparation of environmental monitoring plans and implementation of environmental monitoring programs for all DOE facilities. The order identifies two distinct components of environmental monitoring, namely effluent monitoring and environmental surveillance. In general, effluent monitoring has the objectives of characterizing contaminants and demonstrating compliance with applicable standards and permit requirements, whereas environmental surveillance has the broader objective of monitoring the effects of DOE activities on on- and off-site environmental and natural resources. The purpose of this document is to support the Environmental Monitoring Plan for the Oak Ridge Reservation (ORR) by describing the groundwater component of the environmental surveillance program for the DOE facilities on the ORR. The distinctions between groundwater effluent monitoring and groundwater surveillance have been defined in the Martin Marietta Energy Systems, Inc., Groundwater Surveillance Strategy. As defined in the strategy, a groundwater surveillance program consists of two parts, plant perimeter surveillance and off-site water well surveillance. This document identifies the sampling locations, parameters, and monitoring frequencies for both of these activities on and around the ORR and describes the rationale for the program design. The program was developed to meet the objectives of DOE Order 5400.1 and related requirements in DOE Order 5400.5 and to conform with DOE guidance on environmental surveillance and the Energy Systems Groundwater Surveillance Strategy.

Forstrom, J.M. [Oak Ridge K-25 Site, TN (United States); Smith, E.D.; Winters, S.L. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Haase, C.S.; King, H.L. [Oak Ridge Y-12 Plant, TN (United States); McMaster, W.M. [McMaster (W.M.), Heiskell, TN (United States)

1994-07-01T23:59:59.000Z

30

Metropolitan Groundwater Plans (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Groundwater Plans (Minnesota) Groundwater Plans (Minnesota) Metropolitan Groundwater Plans (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Environmental Regulations This section gives metropolitan counties the authority to prepare and adopt groundwater plans, or to grant this responsibility to soil and water

31

Waste Isolation Pilot Plant Groundwater Protection Management Program Plan  

SciTech Connect

The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR §264.90 through §264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] §6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

Washington Regulatory and Environmental Services

2005-07-01T23:59:59.000Z

32

Environmental Monitoring Plan  

Science Conference Proceedings (OSTI)

This Environmental Monitoring Plan was written to fulfill the requirements of Department of Energy (DOE) Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories/California. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. This revision to the Environmental Monitoring Plan was written to document the changes made to the Monitoring Program during 1992. Some of the data (most notably the statistical analyses of past monitoring data) has not been changed.

Holland, R.C. [Science Applications International Corp., San Diego, CA (United States)

1993-07-01T23:59:59.000Z

33

Operational Area Monitoring Plan  

Office of Legacy Management (LM)

' ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan for the DOE Field Office, Nevada (DOEINV) nuclear and non- nuclear testing activities associated with the Nevada Test Site (NTS). These Operational Area Monitoring Plans are prepared by various DOE support contractors, NTS user organizations, and federal or state agencies supporting DOE NTS operations. These plans and the parent

34

Hanford Site Groundwater Monitoring for Fiscal Year 2005  

SciTech Connect

This report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during fiscal year 2005: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater, 8 under interim status groundwater quality assessment programs to assess contamination, and 2 under final status corrective-action programs. During calendar year 2005, drillers completed 27 new monitoring wells, and decommissioned (filled with grout) 115 unneeded wells. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2005. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. DOE uses geophysical methods to monitor potential movement of contamination beneath former waste sites.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2006-02-28T23:59:59.000Z

35

The Savannah River Site's Groundwater Monitoring Program  

Science Conference Proceedings (OSTI)

This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the first quarter of 1990. It includes the analytical data, field data, well activity data, and the other documentation for this program and provides a record of the program's activities and rationale and an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of the analytical data and other data, maintenance of the databases containing groundwater monitoring data and related data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

Not Available

1990-10-18T23:59:59.000Z

36

2000 Annual Interim Sanitary Landfill Groundwater Monitoring Report  

Science Conference Proceedings (OSTI)

This report includes a discussion of the groundwater flow direction and rate, the groundwater analytical results, and the methane monitoring results.

Chase, J.A.

2001-01-26T23:59:59.000Z

37

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2014  

SciTech Connect

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2014 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring is performed by the GWPP during CY 2014 to achieve the following goals: 􀁸 to protect the worker, the public, and the environment; 􀁸 to maintain surveillance of existing and potential groundwater contamination sources; 􀁸 to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; 􀁸 to identify and characterize long-term trends in groundwater quality at Y-12; and 􀁸 to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12.

none,

2013-09-01T23:59:59.000Z

38

Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium, Revision 1  

SciTech Connect

This document is a compendium of water quality and hydrologic characterization data obtained through December 2005 from the network of groundwater monitoring wells and surface water sampling stations (including springs and building sumps) at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee that have been sampled since January 2003. The primary objectives of this document, hereafter referenced as the Y-12 Groundwater Protection Program (GWPP) Compendium, are to: (1) Serve as a single-source reference for monitoring data that meet the requirements of the Y-12 GWPP, as defined in the Y-12 GWPP Management Plan (BWXT Y-12 L.L.C. [BWXT] 2004); (2) Maintain a detailed analysis and evaluation of the monitoring data for each applicable well, spring, and surface water sampling station, with a focus on results for the primary inorganic, organic, and radiological contaminants in groundwater and surface water at Y-12; and (3) Ensure retention of ''institutional knowledge'' obtained over the long-term (>20-year) history of groundwater and surface water monitoring at Y-12 and the related sources of groundwater and surface water contamination. To achieve these goals, the Y-12 GWPP Compendium brings together salient hydrologic, geologic, geochemical, water-quality, and environmental compliance information that is otherwise disseminated throughout numerous technical documents and reports prepared in support of completed and ongoing environmental contamination assessment, remediation, and monitoring activities performed at Y-12. The following subsections provide background information regarding the overall scope and format of the Y-12 GWPP Compendium and the planned approach for distribution and revision (i.e., administration) of this ''living'' document.

None

2006-12-01T23:59:59.000Z

39

Environmental Monitoring Plan  

SciTech Connect

The purpose of the environmental monitoring plan (EMP) is to promote the early identification of, and response to, potential adverse environmental impacts associated with DOE operations. Environmental monitoring supports the Integrated Safety Management System (ISMS) to detect, characterize, and respond to releases from DOE activities; assess impacts; estimate dispersal patterns in the environment; characterize the pathways of exposure to members of the public; characterize the exposures and doses to individuals and to the population; and to evaluate the potential impacts to the biota in the vicinity of the DOE activity. In addition, the EMP addresses the analytical work supporting environmental monitoring to ensure the following: (1) A consistent system for collecting, assessing, and documenting environmental data of known and documented quality; (2) A validated and consistent approach for sampling and analysis of radionuclide samples to ensure laboratory data meets program-specific needs and requirements within the framework of a performance-based approach for analytical laboratory work; and (3) An integrated sampling approach to avoid duplicative data collection. Until recently, environmental monitoring at Lawrence Livermore National Laboratory (LLNL) was required by DOE Order 5400.1, which was canceled in January 2003. LLNL is in the process of adopting the ISO 14001 Environmental Management Systems standard, which contains requirements to perform and document environmental monitoring. The ISO 14001 standard is not as prescriptive as DOE Order 5400.1, which expressly required an EMP. LLNL will continue to prepare the EMP because it provides an organizational framework for ensuring that the work is conducted appropriately. The environmental monitoring addressed by the plan includes preoperational characterization and assessment, and effluent and surveillance monitoring. Additional environmental monitoring is conducted at LLNL as part of the compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, also known as Superfund). This EMP does not address the technical requirements for such monitoring.

Althouse, P E; Bertoldo, N A; Bowen, B M; Brown, R A; Campbell, C G; Christofferson, E; Gallegos, G M; Grayson, A R; Jones, H E; Larson, J M; Laycak, D; Mathews, S; Peterson, S R; Revelli, M J; Rueppel, D; Williams, R A; Wilson, K; Woods, N

2005-11-23T23:59:59.000Z

40

Groundwater Monitoring at NETL-Albany  

NLE Websites -- All DOE Office Websites (Extended Search)

About NETL About NETL Groundwater Monitoring at NETL-Albany GEO Probe Ground Water Testing Program NETL is committed to the safety and health of its employees and of nearby residents and to protecting the environment. As part of a DOE environmental protection program, NETL initiated a ground water monitoring program in 2001 with the Oregon Department of Environmental Quality (DEQ) to evaluate the groundwater flowing beneath the Albany, OR facility. Ground water monitoring wells were installed at that time, and periodic samples were taken. In March 2005, a newly-installed monitoring well on NETL's property indicated elevated ground water levels of a chemical commonly used as a degreaser or solvent until the late 1970's, trichloroethene (TCE). TCE is of concern because prolonged exposure may cause health problems, and it has been identified as a probable human carcinogen (cancer-causing substance).

Note: This page contains sample records for the topic "groundwater monitoring plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hanford Site Groundwater Monitoring for Fiscal Year 2001  

SciTech Connect

This report provides information on the status of groundwater monitoring at the Hanford Site during fiscal year 2001.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2002-02-28T23:59:59.000Z

42

Groundwater Protection Plan (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Groundwater Protection Plan (West Virginia) Groundwater Protection Plan (West Virginia) Groundwater Protection Plan (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection Groundwater Protection Plans (GPPs) are required for all facilities having the potential to impact groundwater. They are "preventive maintenance"

43

Annual report of groundwater monitoring at Centralia, Kansas, in 2009.  

Science Conference Proceedings (OSTI)

In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater was sampled twice yearly from September 2005 until September 2007 for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The results from the two-year sampling program demonstrated the presence of carbon tetrachloride contamination at levels exceeding the KDHE Tier 2 risk-based screening level (RBSL) of 5 {micro}g/L for this compound in a localized groundwater plume that has shown little movement. The relative concentrations of chloroform, the primary degradation product of carbon tetrachloride, suggested that some degree of reductive dechlorination or natural biodegradation was taking place in situ at the former CCC/USDA facility on a localized scale. The CCC/USDA subsequently developed an Interim Measure Conceptual Design (Argonne 2007b), proposing a pilot test of the Adventus EHC technology for in situ chemical reduction (ISCR). The proposed interim measure (IM) was approved by the KDHE in November 2007 (KDHE 2007). Implementation of the pilot test occurred in November-December 2007. The objective was to create highly reducing conditions that would enhance both chemical and biological reductive dechlorination in the injection test area (Argonne 2009a). The KDHE (2008a) has requested that sitewide monitoring continue at Centralia until a final remedy has been selected (as part of a Corrective Action Study [CAS] evaluation) and implemented for this site. In response to this request, twice-yearly sampling of 10 monitoring wells and 6 piezometers (Figure 1.1) previously approved by the KDHE for monitoring of the groundwater at Centralia (KDHE 2005a,b) was continued in 2008. The sampling events under this extension of the two-year (2005-2007) monitoring program occurred in March and September 2008 (Argonne 2008b, 2009b). Additional piezometers specifically installed to evaluate the progress of the IM pilot test (PMP1-PMP9; Figure 1.2) were also sampled in 2008; the results of these analyses were reported and discussed separately (Argonne 2009a). On the basis of results of the 2005-2008 sitewide monitoring and the 2008 IM pilot test monitoring, the CCC/USDA recommended a revised sampling program to address both of the continuing monitoring objectives until a CAS for Centralia is developed (Section 4.2 in Argonne 2009b). The elements of this interim monitoring plan are as follows: (1) Annual sampling of twelve previously established (before the pilot test) monitoring points (locations identified in Figure 1.3) and the five outlying pilot test monitoring points (PMP4, PMP5, PMP6, PMP7, PMP9; Figure 1.4); and (2) Sampling twice yearly at the five pilot test monitoring points inside the injection area (PMP1-PMP3, PMP8, MW02; Figure 1.4). With the approval of the KDHE (2009), groundwater sampling for analyses of VOCs and selected other geochemical parameters was conducted at Centralia under the interim monitoring program outlined above in April and October 2009. This report documents the findings of the 2009 monitoring events.

LaFreniere, L. M. (Environmental Science Division)

2010-10-19T23:59:59.000Z

44

Environmental Monitoring Plan (EMP), Environmental Protection...  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface Water Chapter 11 - Potable Water Chapter 12 - Groundwater Monitoring Chapter 13 - Landfill Gas and Leachate Monitoring Appendix A - Acronyms and Technical Terms Appendix B...

45

Review of present groundwater monitoring programs at the Nevada Test Site  

SciTech Connect

Groundwater monitoring at the Nevada Test Site (NTS) is conducted to detect the presence of radionuclides produced by underground nuclear testing and to verify the quality and safety of groundwater supplies as required by the State of Nevada and federal regulations, and by U.S. Department of Energy (DOE) Orders. Groundwater is monitored at water-supply wells and at other boreholes and wells not specifically designed or located for traditional groundwater monitoring objectives. Different groundwater monitoring programs at the NTS are conducted by several DOE Nevada Operations Office (DOE/NV) contractors. Presently, these individual groundwater monitoring programs have not been assessed or administered under a comprehensive planning approach. Redundancy exists among the programs in both the sampling locations and the constituents analyzed. Also, sampling for certain radionuclides is conducted more frequently than required. The purpose of this report is to review the existing NTS groundwater monitoring programs and make recommendations for modifying the programs so a coordinated, streamlined, and comprehensive monitoring effort may be achieved by DOE/NV. This review will be accomplished in several steps. These include: summarizing the present knowledge of the hydrogeology of the NTS and the potential radionuclide source areas for groundwater contamination; reviewing the existing groundwater monitoring programs at the NTS; examining the rationale for monitoring and the constituents analyzed; reviewing the analytical methods used to quantify tritium activity; discussing monitoring network design criteria; and synthesizing the information presented and making recommendations based on the synthesis. This scope of work was requested by the DOE/NV Hydrologic Resources Management Program (HRMP) and satisfies the 1993 (fiscal year) HRMP Groundwater Monitoring Program Review task.

Hershey, R.L.; Gillespie, D.

1993-09-01T23:59:59.000Z

46

Environmental Monitoring Plan  

SciTech Connect

Environmental monitoring personnel from Lawrence Livermore National Laboratory (LLNL) prepared this ''Environmental Monitoring Plan'' (EMP) to meet the requirements in the U.S. Department of Energy (DOE) ''Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance'' (DOE 1991) and applicable portions of DOE Orders 5400.1 and 5400.5 (see WSS B93 and B94 in Appendix B). ''Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance'' is followed as a best management practice; under Work Smart Standards, LLNL complies with portions of DOE Orders 5400.1 and 5400.5 as shown in Appendix B. This document is a revision of the May 1999 EMP (Tate et al. 1999) and is current as of March 1, 2002. LLNL is one of the nation's premier applied-science national security laboratories. Its primary mission is to ensure that the nation's nuclear weapons remain safe, secure, and reliable, and to prevent the spread and use of nuclear weapons worldwide. LLNL's programs in advanced technologies, energy, environment, biosciences, and basic science apply LLNL's unique capabilities and enhance the competencies needed for this national security mission. LLNL's mission also involves working with industrial and academic partners to increase national competitiveness and improve science education. LLNL's mission is dynamic and has changed over the years to meet new national needs. In keeping with the Laboratory's mission, the environment, safety, and health (ES&H) have top priority. LLNL's policy is to perform work in a manner that protects the health and safety of employees and the public, preserves the quality of the environment, and prevents property damage. The environment, safety, and health are to be priority considerations in the planning and execution of all work activities at the Laboratory (LLNL 2001). Furthermore, it is the policy of LLNL to comply with applicable ES&H laws, regulations, and requirements. Under Contract 48, Appendix F, the Laboratory commits to minimizing its waste streams and to avoiding adverse impacts to the environment from its operations (UC/DOE 2001).

Althouse, P E; Biermann, A; Brigdon, S L; Brown, R A; Campbell, C G; Christofferson, E; Clark, L M; Folks, K J; Gallegos, G M; Gouveia, F J; Grayson, A; Harrach, R J; Hoppes, W G; Jones, H; Mathews, S; Merrigan, J R; Peterson, S R; Revelli, M; Rueppel, D; Sanchez, L; Tate, P J; Vellinger, R J; Ward, B; Williams, R

2006-01-10T23:59:59.000Z

47

Annual report of groundwater monitoring at Everest, Kansas, in 2010.  

Science Conference Proceedings (OSTI)

The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) began its environmental investigations at Everest, Kansas, in 2000. The work at Everest is implemented on behalf of the CCC/USDA by Argonne National Laboratory, under the oversight of the Kansas Department of Health and Environment (KDHE). The results of the environmental investigations have been reported in detail (Argonne 2001, 2003, 2006a,b). The lateral extent of the carbon tetrachloride in groundwater over the years of investigation has been interpreted as shown in Figure 1.1 (2001-2002 data), Figure 1.2 (2006 data), Figure 1.3 (2008 data), and Figure 1.4 (2009 data). The pattern of groundwater flow and inferred contaminant migration has consistently been to the north-northwest from the former CCC/USDA facility toward the Nigh property, and then west-southwest from the Nigh property (e.g., Figure 1.5 [2008 data] and Figure 1.6 [2009 data]). Both the monitoring data for carbon tetrachloride and the low groundwater flow rates estimated for the Everest aquifer unit (Argonne 2003, 2006a,b, 2008) indicate slow contaminant migration. On the basis of the accumulated findings, in March 2009 the CCC/USDA developed a plan for annual monitoring of the groundwater and surface water. This current monitoring plan (Appendix A in the report of monitoring in 2009 [Argonne 2010]) was approved by the KDHE (2009a). Under this plan, the monitoring wells are sampled by the low-flow procedure, and sample preservation, shipping, and analysis activities are consistent with previous work at Everest. The annual sampling will continue until identified conditions at the site indicate a technical justification for a change. The first annual sampling event under the new monitoring plan took place in April 2009. The results of analyses for volatile organic compounds (VOCs) and water level measurements were consistent with previous observations (Figures 1.1-1.4). No carbon tetrachloride was detected in surface water of the intermittent creek or in tree branch samples collected at 18 locations along the creek banks. The complete results were reported previously (Argonne 2010). This report presents the results of the second annual sampling events, conducted in 2010. Included in the 2010 monitoring were the following: (1) Continued automatic and manual monitoring of groundwater levels. (2) Groundwater sampling on April 8-9, 2010. (3) Surface water sampling on April 8, 2010. (4) Vegetation sampling on July 28, 2010. (5) Indoor air sampling at selected residences on August 11-12, 2010. The activities are described in Section 2, and the results are discussed in Section 3. Conclusions and recommendations are presented in Section 4.

LaFreniere, L. M. (Environmental Science Division)

2011-03-21T23:59:59.000Z

48

Quarterly report of RCRA groundwater monitoring data for period October 1 through December 31, 1994  

SciTech Connect

Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and {open_quotes}Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities{close_quotes} (Title 40 Code of Federal Regulations [CFR] Part 265), as amended. Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. The location of each facility is shown. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Performing project management, preparing groundwater monitoring plans, well network design and installation, specifying groundwater data needs, performing quality control (QC) oversight, data management, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between October and December 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the October through December quarter, but also data from earlier sampling events that were not previously reported.

NONE

1995-04-01T23:59:59.000Z

49

The Savannah River Site's Groundwater Monitoring Program  

Science Conference Proceedings (OSTI)

The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

Not Available

1989-01-01T23:59:59.000Z

50

Annual report of groundwater monitoring at Centralia, Kansas, in 2010.  

SciTech Connect

In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater was sampled twice yearly from September 2005 until September 2007 for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation processes (reductive dechlorination) in the subsurface environment (Argonne 2006, 2007a, 2008a). The results from the two-year sampling program demonstrated the presence of carbon tetrachloride contamination at levels exceeding the KDHE Tier 2 risk-based screening level (RBSL) of 5 {micro}g/L for this compound, in a localized groundwater plume that has shown little movement. The relative concentrations of chloroform, the primary degradation product of carbon tetrachloride, suggested that some degree of reductive dechlorination or natural biodegradation was talking place in situ at the former CCC/USDA facility on a localized scale. The CCC/USDA subsequently developed an Interim Measure Conceptual Design (Argonne 2007b), proposing a pilot test of the Adventus EHC technology for in situ chemical reduction (ISCR). The proposed interim measure (IM) was approved by the KDHE in November 2007 (KDHE 2007). Implementation of the pilot test occurred in November-December 2007. The objective was to create highly reducing conditions that would enhance both chemical and biological reductive dechlorination in the injection test area (Argonne 2009a). The KDHE (2008a) requested that sitewide monitoring continue until a final remedy is selected (as part of a Corrective Action Study [CAS] evaluation) and implemented. In response to this request, the established sampling across the site and additional sampling in the IM pilot test area continued in 2008 (Argonne 2008b, 2009a,b). On the basis of results of the 2005-2008 sitewide monitoring and the 2008 IM pilot test monitoring, the CCC/USDA recommended a revised sampling program for both the wider site and the IM pilot test area (Section 4.2 in Argonne 2009b). The elements of this interim monitoring plan are as follows: (1) Annual sampling of twelve monitoring points across the site (Figure 1.1) and five outlying IM pilot test monitoring points (PMP4, PMP5, PMP6, PMP7, PMP9; Figure 1.2); and (2) Twice yearly sampling of five IM pilot test monitoring points inside the injection area (PMP1-PMP3, PMP8, MW02; Figure 1.2). With the approval of the KDHE (2009), the initial groundwater sampling for VOCs and geochemical analyses under the interim monitoring plan outlined above was conducted in 2009 (Argonne 2010). The present report documents the findings of the 2010 monitoring events, conducted on April 5 and September 19-21, 2010.

LaFreniere, L. M. (Environmental Science Division)

2011-03-16T23:59:59.000Z

51

Hanford Site Groundwater Monitoring for Fiscal Year 2006  

SciTech Connect

This report presents the results of groundwater monitoring for FY 2006 on DOE's Hanford Site. Results of groundwater remediation, vadose zone monitoring, and characterization are summarized. DOE monitors groundwater at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act (AEA), the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and Washington Administrative Code (WAC).

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2007-03-01T23:59:59.000Z

52

Evaluation of a multiport groundwater monitoring system  

SciTech Connect

In 1988 and 1989, Pacific Northwest Laboratory installed a multiport groundwater monitoring system in two wells on the Hanford Site: one near the 216-B-3 Pond in the center of the Hanford Site and one just north of the 300 Area near the Columbia River. The system was installed to provide the US Department of Energy with needed three-dimensional data on the vertical distribution of contaminants and hydraulic heads on the Hanford Site. This study evaluates the ability of the multiport system to obtain hydrogeologic data at multiple points vertically in a single borehole, and addresses the representativeness of the data. Data collected from the two wells indicate that the multiport system is well suited for groundwater monitoring networks requiring three-dimensional characterization of the hydrogeologic system. A network of these systems could provide valuable information on the hydrogeologic environment. However, the advantages of the multiport system diminish when the system is applied to long-term monitoring networks (30+ years) and to deeper wells (<300 ft). For shallow wells, the multiport system provides data in a cost-effective manner that would not be reasonably obtainable with the conventional methods currently in use at the Hanford Site. 17 refs., 28 figs., 6 tabs.

Gilmore, T.J.; Hall, S.H.; Olsen, K.B.; Spane, F.A. Jr.

1991-03-01T23:59:59.000Z

53

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2011  

SciTech Connect

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2011 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2011 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2011 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2011 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2011 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2011) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

Elvado Environmental LLC

2010-12-01T23:59:59.000Z

54

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2012  

SciTech Connect

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2012 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2012 is in accordance with the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2012 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. Each modification to the monitoring program will be approved by the Y-12 GWPP manager and documented as an addendum to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2012 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding a data summary table presented in Section 4) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2012) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

Elvado Environmental, LLC

2011-09-01T23:59:59.000Z

55

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2010  

Science Conference Proceedings (OSTI)

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2010 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2010 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2010 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2010 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2010 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2010) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

Elvado Environmental LLC

2009-09-01T23:59:59.000Z

56

Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2009  

SciTech Connect

This document reports the findings of the groundwater and leachate monitoring and sampling at the Environmental restoration Disposal Facility for calendar year 2009. The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF and report leachate results in fulfillment of the requirements specified in the ERDF ROD and the ERDF Amended ROD.

R.L. Weiss, B.L. Lawrence, D.W. Woolery

2010-07-08T23:59:59.000Z

57

The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan  

Science Conference Proceedings (OSTI)

The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

Fix, N. J.

2008-02-11T23:59:59.000Z

58

Environmental Monitoring Plan, Revision 6  

SciTech Connect

The purpose of environmental monitoring is to promote the early identification of, and response to, potential adverse environmental impacts associated with Lawrence Livermore National Laboratory (LLNL) operations. Environmental monitoring supports the Integrated Safety Management System (ISMS), International Organization for Standardization (ISO) 14001 Environmental Management Systems standard, and U. S. Department of Energy (DOE) Order 458.1, Radiation Protection of the Public and the Environment. Specifically, environmental monitoring enables LLNL to detect, characterize, and respond to releases from LLNL activities; assess impacts; estimate dispersal patterns in the environment; characterize the pathways of exposure to members of the public; characterize the exposures and doses to individuals and to the population; and to evaluate the potential impacts to the biota in the vicinity of LLNL. Environmental monitoring is also a major component of compliance demonstration for permits and other regulatory requirements. The Environmental Monitoring Plan (EMP) addresses the sample collection and analytical work supporting environmental monitoring to ensure the following: (1) A consistent system for collecting, assessing, and documenting environmental data of known and documented quality; (2) A validated and consistent approach for sampling and analysis of samples to ensure laboratory data meets program-specific needs and requirements within the framework of a performance-based approach for analytical laboratory work; and (3) An integrated sampling approach to avoid duplicative data collection. LLNL prepares the EMP because it provides an organizational framework for ensuring that environmental monitoring work, which is integral to the implementation of LLNL's Environmental Management System, is conducted appropriately. Furthermore, the Environmental Monitoring Plan helps LLNL ensure compliance with DOE Order 231.1 Change 2, Environment, Safety and Health Reporting, which require the publication of an annual report that characterizes the site's environmental management performance. To summarize, the general regulatory drivers for this environmental monitoring plan are ISO 14001, DOE Order 458.1, and DOE Order 231.1. The environmental monitoring addressed by this plan includes preoperational characterization and assessment, effluent and surveillance monitoring, and permit and regulatory compliance monitoring. Additional environmental monitoring is conducted at LLNL as part of compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, also known as Superfund). LLNL coordinates its ground water surveillance monitoring program with the CERCLA monitoring program to gain sampling efficiencies.

Gallegos, G M; Bertoldo, N A; Blake, R G; Campbell, C G; Grayson, A R; Nelson, J C; Revelli, M A; Rosene, C A; Wegrecki, T; Williams, R A; Wilson, K R; Jones, H E

2012-03-02T23:59:59.000Z

59

Hanford Site ground-water monitoring for 1994  

SciTech Connect

This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

1995-08-01T23:59:59.000Z

60

Hanford Site Groundwater Monitoring for Fiscal Year 2004  

Science Conference Proceedings (OSTI)

This document presents the results of groundwater and vadose zone monitoring for fiscal year 2004 (October 2003 through September 2004)on the U.S. Department of Energy's Hanford Site in southeast Washington State.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2005-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater monitoring plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Groundwater Monitoring Guidance for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Recent experience has shown that the initial design of nuclear power plant groundwater characterization programs can have a significant impact upon the resources needed to demonstrate regulatory compliance. This document provides technical experience and lessons learned in designing an optimized groundwater investigation program.

2005-09-06T23:59:59.000Z

62

Comprehensive air monitoring plan: general monitoring report  

DOE Green Energy (OSTI)

Recommendations are provided for general monitoring of hydrogen sulfide (H/sub 2/S) in ambient air in parts of Colusa, Lake, Mendocino, Napa, and Sonoma counties potentially impacted by emissions from geothermal development projects in the Geysers-Calistoga Known Geothermal Resource Area. Recommendations for types, placement, performance guidelines, and criteria and procedure for triggering establishment and termination of CAMP monitoring equipment were determined after examination of four factors: population location; emission sources; meteorological considerations; and data needs of permitting agencies and applicants. Three alternate financial plans were developed. Locations and equipment for immediate installation are recommended for: two air quality stations in communities where the State ambient air quality standard for H/sub 2/S has been exceeded; three air quality trend stations to monitor progress in reduction of H/sub 2/S emissions; two meteorological observation stations to monitor synoptic wind flow over the area; and one acoustic radar and one rawinsonde station to monitor air inversions which limit the depth of the mixing layer.

Not Available

1980-03-31T23:59:59.000Z

63

Characterization plan for the Oak Ridge National Laboratory Area-Wide Groundwater Program, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This characterization plan has been developed as part of the U.S. Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the characterization plan is intended to serve as a strategy document to guide subsequent GWOU remedial investigations. The plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It is important to note that the characterization plan for the ORNL GWOU is not a prototypical work plan. As such, remedial investigations will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This characterization plan outlines the overall strategy for the remedial investigations and defines tasks that are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

Not Available

1994-08-01T23:59:59.000Z

64

1997 Comprehensive TNX Area Annual Groundwater and Effectiveness Monitoring Report  

SciTech Connect

Shallow groundwater beneath the TNX Area at the Savannah River Site (SRS) has been contaminated with chlorinated volatile organic compounds (CVOCs) such as trichloroethylene (TCE) and carbon tetrachloride. In November 1994, an Interim Record of Decision (IROD) was agreed to and signed by the U. S. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the South Carolina Department of Health {ampersand} Environmental Control (SCDHEC). The Interim Record of Decision requires the installation of a hybrid groundwater corrective action (HGCA) to stabilize the plume of groundwater contamination and remove CVOCs dissolved in the groundwater. The hybrid groundwater corrective action included a recovery well network, purge water management facility, air stripper, and an airlift recirculation well. The recirculation well was dropped pursuant to a test that indicated it to be ineffective at the TNX Area. Consequently, the groundwater corrective action was changed from a hybrid to a single action, pump-and-treat approach. The Interim Action (IA) T-1 air stripper system began operation on September 16, 1996. a comprehensive groundwater monitoring program was initiated to measure the effectiveness of the system. As of December 31, 1997, the system has treated 32 million gallons of contaminated groundwater removed 32 pounds of TCE. The recovery well network created a `capture zone` that stabilized the plume of contaminated groundwater.

Chase, J.

1998-04-01T23:59:59.000Z

65

Martin Marietta Energy Systems, Inc., Groundwater Program Management Plan  

Science Conference Proceedings (OSTI)

The purpose of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Management Plan is to define the function, organizational structure (including associated matrix organizations), interfaces, roles and responsibilities, authority, and relationship to the Department of Energy for the Energy Systems Groundwater Program Office (GWPO). GWPO is charged with the responsibility of coordinating all components of the groundwater program for Energy Systems. This mandate includes activities at the three Oak Ridge facilities [Oak Ridge National Laboratory, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants.

Early, T.O.

1994-05-01T23:59:59.000Z

66

Environmental Monitoring Plan, Revision 5  

SciTech Connect

The purpose of environmental monitoring is to promote the early identification of, and response to, potential adverse environmental impacts associated with Lawrence Livermore National Laboratory (LLNL) operations. Environmental monitoring supports the Integrated Safety Management System (ISMS), International Organization for Standardization (ISO) 14001 Environmental Management Systems standard, and U. S. Department of Energy (DOE) Order 450.1A, Environmental Protection Program. Specifically, in conformance with DOE Order 450.1A, Attachment 1, paragraph 1(b)(5), environmental monitoring enables LLNL to detect, characterize, and respond to releases from LLNL activities; assess impacts; estimate dispersal patterns in the environment; characterize the pathways of exposure to members of the public; characterize the exposures and doses to individuals and to the population; and to evaluate the potential impacts to the biota in the vicinity of LLNL. Environmental monitoring also serves to demonstrate compliance with permits and other regulatory requirements. The Environmental Monitoring Plan (EMP) addresses the sample collection and analytical work supporting environmental monitoring to ensure the following: (1) A consistent system for collecting, assessing, and documenting environmental data of known and documented quality. (2) A validated and consistent approach for sampling and analysis of samples to ensure laboratory data meets program-specific needs and requirements within the framework of a performance-based approach for analytical laboratory work. (3) An integrated sampling approach to avoid duplicative data collection. Until its cancellation in January 2003, DOE Order 5400.1 required the preparation of an environmental monitoring plan. Neither DOE Order 450.1A nor the ISO 14001 standard are as prescriptive as DOE Order 5400.1, in that neither expressly requires an EMP. However, LLNL continues to prepare the EMP because it provides an organizational framework for ensuring that this work, which is integral to the implementation of LLNL's Environmental Management System, is conducted appropriately. Furthermore, the Environmental Monitoring Plan helps LLNL ensure compliance with DOE Order 5400.5, Radiation Protection of the Public and the Environment, and DOE Order 231.1 Change 2, Environment, Safety and Health Reporting, which require the publication of an annual report that characterizes the site's environmental management performance. To summarize, the general regulatory drivers for this environmental monitoring plan are ISO 14001, DOE Order 450.1A, DOE Order 5400.5, and DOE Order 231.1. The environmental monitoring addressed by this plan includes preoperational characterization and assessment, effluent and surveillance monitoring, and permit and regulatory compliance monitoring. Additional environmental monitoring is conducted at LLNL as part of compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, also known as Superfund). LLNL coordinates its ground water surveillance monitoring program with the CERCLA monitoring program to gain sampling efficiencies. (See LLNL [1992] and LLNL [2008] for information about LLNL's CERCLA activities).

Gallegos, G M; Blake, R G; Bertoldo, N A; Campbell, C G; Coty, J; Folks, K; Grayson, A R; Jones, H E; Nelson, J C; Revelli, M A; Wegrecki, T; Williams, R A; Wilson, K

2010-01-27T23:59:59.000Z

67

Hanford Site groundwater monitoring for fiscal year 1996  

Science Conference Proceedings (OSTI)

This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

Hartman, M.J.; Dresel, P.E.; Borghese, J.V. [eds.] [and others] [eds.; and others

1997-02-01T23:59:59.000Z

68

Environmental monitoring plan - environmental monitoring section. Revision 1  

Science Conference Proceedings (OSTI)

This report presents the environmental monitoring plan for the Lawrence Livermore National Laboratory. A site characterization is provided along with monitoring and measurement techniques and quality assurance measures.

Wilt, G.C. [ed.; Tate, P.J.; Brigdon, S.L. [and others

1994-11-01T23:59:59.000Z

69

Results of groundwater monitoring and vegetation sampling at Everest, Kansas, in 2009 .  

SciTech Connect

In April 2008, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) conducted groundwater sampling for the analysis of volatile organic compounds (VOCs) in the existing network of monitoring points at Everest, Kansas (Argonne 2008). The objective of the 2008 investigation was to monitor the distribution of carbon tetrachloride contamination in groundwater previously identified in CCC/USDA site characterization and groundwater sampling studies at Everest in 2000-2006 (Argonne 2001, 2003, 2006a,b). The work at Everest is being undertaken on behalf of the CCC/USDA by Argonne National Laboratory, under the oversight of the Kansas Department of Health and Environment (KDHE). The findings of the 2008 investigation were as follows: (1) Measurements of groundwater levels obtained manually and through the use of automatic recorders demonstrated a consistent pattern of groundwater flow - and inferred contaminant migration - to the north-northwest from the former CCC/USDA facility toward the Nigh property, and then west-southwest from the Nigh property toward the intermittent creek that lies west of the former CCC/USDA facility and the Nigh property. (2) The range of concentrations and the areal distribution of carbon tetrachloride identified in the groundwater at Everest in April 2008 were generally consistent with previous results. The results of the 2008 sampling (reflecting the period from 2006 to 2008) and the earlier investigations at Everest (representing the period from 2000 to 2006) show that no significant downgradient extension of the carbon tetrachloride plume occurred from 2000 to 2008. (3) The slow contaminant migration indicated by the monitoring data is qualitatively consistent with the low groundwater flow rates in the Everest aquifer unit estimated previously on the basis of site-specific hydraulic testing (Argonne 2006a,b). (4) The April 2008 and earlier sampling results demonstrate that the limits of the plume have been effectively, identified by the existing network of monitoring points and have not changed significantly during the CCC/USDA investigation program. The carbon tetrachloride distribution within the plume has continued to evolve, however, with relatively constant or apparently decreasing contaminant levels at most sampling locations. In response to these findings, the KDHE requested that the CCC/USDA develop a plan for annual monitoring of the groundwater and surface water at Everest, to facilitate continued tracking of the carbon tetrachloride plume at this site (KDHE 2009a). A recommendation for annual sampling (for analyses of VOCs) of 16 existing groundwater monitoring points within and near the identified contaminant migration pathway and surface water sampling at 5 locations along the intermittent creek west (downgradient) of the identified plume was presented by the CCC/USDA (Appendix A) and approved by the KDHE (2009b) for implementation. The monitoring wells will be sampled according to the low-flow procedure, and sample preservation, shipping, and analysis activities will be consistent with previous work at Everest. The annual sampling will continue until identified conditions at the site indicate a technical justification for a change. This report summarizes the results of sampling and monitoring activities conducted at the Everest site since completion of the April 2008 groundwater sampling event (Argonne 2008). The investigations performed during the current review period (May 2008 to October 2009) were as follows: (1) With one exception, the KDHE-approved groundwater and surface water monitoring points were sampled on April 24-27, 2009. In this event, well PT1 was inadvertently sampled instead of the adjacent well MW04. This investigation represents the first groundwater and surface water sampling event performed under the current plan for annual monitoring approved by the KDHE. (2) Ongoing monitoring of the groundwater levels at Everest is performed with KDHE approval. The levels in selected monitoring wells are recorded continuously, by using downhole pre

LaFreniere, L. M.; Environmental Science Division

2010-05-13T23:59:59.000Z

70

2002 WIPP Environmental Monitoring Plan  

SciTech Connect

DOE Order 5400.1, General Environmental Protection Program, requires each DOE | facility to prepare an environmental management plan (EMP). This document is | prepared for WIPP in accordance with the guidance contained in DOE Order 5400.1; DOE Order 5400.5, Radiation Protection of the Public and Environment; applicable sections of Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T; DOE, 1991); and the Title 10 Code of Federal Regulations (CFR) Part 834, ''Radiation Protection of the Public and Environment'' (draft). Many sections of DOE Order 5400.1 have been replaced by DOE Order 231.1, which is the driver for the annual Site Environmental Report (SER) and the guidance source for preparing many environmental program documents. The WIPP Project is operated by Westinghouse TRU Solutions (WTS) for the DOE. This plan defines the extent and scope of WIPP's effluent and environmental | monitoring programs during the facility's operational life and also discusses WIPP's quality assurance/quality control (QA/QC) program as it relates to environmental monitoring. In addition, this plan provides a comprehensive description of environmental activities at WIPP including: A summary of environmental programs, including the status of environmental monitoring activities A description of the WIPP Project and its mission A description of the local environment, including demographics An overview of the methodology used to assess radiological consequences to the public, including brief discussions of potential exposure pathways, routine and accidental releases, and their consequences Responses to the requirements described in the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

Washington TRU Solutions LLC

2002-09-30T23:59:59.000Z

71

Hanford Site ground-water monitoring for 1993  

Science Conference Proceedings (OSTI)

This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

1994-09-01T23:59:59.000Z

72

Groundwater Monitoring Report Project Shoal Area, Corrective Action Unit 447  

SciTech Connect

This report presents the 2007 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Project Shoal Area (PSA) Corrective Action Unit (CAU) 447 located in Churchill County, Nevada. Responsibility for the environmental site restoration of the PSA was transferred from the DOE Office of Environmental Management (DOE-EM) to DOE-LM on October 1, 2006. Requirements for CAU 447, as specified in the Federal Facility Agreement and Consent Order (FFACO 2005) entered into by DOE, the U.S. Department of Defense (DOD), and the State of Nevada, includes groundwater monitoring in support of site closure. This is the first groundwater monitoring report prepared by DOE-LM for the PSA.

