DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Nicole Lautze
2015-01-01
Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume IV – Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.
GROUNDWATER FLOW MODELS C. P. Kumar
Kumar, C.P.
GROUNDWATER FLOW MODELS C. P. Kumar Scientist `E1' National Institute of Hydrology Roorkee 247667 (Uttaranchal) 1.0 INTRODUCTION The use of groundwater models is prevalent in the field of environmental science, groundwater models are being applied to predict the transport of contaminants for risk evaluation. In general
Boyce, Scott Elliott
2015-01-01
to solve unconfined groundwater flow. Advances in Waterreduction of transient groundwater flow models: Applicationreduction of transient groundwater flow models: Application
West Maui Groundwater Flow Model
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Nicole Lautze
2015-01-01
Groundwater flow model for West Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume V – Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.
Lu, Zhiming
Pajarito Plateau Groundwater Flow and Transport Modeling 1 Process-Level and Systems Models of Groundwater Flow and Transport Beneath the Pajarito Plateau: Migration of High Explosives from Technical Area Groundwater Modeling Project Systems Model Vadose Zone Model Regional Aquifer Model #12;Pajarito Plateau
A UNIFIED NUMERICAL MODEL FOR SATURATED-UNSATURATED GROUNDWATER FLOW
Narasimhan, T.N.
2011-01-01
Saturated-Unsaturated Groundwater Flow Ph.D. Dissertation in~ " Fundamental principles of groundwater flow uv e in Flowunsaturated flow in a groundwater basi.n 11 9 Hater
Complex groundwater flow systems as traveling agent models
López-Corona, Oliver; Escolero, Oscar; González, Tomás; Morales-Casique, Eric
2014-01-01
Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits a complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow.
Validation Analysis of the Shoal Groundwater Flow and Transport Model
A. Hassan; J. Chapman
2008-11-01
Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of groundwater withdrawal activities in the area. The conceptual and numerical models were developed based upon regional hydrogeologic investigations conducted in the 1960s, site characterization investigations (including ten wells and various geophysical and geologic studies) at Shoal itself prior to and immediately after the test, and two site characterization campaigns in the 1990s for environmental restoration purposes (including eight wells and a year-long tracer test). The new wells are denoted MV-1, MV-2, and MV-3, and are located to the northnortheast of the nuclear test. The groundwater model was generally lacking data in the north-northeastern area; only HC-1 and the abandoned PM-2 wells existed in this area. The wells provide data on fracture orientation and frequency, water levels, hydraulic conductivity, and water chemistry for comparison with the groundwater model. A total of 12 real-number validation targets were available for the validation analysis, including five values of hydraulic head, three hydraulic conductivity measurements, three hydraulic gradient values, and one angle value for the lateral gradient in radians. In addition, the fracture dip and orientation data provide comparisons to the distributions used in the model and radiochemistry is available for comparison to model output. Goodness-of-fit analysis indicates that some of the model realizations correspond well with the newly acquired conductivity, head, and gradient data, while others do not. Other tests indicated that additional model realizations may be needed to test if the model input distributions need refinement to improve model performance. This approach (generating additional realizations) was not followed because it was realized that there was a temporal component to the data disconnect: the new head measurements are on the high side of the model distributions, but the heads at the original calibration locations themselves have also increased over time. This indicates that the steady-state assumption of the groundwater model is in error. To test the robustness of the model d
Sukop, Mike
GROUNDWATER FLOW AND TRANSPORT MODELING Application to Submarine Groundwater Discharge, Coastal, but is also lost to surface water drainage and potential submarine groundwater discharge. There are also to deal with issues such as submarine groundwater discharge and coastal wetland hydrology. SEAWAT also has
MODELLING GROUNDWATER FLOW ON THE REGIONAL SCALE IN THE UPPER DANUBE CATCHMENT (GERMANY)
Cirpka, Olaf Arie
MODELLING GROUNDWATER FLOW ON THE REGIONAL SCALE IN THE UPPER DANUBE CATCHMENT (GERMANY) Roland.barthel@iws.uni-stuttgart.de Abstract. A groundwater flow model for the Upper Danube catchment (A=77,000km2 at gauge Passau, Germany coupled models. Modelling of groundwater flow, using coupled deterministic and hydrological approaches
Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill
2006-05-16
This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.
INCORPORATION OF GROUNDWATER FLOW INTO NUMERICAL MODELS AND DESIGN MODELS
-coupled, ground-source heat pumps, groundwater, heat pump, heat exchanger, heat transfer, numerical models-loop ground-coupled heat exchangers. Green and Perry (1961) demonstrated that the value of effective thermal on the design and performance of vertical closed-loop ground heat exchangers. Based on the investigation results
A Model For Syn-Eruptive Groundwater Flow During The Phreatoplinian...
A Model For Syn-Eruptive Groundwater Flow During The Phreatoplinian Phase Of The 28-29 March 1875 Askja Volcano Eruption, Iceland Jump to: navigation, search OpenEI Reference...
Zhu, Chen
of radioactive waste repositories. A case study of a regional aquifer in northeastern Arizona shows the rechargeEstimate of recharge from radiocarbon dating of groundwater and numerical flow and transport ages using a linked numerical 14 C transport and flow model while hydraulic conductivity values
1 INTRODUCTION The modular finitedifference groundwater flow
Russell, Thomas F.
1 INTRODUCTION The modular finitedifference groundwater flow model (MODFLOW) developed by the Udimensional groundwater systems (McDonald & Harbaugh, 1988, Harbaugh & McDonald, 1996). MOC3D is a solute is optimal for advection dominated systems, which are typical of many field problems involving groundwater
Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model
Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.; Thorne, Paul D.; Wurstner, Signe K.; Rogers, Phillip M.
2001-11-09
Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of an uncertainty analysis framework.
Boyce, Scott Elliott
2015-01-01
groundwater flow. Advances in Water Resources, 83, 250-262,inverse problems. Advances in Water Resources, 69, 168-180,inverse problems. Advances in Water Resources, 69, 168-180.
Monitoring probe for groundwater flow
Looney, Brian B. (Aiken, SC); Ballard, Sanford (Albuquerque, NM)
1994-01-01
A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.
Monitoring probe for groundwater flow
Looney, B.B.; Ballard, S.
1994-08-23
A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.
Gradual Variation Analysis for Groundwater Flow
Chen, Li
2010-01-01
Groundwater flow in Washington DC greatly influences the surface water quality in urban areas. The current methods of flow estimation, based on Darcy's Law and the groundwater flow equation, can be described by the diffusion equation (the transient flow) and the Laplace equation (the steady-state flow). The Laplace equation is a simplification of the diffusion equation under the condition that the aquifer has a recharging boundary. The practical way of calculation is to use numerical methods to solve these equations. The most popular system is called MODFLOW, which was developed by USGS. MODFLOW is based on the finite-difference method in rectangular Cartesian coordinates. MODFLOW can be viewed as a "quasi 3D" simulation since it only deals with the vertical average (no z-direction derivative). Flow calculations between the 2D horizontal layers use the concept of leakage. In this project, we have established a mathematical model based on gradually varied functions for groundwater data volume reconstruction. T...
Pohlmann Karl,Ye Ming
2012-03-01
Models of groundwater flow for the Yucca Flat area of the Nevada National Security Site (NNSS) are under development by the U.S. Department of Energy (DOE) for corrective action investigations of the Yucca Flat-Climax Mine Corrective Action Unit (CAU). One important aspect of these models is the quantity of inter-basin groundwater flow from regional systems to the north. This component of flow, together with its uncertainty, must be properly accounted for in the CAU flow models to provide a defensible regional framework for calculations of radionuclide transport that will support determinations of the Yucca Flat-Climax Mine contaminant boundary. Because characterizing flow boundary conditions in northern Yucca Flat requires evaluation to a higher level of detail than the scale of the Yucca Flat-Climax Mine CAU model can efficiently provide, a study more focused on this aspect of the model was required.
FULLYDISCRETE FINITE ELEMENT ANALYSIS OF MULTIPHASE FLOW IN GROUNDWATER HYDROLOGY
Ewing, Richard E.
FULLYDISCRETE FINITE ELEMENT ANALYSIS OF MULTIPHASE FLOW IN GROUNDWATER HYDROLOGY Zhangxin Chen element method for a nonlinear differential system for describing an airwater system in groundwater experiments using the present approach for modeling groundwater flow in porous media are reported. Key words
Groundwater Flow in the Ganges Delta
Entekhabi, Dara
Groundwater Flow in the Ganges Delta Basu et al. (1) reported that 2 1011 m3 /year of groundwater groundwater than in Ganges-Brahmaputra river water. The flow could also have impli- cations for the origin and fate of other groundwater constituents in the Ganges delta that could be flushed by such rapid regional
McGraw, D.; Oberlander, P.
2007-12-18
The purpose of this study is to report on the results of a preliminary modeling framework to investigate the causes of the large hydraulic gradient north of Yucca Mountain. This study builds on the Saturated Zone Site-Scale Flow and Transport Model (referenced herein as the Site-scale model (Zyvoloski, 2004a), which is a three-dimensional saturated zone model of the Yucca Mountain area. Groundwater flow was simulated under natural conditions. The model framework and grid design describe the geologic layering and the calibration parameters describe the hydrogeology. The Site-scale model is calibrated to hydraulic heads, fluid temperature, and groundwater flowpaths. One area of interest in the Site-scale model represents the large hydraulic gradient north of Yucca Mountain. Nearby water levels suggest over 200 meters of hydraulic head difference in less than 1,000 meters horizontal distance. Given the geologic conceptual models defined by various hydrogeologic reports (Faunt, 2000, 2001; Zyvoloski, 2004b), no definitive explanation has been found for the cause of the large hydraulic gradient. Luckey et al. (1996) presents several possible explanations for the large hydraulic gradient as provided below: The gradient is simply the result of flow through the upper volcanic confining unit, which is nearly 300 meters thick near the large gradient. The gradient represents a semi-perched system in which flow in the upper and lower aquifers is predominantly horizontal, whereas flow in the upper confining unit would be predominantly vertical. The gradient represents a drain down a buried fault from the volcanic aquifers to the lower Carbonate Aquifer. The gradient represents a spillway in which a fault marks the effective northern limit of the lower volcanic aquifer. The large gradient results from the presence at depth of the Eleana Formation, a part of the Paleozoic upper confining unit, which overlies the lower Carbonate Aquifer in much of the Death Valley region. The Eleana Formation is absent at borehole UE-25 p#1 at Yucca Mountain, which penetrated the lower Carbonate Aquifer directly beneath the lower volcanic confining unit. The Site-scale model uses an area of very low permeability, referenced as the east-west barrier, to simulate the large hydraulic gradient. The Site-scale model is further refined in this study to provide a base-case model for exploring the geologic causes of the large hydraulic gradient.
Simulation of salt migrations in density dependent groundwater flow
Vuik, Kees
Simulation of salt migrations in density dependent groundwater flow E.S. van Baaren Master's Thesis for the salt migration in the groundwater underneath the polders near the coast. The problem description of this thesis is to investigate the possibilities of modelling salt migrations in density dependent groundwater
Kwicklis, Edward Michael [Los Alamos National Laboratory; Becker, Naomi M [Los Alamos National Laboratory; Ruskauff, Gregory [NAVARRO-INTERA, LLC.; De Novio, Nicole [GOLDER AND ASSOC.; Wilborn, Bill [US DOE NNSA NSO
2010-11-10
A set of groundwater flow and transport models were created for the Central Testing Area of Frenchman Flat at the former Nevada Test Site to investigate the long-term consequences of a radionuclide migration experiment that was done between 1975 and 1990. In this experiment, radionuclide migration was induced from a small nuclear test conducted below the water table by pumping a well 91 m away. After radionuclides arrived at the pumping well, the contaminated effluent was discharged to an unlined ditch leading to a playa where it was expected to evaporate. However, recent data from a well near the ditch and results from detailed models of the experiment by LLNL personnel have convincingly demonstrated that radionuclides from the ditch eventually reached the water table some 220 m below land surface. The models presented in this paper combine aspects of these detailed models with concepts of basin-scale flow to estimate the likely extent of contamination resulting from this experiment over the next 1,000 years. The models demonstrate that because regulatory limits for radionuclide concentrations are exceeded only by tritium and the half-life of tritium is relatively short (12.3 years), the maximum extent of contaminated groundwater has or will soon be reached, after which time the contaminated plume will begin to shrink because of radioactive decay. The models also show that past and future groundwater pumping from water supply wells within Frenchman Flat basin will have negligible effects on the extent of the plume.
Modeling of Groundwater Flow and Radionuclide Transport at the Climax Mine sub-CAU, Nevada Test Site
K. Pohlmann; M. Ye; D. Reeves; M. Zavarin; D. Decker; J. Chapman
2007-09-28
The Yucca Flat-Climax Mine Corrective Action Unit (CAU) on the Nevada Test Site comprises 747 underground nuclear detonations, all but three of which were conducted in alluvial, volcanic, and carbonate rocks in Yucca Flat. The remaining three tests were conducted in the very different hydrogeologic setting of the Climax Mine granite stock located in Area 15 at the northern end of Yucca Flat. As part of the Corrective Action Investigation (CAI) for the Yucca Flat-Climax Mine CAU, models of groundwater flow and radionuclide transport will be developed for Yucca Flat. However, two aspects of these CAU-scale models require focused modeling at the northern end of Yucca Flat beyond the capability of these large models. First, boundary conditions and boundary flows along the northern reaches of the Yucca Flat-Climax Mine CAU require evaluation to a higher level of detail than the CAU-scale Yucca Flat model can efficiently provide. Second, radionuclide fluxes from the Climax tests require analysis of flow and transport in fractured granite, a unique hydrologic environment as compared to Yucca Flat proper. This report describes the Climax Mine sub-CAU modeling studies conducted to address these issues, with the results providing a direct feed into the CAI for the Yucca Flat-Climax Mine CAU. Three underground nuclear detonations were conducted for weapons effects testing in the Climax stock between 1962 and 1966: Hard Hat, Pile Driver, and Tiny Tot. Though there is uncertainty regarding the position of the water table in the stock, it is likely that all three tests were conducted in the unsaturated zone. In the early 1980s, the Spent Fuel Test-Climax (SFT-C) was constructed to evaluate the feasibility of retrievable, deep geologic storage of commercial nuclear reactor wastes. Detailed mapping of fractures and faults carried out for the SFT-C studies greatly expanded earlier data sets collected in association with the nuclear tests and provided invaluable information for subsequent modeling studies at Climax. The objectives of the Climax Mine sub-CAU work are to (1) provide simulated heads and groundwater flows for the northern boundaries of the Yucca Flat-Climax Mine CAU model, while incorporating alternative conceptualizations of the hydrogeologic system with their associated uncertainty, and (2) provide radionuclide fluxes from the three tests in the Climax stock using modeling techniques that account for groundwater flow in fractured granite. Meeting these two objectives required two different model scales. The northern boundary groundwater fluxes were addressed using the Death Valley Regional Flow System (DVRFS) model (Belcher, 2004) developed by the U.S. Geological Survey as a modeling framework, with refined hydrostratigraphy in a zone north of Yucca Flat and including Climax stock. Radionuclide transport was simulated using a separate model confined to the granite stock itself, but linked to regional groundwater flow through boundary conditions and calibration targets.
John McCord
2006-05-01
The Phase II Frenchman Flat groundwater flow model is a key element in the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) corrective action strategy for the Underground Test Area (UGTA) Frenchman Flat corrective action unit (CAU). The objective of this integrated process is to provide an estimate of the vertical and horizontal extent of contaminant migration for each CAU to predict contaminant boundaries. A contaminant boundary is the model-predicted perimeter that defines the extent of radionuclide-contaminated groundwater from underground testing above background conditions exceeding the ''Safe Drinking Water Act'' (SDWA) standards. The contaminant boundary will be composed of both a perimeter boundary and a lower hydrostratigraphic unit (HSU) boundary. The computer model will predict the location of this boundary within 1,000 years and must do so at a 95 percent level of confidence. Additional results showing contaminant concentrations and the location of the contaminant boundary at selected times will also be presented. These times may include the verification period, the end of the five-year proof-of-concept period, as well as other times that are of specific interest. This report documents the development and implementation of the groundwater flow model for the Frenchman Flat CAU. Specific objectives of the Phase II Frenchman Flat flow model are to: (1) Incorporate pertinent information and lessons learned from the Phase I Frenchman Flat CAU models. (2) Develop a three-dimensional (3-D), mathematical flow model that incorporates the important physical features of the flow system and honors CAU-specific data and information. (3) Simulate the steady-state groundwater flow system to determine the direction and magnitude of groundwater fluxes based on calibration to Frenchman Flat hydrogeologic data. (4) Quantify the uncertainty in the direction and magnitude of groundwater flow due to uncertainty in parameter values and alternative component conceptual models (e.g., geology, boundary flux, and recharge).
D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; Belcher, W.R.; San Juan, Carma
2002-11-22
In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this ''second-generation'' regional model was to enhance the knowledge and understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-stat e representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration.
Structure and Groundwater Flow in the Espanola Basin Near Rio...
Office of Environmental Management (EM)
Structure and Groundwater Flow in the Espanola Basin Near Rio Grande and Buckman Wellfield Structure and Groundwater Flow in the Espanola Basin Near Rio Grande and Buckman...
Adamski, Mark Robert
1993-01-01
Inverse analytical techniques were used to model solute distributions and determine transport parameters for two flow systems in the Yakima Basalt subgroup at the Hanford Site in Washington state. Previous studies of these flow systems used...
Ahmed Hassan; Karl Pohlmann; Jenny Chapman
2002-11-19
Since 1963, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive material in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site (NTS), but a limited number of experiments were conducted in other locations. One of these locations, Amchitka Island, Alaska is the subject of this report. Three underground nuclear tests were conducted on Amchitka Island. Long Shot was an 80-kiloton-yield test conducted at a depth of 700 meters (m) on October 29, 1965 (DOE, 2000). Milrow had an announced yield of about 1,000 kilotons, and was detonated at a depth of 1,220 m on October 2, 1969. Cannikin had an announced yield less than 5,000 kilotons, and was conducted at a depth of 1,790 m on November 6, 1971. The purpose of this work is to provide a portion of the information needed to conduct a human-health risk assessment of the potential hazard posed by the three underground nuclear tests on Amchitka Island. Specifically, the focus of this work is the subsurface transport portion, including the release of radionuclides from the underground cavities and their movement through the groundwater system to the point where they seep out of the ocean floor and into the marine environment. This requires a conceptual model of groundwater flow on the island using geologic, hydrologic, and chemical information, a numerical model for groundwater flow, a conceptual model of contaminant release and transport properties from the nuclear test cavities, and a numerical model for contaminant transport. Needed for the risk assessment are estimates of the quantity of radionuclides (in terms of mass flux) from the underground tests on Amchitka that could discharge to the ocean, the time of possible discharge, and the location in terms of distance from shoreline. The radionuclide data presented here are all reported in terms of normalized masses to avoid presenting classified information. As only linear processes are modeled, the results can be readily scaled by the true classified masses for use in the risk assessment. The modeling timeframe for the risk assessment was set at 1,000 years, though some calculations are extended to 2,000 years. This first section of the report endeavors to orient the reader with the environment of Amchitka and the specifics of the underground nuclear tests. Of prime importance are the geologic and hydrologic conditions of the subsurface. A conceptual model for groundwater flow beneath the island is then developed and paired with an appropriate numerical modeling approach in section 2. The parameters needed for the model, supporting data for them, and data uncertainties are discussed at length. The calibration of the three flow models (one for each test) is then presented. At this point the conceptual radionuclide transport model is introduced and its numerical approach described in section 3. Again, the transport parameters and their supporting data and uncertainties are the focus. With all of the processes and parameters in place, the first major modeling phase can be discussed in section 4. In this phase, a parametric uncertainty analysis is performed to determine the sensitivity of the transport modeling results to the uncertainties present in the parameters. This analysis is motivated by the recognition of substantial uncertainty in the subsurface conditions on the island and the need to incorporate that uncertainty into the modeling. The conclusion of the first phase determines the parameters to hold as uncertain through the main flow and transport modeling. This second, main phase of modeling is presented in section 5, with the contaminant breakthrough behavior of each test site addressed. This is followed by a sensitivity analysis in section 6, regarding the importance of additional processes that could not be supported in the main modeling effort due to lack of data. Finally, the results for the individual sites are compared, the sensitivities discussed,
John McCord
2004-12-01
This report documents pertinent hydrologic data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU): CAU 98. The purpose of this data compilation and related analyses is to provide the primary reference to support the development of the Phase II FF CAU groundwater flow model.