None

2008-01-01T23:59:59.000Z

73

Hanford Site Groundwater Monitoring for Fiscal Year 2000  

SciTech Connect

This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2001-03-01T23:59:59.000Z

74

Hanford Site Groundwater Monitoring for Fiscal Year 2003  

SciTech Connect

This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2003 (October 2002 through September 2003) on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Concentrations of tritium, nitrate, and some other contaminants continued to exceed drinking water standards in groundwater discharging to the river in some locations. However, contaminant concentrations in river water remained low and were far below standards. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Hanford Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. Uranium exceeds standards in the 300 Area in the south part of the Hanford Site. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the ''Comprehensive Environmental Response, Compensation, and Liability Act'' is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. ''Resource Conservation and Recovery Act'' groundwater monitoring continued at 24 waste management areas during fiscal year 2003: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater; 7 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. During calendar year 2003, drillers completed seven new RCRA monitoring wells, nine wells for CERCLA, and two wells for research on chromate bioremediation. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2003. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. Soil vapor also was sampled to locate carbon tetrachloride sites with the potential to impact groundwater in the future. DOE uses geophysical methods to monitor potential movement of contamination beneath single-shell tank farms. During fiscal year 2003, DOE monitored selected boreholes within each of the 12 single-shell tank farms. In general, the contaminated areas appeared to be stable over time. DOE drilled new boreholes at the T Tank Farm to characterize subsurface contamination near former leak sites. The System Assessment Capability is a set of computer modules simulating movement of contaminants from waste sites through the vadose zone and groundwater. In fiscal year 2003, it was updated with the addition of an atmospheric transport module and with newer versions of models including an updated groundwater flow and transport model.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2004-04-12T23:59:59.000Z

75

Environmental Monitoring Program Quality Assurance Project Plan  

SciTech Connect

The Quality Assurance Project Plan (QAPP) is intended to document the quality assurance of the Environmental Monitoring Program. The Quality Assurance Project Plan has two parts and is written to become a chapter in the Environmental Monitoring Plan. Part A describes the management responsibilities and activities performed to assure the quality of the Environmental Monitoring Program. Part B covers the documentation requirements for changes in the Monitoring Program, and provides details on control of the design and implementation of quality assurance activities.

Holland, R.C.

1993-06-01T23:59:59.000Z

76

Audit of Groundwater Monitoring at Hanford, WR-B-97-03 | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

at Hanford, WR-B-97-03 Audit of Groundwater Monitoring at Hanford, WR-B-97-03 Audit of Groundwater Monitoring at Hanford, WR-B-97-03 More Documents & Publications Audit Report...

77

Groundwater Monitoring Well Installation Work Plan  

E-Print Network (OSTI)

, etc.) will be delivered to each well site in factory-sealed containers and remain in such until used) for the secondary upper pack · 3/8-inch bentonite pellets/chips seal · schedule 40 PVC blank casing · 30% solids, as determined by the Stoller geologist, the placement of a 5-feet bentonite seal (3/8-inch bentonite pellets

78

Hanford Site Groundwater Monitoring for Fiscal Year 2002  

SciTech Connect

This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2002 on the U.S. Department of Energy's Hanford Site in Washington State. This report is written to meet the requirements in CERCLA, RCRA, the Atomic Energy Act of 1954, and Washington State Administrative Code.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2003-02-28T23:59:59.000Z

79

Idaho National Laboratory Environmental Monitoring Plan  

SciTech Connect

This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

Joanne L. Knight

2008-04-01T23:59:59.000Z

80

Idaho National Laboratory Site Environmental Monitoring Plan  

SciTech Connect

This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

Joanne L. Knight

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater monitoring plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Idaho National Laboratory Site Environmental Monitoring Plan  

Science Conference Proceedings (OSTI)

This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

Joanne L. Knight

2010-10-01T23:59:59.000Z

82

The Savannah River Site's Groundwater Monitoring Program, second quarter 1989  

SciTech Connect

The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

Not Available

1989-01-01T23:59:59.000Z

83

The Savannah River Site's Groundwater Monitoring Program, first quarter 1989  

Science Conference Proceedings (OSTI)

The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

Not Available

1989-01-01T23:59:59.000Z

84

Waste Isolation Pilot Plant Groundwater Protection Management Program Plan  

SciTech Connect

U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program, requires each DOE site to prepare a Groundwater Protection Management Program Plan. This document fulfills the requirement for the Waste Isolation Pilot Plant (WIPP). This document was prepared by the Hydrology Section of the Westinghouse TRU Solutions LLC (WTS) Environmental Compliance Department, and it is the responsibility of this group to review the plan annually and update it every three years. This document is not, nor is it intended to be, an implementing document that sets forth specific details on carrying out field projects or operational policy. Rather, it is intended to give the reader insight to the groundwater protection philosophy at WIPP.

Washington TRU Solutions

2002-09-24T23:59:59.000Z

85

Hanford Site Groundwater Monitoring for Fiscal Year 1999  

Science Conference Proceedings (OSTI)

This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 1999 on the US. Department of Energy's Hanford Site, Washington. Water-level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Measurements for site-wide maps were conducted in June in past years and are now measured in March to reflect conditions that are closer to average. Water levels over most of the Hanford Site continued to decline between June 1998 and March 1999. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of carbon-14, strontium-90, technetium-99, and uranium also exceeded drinking water standards in smaller plumes. Cesium-137 and plutonium exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in US Department of Energy Order 5400.5 were exceeded for plutonium, strontium-90, tritium, and uranium in small plumes or single wells. Nitrate and carbon tetrachloride are the most extensive chemical contaminants. Chloroform, chromium, cis-1,2dichloroethylene, cyanide, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; however, in most cases, they are believed to represent natural components of groundwater. ''Resource Conservation and Recovery Act of 1976'' groundwater monitoring continued at 25 waste management areas during fiscal year 1999: 16 under detection programs and data indicate that they are not adversely affecting groundwater; 6 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. Another site, the 120-D-1 ponds, was clean closed in fiscal year 1999, and monitoring is no longer required. Groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100 K, D, and H) and strontium-90 (100 N) reaching the Columbia River. The objective of two remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Groundwater monitoring continued at these sites and at other sites where there is no active remediation. Subsurface source characterization and vadose zone monitoring, soil-vapor monitoring, sediment sampling and characterization, and vadose zone remediation were conducted in fiscal year 1999. Baseline spectral gamma-ray logging at two single-shell tank farms was completed, and logging of zones at tank farms with the highest count rate was initiated. Spectral gamma-ray logging also occurred at specific retention facilities in the 200 East Area. These facilities are some of the most significant potential sources of remaining vadose zone contamination. Finally, remediation and monitoring of carbon tetradoride in the 200 West Area continued, with an additional 972 kilograms of carbon tetrachloride removed from the vadose zone in fiscal year 1999.

MJ Hartman; LF Morasch; WD Webber

2000-05-10T23:59:59.000Z

86

Routine Radiological Environmental Monitoring Plan. Volume 1  

SciTech Connect

The U.S. Department of Energy manages the Nevada Test Site in a manner that meets evolving DOE Missions and responds to the concerns of affected and interested individuals and agencies. This Routine Radiological Monitoring Plan addressess complicance with DOE Orders 5400.1 and 5400.5 and other drivers requiring routine effluent monitoring and environmental surveillance on the Nevada Test Site. This monitoring plan, prepared in 1998, addresses the activities conducted onsite NTS under the Final Environmental Impact Statement and Record of Decision. This radiological monitoring plan, prepared on behalf of the Nevada Test Site Landlord, brings together sitewide environmental surveillance; site-specific effluent monitoring; and operational monitoring conducted by various missions, programs, and projects on the NTS. The plan provides an approach to identifying and conducting routine radiological monitoring at the NTS, based on integrated technical, scientific, and regulatory complicance data needs.

Bechtel Nevada

1999-12-31T23:59:59.000Z

87

Hanford Site Groundwater Monitoring for Fiscal Year 1998  

Science Conference Proceedings (OSTI)

This report presents the results of groundwater and vadose-zone monitoring and remediation for fiscal year (FY) 1998 on the Word Site, Washington. Soil-vapor extraction in the 200-West Area removed 777 kg of carbon tetrachloride in FY 1998, for a total of 75,490 kg removed since remediation began in 1992. Spectral gamma logging and evaluation of historical gross gamma logs near tank farms and liquid-disposal sites in the 200 Areas provided information on movement of contaminants in the vadose zone. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1997 and June 1998. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. One well completed in the basalt-confined aquifer beneath the 200-East Area exceeded the drinking water standard for technetium-99. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-l, Z-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level. Tetrachloroethylene exceeded its maximum contaminant level in several wells in the 300 Area for the first time since the 1980s. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; they are believed to represent natural components of groundwater. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during FY 1998: 17 under detection programs and data indicate that they are not adversely affecting groundwater, 6 under interim-status groundwater-quality-assessment programs to assess possible contamination, and 2 under final-status corrective-action programs. Groundwater remediation in the 100 Areas continued to reduce the amount of strontium-90 (100-N) and chromium (100-K, D, and H) reaching the Columbia River. Two systems in the 200-West Area operated to prevent the spread of carbon tetrachloride and technetide uranium plumes. Groundwater monitoring continued at these sites and at other sites where there is no active remediation. A three-dimensional, numerical groundwater model was applied to simulate radionuclide movement from sources in the 200 Areas following site closure in 2050. Contaminants will continue to move toward the southeast and north (through Gable Gap), but the areas with levels exceeding drinking water standards will diminish.

Hartman, M.J. [and others

1999-03-24T23:59:59.000Z

88

Calendar Year 2011 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee  

SciTech Connect

This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2011 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2011 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. This report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and known extent of groundwater contamination. The CY 2011 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by the DOE Environmental Management (EM) contractor responsible for environmental cleanup on the ORR. In August 2011, URS | CH2M Oak Ridge LLC (UCOR) replaced Bechtel Jacobs Company LLC (BJC) as the DOE EM contractor. For this report, BJC/UCOR will be referenced as the managing contractor for CY 2011. Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC/UCOR (i.e., coordinating sample collection and sharing data) ensures that the CY 2011 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. This report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent QA/QC or DQO evaluation information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC/UCOR. Such details are deferred to the respective programmatic plans and reports issued by BJC. Collectively, the groundwater and surface water monitoring data obtained during CY 2011 by the Y-12 GWPP and BJC/UCOR address DOE Order 436.1 and DOE Order 458.1 requirements for monitoring groundwater and surface water quality in areas (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring) and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). This report presents a summary evaluation of the monitoring data with regard to the respective objectives of surveillance monitoring and exit pathway/perimeter monitoring, based on the analytical results for the principal groundwater contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. This report summarizes the most pertinent findings regarding the principal contaminants, along with recommendations proposed for ongoing groundwater and surface water quality monitoring performed under the Y-12 GWPP.

Elvado Environmental LLC,

2012-12-01T23:59:59.000Z

89

Calendar Year 2007 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2007 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2007 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2007 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT), and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). In December 2007, the BWXT corporate name was changed to Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12), which is applied to personnel and organizations throughout CY 2007 for this report. Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2007 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC. Such details are deferred to the respective programmatic plans and reports issued by BJC (see Section 3.0). Collectively, the groundwater and surface water monitoring data obtained during CY 2007 by the Y-12 GWPP and BJC address DOE Order 450.1 (Environmental Protection Program) requirements for monitoring groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). Section 4 of this report presents a summary evaluation of the monitoring data with regard to the respective objectives of surveillance monitoring and exit pathway/perimeter monitoring, based on the analytical results for the principal groundwater and surface water contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. Section 5 of this report summarizes the most pertinent findings regarding the principal contaminants, along with recommendations proposed for ongoing groundwater and surface water quality monitoring performed under the Y-12 GWPP.

Elvado Environmental LLC

2008-12-01T23:59:59.000Z

90

Calendar Year 2010 Groundwater Monitoring Report, U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2010 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2010 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2010 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2010 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent QA/QC or DQO evaluation information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC. Such details are deferred to the respective programmatic plans and reports issued by BJC (see Section 3.0). Collectively, the groundwater and surface water monitoring data obtained during CY 2010 by the Y-12 GWPP and BJC address DOE Order 450.1A (Environmental Protection Program) requirements for monitoring groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). Section 4 of this report presents a summary evaluation of the monitoring data with regard to the respective objectives of surveillance monitoring and exit pathway/perimeter monitoring, based on the analytical results for the principal groundwater contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. Section 5 of this report summarizes the most pertinent findings regarding the principal contaminants, along with recommendations proposed for ongoing groundwater and surface water quality monitoring performed under the Y-12 GWPP.

Elvado Environmental LLC

2011-12-01T23:59:59.000Z

91

Calendar Year 2009 Groundwater Monitoring Report, U.S. Department of Energy, Y-12 National Security Complex, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2009 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2009 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2009 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent QA/QC or DQO evaluation information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC. Such details are deferred to the respective programmatic plans and reports issued by BJC (see Section 3.0). Collectively, the groundwater and surface water monitoring data obtained during CY 2009 by the Y-12 GWPP and BJC address DOE Order 450.1A (Environmental Protection Program) requirements for monitoring groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). Section 4 of this report presents a summary evaluation of the monitoring data with regard to the respective objectives of surveillance monitoring and exit pathway/perimeter monitoring, based on the analytical results for the principal groundwater contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. Section 5 of this report summarizes the most pertinent findings regarding the principal contaminants, along with recommendations proposed for ongoing groundwater and surface water quality monitoring performed under the Y-12 GWPP. Narrative sections of this report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Appendix C contains construction details for the wells in each regime that were sampled during CY 2009 by either the Y-1

Elvado Environmental LLC

2010-12-01T23:59:59.000Z

92

Proceedings: EPRI/NEI Technical Information Workshop - Nuclear Plant Groundwater Monitoring  

Science Conference Proceedings (OSTI)

The EPRI Groundwater Protection Workshop focused on the subject of groundwater monitoring related to nuclear plant sites. This subject is very important to both decommissioning and operating plants. The Workshop provided information to assist operating plants in the development of technically sound plant site groundwater monitoring programs. Presentations provided the latest information on groundwater assessments, such as related tools, strategies, technologies and experience. The program included inform...

2007-07-19T23:59:59.000Z

93

Selection of Sampling Pumps Used for Groundwater Monitoring at the Hanford Site  

Science Conference Proceedings (OSTI)

The variable frequency drive centrifugal submersible pump, Redi-Flo2a made by Grundfosa, was selected for universal application for Hanford Site groundwater monitoring. Specifications for the selected pump and five other pumps were evaluated against current and future Hanford groundwater monitoring performance requirements, and the Redi-Flo2 was selected as the most versatile and applicable for the range of monitoring conditions. The Redi-Flo2 pump distinguished itself from the other pumps considered because of its wide range in output flow rate and its comparatively moderate maintenance and low capital costs. The Redi-Flo2 pump is able to purge a well at a high flow rate and then supply water for sampling at a low flow rate. Groundwater sampling using a low-volume-purging technique (e.g., low flow, minimal purge, no purge, or micropurgea) is planned in the future, eliminating the need for the pump to supply a high-output flow rate. Under those conditions, the Well Wizard bladder pump, manufactured by QED Environmental Systems, Inc., may be the preferred pump because of the lower capital cost.

Schalla, Ronald; Webber, William D.; Smith, Ronald M.

2001-11-05T23:59:59.000Z

94

Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

Not Available

1994-03-01T23:59:59.000Z

95

Calendar Year 2008 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2008 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2008 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2008 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2008 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent QA/QC or DQO evaluation information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC. Such details are deferred to the respective programmatic plans and reports issued by BJC (see Section 3.0).

Elvado Environmental LLC

2009-12-01T23:59:59.000Z

96

Groundwater Protection Program Management Plan for the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee  

SciTech Connect

This document presents the Groundwater Protection Program (GWPP) management plan for the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12). The Y-12 GWPP functions as the primary point-of-contact for groundwater-related issues at Y-12, provides stewardship of the extensive network of groundwater monitoring wells at Y-12, and serves as a resource for technical expertise, support, and historical data for groundwater-related activities at Y-12. These organizational functions each serve the primary programmatic purpose of the GWPP, which is to ensure that groundwater monitoring activities within areas under Y-12 administrative control provide representative data in compliance with the multiple purposes of applicable state and federal regulations, DOE orders, and the corporate policies of BWXT Y-12, L.L.C. (hereafter referenced as BWXT), the Y-12 management and operations (M&O) contractor for DOE. This GWPP management plan addresses the requirements of DOE Order 450.1 (BWXT Y12 S/RID) regarding the implementation of a site-wide approach for groundwater protection at each DOE facility. Additionally, this plan is a ''living'' document that is reviewed annually, revised and reissued every three years, and is formatted to provide for updating individual sections independent of the rest of the document. Section 2 includes a short description of the groundwater system at Y-12, the history of groundwater monitoring at Y-12 and the corresponding evolution of the GWPP, and an overview of ongoing Y-12 groundwater monitoring activities. Section 3 describes the key elements of the GWPP management strategy. Organizational roles and responsibilities of GWPP personnel are outlined in Section 4. Section 5 presents an overview of the GWPP project plans for applicable programmatic elements. Section 6 lists the reports, plans, and documents that are referenced for technical and administrative details.

Elvado Environmental LLC; Environmental Compliance Department Environment, Safety, and Health Division Y-12 National Security Complex

2004-03-31T23:59:59.000Z

97

Facility effluent monitoring plan for the 3720 facility  

SciTech Connect

This report describes the effluent monitoring plan for the 3720 facility. Airborne and liquid effluents are monitored.

Ballinger, M.Y.

1994-11-01T23:59:59.000Z

98

Final report : groundwater monitoring at Morrill, Kansas, in September 2005 and March 2006, with expansion of the monitoring network in January 2006.  

DOE Green Energy (OSTI)

This document reports the results of groundwater monitoring in September 2005 and March 2006 at the grain storage facility formerly operated at Morrill, Kansas, by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). These activities were the first and second twice yearly sampling events of the two-year monitoring program approved by the CCC/USDA and Kansas Department of Health and Environment (KDHE) project managers. The monitoring network sampled in September 2005 consisted of 9 monitoring wells (MW1S-MW5S and MW1D [installed in the mid 1990s] and MW6S-MW8S [installed in 2004]), plus 3 private wells (Isch, Rillinger, and Stone). The groundwater samples collected in this first event were analyzed for volatile organic compounds (VOCs), dissolved hydrogen, and additional groundwater parameters to aid in evaluating the potential for reductive dechlorination processes. After the monitoring in September 2005, Argonne recommended expansion of the initial monitoring network. Previous sampling (August 2004) had already suggested that the initial network was inadequate to delineate the extent of the carbon tetrachloride plume. With the approval of the CCC/USDA and KDHE project managers, the monitoring network was expanded in January 2006 through the installation of 3 additional monitoring wells (MW9S-MW11S). Details of the monitoring well installations are reported in this document. The expanded monitoring network of 12 monitoring wells (MW1S-MW11S and MW1D) and 3 private wells (Isch, Rillinger, and Stone) was sampled in March 2006, the second monitoring event in the planned two-year program. Results of analyses for VOCs showed minor increases or decreases in contaminant levels at various locations but indicated that the leading edge of the contaminant plume is approaching the intermittent stream leading to Terrapin Creek. The groundwater samples collected in March 2006 were also analyzed for additional groundwater parameters to aid in the evaluation of the potential for reductive dechlorination processes. Preliminary screening of groundwater parameters provided inadequate evidence that reductive dechlorination of carbon tetrachloride is taking place at some locations on the former CCC/USDA property. Groundwater levels measured manually in October 2005, March 2006, and June 2006 were used to map the potentiometric surface at Morrill. The results were generally consistent with each other and with previous measurements, indicating a groundwater flow direction to the south-southeast from the former CCC/USDA facility. Data recorders installed in wells MW1S-MW8S in July 2004 are gathering long-term data on the groundwater elevation and gradient. Data downloaded in August 2004, March 2005, October 2005, and June 2006 indicate that two relatively upgradient wells near the former CCC/USDA facility responded distinctly to apparent rainfall/recharge events. In contrast, two downgradient wells south of the former facility showed virtually no response, probably because of the damping influence of the nearby surface drainages and shallow groundwater at their locations. The first two monitoring events of the planned two-year monitoring program for Morrill have demonstrated no clear pattern of changes in carbon tetrachloride concentrations, though the contaminated zone has expanded toward the intermittent stream. Argonne recommends that the monitoring program continue as approved and that surface water samples be collected in future monitoring events (September 2006, March 2007, and September 2007).

LaFreniere, L. M.; Environmental Science Division

2007-06-30T23:59:59.000Z

99

F-Area Acid/Caustic Basin Groundwater Monitoring Report. Fourth Quarter 1994, Groundwater Monitoring Report  

Science Conference Proceedings (OSTI)

During fourth quarter 1994, samples from the FAC monitoring wells at the F-Area Acid/Caustic Basin were collected and analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, radionuclide indicators, volatile organic compounds, and other constituents. Piezometer FAC 5P was dry and could not be sampled. New monitoring wells FAC 9C, 10C, 11C, and 12C were sampled for the first time during third quarter.

Chase, J.A.

1994-12-22T23:59:59.000Z

100

The Groundwater Performance Assessment Project Quality Assurance Plan  

Science Conference Proceedings (OSTI)

This document provides the quality assurance guidelines that will be followed by the groundwater project.

Walker, Thomas G.

2005-01-26T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater monitoring plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Advanced Technologies for Groundwater Monitoring and Remediation at Nuclear Power Plants  

Science Conference Proceedings (OSTI)

As part of the industry Groundwater Protection Initiative, EPRI has been investigating groundwater monitoring and remediation technologies that have potential for implementation at nuclear power plant sites. This report explores groundwater monitoring and remediation technologies under development or implemented at other industrial and U.S. Department of Energy sites, for both radionuclide and non-radionuclide contaminants. The report documents the potential for development of these technologies for impl...

2008-12-03T23:59:59.000Z

102

Waste Isolation Pilot Plant Environmental Monitoring Plan  

SciTech Connect

U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problem; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) has been written to contain the rationale and design criteria for the monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document any proposed changes in the environmental monitoring program. Guidance for preparation of Environmental Monitoring Plans is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance. The plan will be effective when it is approved by the appropriate Head of Field Organization or their designee. The plan discusses major environmental monitoring and hydrology activities at the WIPP and describes the programs established to ensure that WIPP operations do not have detrimental effects on the environment. This EMP is to be reviewed annually and updated every three years unless otherwise requested by the DOE or contractor.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2004-02-19T23:59:59.000Z

103

Annual report of groundwater monitoring at Everest, Kansas in 2011.  

Science Conference Proceedings (OSTI)

Everest, Kansas, is a small rural community (population approximately 300) located in the southeast corner of Brown County, in the northeastern corner of Kansas. Carbon tetrachloride and chloroform contamination in groundwater at Everest was initially identified in 1997 as a result of testing performed under the Commodity Credit Corporation/U.S. Department of Agriculture (CCC/USDA) private well sampling program conducted by the Kansas Department of Health and Environment (KDHE). The KDHE collected samples from seven private wells in and near Everest. Carbon tetrachloride and chloroform were found in only one of the wells, the Donnie Nigh domestic well (owned at that time by Tim Gale), approximately 3/8 mi northwest of the former Everest CCC/USDA facility. Carbon tetrachloride and chloroform were detected at 121 {mu}g/L and 4 {mu}g/L, respectively. Nitrate was found at 12.62 mg/L. The USDA subsequently connected the Nigh residence to the Everest public water supply system. The findings of the 2011 monitoring at Everest support the following conclusions: (1) Measurements of groundwater levels obtained manually during annual monitoring in 2009-2011 (and through the use of automatic recorders in 2002-2010) have consistently indicated an initial direction of groundwater flow from the former CCC/USDA facility to the north-northwest and toward the Nigh property, then west-southwest from the Nigh property toward the intermittent creek that lies west of the former CCC/USDA facility and the Nigh property. (2) At most of the monitored locations, carbon tetrachloride concentrations decreased in April 2011 relative to 2010 results. Noteworthy decreases of > 50% occurred at locations MW4, MW60, and MW88, in the most concentrated part of the plume. (3) Comparison of accumulated data demonstrates that the area of the carbon tetrachloride plume with concentrations > 200 {mu}g/L has decreased markedly over time and suggests a generally decreasing trend in contaminant levels. (4) The trace increases in carbon tetrachloride concentrations observed in 2010 at locations SB63 and SB64 were notable because of the locations proximity to the downgradient intermittent creek. However, these increases were not confirmed in sampling in 2011. (5) The results of the April 2011 monitoring event continue to support the interpretation, made during the 9-yr observation period from 2001 to 2010, that the migration rate for contamination in groundwater toward the intermittent creek is very slow. (6) No carbon tetrachloride was detected in five samples of surface water collected from the intermittent creek west of the former CCC/USDA facility and the Nigh property, or in tree branch tissue samples collected at locations along the banks of the creek. These observations indicate that the carbon tetrachloride contamination identified at Everest has, to date, not impacted the surface waters of the intermittent creek.

LaFreniere, L. M. (Environmental Science Division)

2011-12-19T23:59:59.000Z

104

Routine Radiological Environmental Monitoring Plan, Volume 2 Appendices  

SciTech Connect

Supporting material for the plan includes: QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR NTS AIR; QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR WATER ON AND OFF THE NEVADA TEST SITE; QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR NTS BIOTA; QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR DIRECT RADIATION MONITORING; DATA QUALITY OBJECTIVES PROCESS; VADOSE ZONE MONITORING PLAN CHECKLIST.

Bechtel Nevada

1998-12-31T23:59:59.000Z

105

Groundwater Protection Program Management Plan For The U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee  

SciTech Connect

This document presents the Groundwater Protection Program (GWPP) management plan for the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12). The Y-12 GWPP functions as the primary point-of-contact for groundwater-related issues at Y-12, provides stewardship of the extensive network of groundwater monitoring wells at Y-12, and serves as a resource for technical expertise, support, and historical data for groundwater-related activities at Y-12. These organizational functions each serve the primary programmatic purpose of the GWPP, which is to ensure that groundwater monitoring activities within areas under Y-12 administrative control provide representative data in compliance with the multiple purposes of applicable state and federal regulations, DOE orders, and the corporate policies of Babcock & Wilcox Technical Services Y-12 LLC (hereafter referenced as B&W Y-12), the Y-12 management and operations (M&O) contractor for DOE. B&W Y-12 is a new corporate name, assumed in January 2007, for the company formerly known as BWXT Y-12, L.L.C., hereafter referenced as BWXT. This GWPP management plan addresses the requirements of DOE Order 450.1A Environmental Protection Program (hereafter referenced as DOE O 450.1A), which emphasize a site-wide approach for groundwater protection at each DOE facility through implementation of groundwater surveillance monitoring. Additionally, this plan addresses the relevant and applicable GWPP elements and goals described in the DOE O 450.1A technical guidance documents issued in June 2004 (DOE 2004) and May 2005 (DOE 2005). This GWPP management plan is a 'living' document that is reviewed annually, revised and reissued every three years, and is formatted to provide for updating individual sections independent of the rest of the document. Section 2 includes a short description of the groundwater system at Y-12, the history of groundwater monitoring at Y-12 and the corresponding evolution of the GWPP, and an overview of ongoing Y-12 groundwater monitoring activities. Section 3 describes the key elements of the GWPP management strategy. Organizational roles and responsibilities of GWPP personnel are outlined in Section 4. Section 5 presents an overview of the GWPP project plans for applicable programmatic elements. Section 6 lists the reports, plans, and documents that are referenced for technical and administrative details.

Elvado Environmental, LLC

2009-09-01T23:59:59.000Z

106

Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan  

SciTech Connect

The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

Fix, N. J.

2008-02-20T23:59:59.000Z

107

Temporal trend analysis of RCRA groundwater monitoring data  

SciTech Connect

Statistical analysis of RCRA groundwater monitoring data at a uranium hexafluoride processing facility showed a statistically significant increase in the concentration of gross beta activity in monitor wells downgradient of surface impounds storing calcium fluoride sludge and high pH water. Because evidence of leakage had not been detected in lysimeters installed beneath the impounds, the operator sought an evaluation of other potential causes of the result, including natural variability. This study determined that all five data sets showed either long-term excursionary (spike-like), or seasonal forms of temporal variation. Gross beta had an upward long-term trend with multiple excursions that almost appeared to be seasonal. Gross alpha had an upward long-term trend with multiple excursions that were clearly not seasonal. Specific conductance had both upward and downward long-term trends but no other variations. pH had a downward long-term trend with multiple excursions that were clearly not seasonal. Fluoride had a downward long-term trend without excursions but with clear seasonal variations. The gross beta result that appeared to be a significant change was a spike event on the upward long-term trend.

Need, E.A. (Rust Environment and Infrastructure, Naperville, IL (United States))

1994-04-01T23:59:59.000Z

108

Automated Monitoring System for Waste Disposal Sites and Groundwater  

Science Conference Proceedings (OSTI)

A proposal submitted to the U.S. Department of Energy (DOE), Office of Science and Technology, Accelerated Site Technology Deployment (ASTD) program to deploy an automated monitoring system for waste disposal sites and groundwater, herein referred to as the ''Automated Monitoring System,'' was funded in fiscal year (FY) 2002. This two-year project included three parts: (1) deployment of cellular telephone modems on existing dataloggers, (2) development of a data management system, and (3) development of Internet accessibility. The proposed concept was initially (in FY 2002) to deploy cellular telephone modems on existing dataloggers and partially develop the data management system at the Nevada Test Site (NTS). This initial effort included both Bechtel Nevada (BN) and the Desert Research Institute (DRI). The following year (FY 2003), cellular modems were to be similarly deployed at Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL), and the early data management system developed at the NTS was to be brought to those locations for site-specific development and use. Also in FY 2003, additional site-specific development of the complete system was to be conducted at the NTS. To complete the project, certain data, depending on site-specific conditions or restrictions involving distribution of data, were to made available through the Internet via the DRI/Western Region Climate Center (WRCC) WEABASE platform. If the complete project had been implemented, the system schematic would have looked like the figure on the following page.

S. E. Rawlinson

2003-03-01T23:59:59.000Z

109

Audit of Groundwater Remediation Plans at Savannah River, ER-B-96-02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AUDIT OF GROUNDWATER REMEDIATION PLANS AT THE SAVANNAH RIVER SITE The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost effective as possible.

110

Waste Isolation Pilot Plant Environmental Monitoring Plan  

SciTech Connect

U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problems; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) explains the rationale and design criteria for the environmental monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document changes in the environmental monitoring program. Guidance for preparation of EMPs is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2008-03-12T23:59:59.000Z

111

Monitored Geologic Repository Test Evaluation Plan  

SciTech Connect

The Monitored Geologic Repository test & evaluation program will specify tests, demonstrations, examinations, and analyses, and describe procedures to conduct and document testing necessary to verify meeting Monitored Geologic Repository requirements for a safe and effective geologic repository for radioactive waste. This test program will provide assurance that the repository is performing as designed, and that the barriers perform as expected; it will also develop supporting documentation to support the licensing process and to demonstrate compliance with codes, standards, and regulations. This comprehensive program addresses all aspects of verification from the development of test requirements to the performance of tests and reporting of the test results. The ''Monitored Geologic Repository Test & Evaluation Plan'' provides a detailed description of the test program approach necessary to achieve the above test program objectives. This test plan incorporates a set of test phases focused on ensuring repository safety and operational readiness and implements a project-wide integrated product management team approach to facilitate test program planning, analysis, and implementation. The following sections provide a description of the individual test phases, the methodology for test program planning and analyses, and the management approach for implementing these activities.

M.B. Skorska

2002-01-02T23:59:59.000Z

112

DEPARTMENT OF ENERGY SOIL AND GROUNDWATER SCIENCE AND TECHNOLOGY NEEDS, PLANS AND INITIATIVES  

Science Conference Proceedings (OSTI)

This paper presents the process used by the Department of Energy (DOE) Environmental Management (EM) Program to collect and prioritize DOE soil and groundwater site science and technology needs, develop and document strategic plans within the EM Engineering and Technology Roadmap, and establish specific program and project initiatives for inclusion in the EM Multi-Year Program Plan. The paper also presents brief summaries of the goals and objectives for the established soil and groundwater initiatives.

Aylward, B; V. ADAMS, V; G. M. CHAMBERLAIN, G; T. L. STEWART, T

2007-12-12T23:59:59.000Z

113

Department of Energy Soil and Groundwater Science and Technology Needs, Plans and Initiatives  

Science Conference Proceedings (OSTI)

This paper presents the process used by the Department of Energy (DOE) Environmental Management (EM) Program to collect and prioritize DOE soil and groundwater site science and technology needs, develop and document strategic plans within the EM Engineering and Technology Roadmap, and establish specific program and project initiatives for inclusion in the EM Multi-Year Program Plan. The paper also presents brief summaries of the goals and objectives for the established soil and groundwater initiatives.

Adams, V.; Chamberlain, G. M.; Stewart, Terri L.; Aylward, R. S.

2008-02-28T23:59:59.000Z

114

L-Area Reactor - 1993 annual - groundwater monitoring report  

Science Conference Proceedings (OSTI)

Groundwater was sampled and analyzed during 1993 from wells monitoring the water table at the following locations in L Area: the L-Area Acid/Caustic Basin (four LAC wells), L-Area Research Wells in the southern portion of the area (outside the fence; three LAW wells), the L-Area Oil and Chemical Basin (four LCO wells), the L-Area Disassembly Basin (two LDB wells), the L-Area Burning/Rubble Pit (four LRP wells), and the L-Area Seepage Basin (four LSB wells). During 1993, tetrachloroethylene was detected above its drinking water standard (DWS) in the LAC, LAW, LCO, and LDB well series. Lead exceeded its 50 {mu}g/L standard in the LAW, LDB, and LRP series, and tritium was above its DWS in the LAW, LCO, and LSB series. Apparently anomalous elevated levels of the common laboratory contaminant bis(2-ethylhexyl)phthalate were reported during first quarter in one well each in the LAC series and LCO series, and during third quarter in a different LCO well. Extensive radionuclide analyses were performed during 1993 in the LAC, LAW, and LCO well series. No radionuclides other than tritium were reported above DWS or Flag 2 criteria.

Chase, J.A.

1994-09-01T23:59:59.000Z

115

WIPP Documents - Environmental Monitoring  

NLE Websites -- All DOE Office Websites (Extended Search)

issued by the EPA are contained in Title 40 CFR, Part 191, Subpart A. Strategic Plan for Groundwater Monitoring at the WIPP DOEWIPP-03-3230 Describes the groundwater...

116

The Savannah River Site`s Groundwater Monitoring Program. First quarter, 1990  

Science Conference Proceedings (OSTI)

This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the first quarter of 1990. It includes the analytical data, field data, well activity data, and the other documentation for this program and provides a record of the program`s activities and rationale and an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of the analytical data and other data, maintenance of the databases containing groundwater monitoring data and related data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

Not Available

1990-10-18T23:59:59.000Z

117

2010 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico  

SciTech Connect

This report presents the 2010 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Gnome-Coach (Gnome) Site in New Mexico (Figure 1). Groundwater monitoring consisted of collecting hydraulic head data and groundwater samples from the wells on site. Historically, the U.S. Environmental Protection Agency (EPA) had conducted these annual activities under the Long-Term Hydrologic Monitoring Program (LTHMP). LM took over the sampling and data collection activities in 2008 but continues to use the EPA Radiation and Indoor Environments National Laboratory in Las Vegas, Nevada, to analyze the water samples. This report summarizes groundwater monitoring and site investigation activities that were conducted at the site during calendar year 2010.