Investigation of Groundwater Flow in Foothill and Mountain regions using Heat Flow measurements
Fogg, Graham E.; Trask, James C
2009-01-01
1965) Rates of Vertical Groundwater Movement Estimated fromCrystalline Rocks. Groundwater, Vol. 2, pp. 6-12. Dettinger,horizontal and vertical groundwater flow components. Water
THE RECOVERY OF AN ANISOTROPIC CONDUCTIVITY IN GROUNDWATER MODELLING
Knowles, Ian W.
THE RECOVERY OF AN ANISOTROPIC CONDUCTIVITY IN GROUNDWATER MODELLING IAN KNOWLES AND AIMIN YAN Abstract. In order to model groundwater flow e#ectively, one is faced inevitably with the problem groundwater system may be modelled by the parabolic equation Q(x) #w #t = # · (P (x)#w) +R(x, t) (1) over x
THE RECOVERY OF AN ANISOTROPIC CONDUCTIVITY IN GROUNDWATER MODELLING
Knowles, Ian W.
THE RECOVERY OF AN ANISOTROPIC CONDUCTIVITY IN GROUNDWATER MODELLING IAN KNOWLES AND AIMIN YAN Abstract. In order to model groundwater flow effectively, one is faced inevitably with the problem groundwater system may be modelled by the parabolic equation Q(x) w t = · (P (x) w) + R(x, t)(1) over x
Candea, George
1 Groundwater flow and salt transport in a subterranean estuary2 driven by intensified wave, Western University, London, Canada.6 Email: crobinson@eng.uwo.ca7 b National Centre for Groundwater A numerical study, based on a density-dependent variably saturated groundwater flow model,26 was conducted
Regionally compartmented groundwater flow on Mars Keith P. Harrison1
Harrison, Keith
Regionally compartmented groundwater flow on Mars Keith P. Harrison1 and Robert E. Grimm1 Received] Groundwater flow on Mars likely contributed to the formation of several types of morphologic and mineralogic of groundwater flow required for their formation. For groundwater simulation purposes, a global Martian aquifer
Panno, S.V.; Hackley, K.C.; Cartwright, K.; Liu, C.L. (Illinois State Geological Survey, Champaign, IL (United States))
1994-04-01
Major-ion and isotopic analyses of ground water have been used to develop a conceptual model of flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA). The MVA is composed of clean, permeable sands and gravels and forms a basal'' fill up to 60 m thick in a buried, west-trending bedrock valley. A thick succession of glacial tills, some containing interbedded lenses of sand and gravel, covers the MVA. Three regions within the MVA have hydrochemically distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west.
Tracer advection by steady groundwater flow in a stratified aquifer
Sposito, Garrison; Weeks, Scott W.
1997-01-02
The perfectly stratified aquifer has often been investigated as a simple, tractable model for exploring new theoretical issues in subsurface hydrology. Adopting this approach, we show that steady groundwater flows in the perfectly stratified aquifer are always confined to a set of nonintersecting permanent surfaces, on which both streamlines and vorticity lines lie. This foliation of the flow domain exists as well for steady groundwater flows in any isotropic, spatially heterogeneous aquifer. In the present model example it is a direct consequence of the existence of a stream function, we then demonstrate that tracer plume advection by steady groundwater flow in a perfectly stratified aquifer is never ergodic, regardless of the initial size of the tracer plume. This nonergodicity, which holds also for tracer advection in any isotropic, spatially heterogeneous aquifer, implies that stochastic theories of purely advective tracer plume movement err in assuming ergodic behavior to simplify probabilistic calculations of plume spatial concentration moments.
Flow calculations for Yucca Mountain groundwater travel time (GWTT-95)
Altman, S.J.; Arnold, B.W.; Barnard, R.W.; Barr, G.E.; Ho, C.K.; McKenna, S.A.; Eaton, R.R.
1996-09-01
In 1983, high-level radioactive waste repository performance requirements related to groundwater travel time were defined by NRC subsystem regulation 10 CFR 60.113. Although DOE is not presently attempting to demonstrate compliance with that regulation, understanding of the prevalence of fast paths in the groundwater flow system remains a critical element of any safety analyses for a potential repository system at Yucca Mountain, Nevada. Therefore, this analysis was performed to allow comparison of fast-path flow against the criteria set forth in the regulation. Models developed to describe the conditions for initiation, propagation, and sustainability of rapid groundwater movement in both the unsaturated and saturated zones will form part of the technical basis for total- system analyses to assess site viability and site licensability. One of the most significant findings is that the fastest travel times in both unsaturated and saturated zones are in the southern portion of the potential repository, so it is recommended that site characterization studies concentrate on this area. Results support the assumptions regarding the importance of an appropriate conceptual model of groundwater flow and the incorporation of heterogeneous material properties into the analyses. Groundwater travel times are sensitive to variation/uncertainty in hydrologic parameters and in infiltration flux at upper boundary of the problem domain. Simulated travel times are also sensitive to poorly constrained parameters of the interaction between flow in fractures and in the matrix.
NSTec Geotechnical Sciences Group
2007-03-01
The three-dimensional hydrostratigraphic framework model for the Rainier Mesa-Shoshone Mountain Corrective Action Unit was completed in Fiscal Year 2006. The model extends from eastern Pahute Mesa in the north to Mid Valley in the south and centers on the former nuclear testing areas at Rainier Mesa, Aqueduct Mesa, and Shoshone Mountain. The model area also includes an overlap with the existing Underground Test Area Corrective Action Unit models for Yucca Flat and Pahute Mesa. The model area is geologically diverse and includes un-extended yet highly deformed Paleozoic terrain and high volcanic mesas between the Yucca Flat extensional basin on the east and caldera complexes of the Southwestern Nevada Volcanic Field on the west. The area also includes a hydrologic divide between two groundwater sub-basins of the Death Valley regional flow system. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the model area. Three deep characterization wells, a magnetotelluric survey, and reprocessed gravity data were acquired specifically for this modeling initiative. These data and associated interpretive products were integrated using EarthVision{reg_sign} software to develop the three-dimensional hydrostratigraphic framework model. Crucial steps in the model building process included establishing a fault model, developing a hydrostratigraphic scheme, compiling a drill-hole database, and constructing detailed geologic and hydrostratigraphic cross sections and subsurface maps. The more than 100 stratigraphic units in the model area were grouped into 43 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the volcanic units in the model area into 35 hydrostratigraphic units that include 16 aquifers, 12 confining units, 2 composite units (a mixture of aquifer and confining units), and 5 intrusive confining units. The underlying pre-Tertiary rocks are divided into six hydrostratigraphic units, including three aquifers and three confining units. Other units include an alluvial aquifer and a Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units ('layers' in the model). The model also incorporates 56 Tertiary normal faults and 4 Mesozoic thrust faults. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Four of these alternatives were developed so they can be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area Subproject of the Environmental Restoration Project.
Knowles, Ian W.
Inverse groundwater modelling in the Willunga Basin, South Australia Ian Knowles & Michael Teubner flow, based on a functional minimization technique, has been used to calibrate a groundwater flow model is the location of extensive viticulture, irrigated primarily by groundwater, the levels and quality of which have
Prothro, Lance; Drellack Jr., Sigmund; Mercadante, Jennifer
2009-01-31
Underground Test Area (UGTA) corrective action unit (CAU) groundwater flow and contaminant transport models of the Nevada Test Site (NTS) and vicinity are built upon hydrostratigraphic framework models (HFMs) that utilize the hydrostratigraphic unit (HSU) as the fundamental modeling component. The delineation and three-dimensional (3-D) modeling of HSUs within the highly complex geologic terrain that is the NTS requires a hydrostratigraphic system that is internally consistent, yet flexible enough to account for overlapping model areas, varied geologic terrain, and the development of multiple alternative HFMs. The UGTA CAU-scale hydrostratigraphic system builds on more than 50 years of geologic and hydrologic work in the NTS region. It includes 76 HSUs developed from nearly 300 stratigraphic units that span more than 570 million years of geologic time, and includes rock units as diverse as marine carbonate and siliciclastic rocks, granitic intrusives, rhyolitic lavas and ash-flow tuffs, and alluvial valley-fill deposits. The UGTA CAU-scale hydrostratigraphic system uses a geology-based approach and two-level classification scheme. The first, or lowest, level of the hydrostratigraphic system is the hydrogeologic unit (HGU). Rocks in a model area are first classified as one of ten HGUs based on the rock’s ability to transmit groundwater (i.e., nature of their porosity and permeability), which at the NTS is mainly a function of the rock’s primary lithology, type and degree of postdepositional alteration, and propensity to fracture. The second, or highest, level within the UGTA CAU-scale hydrostratigraphic system is the HSU, which is the fundamental mapping/modeling unit within UGTA CAU-scale HFMs. HSUs are 3-D bodies that are represented in the finite element mesh for the UGTA groundwater modeling process. HSUs are defined systematically by stratigraphically organizing HGUs of similar character into larger HSUs designations. The careful integration of stratigraphic information in the development of HSUs is important to assure individual HSUs are internally consistent, correlatable, and mappable throughout all the model areas.
Groundwater flow in heterogeneous composite C. L. Winter and Daniel M. Tartakovsky
Tartakovsky, Daniel M.
Groundwater flow in heterogeneous composite aquifers C. L. Winter and Daniel M. Tartakovsky Hydrology: Stochastic processes; 1829 Hydrology: Groundwater hydrology; 1832 Hydrology: Groundwater, upscaled, decomposition 1. Introduction [2] It has become common to quantify uncertainty in groundwater
Nathan Bryant
2008-05-01
This document presents a summary and framework of the available hydrologic data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater flow models. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.
Model Reduction and Parameter Estimation in Groundwater Modeling
Siade, Adam
2012-01-01
Uncon?ned Groundwater Model Reduction via Proper Orthogonalvi List of Figures One-dimensional groundwater ?owQuadratic Programming 3.1 Con?ned aquifer groundwater ?ow
John McCord
2006-06-01
The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Underground Test Area (UGTA) Project to assess and evaluate the effects of the underground nuclear weapons tests on groundwater beneath the Nevada Test Site (NTS) and vicinity. The framework for this evaluation is provided in Appendix VI, Revision No. 1 (December 7, 2000) of the Federal Facility Agreement and Consent Order (FFACO, 1996). Section 3.0 of Appendix VI ''Corrective Action Strategy'' of the FFACO describes the process that will be used to complete corrective actions specifically for the UGTA Project. The objective of the UGTA corrective action strategy is to define contaminant boundaries for each UGTA corrective action unit (CAU) where groundwater may have become contaminated from the underground nuclear weapons tests. The contaminant boundaries are determined based on modeling of groundwater flow and contaminant transport. A summary of the FFACO corrective action process and the UGTA corrective action strategy is provided in Section 1.5. The FFACO (1996) corrective action process for the Yucca Flat/Climax Mine CAU 97 was initiated with the Corrective Action Investigation Plan (CAIP) (DOE/NV, 2000a). The CAIP included a review of existing data on the CAU and proposed a set of data collection activities to collect additional characterization data. These recommendations were based on a value of information analysis (VOIA) (IT, 1999), which evaluated the value of different possible data collection activities, with respect to reduction in uncertainty of the contaminant boundary, through simplified transport modeling. The Yucca Flat/Climax Mine CAIP identifies a three-step model development process to evaluate the impact of underground nuclear testing on groundwater to determine a contaminant boundary (DOE/NV, 2000a). The three steps are as follows: (1) Data compilation and analysis that provides the necessary modeling data that is completed in two parts: the first addressing the groundwater flow model, and the second the transport model. (2) Development of a groundwater flow model. (3) Development of a groundwater transport model. This report presents the results of the first part of the first step, documenting the data compilation, evaluation, and analysis for the groundwater flow model. The second part, documentation of transport model data will be the subject of a separate report. The purpose of this document is to present the compilation and evaluation of the available hydrologic data and information relevant to the development of the Yucca Flat/Climax Mine CAU groundwater flow model, which is a fundamental tool in the prediction of the extent of contaminant migration. Where appropriate, data and information documented elsewhere are summarized with reference to the complete documentation. The specific task objectives for hydrologic data documentation are as follows: (1) Identify and compile available hydrologic data and supporting information required to develop and validate the groundwater flow model for the Yucca Flat/Climax Mine CAU. (2) Assess the quality of the data and associated documentation, and assign qualifiers to denote levels of quality. (3) Analyze the data to derive expected values or spatial distributions and estimates of the associated uncertainty and variability.
Numerical investigation for the impact of CO2 geologic sequestration on regional groundwater flow
Yamamoto, H.
2010-01-01
11. Change in surface groundwater discharge due to CO 2Marui, A. , 2003. Deep groundwater in the Kanto Plain, J.in underground and regional groundwater flow-, Urban Kubota,
CHLORINATED SOLVENTS TRANSPORT AND NATURAL ATTENUATION MODELING IN GROUNDWATER
Boyer, Edmond
CHLORINATED SOLVENTS TRANSPORT AND NATURAL ATTENUATION MODELING IN GROUNDWATER F. QUIOT1 , C.Goblet@ensmp.fr Keywords : numerical model, groundwater contamination, chlorinated solvents, natural atténuation atténuation models to predict transport and fate of chlorinated solvents in saturated groundwater Systems
PARAMETER ESTIMATION IN PETROLEUM AND GROUNDWATER MODELING
Ewing, Richard E.
PARAMETER ESTIMATION IN PETROLEUM AND GROUNDWATER MODELING R.E. Ewing, M.S. Pilant, J.G. Wade on grand challenge problems. In today's petroleum industry, reservoir simulators are routinely used parameters in petroleum and groundwater models. It is not intended to be exhaustive, but rather to give
John McCord
2007-05-01
This document, which makes changes to Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, S-N/99205--074, Revision 0 (May 2006) was prepared to address review comments on this final document provided by the Nevada Division of Environmental Protection (NDEP) in a letter dated June 20, 2006. The document includes revised pages that address NDEP review comments and comments from other document users. Change bars are included on these pages to identify where the text was revised. In addition to the revised pages, the following clarifications are made: • Section 6.0 Conceptual Model Uncertainty Analyses. Please note that in this section figures showing the observed versus simulated well head (Figures 6-1, 6-5, 6-7, 6-16, 6-28, 6-30, 6-32, 6-34, 6-37, 6-42, 6-47, 6-52, 6-57, 6-62, 6-71, and 6-86) have a vertical break in scale on the y axis. • Section 7.0 Parameter Sensitivity Analysis. In Section 7.2, the parameter perturbation analysis defines two components of the objective function PHI. These two components include the WELL component that represents the head portion of the objective function as measured in wells and the FLUX component that represents the lateral boundary flux portion of the objective function. In the text and figures in Section 7.2, the phrases “well portion of the objective function” and “head portion of the objective function” are used interchangeably in discussions of the WELL component of the objective function.
Coupling Groundwater Modeling with Biology to Identify Strategic Water Resources
Paris-Sud XI, Université de
Coupling Groundwater Modeling with Biology to Identify Strategic Water Resources Didier Graillot 1 ABSTRACT The identification of hydraulic interactions between rivers and groundwater is part and parcel hinders groundwater modeling everywhere and simulating water management scenarios in every place
of groundwater-surface water interactions is critical to modeling low river flow periods in riparian environments in the semi-arid southwestern United States. This thesis presents a modeling tool with significant potential to modeling groundwater-surface interactions in riparian zones, including riparian evapotranspiration
Pawloski, G A; Wurtz, J; Drellack, S L
2009-12-29
Pahute Mesa at the Nevada Test Site contains about 8.0E+07 curies of radioactivity caused by underground nuclear testing. The Underground Test Area Subproject has entered Phase II of data acquisition, analysis, and modeling to determine the risk to receptors from radioactivity in the groundwater, establish a groundwater monitoring network, and provide regulatory closure. Evaluation of radionuclide contamination at Pahute Mesa is particularly difficult due to the complex stratigraphy and structure caused by multiple calderas in the Southwestern Nevada Volcanic Field and overprinting of Basin and Range faulting. Included in overall Phase II goals is the need to reduce the uncertainty and improve confidence in modeling results. New characterization efforts are underway, and results from the first year of a three-year well drilling plan are presented.
Rahatgaonkar, P. S.; Datta, D.; Malhotra, P. K.; Ghadge, S. G. [Nuclear Power Corporation of India Ltd., R-2, Ent. Block, Nabhikiya Urja Bhavan, Anushakti Nagar, Mumbai - 400 094 (India)
2012-07-01
Prediction of groundwater movement and contaminant transport in soil is an important problem in many branches of science and engineering. This includes groundwater hydrology, environmental engineering, soil science, agricultural engineering and also nuclear engineering. Specifically, in nuclear engineering it is applicable in the design of spent fuel storage pools and waste management sites in the nuclear power plants. Ground water modeling involves the simulation of flow and contaminant transport by groundwater flow. In the context of contaminated soil and groundwater system, numerical simulations are typically used to demonstrate compliance with regulatory standard. A one-dimensional Computational Fluid Dynamics code GFLOW had been developed based on the Finite Difference Method for simulating groundwater flow and contaminant transport through saturated and unsaturated soil. The code is validated with the analytical model and the benchmarking cases available in the literature. (authors)
Michael T. Moreo; and Leigh Justet
2008-07-02
Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913–1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.
GG655 --Groundwater Modeling (also offered as CEE623) Course Meets: TR, 1200-1315 POST 733
GG655 -- Groundwater Modeling (also offered as CEE623) Course Meets: TR, 1200-1315 POST 733-6331, elkadi@hawaii.edu Extra Readings: List of textbooks http://www.bing.com/images/search?q=groundwater Groundwater Flow and Contaminant Transport (Theory and Applications of Transport in Porous Media), Springer
Multigrid for Higher Order Discontinuous Galerkin Finite Elements Applied to Groundwater Flow
Bastian, Peter
Multigrid for Higher Order Discontinuous Galerkin Finite Elements Applied to Groundwater Flow Peter elements applied to the groundwater flow equation. It uses an incomplete LU decomposition on an element for diffusion problems has been formu- lated in [6]. 1.1 Notation In this paper we wish to solve the groundwater
Ancient groundwater flow in the Valles Marineris on Mars inferred from
Treiman, Allan H.