None

2011-02-01T23:59:59.000Z

118

2010 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico  

SciTech Connect

This report presents the 2010 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Gnome-Coach (Gnome) Site in New Mexico. Groundwater monitoring consisted of collecting hydraulic head data and groundwater samples from the wells on site. Historically, the U.S. Environmental Protection Agency (EPA) had conducted these annual activities under the Long-Term Hydrologic Monitoring Program (LTHMP). LM took over the sampling and data collection activities in 2008 but continues to use the EPA Radiation and Indoor Environments National Laboratory in Las Vegas, Nevada, to analyze the water samples. This report summarizes groundwater monitoring and site investigation activities that were conducted at the site during calendar year 2010.

None

2011-02-01T23:59:59.000Z

119

Final report : groundwater monitoring at Centralia, Kansas, inSeptember-October 2005 and March 2006, with expansion of the monitoringnetwork in January 2006.  

DOE Green Energy (OSTI)

This document reports the results of groundwater sampling in September-October 2005 and March 2006 at the grain storage facility formerly operated at Centralia, Kansas, by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). These activities were the first and second twice yearly sampling events of the two-year monitoring program approved by the CCC/USDA and Kansas Department of Health and Environment (KDHE) project managers. The initial monitoring network sampled in September and October 2005 consisted of six monitoring wells (MW1-MW6) installed in 2004, plus five groundwater piezometers (SB01, SB04, SB05, SB08, SB09) installed in 2002. The combined September-October 2005 sampling was the first monitoring event in the planned two-year program for Centralia. The groundwater samples collected in both September and October were analyzed for volatile organic compounds (VOCs), and samples collected in September were analyzed for dissolved hydrogen and additional groundwater parameters to aid in evaluating the potential for reductive dechlorination processes. After the monitoring in September-October 2005, Argonne recommended expansion of the initial monitoring network. Previous sampling (August 2004) had already suggested that this network of six monitoring wells and five piezometers was inadequate to delineate the extent of the carbon tetrachloride plume. With the approval of the CCC/USDA and KDHE project managers, the monitoring network was expanded in January 2006 through the installation of four additional monitoring wells (MW7-MW10) and one new piezometer (SB07R) to replace a damaged piezometer (the former SB07). Details of the monitoring well and piezometer installations are reported in this document. The expanded monitoring network of ten monitoring wells (MW01-MW10) and six piezometers (SB01, SB04, SB05, SB07R, SB08, and SB09) was sampled in March 2006. This March 2006 sampling was the second monitoring event in the planned two-year program. Results of analyses for VOCs showed further increases in contaminant levels and expansion of the carbon tetrachloride plume toward the south and west from the former CCC/USDA facility. The groundwater samples collected in March 2006 were also analyzed for additional groundwater parameters to aid in the evaluation of the potential for reductive dechlorination processes. Preliminary screening of groundwater parameters provided limited evidence that reductive dechlorination of carbon tetrachloride is taking place at some locations on the former CCC/USDA facility. Groundwater levels measured manually in September 2005, March 2006, and June 2006 were used to map the potentiometric surface at Centralia. Overall, these results were consistent with each other and with previous measurements, generally indicating a groundwater flow direction toward the south-southwest from the former CCC/USDA facility. Data recorders installed in wells MW01-MW06 in August 2004 are gathering long-term data on the groundwater elevation and gradient. Data downloaded in March 2005, September 2005, and June 2006 indicate that two wells north and west of the former CCC/USDA facility boundary show distinct, transient and seasonal water level variations. In contrast, two different wells southwest and south of the former facility boundary show virtually no response to the same events. The first two monitoring events of the planned two-year monitoring program for Centralia have demonstrated increased carbon tetrachloride concentrations and lateral expansion of the contaminated zone. Argonne recommends that the CCC/USDA and KDHE project managers consider development and approval of a work plan to expedite the selection and implementation of an active remedial alternative addressing the concentrated areas of groundwater contamination before the end of the two-year monitoring program in 2007.

LaFreniere, L. M.

2006-12-07T23:59:59.000Z

120

The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan  

SciTech Connect

The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

Fix, N. J.

2009-04-03T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater monitoring plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Clean Slate 1 revegetation and monitoring plan  

SciTech Connect

This document is a reclamation plan for short-term and long-term stabilization of land disturbed by activities associated with interim cleanup of radionuclide-contaminated surface soil at the Clean Slate 1 site (located on the Tonopah Test Range). This document has been prepared to provide general reclamation practices and procedures that will be followed during restoration of the cleanup site. Reclamation demonstration plots were established near the Double Tracks cleanup site in the fall of 1994 to evaluate the performance of several native plant species and to evaluate different irrigation strategies. Results of that study, and the results from numerous other studies conducted at other sites (Area 11 and Area 19 of the Nevada Test Site), have been summarized and incorporated into this final reclamation plan for the cleanup of the Clean Slate 1 site. The plan also contains procedures for monitoring both short-term and long-term reclamation.

NONE

1996-09-01T23:59:59.000Z

122

Clean Slate 1 revegetation and monitoring plan  

SciTech Connect

This document constitutes a reclamation plan for the short-term and long-term stabilization of land disturbed by activities associated with the cleanup of radionuclide contaminated surface soil at the Clean Slate 1 site. This document has been prepared to provide general reclamation practices and procedures that will be followed during restoration of the cleanup site. The results of reclamation trials at Area 11, Area 19 and more recently the reclamation demonstration plots at the Double Tracks cleanup site, have been summarized and incorporated into this reclamation and monitoring plan. The plan also contains procedures for monitoring both the effectiveness and success of short-term and long-term soil stabilization. The Clean Slate 1 site is located on the Tonopah Test Range. The surface soils were contaminated as a result of the detonation of a device containing plutonium and depleted uranium using chemical explosives. Short-term stabilization consists of the application of a chemical soil stabilizer that is applied immediately following excavation of the contaminated soils to minimize Pu resuspension. Long-term stabilization is accomplished by the establishment of a permanent vegetation.

Anderson, D.C.; Hall, D.B.

1997-07-01T23:59:59.000Z

123

Annual Groundwater Detection Monitoring Report for the Idaho CERCLA Disposal Facility (2008)  

Science Conference Proceedings (OSTI)

This report presents the data collected for groundwater detection monitoring at the Idaho Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Disposal Facility (ICDF) during calendar year 2008. The detection-monitoring program developed for the ICDF groundwater-monitoring wells is applicable to six wells completed in the uppermost portion of the Snake River Plain Aquifer ? five wells downgradient of the ICDF and one well upgradient. The ICDF detection-monitoring program was established to meet the substantive requirements of Title 40 Code of Federal Regulations (CFR) Parts 264.97 and 264.98, which are applicable or relevant and appropriate requirements under CERCLA. Semiannual groundwater samples were collected and analyzed for indicator parameters in March and September. The indicator parameters focus on constituents that are found in higher concentrations in ICDF leachate than in groundwater (bicarbonate alkalinity, sulfate, U-233, U-234, and U-238). The only detection monitoring limits that were exceeded were for bicarbonate alkalinity. Bicarbonate alkalinity is naturally occurring in groundwater. Bicarbonate alkalinity found in ICDF detection monitoring wells is not a result of waste migration from the ICDF landfill or the evaporation pond. The U.S. Department of Energy will continue with detection monitoring for the ICDF, which is semiannual sampling for indicator parameters.

Lorie Cahn

2009-07-31T23:59:59.000Z

124

Annual Groundwater Detection Monitoring Report for the Idaho CERCLA Disposal Facility (2008)  

SciTech Connect

This report presents the data collected for groundwater detection monitoring at the Idaho Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Disposal Facility (ICDF) during calendar year 2008. The detection-monitoring program developed for the ICDF groundwater-monitoring wells is applicable to six wells completed in the uppermost portion of the Snake River Plain Aquifer. Five wells downgradient of the ICDF and one well upgradient. The ICDF detection-monitoring program was established to meet the substantive requirements of Title 40 Code of Federal Regulations (CFR) Parts 264.97 and 264.98, which are applicable or relevant and appropriate requirements under CERCLA. Semiannal groundwater samples were collected and analyzed for indicator parameters in March and September. The indicator parameters focus on constituents that are found in higher concentrations in ICDF leachate than in groundwater (bicarbonate alkalinity, sulfate, U-233, and U-238). The only detection monitoring limits that were exceeded were for bicarbonate alkalinity. Bicarbonate alkalinity is naturally occuring in groundwater. Bicarbonate alkalinity found in ICDF detection monitoring wells is not a result of waste migration from the ICDF landfill or the evaporation pond. The U.S. Department of Energy will continue with detection monitoring for the ICDF, which is semiannual sampling for indicator parameters.

Lorie Cahn

2009-07-31T23:59:59.000Z

125

Waste Isolation Pilot Plant Environmental Monitoring Plan  

SciTech Connect

DOE Order 5400.1, General Environmental Protection Program Requirements (DOE, 1990a), requires each DOE facility to prepare an EMP. This document is prepared for WIPP in accordance with the guidance contained in DOE Order 5400.1; DOE Order 5400.5, Radiation Protection of the Public and Environment (DOE, 1990b); Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T; DOE, 1991); and the Title 10 Code of Federal Regulations (CFR) 834, Radiation Protection of the Public and Environment (Draft). Many sections of DOE Order 5400.1 have been replaced by DOE Order 231.1 (DOE, 1995), which is the driver for the Annual Site Environmental Report (ASER) and the guidance source for preparing many environmental program documents. The WIPP project is operated by Westinghouse Electric Company, Waste Isolation Division (WID), for the DOE. This plan defines the extent and scope of the WIPP's effluent and environmental monitoring programs during the facility's operational life and also discusses the WIPP's quality assurance/quality control (QA/QC) program as it relates to environmental monitoring. In addition, this plan provides a comprehensive description of environmental activities at WIPP including: A summary of environmental programs, including the status of environmental monitoring activities A description of the WIPP project and its mission A description of the local environment, including demographics An overview of the methodology used to assess radiological consequences to the public, including brief discussions of potential exposure pathways, routine and accidental releases, and their consequences Responses to the requirements described in the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE, 1991). This document references DOE orders and other federal and state regulations affecting environmental monitoring programs at the site. WIPP procedures, which implement the requirements of this program plan, are also referenced. The DOE regulates its own activities for radiation protection of the public under the authority of the Atomic Energy Act of 1954, as amended (42 U.S.C. 2011). The effluent and environmental monitoring activities prescribed by DOE Order 5400.5 and the DOE/EH-0173T guidance manual are designed to ensure that DOE facilities implement standards and regulations to protect members of the public and the environment against undue risk from radiation. Effluent and environmental monitoring also provide 1999 Environmental Monitoring Plan DOE/WIPP 99-2194 the data necessary to demonstrate compliance with applicable environmental protection regulations. Other federal agencies, such as the U.S. Environmental Protection Agency (EPA), are empowered through specific legislation to regulate certain aspects of DOE activities potentially affecting public health and safety or the environment. Presidential Executive Order 12088, Federal Compliance with Pollution Control Standards (43 FR 47707), requires the heads of executive agencies to ensure that all federal facilities and activities comply with applicable pollution control standards and to take all necessary actions for the prevention, control, and abatement of environmental pollution. Beyond statutory requirements, the DOE has established a general environmental protection policy. The Environmental Policy Statement (issued by then Secretary Herrington on January 8, 1986, and extended on January 7, 1987) describes the DOE's commitment to national environmental protection goals in that it conducts operations ''in an environmentally safe and sound manner . . . in compliance with the letter and spirit of applicable environmental statutes, regulations, and standards'' (DOE, 1986). This Environmental Policy Statement also states the DOE's commitment to ''good environmental management in all of its programs and at all of its facilities in order to correct existing environmental problems, to minimize risks to the environment or public health, and to anticipate and address pote

Westinghouse Electric Company Waste Isolation Division

1999-09-29T23:59:59.000Z

126

Management plan for the Oak Ridge Reservation Hydrology and Geology Study Groundwater Data Base  

SciTech Connect

The Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) Groundwater Data Base has been compiled to consolidate groundwater data from the three US Department of Energy facilities located on the Oak Ridge Reservation: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant. Each of these facilities maintains its own groundwater and well construction data bases. Data were extracted from the existing data bases, converted to a consistent format, and integrated into the ORRHAGS Groundwater Data Base structures. This data base management plan documents the development and maintenance of the ORRHAGS Groundwater Data Base and contains information on data base objectives; roles and responsibilities of the personnel involved; and flow, updating, and storage of the data.

Thompson, B.K.

1993-04-01T23:59:59.000Z

127

Final monitoring plan for site restoration at Murdock, Nebraska.  

SciTech Connect

In early 2005, Argonne National Laboratory conducted an Engineering Evaluation/Cost Analysis (EE/CA; Argonne 2005b) to address carbon tetrachloride contamination identified in groundwater and surface water at Murdock, Nebraska, approximately 22 mi east-northeast of Lincoln (Figure 1.1). The EE/CA study was performed for the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA), as the technical basis for a proposed removal action for the Murdock site. The EE/CA was conducted in compliance with an Administrative Order on Consent issued for Murdock by the U.S. Environmental Protection Agency (EPA 1991). Three removal action alternatives were examined through the use of site-specific data and predictive simulations of groundwater flow and contaminant transport performed with calibrated numerical models. The alternatives were evaluated individually and compared against performance criteria established under the National Oil and Hazardous Substances Pollution Contingency Plan and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). On the basis of these evaluations, an alternative employing phytoremediation in conjunction with seasonal groundwater extraction and treatment by spray irrigation was recommended by the CCC/USDA to permanently reduce the carbon tetrachloride contaminant levels in groundwater and surface water at the site. The proposed alternative is being implemented in cooperation with the EPA. Under the direction of the CCC/USDA and the EPA, implementation of the chosen removal action occurred in phases, beginning in April 2005. Installation of all the required remediation systems was completed by the end of August 2005. Specific technical objectives of the removal action are as follows: (1) To eliminate pathways for potential human exposure to carbon tetrachloride concentrations above the regulatory limit of 44.2 {micro}g/L in surface water at the site. (2) To minimize or eliminate any detrimental environmental impacts of carbon tetrachloride discharge to the surface waters of a tributary creek located immediately north of the town. (3) To permanently reduce carbon tetrachloride concentrations in the groundwater and surface water at Murdock and hence restore these resources for potential beneficial use. To evaluate the effectiveness of the selected remedy and its ability to achieve the objectives specified for this site, monitoring is required. This document outlines the proposed scope of a long-term program for monitoring of the removal action at Murdock. In this section the specific remedial objectives of the action are summarized, and a brief overview of the chosen remedy is provided. Section 2 summarizes the results of a baseline sampling event that documented the distribution of carbon tetrachloride contamination in selected media at the Murdock site immediately before cleanup activities began. Section 3 recommends a strategy for subsequent monitoring of the removal action at Murdock, as well as criteria for evaluating the performance of the remedial systems and the progress of the restoration effort.

LaFreniere, L. M.; Environmental Science Division

2006-02-28T23:59:59.000Z

128

Long-Term Ecological Monitoring Field Sampling Plan for 2007  

SciTech Connect

This field sampling plan describes the field investigations planned for the Long-Term Ecological Monitoring Project at the Idaho National Laboratory Site in 2007. This plan and the Quality Assurance Project Plan for Waste Area Groups 1, 2, 3, 4, 5, 6, 7, 10, and Removal Actions constitute the sampling and analysis plan supporting long-term ecological monitoring sampling in 2007. The data collected under this plan will become part of the long-term ecological monitoring data set that is being collected annually. The data will be used t determine the requirements for the subsequent long-term ecological monitoring. This plan guides the 2007 investigations, including sampling, quality assurance, quality control, analytical procedures, and data management. As such, this plan will help to ensure that the resulting monitoring data will be scientifically valid, defensible, and of known and acceptable quality.

T. Haney R. VanHorn

2007-07-31T23:59:59.000Z

129

A cost-effective, environmentally-responsive ground-water monitoring procedure  

E-Print Network (OSTI)

Ground-water monitoring is the primary method used to protect our ground-water resources. The primary objectives of monitoring programs are to detect, to attribute, and to mitigate any changes in-water quality or quantity. Previous monitoring programs have had numerous problems including the failure to produce usable information and the failure to balance the competing factors of cost-effectiveness and environmental protection. A cost-effective, environmentally-responsive ground-water procedure was designed which consists of eight steps and two feedback loops. The reason for monitoring must first be determined before clear monitoring goals can be set. Characterization of the site allows proper design of the monitoring network. Data is then collected and analyzed creating usable information. Applying this new information to the information expansion loop permits a better understanding of the initial site characterization. Finally evaluating the entire routine to determine the effectiveness of the program allows the optimization loop to modify the system for greater efficiency. The value of this procedure was tested at selected sites in the Gibbons Creek Lignite Mine in Grimes County, Texas. The mine, which is currently in compliance with state regulations, is not operating an efficient monitoring program. The problems included over-monitoring of metals in and around reclaimed mine blocks, over-monitoring by monitoring wells in the same aquifer, and the failure to attribute changes in a monitoring well near a dewatering well. The feedback loops helped to optimize the entire program by recognizing problems in the stratigraphic column and modifying the monitoring program to lower monitoring costs. Three major benefits are gained by using this procedure: the ground-water monitoring routine can be made more cost-effective, environmental protection will be increased, and environmental liability will be decreased.

Doucette, Richard Charles

1994-01-01T23:59:59.000Z

130

Radiological monitoring plan for the Oak Ridge Y-12 Plant: Surface Water  

Science Conference Proceedings (OSTI)

The Y-12 Plant conducts a surface water monitoring program in response to DOE Orders and state of Tennessee requirements under the National Pollutant Discharge Elimination System (NPDES). The anticipated codification of DOE Order 5400.5 for radiation protection of the public and the environment (10 CFR Part 834) will require an environmental radiation protection plan (ERPP). The NPDES permit issued by the state of Tennessee requires a radiological monitoring plan (RMP) for Y-12 Plant surface waters. In a May 4, 1995 memo, the state of Tennessee, Division of Water Pollution Control, stated their desired needs and goals regarding the content of RMPs, associated documentation, and data resulting from the RMPs required under the NPDES permitting system (L. Bunting, General Discussion, Radiological Monitoring Plans, Tennessee Division of Water Pollution Control, May 4,1995). Appendix A provides an overview of how the Y-12 Plant will begin to address these needs and goals. It provides a more complete, documented basis for the current Y-12 Plant surface water monitoring program and is intended to supplement documentation provided in the Annual Site Environmental Reports (ASERs), NPDES reports, Groundwater Quality Assessment Reports, and studies conducted under the Y-12 Plant Environmental Restoration (ER) Program. The purpose of this update to the Y-12 Plant RMP is to satisfy the requirements of the current NPDES permit, DOE Order 5400.5, and 10 CFR Part 834, as current proposed, by defining the radiological monitoring plan for surface water for the Y-12 Plant. This plan includes initial storm water monitoring and data analysis. Related activities such as sanitary sewer and sediment monitoring are also summarized. The plan discusses monitoring goals necessary to determine background concentrations of radionuclides, to quantify releases, determine trends, satisfy regulatory requirements, support consequence assessments, and meet requirements that releases be ``as low as reasonably achievable`` (ALARA).

NONE

1997-10-01T23:59:59.000Z

131

Audit of Groundwater Remediation Plans at Savannah River, ER...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ombudsman FOIA Reports Calendar Year Reports Recovery Act Peer Reviews DOE Directives Performance Strategic Plan Testimony Financial Statements Semiannual Reports Work...

132

Groundwater quality assessment/corrective action feasibility plan: New TNX Seepage Basin  

SciTech Connect

The New TNX Seepage Basin is located across River Road east of the TNX Area at the Savannah River Site. Currently the basin is out of service and is awaiting closure in accordance with the Consent Decree settled under Civil Act No. 1:85-2583. Groundwater monitoring data from the detection monitoring network around the New TNX Seepage Basin was recently analyzed using South Carolina Hazardous Waste Management Regulations R.61-79.264.92 methods to determine if groundwater downgradient of the New TNX Seepage Basin had been impacted. Results from the data analysis indicate that the groundwater has been impacted by inorganic constituents with no associated health risks. The impacts resulting from elevated levels of inorganic constituents, such as Mn, Na, and Total PO{sub 4} in the water table, do not pose a threat to human health and the environment.

Nichols, R.L.

1989-12-05T23:59:59.000Z

133

Sanitary landfill groundwater monitoring report. Fourth quarter 1994 and 1994 summary  

Science Conference Proceedings (OSTI)

Eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and trichloroethylene were the most widespread constituents exceeding standards during 1994. Benzene, chloroethene (vinyl chloride), 1,2-dichloroethane, 1,1-dichloroethylene, 1,2-dichloropropane, gross alpha, mercury, nonvolatile beta, tetrachloroethylene, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 140 ft/year during first and fourth quarters 1994.

NONE

1995-02-01T23:59:59.000Z

134

Audit of Groundwater Monitoring at Hanford, WR-B-97-03  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AUDIT OF GROUNDWATER MONITORING AT HANFORD The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost effective as possible. Therefore, this report will be available electronically through the Internet five to seven days after publication at the following alternative addresses: Department of Energy Headquarters Gopher gopher.hr.doe.gov Department of Energy Headquarters Anonymous FTP

135

The Savannah River Site's Groundwater Monitoring Program - Second Quarter 1998 (April through June 1998)  

Science Conference Proceedings (OSTI)

This report summarizes the Groundwater Monitoring Program conducted by SRS during second quarter 1998. It includes the analytical data, field data, data review, quality control, and other documentation for the program; provides a record of the program's activities; and serves as an official record of the analytical results.

Hutchison, J B

1999-02-10T23:59:59.000Z

136

The Savannah River Site`s Groundwater Monitoring Program: First quarter 1993, Volume 1  

Science Conference Proceedings (OSTI)

This report summarizes the Savannah River Site (SRS) Groundwater Monitoring Program conducted by the Environmental Protection Department`s Environmental Monitoring Section (EPD/EMS) during the first quarter of 1993. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program`s activities; and serves as an official document of the analytical results.

Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

1993-08-01T23:59:59.000Z

137

Near-facility environmental monitoring quality assurance project plan  

SciTech Connect

This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near facility environmental monitoring performed by Waste Management Federal Services, Inc., Northwest Operations and supersedes WHC-EP-0538-2. This plan applies to all sampling and monitoring activities performed by waste management Federal Services, Inc., Northwest Operations in implementing facility environmental monitoring at the Hanford Site.

McKinney, S.M.

1997-11-24T23:59:59.000Z

138

The Savannah River Site`s Groundwater Monitoring Program, second quarter 1989  

Science Conference Proceedings (OSTI)

The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

Not Available

1989-12-31T23:59:59.000Z

139

2010 Groundwater Monitoring Report Project Shoal Area, Corrective Action Unit 447  

Science Conference Proceedings (OSTI)

This report presents the 2010 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Project Shoal Area (PSA) Subsurface Corrective Action Unit (CAU) 447 in Churchill County, Nevada. Responsibility for the environmental site restoration of the PSA was transferred from the DOE Office of Environmental Management to LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 447 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 1996, as amended March 2010) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes monitoring in support of site closure. This report summarizes the results from the groundwater monitoring program during fiscal year 2010.

None

2011-02-01T23:59:59.000Z

140

2008 Groundwater Monitoring Report Project Shoal Area, Corrective Action Unit 447  

Science Conference Proceedings (OSTI)

This report presents the 2008 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Project Shoal Area (PSA) Subsurface Corrective Action Unit (CAU) 447 located in Churchill County, Nevada. Responsibility for the environmental site restoration of the PSA was transferred from the DOE Office of Environmental Management to LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 447 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 1996, as amended February 2008) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes proof of concept monitoring in support of site closure. This report summarizes investigation activities associated with CAU 447 that were conducted at the site during 2008. This is the second groundwater monitoring report prepared by LM for the PSA

None

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater monitoring plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Clean Slate 2 Revegetation and Monitoring Plan  

SciTech Connect

This document is a reclamation plan for short-term and long-term stabilization of land disturbed by activities associated with interim clean-up of radionuclide-contaminated surface soil at Clean Slate 2 located northwest of the Nevada Test Site on the Nellis Air Force Range. Surface soils at Clean Slate 2 were contaminated as a result of the detonation of a device containing plutonium and depleted uranium using chemical explosives. Excavation of contaminated soils at Clean Slate 2 will follow procedures similar to those used during the cleanup of the Double Tracks and Clean Slate 1 sites. A maximum of approximately 33 cm (12 in) of the surface soils will be excavated and removed from the site. Near ground zero, where contamination levels are highest, approximately 2 m (7 ft) of soil may be removed. The maximum area to be excavated is estimated to be 18.4 hectares (45.4) acres. In addition to the disturbance associated with soil excavation, approximately 2.0 hectares (5.0) acres will be disturbed by the construction of staging areas and placement of support facilities. Short term stabilization consists of an application of a chemical soil stabilizer and long-term stabilizations involves the establishment of a permanent vegetative cover using selective native plant species, site preparation techniques, increasing organic matter and water holding capacity, irrigation to ensure seed germination and plant establishment. The cleanup site will be monitored to ensure success of revegetation and resuspension of soil particles is within established limits.

David Anderson

1998-02-01T23:59:59.000Z

142

Facility effluent monitoring plan for 242-A evaporator facility  

Science Conference Proceedings (OSTI)

A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years.

Crummel, G.M.; Gustavson, R.D.

1995-02-01T23:59:59.000Z

143

Brookhaven National Laboratory environmental monitoring plan for Calendar Year 1996  

Science Conference Proceedings (OSTI)

As required by DOE Order 5400.1, each U.S. Department of Energy (DOE) site, facility, or activity that uses, generates, releases, or manages significant quantities of hazardous materials shall provide a written Environmental Monitoring Plan (EMP) covering effluent monitoring and environmental surveillance. DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, provides specific guidance regarding environmental monitoring activities.

Naidu, J.R.; Paquette, D.; Lee, R. [and others

1996-10-01T23:59:59.000Z

144

K-Area Acid/Caustic Basin groundwater monitoring report  

SciTech Connect

During second quarter 1992, samples from the seven older KAC monitoring wells at the K-Area Acid/Caustic Basin were analyzed for herbicides, indicator parameters, major ions, pesticides, radionuclides, turbidity, and other constituents. New wells FAC 8 and 9 received the first of four quarters of comprehensive analyses and GC/MS VOA (gas chromatograph/ mass spectrometer volatile organic analyses). Monitoring results that exceeded the US Environmental Protection Agency's Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standards during the quarter are discussed in this report.

Thompson, C.Y.

1992-09-01T23:59:59.000Z

145

Facility effluent monitoring plan for the 327 Facility  

Science Conference Proceedings (OSTI)

The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1994-11-01T23:59:59.000Z

146

Nevada National Security Site 2010 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect

This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2010 results. During 2010, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Samples were collected at UE5PW-1 on March 10 and August 10, 2010; at UE5PW-2 on March 10, August 10, and August 25, 2010; and at UE5PW-3 on March 31, August 10, and August 25, 2010. Static water levels were measured at each of the three pilot wells on March 1, April 26, August 9, and November 9, 2010. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Results from all samples collected in 2010 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

NSTec Environmental Management

2011-01-01T23:59:59.000Z

147

Hanford Site ground-water monitoring for January through June 1988  

Science Conference Proceedings (OSTI)

The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between January and June 1988 included monitoring ground-water elevations across the Site, and monitoring hazardous chemicals and radionuclides in ground water. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Solid Waste Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. In addition, several new analytical initiatives were undertaken during this period. These include cyanide speciation in the BY Cribs plume, inductively coupled argon plasma/mass spectrometry (ICP/MS) measurements on a broad selection of samples from the 100, 200, 300, and 600 Areas, and high sensitivity gas chromatography measurements performed at the Solid Waste Landfill-Nonradioactive Dangerous Waste Landfill. 23 figs., 25 tabs.

Evans, J.C.; Bryce, R.W.; Sherwood, D.R.

1989-05-01T23:59:59.000Z

148

K-Area and Par Pond Sewage Sludge Application Sites groundwater monitoring report: Second quarter 1993  

Science Conference Proceedings (OSTI)

During second quarter 1993, samples from the three monitoring wells at the K-Area site (KSS series) and the three monitoring wells at the Par Pond site (PSS series) were analyzed for constituents required by South Carolina Department of Health and Environmental Control Construction Permit 13,173 and for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. This report describes monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the SRS flagging criteria. During second quarter 1993, no constituents exceeded the final PDWS or any other flagging criteria at the K-Area and Par Pond Sewage Sludge Application Sites. During first quarter 1993, aluminum and iron exceeded the SRS Flag 2 criteria in one or more of the KSS and the PSS wells. These constituents were not analyzed second quarter 1993. In the KSS well series, the field measurement for alkalinity ranged as high as 35 mg/L in well KSS 1D. Alkalinity measurements were zero in the PSS wells, except for a single measurement of 1 mg/L in well PSS 1D. Historical and current water-level elevations at the K-Area Sewage Sludge Application Site indicate that the groundwater flow direction is south to southwest (SRS grid coordinates). The groundwater flow direction at the Par Pond Sewage Sludge Application Site could not be determined second quarter 1993.

Not Available

1993-10-01T23:59:59.000Z

149

Sanitary landfill groundwater monitoring report. First Quarter 1995  

SciTech Connect

This report contains analytical data for samples taken during first quarter 1994 from wells of the LFW series located at the Sanitary Landfill Operating permit (DWP-0874A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

NONE

1995-06-01T23:59:59.000Z

150

BROOKHAVEN NATIONAL LABORATORY ENVIRONMENTAL MONITORING PLAN  

Science Conference Proceedings (OSTI)

Triennial update that describes the BNL Environmental Monitoring Program for all media (air, surface water, ground water, etc.) in accordance with DOE ORDER 5400.5

DAUM,M.; DORSCH,WM.; FRY,J.; GREEN,T.; LEE,R.; NAIDU,J.; PAQUETTE,D.; SCARPITTA,S.; SCHROEDER,G.

1999-09-22T23:59:59.000Z

151

P-Area Acid/Caustic Basin groundwater monitoring report, second quarter 1994  

Science Conference Proceedings (OSTI)

During second quarter 1994, groundwater from the six PAC monitoring wells at the P-Area Acid/Caustic Basin was analyzed for herbicides/pesticides, radium-226, radium-228, turbidity, and comprehensive constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are discussed in this report. During second quarter 1994, no constituents exceeded the final PDWS. Aluminum exceeded its SRS Flag 2 criterion in five PAC wells. Iron and manganese exceeded Flag 2 criteria in three wells, while specific conductance was elevated in one well. Groundwater flow direction and rate in the water table beneath the P-Area Acid/Caustic Basin were similar to past quarters.

Not Available

1994-09-01T23:59:59.000Z

152

Remedial Investigation/Feasibility Study Work Plan for the 200-UP-1 Groundwater Operable Unit, Hanford Site, Richland, Washington. Revision  

Science Conference Proceedings (OSTI)

This work plan identifies the objectives, tasks, and schedule for conducting a Remedial Investigation/Feasibility Study for the 200-UP-1 Groundwater Operable Unit in the southern portion of the 200 West Groundwater Aggregate Area of the Hanford Site. The 200-UP-1 Groundwater Operable Unit addresses contamination identified in the aquifer soils and groundwater within its boundary, as determined in the 200 West Groundwater Aggregate Area Management Study Report (AAMSR) (DOE/RL 1992b). The objectives of this work plan are to develop a program to investigate groundwater contaminants in the southern portion of the 200 West Groundwater Aggregate Area that were designated for Limited Field Investigations (LFIs) and to implement Interim Remedial Measures (IRMs) recommended in the 200 West Groundwater AAMSR. The purpose of an LFI is to evaluate high priority groundwater contaminants where existing data are insufficient to determine whether an IRM is warranted and collect sufficient data to justify and implement an IRM, if needed. A Qualitative Risk Assessment (QRA) will be performed as part of the LFI. The purpose of an IRM is to develop and implement activities, such as contaminant source removal and groundwater treatment, that will ameliorate some of the more severe potential risks of groundwater contaminants prior to the RI and baseline Risk Assessment (RA) to be conducted under the Final Remedy Selection (FRS) at a later date. This work plan addresses needs of a Treatability Study to support the design and implementation of an interim remedial action for the Uranium-{sup 99}{Tc}-Nitrate multi-contaminant IRM plume identified beneath U Plant.

Not Available

1994-01-01T23:59:59.000Z

153

M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1  

Science Conference Proceedings (OSTI)

This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters.

Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

1994-05-01T23:59:59.000Z

154

Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan  

SciTech Connect

This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

Carlson, Thomas J.; Johnson, Gary E.

2010-01-29T23:59:59.000Z

155

2012 Groundwater Monitoring Report Project Shoal Area Subsurface Corrective Action Unit 447  

Science Conference Proceedings (OSTI)

The Project Shoal Area (PSA) in Nevada was the site of a 12-kiloton underground nuclear test in 1963. Although the surface of the site has been remediated, investigation of groundwater contamination resulting from the test is still in the corrective action process. Annual sampling and hydraulic head monitoring are conducted at the site as part of the subsurface corrective action strategy. Analytical results from the 2012 monitoring are consistent with those of the previous years, with tritium detected only in well HC-4. The tritium concentration in groundwater from well HC-4 remains far below the U.S. Environmental Protection Agency-established maximum contaminant level of 20,000 picocuries per liter. Concentrations of total uranium and gross alpha were also detected during this monitoring period, with uranium accounting for nearly all the gross alpha activity. The total uranium concentrations obtained from this monitoring period were consistent with previous results and reflect a slightly elevated natural uranium concentration, consistent with the mineralized geologic terrain. Isotopic ratios of uranium also indicate a natural source of uranium in groundwater, as opposed to a nuclear-test-related source. Water level trends obtained from the 2012 water level data were consistent with those of previous years. The corrective action strategy for the PSA is currently focused on revising the site conceptual model (SCM) and evaluating the adequacy of the current monitoring well network. Some aspects of the SCM are known; however, two major concerns are the uncertainty in the groundwater flow direction and the cause of rising water levels in site wells west of the shear zone. Water levels have been rising in the site wells west of the shear zone since the first hydrologic characterization wells were installed in 1996. While water levels in wells west of the shear zone continue to rise, the rate of increase is less than in previous years. The SCM will be revised, and an evaluation of the groundwater monitoring network will be conducted when water levels at the site have stabilized.

None

2013-03-01T23:59:59.000Z

156

P-Area Acid/Caustic Basin groundwater monitoring report. First quarter 1994  

SciTech Connect

During first quarter 1994, samples from the six PAC monitoring wells at the P-Area Acid/Caustic Basin were collected and analyzed for indicator parameters, groundwater quality parameters, parameters characterizing suitability as a drinking water supply, and other constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are discussed in this report. During first quarter 1994, no constituents exceeded the final PDWS. Aluminum exceeded its SRS Flag 2 criterion in all six PAC wells. Iron exceeded its Flag 2 criterion in four wells, while manganese exceeded its Flag 2 criterion in three wells.

Not Available

1994-06-01T23:59:59.000Z

157

Design and Construction of A Cerenkov Counter for In Situ Monitoring of Sr-90 in Groundwater  

SciTech Connect

Migration of groundwater contamination from beneath the U.S. Department of Energy’s Hanford Site into the Columbia River creates a need for in situ 90Sr monitoring. The prototype monitor discussed here is designed for deployment inside a monitoring well and provides near-real-time determination of the 90Sr concentration in a two-liter groundwater sample. The measurement is made by direct detection of Cerenkov light generated in the water by beta decay of the 90Y daughter. This manuscript presents results from a prototype monitor that was designed by a parametric Monte Carlo simulation study. Calibration and testing results of the as-built system show near perfect agreement between simulated predictions and experimental results. Downwell and laboratory tests demonstrate that the prototype monitor is sensitive to 90Sr at concentrations below drinking water standards of 8 pCi/l (0.3 Bq/l) at the 90% confidence level in measurement times of less than four hours.

Brodzinski, Ronald L.; Runkle, Robert C.; Hartman, John S.; Ashbaker, Eric D.; Douglas, Matthew; Jordan, David V.; McCormick, Kathleen R.; Sliger, William A.; Todd, Lindsay C.

2008-07-01T23:59:59.000Z

158

Monitoring to detect groundwater problems resulting from enhanced oil recovery. Final report  

SciTech Connect

This report develops a four-stage monitoring program to detect groundwater contamination events that may potentially result from enhanced oil recovery (EOR) projects. The monitoring system design is based on a statistical analysis evolving from a series of equations that model subsurface transport of EOR spills. Results of the design include both spatial and frequency monitoring intervals that depend on properties of the local geology and dispersion characteristics of the potential contaminants. Sample results are provided for typical reservoir characteristics. The number of independent variables in the analysis dictate that EOR monitoring systems be designed on a site-specific basis. Sampling designs can be easily formulated to conform to the peculiarities of chosen EOR sites based on data already available from federal and state geological surveys and from oil company statistics.

Beck, R.; Aboba, B.; Miller, D.; Kaklins, I.

1981-10-01T23:59:59.000Z

159

Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill  

SciTech Connect

Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

1989-07-01T23:59:59.000Z

160

Environmental Monitoring Plan: Environmental Monitoring Section. Appendix A, Procedures  

Science Conference Proceedings (OSTI)

This document presents information about the environmental monitoring program at Lawrence Livermore National Laboratory. Topics discussed include: air sampling; air tritium calibrations; storm water discharge; non-storm water discharge; sampling locations; ground water sampling; noise and blast forecasting; analytical laboratory auditing; document retention; procedure writing; quality assurance programs for sampling; soil and sediment sampling; sewage sampling; diversion facility tank sampling; vegetation and foodstuff sampling; and radiological dose assessments.

NONE

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater monitoring plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

P-Area Acid/Caustic Basin groundwater monitoring report: Second quarter 1993  

SciTech Connect

The six monitoring wells at the P-Area Acid/Caustic Basin are sampled quarterly as part of the Savannah River Site (SRS) Groundwater Monitoring Program and to comply with the terms of a consent decree signed May 26, 1988, by the US District Court (District of South Carolina, Aiken Division). During second quarter 1993, samples from the monitoring wells were analyzed for indicator parameters, groundwater quality parameters, parameters characterizing suitability as a drinking water supply, and other constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the SRS flagging criteria or turbidity standard are discussed in this report. During second quarter 1993, no constituents exceeded the final PDWS in wells at the P-Area Acid/Caustic Basin. Aluminum exceeded the SRS Flag 2 criterion in wells PAC 1, 3, 4, 5, and 6. Iron and manganese each exceeded the Flag 2 criterion in wells PAC 2, 3, 5, and 6. Lead was elevated above its Flag 2 criterion in well PAC 5, and radium-228 was above its proposed DWS (Flag 2) in wells PAC 3 and 6. Radium-228 results that exceeded nonvolatile beta activities were reported in these and other wells.

Not Available

1993-09-01T23:59:59.000Z

162

2011 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico  

SciTech Connect

Gnome-Coach was the site of a 3-kiloton underground nuclear test in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and groundwater tracer test performed at the site. The State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. As for the subsurface, monitoring activities that include hydraulic head monitoring and groundwater sampling of the wells onsite are conducted as part of the annual site inspection. These activities were conducted on January 19, 2011. The site roads, monitoring well heads, and the monument at surface ground zero were observed as being in good condition at the time of the site inspection. An evaluation of the hydraulic head data obtained from the site indicates that water levels in wells USGS-4 and USGS-8 appear to respond to the on/off cycling of the dedicated pump in well USGS-1 and that water levels in wells LRL-7 and DD-1 increased during this annual monitoring period. Analytical results obtained from the sampling indicate that concentrations of tritium, strontium-90, and cesium-137 were consistent with concentrations from historical sampling events.

None

2012-02-01T23:59:59.000Z

163

Nevada National Security Site 2011 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect

This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2011 results. During 2011, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Samples were collected at UE5PW-1 on March 8, August 2, August 24, and October 19, 2011; at UE5PW-2 on March 8, August 2, August 23, and October 19, 2011; and at UE5PW-3 on March 8, August 2, August 23, and October 19, 2011. Static water levels were measured at each of the three pilot wells on March 1, June 7, August 1, and October 17, 2011. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Initial total organic carbon and total organic halides results for samples collected in August 2011 were above previous measurements and, in some cases, above the established investigation limits. However, after field sample pumps and tubing were disinfected with Clorox solution, the results returned to normal levels. Final results from samples collected in 2011 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

NSTec Environmental Management

2012-02-27T23:59:59.000Z

164

Mixed Waste Management Facility (MWMF) groundwater monitoring report. Fourth quarter 1993 and 1993 summary  

Science Conference Proceedings (OSTI)

During fourth quarter 1993, 10 constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Carbon tetrachloride, chloroform, chloroethane (vinyl chloride), 1,1-dichloroethylene, dichloromethane (methylene chloride), lead, mercury, or tetrachloroethylene also exceeded standards in one or more wells. Elevated constituents were found in numerous Aquifer Zone 2B{sub 2} (Water Table) and Aquifer Zone 2B{sub 1}, (Barnwell/McBean) wells and in two Aquifer Unit 2A (Congaree) wells. The groundwater flow direction and rates in the three hydrostratigraphic units were similar to those of previous quarters.

Butler, C.T.

1994-03-01T23:59:59.000Z

165

F-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993. Volume 1  

Science Conference Proceedings (OSTI)

During the second half of 1993, the groundwater at the F-Area Seepage Basins (FASB) was monitored in compliance with Module 3, Section C, of South Carolina Hazardous Waste Permit SC1-890-008-989, effective November 2, 1992. The monitoring well network is composed of 87 FSB wells screened in the three hydrostratigraphic units that make up the uppermost aquifer beneath the FASB. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the F-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning in the first quarter of 1993, the standard for comparison became the SCDHEC Groundwater Protection Standard (GWPS) specified in the approved F-Area Seepage Basins Part B permit. Currently and historically, gross alpha, nitrate, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceeded the GWPS in the groundwater at the FASB during the second half of 1993, notably aluminum, iodine-129, and zinc. The elevated constituents are found primarily in Aquifer Zone 2B{sub 2} and Aquifer Zone 2B{sub 1} wells. However, several Aquifer Unit 2A wells also contain elevated levels of constituents. Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units. Water-level maps indicate that the groundwater flow rates and directions at the FASB have remained relatively constant since the basins ceased to be active in 1988.

Butler, C.T.

1994-03-01T23:59:59.000Z

166

The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1989  

Science Conference Proceedings (OSTI)

The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

Not Available

1989-12-31T23:59:59.000Z

167

The Savannah River Site`s Groundwater Monitoring Program: Second quarter 1992  

Science Conference Proceedings (OSTI)

The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Since 1991, the flagging criteria have been based on the federal Environmental Protection Agency (EPA) drinking water standards and on method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1992 are listed in this report.

Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

1992-10-07T23:59:59.000Z

168

TECHNICAL EVALUATION OF TEMPORAL GROUNDWATER MONITORING VARIABILITY IN MW66 AND NEARBY WELLS, PADUCAH GASEOUS DIFFUSION PLANT  

SciTech Connect

Evaluation of disposal records, soil data, and spatial/temporal groundwater data from the Paducah Gaseous Diffusion Plant (PGDP) Solid Waste Management Unit (SWMU) 7 indicate that the peak contaminant concentrations measured in monitoring well (MW) 66 result from the influence of the regional PGDP NW Plume, and does not support the presence of significant vertical transport from local contaminant sources in SWMU 7. This updated evaluation supports the 2006 conceptualization which suggested the high and low concentrations in MW66 represent different flow conditions (i.e., local versus regional influences). Incorporation of the additional lines of evidence from data collected since 2006 provide the basis to link high contaminant concentrations in MW66 (peaks) to the regional 'Northwest Plume' and to the upgradient source, specifically, the C400 Building Area. The conceptual model was further refined to demonstrate that groundwater and the various contaminant plumes respond to complex site conditions in predictable ways. This type of conceptualization bounds the expected system behavior and supports development of environmental cleanup strategies, providing a basis to support decisions even if it is not feasible to completely characterize all of the 'complexities' present in the system. We recommend that the site carefully consider the potential impacts to groundwater and contaminant plume migration as they plan and implement onsite production operations, remediation efforts, and reconfiguration activities. For example, this conceptual model suggests that rerouting drainage water, constructing ponds or basin, reconfiguring cooling water systems, capping sites, decommissioning buildings, fixing (or not fixing) water leaks, and other similar actions will potentially have a 'direct' impact on the groundwater contaminant plumes. Our conclusion that the peak concentrations in MW66 are linked to the regional PGDP NW Plume does not imply that there TCE is not present in SWMU 7. The available soil and groundwater data indicate that the some of the waste disposed in this facility contacted and/or were contaminated by TCE. In our assessment, the relatively small amount of TCE associated with SWMU 7 is not contributing detectable TCE to the groundwater and does not represent a significant threat to the environment, particularly in an area where remediation and/or management of TCE in the NW plume will be required for an extended timeframe. If determined to be necessary by the PGDP team and regulators, additional TCE characterization or cleanup activities could be performed. Consistent with the limited quantity of TCE in SWMU 7, we identify a range of low cost approaches for such activities (e.g., soil gas surveys for characterization or SVE for remediation). We hope that this information is useful to the Paducah team and to their regulators and stakeholders to develop a robust environmental management path to address the groundwater and soil contamination associated with the burial ground areas.

Looney, B.; Eddy-Dilek, C.

2012-08-28T23:59:59.000Z

169

Facility effluent monitoring plan for the 324 Facility  

SciTech Connect

The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1994-11-01T23:59:59.000Z

170

Nevada Test Site 2007 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect

This report is a compilation of the groundwater sampling results from three monitoring wells located near the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), Nye County, Nevada, for calendar year 2007. The NTS is an approximately 3,561 square kilometer (1,375 square mile) restricted-access federal installation located approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada (Figure 1). Pilot wells UE5PW-1, UE5PW-2, and UE5PW-3 are used to monitor the groundwater at the Area 5 RWMS (Figure 2). In addition to groundwater monitoring results, this report includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 RWMS. The disposal of low-level radioactive waste and mixed low-level radioactive waste at the Area 5 RWMS is regulated by U.S. Department of Energy (DOE) Order 435.1, 'Radioactive Waste Management'. The disposal of mixed low-level radioactive waste is also regulated by the state of Nevada under the Resource Conservation and Recovery Act (RCRA) regulation Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities' (CFR, 1999). The format of this report was requested by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 12, 1997. The appearance and arrangement of this document have been modified slightly since that date to provide additional information and to facilitate the readability of the document. The objective of this report is to satisfy any Area 5 RWMS reporting agreements between DOE and NDEP.

NSTec Environmental Management

2008-01-01T23:59:59.000Z

171

Near Facility Environmental Monitoring Quality Assurance Project Plan  

SciTech Connect

This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near-facility environmental monitoring directed by Waste Management Technical Services and supersedes HNF-EP-0538-4. This plan applies to all sampling and monitoring activities performed by Waste Management Technical Services in implementing near-facility environmental monitoring at the Hanford Site. This Quality Assurance Project Plan is required by U.S. Department of Energy Order 5400.1 (DOE 1990) as a part of the Environmental Monitoring Plan (DOE-RL 1997) and is used to define: Environmental measurement and sampling locations used to monitor environmental contaminants near active and inactive facilities and waste storage and disposal sites; Procedures and equipment needed to perform the measurement and sampling; Frequency and analyses required for each measurement and sampling location; Minimum detection level and accuracy; Quality assurance components; and Investigation levels. Near-facility environmental monitoring for the Hanford Site is conducted in accordance with the requirements of U.S. Department of Energy Orders 5400.1 (DOE 1990), 5400.5 (DOE 1993), 5484.1 (DOE 1990), and 435.1 (DOE 1999), and DOE/EH-O173T (DOE 1991). It is Waste Management Technical Services' objective to manage and conduct near-facility environmental monitoring activities at the Hanford Site in a cost-effective and environmentally responsible manner that is in compliance with the letter and spirit of these regulations and other environmental regulations, statutes, and standards.

MCKINNEY, S.M.

2000-05-01T23:59:59.000Z

172

RESULTS OF GROUNDWATER MONITORING FOR THE 183-H SOLAR EVAPORATION BASINS AND 300 AREA PROCESS TRENCHES JANUARY THRU JUNE 2008  

Science Conference Proceedings (OSTI)

This is one of a series of reports on Resource Conservation and Recovery Act of 1976 (RCRA) monitoring at the 183-H solar evaporation basins and the 300 Area process trenches. It fulfills the requirement of Washington Administrative Code (WAC) 173-303-645(11)(g), 'Release from Regulated Units', to report twice each year on the effectiveness of the corrective action program. This report covers the period from January through June 2008. The current objective of corrective action monitoring the 183-H basins is simply to track trends. Although there is short-term variability in contaminant concentrations, trends over the past 10 years are downward. The current Hanford Facility RCRA Permit (Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste [Permit No. WA 7890008967]) and monitoring plan remain adequate for the objective of tracking trends. The objective of groundwater monitoring at the 300 Area process trenches is to demonstrate the effectiveness of the corrective action program by examining the trend of the constituents of interest to confirm that they are attenuating naturally. The overall concentration of uranium in network wells remained above the 30 {micro}g/L drinking water standard in the three downgradient wells screened at the water table. Fluctuations of uranium concentration are caused by changes in river stage. The concentration of cis-1,2-dichloroethene remained above the 70 {micro}g/L drinking water standard in one well (399-1-16B). Concentrations are relatively steady at this well and are not affected by river stage. Trichloroethene and tetrachloroethene concentrations were below detection limits in all wells during the reporting period.

HARTMAN MJ

2008-11-04T23:59:59.000Z

173

Acceptance Test Plan for Fourth-Generation Corrosion Monitoring Cabinet  

SciTech Connect

This Acceptance Test Plan (ATP) will document the satisfactory operation of the third-generation corrosion monitoring cabinet (Hiline Engineering Part No.0004-CHM-072-C01). This ATP will be performed by the manufacturer of the cabinet prior to delivery to the site. The objective of this procedure is to demonstrate and document the acceptance of the corrosion monitoring cabinet. The test will consist of a continuity test of the cabinet wiring from the end of cable to be connected to corrosion probe, through the appropriate intrinsic safety barriers and out to the 15 pin D-shell connectors to be connected to the corrosion monitoring instrument. Additional testing will be performed using a constant current and voltage source provided by the corrosion monitoring hardware manufacturer to verify proper operation of corrosion monitoring instrumentation.

NORMAN, E.C.

2000-10-23T23:59:59.000Z

174

Quality Assurance Program Plan for radionuclide airborne emissions monitoring  

SciTech Connect

This Quality Assurance Program Plan (QAPP) describes the quality assurance requirements and responsibilities for radioactive airborne emissions measurements activities from regulated stacks are controlled at the Hanford Site. Detailed monitoring requirements apply to stacks exceeding 1% of the standard of 10 mrem annual effective dose equivalent to the maximally exposed individual from operations of the Hanford Site.

Vance, L.M.

1993-07-01T23:59:59.000Z

175

Iraq liquid radioactive waste tanks maintenance and monitoring program plan.  

SciTech Connect

The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad (Iraq Ministry of Science and Technology)

2011-10-01T23:59:59.000Z

176

K-Area Acid/Caustic Basin groundwater monitoring report. Third quarter 1994  

SciTech Connect

During third quarter 1994, samples from the KAC monitoring wells at the K-Area Acid/Caustic Basin were collected and analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, radionuclide indicators, and other constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS), other Savannah River Site (SRS) Flag 2 criteria, or the SRS turbidity standard are provided in this report. No constituents exceeded the final PDWS in the KAC wells. Aluminum and iron exceeded other SRS flagging criteria in one or more of the downgradient wells. Groundwater flow direction and rate in the water table beneath the K-Area Acid/Caustic Basin were similar to past quarters.

NONE

1994-12-01T23:59:59.000Z

177

F-Area Acid/Caustic Basin groundwater monitoring report. Second quarter 1994  

SciTech Connect

During second quarter 1994, samples from the FAC monitoring wells at the F-Area Acid/Caustic Basin were collected and analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, radionuclide indicators, volatile organic compounds, and other constituents. Piezometer FAC 5P and monitoring well FAC 6 were dry and could not be sampled. Analytical results that exceeded final Primary Drinking Water Standards (PDWS), other Savannah River Site (SRS) Flag 2 criteria, or the SRS turbidity standard of 50 NTU during the quarter were as follows: gross alpha exceeded the final PDWS and aluminum, iron, manganese, and total organic halogens exceeded the SRS Flag 2 criteria in one or more of the FAC wells. Turbidity exceeded the SRS standard in well FAC 3. Groundwater flow direction and rate in the water table beneath the F-Area Acid/Caustic Basin were similar to past quarters.

Not Available

1994-09-01T23:59:59.000Z

178

Quarterly report of RCRA groundwater monitoring data for period October 1, 1992--December 31, 1992  

SciTech Connect

Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 CFR 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. Long-term laboratory contracts were approved on October 22, 1991. DataChem Laboratories of Salt Lake City, Utah, performs the hazardous chemicals analyses for the Hanford Site. Analyses for coliform bacteria are performed by Columbia/Biomedical Laboratories and for dioxin by TMS Analytical Services, Inc. International Technology Analytical Services Richland, Washington performs the radiochemical analyses. This quarterly report contains data that were received prior to March 8, 1993. This report may contain not only data from the October through December quarter but also data from earlier sampling events that were not previously reported.

Not Available

1993-04-01T23:59:59.000Z

179

Mixed Waste Management Facility (MWMF) Groundwater Monitoring Report: Fourth quarter 1991 and 1991 summary  

SciTech Connect

During fourth quarter 1991, tritium, trichloroethylene, tetrachloroethylene, chloroethene (vinyl chloride), total radium, mercury, and lead exceeded the US Environmental Protection Agency primary drinking water standards (PDWS) in groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. Tritium and trichloroethylene were the most widespread contaminants; 55 (49%) wells exhibited elevated tritium activities, and 24 (21%) wells exhibited elevated trichloroethylene concentrations. Tritium and trichloroethylene levels exceeding the PDWS also occurred in several wells in Aquifer Unit IIA (Congaree). Levels of manganese, total organic halogens, nickel, iron, 1,1-dichloroethane, aluminum, nonvolatile beta, and trichlorofluoromethane that exceeded Flag 2 criteria were found in one or more wells beneath the MWMF. Downgradient wells in the three hydrostratigraphic units at the MWMF contained elevated levels of tritium, trichloroethylene, tetrachloroethylene, total radium, chloroethene (vinyl chloride), lead, mercury, manganese, total organic halogens, nickel, iron, 1,1-dichloroethane, aluminum, nonvolatile beta, or trichlorofluoromethane. Groundwater samples from 81 (72%) of the monitoring wells at the MWMF and adjacent facilities contained elevated levels of several contaminants.

Thompson, C.Y.

1992-03-01T23:59:59.000Z

180

H-Area Acid/Caustic Basin groundwater monitoring report. Second quarter 1994  

Science Conference Proceedings (OSTI)

During second quarter 1994, samples collected from the four HAC monitoring wells at the H-Area Acid/Caustic Basin received comprehensive analyses (exclusive of boron and lithium) and turbidity measurements. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are the focus of this report. Tritium exceeded the final PDWS in all four HAC wells during second quarter 1994. Carbon tetrachloride exceeded the final PDWS in well HAC 4. Aluminum exceeded its Flag 2 criterion in wells HAC 2, 3, and 4. Iron was elevated in wells HAC 1, 2, and 3. Manganese exceeded its Flag 2 criterion in well HAC 3. Specific conductance and total organic halogens were elevated in well HAC 2. No well samples exceeded the SRS turbidity standard. Groundwater flow direction in the water stable beneath the H-Area Acid/Caustic Basin was to the west during second quarter 1994. During previous quarters, the groundwater flow direction has been consistently to the northwest or the north-northwest. This apparent change in flow direction may be attributed to the lack of water elevations for wells HTF 16 and 17 and the anomalous water elevations for well HAC 2 during second quarter.

Not Available

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater monitoring plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Calendar Year 2005 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2005 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2005 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2005 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 450.1 (Environmental Protection Program) regarding evaluation of groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). However, detailed analysis, evaluation, and interpretation of the CY 2005 monitoring data is deferred to the ''Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium'' (BWXT 2006). For each monitoring well, spring, and surface water sampling station included in this report, the GWPP Compendium provides: (1) pertinent well installation and construction information; (2) a complete sampling history, including sampling methods and distinguishing sampling characteristics; (3) an evaluation of hydrologic characteristics, based on pre-sampling groundwater elevations, along with a compilation of available test results (e.g., hydraulic conductivity test data); (4) a discussion of geochemical characteristics based on evaluation of the analytical results for the primary anions and cations; and (5) a detailed analysis and interpretation of the available data for the principal groundwater contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. The following sections of this report provide details regarding the CY 2005 groundwater and surface water monitoring activities in the Bear Creek, East Fork, and Chestnut Ridge Regime. Section 2 briefly describes the hydrogeologic system and generalized extent of groundwater contamination in each regime. Section 3 describes the monitoring programs implemented and associated sampling activities performed in each regime during CY 2005. Section 4 presents an a summary of the CY 2005 monitoring data with regard to the provisions of DOE Order 450.1 (surveillance and exit pathway/perimeter monitoring), including highlights of notable findings and time-series plots of data for CY 2005 sampling locations that provide representative examples of long-term contaminant concentration trends. Brief conclusions and proposed recommendations are provided in Section 5. Section 6 lists the documents cited for more detailed operational, regulatory, and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Monitoring well construction details are in Appendix C. Results of field measurements and laboratory analyses of the groundwater and surface water samples collected during CY 2005 are in Appendix D (Bear Creek Regime), Appendix E (East Fork Regime and surrounding areas), and Appendix F (Chestnut Ridge Regime). Appendix G co

None

2006-09-01T23:59:59.000Z

182

Calendar Year 2004 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2004 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2004 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2004 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 450.1 (Environmental Protection Program) regarding evaluation of groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). However, detailed analysis, evaluation, and interpretation of the CY 2004 monitoring data is deferred to the Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium (BWXT 2005). For each monitoring well, spring, and surface water sampling station included in this report, the GWPP Compendium provides: (1) pertinent well installation and construction information; (2) a complete sampling history, including sampling methods and distinguishing sampling characteristics; (3) an evaluation of hydrologic characteristics, based on pre-sampling groundwater elevations, along with a compilation of available test results (e.g., hydraulic conductivity test data); (4) a discussion of geochemical characteristics based on evaluation of the analytical results for the primary anions and cations; and (5) a detailed analysis and interpretation of the available data for the principal groundwater contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. The following sections of this report provide details regarding the CY 2004 groundwater and surface water monitoring activities in the Bear Creek, East Fork, and Chestnut Ridge Regime. Section 2 briefly describes the hydrogeologic system and generalized extent of groundwater contamination in each regime. Section 3 describes the monitoring programs implemented and associated sampling activities performed in each regime during CY 2004. Section 4 presents an a summary of the CY 2004 monitoring data with regard to the provisions of DOE Order 450.1 (surveillance and exit pathway/perimeter monitoring), including highlights of notable findings and time-series plots of data for CY 2004 sampling locations that provide representative examples of long-term contaminant concentration trends. Brief conclusions and proposed recommendations are provided in Section 5. Section 6 lists the documents cited for more detailed operational, regulatory, and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Monitoring well construction details are in Appendix C. Results of field measurements and laboratory analyses of the groundwater and surface water samples collected during CY 2004 are in Appendix D (Bear Creek Regime), Appendix E (East Fork Regime and surrounding areas), and Appendix F (Chestnut Ridge Regime). Appendix G contai

N /A

2005-09-01T23:59:59.000Z

183

Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year.

Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

1994-07-01T23:59:59.000Z

184

Calendar Year 2001 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2001 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee. The monitoring data were obtained from groundwater and surface water sampling locations within three hydrogeologic regimes at Y-12. The following sections of this report provide details regarding the CY 2001 groundwater and surface water monitoring activities in the Bear Creek, East Fork, and Chestnut Ridge Regimes. Section 2 identifies the sampling locations in each hydrogeologic regime and the corresponding sampling frequency during CY 2001, along with the associated quality assurance/quality control (QA/QC) sampling. Section 3 describes groundwater and surface water sample collection and Section 4 identifies the field measurements and laboratory analytes for each sampling location. Section 5 outlines the data management protocols and data quality objectives (DQOs). Section 6 describes the groundwater elevation monitoring in each regime during CY 2001 and Section 7 lists the documents cited for more detailed operational, regulatory, and technical information.

None

2002-03-31T23:59:59.000Z

185

H-Area Acid/Caustic Basin Groundwater Monitoring Report. Fourth quarterly report and summary 1993  

SciTech Connect

The four monitoring wells at the H-Area Acid/Caustic Basin are sampled quarterly as part of the Savannah River Site (SRS) Groundwater Monitoring Program and to comply with a consent decree signed May 26, 1988, by the US District Court (District of South Carolina, Aiken Division). During fourth quarter 1993, samples from the monitoring wells received comprehensive analyses. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS), the SRS flagging criteria, or the SRS turbidity standard are the focus of this report. During fourth quarter 1993, tritium exceeded the final PDWS in all four HAC wells, with activities between 3.8E + 01 and 4.6E + 01 pCi/mL. Aluminum exceeded its Flag 2 criterion in wells HAC 2, 3, and 4. Iron exceeded its Flag 2 criterion in wells HAC 1, 2, and 3. Specific conductance was elevated in well HAC 2, total organic halogens exceeded its Flag 2 criterion in wells HAC 2 and 3, and manganese was elevated in wells HAC 3 and 4. No well samples exceeded the SRS turbidity standard.

Not Available

1994-03-01T23:59:59.000Z

186

Field testing plan for unsaturated zone monitoring and field studies  

Science Conference Proceedings (OSTI)

The University of Arizona, in cooperation with the Bureau of Economic Geology at The University of Texas at Austin, and Stephens and Associates in Albuquerque, New Mexico has developed a field testing plan for evaluating subsurface monitoring systems. The U.S. Nuclear Regulatory Commission has requested development of these testing plans for low-level radioactive waste disposal sites (LLW) and for monitoring at decommissioned facilities designated under the {open_quotes}Site Decommissioning Management Plan{close_quotes} (SDMP). The tests are conducted on a 50 m by 50 m plot on the University of Arizona`s Maricopa Agricultural Center. Within the 50 m by 50 m plot one finds: (1) an instrumented buried trench, (2) monitoring islands similar to those proposed for the Ward Valley, California LLW Facility, (3) deep borehole monitoring sites, (4) gaseous transport monitoring, and (5) locations for testing non-invasive geophysical measurement techniques. The various subplot areas are instrumented with commercially available instruments such as neutron probes, time domain reflectometry probes, tensiometers, psychrometers, heat dissipation sensors, thermocouples, solution samplers, and cross-hole geophysics electrodes. Measurement depths vary from ground surface to 15 m. The data from the controlled flow and transport experiments, conducted over the plot, will be used to develop an integrated approach to long-term monitoring of the vadose zone at waste disposal sites. The data will also be used to test field-scale flow and transport models. This report describes in detail the design of the experiment and the methodology proposed for evaluating the data.

Young, M.H.; Wierenga, P.J.; Warrick, A.W. [and others

1996-10-01T23:59:59.000Z

187

Healy Clean Coal Project, Healy, Alaska final Environmental Monitoring Plan  

Science Conference Proceedings (OSTI)

This Environmental Monitoring Plan (EMP) provides the mechanism to evaluate the integrated coal combustion/emission control system being demonstrated by the Healy Clean Coal Project (HCCP) as part-of the third solicitation of the US Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCT-III). The EMP monitoring is intended to satisfy two objectives: (1) to develop the information base necessary for identification, assessment, and mitigation of potential environmental problems arising from replication of the technology and (2) to identify and quantify project-specific and site-specific environmental impacts predicted in the National Environmental Policy Act (NEPA) documents (Environmental Impact Statement and Record of Decision). The EMP contains a description of the background and history of development of the project technologies and defines the processes that will take place in the combustion and spray dryer absorber systems, including the formation of flash-calcined material (FCM) and its use in sulfur dioxide (SO{sub 2}) removal from the flue gases. It also contains a description of the existing environmental resources of the project area. The EMP includes two types of environmental monitoring that are to be used to demonstrate the technologies of the HCCP: compliance monitoring and supplemental monitoring. Compliance monitoring activities include air emissions, wastewater effluents, and visibility. Monitoring of these resources provide the data necessary to demonstrate that the power plant can operate under the required state and federal statutes, regulations, and permit requirements.

Not Available

1994-06-14T23:59:59.000Z

188

Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODs) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regimes, which are labeled as integrator OUs. This remedial investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the feasibility study to evaluate all probable or likely alternatives.

Not Available

1993-07-01T23:59:59.000Z

189

Remedial Investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODS) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regime`s, which are labeled as integrator OUs. This Remedial Investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the Feasibility Study to evaluate all probable or likely alternatives.

Not Available

1993-09-01T23:59:59.000Z

190

300 Area TEDF NPDES Permit Compliance Monitoring Plan  

SciTech Connect

This monitoring plan describes the activities and methods that will be employed at the 300 Area Treated Effluent Disposal Facility (TEDF) in order to ensure compliance with the National Discharge Elimination System (NPDES) permit. Included in this document are a brief description of the project, the specifics of the sampling effort, including the physical location and frequency of sampling, the support required for sampling, and the Quality Assurance (QA) protocols to be followed in the sampling procedures.

Loll, C.M.

1994-10-13T23:59:59.000Z

191

2012 Groundwater Monitoring and Inspection Report Gnome-Coach, New Mexico, Site  

SciTech Connect

Gnome-Coach was the site of a 3-kiloton underground nuclear test conducted in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and a groundwater tracer test performed at the site. Surface reclamation and remediation began after the underground testing. A Completion Report was prepared, and the State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. Subsurface corrective action activities began in 1972 and have generally consisted of annual sampling and monitoring of wells near the site. In 2008, the annual site inspections were refined to include hydraulic head monitoring and collection of samples from groundwater monitoring wells onsite using the low-flow sampling method. These activities were conducted during this monitoring period on January 18, 2012. Analytical results from this sampling event indicate that concentrations of tritium, strontium-90, and cesium-137 were generally consistent with concentrations from historical sampling events. The exceptions are the decreases in concentrations of strontium-90 in samples from wells USGS-4 and USGS-8, which were more than 2.5 times lower than last year's results. Well USGS-1 provides water for livestock belonging to area ranchers, and a dedicated submersible pump cycles on and off to maintain a constant volume in a nearby water tank. Water levels in wells USGS-4 and USGS-8 respond to the on/off cycling of the water supply pumping from well USGS-1. Well LRL-7 was not sampled in January, and water levels were still increasing when the transducer data were downloaded in September. A seismic reflection survey was also conducted this year. The survey acquired approximately 13.9 miles of seismic reflection data along 7 profiles on and near the site. These activities were conducted from February 23 through March 10, 2012. The site roads, monitoring well heads, and the monument at surface ground zero were in good condition at the time of the site inspection. However, it was reported in September 2012 that the USGS-1 well head had been damaged by a water truck in April 2012.

None

2013-03-01T23:59:59.000Z

192

F-Area Acid/Caustic Basin Groundwater Monitoring Report. Fourth quarterly report and summary 1993  

SciTech Connect

During fourth quarter 1993, samples from the six FAC monitoring wells at the F-Area Acid/Caustic Basin were collected and analyzed for indicator parameters, groundwater quality parameters, parameters indicating suitability as drinking water, and other constituents. One of the FAC piezometers was scheduled for these analyses but was dry. Analytical results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are the focus of this report. Gross alpha exceeded the final PDWS in two wells. Aluminum exceeded its Flag 2 criterion in five wells. Iron exceeded standards in four wells, manganese exceeded standards in two wells, and total organic halogens exceeded standards in one well. Turbidity exceeded the SRS standard in well FAC 3.

Not Available

1994-03-01T23:59:59.000Z

193

F- and H-area Sewage Sludge Application Sites: Groundwater monitoring report. Second quarter 1993  

SciTech Connect

Samples from the four wells at the F-Area Sewage Sludge Application Site (FSS wells) and the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control Construction Permit 12,076 and, as requested, for other constituents as part of the Savannah River Site Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permit. Currently, no permit-required analytes exceed standards at the F- and H-Area Sewage Sludge Application Sites. Tritium and aluminum have been the primary nonpermit constituents exceeding standards at the F-Area Sewage Sludge Application Site. These constituents were not analyzed second quarter 1993. Other constituents also have exceeded standards at this site, but only sporadically, and none of those were analyzed second quarter 1993.

1993-10-01T23:59:59.000Z

194

F- and H-Area Sewage Sludge Application Sites Groundwater Monitoring Report: Third quarter 1993  

SciTech Connect

Samples from the four wells at the F-Area Sewage Sludge Application Site (FSS wells) and the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control Construction Permit 12,076 and, as requested, for other constituents as part of the Savannah River Site Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permit. Currently, iron, lead, and manganese are the only permit-required analytes that exceed standards at the F- and H-Area Sewage Sludge Application Sites. Tritium and aluminum are the nonpermit constituents exceeding standards. Other constituents have exceeded standards at this site previously, but only sporadically.

1994-01-01T23:59:59.000Z

195

F- and H-Area Sewage Sludge Application Sites groundwater monitoring report  

SciTech Connect

Samples from the four wells at the F-Area Sewage Sludge Application Site (FSS wells) and the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control Construction Permit 12,076 and, as requested, for other constituents as part of the Savannah River Site Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permit. Historically and currently, no permit-required analytes exceed standards at the F- and H-Area Sewage Sludge Application Sites except iron, lead, and manganese, which occur in elevated concentrations frequently in FSS wells and occasionally in HSS wells. Tritium and aluminum are the primary nonpermit constituents that exceed standards at the F-Area Sewage Sludge Application Site. Other constituents also exceed standards at this site but only sporadically.

1993-07-01T23:59:59.000Z

196

Facility effluent monitoring plan for the 325 Facility  

SciTech Connect

The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1998-12-31T23:59:59.000Z

197

Test plan for demonstration of Rapid Transuranic Monitoring Laboratory  

Science Conference Proceedings (OSTI)

This plan describes tests to demonstrate the capability of the Rapid Transuranic Monitoring Laboratory (RTML) to monitor airborne alpha-emitting radionuclides and analyze soil, smear, and filter samples for alpha- and gamma-emitting radionuclides under field conditions. The RTML will be tested during June 1993 at a site adjacent to the Cold Test Pit at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. Measurement systems installed in the RTML that will be demonstrated include two large-area ionization chamber alpha spectrometers, an x-ray/gamma-ray spectrometer, and four alpha continuous air monitors. Test objectives, requirements for data quality, experimental apparatus and procedures, and safety and logistics issues are described.

McIsaac, C.V.; Sill, C.W.; Gehrke, R.J.; Killian, E.W.; Watts, K.D.

1993-06-01T23:59:59.000Z

198

F/H seepage basin groundwater process tank settling characterization task technical plan  

Science Conference Proceedings (OSTI)

The Environmental Restoration (ER) Department is responsible for environmental remediation projects on Site at the Savannah River Plant. ER requested Interim Waste Technology Section (IWTS) to conduct a treatability study to develop a system which would reduce the ground water contaminant levels in the aquifers at the F/H seepage basins. A task technical plan has been initiated to support the remediation system development. The task plan provides the methodology for conducting further investigations into the behavior of ground water in the tanks. Potential concerns exist that are related to the settling characteristics of particulate matter in the groundwater. During periods of operation, the injection system water tank and extraction system water tank will probably maintain some minimum water level. During periods of extended treatment system downtime, ground water may remain within the injection system and extraction system water tanks. The settling of particulate matter is of potential concern due to: Radioactivity-related safety issues may need to be investigated and documented; Accumulation of particulate matter will reduce the tank`s operating volumes; The characteristics of the settled particulate matter need to be determined and appropriate cleaning and/or decommission procedures developed for the tanks.

Siler, J.L.

1993-08-31T23:59:59.000Z

199

Calendar Year 2002 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2002 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2002 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The sections of this report provide details regarding the CY 2002 groundwater and surface water monitoring activities in the Bear Creek, East Fork, and Chestnut Ridge Regimes. Section 2 describes the monitoring programs implemented by the Y-12 GWPP and BJC during CY 2002. Section 3 identifies the sampling locations in each hydrogeologic regime and the corresponding sampling frequency during CY 2002, along with the associated quality assurance/quality control (QA/QC) sampling. Section 4 describes groundwater and surface water sample collection and Section 5 identifies the field measurements and laboratory analytes for each sampling location. Section 6 outlines the data management protocols and data quality objectives (DQOs). Section 7 describes the groundwater elevation monitoring in each regime during CY 2002 and Section 8 lists the documents cited for more detailed operational, regulatory, and technical information.

None

2003-03-31T23:59:59.000Z

200

Monitoring and evaluation plan for the Nez Perce Tribal Hatchery  

DOE Green Energy (OSTI)

The Nez Perce Tribe has proposed to build and operate the Nez Perce Tribal Hatchery (NPTH) in the Clearwater River subbasin of Idaho for the purpose of restoring self-sustaining populations of spring, summer, and fall chinook salmon to their native habitats. The project comprises a combination of incubation and rearing facilities, satellite rearing facilities, juvenile and adult collection sites, and associated production and harvest management activities. As currently conceived, the NPTH program will produce approximately 768,000 spring chinook parr, 800,000 summer chinook fry, and 2,000,000 fall chinook fry on an annual basis. Hatchery fish would be spawned, reared, and released under conditions that promote wild-type characteristics, minimize genetic changes in both hatchery and wild chinook populations, and minimize undesirable ecological interactions. The primary objective is to enable hatchery-produced fish to return to reproduce naturally in the streams in which they are released. These and other characteristics of the project are described in further detail in the Nez Perce Tribal Hatchery Master Plan, the 1995 Supplement to the Master Plan, and the Nez Perce Tribal Hatchery Program Environmental Impact Statement. The report in hand is referred to in project literature as the NPTH Monitoring and Evaluation (M&E) Plan. This report describes monitoring and evaluation activities that will help NPTH managers determine whether they were successful in restoring chinook salmon populations and avoiding adverse ecological impacts.

Steward, C.R.