LETTERS Ancient groundwater flow in the Valles Marineris on Mars inferred from fault trace ridges e-mail: treiman@lpi.usra.edu Published online: XX Month XXXX; doi:10.1038/ngeoXXXX Groundwater of bedrock36 .2 Understanding groundwater flow is also important for assessing3 the possibility of past
Error Control of Iterative Linear Solvers for Integrated Groundwater Models
California at Davis, University of
Error Control of Iterative Linear Solvers for Integrated Groundwater Models by Matthew F. Dixon1 for integrated groundwater models, which are implicitly coupled to another model, such as surface water models in legacy groundwater modeling packages, resulting in the overall simulation speedups as large as 7
Integration of Groundwater Transport Models with Wireless Sensor Networks
Han, Qi "Chee"
Integration of Groundwater Transport Models with Wireless Sensor Networks Kevin Barnhart1 , I.jayasumana@colostate.edu, Fort Collins, CO, USA ABSTRACT Groundwater transport modeling is intended to aid in remediation be conceptualized in the WSN context. INTRODUCTION As groundwater contamination is an established problem with many
Modeling the interaction between land surface and groundwater
Nebraska-Lincoln, University of
Modeling the interaction between land surface and groundwater Geng-Xin Ou Xun-Hong Chen School-ground water models Irrigation efficiency Materials and methods Development of SGWM #12;Background Groundwater in Nebraska. #12;Background Groundwater in Nebraska. decline 100 ft by 1980, 40 ft by 1999; 87% population
Error Control of Iterative Linear Solvers for Integrated Groundwater Models
Dixon, Matthew; Brush, Charles; Chung, Francis; Dogrul, Emin; Kadir, Tariq
2010-01-01
An open problem that arises when using modern iterative linear solvers, such as the preconditioned conjugate gradient (PCG) method or Generalized Minimum RESidual method (GMRES) is how to choose the residual tolerance in the linear solver to be consistent with the tolerance on the solution error. This problem is especially acute for integrated groundwater models which are implicitly coupled to another model, such as surface water models, and resolve both multiple scales of flow and temporal interaction terms, giving rise to linear systems with variable scaling. This article uses the theory of 'forward error bound estimation' to show how rescaling the linear system affects the correspondence between the residual error in the preconditioned linear system and the solution error. Using examples of linear systems from models developed using the USGS GSFLOW package and the California State Department of Water Resources' Integrated Water Flow Model (IWFM), we observe that this error bound guides the choice of a prac...
Geotechnical Sciences Group Bechtel Nevada
2006-01-01
A new three-dimensional hydrostratigraphic framework model for the Yucca Flat-Climax Mine Corrective Action Unit was completed in 2005. The model area includes Yucca Flat and Climax Mine, former nuclear testing areas at the Nevada Test Site, and proximal areas. The model area is approximately 1,250 square kilometers in size and is geologically complex. Yucca Flat is a topographically closed basin typical of many valleys in the Basin and Range province. Faulted and tilted blocks of Tertiary-age volcanic rocks and underlying Proterozoic and Paleozoic sedimentary rocks form low ranges around the structural basin. During the Cretaceous Period a granitic intrusive was emplaced at the north end of Yucca Flat. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the basin. These were integrated using EarthVision? software to develop the 3-dimensional hydrostratigraphic framework model. Fifty-six stratigraphic units in the model area were grouped into 25 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the alluvial section into 3 hydrostratigraphic units including 2 aquifers and 1 confining unit. The volcanic units in the model area are organized into 13 hydrostratigraphic units that include 8 aquifers and 5 confining units. The underlying pre-Tertiary rocks are divided into 7 hydrostratigraphic units, including 3 aquifers and 4 confining units. Other units include 1 Tertiary-age sedimentary confining unit and 1 Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with the major structural features (i.e., faults). The model incorporates 178 high-angle normal faults of Tertiary age and 2 low-angle thrust faults of Mesozoic age. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Five of these alternatives were developed so they could be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area subproject of the Environmental Restoration Project.
Mills, Richard
Groundwater Reactive Transport Models, 2012, 141-159 141 Fan Zhang, Gour-Tsyh (George) Yeh, Jack C--simulating groundwater flow and solute transport, with basic chemical reactions such as aqueous complexing, mineral systems [1]. Although these simplified groundwater models are still in wide use, advances in subsurface
Birkholzer, Jens; Zhou, Quanlin; Rutqvist, Jonny; Jordan, Preston; Zhang, K.; Tsang, Chin-Fu
2008-01-01
storage on shallow groundwater and pressure-controlled72 5.2. Modeling of Regional Groundwater2 Geological Storage and Groundwater Resources Large-Scale
Bechtel Nevada
2005-09-01
A new, revised three-dimensional (3-D) hydrostratigraphic framework model for Frenchman Flat was completed in 2004. The area of interest includes Frenchman Flat, a former nuclear testing area at the Nevada Test Site, and proximal areas. Internal and external reviews of an earlier (Phase I) Frenchman Flat model recommended additional data collection to address uncertainties. Subsequently, additional data were collected for this Phase II initiative, including five new drill holes and a 3-D seismic survey.
Spatial Models for Groundwater Behavioral Analysis in Regions of Maharashtra
Sohoni, Milind
Spatial Models for Groundwater Behavioral Analysis in Regions of Maharashtra M.Tech Dissertation In this project we have performed spatial analysis of groundwater data in Thane and Latur districts of Maharashtra Groundwater Survey and Development Agency, Maharashtra), shape files for watershed boundaries and drainage
MODELING OF CHLORINATED SOLVENTS TRANSPORT AND NATURAL ATTENUATION IN GROUNDWATER
Boyer, Edmond
1 MODELING OF CHLORINATED SOLVENTS TRANSPORT AND NATURAL ATTENUATION IN GROUNDWATER QUIOT Fabrice1 performed by 4 teams (ANTEA, ENSMP, ENVIROS and INERIS) to simulate a contamination of groundwater is the evaluation of the fate of pollutants in groundwaters and soils. This knowledge is based on the result
Original article Modelling herbicide treatment impact on groundwater
Boyer, Edmond
Original article Modelling herbicide treatment impact on groundwater quality in a central Italy of different weed control strategies on groundwater quality in a Central Italy area (Umbria) where the drinking and twenty-two weed control strategies were tested for their groundwater concentrations. Two maps reporting
Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test
K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley
2004-03-01
Groundwater flow and radionuclide transport at the Shoal underground nuclear test are characterized using three-dimensional numerical models, based on site-specific hydrologic data. The objective of this modeling is to provide the flow and transport models needed to develop a contaminant boundary defining the extent of radionuclide-contaminated groundwater at the site throughout 1,000 years at a prescribed level of confidence. This boundary will then be used to manage the Project Shoal Area for the protection of the public and the environment.
Nativ, R.; Halleran, A.; Hunley, A.
1997-08-01
The deep hydrogeologic system underlying the Oak Ridge Reservation (ORR) contains contaminants such as radionuclides, heavy metals, nitrates, and organic compounds. The groundwater in the deep system is saline and has been considered to be stagnant in previous studies. This study was designed to address the following questions: is groundwater in the deep system stagnant; is contaminant migration controlled by diffusion only or is advection a viable mechanism; where are the potential outlet points? On the basis of existing and newly collected data, the nature of saline groundwater flow and potential discharge into shallow, freshwater systems was assessed. Data used for this purpose included (1) spatial and temporal pressures and hydraulic heads measured in the deep system, (2) hydraulic parameters of the formations in question, (3) spatial and temporal temperature variations at depth, and (4) spatial and temporal chemical and isotopic composition of the saline groundwater. The observations suggest that the saline water contained at depth is old but not isolated (in terms of recharge and discharge) from the overlying active, freshwater-bearing units. Influx of recent water does occur. Groundwater volumes involved in this flow are likely to be small. The origin of the saline groundwater was assessed by using existing and newly acquired chemical and isotopic data. The proposed model that best fits the data is modification of residual brine from which halite has been precipitated. Other models, such as ultrafiltration and halite dissolution, were also evaluated.
McKenzie, Jeffrey M.
Groundwater flow with energy transport and waterice phase change: Numerical simulations saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes propor for groundwater and energy transport with ice formation and melting are proposed that may be used by other
Davisson, M.L.; Criss, R.E.
1995-01-01
Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the {delta}{sup 18}O values of groundwater were relatively homogeneous (mostly -7.0 {+-} 0.5{per_thousand}), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high {sup 18}O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low {sup 18}O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in {delta}{sup 18}O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are {approximately}10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for {approximately}40 years, creating cones of depression {approximately}25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low {sup 18}O water (-11.0{per_thousand}) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp {sup 18}O gradients in our groundwater isotope map.
Permafrost thaw in a nested groundwater-flow system Jeffrey M. McKenzie & Clifford I. Voss
McKenzie, Jeffrey M.
Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changesPermafrost thaw in a nested groundwater-flow system Jeffrey M. McKenzie & Clifford I. Voss Abstract controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts
Nwaneshiudu, Okechukwu
2009-05-15
representing scenarios of potential contamination from the border area sites. Fate and transport results were most sensitive to hydraulic conductivities, flow velocities, and directions at the sites. Sites that were located within the vicinity of the El Paso...
Unsaturated Groundwater Flow Beneath Upper Mortandad Canyon, Los Alamos, New Mexico
Dander, D.C.
1998-10-15
Mortandad Canyon is a discharge site for treated industrial effluents containing radionuclides and other chemicals at Los Alamos National Laboratory, New Mexico. This study was conducted to develop an understanding of the unsaturated hydrologic behavior below the canyon floor. The main goal of this study was to evaluate the hypothetical performance of the vadose zone above the water table. Numerical simulations of unsaturated groundwater flow at the site were conducted using the Finite Element Heat and Mass Transfer (FEHM) code. A two-dimensional cross-section along the canyon's axis was used to model flow between an alluvial groundwater system and the regional aquifer approximately 300 m below. Using recharge estimated from a water budget developed in 1967, the simulations showed waters from the perched water table reaching the regional aquifer in 13.8 years, much faster than previously thought. Additionally, simulations indicate that saturation is occurring in the Guaje pumice bed an d that the Tshirege Unit 1B is near saturation. Lithologic boundaries between the eight materials play an important role in flow and solute transport within the system. Horizontal flow is shown to occur in three thin zones above capillary barriers; however, vertical flow dominates the system. Other simulations were conducted to examine the effects of changing system parameters such as varying recharge inputs, varying the distribution of recharge, and bypassing fast-path fractured basalt of uncertain extent and properties. System sensitivity was also explored by changing model parameters with respect to size and types of grids and domains, and the presence of dipping stratigraphy.
John McCord
2007-05-01
This document, which makes changes to Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, S-N/99205--077, Revision 0 (June 2006), was prepared to address review comments on this final document provided by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 4, 2006. The document includes revised pages that address NDEP review comments and comments from other document users. Change bars are included on these pages to identify where the text was revised. In addition to the revised pages, the following clarifications are made for the two plates inserted in the back of the document: • Plate 4: Disregard the repeat of legend text ‘Drill Hole Name’ and ‘Drill Hole Location’ in the lower left corner of the map. • Plate 6: The symbol at the ER-16-1 location (white dot on the lower left side of the map) is not color-coded because no water level has been determined. The well location is included for reference. • Plate 6: The symbol at the ER-12-1 location (upper left corner of the map), a yellow dot, represents the lower water level elevation. The higher water level elevation, represented by a red dot, was overprinted.
SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION
B.W. ARNOLD
2004-10-27
The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ.
Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.
1998-07-01
Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.
Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test
K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley
2004-03-01
The purpose of this work is to characterize groundwater flow and contaminant transport at the Shoal underground nuclear test through numerical modeling using site-specific hydrologic data. The ultimate objective is the development of a contaminant boundary, a model-predicted perimeter defining the extent of radionuclide-contaminated groundwater from the underground test throughout 1,000 years at a prescribed level of confidence. This boundary will be developed using the numerical models described here, after they are approved for that purpose by DOE and NDEP.
Nathan Bryant
2008-05-01
This document presents a summary and framework of available transport data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater transport model. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.
S.J. Goldstein; M.T. Murrell; A.M. Simmons
2005-07-11
The Nopal I uranium deposit in Chihuahua, Mexico, is an excellent analogue for evaluating the fate of spent fuel, associated actinides, and fission products over long time scales for the proposed Yucca Mountain high-level nuclear waste repository. In 2003, three groundwater wells were drilled directly adjacent to (PB-1) and 50 m on either side of the uranium deposit (PB-2 and PB-3) in order to evaluate uranium-series transport in three dimensions. After drilling, uranium concentrations were elevated in all of the three wells (0.1-18 ppm) due to drilling activities and subsequently decreased to {approx}5-20% of initial values over the next several months. The {sup 234}U/{sup 238}U activity ratios were similar for PB-1 and PB-2 (1.005 to 1.079) but distinct for PB-3 (1.36 to 1.83) over this time period, suggesting limited mixing between groundwater from these wells over these short time and length scales. Regional groundwater wells located up to several km from the deposit also have distinct uranium isotopic characteristics and constrain mixing over larger length and time scales. We model the decreasing uranium concentrations in the newly drilled wells with a simple one-dimensional advection-dispersion model, assuming uranium is introduced as a slug to each of the wells and transported as a conservative tracer. Using this model for our data, the relative uranium concentrations are dependent on both the longitudinal dispersion as well as the mean groundwater flow velocity. These parameters have been found to be correlated in both laboratory and field studies of groundwater velocity and dispersion (Klotz et al., 1980). Using typical relationships between velocity and dispersion for field and laboratory studies along with the relationship observed from our uranium data, both velocity (1-10 n/yr) and dispersion coefficient (1E-5 to 1E-2 cm{sup 2}/s) can be derived from the modeling. As discussed above, these relatively small flow velocities and dispersivities agree with mixing considerations derived from the {sup 234}U/{sup 238}U data. While these results and the limited productivity of these wells consistently suggest limited groundwater flow and mixing, we anticipate additional work with artificial tracers to better establish groundwater flow velocities and gradient at this site.
Durham, L.A. [Argonne National Lab., IL (United States); Carman, J.D. [Jacobs Engineering Group, Inc., St. Charles, MO (United States)
1993-10-01
Aquifer characterization studies were performed to develop a hydrogeologic understanding of an unconfined shallow aquifer at the Weldon Spring site west of St. Louis, Missouri. The 88-ha site became contaminated because of uranium and thorium processing and disposal activities that took place from the 1940s through the 1960s. Slug and pumping tests provided valuable information on the lateral distribution of hydraulic conductivities, and packer tests and lithologic information were used to determine zones of contrasting hydrologic properties within the aquifer. A three-dimensional, finite- element groundwater flow model was developed and used to simulate the shallow groundwater flow system at the site. The results of this study show that groundwater flow through the system is predominantly controlled by a zone of fracturing and weathering in the upper portion of the limestone aquifer. The groundwater flow model, developed and calibrated from field investigations, improved the understanding of the hydrogeology and supported decisions regarding remedial actions at the site. The results of this study illustrate the value, in support of remedial actions, of combining field investigations with numerical modeling to develop an improved understanding of the hydrogeology at the site.
Groundwater flow to the coastal ocean Ann E. Mulligan and Matthew A. Charette
of high hydraulic head to areas of low hydraulic head terrain, such as karst. In addition to typically low flow rates, groundwater discharge is temporally is driven by differences in energy water flows from high energy areas to low energy. The energy content
Paris-Sud XI, Université de
Deep groundwater flow as the main pathway for chemical outputs in a small headwater watershed (Mule of a groundwater baseflow located into the active zone of the crystalline aquifer, below the weir. These findings indicate that groundwater contributes to a large part of chemical outputs at the catchment scale
Torgersen, Christian
Groundwater availability and flow processes in the Williston and Powder River basins Center, Cheyenne, WY 4 Office of Groundwater, Denver, CO 5 Oklahoma Water Science Center, Oklahoma City in Montana and Wyoming, provides an opportunity to study the water-energy nexus within a groundwater context
DeNovio, Nicole M.; Bryant, Nathan; King, Chrissi B.; Bhark, Eric; Drellack, Sigmund L.; Pickens, John F.; Farnham, Irene; Brooks, Keely M.; Reimus, Paul; Aly, Alaa
2005-04-01
This report documents pertinent transport data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU) 98. The purpose of this data compilation and related analyses is to provide the primary reference to support parameterization of the Phase II FF CAU transport model.
Estimation of Groundwater Flow Parameters Using Least Squares
in a groundwater aquifer is estimation of the subsurface physical pa rameters, particularly the hydraulic conductivity. Wells are expensive to drill, and the cost of time, equipment and manpower to make accurate ; (1) hj @\\Omega = g where K is the hydraulic conductivity, h is the hydraulic head, g represents
Michael, Holly Anne, 1976-
2005-01-01
The fresh and saline groundwater flowing from coastal aquifers into the ocean comprise submarine groundwater discharge (SGD). This outflow is an important pathway for the transport of nutrients and contaminants, and has ...
Site-Scale Saturated Zone Flow Model
G. Zyvoloski
2003-12-17
The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being carried out in the model report, ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The velocity fields are calculated by the flow model, described herein, independent of the transport processes, and are then used as inputs to the transport model. Justification for this abstraction is presented in the model report, ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021 (BSC 2003 [164870]).
Lund, Jay R.
i Groundwater Overdraft in California's Central Valley: Updated CALVIN Modeling Using Recent CVHM water demands, groundwater availability, and local water management opportunities. This update project focused on improving groundwater representation in CALVIN, which included changing CALVIN groundwater
Yang, Zong-Liang
Development of a simple groundwater model for use in climate models and evaluation with Gravity 7 April 2007. [1] Groundwater interacts with soil moisture through the exchanges of water between, groundwater is not explicitly represented in climate models. This paper developed a simple groundwater model
Moore, G.K.; Toran, L.E.
1992-11-01
The information in this report should prove useful for flow and contaminant-transport modeling of groundwater and for evaluating the alternatives for remedial action. New data on porosity and permeability have been analyzed and interpreted to produce a better understanding of the relationships between unfractured rock, low permeability intervals, and relatively permeable intervals. Specifically, the dimensions, orientations, depths, and spacings of pervious fractures have been measured or calculated; the depths and directions of subsurface flow paths (Solomon et al. 1992, pp. 3--21 to 3--23) have been corroborated with new data; fractures near the water table have been shown to have different characteristics than those at deeper levels; and the relationships between groundwater flows in fractures and flows in the continuum have been described. This is the information needed for the numerical modeling of groundwater flows. Other information in this report should result in a better understanding of spatial and temporal differences in water chemistry, including changes in contaminant concentrations. Temporal changes in groundwater chemistry have been shown to occur mostly near the water table. These changes consist of a periodic dilution of chemical constituents by recharge and a slow increase in constituent concentrations between recharge events. At discharge locations, spatial differences in groundwater chemistry are integrated by mixing. The monitoring of water chemistry in streams near contaminant sources may produce a better indication of contaminant releases and trends than do the records obtained from a few upgradient and downgradient wells.
through helium concentrations and isotopic ratios T. WEN1 , M. C. CASTRO1 , C. M. HALL1 , D. L. PINTI2 that in situ production is negligible and that most He excesses have a source external to the aquifer Drift 14 C ages. Key words: 14 C ages, Groundwater flow, helium ages, helium fluxes, sedimentary basin
Groundwater flow to a horizontal or slanted well in an unconfined aquifer
Zhan, Hongbin
with the horizontal aquifer units; (4) drilling oper- ations are feasible near the ground surfaces that are obstructed groundwater, vapor, or oil improves the effective recovery of fluids. In a case study in a thin oil reservoir, and mine dewatering [Hantush and Papadopulos, 1962]. [4] An early study of fluid flow to a horizontal well
Three-Dimensional Groundwater Models of the 300 Area at the Hanford Site, Washington State
Williams, Mark D.; Rockhold, Mark L.; Thorne, Paul D.; Chen, Yousu
2008-09-01
Researchers at Pacific Northwest National Laboratory developed field-scale groundwater flow and transport simulations of the 300 Area to support the 300-FF-5 Operable Unit Phase III Feasibility Study. The 300 Area is located in the southeast portion of the U.S. Department of Energy’s Hanford Site in Washington State. Historical operations involving uranium fuel fabrication and research activities at the 300 Area have contaminated engineered liquid-waste disposal facilities, the underlying vadose zone, and the uppermost aquifer with uranium. The main objectives of this research were to develop numerical groundwater flow and transport models to help refine the site conceptual model, and to assist assessment of proposed alternative remediation technologies focused on the 300 Area uranium plume.
Notes on Groundwater Age in Forward and Inverse Modeling
Ginn, Timothy R.; Haeri, Hanieh; Massoudieh, Arash; Foglia, Laura
2009-01-01
from radiocarbon dating of groundwater and numerical ?ow andReply to “Comment on groundwater age, life expectancy andanalysis of regional groundwater ?ow. 2. Effect of water-
Groundwater Modeling in ArcView: by integrating ArcView, MODFLOW and
Sengupta, Raja
Groundwater Modeling in ArcView: by integrating ArcView, MODFLOW and MODPATH Abstract Modeling. This paper addresses groundwater modeling which is one of the many entities in environmental modeling in ArcView 3.2a. The objective was to create an integrated system where a user could do groundwater
Manga, Michael
and spatial extent of groundwater flow E.R. Jamesa , M. Mangaa,*, T.P. Roseb , G.B. Hudsonb a Department springs in the central Oregon Cascades are used to understand the pattern of groundwater flow. Standard at the springs to determine whether groundwater circulates to shallow or deep depths in the subsurface
t -software package for numerical simulations of radioactive contaminant transport in groundwater
Frolkovic, Peter
in groundwater Peter Frolkovic Michael Lampe Gabriel Wittum September 16, 2005 Abstract The software package r3t or as numerical solution of some groundwater flow model, e.g., the density driven flow problem. The matrix Di = Di
Groundwater Remediation Strategy Using Global Optimization Algorithms
Neumaier, Arnold
Groundwater Remediation Strategy Using Global Optimization Algorithms Shreedhar Maskey1 ; Andreja Jonoski2 ; and Dimitri P. Solomatine3 Abstract: The remediation of groundwater contamination by pumping as decision variables. Groundwater flow and particle-tracking models MODFLOW and MODPATH and a GO tool GLOBE
HYDROLYZED WOOD SLURRY FLOW MODELING
Wrathall, Jim
2012-01-01
LBL-10090 UC-61 HYDROLYZED WOOD SLURRY FLOW MODELING JimLBL-10090 HYDROLYZED WOOD SLURRY FLOW MODELING Jim Wrathallconversion of hydrolyzed wood slurry to fuel oil, Based on
Updated Conceptual Model for the 300 Area Uranium Groundwater Plume
Zachara, John M.; Freshley, Mark D.; Last, George V.; Peterson, Robert E.; Bjornstad, Bruce N.
2012-11-01
The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactions between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.
Reduced order models for prediction of groundwater quality impacts from CO? and brine leakage
Zheng, Liange; Carroll, Susan; Bianchi, Marco; Mansoor, Kayyum; Sun, Yunwei; Birkholzer, Jens
2014-12-31
A careful assessment of the risk associated with geologic CO? storage is critical to the deployment of large-scale storage projects. A potential risk is the deterioration of groundwater quality caused by the leakage of CO? and brine leakage from deep subsurface reservoirs. In probabilistic risk assessment studies, numerical modeling is the primary tool employed to assess risk. However, the application of traditional numerical models to fully evaluate the impact of CO? leakage on groundwater can be computationally complex, demanding large processing times and resources, and involving large uncertainties. As an alternative, reduced order models (ROMs) can be used as highly efficient surrogates for the complex process-based numerical models. In this study, we represent the complex hydrogeological and geochemical conditions in a heterogeneous aquifer and subsequent risk by developing and using two separate ROMs. The first ROM is derived from a model that accounts for the heterogeneous flow and transport conditions in the presence of complex leakage functions for CO? and brine. The second ROM is obtained from models that feature similar, but simplified flow and transport conditions, and allow for a more complex representation of all relevant geochemical reactions. To quantify possible impacts to groundwater aquifers, the basic risk metric is taken as the aquifer volume in which the water quality of the aquifer may be affected by an underlying CO? storage project. The integration of the two ROMs provides an estimate of the impacted aquifer volume taking into account uncertainties in flow, transport and chemical conditions. These two ROMs can be linked in a comprehensive system level model for quantitative risk assessment of the deep storage reservoir, wellbore leakage, and shallow aquifer impacts to assess the collective risk of CO? storage projects.
Reduced order models for prediction of groundwater quality impacts from CO? and brine leakage
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zheng, Liange; Carroll, Susan; Bianchi, Marco; Mansoor, Kayyum; Sun, Yunwei; Birkholzer, Jens
2014-12-31
A careful assessment of the risk associated with geologic CO? storage is critical to the deployment of large-scale storage projects. A potential risk is the deterioration of groundwater quality caused by the leakage of CO? and brine leakage from deep subsurface reservoirs. In probabilistic risk assessment studies, numerical modeling is the primary tool employed to assess risk. However, the application of traditional numerical models to fully evaluate the impact of CO? leakage on groundwater can be computationally complex, demanding large processing times and resources, and involving large uncertainties. As an alternative, reduced order models (ROMs) can be used as highlymore »efficient surrogates for the complex process-based numerical models. In this study, we represent the complex hydrogeological and geochemical conditions in a heterogeneous aquifer and subsequent risk by developing and using two separate ROMs. The first ROM is derived from a model that accounts for the heterogeneous flow and transport conditions in the presence of complex leakage functions for CO? and brine. The second ROM is obtained from models that feature similar, but simplified flow and transport conditions, and allow for a more complex representation of all relevant geochemical reactions. To quantify possible impacts to groundwater aquifers, the basic risk metric is taken as the aquifer volume in which the water quality of the aquifer may be affected by an underlying CO? storage project. The integration of the two ROMs provides an estimate of the impacted aquifer volume taking into account uncertainties in flow, transport and chemical conditions. These two ROMs can be linked in a comprehensive system level model for quantitative risk assessment of the deep storage reservoir, wellbore leakage, and shallow aquifer impacts to assess the collective risk of CO? storage projects.« less
Goldstein, S.J.; Abdel-Fattah, A.I.; Murrell, M.T.; Dobson, P.F.; Norman, D.E.; Amato, R.S.; Nunn, A. J.
2009-10-01
Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ({approx}10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that {sup 230}Th/{sup 238}U activity ratios range from 0.005-0.48 and {sup 226}Ra/{sup 238}U activity ratios range from 0.006-113. {sup 239}Pu/{sup 238}U mass ratios for the saturated zone are <2 x 10{sup -14}, and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order {sup 238}U{approx}{sup 226}Ra > {sup 230}Th{approx}{sup 239}Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.
Temporal Models for Groundwater Level Prediction in Regions of Maharashtra Dissertation Report
Sohoni, Milind
Temporal Models for Groundwater Level Prediction in Regions of Maharashtra Dissertation Report In this project work we perform analysis of groundwater level data in three districts of Maha- rashtra - Thane of these districts and developed seasonal models to represent the groundwater be- havior. Three different type
D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.
1997-12-31
Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35{degrees}N., long 115{degrees}W and lat 38{degrees}N., long 118{degrees}W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system.
Fenelon, Joseph M.; Sweetkind, Donald S.; Laczniak, Randell J.
2010-01-25
Contaminants introduced into the subsurface of the Nevada Test Site by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the hydraulic-head distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. A map of the hydraulic-head distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped and discussed in general terms as being one of two types: alluvial-volcanic, or carbonate. Both aquifer types are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater-flow directions, approximated from potentiometric contours that were developed from the hydraulic-head distribution, are indicated on the maps and discussed for each of the regional aquifers and for selected local aquifers. Hydraulic heads vary across the study area and are interpreted to range in altitude from greater than 5,000 feet in a regional alluvial-volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,300 feet in regional alluvial-volcanic and carbonate aquifers in the southwestern part of the study area. Flow directions throughout the study area are dominantly south-southwest with some local deviations. Vertical hydraulic gradients between aquifer types are downward throughout most of the study area; however, flow from the alluvial-volcanic aquifer into the underlying carbonate aquifer, where both aquifers are present, is believed to be minor because of an intervening confining unit. Limited exchange of water between aquifer types occurs by diffuse flow through the confining unit, by focused flow along fault planes, or by direct flow where the confining unit is locally absent. Interflow between regional aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form intermediate and regional flow systems. The implications of these flow systems in controlling transport of radionuclides away from the underground test areas at the Nevada Test Site are briefly discussed. Additionally, uncertainties in the delineation of aquifers, the development of potentiometric contours, and the identification of flow systems are identified and evaluated. Eleven tributary flow systems and three larger flow systems are mapped in the Nevada Test Site area. Flow systems within the alluvial-volcanic aquifer dominate the western half of the study area, whereas flow systems within the carbonate aquifer are most prevalent in the southeastern half of the study area. Most of the flow in the regional alluvial-volcanic aquifer that moves through the underground testing area on Pahute Mesa is discharged to the land surface at springs and seeps in Oasis Valley. Flow in the regional carbonate aquifer is internally compartmentalized by major geologic structures, primarily thrust faults, which constrain flow into separate corridors. Contaminants that reach the regional carbonate aquifer from testing areas in Yucca and Frenchman Flats flow toward downgradient discharge areas through the Alkali Flat-Furnace Creek Ranch or Ash Meadows flow systems and their tributaries.
1998-04-01
The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997.
Clement, Prabhakar
-dependent groundwater flow models M.J. Simpson a , T.P. Clement a,b,* a Centre for Water Research, Department the availability of benchmark problems for testing density-dependent groundwater models is limited, one should: Groundwater-modeling; Density-dependent flow; Unsaturated flow; Contaminant transport 1. Introduction
Quinn, John J.; Greer, Christopher B.; Carr, Adrianne E.
2014-10-01
The purpose of this study is to update a one-dimensional analytical groundwater flow model to examine the influence of potential groundwater withdrawal in support of utility-scale solar energy development at the Afton Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program. This report describes the modeling for assessing the drawdown associated with SEZ groundwater pumping rates for a 20-year duration considering three categories of water demand (high, medium, and low) based on technology-specific considerations. The 2012 modeling effort published in the Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States (Solar PEIS; BLM and DOE 2012) has been refined based on additional information described below in an expanded hydrogeologic discussion.
Hydrogeology and groundwater modeling of a Calvert Bluff aquifer
Lawrence, James
1989-01-01
of the Wilcox/Carrizo Aquifer System 15 16 17 18 SITE DESCRIPTION. 21 Site Physiography and Climate. . Site Geology Site Hydrogeology. 21 21 25 TABLE OF CONTENTS (CONTINUED) PAGE INVESTIGATION OF THE STUDY SAND. 29 Method: Delineating the Study... HYDROGEOLOGY AND GROUNDWATER MODELING OF A CALVERT BLUFF AQUIFER A Thesis by JAMES LAWRENCE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE...
Water Budget Analysis and Groundwater Inverse Modeling
Farid Marandi, Sayena
2012-07-16
and seasonality of local/regional hydrological processes. The model involved a transient two- dimensional hydrogeological simulation of the multi-layered aquifer. In the second part of the thesis, a Markov Chain Monte Carlo (MCMC) method were developed to estimate...
Jordan, Preston D.; Oldenburg, Curtis M.; Su, Grace W.
2005-02-24
This report presents a continuation from Oldenburg et al. (2002) of analysis of the hydrogeology, In-Situ Permeable Flow Sensor (ISPFS) results, aquifer response, and changes in the trichloroethylene (TCE) groundwater plume at Operational Unit 1 (OU 1) adjacent to the former Fritzsche Army Airfield at the former Fort Ord Army Base, located on Monterey Bay in northern Monterey County. Fuels and solvents were burned on a portion of OU 1 called the Fire Drill Area (FDA) during airport fire suppression training between 1962 and 1985. This activity resulted in soil and groundwater contamination in the unconfined A-aquifer. In the late 1980's, soil excavation and bioremediation were successful in remediating soil contamination at the site. Shortly thereafter, a groundwater pump, treat, and recharge system commenced operation. This system has been largely successful at remediating groundwater contamination at the head of the groundwater plume. However, a trichloroethylene (TCE) groundwater plume extends approximately 3000 ft (900 m) to the northwest away from the FDA. In the analyses presented here, we augment our prior work (Oldenburg et al., 2002) with new information including treatment-system totalizer data, recent water-level and chemistry data, and data collected from new wells to discern trends in contaminant migration and groundwater flow that may be useful for ongoing remediation efforts. Some conclusions from the prior study have been modified based on these new analyses, and these are pointed out clearly in this report.
Investigation of Groundwater Flow in Foothill and Mountain regions using Heat Flow measurements
Fogg, Graham E.; Trask, James C
2009-01-01
Flow in Foothill and Mountain regions using Heat Flowenergy balance near mountain-front Finite element numericalcross-section for areal mountain-slope flow 10.2 2D cross-
Microgravity Flow Regime Transition Modeling
Shephard, Adam M.
2010-07-14
Flow regime transitions and the modeling thereof underlie the design of microgravity two-phase systems. Through the use of the zero-g laboratory, microgravity two-phase flows can be studied. Because microgravity two-phase flows exhibit essentially...
Modeling uranium transport in acidic contaminated groundwater with base addition
Zhang, Fan [Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Luo, Wensui [ORNL; Parker, Jack C. [University of Tennessee, Knoxville (UTK); Brooks, Scott C [ORNL; Watson, David B [ORNL; Jardine, Philip [University of Tennessee, Knoxville (UTK); Gu, Baohua [ORNL
2011-01-01
This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.
McKenzie, Jeffrey M.
Exchange of groundwater and surfacewater mediated by permafrost response to seasonal and long term impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA
Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Nozzle Flow, Spray, Combustion, & Emission Modeling using KH-ACT Primary Breakup Model & Detailed Chemistry Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling using...
Modeling Traffic Flow Emissions
Cappiello, Alessandra
2002-09-17
The main topic of this thesis is the development of light-duty vehicle dynamic emission models and their integration with dynamic traffic models. Combined, these models
Not Available
1989-11-01
The Department of Energy (DOE) is preparing an Environmental Impact Statement (EIS) as part of the process for continuing operation of three reactors at the Savannah River Site (SRS). As required by the National Environmental Policy Act (NEPA), the EIS must address the potential environmental consequences to human health and the environment of this major federal action.'' Some of the possible consequences are related to subsurface transport of radionuclides released to seepage basins during normal reactor operation. To assist in the evaluation of the potential subsurface environmental impacts of these releases, Camp Dresser McKee Inc. (CDM) was contracted in June of 1989 to develop a three-dimensional groundwater flow and contaminant transport model which will simulate the movement of radionuclides at each of the reactor areas after they enter the groundwater system through the seepage basins. This report describes the development, calibration, and simulation results of the groundwater flow and contaminant transport model developed for this task. 10 refs., 63 figs., 11 tabs.
Multiscale modeling in granular flow
Rycroft, Christopher Harley
2007-01-01
Granular materials are common in everyday experience, but have long-resisted a complete theoretical description. Here, we consider the regime of slow, dense granular flow, for which there is no general model, representing ...
Ashfaque, Khandaker
2007-01-01
Widespread arsenic contamination of groundwater has become a major concern in Bangladesh since the water supply, particularly in rural areas, is heavily dependent on groundwater. However, relative to the extent of research ...
Groundwater transport modeling of constituents originating from the Burial Grounds Complex
Andersen, P.F.; Shupe, M.G.; Spalding, C.P. [GeoTrans, Inc., Sterling, VA (US)
1992-10-30
The Savannah River Site (SRS), operates a number of sites for the land disposal of various leachable radionuclide, organic, and inorganic wastes. Located within the General Separations Area (GSA) of SRS are the Low Level Radioactive Waste Disposal Facility (LLRWDF) and the Old Burial Ground (OBG). A portion of the LLRWDF has been designated as the Mixed Waste Management Facility (MWMF). The OBG began receiving waste in 1952 and was closed in 1974. Various wastes, including transuranic, intermediate and low level beta-gamma, and solvents, were received during this period of operation. In 1969, prior to the closing of the OBG, a portion of the MWMF/LLRWDF (the MWMF) began receiving waste. GeoTrans, Inc. was contracted by WSRC to conduct a numerical modeling study to assess groundwater flow and contaminant transport in the vicinity of the MWMF in support of an Alternate Concentration Limits demonstration for the Part B permit. The project was divided into two phases: development of a groundwater flow model of the hydrogeologic system underlying the MWMF which includes the entire GSA, and development of a solute transport model to assess migration of 19 designated constituents of concern (COCs) over a period 30 years into the future. The first phase was completed in May of 1992 and the results documented in GeoTrans (1992). That report serves as the companion volume to the present contaminant transport modeling report. The transport study is intended to develop predictions of concentration and mass flux of the 19 COCs at downgradient exposure points over the 30 year period of interest. These results are to be used in human health and ecological risk assessments which are also being performed in support of the Part B permit.
Mathematical Model Analysis for Hg Flow
McDonald, Kirk
Mathematical Model Analysis for Hg Flow Yan Zhan SUNYSB April 20th, 2010 #12;Outline · Introduction Mechanism of Jet Breakup & Atomization Dynamic Problems in Hg Target Flow · Mathematical Model for Hg Flow Parameters Incompressible Flow (No MHD) Incompressible Flow (MHD) Proton Beam Energy Conversion
Wurstner, S.K.; Freshley, M.D.
1994-12-01
A ground-water flow model was used to predict water level decline in selected wells in the operating areas (100, 200, 300, and 400 Areas) and the 600 Area. To predict future water levels, the unconfined aquifer system was stimulated with the two-dimensional version of a ground-water model of the Hanford Site, which is based on the Coupled Fluid, Energy, and Solute Transport (CFEST) Code in conjunction with the Geographic Information Systems (GIS) software package. The model was developed using the assumption that artificial recharge to the unconfined aquifer system from Site operations was much greater than any natural recharge from precipitation or from the basalt aquifers below. However, artificial recharge is presently decreasing and projected to decrease even more in the future. Wells currently used for monitoring at the Hanford Site are beginning to go dry or are difficult to sample, and as the water table declines over the next 5 to 10 years, a larger number of wells is expected to be impacted. The water levels predicted by the ground-water model were compared with monitoring well completion intervals to determine which wells will become dry in the future. Predictions of wells that will go dry within the next 5 years have less uncertainty than predictions for wells that will become dry within 5 to 10 years. Each prediction is an estimate based on assumed future Hanford Site operating conditions and model assumptions.
Serne, R. Jeffrey; Bjornstad, Bruce N.; Keller, Jason M.; Thorne, Paul D.; Lanigan, David C.; Christensen, J. N.; Thomas, Gregory S.
2010-07-01
The B-Complex contains 3 major crib and trench disposal sites and 3 SST farms that have released nearly 346 mega-liters of waste liquids containing the following high groundwater risk drivers: ~14,000 kg of CN, 29,000 kg of Cr, 12,000 kg of U and 145 Ci of Tc-99. After a thorough review of available vadose zone sediment and pore water, groundwater plume, field gamma logging, field electrical resistivity studies, we developed conceptual models for which facilities have been the significant sources of the contaminants in the groundwater and estimated the masses of these contaminants remaining in the vadose zone and currently present in the groundwater in comparison to the totals released. This allowed us to make mass balance calculations on how consistent our knowledge is on the current deep vadose zone and groundwater distribution of contaminants. Strengths and weaknesses of the conceptual models are discussed as well as implications on future groundwater and deep vadose zone remediation alternatives. Our hypothesized conceptual models attribute the source of all of the cyanide and most of the Tc-99 currently in the groundwater to the BY cribs. The source of the uranium is the BX-102 tank overfill event and the source of most of the chromium is the B-7-A&B and B-8 cribs. Our mass balance estimates suggest that there are much larger masses of U, CN, and Tc remaining in the deep vadose zone within ~20 ft of the water table than is currently in the groundwater plumes below the B-Complex. This hypothesis needs to be carefully considered before future remediation efforts are chosen. The masses of these groundwater risk drivers in the the groundwater plumes have been increasing over the last decade and the groundwater plumes are migrating to the northwest towards the Gable Gap. The groundwater flow rate appears to flucuate in response to seasonal changes in hydraulic gradient. The flux of contaminants out of the deep vadose zone from the three proposed sources also appears to be transient such that the evolution of the contaminant plumes is transient.