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater monitoring plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

T-TY Tank Farm Interim Surface Barrier Demonstration—Vadose Zone Monitoring Plan  

SciTech Connect

The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank of the 241-T Tank Farm in 1973. Five tanks are assumed to have leaked in the TY Farm. Many of the contaminants from those leaks still reside within the vadose zone within the T and TY Tank Farms. The Department of Energy’s Office of River Protection seeks to minimize the movement of these contaminant plumes by placing interim barriers on the ground surface. Such barriers are expected to prevent infiltrating water from reaching the plumes and moving them further. The soil water regime is monitored to determine the effectiveness of the interim surface barriers. Soil-water content and water pressure are monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. Four instrument nests were installed in the T Farm in fiscal year (FY) 2006 and FY2007; two nests were installed in the TY Farm in FY2010. Each instrument nest contains a neutron probe access tube, a capacitance probe, and four heat-dissipation units. A meteorological station has been installed at the north side of the fence of the T Farm. This document summarizes the monitoring methods, the instrument calibration and installation, and the vadose zone monitoring plan for interim barriers in T farm and TY Farm.

Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

2010-09-27T23:59:59.000Z

202

Savannah River Site Environmental Monitoring Plan. Volume 1, Section 1000 Addendum: Revision 3  

SciTech Connect

This document -- the Savannah River Site Environmental Monitoring Plan (SRS EM Plan) -- has been prepared according to guidance contained in the DOE 5400 Series orders, in 10 CFR 834, and in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and environmental Surveillance [DOE, 1991]. The SRS EM Plan`s purpose is to define the criteria, regulations, and guideline requirements with which SRS will comply. These criteria and requirements are applicable to environmental monitoring activities performed in support of the SRS Environmental Monitoring Program (SRS EM Program), WSRC-3Q1-2, Volume 1, Section 1100. They are not applicable to monitoring activities utilized exclusively for process monitoring/control. The environmental monitoring program requirements documented in the SRS EM Plan incorporate all applicable should requirements of DOE/EH-0173T and expand upon them to include nonradiological environmental monitoring program requirements.

Jannik, G.T.

1994-10-01T23:59:59.000Z

203

F- and H-Area Sewage Sludge Application Sites groundwater monitoring report  

SciTech Connect

Samples from the four wells at the F-Area Sewage Sludge Application Site (FSS wells) and the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control Construction Permit 12,076 and, as requested, for other constituents as part of the Savannah River Site Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permit. During fourth quarter 1992, the FSS wells also were analyzed for a number of other constituents not required by the permit. Historically and currently, no permit-required analytes exceed standards at the F- and H-Area Sewage Sludge Application Sites except iron, lead, and manganese, which occur in elevated concentrations frequently in FSS wells. Lead concentrations exceeded the final Primary Drinking Water Standards during fourth quarter 1992, an event that is concurrent with a change in sampling procedures. Tritium is the primary nonpermit constituent that exceeds standards at the F-Area Sewage Sludge Application Site. Other constituents also exceed standards at this site but only sporadically.

1993-04-01T23:59:59.000Z

204

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities groundwater monitoring and corrective-action report (U). Third and fourth quarters 1996, Vol. I  

SciTech Connect

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.

NONE

1997-03-01T23:59:59.000Z

205

Continuous Emissions Monitoring System Monitoring Plan for the Y-12 Steam Plant  

SciTech Connect

The Oak Ridge Y-12 National Security Complex (Y-12), managed by BWXT, is submitting this Continuous Emissions Monitoring System (CEMS) Monitoring Plan in conformance with the requirements of Title 40 of the U.S. Code of Federal Regulations (CFR) Part 75. The state of Tennessee identified the Y-12 Steam Plant in Oak Ridge, Tennessee, as a non-electrical generation unit (EGU) nitrogen oxides (NO{sub x}) budget source as a result of the NO{sub x} State Implementation Plan (SIP) under the Tennessee Department of Environment and Conservation (TDEC) Rule 1200-3-27. Following this introduction, the monitoring plan contains the following sections: CEMS details, NO{sub x} emissions, and quality assurance (QA)/quality control (QC). The following information is included in the attachments: fuel and flue gas diagram, system layout, data flow diagrams, Electronic Monitoring Plan printouts, vendor information on coal and natural gas feed systems, and the Certification Test Protocol. The Y-12 Steam Plant consists of four Wickes boilers. Each is rated at a maximum heat input capacity of 296.8 MMBtu/hour or 250,000 lb/hour of 250-psig steam. Although pulverized coal is the principal fuel, each of the units can fire natural gas or a combination of coal and gas. Each unit is equipped with a Joy Manufacturing Company reverse air baghouse to control particulate emissions. Flue gases travel out of the baghouse, through an induced draft fan, then to one of two stacks. Boilers 1 and 2 exhaust through Stack 1. Boilers 3 and 4 exhaust through Stack 2. A dedicated CEMS will be installed in the ductwork of each boiler, downstream of the baghouse. The CEMS will be designed, built, installed, and started up by URS Group, Inc. (URS). Data acquisition and handling will be accomplished using a data acquisition and handling system (DAHS) designed, built, and programmed by Environmental Systems Corporation (ESC). The installed CEMS will continuously monitor NO{sub x}, flue gas flowrate, and carbon dioxide (CO{sub 2}). The CEMS will be utilized to report emissions from each unit for each ozone season starting May 1, 2003. Each boiler has independent coal and natural gas metering systems. Coal is fed to each boiler by belt-type coal feeders. Each boiler has two dedicated coal feeders. Natural gas may be burned along with coal for flame stability. The boilers may also be fired on natural gas alone. Orifice meters measure the natural gas flow to each boiler.

None

2003-02-28T23:59:59.000Z

206

K-Area and Par Pond Sewage Sludge Application Sites Groundwater Monitoring Report. Fourth quarter 1992 and 1992 summary  

Science Conference Proceedings (OSTI)

During fourth quarter 1992, samples from the three monitoring wells at the K-Area site (KSS series) and the three monitoring wells at the Par Pond site (PSS series) were analyzed for constituents required by South Carolina Department of Health and Environmental Control Construction Permit 13, 173 and for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. This report describes monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the SRS flagging criteria. During fourth quarter 1992, no constituents analyzed exceeded the PDWS or the SRS Flag 2 criteria at the K-Area and Par Pond Sewage Sludge Application Sites. In the KSS well series, the field measurement for alkalinity ranged as high as 26 mg/L in well KSS 1D. Alkalinity measurements were zero in the PSS wells. Historical and current water-level elevations at the K-Area and Par Pond Sewage Sludge Application Site indicate that the groundwater flow directions are south to southwest (SRS grid coordinates).

Thompson, C.Y.

1993-04-01T23:59:59.000Z

207

Environmental Monitoring Plan United States Department of Energy Richland Operations Office. Revision 2  

Science Conference Proceedings (OSTI)

This Environmental Monitoring Plan was prepared for the US Department of Energy`s (DOE`s) Richland Operations Office (RL) to implement the requirements of DOE Order 5400.1. According to the Order, each DOE site, facility, or activity that uses, generates, releases, or manages significant pollutants or hazardous materials shall prepare a written environmental monitoring plan covering two major activities: (1) effluent monitoring and (2) environmental surveillance. The plan is to contain information discussing the rationale and design criteria for the monitoring programs, sampling locations and schedules, quality assurance requirements, program implementation procedures, analytical procedures, and reporting requirements. The plan`s purpose is to assist DOE in the management of environmental activities at the Hanford Site and to help ensure that operations on the site are conducted in an environmentally safe and sound manner.

NONE

1997-11-10T23:59:59.000Z

208

H-Area, K-Area, and Par Pond Sewage Sludge Application Sites Groundwater Monitoring Report. Second quarter 1995  

SciTech Connect

During second quarter 1995, samples from monitoring wells at the K-Area Sewage Sludge Application Site (KSS wells) and Par Pond Sewage Sludge Application Site (PSS wells) were analyzed for constituents required by SCDHEC Construction Permit 13,173. H-Area Sewage Sludge Application Site (HSS wells) samples were analyzed for constituents required by SCDHEC Construction Permit 12,076. All samples are also analyzed as requested for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permits. There were no constituents which exceeded the SCDHEC final Primary Drinking Water Standard in any well from the H-Area, K-Area, and Par Pond Sewage Sludge Application Sites. There were also no constituents which were above the SRS Flag 2 criteria in any well at the three sites during second quarter 1995.

Chase, J.A.

1995-09-01T23:59:59.000Z

209

H-Area, K-Area, and Par Pond Sewage Sludge Application sites groundwater monitoring report. First quarter 1995  

SciTech Connect

During first quarter 1995, samples from monitoring wells at the K-Area Sewage Sludge Application Site (KSS wells) and Par Pond Sewage Sludge Application Site (PSS wells) were analyzed for constituents required by SCDHEC Construction Permit 13,173. H-Area Sewage Sludge Application Site (HSS wells) samples were analyzed for constituents required by SCDHEC Construction Permit 12,076. All samples are also analyzed as requested for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permits. The only constituent that exceeded the SCDHEC final Primary Drinking Water Standard in any well was lead which was found in wells HSS 3D and PSS 3D. Aluminum and iron were above Flag 2 criteria in one or more wells in the three sites during first quarter 1995.

Chase, J.A.

1995-06-01T23:59:59.000Z

210

Raft River monitor well potentiometric head responses and water quality as related to the conceptual ground-water flow system  

DOE Green Energy (OSTI)

Ground-water monitoring near the Raft River site was initiated in 1974 by the IDWR. This effort consisted of semiannual chemical sampling of 22 irrigation wells near the Raft River geothermal development area. This program yielded useful baseline chemical data; however, several problems were inherent. For example, access to water pumped from the wells is limited to the irrigation season (April through September). All the wells are not continuously pumped; thus, some wells that are sampled one season cannot be sampled the next. In addition, information on well construction, completion, and production is often unreliable or not available. These data are to be supplemented by establishing a series of monitor wells in the proposed geothermal withdrawal and injection area. These wells were to be located and designed to provide data necessary for evaluating and predicting the impact of geothermal development on the Shallow Aquifer system.

Allman, D.W.; Tullis, J.A.; Dolenc, M.R.; Thurow, T.L.; Skiba, P.A.

1982-09-01T23:59:59.000Z

211

F/H seepage basin groundwater influent, effluent, precipitated sludge characterization task technical plan  

SciTech Connect

A treatability study to support the development of a remediation system which would reduce the contaminant levels in groundwater removed from the aquifers in the vicinity of the F/H seepage basins and southwest of the Mixed Waste Management Facility (MWMF) at the Savannah River facility was conducted. Proposed changes in the remediation system require an additional study to determine whether precipitated sludge generated from the proposed remediation system will be hazardous as defined by RCRA. Several contaminants, such as lead and mercury, are above the groundwater protection standards. The presence of radionuclides and other contaminants in the sludge does not present a problem provided that the sludge can pass the Toxicity Characteristic Leaching Procedure (TCLP) test. The study has been developed in such a manner as to cover the possible range of treatment options that may be used.

Siler, J.L.

1993-10-29T23:59:59.000Z

212

Advanced Technology for Groundwater Protection  

Science Conference Proceedings (OSTI)

This report documents the evaluation of automatic and in situ groundwater monitoring technologies for application at nuclear power plant (NPP) sites. The project studies the state of technology of automatic and in situ groundwater monitoring technologies and assesses whether they can be used to enhance the current groundwater monitoring capabilities at NPPs. Technologies for automatically detecting tritium and technologies that monitor non-radiological groundwater characteristics were explored. The abili...

2012-04-25T23:59:59.000Z

213

Data management implementation plan for the site characterization of the Waste Area Grouping 1 Groundwater Operable Unit at Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization. This project is not mandated by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); therefore, no formalized meetings for data quality objective (DQO) development were held. Internally, DQOs were generated by the project team based on the end uses of the data to be collected. The 150-acre WAG 1 is contained within the ORNL security area. It includes all of the former ORNL radioisotope research, production, and maintenance facilities; former waste management areas; and some former administrative facilities. The goal of the WAG 1 Groundwater Site Characterization is to provide the necessary data on the nature and extent of groundwater contamination with an acceptable level of uncertainty to support the selection of remedial alternatives and to identify additional data needs for future actions. Primary objectives for the site characterization are: (1) To identify and characterize contaminant migration pathways based on the collection of groundwater data; (2) to identify sources of groundwater contamination and evaluate remedial actions which could be implemented to control or eliminate these sources; and (3) To conduct groundwater monitoring in support of other OUs in WAG 1 and the ORNL Groundwater OU.

Ball, T.S.; Nickle, E.B.

1994-10-01T23:59:59.000Z

214

New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B  

SciTech Connect

This operations and maintenance plan supports the New Pump and Treat Facility (NPTF) remedial action work plan and identifies the approach and requirements for the operations and maintenance activities specific to the final medical zone treatment remedy. The NPTF provides the treatment system necessary to remediate the medical zone portion of the OU 1-07B contaminated groundwater plume. Design and construction of the New Pump and Treat Facility is addressed in the NPTF remedial action work plan. The scope of this operation and maintenance plan includes facility operations and maintenance, remedy five-year reviews, and the final operations and maintenance report for the NPTF.

L. O. Nelson

2003-09-01T23:59:59.000Z

215

Microsoft Word - List of Monitoring Plans.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

seismometersaccelerometers, it is also well suited to environmental monitoring of offshore wind energy installations, as well as to a variety of marine geophysical...

216

Quality assurance program plan for radionuclide airborne emissions monitoring  

SciTech Connect

This Quality Assurance Program Plan identifies quality assurance program requirements and addresses the various Westinghouse Hanford Company organizations and their particular responsibilities in regards to sample and data handling of radiological airborne emissions. This Quality Assurance Program Plan is prepared in accordance with and to written requirements.

Boom, R.J.

1995-12-01T23:59:59.000Z

217

H-Area, K-Area, and Par Pond Sewage Sludge Application Sites groundwater monitoring report. Second quarter 1994  

SciTech Connect

Groundwater samples from the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control (SCDHEC) Construction Permit 12,076. Samples from the three wells at the K-Area Sewage Sludge Application Site (KSS wells) and the three wells at the Par Pond Sewage Sludge Application Site (PSS wells) are analyzed quarterly for constituents required by SCDHEC Construction Permit 13,173. All samples are also analyzed as requested for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permits. No constituents exceeded the SCDHEC final Primary Drinking Water Standard in any well from the H-Area, K-Area, and Par Pond Sewage Sludge Application Sites. Aluminum, iron, lead, and manganese, which were above standards and Flag 2 criteria in one or more wells in the three sites during first quarter 1994, were not analyzed this quarter. Second quarter results are similar to results for fourth quarter 1993.

1994-10-01T23:59:59.000Z

218

H-Area, K-Area, and Par Pond Sewage Sludge Application Sites groundwater monitoring report. Third quarter 1994  

SciTech Connect

Groundwater samples from the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control (SCDHEC) Construction Permit 12,076. Samples from the three wells at the K-Area Sewage Sludge Application Site (KSS wells) and the three wells at the quired by SCDHEC Construction Permit 13,173. All samples are also analyzed as requested for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permits. No constituents exceeded the SCDHEC final Primary Drinking Water Standard in any well from the H-Area, K-Area, and Par Pond Sewage Sludge Application Sites. Aluminum and iron were above Flag 2 criteria in one or more wells in the three sites during third quarter 1994. These constituents were not analyzed during the previous quarter. Third quarter results are similar to results for first quarter 1994.

1995-01-01T23:59:59.000Z

219

Environmental Monitoring Plan, United States Department of Energy, Richland Operations Office. Revision 1  

Science Conference Proceedings (OSTI)

This report describes environmental monitoring activities at Hanford Reservation. Attention is focused on effluent monitoring and environmental surveillance. All Hanford contractors reviewed potential sources of contamination. A facility effluent monitoring plan was written for each facility with the potential to release significant quantities of hazardous materials, addressing both radiological and nonradiological effluent monitoring. The environmental surveillance program assesses onsite and offsite environmental impacts and offsite human health exposures. The program monitors air, surface water, sediment, agricultural products, vegetation, soil, and wildlife. In addition, independent onsite surveillance is conducted to evaluate the effectiveness of Hanford Site effluent controls in order to comply with applicable environmental standards and regulations.

Not Available

1994-11-09T23:59:59.000Z

220

F- and H-Area Sewage Sludge Application Sites groundwater monitoring report. Fourth quarter 1993 and 1993 summary  

SciTech Connect

Samples from the four wells at the F-Area Sewage Sludge Application Site (FSS wells) and the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control Construction Permit 12,076 and, as requested, for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permit. No constituent exceeded either the final Primary Drinking Water Standards or the SRS Flag 2 criteria during fourth quarter 1993. Iron, lead, and manganese were the only permit- required analytes that exceeded standards at the F- and H-Area Sewage Sludge Application Sites in 1993. Tritium, aluminum, and other constituents not included in the permit have exceeded standards at this site previously, but only sporadically. These constituents were not analyzed fourth quarter 1993.

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater monitoring plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Environmental monitoring plan, July 1--December 31, 1994  

Science Conference Proceedings (OSTI)

The Tennessee Department of Environment and Conservation, DOE Oversight Division (TDEC/DOE-O) under the terms of the Tennessee Oversight Agreement (TOA) are providing annual reports: reporting of State`s monitoring and analysis, and findings of DOE`s quality and effectiveness of DOE`s monitoring and surveillance. This report blends some of both of the required annual reports as described in the TOA section A.7.2.2. The Federal Facilities Agreement (FFA) integrates the Resource Conservation and Recovery Act (RCRA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for the Oak Ridge Reservation. This report presents the results of environmental monitoring in Tennessee in the following areas: surface waters; ground water; air; and fish and wildlife. In addition, radiation monitoring has been conducted in all of these areas.

Not Available

1994-07-01T23:59:59.000Z

222

Engineering Task Plan for Standard Hydrogen Monitoring System Operation  

DOE Green Energy (OSTI)

Tanks that are known or suspected to retain and occasionally release flammable gases are equipped with Standard Hydrogen Monitoring System (SHMS) cabinets. These cabinets contain Whittaker{trademark} electrochemical cells and may also have a gas chromatograph (GC) and/or a Bruel and Kjaer infrared photo-acoustic multi-gas monitor (B&K). The GC and B&K will be referred to collectively as ''analytical instruments'' in this document. Using these instruments, a tank can be monitored for hydrogen, helium, ammonia, methane, and nitrous oxide. Air from the tank vent header (for actively ventilated tanks) or dome space (for passively ventilated tanks) is drawn continuously through the monitoring instruments via a sample pump. This monitoring is performed to track the gas release behavior of selected waste storage tanks and to help identify any potentially serious gas release behavior. Vapor grab samples may be obtained from the SHMS as well and analyzed with a mass spectrometer to obtain concentration data about hydrogen and other gases. This document describes the requirements for the operation, maintenance, calibration, and data collection for the Standard Hydrogen Monitoring System. Additionally, this document defines who is responsible for the various tasks.

MCCAIN, D.J.

1999-11-11T23:59:59.000Z

223

Use of geothermal heat for sugar refining in Imperial County: environmental assessment and monitoring plan  

DOE Green Energy (OSTI)

This environmental monitoring and reporting plan is based on requirements set by the State of California, Water Quality Control Board, and the Division of Oil and Gas as well as special requirements by the County of Imperial, Air Pollution Control Board and other county offices. This plan addresses all of the applicable environmental impacts identified in the Final Environmental Report. Each item of the environmental monitoring and reporting requirements is addressed in terms of (a) impact; (b) mitigation measures and/or engineering practices; and (c) monitoring and reporting requirements. An overall summary of all of the reporting requirements is contained.

Not Available

1979-12-01T23:59:59.000Z

224

Standard Guide for Environmental Monitoring Plans for Decommissioning of Nuclear Facilities  

E-Print Network (OSTI)

1.1 This guide covers the development or assessment of environmental monitoring plans for decommissioning nuclear facilities. This guide addresses: (1) development of an environmental baseline prior to commencement of decommissioning activities; (2) determination of release paths from site activities and their associated exposure pathways in the environment; and (3) selection of appropriate sampling locations and media to ensure that all exposure pathways in the environment are monitored appropriately. This guide also addresses the interfaces between the environmental monitoring plan and other planning documents for site decommissioning, such as radiation protection, site characterization, and waste management plans, and federal, state, and local environmental protection laws and guidance. This guide is applicable up to the point of completing D&D activities and the reuse of the facility or area for other purposes.

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

225

Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98  

SciTech Connect

The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

Deborah L. Layton; Kimberly Frerichs

2011-12-01T23:59:59.000Z

226

Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98  

SciTech Connect

The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

Deborah L. Layton; Kimberly Frerichs

2010-07-01T23:59:59.000Z

227

Engineering task plan for standard hydrogen monitoring system operation  

DOE Green Energy (OSTI)

Tanks that are known or suspected to retain and occasionally release flammable gases are equipped with Standard Hydrogen Monitoring System (SHMS) cabinets. These cabinets contain Whittaker{trademark} electrochemical cells and may also have a gas chromatograph (GC) and/or a Bruel and Kjaer infrared photo-acoustic multi-gas monitor (B and K). The GC and B and K will be referred to collectively as ''analytical instruments'' in this document. Using these instruments, a tank can be monitored for hydrogen, ammonia, methane, and nitrous oxide. Air from the tank vent header (for actively ventilated tanks) or dome space (for passively ventilated tanks) is drawn continuously through the monitoring instruments via a sample pump. This monitoring is performed to track the gas release behavior of selected waste storage tanks and to help identify any potentially serious gas release behavior. Vapor grab samples are obtained from the SHMS as well and are analyzed with a mass spectrometer to obtain concentration data about hydrogen and other gases.

MCCAIN, D.J.

1999-06-02T23:59:59.000Z

228

Standard hydrogen monitoring system (SHMS) engineering task plan  

DOE Green Energy (OSTI)

This document details the responsibilities and requirements for the design, technical documents, fabrication, testing, and installation of the SHMS-E and SHMS-E+ continuous gas monitors. The SHMS-E is identical in function to a SHMS-B but has the interface to accommodate an analytical module containing a gas chromatograph and a B and K photo acoustic gas monitor. Temporary addition of the analytical module adds the ``+`` to the SHMS-E designation. The analytical module is temporary in all installations.

Tate, D.D.

1997-05-01T23:59:59.000Z

229

H-Area Acid/Caustic Basin Groundwater Monitoring Report. Fourth Quarter 1994 and 1994 summary  

SciTech Connect

During fourth quarter 1994, samples collected from the four HAC monitoring wells at the H-Area Acid/Caustic Basin were analyzed for selected heavy metals, herbicides/pesticides, indicator parameters, major ions, radionuclide indicators, and other constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during fourth quarter are the focus of this report.

Chase, J.A.

1995-03-01T23:59:59.000Z

230

Best management practices plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

This Best Management Practices (BMP) Plan has been developed as part of the environmental monitoring program at Waste Area Grouping (WAG) 6. The BMP Plan describes the requirements for personnel training, spill prevention and control, environmental compliance, and sediment/erosion control as they relate to environmental monitoring activities and installation of Monitoring Station 4 at WAG 6.

Not Available

1994-02-01T23:59:59.000Z

231

Texas LoanSTAR Monitoring and Analysis Program Draft Plan  

E-Print Network (OSTI)

Major objectives of the LoanSTAR Monitoring and Analysis Program (MAP) are to: verify energy and dollar savings of energy conservation retrofits in state, school and local government buildings; reduce energy costs by identifying operational and maintenance improvements at facilities receiving retrofits; improve retrofit selection in future rounds of the LoanSTAR Program; and provide a detailed data base of energy use in commercial/institutional buildings located in Texas.

Claridge, D. E.; Haberl, J. S.; Heffington, W. M.; O'Neal, D. L.; Turner, W. D.; Etheredge, R.; Glass, M.

1989-01-01T23:59:59.000Z

232

F- and H-Area Sewage Sludge Application Sites groundwater monitoring report, fourth quarter 1991  

SciTech Connect

Eleven sewage sludge application sites at the Savannah River Site (SRS) were originally the subject of a research program, begun in 1980, using domestic sewage sludge to reclaim borrow pits and to enhance forest productivity at SRS. Currently, the F- and H-Area Sewage Sludge Application Sites are the only remaining active sludge application sites. During fourth quarter 1991, samples from the four monitoring wells at the F-Area site (FSS series) and three monitoring wells at the H-Area site (HSS series) were analyzed for specific conductance, pH, and certain pesticides, herbicides, toxic metals, water quality indicators, and radionuclides. This report describes monitoring results that exceeded the US Environmental Protection Agency primary drinking water standards (PDWS) and the SRS flagging criteria.

Thompson, C.Y.

1992-03-01T23:59:59.000Z

233

Data Quality Objectives Summary Report - Designing a Groundwater Monitoring Network for the 200-BP-5 and 200-PO-1 Operable Units  

SciTech Connect

This document presents the results of a series of interviews held with technical, management, and regulatory staff to determine the groundwater data quality objectives (DQOs) for monitoring activities associated with the 200-BP-5 and 200-PO-1 operable units located in the Hanford Site 200 East Area. This assessment is needed to address changing contaminant plume conditions (e.g., plume migration) and to ensure that monitoring activities meet the requirements for performance monitoring as prescribed by the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), Resource Conservation and Recovery Act of 1976 (RCRA) past practice, and Atomic Energy Act of 1954 (AEA) regulatory requirements and orders.

Thornton, Edward C.; Lindberg, Jon W.

2002-09-30T23:59:59.000Z

234

K-Area Acid/Caustic Basin groundwater monitoring report. Second quarter report 1992  

Science Conference Proceedings (OSTI)

During second quarter 1992, samples from the seven older KAC monitoring wells at the K-Area Acid/Caustic Basin were analyzed for herbicides, indicator parameters, major ions, pesticides, radionuclides, turbidity, and other constituents. New wells FAC 8 and 9 received the first of four quarters of comprehensive analyses and GC/MS VOA (gas chromatograph/ mass spectrometer volatile organic analyses). Monitoring results that exceeded the US Environmental Protection Agency`s Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standards during the quarter are discussed in this report.

Thompson, C.Y.

1992-09-01T23:59:59.000Z

235

K-Area acid/caustic basin groundwater monitoring report. First quarter 1994  

SciTech Connect

During first quarter 1994, samples from the KAC monitoring wells at the K-Area Acid/Caustic Basin were collected and analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, radionuclides, and other constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS), other Savannah River Site (SRS) Flag 2 criteria, or the SRS turbidity standard are provided in this report. No constituents exceeded the final PDWS in the KAC wells. Aluminum, iron, total organic halogens, and turbidity exceeded other SRS flagging criteria in one or more of the downgradient wells. The upgradient KAC wells contained no elevated constituents.

Not Available

1994-06-01T23:59:59.000Z

236

CHARACTERIZATION AND MONITORING OF NATURAL ATTENUATION OF CHLORINATED SOLVENTS IN GROUNDWATER: A SYSTEMS APPROACH  

SciTech Connect

The objective of this document is to examine the use of a phased approach to characterizing and monitoring (C&M) natural attenuation processes and enhanced attenuation processes and to identify promising tools and techniques by which to accomplish the C&M. We will investigate developing techniques, such as molecular-based assessment tools, and existing tools that traditionally have not been used for monitoring the performance of environmental remediation technologies. Case studies will be used to provide examples of how non-traditional methods are being employed as characterization and monitoring tools to support MNA and EA. The document is not focused on a specific group of readers but rather is broadly directed with the intent that readers may gain information useful to their purposes. Thus, regulators may see some future characterization and monitoring techniques; end users may find novel ways to make MNA or EA more effective or efficient at their site; researchers may identify new areas for development or new and better combinations of existing methods. One consequence of this broad approach is that some readers may find certain sections either too rudimentary or too advanced for their needs. Hopefully, all will be able to use at least some of the document.

Looney, B; Michael Heitkamp, M; Gary Wein (NOEMAIL), G; Christopher Bagwell, C; Karen Vangelas, K; Karen-M Adams, K; Tyler Gilmore; Norman Cutshall; David Major; Mike Truex; Todd Wiedemeier; Francis H. Chapelle; Tom Early; Jody Waugh; David Peterson; Mark Ankeny; Claire H. Sink

2006-08-10T23:59:59.000Z

237

Biological monitoring and abatement program plan for Oak Ridge National Laboratory  

SciTech Connect

The overall purpose of this plan is to evaluate the receiving streams` biological communities for the duration of the permit and meet the objectives for the ORNL BMAP as outlined in the NPDES permit (Appendix). The ORNL BMAP will focus on those streams in the WOC watershed that (1) receive NPDES discharges and (2) have been identified as ecologically impacted. In response to the newly issued NPDES permit, the tasks that are included in this BMAP plan include monitoring biological communities (fish and benthic invertebrates), monitoring mercury contamination in fish and water, monitoring polychlorinated biphenyl (PCB) contamination in fish, and evaluating temperature loading from ORNL outfalls. The ORNL BMAP will evaluate the effects of sediment and oil and grease, as well as the chlorine control strategy through the use of biological community data. Monitoring will be conducted at sites in WOC, First Creek, Fifth Creek, Melton Branch, and WOL.

Kszos, L.A.; Anderson, G.E.; Gregory, S.M.; Peterson, M.J.; Ryon, M.G.; Schilling, E.M.; Smith, J.G.; Southworth, G.R. [Oak Ridge National Lab., TN (United States); Phipps, T.L. [CKY, Inc., Oak Ridge, TN (United States)

1997-06-01T23:59:59.000Z

238

RCRA and operational monitoring 1994 fiscal year work plan, WBS 1.5.3  

SciTech Connect

RCRA & Operational Monitoring (ROM) Program Office manages the direct funded Resource Conservation Recovery Act (RCRA) and Operational Monitoring under Work Breakdown Structure (WBS) 1.5.3. The ROM Program Office is a Branch of liquid Waste Disposal, a part of Restoration and Remediation of Westinghouse Hanford Company (WHC). The Fiscal Year Work Plan (FYWP) takes it direction from the Multi-Year Program Plan (MYPP). The FYWP provides the near term, enhanced details for the Program Office to use as baseline Cost, Scope and Schedule. Changs Control administered during the fiscal year is against the baseline provided by the FYWP.

Not Available

1993-12-01T23:59:59.000Z

239

Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress report for the period July 1 to September 30, 1988: Volume 1, Text  

Science Conference Proceedings (OSTI)

This report describes the progress of 12 Hanford ground-water monitoring projects for the period July 1 to September 30, 1988. During this quarter, field activities at the 300 Area process trenches, the Nonradioactive Dangerous Waste Landfill, the 183-H Solar Evaporation Basins, the 1324-N/NA Surface Impoundment and Percolation Ponds, the 1301-N and 1325-N Liquid Waste Disposal Facilities, and the 216-A-36B Crib consisted of ground-water sampling and analyses, and water-level monitoring. The 200 Area Low-Level Burial Grounds section includes well development data, sediment analysis, and water-level measurements. Ground-water sampling was begun at this site, and results will be included in next quarter's report. Twelve new wells were installed during the quarter, two at the 216-A-29 Ditch, size at the 216-A-10 Crib, and four at the 216-B-3 Pond. Preliminary characterization data for these new wells are included in this report. Driller's logs and other drilling and site characterization data will be provided in the next quarterly report. At the 2101-M Pond, construction was completed on four wells, and initial ground-water samples were taken. The drilling logs, geophysical logging data, and as-built diagrams are included in this report in Volume 2. 19 refs., 24 figs., 39 tabs.

Fruland, R.M.; Bates, D.J.; Lundgren, R.E.

1989-02-01T23:59:59.000Z

240

H-area Acid/Caustic Basin groundwater monitoring report. First quarter 1994  

Science Conference Proceedings (OSTI)

During first quarter 1994, samples collected from the four HAC monitoring wells at the H-Area Acid/Caustic Basin received comprehensive analyses (exclusive of boron and lithium) and turbidity measurements. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are the focus of this report. Tritium exceeded the final PDWS in all four HAC wells during first quarter 1994. Carbon tetrachloride and heptachlor epoxide exceeded the final PDWS in well HAC 4. Aluminum exceeded its Flag 2 criterion in wells HAC 2, 3, and 4. Iron was elevated in wells HAC 1 and 2. Manganese exceeded its Flag 2 criterion in well HAC 3. Total organic halogens was elevated in wells HAC 2 and 3. No well samples exceeded the SRS turbidity standard.

Not Available

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater monitoring plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

H-Area Acid/Caustic Basin Groundwater Monitoring Report. Fourth quarter 1992 and 1992 summary  

Science Conference Proceedings (OSTI)

During fourth quarter 1992, samples from the four HAC monitoring wells at the H-Area Acid/Caustic Basin received comprehensive analyses. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are the focus of this report. Tritium exceeded the final PDWS in wells HAC 1, 2, 3, and 4 during fourth quarter 1992. Tritium activities in upgradient well HAC 4 were similar to tritium levels in wells HAC 1, 2, and 3. Iron was elevated in well HAC 1, 2, and 3. Specific conductance and manganese were elevated in one downgradient well each. No well samples exceeded the SRS turbidity standard. During 1992, tritium was the only constituent that exceeded the final PDWS. It did so consistently in all four wells during all four quarters, with little variability in activity.

Thompson, C.Y.

1993-03-01T23:59:59.000Z

242

F- and H-Area Sewage Sludge Application Sites groundwater monitoring report. Fourth quarter 1992 and 1992 summary  

SciTech Connect

Samples from the four wells at the F-Area Sewage Sludge Application Site (FSS wells) and the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control Construction Permit 12,076 and, as requested, for other constituents as part of the Savannah River Site Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permit. During fourth quarter 1992, the FSS wells also were analyzed for a number of other constituents not required by the permit. Historically and currently, no permit-required analytes exceed standards at the F- and H-Area Sewage Sludge Application Sites except iron, lead, and manganese, which occur in elevated concentrations frequently in FSS wells. Lead concentrations exceeded the final Primary Drinking Water Standards during fourth quarter 1992, an event that is concurrent with a change in sampling procedures. Tritium is the primary nonpermit constituent that exceeds standards at the F-Area Sewage Sludge Application Site. Other constituents also exceed standards at this site but only sporadically.

1993-04-01T23:59:59.000Z

243

H-Area, K-Area, and Par Pond Sewage Sludge Application Sites groundwater monitoring report. First quarter 1994  

SciTech Connect

Samples from the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control (SCDHEC) Construction Permit 12,076. Samples from the three Wells at the K-Area Sewage Sludge Application Site (KSS wells) and the three wells at the Par Pond Sewage Sludge Application Site (PSS wells) are analyzed quarterly for constituents required by SCDHEC Construction Permit 13,173. All samples are also analyzed as requested for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permits. Lead presently exceeds the SCDHEC final Primary Drinking Water Standard in two wells from the three sites. As in third quarter 1993, aluminum, iron, and lead were reported in excess of the SRS Flag 2 criteria during first quarter 1994. An elevated concentration of manganese was found in one well at the K-Area Sewage Sludge Application Site during first quarter.

1994-07-01T23:59:59.000Z

244

Development of a Monitoring and Maintenance Program for Residential Wells Used for Groundwater Abstraction in Lagos State, Nigeria.  

E-Print Network (OSTI)

??In rural and urban areas of Nigeria, dependence on groundwater is increasing since the population is growing and high quality, treated municipal water is scarce.… (more)

Talabi, Omogbemiga Adepitan

2010-01-01T23:59:59.000Z

245

Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2011-October 31, 2012  

SciTech Connect

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

Mike lewis

2013-02-01T23:59:59.000Z

246

Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: May 1, 2010-October 31, 2010  

SciTech Connect

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (#LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

David B. Frederick

2011-02-01T23:59:59.000Z

247

Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2010-October 31, 2011  

SciTech Connect

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (No.LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

David Frederick

2012-02-01T23:59:59.000Z

248

Plan for Demonstration of Online Monitoring for the Light Water Reactor Sustainability Online Monitoring Project  

SciTech Connect

Condition based online monitoring technologies and development of diagnostic and prognostic methodologies have drawn tremendous interest in the nuclear industry. It has become important to identify and resolve problems with structures, systems, and components (SSCs) to ensure plant safety, efficiency, and immunity to accidents in the aging fleet of reactors. The Machine Condition Monitoring (MCM) test bed at INL will be used to demonstrate the effectiveness to advancement in online monitoring, sensors, diagnostic and prognostic technologies on a pilot-scale plant that mimics the hydraulics of a nuclear plant. As part of this research project, INL will research available prognostics architectures and their suitability for deployment in a nuclear power plant. In addition, INL will provide recommendation to improve the existing diagnostic and prognostic architectures based on the experimental analysis performed on the MCM test bed.

Magdy S. Tawfik; Vivek Agarwal; Nancy J. Lybeck

2011-09-01T23:59:59.000Z

249

Advanced Metering Plan for Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings  

Science Conference Proceedings (OSTI)

This updated Advanced Metering Plan for monitoring whole building energy use in Pacific Northwest National Laboratory (PNNL) EMS4 buildings on the PNNL campus has been prepared in accordance with the requirements of the Energy Policy Act of 2005 (EPAct 2005), Section 103, U.S. Department of Energy (DOE) Order 430.2B, and Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Federal Energy Management Program, October 2007 (Sullivan et al. 2007). The initial PNNL plan was developed in July 2007 (Olson 2007), updated in September 2008 (Olson et al. 2008), updated in September 2009 (Olson et al. 2009), and updated again in August 2010 (Olson et al. 2010).

Pope, Jason E.; Olson, Norman J.; Berman, Marc J.; Schielke, Dale R.