NUMERICAL MODEL FOR LAND SUBSIDENCE IN SHALLOW GROUNDWATER SYSTEMS
Narasimhan, T.N.
2010-01-01
and R. L. Klausing, 1969, Land subsidence due to groundwater7612-10874 Fig. S. Land subsidence at Pixley, California:Symposium on Land Subsidence, Anaheim, CA, December 10-
Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow
Marchese, Francis
Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow
Imes, J.L.; Kleeschulte, M.J.
1997-12-31
Ground-water-level measurements to support remedial actions were made in 37 piezometers and 19 monitoring wells during a 19-month period to assess the potential for ground-water flow from an abandoned quarry to the nearby St. Charles County well field, which withdraws water from the base of the alluvial aquifer. From 1957 to 1966, low-level radioactive waste products from the Weldon Spring chemical plant were placed in the quarry a few hundred feet north of the Missouri River alluvial plain. Uranium-based contaminants subsequently were detected in alluvial ground water south of the quarry. During all but flood conditions, lateral ground-water flow in the bedrock from the quarry, as interpreted from water-table maps, generally is southwest toward Little Femme Osage Creek or south into the alluvial aquifer. After entering the alluvial aquifer, the ground water flows southeast to east toward a ground-water depression presumably produced by pumping at the St. Charles County well field. The depression position varies depending on the Missouri River stage and probably the number and location of active wells in the St. Charles County well field.
Numerical Simulation of Groundwater Withdrawal at the Nevada Test Site
Carroll, Rosemary; Giroux, Brian; Pohll, Greg; Hershey, Ronald; Russell, Charles; Howcroft, William
2004-01-28
Alternative uses of the Nevada Test Site (NTS) may require large amounts of water to construct and/or operate. The only abundant source of water at the NTS is groundwater. This report describes preliminary modeling to quantify the amount of groundwater available for development from three hydrographic areas at the NTS. Modeling was conducted with a three-dimensional transient numerical groundwater flow model.
Modeling shrouded stator cavity flows in axial-flow compressors
Wellborn, S.R.; Tolchinsky, I.; Okiishi, T.H.
2000-01-01
Experiments and computational analyses were completed to understand the nature of shrouded stator cavity flows. From this understanding, a one-dimensional model of the flow through shrouded stator cavities was developed. This model estimates the leakage mass flow, temperature rise, and angular momentum increase through the cavity, given geometry parameters and the flow conditions at the interface between the cavity and primary flow path. This cavity model consists of two components, one that estimates the flow characteristics through the labyrinth seals and the other that predicts the transfer of momentum due to windage. A description of the one-dimensional model is given. The incorporation and use of the one-dimensional model in a multistage compressor primary flow analysis tool is described. The combination of this model and the primary flow solver was used to reliably simulate the significant impact on performance of the increase of hub seal leakage in a twelve-stage axial-flow compressor. Observed higher temperatures of the hub region fluid, different stage matching, and lower overall efficiencies and core flow than expected could be correctly linked to increased hub seal clearance with this new technique. The importance of including these leakage flows in compressor simulations is shown.
Stochastic models for turbulent reacting flows
Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.
Thomas G. Hildenbrand; Geoffrey A. Phelps; Edward A. Mankinen
2006-09-21
A three-dimensional inversion of gravity data from the Rainier Mesa area and surrounding regions reveals a topographically complex pre-Cenozoic basement surface. This model of the depth to pre-Cenozoic basement rocks is intended for use in a 3D hydrogeologic model being constructed for the Rainier Mesa area. Prior to this study, our knowledge of the depth to pre-Cenozoic basement rocks was based on a regional model, applicable to general studies of the greater Nevada Test Site area but inappropriate for higher resolution modeling of ground-water flow across the Rainier Mesa area. The new model incorporates several changes that lead to significant improvements over the previous regional view. First, the addition of constraining wells, encountering old volcanic rocks lying above but near pre-Cenozoic basement, prevents modeled basement from being too shallow. Second, an extensive literature and well data search has led to an increased understanding of the change of rock density with depth in the vicinity of Rainier Mesa. The third, and most important change, relates to the application of several depth-density relationships in the study area instead of a single generalized relationship, thereby improving the overall model fit. In general, the pre-Cenozoic basement surface deepens in the western part of the study area, delineating collapses within the Silent Canyon and Timber Mountain caldera complexes, and shallows in the east in the Eleana Range and Yucca Flat regions, where basement crops out. In the Rainier Mesa study area, basement is generally shallow (< 1 km). The new model identifies previously unrecognized structures within the pre-Cenozoic basement that may influence ground-water flow, such as a shallow basement ridge related to an inferred fault extending northward from Rainier Mesa into Kawich Valley.
1.72 Groundwater Hydrology, Fall 2004
Harvey, Charles
Fundamentals of subsurface flow and transport, emphasizing the role of groundwater in the hydrologic cycle, the relation of groundwater flow to geologic structure, and the management of contaminated groundwater. Topics ...
Submarine Groundwater and Its Influence on Beach Pollution
Boehm, Alexandria; Payton, Adina
2007-01-01
Submarine Groundwater and Its Influence on Beach Pollutioncounts are linked to groundwater flowing a few feet beneaththe sand. Groundwater discharging to the coast may be as
Identification and Control Problems in Petroleum and Groundwater Modeling \\Lambda
Ewing, Richard E.
by pumping water into the aquifer at several wells and extracting the contaminated water at other wells to the ``grandchallenge problems'' of hydrocarbon recovery and groundwater remediation is given. The importance phenomena in porous media ranging from the location and subsequent remediation of contaminants
John McCord
2007-09-01
This report documents transport data and data analyses for Yucca Flat/Climax Mine CAU 97. The purpose of the data compilation and related analyses is to provide the primary reference to support parameterization of the Yucca Flat/Climax Mine CAU transport model. Specific task objectives were as follows: • Identify and compile currently available transport parameter data and supporting information that may be relevant to the Yucca Flat/Climax Mine CAU. • Assess the level of quality of the data and associated documentation. • Analyze the data to derive expected values and estimates of the associated uncertainty and variability. The scope of this document includes the compilation and assessment of data and information relevant to transport parameters for the Yucca Flat/Climax Mine CAU subsurface within the context of unclassified source-term contamination. Data types of interest include mineralogy, aqueous chemistry, matrix and effective porosity, dispersivity, matrix diffusion, matrix and fracture sorption, and colloid-facilitated transport parameters.
Oostrom, Martinus; Truex, Michael J.; Rice, Amy K.; Johnson, Christian D.; Carroll, Kenneth C.; Becker, Dave; Simon, Michelle A.
2014-04-28
Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants in the vadose zone. To support selection of an appropriate endpoint for the SVE remedy, an evaluation is needed to determine whether vadose zone contamination has been diminished sufficiently to protect groundwater. When vapor-phase transport is an important component of the overall contaminant fate and transport from a vadose zone source, the contaminant concentration expected in groundwater is controlled by a limited set of parameters, including specific site dimensions, vadose zone properties, and source characteristics. An approach was developed for estimating the contaminant concentration in groundwater resulting from a contaminant source in the vadose zone based on pre-modeling contaminant transport for a matrix of parameter value combinations covering a range of potential site conditions. An interpolation and scaling process are then applied to estimate groundwater impact for site-specific conditions.
Groundwater and Terrestrial Water Storage,
Rodell, M; Chambers, D P; Famiglietti, J S
2011-01-01
T. E. Reilly, 2002: Flow and storage in groundwater systems.Estimating ground water storage changes in the Mississippistorage..
TOUGH2. Unsaturated Groundwater and Heat Transport Model
Pruess, K. [Lawrence Berkeley National Lab., CA (United States)
1991-05-01
TOUGH2 is a new and improved version of TOUGH. TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures (water, water with tracer; water, CO2; water, air; water, air, with vapor pressure lowering and water, hydrogen), facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. TOUGH2 is a multi-dimensional numerical model for simulating the coupled transport of water, vapor, air, and heat in porous and fractured media. The program provides options for specifying injection or withdrawal of heat and fluids. Although primarily designed for studies of high-level nuclear waste isolation in partially saturated geological media, it should also be useful for a wider range of problems in heat and moisture transfer, and in the drying of porous materials. For example, geothermal reservoir simulation problems can be handled simply by setting the air mass function equal to zero on input. The TOUGH2 simulator was developed for problems involving strongly heat-driven flow. To describe these phenomena a multi-phase approach to fluid and heat flow is used, which fully accounts for the movement of gaseous and liquid phases, their transport of latent and sensible heat, and phase transitions between liquid and vapor. TOUGH2 takes account of fluid flow in both liquid and gaseous phases occurring under pressure, viscous, and gravity forces according to Darcy`s law. Interference between the phases is represented by means of relative permeability functions. The code handles binary, but not Knudsen, diffusion in the gas phase and capillary and phase adsorption effects for the liquid phase. Heat transport occurs by means of conduction with thermal conductivity dependent on water saturation, convection, and binary diffusion, which includes both sensible and latent heat.
A UNIFIED NUMERICAL MODEL FOR SATURATED-UNSATURATED GROUNDWATER FLOW
Narasimhan, T.N.
2011-01-01
between the disciplines of soil mechanics, soil physics andbetween the fields mechanics, soil physics and hydrogeology.fields of soil mechanics, hydrogeology,and soil physics. In
A UNIFIED NUMERICAL MODEL FOR SATURATED-UNSATURATED GROUNDWATER FLOW
Narasimhan, T.N.
2011-01-01
A.W. , 11 The measurement of pore pressure in the triaxialtest 11 9 in Pore Pressure and Suction in Soils,9 1973 A.W. , 11 The pore pressure coefficients, A and B
Mendoza Sanchez, Itza
2008-10-10
) the thickness of the diffusion layer, and 2) the biofilm structure. Therefore one hypothesis of the research project is that flow velocity is an important factor controlling the biodegradation potential of groundwater systems. The main objective... rate coefficient k can be related to microscopic rate parameters that describe mass transfer across a boundary layer, diffusion within the biofilm, and reaction within the biofilm. Under transient (non-steady-state) conditions, the two models...
Todd Arbogast; Steve Bryant; Clint N. Dawson; Mary F. Wheeler
1998-08-31
This report describes briefly the work of the Center for Subsurface Modeling (CSM) of the University of Texas at Austin (and Rice University prior to September 1995) on the Partnership in Computational Sciences Consortium (PICS) project entitled Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport.
Mukherjee, Monobina
2013-01-01
2647-2668. Surface and Groundwater. 2012. U.S. EnvironmentalEstimating the Value of Groundwater in Irrigation, SelectedAgricultural adaptation to groundwater and climate. NBER
Groundwater Resources Program A New Tool to Assess Groundwater Resources
Groundwater Resources Program A New Tool to Assess Groundwater Resources in the Mississippi CAROLINA GEORGIA LOUISIANA Mississippi River Groundwater flow Well a quifer Alluvial aquifer Middle alluvial aquifer is the primary source of groundwater for irriga- tion in the largely agricultural region
U-234/U-238 ratio: Qualitative estimate of groundwater flow in Rocky Flats monitoring wells
Laul, J.C.
1994-02-01
Groundwater movement through various pathways is the primary mechanism for the transport of radionuclides and trace elements in a water/rock interaction. About three dozen wells, installed in the Rocky Flats Plant (RFP) Solar Evaporation Ponds (SEP) area, are monitored quarterly to evaluate the extent of any lateral and downgradient migration of contaminants from the Solar Evaporation Ponds: 207-A; 207-B North, 207-B Center, and 207-B South; and 207-C. The Solar Ponds are the main source for the various contaminants: radionuclides (U-238, U-234, Pu-239, 240 and Am-241); anions; and trace metals to groundwaters. The U-238 concentrations in Rocky Flats groundwaters vary from <0.2 to 69 pCi/I (IpCi = 3 ug). However, the activity U-234/U-238 ratios are low and range mostly 1.2 to 2.7. The low activity ratios can be interpreted to suggest that the groundwaters are moving slow (
Turbulence Modeling for Compressible Shear Flows
Gomez Elizondo, Carlos Arturo 1981-
2012-11-15
by requiring consistency between model and direct numerical simulation asymptotic behavior in compressible homogeneous shear flow. The closure models are employed to compute high-speed mixing-layers and boundary layers in a differential Reynolds stress modeling...
Arumugam, Sankar
Improving Groundwater Predictions Utilizing Seasonal Precipitation Forecasts from General. The research reported in this paper evaluates the potential in developing 6-month-ahead groundwater Surface Temperature forecasts. Ten groundwater wells and nine streamgauges from the USGS Groundwater
Groundwater Recharge Simulator M. Tech. Thesis
Sohoni, Milind
Groundwater Recharge Simulator M. Tech. Thesis by Dharmvir Kumar Roll No: 07305902 Guide: Prof;Contents 1 Introduction 1 1.1 Groundwater Theory.1.5 Groundwater Flow Equation . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Numerical Solvers and Boundary
Copland, John Robin; Cochran, John Russell
2013-07-01
The Radiation Protection Center of the Iraqi Ministry of Environment is developing a groundwater monitoring program (GMP) for the Al-Tuwaitha Nuclear Research Center located near Baghdad, Iraq. The Al-Tuwaitha Nuclear Research Center was established in about 1960 and is currently being cleaned-up and decommissioned by Iraq's Ministry of Science and Technology. This Groundwater Monitoring Program Plan (GMPP) and Conceptual Site Model (CSM) support the Radiation Protection Center by providing:A CSM describing the hydrogeologic regime and contaminant issues,recommendations for future groundwater characterization activities, anddescriptions of the organizational elements of a groundwater monitoring program. The Conceptual Site Model identifies a number of potential sources of groundwater contamination at Al-Tuwaitha. The model also identifies two water-bearing zones (a shallow groundwater zone and a regional aquifer). The depth to the shallow groundwater zone varies from approximately 7 to 10 meters (m) across the facility. The shallow groundwater zone is composed of a layer of silty sand and fine sand that does not extend laterally across the entire facility. An approximately 4-m thick layer of clay underlies the shallow groundwater zone. The depth to the regional aquifer varies from approximately 14 to 17 m across the facility. The regional aquifer is composed of interfingering layers of silty sand, fine-grained sand, and medium-grained sand. Based on the limited analyses described in this report, there is no severe contamination of the groundwater at Al-Tuwaitha with radioactive constituents. However, significant data gaps exist and this plan recommends the installation of additional groundwater monitoring wells and conducting additional types of radiological and chemical analyses.
Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model
K. Rehfeldt
2004-10-08
This report is an updated analysis of water-level data performed to provide the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]) (referred to as the saturated zone (SZ) site-scale flow model or site-scale SZ flow model in this report) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for calibration of groundwater flow models. This report also contains an expanded discussion of uncertainty in the potentiometric-surface map. The analysis of the potentiometric data presented in Revision 00 of this report (USGS 2001 [DIRS 154625]) provides the configuration of the potentiometric surface, target heads, and hydraulic gradients for the calibration of the SZ site-scale flow model (BSC 2004 [DIRS 170037]). Revision 01 of this report (USGS 2004 [DIRS 168473]) used updated water-level data for selected wells through the year 2000 as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain based on an alternative interpretation of perched water conditions. That revision developed computer files containing: Water-level data within the model area (DTN: GS010908312332.002); A table of known vertical head differences (DTN: GS010908312332.003); and A potentiometric-surface map (DTN: GS010608312332.001) using an alternative concept from that presented by USGS (2001 [DIRS 154625]) for the area north of Yucca Mountain. The updated water-level data presented in USGS (2004 [DIRS 168473]) include data obtained from the Nye County Early Warning Drilling Program (EWDP) Phases I and II and data from Borehole USW WT-24. This document is based on Revision 01 (USGS 2004 [DIRS 168473]) and expands the discussion of uncertainty in the potentiometric-surface map. This uncertainty assessment includes an analysis of the impact of more recent water-level data and the impact of adding data from the EWDP Phases III and IV wells. In addition to being utilized by the SZ site-scale flow model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for groundwater management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model and provides information useful to estimation of the magnitude and direction of lateral groundwater flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment (TSPA).
Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model
P. Tucci
2001-12-20
This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M&O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment.
Fluid Flow Modeling in Fractures
Sarkar, Sudipta
2004-01-01
In this paper we study fluid flow in fractures using numerical simulation and address the challenging issue of hydraulic property characterization in fractures. The methodology is based on Computational Fluid Dynamics, ...
Manga, Michael
to an underestimate of heat flow in the Sierras based purely on borehole measurements. Using temperature and discharge40 mW m)2 of geothermal heat from the basin. This is comparable with other heat flow measurements of geothermal heat within the basin. Additionally, we use esti- mates of the mean residence time of water
GEOL4850 (GEOL5850) Groundwater Hydrology University of North Texas
Pan, Feifei
GEOL4850 (GEOL5850) Groundwater Hydrology University of North Texas Department of Geography Spring characteristics, homogeneity and isotropy 4. Soil moisture and groundwater recharge ---soil moisture, unsaturated flow, infiltration, evapotranspiration and recharge 5. Principles of groundwater flow ---hydraulic head
Modelling Inter-Industry Material Flows
CIEEDAC Modelling Inter-Industry Material Flows: A review of methodologies For Natural Resources Canada By Maggie Tisdale CIEEDAC Energy and Materials Research Group School of Resource and Environmental .................................................................................................. 2 2.2. INDIRECT EFFECTS
Barnett, D.B.; Bergeron, M.P.; Cole, C.R.; Freshley, M.D.; Wurstner, S.K.
1997-08-01
The Effluent Treatment Facility (ETF) disposal site, also known as the State-Approved Land Disposal Site (SALDS), receives treated effluent containing tritium, which is allowed to infiltrate through the soil column to the water table. Tritium was first detected in groundwater monitoring wells around the facility in July 1996. The SALDS groundwater monitoring plan requires revision of a predictive groundwater model and reevaluation of the monitoring well network one year from the first detection of tritium in groundwater. This document is written primarily to satisfy these requirements and to report on analytical results for tritium in the SALDS groundwater monitoring network through April 1997. The document also recommends an approach to continued groundwater monitoring for tritium at the SALDS. Comparison of numerical groundwater models applied over the last several years indicate that earlier predictions, which show tritium from the SALDS approaching the Columbia River, were too simplified or overly robust in source assumptions. The most recent modeling indicates that concentrations of tritium above 500 pCi/L will extend, at most, no further than {approximately}1.5 km from the facility, using the most reasonable projections of ETF operation. This extent encompasses only the wells in the current SALDS tritium-tracking network.
General single phase wellbore flow model
Ouyang, Liang-Biao; Arbabi, S.; Aziz, K.
1997-02-05
A general wellbore flow model, which incorporates not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow, is presented in this report. The new wellbore model is readily applicable to any wellbore perforation patterns and well completions, and can be easily incorporated in reservoir simulators or analytical reservoir inflow models. Three dimensionless numbers, the accelerational to frictional pressure gradient ratio R{sub af}, the gravitational to frictional pressure gradient ratio R{sub gf}, and the inflow-directional to accelerational pressure gradient ratio R{sub da}, have been introduced to quantitatively describe the relative importance of different pressure gradient components. For fluid flow in a production well, it is expected that there may exist up to three different regions of the wellbore: the laminar flow region, the partially-developed turbulent flow region, and the fully-developed turbulent flow region. The laminar flow region is located near the well toe, the partially-turbulent flow region lies in the middle of the wellbore, while the fully-developed turbulent flow region is at the downstream end or the heel of the wellbore. Length of each region depends on fluid properties, wellbore geometry and flow rate. As the distance from the well toe increases, flow rate in the wellbore increases and the ratios R{sub af} and R{sub da} decrease. Consequently accelerational and inflow-directional pressure drops have the greatest impact in the toe region of the wellbore. Near the well heel the local wellbore flow rate becomes large and close to the total well production rate, here R{sub af} and R{sub da} are small, therefore, both the accelerational and inflow-directional pressure drops can be neglected.
Energy Flow Models for the Steel Industry
Hyman, B.; Andersen, J. P.
1998-01-01
Energy patterns in the U. S. steel industry are examined using several models. First is an end-use model based on data in the 1994 Manufacturing Energy Consumption Survey (MECS). Then a seven-step process model is presented and material flow through...
A compendium of fracture flow models, 1994
Diodato, D.M.
1994-11-01
The report is designed to be used as a decision-making aid for individuals who need to simulate fluid flow in fractured porous media. Fracture flow codes of varying capability in the public and private domain were identified in a survey of government, academia, and industry. The selection and use of an appropriate code requires conceptualization of the geology, physics, and chemistry (for transport) of the fracture flow problem to be solved. Conceptual models that have been invoked to describe fluid flow in fractured porous media include explicit discrete fracture, dual continuum (porosity and/or permeability), discrete fracture network, multiple interacting continua, multipermeability/multiporosity, and single equivalent continuum. The explicit discrete-fracture model is a ``near-field`` representation, the single equivalent continuum model is a ``far-field`` representation, and the dual-continuum model is intermediate to those end members. Of these, the dual-continuum model is the most widely employed. The concept of multiple interacting continua has been applied in a limited number of examples. Multipermeability/multiporosity provides a unified conceptual model. The ability to accurately describe fracture flow phenomena will continue to improve as a result of advances in fracture flow research and computing technology. This improvement will result in enhanced capability to protect the public environment, safety, and health.
Modeling fluid flow in deformation bands with stabilized localization...
Office of Scientific and Technical Information (OSTI)
Modeling fluid flow in deformation bands with stabilized localization mixed finite elements. Citation Details In-Document Search Title: Modeling fluid flow in deformation bands...
Reactive chemical transport in ground-water hydrology: Challenges to mathematical modeling
Narasimhan, T.N.; Apps, J.A.
1990-07-01
For a long time, earth scientists have qualitatively recognized that mineral assemblages in soils and rocks conform to established principles of chemistry. In the early 1960's geochemists began systematizing this knowledge by developing quantitative thermodynamic models based on equilibrium considerations. These models have since been coupled with advective-dispersive-diffusive transport models, already developed by ground-water hydrologists. Spurred by a need for handling difficult environmental issues related to ground-water contamination, these models are being improved, refined and applied to realistic problems of interest. There is little doubt that these models will play an important role in solving important problems of engineering as well as science over the coming years. Even as these models are being used practically, there is scope for their improvement and many challenges lie ahead. In addition to improving the conceptual basis of the governing equations, much remains to be done to incorporate kinetic processes and biological mediation into extant chemical equilibrium models. Much also remains to be learned about the limits to which model predictability can be reasonably taken. The purpose of this paper is to broadly assess the current status of knowledge in modeling reactive chemical transport and to identify the challenges that lie ahead.
Scaled Experimental Modeling of VHTR Plenum Flows
ICONE 15
2007-04-01
Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (“thermal striping”) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.
or vum in surface- and groundwaters in the United States fingered flow to groundwater. The objective- for the transport of oocysts to drinking water sources,turbed sand columns during a simulated steady-state rain of animal and hu- the vadose zone. Both fingered flow and macroporeman death in many parts of the world
Influence of faults on groundwater flow and transport at Yucca Mountain, Nevada
Cohen, Andrew J.B.; Sitar, Nicholas
1999-01-01
assessment for Yucca Mountain-SNL second interation (TSPA-Site-Scale Model, Yucca Mountain Project Level 4 Milestonetransport model, Yucca Mountain Site Characterizaton Project
A saturated zone site-scale flow model for Yucca mountain
Eddebbarh, Al Aziz
2008-01-01
A saturated zone site-scale flow model (YMSZFM) was developed for licensing requirements for the Yucca Mountain nuclear waste repository to incorporate recent data and analyses including recent stratigraphic and water-level data from Nye County wells, single-and multiple-well hydraulic testing data, and recent hydrochemistry data. Analyses include use of data from the 2004 transient Death Valley Regional (ground-water) Flow System (DVRFS) model, the 2003 unsaturated zone flow model, and the latest hydrogeologic framework model (HFM). This model includes: (1) the latest understanding of SZ flow, (2) enhanced model validation and uncertainty analyses, (3) improved locations and definitions of fault zones, (4) refined grid resolution (500-to 250-m grid spacing), and (5) use of new data. The flow model was completed using the three-dimensional, Finite-Element Heat and Mass Transfer computer code (FEHM). The SZ site-scale flow model was calibrated with the commercial parameter estimation code, PEST to achieve a minimum difference between observed water levels and predicted water levels, and also between volumetric/mass flow rates along specific boundary segments as supplied by the DVRFS. A total of 161 water level and head measurements with varied weights were used for calibration. A comparison between measured water-level data and the potentiometric surface yielded an RMSE of 20.7 m (weighted RMSE of 8.8 m). The calibrated model was used to generate flow paths and specific discharge predictions. Model confidence was built by comparing: (l) calculated to observed hydraulic heads, and (2) calibrated to measured permeabilities (and therefore specific discharge). In addition, flowpaths emanating from below the repository footprint are consistent with those inferred both from gradients of measured head and from independent water-chemistry data. Uncertainties in the SZ site-scale flow model were quantified because all uncertainty contributes to inaccuracy in system representation and response. Null space and solution space uncertainties were determined.
A model for transonic plasma flow
Guazzotto, Luca; Hameiri, Eliezer
2014-02-15
A linear, two-dimensional model of a transonic plasma flow in equilibrium is constructed and given an explicit solution in the form of a complex Laplace integral. The solution indicates that the transonic state can be solved as an elliptic boundary value problem, as is done in the numerical code FLOW [Guazzotto et al., Phys. Plasmas 11, 604 (2004)]. Moreover, the presence of a hyperbolic region does not necessarily imply the presence of a discontinuity or any other singularity of the solution.
Lu, Zhiming
VadoseZoneJournal.PublishedbySoilScienceSocietyofAmerica.Allcopyrightsreserved. A Vadose Zone Flow and Transport Model for Los Alamos Canyon, Los Alamos, New Mexico Bruce A. Robinson zone was gations as part of its Environmental Restoration and also modeled. Tritium, in the form of tritiated water, is Groundwater Protection Programs to assess the impact of an excellent tracer
Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M.
1996-12-31
Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data.
Jiao, Jiu Jimmy
of the contaminated groundwater due to Cheoy Lee Shipyard, which was located on the north and eastern shores of Penny Shipyard is not removed, the contaminated groundwater will not spread out much within Penny's Bay sand and silt which forms the Chek Lap Kok Formation. A former shipyard called Cheoy Lee Shipyard (CLS
Boundary element method using B-splines with applications to groundwater flow
Cabral, J.J.S.P.
1992-01-01
The Boundary Element Method (BEM) is now established as a suitable and efficient technique for the analysis of engineering problems. However, as in other discretization procedures, inaccuracies can be introduced as a result of the lack of derivative continuity between adjacent elements. A new element formulation has been developed for BEM analysis using uniform cubic B-splines. These functions can be employed to provide higher degrees of continuity along the geometric boundary of the region, and also as interpolation functions for the problem variables. The formulation was then extended to include multiple knots and non-uniform blending functions. In this way, it is possible to lower the degree of continuity of the main variable at points of geometric discontinuity. Initially, applications are presented related to potential problems governed by Laplace's equation but there are no restrictions in the formulation regarding its extension to other physical problems. Continuity of the derivatives of the main variable is important to obtain a good representation of moving boundaries with iterative or time-marching schemes. This formulation is applied to stead-state and transient unconfined flow in homogeneous and inhomogeneous porous media. Finally, the formulation is applied to saltwater intrusion problems in confined, leaky and unconfined aquifers.
The Product Flow Model Gio Wiederhold
Wiederhold, Gio
(IT) operations for software then little overall lifetime cost reduction has been achieved by reduced Boehm has demonstrated, a modest initial investment, say 20% over the most economical cost of deliveringThe Product Flow Model Gio Wiederhold Stanford University 14 May 2003 Abstract We observed a new
Groundwater: Recharge is Not the Whole Story
Bredehoeft, John
2015-01-01
J. 1962. A theory of groundwater motion in stream drainageOn modeling philosophies. Groundwater 44(4):496–498. doi:on a nearby stream. Groundwater 46(1):23–29. doi: http://
Patrick Longmire, Michael Dale, Dale Counce, Andrew Manning, Toti Larson, Kim Granzow, Robert Gray, and Brent Newman
2007-07-15
From October 2004 through February 2006, Los Alamos National Laboratory, the New Mexico Environment Department-Department of Energy Oversight Bureau, and the United States Geological Survey conducted a hydrochemical investigation. The purpose of the investigation was to evaluate groundwater flow paths and determine groundwater ages using tritium/helium-3 and carbon-14 along with aqueous inorganic chemistry. Knowledge of groundwater age and flow paths provides a technical basis for selecting wells and springs for monitoring. Groundwater dating is also relevant to groundwater resource management, including aquifer sustainability, especially during periods of long-term drought. At Los Alamos, New Mexico, groundwater is either modern (post-1943), submodern (pre-1943), or mixed (containing both pre- and post-1943 components). The regional aquifer primarily consists of submodern groundwater. Mixed-age groundwater results from initial infiltration of surface water, followed by mixing with perched alluvial and intermediate-depth groundwater and the regional aquifer. No groundwater investigation is complete without using tritium/helium-3 and carbon-14 dating methods to quantify amounts of modern, mixed, and/or submodern components present in samples. Computer models of groundwater flow and transport at Los Alamos should be calibrated to groundwater ages for perched intermediate zones and the regional aquifer determined from this investigation. Results of this study clearly demonstrate the occurrence of multiple flow paths and groundwater ages occurring within the Sierra de los Valles, beneath the Pajarito Plateau, and at the White Rock Canyon springs. Localized groundwater recharge occurs within several canyons dissecting the Pajarito Plateau. Perched intermediate-depth groundwater and the regional aquifer beneath Pueblo Canyon, Los Alamos Canyon, Sandia Canyon, Mortandad Canyon, Pajarito Canyon, and Canon de Valle contain a modern component. This modern component consists of tritium, nitrate, perchlorate, chromate, boron, uranium, and/or high explosive compounds. It is very unlikely that there is only one transport or travel time, ranging from 25 to 62 years, for these conservative chemicals migrating from surface water to the regional water table. Lengths of groundwater flow paths vary within deep saturated zones containing variable concentrations of tritium. The 4-series springs discharging within White Rock Canyon contain a modern component of groundwater, primarily tritium. Average groundwater ages for the regional aquifer beneath the Pajarito Plateau varied from 565 to 10,817 years, based on unadjusted carbon-14 measurements.
A bulk-flow model of angled injection Lomakin bearings
Soulas, Thomas Antoine Theo
2001-01-01
A bulk-flow model for determination of the leakage and dynamic force characteristics of angled injection Lomakin bearings is presented. Zeroth- and first-order equations describe the equilibrium flow for a centered bearing and the perturbed flow...
Alvarez, Pedro J.
Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content on the lifespan and maximum length of benzene plumes Diego E. Gomez1 and Pedro 10 March 2009. [1] A numerical model was used to evaluate how the concentration of ethanol
Horton, Duane G.
2007-03-16
This appendix summarizes historic and recent groundwater data collected from the uppermost aquifer beneath the 200 East and 200 West Areas. Although the area of interest is the Hanford Site Central Plateau, most of the information discussed in this appendix is at the scale of individual single-shell tank waste management areas. This is because the geologic, and thus the hydraulic, properties and the geochemical properties (i.e., groundwater composition) are different in different parts of the Central Plateau.
RELAP5 subcooled critical flow model verification
Petelin, S.; Gortnar, O.; Mavko, B. (Institut Jozef Stefan, Ljubljana (Solomon Islands))
1993-01-01
We discuss some results of the RELAP5 break modeling during the analysis of International Standard Problem 27 (ISP-27) performed on the BETHSY facility. This study deals with the discontinuity of the RELAP5 critical flow prediction in a strongly subcooled region. Such unrealistic behavior was observed during the pretest simulations of ISP-27. Based on the investigation, a RELAP5 code correction is suggested that ensures a more appropriate simulation of the critical discharge of strongly subcooled liquid.
Can We Accurately Model Fluid Flow in Shale?
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Can We Accurately Model Fluid Flow in Shale? Can We Accurately Model Fluid Flow in Shale? Print Thursday, 03 January 2013 00:00 Over 20 trillion cubic meters of natural gas are...
DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS
X. Wang; X. Sun; H. Zhao
2011-09-01
In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in which flow regime transition occurs.
GEOL4850 (GEOL5850) Groundwater Hydrology University of North Texas
Pan, Feifei
GEOL4850 (GEOL5850) Groundwater Hydrology University of North Texas Department of Geography Spring and potentiometric surface maps, aquifer characteristics, homogeneity and isotropy 4. Soil moisture and groundwater of groundwater flow ---hydraulic head, Darcy's law, equations of groundwater flow in confined and unconfined
GEOL4850 (GEOL5850) Groundwater Hydrology University of North Texas
Pan, Feifei
GEOL4850 (GEOL5850) Groundwater Hydrology University of North Texas Department of Geography Fall surface maps, aquifer characteristics, homogeneity and isotropy 4. Soil moisture and groundwater recharge of groundwater flow ---hydraulic head, Darcy's law, equations of groundwater flow in confined and unconfined
Alvarez, Pedro J.
-source simulations imply that high-ethanol blends (e.g., E85) pose a lower risk of benzene reaching a receptor via gasoline, 15 years for E10, 9 years for E50, and 3 years for E85), indicating greater natural attenuationModeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels
Groundwater 7-1 7. Groundwater
Pennycook, Steve
level and the pressures exerted on it by wells. surrounding water. Because hydraulic head is not Water Aquifer. Yields of some wells penetrating larger solution conduits are reported to exceed 1000 gal groundwater flow in the aquitards occurs through fractures. The typical yield of a well in the aquitards
Role of Geological and Geophysical Data in Modeling a Southwestern...
a ground-water flow model of the Animas Valley, southwest New Mexico. Complete Bouguer gravity anomaly maps together with seismic-refraction profiles, geologic maps, geologic,...
Hanford Site ground-water monitoring for 1994
Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others
1995-08-01
This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.
THIN-FILM FLOWS WITH WALL SLIP: AN ASYMPTOTIC ANALYSIS OF HIGHER ORDER GLACIER FLOW MODELS
Fournier, John J.F.
THIN-FILM FLOWS WITH WALL SLIP: AN ASYMPTOTIC ANALYSIS OF HIGHER ORDER GLACIER FLOW MODELS, Cambridge, CB3 0ET, UK) [Received 6 January 2009. Revise 6 November 2009] Summary Free-surface thin film of the flow. Conversely, membrane or `free film' models are appropriate in situations where there is rapid
Spiliotopoulos, Alexandros A.
2013-03-20
This document describes a systematic method to develop flow rate recommendations for Pump-and-Treat (P&T) extraction and injection wells in 100-KR-4 and 100-HR-3 Groundwater Operable Units (OU) of the Hanford Site. Flow rate recommendations are developed as part of ongoing performance monitoring and remedy optimization of the P&T interim actions to develop hydraulic contairnnent of the dissolved chromium plume in groundwater and protect the Columbia River from further discharges of groundwater from inland. This document details the methodology and data required to infer the influence of individual wells near the shoreline on hydraulic containment and river protection and develop flow rate recommendations to improve system performance and mitigate potential shortcomings of the system configuration in place.
Shaw, Glenn David
2009-01-01
L. Michel, and P. Schlosser, Groundwater residence times inevolution of shallow groundwater as recorded by springs,stream flow, and groundwater exchanges in alpine streams,
Potential Flow Modelling for Wind Turbines Shane Cline
Victoria, University of
Potential Flow Modelling for Wind Turbines by Shane Cline B.Sc., University of Toledo, 2003 M means, without the permission of the author. #12;ii Potential Flow Modelling for Wind Turbines by Shane potential flow methods are a promising alternative to mainstream wind turbine aerodynamics tools
Conrad, Mark
2008-01-01
of unsaturated zone and groundwater nitrate contaminationfor Past and Current Groundwater Flow and Contaminationwater extracted B1L4W8 T4 groundwater B1L4Y3 T4 groundwater
Sahota, M.S.; Lime, J.F.
1983-01-01
The two-phase, two-component choked-flow model implemented in the latest version of the Transient Reactor analysis Code (TRAC-PF1) was developed from first principles using the characteristic analysis approach. The subcooled choked-flow model in TRAC-PF1 is a modified form of the Burnell model. This paper discusses these choked-flow models and their implementation in TRAC-PF1. comparisons using the TRAC-PF1 choked-flow models are made with the Burnell model for subcooled flow and with the homogeneous-equilibrium model (HEM) for two-phae flow. These comparisons agree well under homogeneous conditions. Generally good agreements have been obtained between the TRAC-PF1 results from models using the choking criteria and those using a fine mesh (natural choking). Code-data comparisons between the separate-effects tests of the Marviken facility and the Edwards' blowdown experiment also are favorable. 10 figures.
Li, X. Rong
is groundwater. The water table is the top of the saturated zone, and is the target for well drillers that want, specifically if the water table is below the potentiometric surface. Manmade wells and natural springs flowingEES 1001 Â Lab 9 Groundwater Water that seeps into the ground, and is pulled down by gravity
Numerical simulation model for vertical flow in geothermal wells
Tachimori, M.
1982-01-01
A numerical simulation model for vertical flow in geothermal wells is presented. The model consists of equations for the conservation of mass, momentum, and energy, for thermodynamic state of water, for friction losses, for slip velocity relations, and of the criteria for various flow regimes. A new set of correlations and criteria is presented for two-phase flow to improve the accuracy of predictions; bubbly flow - Griffith and Wallis correlation, slug flow - Nicklin et al. one, annular-mist flow - Inoue and Aoki and modified by the author. The simulation method was verified by data from actual wells.
Sill, B.L.
1991-04-01
A three dimensional scale model was designed and built to simulate the transport of a solute in the groundwater at a known location. The study was undertaken to further validate a new method of groundwater transport modeling which has been under development at Clemson University, using mixtures of cement, sand and water to simulate the subsurface matrix. By comparing field measurements with laboratory simulations, it was judged that transport times and concentrations were modeled satisfactorily.
Lee, Si-Yong
1994-01-01
The proposed high-level radioactive waste repository site at Yucca Mountain, Nevada, has created a need to understand the, ground-water system at the site. One of the important hydrologic characteristics is a steep gradient on the ground-water table...
De Leon, Tiffany Lucinda
2011-10-21
Collector well designs are necessary to maximize groundwater uptake and riverbank filtration without negatively impacting an aquifer. Unfortunately, there is a lack of information and research regarding the implementation of collector well design...
Water Modeling of Steel Flow, Air Entrainment and Filtration
Beckermann, Christoph
Water Modeling of Steel Flow, Air Entrainment and Filtration Christoph Beckermann Associate Beckermann, C., "Water Modeling of Steel Flow, Air Entrainment and Filtration," in Proceedings of the 46th, 1992. #12;Abstract This paper presents an analysis of water modeling of steel pouring to study (1) air
Combining Symbolic Execution and Model Checking for Data Flow Testing
Su, Zhendong
. Dynamic Symbolic Execution [14], [15] (DSE) is a widely accepted and effective approach for automatic testCombining Symbolic Execution and Model Checking for Data Flow Testing Ting Su Zhoulai Fu Geguang Pu@cs.ucdavis.edu Abstract--Data flow testing (DFT) focuses on the flow of data through a program. Despite its higher fault
Hanford Site groundwater monitoring for fiscal year 1996
Hartman, M.J.; Dresel, P.E.; Borghese, J.V. [eds.] [and others] [eds.; and others
1997-02-01
This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.
Cohen, D.A.; Shedlock, R.J.