2011-08-17T23:59:59.000Z

250

U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan  

Office of Legacy Management (LM)

GWMON 1.12-1 GWMON 1.12-1 U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan for the Land Farm Pilot Test Monument Valley, Arizona August 2000 Prepared by U.S. Department of Energy Grand Junction Ofice Grand Junction, Colorado Project Number UGW-5 1 1-001 5-21-000 Document Number U0106701 This page intentionally left blank Document Number U0106701 Contents Contents 1.0 Introduction ....................................................................................................................... 1 2.0 Purpose and Scope ........................................................................................................... 1 3.0 Pilot-Test Extraction Wellfield 2 4.0 Water Elevation Measurements and Monitoring ............... 4

251

Liquid Effluent Monitoring Information System test plans releases 2.0 and 3.0  

Science Conference Proceedings (OSTI)

The Liquid Effluent Monitoring Information System (LEMIS) is being developed as the organized information repository facility in support of the liquid effluent monitoring requirements of the Tri-Party Agreement. It is necessary to provide an automated repository into which the results from liquid effluent sampling will be placed. This repository must provide for effective retention, review, and retrieval of selected sample data by authorized persons and organizations. This System Architecture document is the aggregation of the DMR P+ methodology project management deliverables. Together they represent a description of the project and its plan through four Releases, corresponding to the definition and prioritization of requirements defined by the user.

Guettler, D.A.

1995-05-26T23:59:59.000Z

252

Resource Conservation and Recovery Act ground-water monitoring projects for Hanford Facilities: Progress report for the period July 1 to September 30, 1989 - Volume 1 - Text  

Science Conference Proceedings (OSTI)

This is Volume 1 of a two-volume document that describes the progress of 14 Hanford Site ground-water monitoring projects for the period July 1 to September 30, 1989. This volume discusses the projects; Volume 2 provides as-built diagrams, completion/inspection reports, drilling logs, and geophysical logs for wells drilled, completed, or logged during this period. Volume 2 can be found on microfiche in the back pocket of Volume 1. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality.

Smith, R.M.; Bates, D.J.; Lundgren, R.E.

1989-12-01T23:59:59.000Z

253

H-Area, K-Area, and Par Pond Sewage Sludge Application Sites Groundwater Monitoring Report. Fourth quarter 1994 and 1994 summary  

SciTech Connect

Groundwater samples from the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control Construction Permit 12,076. Samples from the three wells at the K-Area Sewage Sludge Application Site (KSS wells) and the three wells at the Par Pond Sewage Sludge Application Site (PSS wells) are analyzed quarterly for constituents required by SCDHEC Construction Permit 13,173. All samples are also analyzed as requested for other constituents as part of the Savannah River Site Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals. also are required by the permits.

Chase, J.A.

1995-04-01T23:59:59.000Z

254

Work plan for the remedial investigation/feasibility study for the groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri  

Science Conference Proceedings (OSTI)

US Department of Energy (DOE) and the US Army Corps of Engineers (CE) are conducting cleanup activities at two properties, the chemical plant area and the ordnance works area, located adjacent to one another in St. Charles County, Missouri. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, DOE and CE are evaluating conditions and potential responses at the chemical plant area and at the ordnance works area, respectively, to address groundwater and surface water contamination. This work plan provides a comprehensive evaluation of areas that are relevant to the (GWOUs) of both the chemical plant and the ordnance works area. Following areas or media are addressed in this work plan: groundwater beneath the chemical plant area (including designated vicinity properties described in Section 5 of the RI for the chemical plant area [DOE 1992d]) and beneath the ordnance works area; surface water and sediment at selected springs, including Burgermeister Spring. The organization of this work plan is as follows: Chapter 1 discusses the objectives for conducting the evaluation, including a summary of relevant site information and overall environmental compliance activities to be undertaken; Chapter 2 presents a history and a description of the site and areas addressed within the GWOUs, along with currently available data; Chapter 3 presents a preliminary evaluation of areas included in the GWOUs, which is based on information given in Section 2, and discusses data requirements; Chapter 4 presents rationale for data collection or characterization activities to be carried out in the remedial investigation (RI) phase, along with brief summaries of supporting documents ancillary to this work plan; Chapter 5 discusses the activities planned for GWOUs under each of the 14 tasks for an remedial (RI/FS); Chapter 6 presents proposed schedules for RI/FS for the GWOUS; and Chapter 7 explains the project management structure.

NONE

1995-08-01T23:59:59.000Z

255

Surveillance Plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

This Surveillance Plan has been developed as part of the Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental monitoring will be conducted in two phases: the baseline monitoring phase and the routine annual monitoring phase. The baseline monitoring phase will be conducted to establish the baseline contaminant release conditions at the Waste Area Grouping (WAG), to confirm the site-related chemicals of concern (COC), and to gather data to confirm the site hydrologic model The baseline monitoring phase is expected to begin in 1994 and continue for 12--18 months. The routine annual monitoring phase will consist of continued sampling and analyses of COC to determine off-WAG contaminant flux, to identify trends in releases, and to confirm the COC The routine annual monitoring phase will continue for {approximately}4 years after completion of the baseline monitoring phase. This Surveillance Plan presents the technical and quality assurance surveillance activities for the various WAG 6 environmental monitoring and data evaluation plans and implementing procedures.

1993-12-01T23:59:59.000Z

256

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwate Monitoring and Corrective-Action Report, First and Second Quarters 1998, Volumes I, II, & III  

SciTech Connect

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah river Site (SRS) during first and second quarters 1998. This program is required by South Carolina Hazardous Waste Permit SC1-890-008-989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. Report requirements are described in the 1995 RCRA Renewal Permit, effective October 5, 1995, Section IIIB.H.11.b for the M-Area HWMF and Section IIIG.H.11.b for the Met Lab HWMF.

Chase, J.

1998-10-30T23:59:59.000Z

257

Engineering Task Plan for the 241-AN-105 Multi-Function Corrosion Monitoring System  

SciTech Connect

This Engineering Task Plan (ETP) describes the activities associated with the installation of the corrosion probe assembly into riser WST-RISER-016 (formerly 15B) of tank 241-AN-105. The corrosion monitoring system utilizes the technique of electrochemical noise (EN) for monitoring waste tank corrosion. Typically, EN consists of low frequency (4 Hz) and small amplitude signals that are spontaneously generated by electrochemical reactions occurring at corroding or other surfaces. EN analysis is well suited for monitoring and identifying the onset of localized corrosion, and for measuring uniform corrosion rates. A typical EN based corrosion-monitoring system measures instantaneous fluctuations in corrosion current and potential between three nominally identical electrodes of the material of interest immersed in the environment of interest. Time-dependent fluctuations in corrosion current are described by electrochemical current noise, and time-dependent fluctuations of corrosion potential are described by electrochemical noise. The corrosion monitoring system is designed to detect the onset of localized corrosion phenomena if tank conditions should change to allow these phenomena to occur. In addition to the EN technique, the system also facilitates the use of the Linear Polarization Resistance (LPR) technique to collect uniform corrosion rate information. LPR measures the linearity at the origin of the polarization curve for overvoltages up to a few millivolts away from the rest potential or natural corrosion potential. The slope of the current vs. voltage plot gives information on uniform corrosion rates.

EDGEMON, G.L.

1999-08-25T23:59:59.000Z

258

Plan for the performance monitoring of solar systems installed by the SUIEDE program: NCAT/SUEDE interaction  

DOE Green Energy (OSTI)

The SUEDE Grantee solar system installation programs were reviewed to determine the type, number, and quality of Grantee-installed solar systems available for monitoring consideration. An NCAT Performance Monitoring Plan is presented which identifies the service and technical assistance that NCAT will need to provide based on the Grantee review. (MHR)

Hopkins, M

1979-02-01T23:59:59.000Z

259

Northwest Montana Wildlife Habitat Enhancement: Hungry Horse Elk Mitigation Project: Monitoring and Evaluation Plan.  

DOE Green Energy (OSTI)

Portions of two important elk (Cervus elaphus) winter ranges totalling 8749 acres were lost due to the construction of the Hungry Horse Dam hydroelectric facility. This habitat loss decreased the carrying capacity of the both the elk and the mule deer (Odocoileus hemionus). In 1985, using funds from the Bonneville Power Administration (BPA) as authorized by the Northwest Power Act, the Montana Department of Fish, Wildlife and Parks (FWP) completed a wildlife mitigation plan for Hungry Horse Reservoir. This plan identified habitat enhancement of currently-occupied winter range as the most cost-efficient, easily implemented mitigation alternative available to address these large-scale losses of winter range. The Columbia Basin Fish and Wildlife Program, as amended in 1987, authorized BPA to fund winter range enhancement to meet an adjusted goal of 133 additional elk. A 28-month advance design phase of the BPA-funded project was initiated in September 1987. Primary goals of this phase of the project included detailed literature review, identification of enhancement areas, baseline (elk population and habitat) data collection, and preparation of 3-year and 10-year implementation plans. This document will serve as a site-specific habitat and population monitoring plan which outlines our recommendations for evaluating the results of enhancement efforts against mitigation goals. 25 refs., 13 figs., 7 tabs.

Casey, Daniel; Malta, Patrick

1990-12-01T23:59:59.000Z

260

Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities  

DOE Green Energy (OSTI)

The Pacific Northwest National Laboratory (PNNL) operates a number of Research & Development (R&D) facilities for the U.S. Department of Energy (DOE) on the Hanford Site. Facility effluent monitoring plans (FEMPs) have been developed to document the facility effluent monitoring portion of the Environmental Monitoring Plan (DOE 2000) for the Hanford Site. Three of PNNL’s R&D facilities, the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling, and individual FEMPs were developed for these facilities in the past. In addition, a balance-of-plant (BOP) FEMP was developed for all other DOE-owned, PNNL-operated facilities at the Hanford Site. Recent changes, including shutdown of buildings and transition of PNNL facilities to the Office of Science, have resulted in retiring the 3720 FEMP and combining the 331 FEMP into the BOP FEMP. This version of the BOP FEMP addresses all DOE-owned, PNNL-operated facilities at the Hanford Site, excepting the Radiochemical Processing Laboratory, which has its own FEMP because of the unique nature of the building and operations. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R&D. R&D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in Appendix A. Potential radioactive airborne emissions in the BOP facilities are estimated annually using a building inventory-based approach provided in federal regulations. Sampling at individual BOP facilities is based on a potential-to-emit assessment. Some of these facilities are considered minor emission points and thus are sampled routinely, but not continuously, to confirm the low emission potential. One facility, the 331 Life Sciences Laboratory, has a major emission point and is sampled continuously. Sampling systems are located downstream of control technologies and just before discharge to the atmosphere. The need for monitoring airborne emissions of hazardous chemicals is established in the Hanford Site Air Operating Permit and in notices of construction. Based on the current potential-to-emit, the Hanford Site Air Operating Permit does not contain general monitoring requirements for BOP facilities. However, the permit identifies monitoring requirements for specific projects and buildings. Needs for future monitoring will be established by future permits issued pursuant to the applicable state and federal regulations. A number of liquid-effluent discharge systems serve the BOP facilities: sanitary sewer, process sewer, retention process sewer, and aquaculture system. Only the latter system discharges to the environment; the rest either discharge to treatment plants or to long-term storage. Routine compliance sampling of liquid effluents is only required at the Environmental Molecular Sciences Laboratory. Liquid effluents from other BOP facilities may be sampled or monitored to characterize facility effluents or to investigate discharges of concern. Effluent sampling and monitoring for the BOP facilities depends on the inventories, activities, and environmental permits in place for each facility. A description of routine compliance monitoring for BOP facilities is described in the BOP FEMP.

Ballinger, Marcel Y.; Gervais, Todd L.

2004-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater monitoring plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Reaching site closure for groundwater under multiple regulatory agencies  

SciTech Connect

Groundwater at the Connecticut Yankee Atomic Power Company (CYAPCO) Haddam Neck Plant (HNP) has been impacted by both radionuclides and chemical constituents. Furthermore, the cleanup standards and closure requirements for HNP are regulated both by federal and state agencies. The only consistent requirement is the development of a site conceptual model and an understanding of the hydrogeologic conditions that will govern contaminant transport and identify potential receptors. The cleanup criteria to reach site closure for radionuclides is regulated by both the Nuclear Regulatory Commission (NRC) and the Connecticut Department of Environmental Protection (CTDEP) Bureau of Air Management, Radiological Division. For license termination under the NRC, the total effective dose equivalent (TEDE) for all media can not exceed 25 milli-Rem per year (mRem/yr) plus As Low as Reasonably Achievable (ALARA). The CTDEP has a similar requirement with the TEDE not to exceed 19 mRem/yr plus ALARA. To reach these criteria, derived concentration guideline levels (DCGLs) were developed for radiological exposures from three (3) media components; soil, existing groundwater and future groundwater from left-in place foundations or footings. Based on current conditions, the target dose contribution from existing and future groundwater is not to exceed 2 mRem/yr TEDE. After source (soil) remediation is complete, the NRC requires two (2) years of quarterly monitoring to demonstrate that groundwater quality meets the DCGLs and does not show an upward trend. CYAPCO's NRC License Termination Plan (LTP) specifies a minimum 18-month period of groundwater monitoring, as long as samples are collected during two spring/high water seasons, to verify the efficacy of remedial actions at HNP. In addition to the 19 mRem/yr criteria, the CTDEP also requires groundwater to be in compliance with the Remediation Standards Regulation (RSRs). There are no published criteria for radionuclides in the RSRs, however CTDEP has approved the United States Environmental Protection Agency's (USEPA's) Maximum Contaminant Levels (MCLs) as the clean up standards for individual constituents. After remediation of an identified contamination source, the RSRs require that at least one groundwater monitoring well, hydraulically down-gradient of the remediation area, be sampled to confirm that the remediation has not impacted groundwater quality. After four quarters of groundwater monitoring with results below the MCLs, additional groundwater sampling must continue for up to three years to reach site closure in accordance with the RSRs. The cleanup criteria for chemical constituents, including boron, are regulated by the USEPA under the Resource Conservation and Recovery Act (RCRA) and the CTDEP Bureau of Water Protection and Land Reuse. The USEPA, however, has accepted the CTDEP RSRs as the cleanup criteria for RCRA. Therefore attainment of the CTDEP RSRs is the only set of criteria needed to reach closure, but both agencies retain oversight, interpretation, and closure authority. As stated above, under the RSRs, groundwater must be monitored following a source remediation for a minimum of four quarters. After demonstrating that the remediation was successful, then additional groundwater sampling is required for up to three additional years. However, the number of monitoring wells and frequency of sampling are not defined in the RSRs and must be negotiated with CTDEP. To successfully reach closure, the conceptual site model, groundwater transport mechanisms, and potential receptors must be defined. Once the hydrogeology is understood, a long term groundwater monitoring program can then be coordinated to meet each agencies requirement to both terminate the NRC license and reach site closure under RCRA. (authors)

Glucksberg, N. [MACTEC, Inc., Portland, ME (United States); Couture, B. [Connecticut Yankee Atomic Power Company, East Ham (United States)

2007-07-01T23:59:59.000Z

262

Incorporating voltage security into the planning, operation and monitoring of restructured electric energy markets  

E-Print Network (OSTI)

As open access market principles are applied to power systems, significant changes are happening in their planning, operation and control. In the emerging marketplace, systems are operating under higher loading conditions as markets focus greater attention to operating costs than stability and security margins. Since operating stability is a basic requirement for any power system, there is need for newer tools to ensure stability and security margins being strictly enforced in the competitive marketplace. This dissertation investigates issues associated with incorporating voltage security into the unbundled operating environment of electricity markets. It includes addressing voltage security in the monitoring, operational and planning horizons of restructured power system. This dissertation presents a new decomposition procedure to estimate voltage security usage by transactions. The procedure follows physical law and uses an index that can be monitored knowing the state of the system. The expression derived is based on composite market coordination models that have both PoolCo and OpCo transactions, in a shared stressed transmission grid. Our procedure is able to equitably distinguish the impacts of individual transactions on voltage stability, at load buses, in a simple and fast manner. This dissertation formulates a new voltage stability constrained optimal power flow (VSCOPF) using a simple voltage security index. In modern planning, composite power system reliability analysis that encompasses both adequacy and security issues is being developed. We have illustrated the applicability of our VSCOPF into composite reliability analysis. This dissertation also delves into the various applications of voltage security index. Increasingly, FACT devices are being used in restructured markets to mitigate a variety of operational problems. Their control effects on voltage security would be demonstrated using our VSCOPF procedure. Further, this dissertation investigates the application of steady state voltage stability index to detect potential dynamic voltage collapse. Finally, this dissertation examines developments in representation, standardization, communication and exchange of power system data. Power system data is the key input to all analytical engines for system operation, monitoring and control. Data exchange and dissemination could impact voltage security evaluation and therefore needs to be critically examined.

Nair, Nirmal-Kumar

2004-12-01T23:59:59.000Z

263

1Q/2Q00 M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - First and Second Quarters 2000 - Volumes I, II, and II  

SciTech Connect

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River site (SRS) during first and second quarters of 2000.

Chase, J.

2000-10-24T23:59:59.000Z

264

Meteorological Monitoring Sampling and Analysis Plan for Environmental Monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

This Sampling and Analysis Plan addresses meteorological monitoring activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory (ORNL). Meterological monitoring of various climatological parameters (eg., temperature, wind speed, humidity) will be collected by instruments installed at WAG 6. Data will be recorded electronically at frequencies varying from 5-min intervals to 1-h intervals, dependent upon parameter. The data will be downloaded every 2 weeks, evaluated, compressed, and uploaded into a WAG 6 data base for subsequent use. The meteorological data will be used in water balance calculations in support of the WAG 6 hydrogeological model.

Not Available

1993-12-01T23:59:59.000Z

265

M-area hazardous waste management facility groundwater monitoring and corrective-action report, First quarter 1995, Volume 1  

Science Conference Proceedings (OSTI)

This report, in three volumes, describes the ground water monitoring and c corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during the fourth quarter 1994 and first quarter 1995. Concise description of the program and considerable data documenting the monitoring and remedial activities are included in the document. This is Volume 1 covering the following topics: sampling and results; hydrogeologic assessment; water quality assessment; effectiveness of the corrective-action program; corrective-action system operation and performance; monitoring and corrective-action program assessment; proposed monitoring and corrective-action program modifications. Also included are the following appendicies: A-standards; B-flagging criteria; C-figures; D-monitoring results tables; E-data quality/usability assessment.

NONE

1995-05-01T23:59:59.000Z

266

Calendar year 1993 groundwater quality report for the Upper East Fork Poplar Creek hydrogeologic regime Y-12 Plant, Oak Ridge, Tennessee: 1993 groundwater quality data interpretations and proposed program modifications  

SciTech Connect

This Groundwater Quality Report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee (Figure 1). The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. (Energy Systems) to the Tennessee Department of Environment and Conservation (TDEC) in February 1994 (HSW Environmental Consultants, Inc. 1994a). Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management facilities and underground storage tanks (USTS) located within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements and in accordance with DOE Orders and Energy Systems corporate policy. The annual GWQR for the East Fork Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis program for the following calendar year.

NONE

1994-10-01T23:59:59.000Z

267

Proceedings: 2005 EPRI Topical Workshop-Groundwater Contamination Assessment and License Termination Activities  

Science Conference Proceedings (OSTI)

The EPRI Groundwater Workshop focused on the subject of groundwater monitoring related to both operating and decommissioning nuclear plant sites. Groundwater monitoring can have an impact in terms of the time and resources needed to quantify the groundwater contamination and to assure the maintenance of public health and safety. EPRI held this workshop to aid nuclear plant operators in developing robust groundwater monitoring programs. The Workshop presented the latest information on groundwater assessme...

2006-06-01T23:59:59.000Z

268

Groundwater level status report for 2009, Los Alamos National Laboratory  

Science Conference Proceedings (OSTI)

The status of groundwater level monitoring at Los Alamos National Laboratory in 2009 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 55 regional aquifer wells (including 11 regional/intermediate wells), 26 intermediate wells, 98 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 161 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

Koch, Richard J.; Schmeer, Sarah

2010-03-01T23:59:59.000Z

269

Groundwater level status report for 2008, Los Alamos National Laboratory  

Science Conference Proceedings (OSTI)

The status of groundwater level monitoring at Los Alamos National Laboratory in 2008 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 45 regional aquifer wells, 28 intermediate wells, 8 regional/intermediate wells, 106 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 166 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

Koch, Richard J.; Schmeer, Sarah

2009-03-01T23:59:59.000Z

270

Groundwater level status report for 2010, Los Alamos National Laboratory  

SciTech Connect

The status of groundwater level monitoring at Los Alamos National Laboratory in 2010 is provided in this report. This report summarizes groundwater level data for 194 monitoring wells, including 63 regional aquifer wells (including 10 regional/intermediate wells), 34 intermediate wells, 97 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 162 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells and seasonal responses to snowmelt runoff observed in intermediate wells.

Koch, Richard J.; Schmeer, Sarah

2011-03-01T23:59:59.000Z

271

Groundwater Report Goes Online, Interactive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Groundwater Report Goes Online, Interactive Groundwater Report Goes Online, Interactive Groundwater Report Goes Online, Interactive September 30, 2013 - 12:00pm Addthis A screenshot of Hanford's online groundwater monitoring annual report. A screenshot of Hanford's online groundwater monitoring annual report. RICHLAND, Wash. - EM's Richland Operations Office (RL) has moved its 1,200-page annual report on groundwater monitoring to a fully online and interactive web application. The application allows users to access expert interpretation of groundwater conditions and trends for each of the Hanford site's 12 groundwater interest areas. Users can access the typical content of the paper-based report but can also explore all supporting data using an intuitive map-based interface. Groundwater monitoring is conducted to meet requirements of the DOE, U.S

272

Post-Closure Groundwater Monitoring Plan for the 1324-N Surface Impoundment and 1324-NA Percolation Pond  

Science Conference Proceedings (OSTI)

The 1324-N Surface Impoundment and the 1324-NA Percolation Pond, located in the 100-N Area of the Hanford Site, are regulated under the Resource Consevation and Recovery Act (RCRA). Surface and underground features of the facilities have been removed and laboratory analyses showed that soil met the closure performance standards. These sites have been backfilled and revegetated.

Hartman, Mary J.

2004-04-02T23:59:59.000Z

273

Groundwater monitoring results for the 100-K Area fuel storage basins: January 1 to March 31, 1994  

SciTech Connect

Fuel storage basins associated with the 105-KE and 105-KW reactor buildings are currently being used to store irradiated fuel rods from past operations. Each reactor building contains a basin that holds approximately 1.3 million gal of water. The water provides a radiation shield, as well as a thermal sink for heat generated by the stored fuel. Some of the fuel rods stored in the K-East basin have damaged cladding and are stored in open canisters, allowing contact between the metallic uranium fuel and basin water. The interaction results in radionuclides being released to the basin water. Various exchange columns and filters associated with a closed-circuit circulation system are in place to reduce radionuclide concentrations in basin water. Tritium cannot be removed by these methods and is present in K-East basin water at a concentration of several million pCi/L. In contrast, K-West basin, where only fully encapsulated, undamaged fuel is stored, exhibits tritium concentrations at much lower levels--several hundred thousand pCi/L. The water budget for the basins includes water losses resulting from evaporation and possibly leakage, and the addition of make-up water to maintain a specific level. Water loss calculations are based on water level decreases during time intervals when no make-up water is added. A calculated loss rate beyond what is expected due to evaporation and uncertainty in the calculations, is assumed to be leakage to the soil column. Given sufficiently high leakage rates, and/or a preferential pathway for downward migration through the soil column, basin water may contaminate groundwater flowing beneath the basins.

Peterson, R.E.

1994-08-29T23:59:59.000Z

274

Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate Multi-Year R&D Program Plan NATIONAL METHANE HYDRATE MULTI-YEAR R&D PROGRAM PLAN U.S. Department of Energy Office of Fossil Energy Federal Energy Technology Center...

275

3Q/4Q00 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - Third and Fourth Quarters 2000 - Volumes I, II, and II  

Science Conference Proceedings (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 2000. This program is required by South Carolina Resource Conservation and Recovery Act (RCRA) Hazardous Waste Permit SC1890008989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations.

Cole, C.M. Sr.

2001-04-17T23:59:59.000Z

276

Groundwater maps of the Hanford site, June 1995  

Science Conference Proceedings (OSTI)

The Groundwater Maps of the Hanford Site, June 1995 is a continuation of a series of reports (see Serkowski et al. 1995) that document the configuration of the water table aquifer beneath the Hanford Site (Figure 1). This series presents the results of the semiannual water level measurement program and the water table maps generated from these measurements. The reports document the changes in the groundwater level at the Hanford Site during the transition from nuclear material production to environmental restoration and remediation. In addition, these reports provide water level data to support the various site characterization and groundwater monitoring programs currently in progress on the Hanford Site. Groundwater Maps of the Hanford Site is prepared for the U.S. Department of Energy by the Hanford Site Operations and Engineering Contractor, Westinghouse Hanford Company (WHC). This document fulfills reporting requirements specified in WHC-CM-7-5, Section 8.0 ``Water Quality`` and described in the environmental monitoring plan for the Hanford Site. (DOE-RL 1993a) This document highlights the three major operations areas (the 100, 200 and 300/1100 Areas) where wastes were discharged to the soil. Each area includes a summary discussion of the data, a well index map, and a contoured map of the water table surface. Appendix A contains all of the data collected for this program.

Sweeney, M.D.

1996-03-15T23:59:59.000Z

277

Reaching Site Closure for Groundwater under Multiple Regulatory Agencies  

SciTech Connect

Groundwater at the Connecticut Yankee Atomic Power Company (CYAPCO) Haddam Neck Plant (HNP) requires investigation of both radionuclides and chemical constituents in order to achieve closure. Cleanup criteria for groundwater are regulated both by federal and state agencies. These requirements vary in both numerical values as well as the duration of post remediation monitoring. The only consistent requirement is the development of a site conceptual model and an understanding of the hydrogeologic conditions that will govern contaminant transport and identify potential receptors. To successfully reach closure under each agency, it is paramount to understand the different requirements during the planning stages of the investigation. Therefore, the conceptual site model, groundwater transport mechanisms, and potential receptors must be defined. Once the hydrogeology is understood, a long term groundwater program can then be coordinated to meet each regulatory agency requirement to both terminate the NRC license and reach site closure under RCRA. Based on the different criteria, the CTDEP-LR (or RSR criteria) are not only bounding, but also requires the longest duration. As with most decommissioning efforts, regulatory attention is focused on the NRC, however, with the recent industry initiatives based on concern of tritium releases to groundwater at other plants, it is likely that the USEPA and state agencies may continue to drive site investigations. By recognizing these differences, data quality objectives can include all agency requirements, thus minimizing rework or duplicative efforts. CYAPCO intends to complete groundwater monitoring for the NRC and CTDEP-RD by July 2007. However, because shallow remediations are still being conducted, site closure under USEPA and CTDEP-LR is projected to be late 2011.

Glucksberg, N.; Shephard, Gene; Peters, Jay [MACTEC, Engineering and Consulting, Inc., 511 Congress Street, Portland, ME 04112 and 107 Audubon Road Suite 301, Wakefield MA 01880 (United States); Couture, B. [Connecticut Yankee Atomic Power Company, 362 Injun Hollow Road, East Hampton, CT 06424 (United States)

2008-01-15T23:59:59.000Z

278

Groundwater impact assessment report for the 100-D Ponds  

Science Conference Proceedings (OSTI)

The 183-D Water Treatment Facility (WTF) discharges effluent to the 120-0-1 Ponds (100-D Ponds) located north of the 100-D Area perimeter fence. This report satisfies one of the requirements of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-17-00B as agreed by the US Department of Energy, Washington State Department of Ecology, and the US Environmental Protection Agency. Tri-Party Agreement Milestone M-17-00B includes a requirement to assess impacts to groundwater from disposal of the 183-D WTF effluent to the 100-D Ponds. In addition, the 100-D Ponds are a Resource Conservation and Recovery Act of 1976 treatment, storage, and disposal facility covered by the 100-D Ponds Closure Plan (DOE-RL 1993a). There is evidence of groundwater contamination, primarily nitrate, tritium, and chromium, in the unconfined aquifer beneath the 100-D Area and 100 Areas in general. The contaminant plumes are area wide and are a result of past-practice reactor and disposal operations in the 100-D Area currently being investigated as part of the 100-DR-1 and 100-HR-3 Operable Units (DOE-RL 1992b, 1992a). Based on current effluent conditions, continued operation of the 100-D Ponds will not adversely affect the groundwater quality in the 100-D Area. Monitoring wells near the pond have slightly higher alkaline pH values than wells in the rest of the area. Concentrations of known contaminants in these wells are lower than ambient 100-D Area groundwater conditions and exhibit a localized dilution effect associated with discharges to the pond. Hydraulic impact to the local groundwater system from these discharges is minor. The groundwater monitoring well network for the 100-D Ponds is adequate.

Alexander, D.J.

1993-07-01T23:59:59.000Z

279

Department of Energy – Office of Science Pacific Northwest Site Office Environmental Monitoring Plan for the DOE-SC PNNL Site  

SciTech Connect

The Pacific Northwest Site Office (PNSO) manages the contract for operations at the U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest National Laboratory (PNNL) Site in Richland, Washington. Radiological operations at the DOE-SC PNNL Site expanded in 2010 with the completion of facilities at the Physical Sciences Facility. As a result of the expanded radiological work at the site, the Washington State Department of Health (WDOH) has required that offsite environmental surveillance be conducted as part of the PNNL Site Radioactive Air Emissions License. The environmental monitoring and surveillance requirements of various orders, regulations, and guidance documents consider emission levels and subsequent risk of negative human and environmental impacts. This Environmental Monitoring Plan (EMP) describes air surveillance activities at the DOE-SC PNNL Site. The determination of offsite environmental surveillance needs evolved out of a Data Quality Objectives process (Barnett et al. 2010) and Implementation Plan (Snyder et al. 2010). The entire EMP is a compilation of several documents, which include the Main Document (this text), Attachment 1: Sampling and Analysis Plan, Attachment 2: Data Management Plan, and Attachment 3: Dose Assessment Guidance.

Snyder, Sandra F.; Meier, Kirsten M.; Barnett, J. M.; Bisping, Lynn E.; Poston, Ted M.; Rhoads, Kathleen

2011-12-21T23:59:59.000Z

280

RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY  

SciTech Connect

WMA TX-TY contains underground, single-shell tanks that were used to store liquid waste that contained chemicals and radionuclides. Most of the liquid has been removed, and the remaining waste is regulated under the RCRA as modi¬fied in 40 CFR Part 265, Subpart F and Washington State’s Hazardous Waste Management Act . WMA TX-TY was placed in assessment monitoring in 1993 because of elevated specific conductance. A groundwater quality assessment plan was written in 1993 describing the monitoring activities to be used in deciding whether WMA TX-TY had affected groundwater. That plan was updated in 2001 for continued RCRA groundwater quality assessment as required by 40 CFR 265.93 (d)(7). This document further updates the assessment plan for WMA TX-TY by including (1) information obtained from ten new wells installed at the WMA after 1999 and (2) information from routine quarterly groundwater monitoring during the last five years. Also, this plan describes activities for continuing the groundwater assessment at WMA TX TY.

Horton, Duane G.

2007-03-26T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater monitoring plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Metering Plan: Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings  

SciTech Connect

This Plan presents progress toward the metering goals shared by all national laboratories and discusses PNNL's contemporary approach to the installation of new meters. In addition, the Plan discusses the data analysis techniques with which PNNL is working to mature using endless data streams made available as a result of increased meter deployment.

Pope, Jason E.

2012-07-25T23:59:59.000Z

282

Metering Plan: Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings  

SciTech Connect

This Plan presents progress toward the metering goals shared by all national laboratories and discusses PNNL's contemporary approach to the installation of new meters. In addition, the Plan discusses the data analysis techniques with which PNNL is working to mature using endless data streams made available as a result of increased meter deployment.

Pope, Jason E.

2012-07-25T23:59:59.000Z

283

The U. S. Department of Energy's Federal Radiological Monitoring and Assessment Center (FRMAC) planning process  

SciTech Connect

On September 2, 1987, the U.S. Department of Energy's Nevada operations office (DOE/NV) was tasked by the under secretary to develop a Federal Radiological Monitoring and Assessment Center (FRMAC) capability for response to major radiological emergencies. Prior to this time, each DOE region responded to a major radiological accident in their region. The DOE/NV's basic role is to coordinate the use of DOE's assets countrywide and provide the management nucleus of a FRMAC. Six working groups plus a management panel were established to assist in the implementation of the FRMAC response capability, and an interim FRMAC operation plant was published 9 months later. The paper discusses working groups, galileo planning, exercises, FRMAC planning products and future FRMAC activities.

Brown, H.U.; Boardman, C.

1989-01-01T23:59:59.000Z

284

Proceedings: 2010 EPRI Groundwater Protection Workshop  

Science Conference Proceedings (OSTI)

The 2010 Electric Power Research Institute (EPRI) Groundwater Protection Workshop (in collaboration with the Nuclear Energy Institute [NEI]) was held in San Jose, California, on June 30-July 1, 2010. The workshop focused on nuclear plant leak prevention, groundwater monitoring and remediation techniques, and industry experience. This information will assist nuclear plant operators in the development and implementation of technically sound site groundwater protection programs (GPPs). This proceedings docu...

2011-06-09T23:59:59.000Z

285

Proceedings: 2011 EPRI Groundwater Protection Workshop  

Science Conference Proceedings (OSTI)

The 2011 Electric Power Research Institute (EPRI) Groundwater Protection Workshop (in collaboration with the Nuclear Energy Institute [NEI]) was held in Oakbridge (Chicago), Illinois, on June 27–29, 2011. The workshop focused on nuclear plant leak prevention, groundwater monitoring and remediation techniques, and industry experience. This information will assist nuclear plant operators in the development and implementation of technically sound site groundwater protection programs (GPPs). This proceedings...

2012-06-07T23:59:59.000Z

286

Technical Basis for Work Place Air Monitoring for the Plutonium Finishing Plan (PFP)  

SciTech Connect

This document establishes the basis for the Plutonium Finishing Plant's (PFP) work place air monitoring program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), Part 835 ''Occupational Radiation Protection''; Hanford Site Radiological Control Manual (HSRCM-1); HNF-PRO-33 1, Work Place Air Monitoring; WHC-SD-CP-SAR-021, Plutonium Finishing Plant Final Safety Analysis Report; and Applicable recognized national standards invoked by DOE Orders and Policies.

JONES, R.A.

1999-10-06T23:59:59.000Z

287

Groundwater Report Goes Online, Interactive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Goes Online, Interactive Report Goes Online, Interactive Groundwater Report Goes Online, Interactive September 30, 2013 - 12:00pm Addthis A screenshot of Hanford's online groundwater monitoring annual report. A screenshot of Hanford's online groundwater monitoring annual report. RICHLAND, Wash. - EM's Richland Operations Office (RL) has moved its 1,200-page annual report on groundwater monitoring to a fully online and interactive web application. The application allows users to access expert interpretation of groundwater conditions and trends for each of the Hanford site's 12 groundwater interest areas. Users can access the typical content of the paper-based report but can also explore all supporting data using an intuitive map-based interface. Groundwater monitoring is conducted to meet requirements of the DOE, U.S

288

RCRA Assessment Plan for Single-Shell Tank Waste Management Area S-SX at the Hanford Site  

SciTech Connect

A groundwater quality assessment plan was prepared for waste management area S-SX at the Hanford Site. Groundwater monitoring is conducted at this facility in accordance with Title 40, Code of Federal Regulation (CFR) Part 265, Subpart F [and by reference of Washington Administrative Code (WAC) 173-303-400(3)]. The facility was placed in assessment groundwater monitoring program status after elevated waste constituents and indicator parameter measurements (i.e., chromium, technetium-99 and specific conductance) in downgradient monitoring wells were observed and confirmed. A first determination, as allowed under 40 CFR 265.93(d), provides the owner/operator of a facility an opportunity to demonstrate that the regulated unit is not the source of groundwater contamination. Based on results of the first determination it was concluded that multiple source locations in the waste management area could account for observed spatial and temporal groundwater contamination patterns. Consequently, a continued investigation is required. This plan, developed using the data quality objectives process, is intended to comply with the continued investigation requirement. Accordingly, the primary purpose of the present plan is to determine the rate and extent of dangerous waste (hexavalent chromium and nitrate) and radioactive constituents (e.g., technetium-99) in groundwater and to determine their concentrations in groundwater beneath waste management area S-SX. Comments and concerns expressed by the Washington State Department of Ecology on the initial waste management area S-SX assessment report were addressed in the descriptive narrative of this plan as well as in the planned activities. Comment disposition is documented in a separate addendum to this plan.

Chou, C.J.; Johnson, V.G.

1999-10-06T23:59:59.000Z

289

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Attachment 3, Groundwater hydrology report. Revised final report  

SciTech Connect

The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites. According to the Uranium Mill Tailings Radiation Control Act of 1978, (UMTRCA) the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined this assessment shall include information on hydrogeologic site characterization. The water resources protection strategy that describes how the proposed action will comply with the EPA groundwater protection standards is presented in Attachment 4. Site characterization activities discussed in this section include: Characterization of the hydrogeologic environment; characterization of existing groundwater quality; definition of physical and chemical characteristics of the potential contaminant source; and description of local water resources.

Not Available

1991-12-01T23:59:59.000Z

290

Groundwater Protection Guidelines for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

The nuclear power industry has entered into a voluntary initiative to implement groundwater monitoring programs at all nuclear power plant sites. This EPRI guideline provides essential technical guidance to nuclear power utilities on the necessary elements of a sound groundwater protection program.

2008-01-10T23:59:59.000Z

291

UMTRA water sampling and analysis plan, Lakeview, Oregon  

Science Conference Proceedings (OSTI)

The purpose of this document is to provide background, guidance, and justification for water sampling activities for the Lakeview, Oregon, Uranium Mill Tailings Remedial Action (UMTRA) processing and disposal sites. This water sampling and analysis plan will form the basis for groundwater sampling and analysis work orders (WSAWO) to be implemented during 1993. Monitoring at the former Lakeview processing site is for characterization purposes and in preparation for the risk assessment, scheduled for the fall of 1993. Compliance monitoring was conducted at the disposal site. Details of the sampling plan are discussed in Section 5.0.

Not Available

1993-09-29T23:59:59.000Z

292

Developing a monitoring and verification plan with reference to the Australian Otway CO2 pilot project  

Science Conference Proceedings (OSTI)

The Australian Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) is currently injecting 100,000 tons of CO{sub 2} in a large-scale test of storage technology in a pilot project in southeastern Australia called the CO2CRC Otway Project. The Otway Basin, with its natural CO{sub 2} accumulations and many depleted gas fields, offers an appropriate site for such a pilot project. An 80% CO{sub 2} stream is produced from a well (Buttress) near the depleted gas reservoir (Naylor) used for storage (Figure 1). The goal of this project is to demonstrate that CO{sub 2} can be safely transported, stored underground, and its behavior tracked and monitored. The monitoring and verification framework has been developed to monitor for the presence and behavior of CO{sub 2} in the subsurface reservoir, near surface, and atmosphere. This monitoring framework addresses areas, identified by a rigorous risk assessment, to verify conformance to clearly identifiable performance criteria. These criteria have been agreed with the regulatory authorities to manage the project through all phases addressing responsibilities, liabilities, and to assure the public of safe storage.

Dodds, K.; Daley, T.; Freifeld, B.; Urosevic, M.; Kepic, A.; Sharma, S.

2009-05-01T23:59:59.000Z

293

Feedback following the Industry Engagement of the NNSA Unique Identifier and Global Monitoring 5 year plan  

Science Conference Proceedings (OSTI)

The National Nuclear Security Administration s project for developing a unique identifier and a concept for a global monitoring system for UF6 cylinders made significant progress on developing functional requirements and a concept of operation for such a system. The multi-laboratory team is working to define the functional requirements for both the unique identifier and the global monitoring system and to develop a preliminary concept of operations to discuss with key industry stakeholders. Team members began meeting with industry representatives in January 2013 to discuss the preliminary concept and solicit feedback and suggestions. The team has met with representatives from United States Enrichment Corporation, Cameco, URENCO, Honeywell/ConverDyn, and others. This paper presents an overview of the preliminary concept of operations and shares the feedback obtained from the industry engagement meetings.

White-Horton, Jessica L [ORNL] [ORNL; Whitaker, J Michael [ORNL] [ORNL; Durbin, Karyn R. [U.S. Department of Energy, NNSA] [U.S. Department of Energy, NNSA

2013-01-01T23:59:59.000Z

294

TWRS hydrogen mitigation portable standard hydrogen monitoring system platform design and fabrication engineering task plan  

DOE Green Energy (OSTI)

The primary function of portable gas monitoring is to quickly determine tank vapor space gas composition and gas release rate, and to detect gas release events. Characterization of the gas composition is needed for safety analysis. The lower flammability limit, as well as the peak burn temperature and pressure, are dependent upon the gas composition. If there is little or no knowledge about the gas composition, safety analysis utilize compositions that yield the worst case in a deflagration or detonation. This conservative approach to unknowns necessitates a significant increase in administrative and engineering costs. Knowledge of the true composition could lead to reductions in the assumptions and therefore contribute to a reduction in controls and work restrictions. Also, knowledge of the actual composition will be required information for the analysis that is needed to remove tanks from the Watch List. Similarly, the rate of generation and release of gases is required information for performing safety analysis, developing controls, designing equipment, and closing safety issues. To determine release rate, both the gas concentrations and the dome space ventilation rates (exhauster flow rate or passive dome/atmosphere exchange rate) are needed. Therefore, to quickly verify waste tank categorization or to provide additional characterization for tanks with installed gas monitoring, a temporary, portable standard hydrogen monitoring system is needed that can be used to measure gas compositions at both high and low sensitivities.

Philipp, B.L.

1997-03-01T23:59:59.000Z

295

Proposed Metering and Instrumentation Monitoring and Analysis Plan and Budget: Alamo Community College District  

E-Print Network (OSTI)

The purpose of this overview is to outline the metering points that will be monitored by the Energy Systems Laboratory (ESL). At three of the campuses, Alamo Community College District (ACCD) has a central energy management system (EMS) installed that has the capability to record energy data. It is ESL's intent to utilize this system to collect data for energy monitoring and commissioning purposes. Since ACCD does not monitor gas consumption, ESL would like to incorporate gas metering into the current EMS. ESL may recommend upgrading some or all of the existing Energy Management System's software and client PC workstations (these hardware/software upgrades are not included in this budget), hi order for ESL to link into the existing EMS, it will be necessary to install additional software (PCAnywhere) or equipment (mainly another PC workstation) near the existing EMS computer terminals. ESL would also like Ethernet lines connected to the PC workstation so the system could be accessed via Internet. Software development will be needed to extract and format the existing EMS data sequence, push the data to ESL's network and load it into ESL's databases.

O'Neal, D. L.; Carlson, K. A.; Sweeney, J., Jr.; Milligan, K.

2002-01-01T23:59:59.000Z

296

Tank monitor and control system (TMACS) year 2000 compliance project plan  

Science Conference Proceedings (OSTI)

The purpose of this document is to describe tests performed to validate Revision 11 of the Tank Monitor and Control System (TMACS) and verify that the software functions as intended by design. This document is intended to test the software portion of TMACS. The tests will be performed on the development system. The software to be tested is the TMACS knowledge bases (KB) and the I/O driver/services. The development system will not be talking to field equipment; instead, the field equipment is simulated using emulators or multiplexers in the lab.

HOLM, M.J.

1999-06-24T23:59:59.000Z

297

RCRA Assessment Plan for Single-Shell Tank Waste Management Area B-BX-BY at the Hanford Site  

Science Conference Proceedings (OSTI)

This document was prepared as a groundwater quality assessment plan revision for the single-shell tank systems in Waste Management Area B-BX-BY at the Hanford Site. Groundwater monitoring is conducted at this facility in accordance with 40 CFR Part 265, Subpart F. In FY 1996, the groundwater monitoring program was changed from detection-level indicator evaluation to a groundwater quality assessment program when elevated specific conductance in downgradient monitoring well 299 E33-32 was confirmed by verification sampling. During the course of the ensuing investigation, elevated technetium-99 and nitrate were observed above the drinking water standard at well 299-E33-41, a well located between 241-B and 241-BX Tank Farms. Earlier observations of the groundwater contamination and tank farm leak occurrences combined with a qualitative analysis of possible solutions, led to the conclusion that waste from the waste management area had entered the groundwater and were observed in this well. Based on 40 CFR 265.93 [d] paragraph (7), the owner-operator must continue to make the minimum required determinations of contaminant level and rate/extent of migrations on a quarterly basis until final facility closure. These continued determinations are required because the groundwater quality assessment was implemented prior to final closure of the facility.

Narbutovskih, Susan M.

2006-09-29T23:59:59.000Z

298

Subsidence monitoring and evaluation plan for strategic petroleum reserve storage sites  

Science Conference Proceedings (OSTI)

Subsidence is occurring at all six Strategic Petroleum Reserve (SPR) sites. It results from a combination of cavern closure, Frasch-process sulphur extraction, fluid withdrawal, and from natural causes. Of these, cavern closure resulting from slat creep is the predominant source. A subsidence monitoring program is recommended that includes: (a) continuation of annual releveling; (b) quadrennial determination of horizontal drift; (c) triennial measurement of gravity values to determine elevation change and to validate releveling data; (d) 1/2400 air photos quadrennially; (e) coordination of other subsidence monitoring efforts, especially involving regional subsidence; (f) continuation of cavern creep modeling; (g) engineering evaluation of observed and predicted subsidence effects; (h) information dissemination in the form of an annual review and report. A priority sequence is suggested that considers observed subsidence and operational factors such as oil inventories and risk appraisal. First (highest) priority is assigned to Weeks Island and West Hackberry. Second (intermediate) priority is given to Bayou Choctaw and Bryan Mound. Third, (lowest) priority is assigned to Sulphur Mines and Big Hill. The priority strategy can be used as a management tool in allocating resources and in determining relative attention that is required at the six sites. 32 refs., 1 tab.

Neal, J.T.

1988-08-01T23:59:59.000Z

299

Acceptance test plan for the 241-AN-105 multi-function corrosion monitoring system  

SciTech Connect

This Acceptance Test Procedure (ATP) will document the satisfactory operation of the corrosion probe tree assembly destined for installation into tank 241-AN-105. This ATP will be performed by the manufacturer prior to delivery to the site. The objective of this procedure is to demonstrate and document the acceptance of the corrosion probe tree assembly to be installed into tank 241-AN-105. The test will consist of a pressure test to verify leak tightness of the probe tree body, a continuity test of the probe tree wiring, a test of the high level detector wiring, a test of the operation of the Type K thermocouples along the probe body, and verification of operation of corrosion monitoring computer and instrumentation.

EDGEMON, G.L.

1999-06-24T23:59:59.000Z

300

The Northwest Geysers EGS Demonstration Project Phase 1: Pre-stimulation coupled geomechanical modeling to guide stimulation and monitoring plans  

DOE Green Energy (OSTI)

This paper presents activities and results associated with Phase 1 (pre-stimulation phase) of an Enhanced Geothermal System (EGS) demonstration project at the northwest part of The Geysers geothermal field, California. The paper presents development of a 3-D geological model, coupled thermal-hydraulic-mechanical (THM) modeling of proposed stimulation injection as well as current plans for stimulation and monitoring of the site. The project aims at creating an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (about 280 to 350 C) Zone (HTZ) located under the conventional (240 C) steam reservoir at depths of {approx}3 km. Accurate micro-earthquake monitoring initiated before the start of the injection will be used as a tool for tracking the development of the EGS and monitoring changes in microseismicity. We first analyzed historic injection and micro-earthquake data from an injection well (Aidlin 11) located about 3 miles to the west of the new EGS demonstration area. Thereafter, we used the same modeling approach to predict the likely extent of the zone of enhanced permeability for a proposed initial injection in two wells (Prati State 31 and Prati 32) at the new EGS demonstration area. Our modeling indicates that the proposed injection scheme will provide additional steam production in the area by creating a zone of permeability enhancement extending about 0.5 km from each injection well which will connect to the overlying conventional steam reservoir, in agreement with the conclusions of Nielson and Moore (2000).

Rutqvist, J.; Dobson, P.F.; Oldenburg, C.M.; Garcia, J.; Walters, M.

2010-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater monitoring plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Integration plan required by performance agreement SM 7.2.1  

SciTech Connect

Fluor Daniel Hanford, Inc. and its major subcontractors are in agreement that environmental monitoring performed under the Project Hanford Management Contract is to be done in accordance with a single, integrated program. The purpose of this Integration Plan for Environmental Monitoring is to document the policies, systems, and processes being put in place to meet one key objective: manage and integrate a technically competent, multi-media ambient environmental monitoring program, in an efficient, cost effective manner. Fluor Daniel Hanford, Inc. and its major subcontractors also commit to conducting business in a manner consistent with the International Standards Organization 14000 Environmental Management System concepts. Because the integration of sitewide groundwater monitoring activities is managed by the Environmental Restoration Contractor, groundwater monitoring it is outside the scope of this document. Therefore, for the purpose of this Integration Plan for Environmental Monitoring, the Integrated Environmental Monitoring Program is defined as applicable to all environmental media except groundwater. This document provides recommendations on future activities to better integrate the overall environmental monitoring program, with emphasis on the near-field program. In addition, included is the Fluor Daniel Hanford, Inc. team review of the environmental monitoring activities on the Hanford Site, with concurrence of Pacific Northwest National Laboratory and Bechtel Hanford, Inc. (The narrative provided later in the Discussion Section describes the review and consideration given to each topic.) This document was developed to meet the requirements of the Project Hanford Management Contract performance agreement (SM7.2) and the tenets of the U.S. Department of Energy's Effluent and Environmental Monitoring Planning Process. This Plan is prepared for the U.S. Department of Energy, Richland Operations Office, Environmental Assurance, Permits, and Policy Division to complete the requirements specified in the Performance Expectation 7.2.1, within the SM7 Environmental, Safety, and Health section of the Project Hanford Management Contract.

Diediker, L.P.

1997-03-28T23:59:59.000Z

302

Y-12 Groundwater Protection Program CY 2009 Triennial Report Of The Monitoring Well Inspection And Maintenance Program, Y-12 National Security Complex, Oak Ridge, Tennessee  

SciTech Connect

This document is the triennial report for the Well Inspection and Maintenance Program of the Y- 12 Groundwater Protection Program (GWPP), at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12). This report formally documents well inspection events conducted on active and inactive wells at Y-12 during calendar years (CY) 2007 through 2009; it documents well maintenance and plugging and abandonment activities completed since the last triennial inspection event (CY 2006); and provides summary tables of well inspection events, well maintenance events, and well plugging and abandonment events during the reference time period.

none,

2013-06-01T23:59:59.000Z

303

New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B  

Science Conference Proceedings (OSTI)

This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

Nelson, L. O.

2007-06-12T23:59:59.000Z

304

AUTOMATING GROUNDWATER SAMPLING AT HANFORD  

Science Conference Proceedings (OSTI)

Until this past October, Fluor Hanford managed Hanford's integrated groundwater program for the U.S. Department of Energy (DOE). With the new contract awards at the Site, however, the CH2M HILL Plateau Remediation Company (CHPRC) has assumed responsibility for the groundwater-monitoring programs at the 586-square-mile reservation in southeastern Washington State. These programs are regulated by the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. More than 1,200 wells are sampled each year. Historically, field personnel or 'samplers' have been issued pre-printed forms that have information about the well(s) for a particular sampling evolution. This information is taken from the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS)--official electronic databases. The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and the collected information was posted onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. This is a pilot project for automating this tedious process by providing an electronic tool for automating water-level measurements and groundwater field-sampling activities. The automation will eliminate the manual forms and associated data entry, improve the accuracy of the information recorded, and enhance the efficiency and sampling capacity of field personnel. The goal of the effort is to eliminate 100 percent of the manual input to the database(s) and replace the management of paperwork by the field and clerical personnel with an almost entirely electronic process. These activities will include the following: scheduling the activities of the field teams, electronically recording water-level measurements, electronically logging and filing Groundwater Sampling Reports (GSR), and transferring field forms into the site-wide Integrated Document Management System (IDMS).

CONNELL CW; HILDEBRAND RD; CONLEY SF; CUNNINGHAM DE

2009-01-16T23:59:59.000Z

305

Establishing a Groundwater Protection Program for New Nuclear Generating Units: Appendix to the EPRI Groundwater Protection Guidelines for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

New nuclear power plants should plan for groundwater protection early in the planning process. The construction project team should be made aware of the need to establish the groundwater protection program prior to the construction planning process. This document provides guidance for establishing Groundwater Protection Programs for new nuclear generating units. It applies to new nuclear generating units on both new and existing nuclear power plant ...

2013-03-27T23:59:59.000Z

306

Assessment of groundwater management at Hanford  

SciTech Connect

A comprehensive review of the groundwater management and environmental monitoring programs at the Hanford reservation was initiated in 1973. A large number of recommendations made as a result of this review are summarized. The purpose of the Hanford Hydrology Program is to maintain a groundwater surveillance network to assess contamination of the natural water system. Potential groundwater contamination is primarily a function of waste management decisions. The review revealed that although the hydrology program would greatly benefit from additional improvements, it is adequate to predict levels of contaminants present in the groundwater system. Studies are presently underway to refine advanced mathematical models to use results of the hydrologic investigation in forecasting the response of the system to different long-term management decisions. No information was found which indicates that a hazard through the groundwater pathway presently exists as a result of waste operations at Hanford. (CH)

Deju, R.A.

1975-02-11T23:59:59.000Z

307

TEST PLAN AND PROCEDURE FOR THE EXAMINATION OF TANK 241-AY-101 MULTI-PROBE CORROSION MONITORING SYSTEM  

SciTech Connect

This test plan describes the methods to be used in the forensic examination of the Multi-probe Corrosion Monitoring System (MPCMS) installed in the double-shell tank 241-AY-101 (AY-101). The probe was designed by Applied Research and Engineering Sciences (ARES) Corporation. The probe contains four sections, each of which can be removed from the tank independently (H-14-107634, AY-101 MPCMS Removable Probe Assembly) and one fixed center assembly. Each removable section contains three types of passive corrosion coupons: bar coupons, round coupons, and stressed C-rings (H-14-l07635, AY-101 MPCMS Details). Photographs and weights of each coupon were recorded and reported on drawing H-14-107634 and in RPP-RPT-40629, 241-AY-101 MPCMS C-Ring Coupon Photographs. The coupons will be the subject of the forensic analyses. The purpose of this examination will be to document the nature and extent of corrosion of the 29 coupons. This documentation will consist of photographs and photomicrographs of the C-rings and round coupons, as well as the weights of the bar and round coupons during corrosion removal. The total weight loss of the cleaned coupons will be used in conjunction with the surface area of each to calculate corrosion rates in mils per year. The bar coupons were presumably placed to investigate the liquid-air-interface. An analysis of the waste level heights in the waste tank will be investigated as part of this examination.

WYRWAS RB; PAGE JS; COOKE GS

2012-04-19T23:59:59.000Z

308

Y-12 Groundwater Protection Program CY2012 Triennial Report Of The Monitoring Well Inspection And Maintenance Program Y-12 National Security Complex, Oak Ridge, Tennessee  

SciTech Connect

This document is the triennial report for the Well Inspection and Maintenance Program of the Y- 12 Groundwater Protection Program (GWPP), at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12). This report formally documents well inspections completed by the GWPP on active and inactive wells at Y-12 during calendar years (CY) 2010 through 2012. In addition, this report also documents well inspections performed under the Y-12 Water Resources Restoration Program, which is administered by URS|CH2M Oak Ridge (UCOR). This report documents well maintenance activities completed since the last triennial inspection event (CY 2009); and provides summary tables of well inspections and well maintenance activities during the reference time period.

none,

2013-09-01T23:59:59.000Z

309

Title: Monitoring of Groundwater and Surfacewater Interactions on the Walla Walla River, Oregon for the Purpose of Restoring In-Stream flows for ESA Listed Fish Habitat Abstract  

E-Print Network (OSTI)

In an effort to restore summer flows in the Walla Walla River to provide passage and habitat for ESA (endangered species act) listed bull and steelhead trout irrigation districts left 13 cubic-feet-per-second (c.f.s) (0.37 m 3 /s) in the main channel during irrigation season (May-November) for the first time in over 100 years in 2000. However, the water percolated from the surface within a short distance of the bypass area. Agreement flows for 2001 and 2002 were 18 c.f.s. (0.51 m 3 /s), and 25 c.f.s. (0.71 m 3 /s) respectively, with an average of 28.5 c.f.s. (0.81 m 3 /s) and 32.7 c.f.s (0.93 m 3 /s) actually bypassed in 2001 and 2002 respectively. In 2001 the average loss was 15.1 c.f.s. (0.43 m 3 /s), in 2002 the average loss was 22.3 c.f.s. (0.63 m 3 /s). The ability of the mainstem to carry flow is critical to restoring fish habitat and passage. Two methods were used in conjunction to understand the interactions that occur between the Walla Walla River and the underlying alluvial aquifer. The first method was chemical signature work using naturally occurring anions in both the surface water and groundwater. Groundwater has relatively high concentrations of anions such as chloride and sulfate, compared to surface water. This allows for the use of a

John S. Selker

2003-01-01T23:59:59.000Z

310

INDEPENDENT TECHNICAL REVIEW OF THE FOCUSED FEASIBILITY STUDY AND PROPOSED PLAN FOR DESIGNATED SOLID WASTE MANAGEMENT UNITS CONTRIBUTING TO THE SOUTHWEST GROUNDWATER PLUME AT THE PADUCAH GASEOUS DIFFUSION PLANT  

SciTech Connect

The U. S. Department of Energy (DOE) is currently developing a Proposed Plan (PP) for remediation of designated sources of chlorinated solvents that contribute contamination to the Southwest (SW) Groundwater Plume at the Paducah Gaseous Diffusion Plant (PGDP), in Paducah, KY. The principal contaminants in the SW Plume are trichloroethene (TCE) and other volatile organic compounds (VOCs); these industrial solvents were used and disposed in various facilities and locations at PGDP. In the SW plume area, residual TCE sources are primarily in the fine-grained sediments of the Upper Continental Recharge System (UCRS), a partially saturated zone that delivers contaminants downward into the coarse-grained Regional Gravel Aquifer (RGA). The RGA serves as the significant lateral groundwater transport pathway for the plume. In the SW Plume area, the four main contributing TCE source units are: (1) Solid Waste Management Unit (SWMU) 1 / Oil Landfarm; (2) C-720 Building TCE Northeast Spill Site (SWMU 211A); (3) C-720 Building TCE Southeast Spill Site (SWMU 211B); and (4) C-747 Contaminated Burial Yard (SWMU 4). The PP presents the Preferred Alternatives for remediation of VOCs in the UCRS at the Oil Landfarm and the C-720 Building spill sites. The basis for the PP is documented in a Focused Feasibility Study (FFS) (DOE, 2011) and a Site Investigation Report (SI) (DOE, 2007). The SW plume is currently within the boundaries of PGDP (i.e., does not extend off-site). Nonetheless, reasonable mitigation of the multiple contaminant sources contributing to the SW plume is one of the necessary components identified in the PGDP End State Vision (DOE, 2005). Because of the importance of the proposed actions DOE assembled an Independent Technical Review (ITR) team to provide input and assistance in finalizing the PP.

Looney, B.; Eddy-Dilek, C.; Amidon, M.; Rossabi, J.; Stewart, L.

2011-05-31T23:59:59.000Z

311

Surface water sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect

This Sampling and Analysis Plan addresses surface water monitoring, sampling, and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Surface water monitoring will be conducted at nine sites within WAG 6. Activities to be conducted will include the installation, inspection, and maintenance of automatic flow-monitoring and sampling equipment and manual collection of various water and sediment samples. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the surface water monitoring, sampling, and analysis will aid in evaluating risk associated with contaminants migrating off-WAG, and will be used in calculations to establish relationships between contaminant concentration (C) and flow (Q). The C-Q relationship will be used in calculating the cumulative risk associated with the off-WAG migration of contaminants.

Not Available

1994-06-01T23:59:59.000Z

312

Oak Ridge EM Program Collaborates with Regulators on Groundwater Strategy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge EM Program Collaborates with Regulators on Groundwater Oak Ridge EM Program Collaborates with Regulators on Groundwater Strategy Oak Ridge EM Program Collaborates with Regulators on Groundwater Strategy June 26, 2013 - 12:00pm Addthis EM uses data collected at monitoring wells to determine groundwater migration patterns and potential risks. EM uses data collected at monitoring wells to determine groundwater migration patterns and potential risks. OAK RIDGE, Tenn. - The Oak Ridge EM program has joined state and federal regulators in a series of workshops to address contaminated groundwater on the Oak Ridge Reservation. The U.S. Environmental Protection Agency and Tennessee Department of Environment and Conservation are working with Oak Ridge's EM program and other organizations interested in the site's environmental cleanup and

313

Oak Ridge EM Program Collaborates with Regulators on Groundwater Strategy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Collaborates with Regulators on Groundwater Collaborates with Regulators on Groundwater Strategy Oak Ridge EM Program Collaborates with Regulators on Groundwater Strategy June 26, 2013 - 12:00pm Addthis EM uses data collected at monitoring wells to determine groundwater migration patterns and potential risks. EM uses data collected at monitoring wells to determine groundwater migration patterns and potential risks. OAK RIDGE, Tenn. - The Oak Ridge EM program has joined state and federal regulators in a series of workshops to address contaminated groundwater on the Oak Ridge Reservation. The U.S. Environmental Protection Agency and Tennessee Department of Environment and Conservation are working with Oak Ridge's EM program and other organizations interested in the site's environmental cleanup and quality. Those entities include URS | CH2M Oak Ridge, Oak Ridge's prime

314

Hydrogeologic settings of A/M Area: Framework for groundwater transport: Book 6, Appendix B, Time/concentration graphs A/M Area monitoring wells  

Science Conference Proceedings (OSTI)

This document presents the time/concentration graphs for the Savannah River A/M monitoring wells. This Appendix B is part of the determination of the hydrogeologic setting of the A/M Area as a part of ground water transport studies.

Van Pelt, R.; Lewis, S.E.; Aadand, R.K.

1994-03-11T23:59:59.000Z

315

Vapor port and groundwater sampling well  

DOE Patents (OSTI)

A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

Hubbell, J.M.; Wylie, A.H.

1996-01-09T23:59:59.000Z

316

Vapor port and groundwater sampling well  

DOE Patents (OSTI)

A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

Hubbell, Joel M. (Idaho Falls, ID); Wylie, Allan H. (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

317

Model Reduction and Parameter Estimation in Groundwater Modeling  

E-Print Network (OSTI)

Professor William W-G. Yeh, Chair Water resources systemsWilliam W-G. Yeh. Systems analysis in ground-water planningYeh (2012), Reduced order parameter estimation using quasilinearization and quadratic programming, Water

Siade, Adam

2012-01-01T23:59:59.000Z

318

Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 5, Appendix B  

Science Conference Proceedings (OSTI)

This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W6-2; 299-W7-1; 299-W7-2; 299-W7-3; 299-W7-4. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

none,

1988-05-01T23:59:59.000Z

319

Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 8, Appendix B (contd)  

Science Conference Proceedings (OSTI)

This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W18-21; 299-W18-22; 299-W18-23; 299-W18-24. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

Not Available

1988-05-01T23:59:59.000Z

320

Ground-water monitoring compliance projects for Hanford Site facilities: Progress report, January 1-March 31, 1988: Volume 3, Appendix A  

Science Conference Proceedings (OSTI)

This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix A cover the following wells: 299-E32-2; 299-E32-3; 299-E32-4; 299-E33-28; 299-E33-29. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

Not Available

1988-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater monitoring plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 7, Appendix B (contd)  

SciTech Connect

This appendix is one of nine volumes, and presents data describing wwlls completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W10-14; 299-W15-15; 299-W15-16; 299-W15-17; 299-W15-18. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

Not Available

1988-05-01T23:59:59.000Z

322

Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 2, Appendix A  

Science Conference Proceedings (OSTI)

This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix A cover the following wells: 299-E27-8; 299-E27-9; 299-E27-10; 299-E28-26; 299-E28-27. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

Not Available

1988-05-01T23:59:59.000Z

323

Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period, January 1-March 31, 1988: Volume 6, Appendix B (contd)  

Science Conference Proceedings (OSTI)

This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W7-5; 299-W7-6; 299-W8-1; 299-W9-1; 299-W10-13. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

Not Available

1988-05-01T23:59:59.000Z

324

Proceedings: 2012 EPRI Groundwater Protection Workshop, In Collaboration with the Nuclear Energy Institute  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) organized the 2012 EPRI Groundwater Protection Workshop in collaboration with the Nuclear Energy Institute (NEI). The workshop focused on nuclear plant leak prevention, groundwater monitoring and remediation techniques, and industry experience.BackgroundEPRI has conducted 13 such topical workshops over the past decade. In 2005, EPRI conducted a decommissioning topical workshop on groundwater contamination ...

2013-05-02T23:59:59.000Z

325

RCRA Groundwater Monitoring Plan for Single-Shell Tank Waste Management Area C at the Hanford Site, Interim Change Notice 5  

Science Conference Proceedings (OSTI)

This ICN changes uranium sampling from "annual" to "quarterly" in Table 4.3 of the original document.

Narbutovskih, Susan M.

2007-03-30T23:59:59.000Z

326

Unconventional Groundwater System Proves Effective in Reducing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unconventional Groundwater System Proves Effective in Reducing Unconventional Groundwater System Proves Effective in Reducing Contamination at West Valley Demonstration Project Unconventional Groundwater System Proves Effective in Reducing Contamination at West Valley Demonstration Project July 22, 2013 - 12:00pm Addthis In the two years prior to the operation of the permeable treatment wall, pictured here, WVDP conducted extensive engineering and planning to ensure it would effectively remove strontium-90. In the two years prior to the operation of the permeable treatment wall, pictured here, WVDP conducted extensive engineering and planning to ensure it would effectively remove strontium-90. This 2009 photo shows a trenching machine, which is capable of cutting a continuous trench up to 30 feet deep and 3 feet wide. The machine was used in a pilot study to evaluate the effectiveness of zeolite placement as the trench was dug. This ensured a consistent depth and width for the zeolite placement along the entire length of the permeable treatment wall.

327

Groundwater Protection Group (GPG), Brookhaven National Laboratory, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

EPD Home EPD Home Site Details GPG Home Groundwater Projects Surface Projects Land Use & Institutional Controls Mapping Administrative Record Contacts Reports Other Information Reactor Projects (HFBR & BGRR) Groundwater Protection Group The Groundwater Protection Group (formerly know as the Long Term Response Action (LTRA) Group) was formed in 2004 as part of the Environmental Protection Division. The GPG Group is responsible for the long-term surveillance, monitoring, maintenance, operating, reporting, and community involvement activities required to complete the CERCLA environmental cleanup activities at Brookhaven National Laboratory. Ongoing Projects: g-2 Record of Decision Groundwater Projects Surface Projects Land Use and Institutional Control Five Year Review

328

Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Appendix B of Attachment 3: Groundwater hydrology report, Attachment 4: Water resources protection strategy, Final  

SciTech Connect

Attachment 3 Groundwater Hydrology Report describes the hydrogeology, water quality, and water resources at the processing site and Dry Flats disposal site. The Hydrological Services calculations contained in Appendix A of Attachment 3, are presented in a separate report. Attachment 4 Water Resources Protection Strategy describes how the remedial action will be in compliance with the proposed EPA groundwater standards.

Not Available

1994-03-01T23:59:59.000Z

329

A Plan to Develop and Demonstrate Electrochemical Noise Based Corrosion Monitoring Systems in Hanford Site Waste Tanks  

SciTech Connect

This document describes changes that need to be made to the site's authorization basis and technical concerns that need to be resolved before proceduralized use of Electrochemical Noise based corrosion monitoring systems is fully possible at the Hanford Site.

NORMAN, E.C.

2000-08-28T23:59:59.000Z

330

Groundwater Model Validation  

SciTech Connect

Models have an inherent uncertainty. The difficulty in fully characterizing the subsurface environment makes uncertainty an integral component of groundwater flow and transport models, which dictates the need for continuous monitoring and improvement. Building and sustaining confidence in closure decisions and monitoring networks based on models of subsurface conditions require developing confidence in the models through an iterative process. The definition of model validation is postulated as a confidence building and long-term iterative process (Hassan, 2004a). Model validation should be viewed as a process not an end result. Following Hassan (2004b), an approach is proposed for the validation process of stochastic groundwater models. The approach is briefly summarized herein and detailed analyses of acceptance criteria for stochastic realizations and of using validation data to reduce input parameter uncertainty are presented and applied to two case studies. During the validation process for stochastic models, a question arises as to the sufficiency of the number of acceptable model realizations (in terms of conformity with validation data). Using a hierarchical approach to make this determination is proposed. This approach is based on computing five measures or metrics and following a decision tree to determine if a sufficient number of realizations attain satisfactory scores regarding how they represent the field data used for calibration (old) and used for validation (new). The first two of these measures are applied to hypothetical scenarios using the first case study and assuming field data consistent with the model or significantly different from the model results. In both cases it is shown how the two measures would lead to the appropriate decision about the model performance. Standard statistical tests are used to evaluate these measures with the results indicating they are appropriate measures for evaluating model realizations. The use of validation data to constrain model input parameters is shown for the second case study using a Bayesian approach known as Markov Chain Monte Carlo. The approach shows a great potential to be helpful in the validation process and in incorporating prior knowledge with new field data to derive posterior distributions for both model input and output.

Ahmed E. Hassan

2006-01-24T23:59:59.000Z

331

The 1993 baseline biological studies and proposed monitoring plan for the Device Assembly Facility at the Nevada Test Site  

SciTech Connect

This report contains baseline data and recommendations for future monitoring of plants and animals near the new Device Assembly Facility (DAF) on the Nevada Test Site (NTS). The facility is a large structure designed for safely assembling nuclear weapons. Baseline data was collected in 1993, prior to the scheduled beginning of DAF operations in early 1995. Studies were not performed prior to construction and part of the task of monitoring operational effects will be to distinguish those effects from the extensive disturbance effects resulting from construction. Baseline information on species abundances and distributions was collected on ephemeral and perennial plants, mammals, reptiles, and birds in the desert ecosystems within three kilometers (km) of the DAF. Particular attention was paid to effects of selected disturbances, such as the paved road, sewage pond, and the flood-control dike, associated with the facility. Radiological monitoring of areas surrounding the DAF is not included in this report.

Woodward, B.D.; Hunter, R.B.; Greger, P.D.; Saethre, M.B.

1995-02-01T23:59:59.000Z

332

Groundwater and Wells (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This section describes regulations relating to groundwater protection, water wells, and water withdrawals, and requires the registration of all water wells in the state.

333

IDENTIFICATION OF DOE'S POST-CLOSURE MONITORING NEEDS AND REQUIREMENTS  

Science Conference Proceedings (OSTI)

The 2006 plan sets an ambitious agenda for the U.S. Department of Energy (DOE), Office of Environmental Management (EM) and the remediation of sites contaminated by decades of nuclear weapons production activities. The plan's primary objective is to reduce overall clean up costs by first eliminating the environmental problems that are most expensive to control and safely maintain. In the context of the 2006 Plan, closure refers to the completion of area or facility specific cleanup projects. The cleanup levels are determined by the planned future use of the site or facility. Use restrictions are still undecided for most sites but are highly probable to exclude residential or agricultural activities. Most of the land will be remediated to ''industrial use'' levels with access restrictions and some areas will be closed-off through containment. Portions of the site will be reserved for waste disposal, either as a waste repository or the in-situ immobilization of contaminated soil and groundwater, and land use will be restricted to waste disposal only. The land used for waste disposal will require monitoring and maintenance activities after closure. Most of the land used for industrial use may also require such postclosure activities. The required postclosure monitoring and maintenance activities will be imposed by regulators and stakeholders. Regulators will not approve closure plans without clearly defined monitoring methods using approved technologies. Therefore, among all other more costly and labor-intensive closure-related activities, inadequate planning for monitoring and lack of appropriate monitoring technologies can prevent closure. The purpose of this project is to determine, document, and track the current and evolving postclosure monitoring requirements at DOE-EM sites. This information will aid CMST-CP in guiding its postclosure technology development and deployment efforts.

M.A. Ebadian, Ph.D.

1999-01-01T23:59:59.000Z

334

Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada; Revision 1  

SciTech Connect

The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI.

NONE

1992-08-01T23:59:59.000Z

335

Development of a Monitoring and Verification (M&V) Plan and Baseline for the Fort Hood ESPC Project  

E-Print Network (OSTI)

Fort Hood has selected an Energy Services Performance Contract (ESPC) contractor to help achieve its energy reduction goals as mandated by Executive Order. This ESPC is expected to be a $3.8 million, 20 year contract, which includes five primary types of Energy Conservation Measures (ECMs) in 56 buildings, and includes boiler insulation, control system upgrades, vending machine controls, cooling tower variable frequency drives (VFDs), and lighting retrofits. The plan of action for the ESPC includes cost effective M&V, using IPMVP Options B and C for the first two years after the retrofits are installed, and Option A combined with annual performance verification for the remainder of the contract. This paper discusses the development the Measurement and Verification (M&V) Plan for the Fort Hood Energy Services Performance Contract, and includes results of the baseline calculations (Haberl et al. 2002, 2003b).

Haberl, J. S.; Liu, Z.; Baltazar-Cervantes, J. C.; Lynn, B.; Underwood, D.

2004-01-01T23:59:59.000Z

336

Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Attachment 3, Groundwater hydrology report, Attachment 4, Water resources protection strategy: Preliminary final  

SciTech Connect

The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites (40 CFR 192). The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 designated responsibility to the US Department of Energy (DOE) for assessing the inactive uranium milling sites. The DOE has determined that each assessment shall include information on site characterization, a description of the proposed action, and a summary of the water resources protection strategy that describes how the proposed action will comply with the EPA groundwater protection standards. To achieve compliance with the proposed US Environmental Protection Agency (EPA) groundwater protection standards, the US Department of Energy (DOE) proposes that supplemental standards be applied at the Dry Flats disposal site because of Class III (limited use) groundwater in the uppermost aquifer (the basal sandstone of the Cretaceous Burro Canyon Formation) based on low yield. The proposed remedial action will ensure protection of human health and the environment.

Not Available

1993-08-01T23:59:59.000Z

337

Groundwater protection EIS: Existing environment: Savannah River  

SciTech Connect

Per Groundwater Protection EIS commitments, a baseline of surface water hydrology and chemistry of each onsite stream is needed to define the existing environment of each watershed so that environmental impacts associated with the various waste site closure options can be assessed. This report summarizes the existing water quality of the Savannah River; lists the various waste sites encompassing this watershed; and summarizes the availability of surface water and floodplain sediment monitoring data, both radiochemical and physiochemical, collected from this watershed.

Stejskal, G.F.

1985-10-25T23:59:59.000Z

338

Definition: Groundwater Sampling | Open Energy Information  

Open Energy Info (EERE)

Dictionary.png Groundwater Sampling Groundwater sampling is done to characterize the chemical, thermal, or hydrological properties of subsurface aqueous systems. Groundwater...

339

Bioremediation of contaminated groundwater  

DOE Patents (OSTI)

The present invention relates to a method for in situ bioremediation of contaminated soil and groundwater. In particular, the invention relates to remediation of contaminated soil and groundwater by the injection of nutrients to stimulate growth of pollutant-degrading microorganisms. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Hazen, T.C.; Fliermans, C.B.