1986-01-01
The Cowles Unit of Indiana Dunes National Lakeshore in Porter County, northwest Indiana, contains a broad dune-beach complex along the southern shoreline of Lake Michigan and a large wetland, called the Great Marsh, that occupies the lowland between the shoreline dunes and an older dune-beach complex farther inland. Water levels and water quality in the surficial aquifer were monitored from 1977 to 1984 near settling ponds on adjacent industrial property at the western end of the Cowles Unit. Since 1980, when the settling pond bottoms were sealed, these intradunal lowlands contained standing water only during periods of high snowmelt or rainfall. Water level declines following the cessation of seepage ranged from 6 feet at the eastern-most settling pond to nearly 14 feet at the western-most pond. No general pattern of water table decline was observed in the Great Marsh or in the shoreline dune complex at distances > 3,000 ft east or north of the settling ponds. Since the settling ponds were sealed, the concentration of boron has decreased while concentrations of cadmium, arsenic, zinc, and molybdenum in shallow ground-water downgradient of the ponds show no definite trends in time. Arsenic, boron and molybdenum have remained at concentrations above those of shallow groundwater in areas unaffected by settling pond seepage. 11 refs., 10 figs., 1 tab.
A Model for TSUnami FLow INversion from Deposits (TSUFLIND)
Tang, Hui
2015-01-01
Modern tsunami deposits are employed to estimate the overland flow characteristics of tsunamis. With the help of the overland-flow characteristics, the characteristics of the causative tsunami wave can be estimated. The understanding of tsunami deposits has tremendously improved over the last decades. There are three prominent inversion models: Moore advection model, Soulsby's model and TsuSedMod model. TSUFLIND incorporates all three models and adds new modules to better simulate tsunami deposit formation and calculate flow condition. TSUFLIND takes grain-size distribution, thickness, water depth and topography information as inputs. TSUFLIND computes sediment concentration, grain-size distribution of sediment source and initial flow condition to match the sediment thickness and grain size distribution from field observation. Furthermore, TSUFLIND estimates the flow speed, Froude number and representative wave amplitude. The model is tested by using field data collected at Ranganathapuram, India after the 20...
Nonlinear elasto-plastic model for dense granular flow
Ken Kamrin
2009-05-07
This work proposes a model for granular deformation that predicts the stress and velocity profiles in well-developed dense granular flows. Recent models for granular elasticity (Jiang and Liu 2003) and rate-sensitive plastic flow (Jop et al. 2006) are reformulated and combined into one universal granular continuum law, capable of predicting flowing regions and stagnant zones simultaneously in any arbitrary 3D flow geometry. The unification is performed by justifying and implementing a Kroner-Lee elasto-plastic decomposition, with care taken to ensure certain continuum physical principles are necessarily upheld. The model is then numerically implemented in multiple geometries and results are compared to experiments and discrete simulations.
A distributed converging overland flow model: 2. Effect of infiltration
Sherman, Bernard; Singh, Vijay P.
1976-01-01
RESOURCES RESEARCH OCTOBER 1976 A Distributed Converging Overland Flow Model 2. Effect of Infiltration BERNARD SHERMAN AND VIJAY P. SINGH New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 The overland flow on an infiltrating...; Woolhiser, 1969; Kibler and Woolhiser, 1970; Singh, 1974; Lane, 1975; Philip, 1957; Hanks and Bowers, 1962; Whisler and Klute, 1965; Rubin, 1966]. A combined study of these phases is required for modeling overland flow. With a few exceptions, notably...
Office of Environmental Management (EM)
Trichloroethylene, Technetium-99 Groundwater collection and treatment via building sumps ongoing since 1989. Removal of source areas in 1998 and 2001. Additional potential...
Fair Internet traffic integration: network flow models and analysis
Kelly, Frank
Fair Internet traffic integration: network flow models and analysis Peter Key, Laurent Massoulié the integration of two types of Internet traffic, elastic file transfers and streaming traffic. Previous studies have concentrated on just one type of traffic, such as the flow level models of Internet congestion
MODELING COUPLED FLUID FLOW AND GEOMECHANICAL AND GEOPHYSICAL PHENOMENA WITHIN
MODELING COUPLED FLUID FLOW AND GEOMECHANICAL AND GEOPHYSICAL PHENOMENA WITHIN A FINITE ELEMENT for the modeling of geomechanical effects induced by reservoir production/injection and the cyclic dependence
Electrochemical Model of the Fe/V Redox Flow Battery
Stephenson, David E.; Kim, Soowhan; Chen, Feng; Thomsen, Edwin C.; Viswanathan, Vilayanur V.; Wang, Wei; Sprenkle, Vincent L.
2012-11-05
This paper presents a mathematical model for the new Fe/V redox flow battery chemistry. The model is designed to be useful for stack development and cost analysis purposes.
Turbulent Flow and Transport Modeling by Long Waves and Currents
Kim, Dae Hong
2010-10-12
This dissertation presents models for turbulent flow and transport by currents and long waves in large domain. From the Navier-Stokes equations, a fully nonlinear depth-integrated equation model for weakly dispersive, ...
Model Order Reduction in Porous Media Flow Simulation and Optimization
Ghasemi, Mohammadreza
2015-05-06
Subsurface flow modeling and simulation is ubiquitous in many energy related processes, including oil and gas production. These models are usually large scale and simulating them can be very computationally demanding, particularly in work...
Solyndra Facts vs. Fiction: Cash Flow Modeling
Broader source: Energy.gov [DOE]
Questions have been raised about a quote selectively pulled from an Aug. 20, 2009 email to make it look like Solyndra would run out of cash by Sept. 2011. To be clear, the analysis addressed in that email did not refer to Solyndra’s corporate cash flow, but rather the cash flow for a subsidiary of Solyndra – the “Fab 2 Project Company.
Integration of an Aggregate Flow Model with a Traffic Flow Simulator
Integration of an Aggregate Flow Model with a Traffic Flow Simulator Robert Hoffman , Dengfeng Sun restrictions to aircraft movement are applied by air traffic controllers and traffic managers in response to demand overages or capacity shortfalls in sectors of airspace. To estimate and assess the efficiency
Theoretical foundation for measuring the groundwater age distribution.
Gardner, William Payton; Arnold, Bill Walter
2014-01-01
In this study, we use PFLOTRAN, a highly scalable, parallel, flow and reactive transport code to simulate the concentrations of 3H, 3He, CFC-11, CFC-12, CFC-113, SF6, 39Ar, 81Kr, 4He and themean groundwater age in heterogeneous fields on grids with an excess of 10 million nodes. We utilize this computational platform to simulate the concentration of multiple tracers in high-resolution, heterogeneous 2-D and 3-D domains, and calculate tracer-derived ages. Tracer-derived ages show systematic biases toward younger ages when the groundwater age distribution contains water older than the maximum tracer age. The deviation of the tracer-derived age distribution from the true groundwater age distribution increases with increasing heterogeneity of the system. However, the effect of heterogeneity is diminished as the mean travel time gets closer the tracer age limit. Age distributions in 3-D domains differ significantly from 2-D domains. 3D simulations show decreased mean age, and less variance in age distribution for identical heterogeneity statistics. High-performance computing allows for investigation of tracer and groundwater age systematics in high-resolution domains, providing a platform for understanding and utilizing environmental tracer and groundwater age information in heterogeneous 3-D systems. Groundwater environmental tracers can provide important constraints for the calibration of groundwater flow models. Direct simulation of environmental tracer concentrations in models has the additional advantage of avoiding assumptions associated with using calculated groundwater age values. This study quantifies model uncertainty reduction resulting from the addition of environmental tracer concentration data. The analysis uses a synthetic heterogeneous aquifer and the calibration of a flow and transport model using the pilot point method. Results indicate a significant reduction in the uncertainty in permeability with the addition of environmental tracer data, relative to the use of hydraulic measurements alone. Anthropogenic tracers and their decay products, such as CFC11, 3H, and 3He, provide significant constraint oninput permeability values in the model. Tracer data for 39Ar provide even more complete information on the heterogeneity of permeability and variability in the flow system than the anthropogenic tracers, leading to greater parameter uncertainty reduction.
Reduced model for particle laden flow
Zhou, Junjie, 1979-
2004-01-01
The flow of thin liquid films on solid surfaces is a significant phenomenon in nature and in industrial processes where uniformity and completeness of wetting are paramount in importance. It is well known that when a clear ...
Lisburne Formation fracture characterization and flow modeling
Karpov, Alexandre Valerievich
2001-01-01
Evaluation of fractured reservoirs for fluid flow and optimal well placement is often very complicated. In general, fractures enhance permeability and increase access to matrix surface, but their random aspects create difficulties for analysis...
Modeling of Breaching Due to Overtopping Flow and Waves Based on Coupled Flow and Sediment Transport
He, Zhiguo; Zhao, Liang; Wu, Ganfeng; Pähtz, Thomas
2015-01-01
Breaching of earthen or sandy dams/dunes by overtopping flow and waves is a complicated process with strong, unsteady flow, high sediment transport, and rapid bed changes in which the interactions between flow and morphology should not be ignored. This study presents a depth-averaged two-dimensional (2D) coupled flow and sediment transport model to investigate the flow and breaching processes with and without waves. Bed change and variable flow density are included in the flow continuity and momentum equations to consider the impacts of sediment transport. The model adopts the non-equilibrium approach for total-load sediment transport and specifies different repose angles to handle non-cohesive embankment slope avalanching. The equations are solved using an explicit finite volume method on a rectangular grid with the improved Godunov-type central upwind scheme and the nonnegative reconstruction of the water depth method to handle mixed-regime flows near the breach. The model has been tested against two sets o...
Modeling the growth and dissolution of clots in flowing blood
Mohan, Anand
2006-10-30
. . . . . . . . . . . . . 45 D. Model corroboration . . . . . . . . . . . . . . . . . . . . . 51 1. Clot formation and growth in quiescent plasma . . . . 51 2. Clot dissolution in quiescent plasma . . . . . . . . . . 54 E. Clinical correlations of model predictions... . . . . . . . . . . . . . . . . . 63 C. A viscoelastic liquid model for a coarse ligated plasma clot 63 1. Constitutive assumptions . . . . . . . . . . . . . . . . 63 D. Model corroboration . . . . . . . . . . . . . . . . . . . . . 65 1. Application to oscillatory flow...
2005 EPA WIPP RECERTIFICATION GROUNDWATER AT WIPP FACT SHEET No. 5
2005 EPA WIPP RECERTIFICATION GROUNDWATER AT WIPP FACT SHEET No. 5 What is Groundwater? as a few are said to be permeable to groundwater. Dockum How Does Groundwater Affect WIPP? DOE scientists have studied groundwater flow and conditions at the WIPP site to determine potential pathways for radioactive
In situ groundwater bioremediation
Hazen, Terry C.
2009-02-01
In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.
Jha, Birendra
The coupling between subsurface flow and geomechanical deformation is critical in the assessment of the environmental impacts of groundwater use, underground liquid waste disposal, geologic storage of carbon dioxide, and ...
MODELING OF POROSITY FORMATION AND FEEDING FLOW IN STEEL CASTING
Beckermann, Christoph
, or even larger shrinkage cavities found in inadequately fed cast sections. Microporosity can cause leaksMODELING OF POROSITY FORMATION AND FEEDING FLOW IN STEEL CASTING Kent D. Carlson, Zhiping Lin pressure, feeding flow, and porosity formation and growth in steel castings during solidification
NUMERICAL APPROXIMATION OF A MACROSCOPIC MODEL OF PEDESTRIAN FLOWS
Chalons, Christophe
NUMERICAL APPROXIMATION OF A MACROSCOPIC MODEL OF PEDESTRIAN FLOWS CHRISTOPHE CHALONS Abstract for the description of the flow of pedestrians. Solutions of the associated Riemann problem are known to be possibly in obtaining an efficient numerical scheme. Numerical evidences are proposed. Key words. macroscopic pedestrian
Environmental Flows in Water Availability Modeling
Wurbs, R.; Hoffpauir, R.
2013-07-18
Report No. 440 Texas Water Resources Institute The Texas A&M University System College Station, Texas 77843-2118 May 2013 TABLE OF CONTENTS Chapter 1 Introduction..., and alternative variations thereof. The Brazos WAM is large and complex, providing opportunities to explore a number of issues involved in integrating environmental flow, water supply, flood control, hydropower, multiple-reservoir system operations, and other...
Submarine landslide flows simulation through centrifuge modelling
Gue, Chang Shin
2012-05-08
.3.2 Development of Scaling laws for soil fl ow through analytical solutions ................................................................................................. 84 3.3.3 Discussion of the proposed scal ing laws for soil flow... ) ............................................................ 28 Figure 2.12: The mechanistic illustration of conditions leading to: (a) failure in soils (b) onset of liquefaction (aft er Locat and Lee) ......... . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 2.13: Possible...
Efficient Production Optimization Using Flow Network Models
Lerlertpakdee, Pongsathorn
2012-10-19
to predict the response of real reservoirs under proposed changes in the model inputs. To speed up reservoir response predictions without compromising accuracy, fast surrogate models have been proposed. These models are either derived by preserving...
Advanced MHD models of anisotropy, flow and chaotic fields
Hudson, Stuart
Advanced MHD models of anisotropy, flow and chaotic fields M. J. Hole1, M. Fitzgerald1, G. Dennis1, pressure" #12;Expected impact of anisotropy · If p > p||, an increase will occur in centrifugal shift : [R
The Flow of Information in Information Retrieval: its modelling
Lalmas, Mounia
The Flow of Information in Information Retrieval: its modelling Mounia Lalmas Department of Computing Science University of Glasgow Situation Theory for Information Retrieval Information is and intuitively acceptable definition of information; until now, none of these have succeeded. Authors
Modeling of Refrigerant Flow Through Flexible Short Tube Orifices
Mohamed, Ramadan
2000-01-01
Single-phase flow of refrigerants R-22, R-13a, and R-41a through flexible short tube orifices with three different geometries and a range in upstream operating conditions was modeling using the finite element method, FEM. ...
Can We Accurately Model Fluid Flow in Shale?
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
2013 00:00 Over 20 trillion cubic meters of natural gas are trapped in shale, but many shale oil and gas producers still use models of underground fluid flow that date back to...
Modeling and design of semi-solid flow batteries
Brunini, Victor Eric
2012-01-01
A three-dimensional dynamic model of the recently introduced semi-solid flow battery system is developed and applied to address issues with important design and operation implications. Because of the high viscosity of ...
In situ groundwater bioremediation
Hazen, Terry C.
2010-01-01
degradation of phenols in groundwater. J Contam. Hydrol.Bioimmobilization of Cr(VI) in Groundwater Using Hydrogenof bacterial activity in groundwater containing petroleum
Hanford Site ground-water monitoring for 1993
Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others
1994-09-01
This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.
Closure models for turbulent reacting flows
Dutta, A.; Tarbell, J.M. (Pennsylvania State Univ., University Park, PA (USA). Dept. of Chemical Engineering)
1989-12-01
In this paper, a simple procedure based on fast and slow reaction asymptotics has been employed to drive first-order closure models for the nonlinear reaction terms in turbulent mass balances from mechanistic models of turbulent mixing and reaction. The coalescence-redispersion (CRD) model, the interaction by exchange with the mean (IEM) model, the three-environment (3E) model, and the four-environment (4E) model have been used to develop closure equations. The closure models have been tested extensively against experimental data for both single and multiple reactions. The closures based on slow asymptotics for the CRD, 3E and 4E models provide very good predictions of all of the experimental data, while other models available either in the literature or derived here are not adequate. The simple new closure equations developed in this paper may be useful in modeling systems involving turbulent mixing and complex chemical reactions.
Modelling of multiphase flow in ironmaking blast furnace
Dong, X.F.; Yu, A.B.; Burgess, J.M.; Pinson, D.; Chew, S.; Zulli, P. [University of New South Wales, Sydney, NSW (Australia). School for Material Science and Engineering
2009-01-15
A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.
A preliminary study to Assess Model Uncertainties in Fluid Flows
Marc Oliver Delchini; Jean C. Ragusa
2009-09-01
The goal of this study is to assess the impact of various flow models for a simplified primary coolant loop of a light water nuclear reactor. The various fluid flow models are based on the Euler equations with an additional friction term, gravity term, momentum source, and energy source. The geometric model is purposefully chosen simple and consists of a one-dimensional (1D) loop system in order to focus the study on the validity of various fluid flow approximations. The 1D loop system is represented by a rectangle; the fluid is heated up along one of the vertical legs and cooled down along the opposite leg. A pressurizer and a pump are included in the horizontal legs. The amount of energy transferred and removed from the system is equal in absolute value along the two vertical legs. The various fluid flow approximations are compressible vs. incompressible, and complete momentum equation vs. Darcy’s approximation. The ultimate goal is to compute the fluid flow models’ uncertainties and, if possible, to generate validity ranges for these models when applied to reactor analysis. We also limit this study to single phase flows with low-Mach numbers. As a result, sound waves carry a very small amount of energy in this particular case. A standard finite volume method is used for the spatial discretization of the system.
Fractal Potential Flows: An Idealized Model for Fully Developed Turbulence
József Vass
2014-09-22
Fully Developed Turbulence (FDT) is a theoretical asymptotic phenomenon which can only be approximated experimentally or computationally, so its defining characteristics are hypothetical. It is considered to be a chaotic stationary flow field, with self-similar fractalline features. A number of approximate models exist, often exploiting this self-similarity. The idealized mathematical model of Fractal Potential Flows is hereby presented, and linked philosophically to the phenomenon of FDT on a free surface, based on its experimental characteristics. The model hinges on the recursive iteration of a fluid dynamical transfer operator. The existence of its unique attractor - called the invariant flow - is shown in an appropriate function space, which will serve as our suggested model for the FDT flow field. Its sink singularities are shown to form an IFS fractal, explicitly resolving Mandelbrot's Conjecture. Meanwhile an isometric isomorphism is defined between flows and probability measures, hinting at a wealth of future research. The inverse problem of representing turbulent flow fields with this model is discussed in closing, along with explicit practical considerations for experimental verification and visualization.
CE 473/573 Groundwater Learning objectives
Rehmann, Chris
CE 473/573 Groundwater Fall 2009 Learning objectives While the goals of the class are quite general for various soil types and explain how sorting affects porosity. Explain how results from a groundwater model. Sketch and explain profiles of piezometric head. 7. Define groundwater divide and compute its properties
Modeling Fluid Flow in Natural Systems, Model Validation and...
Broader source: Energy.gov (indexed) [DOE]
approach places constraints on the generation of the DFN, and permits creation of high-quality computational meshes that enable accurate flow and transport solutions on the...