1992-12-31T23:59:59.000Z

340

Management Plan for Experimental Reintroduction of Sockeye into Skaha Lake; Proposed Implementation, Monitoring, and Evaluation, 2004 Technical Report.  

DOE Green Energy (OSTI)

Okanagan River sockeye salmon, which spawn near the town of Oliver, B.C., have their farther upstream migration limited by several water control and diversion dams. Stock numbers have been declining for many years and the Okanagan Native Alliance Fisheries Department (ONAFD) has been the principal advocate of a program to restore their numbers and range by reintroducing them into upstream waters where they may once have occurred in substantial numbers Some investigators have warned that without effective intervention Okanagan sockeye are at considerable risk of extinction. Among a host of threats, the quality of water in the single nursery areas in Osoyoos Lake. is deteriorating and a sanctuary such as that afforded in larger lakes higher in the system could be essential. Because the proposed reintroduction upstream has implications for other fish species, (particularly kokanee, the so-called ''landlocked sockeye'' which reside in many Okanagan lakes), the proponents undertook a three-year investigation, with funding from the Bonneville Power Administration and the Confederated Tribes of the Colville Reservation, to identify possible problem areas, and they committed to an interim experimental reintroduction to Skaha Lake where any problems could be worked out before a more ambitious reintroduction, (e.g. to Okanagan Lake) could be formally considered. The three-year investigation was completed in the spring of 2003. It included an assessment of risks from disease or the possible introduction of unwanted exotic species. It also considered the present quality and quantity of sockeye habitat, and opportunities for expanding or improving it. Finally ecological complexity encouraged the development of a life history model to examine interactions of sockeye with other fishes and their food organisms. While some problem areas were exposed in the course of these studies, they appeared to be manageable and the concept of an experimental reintroduction was largely supported but with the proviso that there should be a thorough evaluation and reporting of progress and results. A 2004 start on implementation and monitoring has now been proposed.

Wright, Howie; Smith, Howard (Okanagan Nation Alliance, Fisheries Department, Westbank, BC, Canada)

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater monitoring plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal injection monitoring project  

DOE Green Energy (OSTI)

Background information is provided on the geothermal brine injection problem and each of the project tasks is outlined in detail. These tasks are: evaluation of methods of monitoring the movement of injected fluid, preparation for an eventual field experiment, and a review of groundwater regulations and injection programs. (MHR)

Younker, L.

1981-04-01T23:59:59.000Z

342

The Underground Test Area Project of the Nevada Test Site: Building Confidence in Groundwater Flow and Transport Models at Pahute Mesa Through Focused Characterization Studies  

SciTech Connect

Pahute Mesa at the Nevada Test Site contains about 8.0E+07 curies of radioactivity caused by underground nuclear testing. The Underground Test Area Subproject has entered Phase II of data acquisition, analysis, and modeling to determine the risk to receptors from radioactivity in the groundwater, establish a groundwater monitoring network, and provide regulatory closure. Evaluation of radionuclide contamination at Pahute Mesa is particularly difficult due to the complex stratigraphy and structure caused by multiple calderas in the Southwestern Nevada Volcanic Field and overprinting of Basin and Range faulting. Included in overall Phase II goals is the need to reduce the uncertainty and improve confidence in modeling results. New characterization efforts are underway, and results from the first year of a three-year well drilling plan are presented.

Pawloski, G A; Wurtz, J; Drellack, S L

2009-12-29T23:59:59.000Z

343

Groundwater 7-1 7. Groundwater  

E-Print Network (OSTI)

; RCRA-DM = RCRA Detection Monitoring; RCRA-CM = RCRA post-closure corrective action monitoring; SMP, which included the following elements in 1996: monitoring to comply with requirements of RCRA interim exclusively CERCLA programs or a tions of the Bear Creek Burial Grounds, Oil combination of CERCLA and RCRA

Pennycook, Steve

344

Fiscal Year 2009 Annual Report for Operable Unit 3-14, Tank Farm Soil and INTEC Groundwater  

SciTech Connect

This annual report summarizes maintenance, monitoring, and inspection activities performed to implement the selected remedy for Waste Area Group 3, Operable Unit 3-14, Tank Farm soil and groundwater at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory Site. Results from monitoring perched water and groundwater at the Idaho Nuclear Technology and Engineering Center are also presented.

Forsythe, Howard S.

2010-04-10T23:59:59.000Z

345

Groundwater Sampling | Open Energy Information  

Open Energy Info (EERE)

Groundwater Sampling Groundwater Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Groundwater Sampling Details Activities (3) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Water Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids. Determination of mixing ratios between different fluid end-members. Determination of fluid recharge rates and residence times. Thermal: Water temperature. Dictionary.png Groundwater Sampling: Groundwater sampling is done to characterize the chemical, thermal, or hydrological properties of subsurface aqueous systems. Groundwater sampling

346

Groundwater maps of the Hanford Site, June 1992  

Science Conference Proceedings (OSTI)

The Groundwater Maps of the Hanford Site, June 1992 is an update to the series of reports that document the configuration of the water table in the unconsolidated sediments beneath the Hanford Site (Figure 1). Water level measurements for these reports are collected from site groundwater monitoring wells each June and December. The groundwater data are portrayed on a series of maps to illustrate the hydrologic conditions at the Hanford Site and are also tabulated in an appendix. The purpose of this report series is to document the changes in the groundwater level at Hanford as the site transitions from a nuclear material production role to environmental restoration and remediation. In addition, these reports provide water level data in support of the site characterization and groundwater monitoring programs on the Hanford Site. Groundwater maps of the Hanford Site are prepared for the US Department of Energy, Office of Environmental Restoration and Waste Management, by the Hanford Site Operations and Engineering Contractor, Westinghouse Hanford Company (WHC).

Kasza, G.L.; Hartman, M.J.; Hodges, F.N.; Weekes, D.C.

1992-12-01T23:59:59.000Z

347

Unconventional Groundwater System Proves Effective in Reducing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unconventional Groundwater System Proves Effective in Reducing Contamination at West Valley Demonstration Project Unconventional Groundwater System Proves Effective in Reducing...

348

Site-Wide Integrated Water Monitoring -- Defining and Implementing Sampling Objectives to Support Site Closure  

SciTech Connect

The Underground Test Area (UGTA) activity is responsible for assessing and evaluating the effects of the underground nuclear weapons tests on groundwater at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), and implementing a corrective action closure strategy. The UGTA strategy is based on a combination of characterization, modeling studies, monitoring, and institutional controls (i.e., monitored natural attenuation). The closure strategy verifies through appropriate monitoring activities that contaminants of concern do not exceed the SDWA at the regulatory boundary and that adequate institutional controls are established and administered to ensure protection of the public. Other programs conducted at the NNSS supporting the environmental mission include the Routine Radiological Environmental Monitoring Program (RREMP), Waste Management, and the Infrastructure Program. Given the current programmatic and operational demands for various water-monitoring activities at the same locations, and the ever-increasing resource challenges, cooperative and collaborative approaches to conducting the work are necessary. For this reason, an integrated sampling plan is being developed by the UGTA activity to define sampling and analysis objectives, reduce duplication, eliminate unnecessary activities, and minimize costs. The sampling plan will ensure the right data sets are developed to support closure and efficient transition to long-term monitoring. The plan will include an integrated reporting mechanism for communicating results and integrating process improvements within the UGTA activity as well as between other U.S. Department of Energy (DOE) Programs.

Bill Wilborn, NNSA /NFO; Kathryn Knapp, NNSA /NFO; Irene Farnham, N-I; Sam Marutzky, N-I

2013-02-24T23:59:59.000Z

349

Best management practices plan for installation of and monitoring at temporary Weirs at NT-4, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect

The purpose of the installation of temporary weirs at NT-4 is to collect empirical surface water discharge data for the tributary during baseflow conditions and following rainfall events, during the spring and summer of 1997 in support of the Department of Energy`s (DOE`s) Oak Ridge Reservation Waste Management Alternatives Evaluation project. The duration of surface-water monitoring activities is not planned to exceed 6 months. A minimum of four temporary weirs will be installed along the length of NT-4 in the locations indicated on Attachment A. The design specifications and locations for the weirs will be provided by the DOE prime contractor for the Oak Ridge Reservation Waste Management Alternatives Evaluation project. The weirs will be fabricated by the Y-12 labor forces of Lockheed Martin Energy Systems (LMES). The Environmental Compliance Organization (ECO) of LMES will perform data collection in addition to weir installation, inspection, maintenance, and removal. Flow meters that collect data at five minute intervals will be installed on each weir and visual measurements using staff gauges mounted on each weir will also be performed.

1997-06-01T23:59:59.000Z

350

The Office of Groundwater & Soil Remediation Fiscal Year 2011 Research & Development Program  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy s (DOE) Office of Groundwater and Soil Remediation supports technology development and technical assistance for the remediation of environments contaminated by legacy nuclear waste. The core of the program is centered on delivering proactive, responsive expertise and technologies with highly-leveraged, carefully selected investments that maximize impact on life-cycle cleanup costs and risks across the DOE complex. The program currently focuses on four main priorities: improved sampling and characterization strategies, advanced predictive capabilities, enhanced remediation methods, and improved long-term performance evaluation and monitoring. In FY 2010, the program developed a detailed research and development (R&D) plan in support of a larger initiative to integrate R&D efforts across EM. This paper provides an overview of the high priority action areas and the program s near-term technical direction.

Pierce, Eric M [ORNL

2011-01-01T23:59:59.000Z

351

Groundwater quality assessment report for Solid Waste Storage Area 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

Solid Waste Storage Area (SWSA) 6, located at the US Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) facility, is a shallow land burial site for low-level radioactive waste (LLW) and other waste types. Wastes were disposed of in unlined trenches and auger holes from 1969 until May 1986, when it was determined that Resource Conservation and Recovery Act (RCRA) regulated wastes were being disposed of there. DOE closed SWSA 6 until changes in operating procedures prevented the disposal of RCRA wastes at SWSA 6. The site, which reopened for waste disposal activities in July 1986, is the only currently operated disposal area for low-level radioactive waste at ORNL. This report provides the results of the 1998 RCRA groundwater assessment monitoring. The monitoring was performed in accordance with the proposed routine monitoring plan recommended in the 1996 EMP. Section 2 provides pertinent background on SWSA 6. Section 3 presents the 1998 monitoring results and discusses the results in terms of any significant changes from previous monitoring efforts. Section 4 provides recommendations for changes in monitoring based on the 1998 results. References are provided in Section 5. Appendix A provides the 1998 RCRA Sampling Data and Appendix B provides a summary of 1998 Quality Assurance results.

NONE

1998-12-31T23:59:59.000Z

352

Groundwater 7-1 7. Groundwater  

E-Print Network (OSTI)

(RCRA) and the New Mexico Hazardous Waste Act. This closure plan describes the activities necessary activities will follow the training requirements in the appropriate LANL RCRA Training Plan. 5.3.2 Pre-Closure the management of treated authorized RCRA-regulated wastes are identified in samples collected during closure

Pennycook, Steve

353

TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiation Monitoring Subgroup TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring Subgroup Radiation Monitoring Subgroup Draft Work Plan - February 4, 2008 More...

354

Hydrologic test plan for the Environmental Remediation Disposal Facility  

SciTech Connect

Hydrologic tests are planned at seven wells that will be drilled at the proposed Environmental Remediation Disposal Facility (ERDF). These wells are supporting hydrologic, geologic, and hydrochemical characterization at this new facility. Hydrologic testing will consist of instantaneous slug tests, slug interference tests, step-drawdown tests, and constant rate discharge tests (generally single-well). These test results and later groundwater monitoring data will be used to determine groundwater flow directions, flow rates, and the chemical makeup of the groundwater below the proposed ERDF. The seven wells will be drilled in two phases. In Phase I four wells will be drilled and tested: Two to the top of the uppermost aquifer (water table) and two as characterization boreholes to the top of basalt. The Phase I wells are located in the northern portion of the proposed ERDF site (699-32-72, 699-SDF-6, -7 and -8) (Figure 1). If Phase II drilling proceeds, the remaining three wells will be installed and tested (two deep and one shallow). A phased approach to drilling is warranted because of current uncertainty in the land use requirements at the proposed ERDF.

Swanson, L.C.

1993-09-30T23:59:59.000Z

355

Groundwater impact assessment report for the 284-WB Powerplant Ponds  

SciTech Connect

As required by the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement Milestone M-17-00A), this report assesses the impact of wastewater discharged to the 284-WB Powerplant Ponds on groundwater quality. The assessment reported herein expands upon the initial analysis conducted between 1989 and 1990 for the Liquid Effluent Study Final Project Plan.

Alexander, D.J.; Johnson, V.G.; Lindsey, K.A.

1993-09-01T23:59:59.000Z

356

Expediting Groundwater Sampling at Hanford and Making It Safer  

Science Conference Proceedings (OSTI)

The CH2M HILL Plateau Remediation Company (CHPRC) manages the groundwatermonitoring programs at the Department of Energy's 586-square-mile Hanford site in southeastern Washington state. These programs are regulated by the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), and the Atomic Energy Act (AEA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. Each year, more than 1,500 wells are accessed for a variety of reasons.

Connell, Carl W. Jr. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Carr, Jennifer S. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Hildebrand, R. Douglas [Department of Energy - Richland Operations Office, Richland, WA (United States); Schatz, Aaron L. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Conley, S. F. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Brown, W. L. [Lockheed Martin Systems Information, Richland, WA (United States)

2013-01-22T23:59:59.000Z

357

[Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio]. Volume 4, Health and Safety Plan (HSP); Phase 1, Task 4 Field Investigation report: Draft  

SciTech Connect

This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

Not Available

1991-10-01T23:59:59.000Z

358

Groundwater Database | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Groundwater Database Groundwater Database Groundwater Database DOE has one of the largest ground water contamination problems and subsequent cleanup responsibilities for a single entity in the world, in terms of the sheer volume of affected groundwater, number of plumes, range of hydrogeologic settings, and diversity of contaminant types. The Groundwater Database was developed to provide a centralized location for information relating to groundwater flow, contamination, and remedial approaches across the DOE complex. The database provides DOE management and other interested parties with an easily accessible, high level understanding of the type of contamination, magnitude of contamination, and dynamics of groundwater systems at DOE sites. It also identifies remedial approaches, exit strategies, long-term stewardship requirements, regulatory

359

INDEPENDENT REVIEW OF THE X-701B GROUNDWATER REMEDY, PORTSMOUTH, OHIO: TECHNICAL EVALUATION AND RECOMMENDATIONS  

Science Conference Proceedings (OSTI)

The Department of Energy Portsmouth Paducah Project Office requested assistance from Department of Energy Office of Environmental Management (EM-22) to provide independent technical experts to evaluate past and ongoing remedial activities at the Portsmouth facility that were completed to address TCE contamination associated with the X-701B groundwater plume and to make recommendations for future efforts. The Independent Technical Review team was provided with a detailed and specific charter. The charter requested that the technical team first review the past and current activities completed for the X-701B groundwater remedy for trichloroethene (TCE) in accordance with a Decision Document that was issued by Ohio EPA on December 8, 2003 and a Work Plan that was approved by Ohio EPA on September 22, 2006. The remedy for X-701B divides the activities into four phases: Phase I - Initial Source Area Treatment, Phase II - Expanded Source Area Treatment, Phase III - Evaluation and Reporting, and Phase IV - Downgradient Remediation and Confirmation of Source Area Treatment. Phase I of the remedy was completed during FY2006, and DOE has now completed six oxidant injection events within Phase II. The Independent Technical Review team was asked to evaluate Phase II activities, including soil and groundwater results, and to determine whether or not the criteria that were defined in the Work Plan for the Phase II end point had been met. The following criteria are defined in the Work Plan as an acceptable Phase II end point: (1) Groundwater samples from the identified source area monitoring wells have concentrations below the Preliminary Remediation Goal (PRG) for TCE in groundwater, or (2) The remedy is no longer effective in removing TCE mass from the source area. In addition, the charter specifies that if the Review Team determines that the Phase II endpoint has not been reached, then the team should address the following issues: (1) If additional injection events are recommended, the team should identify the type of injection and target soil horizon for these injections; (2) Consider the feasibility of declaring Technical Impracticability and proceeding with the RCRA Cap for the X-701B; and (3) Provide a summary of other cost-effective technologies that could be implemented (especially for the lower Gallia). The Independent Technical Review team focused its evaluation solely on the X-701B source zone and contaminant plume. It did not review current or planned remedial activities at other plumes, waste areas, or landfills at the Portsmouth site, nor did it attempt to integrate such activities into its recommendations for X-701B. However, the ultimate selection of a remedy for X-701B by site personnel and regulators should take into account potentially synergistic efforts at other waste areas. Assessment of remedial alternatives in the context of site-wide management practices may reveal opportunities for leveraging and savings that would not otherwise be identified. For example, the cost of source-zone excavation or construction of a permeable reactive barrier at X-701B might be substantially reduced if contaminated soil could be buried on site at an existing or planned landfill. This allowance would improve the feasibility and competitiveness of both remedies. A comprehensive examination of ongoing and future environmental activities across the Portsmouth Gaseous Diffusion Plant is necessary to optimize the selection and timing of X-701B remediation with respect to cleanup efficiency, safety, and economics. A selected group of technical experts attended the technical workshop at the Portsmouth Gaseous Diffusion Plant from November 18 through 21, 2008. During the first day of the workshop, both contractor and DOE site personnel briefed the workshop participants and took them on a tour of the X-701B site. The initial briefing was attended by representatives of Ohio EPA who participated in the discussions. On subsequent days, the team reviewed baseline data and reports, were provided additional technical information from site personne

Looney, B.; Eddy-Dilek, C.; Costanza, J.; Rossabi, J.; Early, T.; Skubal, K.; Magnuson, C.

2008-12-15T23:59:59.000Z

360

Sampling Instruction: Investigation of Hexavalent Chromium Flux to Groundwater at the 100-C-7:1 Excavation Site  

Science Conference Proceedings (OSTI)

Several types of data are needed to assess the flux of Cr(VI) from the excavation into the groundwater. As described in this plan, these data include (1) temporal Cr(VI) data in the shallow groundwater beneath the pit; (2) hydrologic data to interpret groundwater flow and contaminant transport; (3) hydraulic gradient data; and (4) as a contingency action if necessary, vertical profiling of Cr(VI) concentrations in the shallow aquifer beyond the depth possible with aquifer tubes.

Truex, Michael J.; Vermeul, Vincent R.

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater monitoring plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Subsurface Contaminant Focus Area: Monitored Natural Attenuation (MNA)--Programmatic, Technical, and Regulatory Issues  

Science Conference Proceedings (OSTI)

Natural attenuation processes are commonly used for remediation of contaminated sites. A variety of natural processes occur without human intervention at all sites to varying rates and degrees of effectiveness to attenuate (decrease) the mass, toxicity, mobility, volume, or concentration of organic and inorganic contaminants in soil, groundwater, and surface water systems. The objective of this review is to identify potential technical investments to be incorporated in the Subsurface Contaminant Focus Area Strategic Plan for monitored natural attenuation. When implemented, the technical investments will help evaluate and implement monitored natural attenuation as a remediation option at DOE sites. The outcome of this review is a set of conclusions and general recommendations regarding research needs, programmatic guidance, and stakeholder issues pertaining to monitored natural attenuation for the DOE complex.

Krupka, Kenneth M.; Martin, Wayne J.

2001-07-23T23:59:59.000Z

362

Complexity of Groundwater Contaminants at DOE Sites  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) is responsible for the remediation and long-term stewardship of one of the world's largest groundwater contamination portfolios, with a significant number of plumes containing various contaminants, and considerable total mass and activity. As of 1999, the DOE's Office of Environmental Management was responsible for remediation, waste management, or nuclear materials and facility stabilization at 144 sites in 31 states and one U.S. territory, out of which 109 sites were expected to require long-term stewardship. Currently, 19 DOE sites are on the National Priority List. The total number of contaminated plumes on DOE lands is estimated to be 10,000. However, a significant number of DOE sites have not yet been fully characterized. The most prevalent contaminated media are groundwater and soil, although contaminated sediment, sludge, and surface water also are present. Groundwater, soil, and sediment contamination are present at 72% of all DOE sites. A proper characterization of the contaminant inventory at DOE sites is critical for accomplishing one of the primary DOE missions -- planning basic research to understand the complex physical, chemical, and biological properties of contaminated sites. Note that the definitions of the terms 'site' and 'facility' may differ from one publication to another. In this report, the terms 'site,' 'facility' or 'installation' are used to identify a contiguous land area within the borders of a property, which may contain more than one plume. The term 'plume' is used here to indicate an individual area of contamination, which can be small or large. Even though several publications and databases contain information on groundwater contamination and remediation technologies, no statistical analyses of the contaminant inventory at DOE sites has been prepared since the 1992 report by Riley and Zachara. The DOE Groundwater Data Base (GWD) presents data as of 2003 for 221 groundwater plumes at 60 DOE sites and facilities. Note that Riley and Zachara analyzed the data from only 18 sites/facilities including 91 plumes. In this paper, we present the results of statistical analyses of the data in the GWD as guidance for planning future basic and applied research of groundwater contaminants within the DOE complex. Our analyses include the evaluation of a frequency and ranking of specific contaminants and contaminant groups, contaminant concentrations/activities and total contaminant masses and activities. We also compared the results from analyses of the GWD with those from the 1992 report by Riley and Zachara. The difference between our results and those summarized in the 1992 report by Riley and Zachara could be caused by not only additional releases, but also by the use of modern site characterization methods, which more accurately reveal the extent of groundwater contamination. Contaminated sites within the DOE complex are located in all major geographic regions of the United States, with highly variable geologic, hydrogeologic, soil, and climatic conditions. We assume that the information from the 60 DOE sites included in the GWD are representative for the whole DOE complex. These 60 sites include the major DOE sites and facilities, such as Rocky Flats Environmental Technology Site, Colorado; Idaho National Laboratory, Idaho; Savannah River Site, South Carolina; Oak Ridge Reservation, Tennessee; and Hanford Reservation, Washington. These five sites alone ccount for 71% of the value of the remediation work.

Hazen, T.C.; Faybishenko, B.; Jordan, P.

2010-12-03T23:59:59.000Z

363

Environmental Sciences Division Groundwater Program Office. Annual report, 1993  

SciTech Connect

This first edition of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems GWPO for fiscal year (FY) 1993. This introductory section describes the GWPO`s staffing, organization, and funding sources. The GWPO is responsible for coordination and oversight for all components of the groundwater program at the three Oak Ridge facilities [ORNL, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], and the PGDP and PORTS, respectively. Several years ago, Energy systems senior management recognized that the manner in which groundwater activities were conducted at the five facilities could result in unnecessary duplication of effort, inadequate technical input to decisions related to groundwater issues, and could create a perception within the regulatory agencies of a confusing and inconsistent approach to groundwater issues at the different facilities. Extensive interactions among management from Environmental Compliance, Environmental Restoration (ER), Environmental Sciences Division, Environmental Safety and Health, and the five facilities ultimately led to development of a net technical umbrella organization for groundwater. On April 25, 1991, the GWPO was authorized to be set up within ORNL thereby establishing a central coordinating office that would develop a consistent technical and administrative direction for the groundwater programs of all facilities and result in compliance with all relevant U.S. Environmental Protection Agency (EPA) regulations such as RCRA and Comprehensive Environmental Restoration, Compensation and Liability Act (CERCLA) as well as U.S. Department of Energy (DOE) regulations and orders. For example, DOE Order 5400.1, issued on November 9, 1988, called for each DOE facility to develop an environmental monitoring program for all media (e.g., air, surface water, and groundwater).

Not Available

1993-09-30T23:59:59.000Z

364

Field site investigation: Effect of mine seismicity on groundwater hydrology  

Science Conference Proceedings (OSTI)

The results of a field investigation on the groundwater-hydrologic effect of mining-induced earthquakes are presented in this report. The investigation was conducted at the Lucky Friday Mine, a silver-lead-zinc mine in the Coeur d`Alene Mining District of Idaho. The groundwater pressure in sections of three fracture zones beneath the water table was monitored over a 24-mo period. The fracture zones were accessed through a 360-m-long inclined borehole, drilled from the 5,700 level station of the mine. The magnitude, source location, and associated ground motions of mining-induced seismic events were also monitored during the same period, using an existing seismic instrumentation network for the mine, augmented with additional instruments installed specifically for the project by the center for Nuclear Waste Regulatory Analyses (CNWRA). More than 50 seismic events of Richter magnitude 1.0 or larger occurred during the monitoring period. Several of these events caused the groundwater pressure to increase, whereas a few caused it to decrease. Generally, the groundwater pressure increased as the magnitude of seismic event increased; for an event of a given magnitude, the groundwater pressure increased by a smaller amount as the distance of the observation point from the source of the event increased. The data was examined using regression analysis. Based on these results, it is suggested that the effect of earthquakes on groundwater flow may be better understood through mechanistic modeling. The mechanical processes and material behavior that would need to be incorporated in such a model are examined. They include a description of the effect of stress change on the permeability and water storage capacity of a fracture rock mass; transient fluid flow; and the generation and transmission of seismic waves through the rock mass.

Ofoegbu, G.I.; Hsiung, S.; Chowdhury, A.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses; Philip, J. [Nuclear Regulatory Commission, Washington, DC (United States)

1995-04-01T23:59:59.000Z

365

Groundwater Makes a Splash NNSS Groundwater Experts Meet at Devils...  

NLE Websites -- All DOE Office Websites (Extended Search)

specialists have been examining the effects of contamination from historic underground nuclear testing on groundwater in and around the NNSS. These experts were on hand at the...

366

Radiogenic and Stable Isotope and Hydrogeochemical Investigation of Groundwater, Pajarito Plateau and Surrounding Areas, New Mexico  

Science Conference Proceedings (OSTI)

From October 2004 through February 2006, Los Alamos National Laboratory, the New Mexico Environment Department-Department of Energy Oversight Bureau, and the United States Geological Survey conducted a hydrochemical investigation. The purpose of the investigation was to evaluate groundwater flow paths and determine groundwater ages using tritium/helium-3 and carbon-14 along with aqueous inorganic chemistry. Knowledge of groundwater age and flow paths provides a technical basis for selecting wells and springs for monitoring. Groundwater dating is also relevant to groundwater resource management, including aquifer sustainability, especially during periods of long-term drought. At Los Alamos, New Mexico, groundwater is either modern (post-1943), submodern (pre-1943), or mixed (containing both pre- and post-1943 components). The regional aquifer primarily consists of submodern groundwater. Mixed-age groundwater results from initial infiltration of surface water, followed by mixing with perched alluvial and intermediate-depth groundwater and the regional aquifer. No groundwater investigation is complete without using tritium/helium-3 and carbon-14 dating methods to quantify amounts of modern, mixed, and/or submodern components present in samples. Computer models of groundwater flow and transport at Los Alamos should be calibrated to groundwater ages for perched intermediate zones and the regional aquifer determined from this investigation. Results of this study clearly demonstrate the occurrence of multiple flow paths and groundwater ages occurring within the Sierra de los Valles, beneath the Pajarito Plateau, and at the White Rock Canyon springs. Localized groundwater recharge occurs within several canyons dissecting the Pajarito Plateau. Perched intermediate-depth groundwater and the regional aquifer beneath Pueblo Canyon, Los Alamos Canyon, Sandia Canyon, Mortandad Canyon, Pajarito Canyon, and Canon de Valle contain a modern component. This modern component consists of tritium, nitrate, perchlorate, chromate, boron, uranium, and/or high explosive compounds. It is very unlikely that there is only one transport or travel time, ranging from 25 to 62 years, for these conservative chemicals migrating from surface water to the regional water table. Lengths of groundwater flow paths vary within deep saturated zones containing variable concentrations of tritium. The 4-series springs discharging within White Rock Canyon contain a modern component of groundwater, primarily tritium. Average groundwater ages for the regional aquifer beneath the Pajarito Plateau varied from 565 to 10,817 years, based on unadjusted carbon-14 measurements.

Patrick Longmire, Michael Dale, Dale Counce, Andrew Manning, Toti Larson, Kim Granzow, Robert Gray, and Brent Newman

2007-07-15T23:59:59.000Z

367

1.72 Groundwater Hydrology, Fall 2004  

E-Print Network (OSTI)

Fundamentals of subsurface flow and transport, emphasizing the role of groundwater in the hydrologic cycle, the relation of groundwater flow to geologic structure, and the management of contaminated groundwater. Topics ...

Harvey, Charles

368

Phyto remediation groundwater trends at the DOE portsmouth gaseous  

Science Conference Proceedings (OSTI)

This paper describes the progress of a phyto-remediation action being performed at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS) X-740 Waste Oil Handling Facility to remediate contaminated groundwater under a Resource Conservation and Recovery Act (RCRA) closure action. This action was effected by an Ohio Environmental Protection Agency (OEPA) decision to use phyto-remediation as the preferred remedy for the X-740 groundwater contamination. This remedy was recognized as a cost-effective, low-maintenance, and promising method to remediate groundwater contaminated with volatile organic compounds (VOCs), primarily trichloroethylene (TCE). During 1999, prior to the tree installation at the X-740 Phyto-remediation Area, water level measurements in the area were collected from 10 monitoring wells completed in the Gallia Formation. The Gallia is the uppermost water-bearing zone and contains most of the groundwater contamination at PORTS. During the tree installation which took place during the summer of 1999, four new Gallia monitoring wells were installed at the X-740 Area in addition to the 10 Gallia wells which had been installed in the same area during the early 1990's. Manual water level measurements were collected quarterly from these 14 Gallia monitoring wells between 1998 and 2001. These manual water level measurements were collected to monitor the combined impact of the trees on the groundwater prior to root development. Beginning in 2001, water level measurements were collected monthly during the growing season (April-September) and quarterly during the dormant season (October-March). A total of eight water level measurements were collected annually to monitor the phyto-remediation system's effect on the groundwater in the X- 740 Area. The primary function of the X-740 Phyto-remediation Area is to hydraulically prevent further spreading of the TCE plume. This process utilizes deep-rooted plants, such as poplar trees, to extract large quantities of water from the saturated zone. The focus of any phyto-remediation system is to develop a cone of depression under the entire plantation area. This cone of depression can halt migration of the contaminant plume and can create a hydraulic barrier, thereby maintaining plume capture. While a cone of depression is not yet evident at the X-740 Phyto-remediation Area, water level measurements in 2004 and 2005 differed from measurements taken in previous years, indicating that the now mature trees are influencing groundwater flow direction and gradient at the site. Water level measurements taken from 2003 through 2005 indicate a trend whereby groundwater elevations steadily decreased in the X-740 Phyto-remediation System. During this time, an average groundwater table drop of 0.30 feet was observed. Although the time for the phyto-remediation system to mature had been estimated at two to three years, these monitoring data indicate a period of four to five years for the trees to reach maturity. Although, these trends are not apparent from analysis of the potentiometric surface contours, it does appear that the head gradient across the site is higher during the spring and lower during the fall. It is not clear, however, whether this trend was initiated by the installation of the phyto-remediation system. This paper will present the groundwater data collected to date to illustrate the effects of the trees on the groundwater table. (authors)

Lewis, A.C.; Baird, D.R. [CDM, Piketon, OH (United States)

2007-07-01T23:59:59.000Z

369

Strategic Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Strategic Plan Print ALS Strategic Plan Update: March 2013 The Advanced Light Source Strategic Plan, originally published in 2009, has been revised to reflect completed...

370

RCRA Assessment Plan for Single-Shell Tank Waste Management Area A-AX at the Hanford Site  

Science Conference Proceedings (OSTI)

This document describes a groundwater assessment plan for the single-shell tank systems in Waste Management Area A-AX at the Hanford Site.

Narbutovskih, Susan M.; Chou, Charissa J.

2006-03-03T23:59:59.000Z

371

Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India  

Science Conference Proceedings (OSTI)

A systematic planning of groundwater exploitation using modern techniques is essential for the proper utilization and management of this precious but shrinking natural resource. With the advent of powerful and high-speed personal computers, efficient ...

A. Chowdhury; M. K. Jha; V. M. Chowdary; B. C. Mal

2009-01-01T23:59:59.000Z

372

Groundwater Projects, Environmental Restoration Division, ERD...  

NLE Websites -- All DOE Office Websites (Extended Search)

OU I, IV, V, and VI also address groundwater contamination. The BNL Groundwater Status Report is an annual comprehensive summary of data collected from environmental restoration...

373

Groundwater in the Great Plains  

E-Print Network (OSTI)

Groundwater lies hidden beneath the soil, out of sight and largely out of mind. As a result, it’s poorly understood by most who depend on it for drinking water and other uses. Misconceptions about groundwater are common. In 1904, a Texas judge ruled that “the existence, origin and movement of (ground) water...is so secret, occult and concealed...(that) any attempt to administer any set of legal rules in respect to it would be involved in hopeless uncertainty.” In spite of increasing scientific knowledge, groundwater is still perceived in much the same way by the public today. Despite the lack of understanding, groundwater is the most significant water resource for most Americans. Roughly 75% of U.S. cities depend on groundwater for all or part of their water supplies. More than half of all Americans and 95% of all persons in rural areas rely on groundwater as their primary source of drinking water. Throughout the United States and the world, vital aquifers supply irrigation and drinking water for many regions More than 97% of the world’s usable freshwater supply – an estimated 9 trillion acre feet – is groundwater. Despite the seeming abundance of groundwater, there are concerns about how long its supplies will last, especially in areas where water use is high, and whether its quality is being threatened by natural and man-made contaminants.

Jensen, R.

2003-01-01T23:59:59.000Z

374

Postremediation monitoring program baseline assessment report, Lower East Fork Poplar Creek, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect

Lower East Fork Poplar Creek (LEFPC) and its floodplain are contaminated with mercury (Hg) from ongoing and historical releases from the US Department of Energy (DOE) Oak Ridge Y-12 Plant. A remedial investigation and feasibility study of LEFPC resulted in the signing of a Record of Decision (ROD) in August 1995. In response to the ROD, soil contaminated with mercury above 400 mg/kg was removed from two sites in LEFPC and the floodplain during a recently completed remedial action (RA). The Postremediation Monitoring Program (PMP) outlined in the LEFPC Monitoring Plan was envisioned to occur in two phases: (1) a baseline assessment prior to remediation and (2) postremediation monitoring. The current report summarizes the results of the baseline assessment of soil, water, biota, and groundwater usage in LEFPC and its floodplain conducted in 1995 and 1996 by personnel of the Oak Ridge National Laboratory Biological Monitoring and Abatement Program (BMAP). This report also includes some 1997 data from contaminated sites that did not undergo remediation during the RA (i.e., sites where mercury is greater than 200 mg/kg but less than 400 mg/kg). The baseline assessment described in this document is distinct and separate from both the remedial investigation/feasibility study the confirmatory sampling conducted by SAIC during the RA. The purpose of the current assessment was to provide preremediation baseline data for the LEFPC PMP outlined in the LEFPC Monitoring Plan, using common approaches and techniques, as specified in that plan.

Greeley, M.S. Jr.; Ashwood, T.L.; Kszos, L.A.; Peterson, M.J.; Rash, C.D.; Southworth, G.R. [Oak Ridge National Lab., TN (United States); Phipps, T.L. [CKY, Inc. (United States)

1998-04-01T23:59:59.000Z

375

Groundwater Protection, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Groundwater Groundwater placeholder DOE, BNL, elected officials, and community leaders mark the opening of the first off-site groundwater treatment system. From the outset, the Department of Energy (DOE) and the Brookhaven National Laboratory (BNL) considered the protection of human health to be the most important goal of the cleanup program. Because exposure to groundwater contamination had the greatest potential to impact human health, the focus was to ensure that local drinking water supplies were clean and safe. Early efforts concentrated on determining the locations of the contamination, installing treatment systems to clean up the groundwater, and remediating sources of contamination like landfills and underground tanks. DOE and the Lab are committed to protecting Long Island's sole-source aquifer, a vital natural resource.

376

Groundwater Sampling At Raft River Geothermal Area (1974-1982) | Open  

Open Energy Info (EERE)

Groundwater Sampling At Raft River Geothermal Area (1974-1982) Groundwater Sampling At Raft River Geothermal Area (1974-1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Groundwater Sampling At Raft River Geothermal Area (1974-1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Groundwater Sampling Activity Date 1974 - 1982 Usefulness useful DOE-funding Unknown Exploration Basis Collect baseline chemical data Notes Ground-water monitoring near the Raft River site was initiated in 1974 by the IDWR. This effort consisted of semiannual chemical sampling of 22 irrigation wells near the Raft River geothermal development area. This program yielded useful baseline chemical data; however, several problems were inherent. For example, access to water pumped from the wells is

377

Superfund record of decison (EPA Region 1): Fort Devens South Post impact area and area of contamination 41 groundwater and areas of contamination 25, 26, and 27, MA, July 5, 1996  

SciTech Connect

This Record of Decision (ROD) addresses AOCs 25 (Explosive Ordnance Disposal (EOD) Range), 26 (Zulu Ranges), an 27 (Hotel Range) and AOC 41 groundwater and a subset of the groundwater within the South Post Impact Area (SPIA). `No action` is the selected remedy for SPIA monitored-area groundwater, AOC 41 groundwater, and the surface water, sediment, and soils at the EOD, Zulu, and Hotel Ranges. Under this alternative, no formal remedial action will be taken and the site will be left `as is,` with no additional institutional controls, containment, removal, treatment, or other mitigating measures. Long-term groundwater monitoring will be conducted at the site under this `no action` ROD.

NONE

1996-11-01T23:59:59.000Z