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; Bianchi, Marco; Zhou, Quanlin; Illangasekare, Tissa
2014-12-31
During CO2 injection and storage in deep reservoirs, the injected CO2 enters into an initially brine saturated porous medium, and after the injection stops, natural groundwater flow eventually displaces the injected mobile-phase CO2, leaving behind residual non-wetting fluid. Accurate modeling of two-phase flow processes are needed for predicting fate and transport of injected CO2, evaluating environmental risks and designing more effective storage schemes. The entrapped non-wetting fluid saturation is typically a function of the spatially varying maximum saturation at the end of injection. At the pore-scale, distribution of void sizes and connectivity of void space play a major role formore »the macroscopic hysteresis behavior and capillary entrapment of wetting and non-wetting fluids. This paper presents development of an approach based on the connectivity of void space for modeling hysteretic capillary pressure-saturation-relative permeability relationships. The new approach uses void-size distribution and a measure of void space connectivity to compute the hysteretic constitutive functions and to predict entrapped fluid phase saturations. Two functions, the drainage connectivity function and the wetting connectivity function, are introduced to characterize connectivity of fluids in void space during drainage and wetting processes. These functions can be estimated through pore-scale simulations in computer-generated porous media or from traditional experimental measurements of primary drainage and main wetting curves. The hysteresis model for saturation-capillary pressure is tested successfully by comparing the model-predicted residual saturation and scanning curves with actual data sets obtained from column experiments found in the literature. A numerical two-phase model simulator with the new hysteresis functions is tested against laboratory experiments conducted in a quasi-two-dimensional flow cell (91.4cm×5.6cm×61cm), packed with homogeneous and heterogeneous sands. Initial results show that the model can predict spatial and temporal distribution of injected fluid during the experiments reasonably well. However, further analyses are needed for comprehensively testing the ability of the model to predict transient two-phase flow processes and capillary entrapment in geological reservoirs during geological carbon sequestration.« less
Cihan, Abdullah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trevisan, Luca [Colorado School of Mines, Golden, CO (United States). Center for Experimental Study of Subsurface Environmental Processes (CESEP); Bianchi, Marco [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhou, Quanlin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Illangasekare, Tissa [Colorado School of Mines, Golden, CO (United States). Center for Experimental Study of Subsurface Environmental Processes (CESEP)
2014-12-31
During CO_{2} injection and storage in deep reservoirs, the injected CO_{2} enters into an initially brine saturated porous medium, and after the injection stops, natural groundwater flow eventually displaces the injected mobile-phase CO_{2}, leaving behind residual non-wetting fluid. Accurate modeling of two-phase flow processes are needed for predicting fate and transport of injected CO_{2}, evaluating environmental risks and designing more effective storage schemes. The entrapped non-wetting fluid saturation is typically a function of the spatially varying maximum saturation at the end of injection. At the pore-scale, distribution of void sizes and connectivity of void space play a major role for the macroscopic hysteresis behavior and capillary entrapment of wetting and non-wetting fluids. This paper presents development of an approach based on the connectivity of void space for modeling hysteretic capillary pressure-saturation-relative permeability relationships. The new approach uses void-size distribution and a measure of void space connectivity to compute the hysteretic constitutive functions and to predict entrapped fluid phase saturations. Two functions, the drainage connectivity function and the wetting connectivity function, are introduced to characterize connectivity of fluids in void space during drainage and wetting processes. These functions can be estimated through pore-scale simulations in computer-generated porous media or from traditional experimental measurements of primary drainage and main wetting curves. The hysteresis model for saturation-capillary pressure is tested successfully by comparing the model-predicted residual saturation and scanning curves with actual data sets obtained from column experiments found in the literature. A numerical two-phase model simulator with the new hysteresis functions is tested against laboratory experiments conducted in a quasi-two-dimensional flow cell (91.4cm×5.6cm×61cm), packed with homogeneous and heterogeneous sands. Initial results show that the model can predict spatial and temporal distribution of injected fluid during the experiments reasonably well. However, further analyses are needed for comprehensively testing the ability of the model to predict transient two-phase flow processes and capillary entrapment in geological reservoirs during geological carbon sequestration.
Wetting and free surface flow modeling for potting and encapsulation.
Brooks, Carlton, F.; Brooks, Michael J.; Graham, Alan Lyman; Noble, David F. ); Notz, Patrick K.; Hopkins, Matthew Morgan; Castaneda, Jaime N.; Mahoney, Leo James; Baer, Thomas A.; Berchtold, Kathryn; Adolf, Douglas Brian; Wilkes, Edward Dean; Rao, Rekha Ranjana; Givler, Richard C.; Sun, Amy Cha-Tien; Cote, Raymond O.; Mondy, Lisa Ann; Grillet, Anne Mary; Kraynik, Andrew Michael
2007-06-01
As part of an effort to reduce costs and improve quality control in encapsulation and potting processes the Technology Initiative Project ''Defect Free Manufacturing and Assembly'' has completed a computational modeling study of flows representative of those seen in these processes. Flow solutions are obtained using a coupled, finite-element-based, numerical method based on the GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. In addition, two commercially available codes, ProCAST and MOLDFLOW, are also used on geometries representing encapsulation processes at the Kansas City Plant. Visual observations of the flow in several geometries are recorded in the laboratory and compared to the models. Wetting properties for the materials in these experiments are measured using a unique flowthrough goniometer.
Cost and Performance Model for Redox Flow Batteries
Viswanathan, Vilayanur V.; Crawford, Aladsair J.; Stephenson, David E.; Kim, Soowhan; Wang, Wei; Li, Bin; Coffey, Greg W.; Thomsen, Edwin C.; Graff, Gordon L.; Balducci, Patrick J.; Kintner-Meyer, Michael CW; Sprenkle, Vincent L.
2014-02-01
A cost model was developed for all vanadium and iron-vanadium redox flow batteries. Electrochemical performance modeling was done to estimate stack performance at various power densities as a function of state of charge. This was supplemented with a shunt current model and a pumping loss model to estimate actual system efficiency. The operating parameters such as power density, flow rates and design parameters such as electrode aspect ratio, electrolyte flow channel dimensions were adjusted to maximize efficiency and minimize capital costs. Detailed cost estimates were obtained from various vendors to calculate cost estimates for present, realistic and optimistic scenarios. The main drivers for cost reduction for various chemistries were identified as a function of the energy to power ratio of the storage system. Levelized cost analysis further guided suitability of various chemistries for different applications.
A quasilinear model for solute transport under unsaturated flow
Houseworth, J.E.; Leem, J.
2009-05-15
We developed an analytical solution for solute transport under steady-state, two-dimensional, unsaturated flow and transport conditions for the investigation of high-level radioactive waste disposal. The two-dimensional, unsaturated flow problem is treated using the quasilinear flow method for a system with homogeneous material properties. Dispersion is modeled as isotropic and is proportional to the effective hydraulic conductivity. This leads to a quasilinear form for the transport problem in terms of a scalar potential that is analogous to the Kirchhoff potential for quasilinear flow. The solutions for both flow and transport scalar potentials take the form of Fourier series. The particular solution given here is for two sources of flow, with one source containing a dissolved solute. The solution method may easily be extended, however, for any combination of flow and solute sources under steady-state conditions. The analytical results for multidimensional solute transport problems, which previously could only be solved numerically, also offer an additional way to benchmark numerical solutions. An analytical solution for two-dimensional, steady-state solute transport under unsaturated flow conditions is presented. A specific case with two sources is solved but may be generalized to any combination of sources. The analytical results complement numerical solutions, which were previously required to solve this class of problems.
Engineering Geology 52 (1999) 231250 Mathematical modelling of groundwater flow at Sellafield, UK
Haszeldine, Stuart
1999-01-01
), a thick suite of SW dipping, fractured, folded and metamorphosed Ordovician meta-andesites and ignimbrites
Boyce, Scott Elliott
2015-01-01
Hydraulic Head [m msl] Hydrograph of Well C Hydraulic Head [the hydraulic head at observation or pumping well location.m msl] Hydraulic Head [m msl] Hydrograph of Well D Time [d
A Model For Syn-Eruptive Groundwater Flow During The Phreatoplinian Phase
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram | OpenEnergyEvaluation | OpenLowShimaneOf The 28-29
Comparison of Mesomechanical and Continuum Granular Flow Models for Ceramics
Curran, D. R.
2006-07-28
Constitutive models for the shear strength of ceramics undergoing fracture are needed for modeling long rod and shaped-charge jet penetration events in ceramic armor. The ceramic material ahead of the penetrator has been observed to be finely comminuted material that flows around the nose of the eroding penetrator (Shockey et al.). The most-used continuum models are of the Drucker-Prager type with an upper cutoff, or of the Mohr-Coulomb type with strain rate dependence and strain softening. A disadvantage of such models is that they have an unclear connection to the actual microscopic processes of granular flow and comminution. An alternate approach is to use mesomechanical models that describe the dynamics of the granular flow, as well as containing a description of the granular comminution and resultant material softening. However, a disadvantage of the mesomechanical models is that they are computationally more burdensome to apply. In the present paper, we compare the behaviors of a mesomechanical model, FRAGBED2, with the Walker and Johnson-Holmquist continuum models, where the granular material is subjected to simple strain histories under various confining pressures and strain rates. We conclude that the mesomechanical model can provide valuable input to the continuum models, both in interpretation of the continuum models' parameters and in suggesting their range of applicability.
THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES
Wang, J.S.Y.
2013-01-01
disposal of radioactive waste: The Sandia waste isolation flow and transport (SWIFT) model: Sandia Laboratories Report
Numerical modeling of an all vanadium redox flow battery.
Clausen, Jonathan R.; Brunini, Victor E.; Moffat, Harry K.; Martinez, Mario J.
2014-01-01
We develop a capability to simulate reduction-oxidation (redox) flow batteries in the Sierra Multi-Mechanics code base. Specifically, we focus on all-vanadium redox flow batteries; however, the capability is general in implementation and could be adopted to other chemistries. The electrochemical and porous flow models follow those developed in the recent publication by [28]. We review the model implemented in this work and its assumptions, and we show several verification cases including a binary electrolyte, and a battery half-cell. Then, we compare our model implementation with the experimental results shown in [28], with good agreement seen. Next, a sensitivity study is conducted for the major model parameters, which is beneficial in targeting specific features of the redox flow cell for improvement. Lastly, we simulate a three-dimensional version of the flow cell to determine the impact of plenum channels on the performance of the cell. Such channels are frequently seen in experimental designs where the current collector plates are borrowed from fuel cell designs. These designs use a serpentine channel etched into a solid collector plate.
EULERIANLAGRANGIAN LOCALIZED ADJOINT METHODS FOR REACTIVE TRANSPORT IN GROUNDWATER \\Lambda
Ewing, Richard E.
EULERIANLAGRANGIAN LOCALIZED ADJOINT METHODS FOR REACTIVE TRANSPORT IN GROUNDWATER \\Lambda RICHARD in groundwater flowing through an adsorbing porous medium. These ELLAM schemes are developed for various and discussed. x1. Introduction. In recent years, the contamination and pollution of groundwater resources have
Modeling Flow Past a Tilted Vena Cava Filter
Singer, M A; Wang, S L
2009-06-29
Inferior vena cava filters are medical devices used to prevent pulmonary embolism (PE) from deep vein thrombosis. In particular, retrievable filters are well-suited for patients who are unresponsive to anticoagulation therapy and whose risk of PE decreased with time. The goal of this work is to use computational fluid dynamics to evaluate the flow past an unoccluded and partially occluded Celect inferior vena cava filter. In particular, the hemodynamic response to thrombus volume and filter tilt is examined, and the results are compared with flow conditions that are known to be thrombogenic. A computer model of the filter inside a model vena cava is constructed using high resolution digital photographs and methods of computer aided design. The models are parameterized using the Overture software framework, and a collection of overlapping grids is constructed to discretize the flow domain. The incompressible Navier-Stokes equations are solved, and the characteristics of the flow (i.e., velocity contours and wall shear stresses) are computed. The volume of stagnant and recirculating flow increases with thrombus volume. In addition, as the filter increases tilt, the cava wall adjacent to the tilted filter is subjected to low velocity flow that gives rise to regions of low wall shear stress. The results demonstrate the ease of IVC filter modeling with the Overture software framework. Flow conditions caused by the tilted Celect filter may elevate the risk of intrafilter thrombosis and facilitate vascular remodeling. This latter condition also increases the risk of penetration and potential incorporation of the hook of the filter into the vena caval wall, thereby complicating filter retrieval. Consequently, severe tilt at the time of filter deployment may warrant early clinical intervention.
RELATIONSHIPS FOR MODELLING WATER FLOW IN GEOTECHNICAL CENTRIFUGE MODELS [abstract
Goodings, Deborah
1984-01-01
relationships between centrifuge model and prototype waterADVANCES IN GEOTECHNICAL CENTRIFUGE MODELING A symposium onAdvances in Geotechnical Centrifuge Modeling was held on
Groundwater 7-1 7. Groundwater
Pennycook, Steve
Groundwater 7-1 7. Groundwater S. B. Jones and R. S. Loffman Abstract Most residents in the Oak Ridge area do not rely on groundwater for potable supplies, although suitable water is available. Local groundwater provides some domestic, municipal, farm, irrigation, and industrial uses, however, and must
Multiphase Flow Modeling of Biofuel Production Processes
D. Gaston; D. P. Guillen; J. Tester
2011-06-01
As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.
Modeling non-annular flow in gas condensate wells
Garber, J.D.; Varanasi, N.R.S. [Univ. of Southwestern Louisiana, Lafayette, LA (United States). Corrosion Research Center
1997-09-01
As gas condensate wells mature they begin producing less gas and more formation water. At this point the wells will likely begin to experience non-annular flow. A model has been developed which fully describes slug flow, and a criterion has been established to locate the slug-churn hydrodynamic transition in the non-annular region. The model has been verified using laboratory generated data. It has been applied to several wells being produced in the Gulf of Mexico to indicate whether they are in slug or churn flow. The information generated has been useful in providing a method for calculating the residence time of the liquids inside the tubing and the pressure drop per 100 feet of tubing.
A Site-Scale Model For Fluid And Heat Flow In The Unsaturated...
multicomponent fluid and heat flow through porous and fractured rock. Fracture and matrix flow is treated using both dual-permeability and effective-continuum modeling...
RIS-M-2357 MULTILEVEL FLOW MODELLING OF PROCESS
to the computer and the plant operator. INIS Descriptors: AUTOMATION; CONSERVATION LAWS; CONTROL SYS- TEMS; ENERGY BALANCE; FLOW MODELS; INDUSTRIAL PLANTS; MASS BALANCE; NUCLEAR POWER PLANTS; PLANNING; REACTOR OPERATION 24 REFERENCES 25 #12;#12;- 5 - INTRODUCTION The operation of large industrial installations
NUMERICAL MODELING OF FLUID FLOW AND TIME-LAPSE ...
gabriela
CO2 injection operation at the Sleipner gas field in the North Sea, operated by Statoil ... The simultaneous flow of brine and CO2 is modeled with the Black-Oil formulation for ..... As water saturation is reduced, and the larger pores drained first, ...
Random field models for hydraulic conductivity in ground water flow
Meerschaert, Mark M.
Random field models for hydraulic conductivity in ground water flow Special Session on Random random fields to interpolate sparse data on hydraulic conductivity. The result- ing random field is used and Probability, Michigan State U Hans-Peter Scheffler, Mathematics, Uni Siegen, Germany Remke Van Dam, Institute
A distributed converging overland flow model: 1. Mathematical solutions
Sherman, Bernard; Singh, Vijay P.
1976-01-01
wave theory has been utilized increasingly in numerous in- vestigations of watershed runoff modeling [Brakensiek, 1967; Woolhiser, 1969; Woolhiser et al., 1970; Eagleson, 1972; Singh, 1974, 1975a, b, c, d]. In these investigations the formulation... entail varying degrees of geometric abstrac- tions and are either lumped or at most quasi-distributed, de- pending upon the characterization of the parameter a. The converging overland flow model [Woolhiser, 1969; Singh, 1974, Copyright ? 1976...
Models for estimating saturation flow and maximum demand at closely spaced intersections
Nanduri, Sreelata
1995-01-01
This thesis describes models for saturation flow and maximum demand at closely spaced intersections. The effects of queue interaction between these two intersections are taken into account in both models. The saturation flow model is based...
2.853 Manufacturing Systems I: Analytical Methods and Flow Models, Fall 2002
Gershwin, S. B.
Provides ways to conceptualize and analyze manufacturing systems and supply chains in terms of material flow, information flow, capacities, and flow times. Fundamental building blocks: Inventory and Queuing Models, Forecasting ...
Recent results and persisting problems in modeling flow induced coalescence
Fortelný, I. E-mail: juza@imc.cas.cz; Jza, J. E-mail: juza@imc.cas.cz
2014-05-15
The contribution summarizes recent results of description of the flow induced coalescence in immiscible polymer blends and addresses problems that call for which solving. The theory of coalescence based on the switch between equations for matrix drainage between spherical or deformed droplets provides a good agreement with more complicated modeling and available experimental data for probability, P{sub c}, that the collision of droplets will be followed by their fusion. A new equation for description of the matrix drainage between deformed droplets, applicable to the whole range of viscosity ratios, p, of the droplets and matrixes, is proposed. The theory facilitates to consider the effect of the matrix elasticity on coalescence. P{sub c} decreases with the matrix relaxation time but this decrease is not pronounced for relaxation times typical of most commercial polymers. Modeling of the flow induced coalescence in concentrated systems is needed for prediction of the dependence of coalescence rate on volume fraction of droplets. The effect of the droplet anisometry on P{sub c} should be studied for better understanding the coalescence in flow field with high and moderate deformation rates. A reliable description of coalescence in mixing and processing devices requires proper modeling of complex flow fields.
Simulation of High Density Pedestrian Flow: Microscopic Model
Dridi, Mohamed H
2015-01-01
In recent years modelling crowd and evacuation dynamics has become very important, with increasing huge numbers of people gathering around the world for many reasons and events. The fact that our global population grows dramatically every year and the current public transport systems are able to transport large amounts of people, heightens the risk of crowd panic or crush. Pedestrian models are based on macroscopic or microscopic behaviour. In this paper, we are interested in developing models that can be used for evacuation control strategies. This model will be based on microscopic pedestrian simulation models, and its evolution and design requires a lot of information and data. The people stream will be simulated, based on mathematical models derived from empirical data about pedestrian flows. This model is developed from image data bases, so called empirical data, taken from a video camera or data obtained using human detectors. We consider the individuals as autonomous particles interacting through socia...
Luoma, Samuel N.; Moore, Johnnie N.
2015-01-01
2015 EDITORIAL Essays on Groundwater Samuel N. Luoma 1 ,the Bay–Delta watershed. Groundwater is one of the pillarsunderstanding of how much groundwater we use and how long it
An algebraic model for a zinc/bromine flow cell
Simpson, G.D.; White, R.E. . Dept. of Chemical Engineering)
1989-08-01
An algebraic model for a parallel plate, zinc/bromine flow cell is presented and used to predict various performance quantities, which are compared to those predicted by using previously published differential equation models. The results presented compare well with previous work. The model is based on the concept of using well-mixed zones and linear concentration and potential profiles for the diffusion layers and the separator. The Butler-Volmer equation is used for the electro chemical reactions, and the homogeneous reaction between bromine and bromide is included.
A nuclear data acquisition system flow control model
Hack, S.N.
1988-02-01
A general Petri Net representation of a nuclear data acquisition system model is presented. This model provides for the unique requirements of a nuclear data acquisition system including the capabilities of concurrently acquiring asynchronous and synchronous data, of providing multiple priority levels of flow control arbitration, and of permitting multiple input sources to reside at the same priority without the problem of channel lockout caused by a high rate data source. Finally, a previously implemented gamma camera/physiological signal data acquisition system is described using the models presented.
Diffusion in random velocity fields with applications to contaminant transport in groundwater
Suciu, Nicolae
Diffusion in random velocity fields with applications to contaminant transport in groundwater is the mathematical object underlying cur- rently used stochastic models of transport in groundwater. The essential: Groundwater, Transport processes, Ergodicity, Random fields, Random walk, PDF methods 1. Introduction
Momentum and heat fluxes in a turbulent air flow over a wet, smooth boundary
Rice, Warren
1958-01-01
groundwater-land surface model, ParFlow.CLM, to develop a spatial distributed ecohydrological model at the stand scale (~1000 m^(2)). The modified ParFlow.CLM was used to conduct a 8-year simulation with half hourly time step at a AmeriFlux oak savanna site...
Groundwater Monitoring Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Groundwater Monitoring Network Groundwater Monitoring Network The network includes 92 natural sources, 102 regional aquifer wells, 41 intermediate-depth wells and springs, and 67...
Flow harmonics within an analytically solvable viscous hydrodynamic model
Yoshitaka Hatta; Jorge Noronha; Giorgio Torrieri; Bo-Wen Xiao
2014-10-01
Based on a viscous hydrodynamic model with anisotropically perturbed Gubser flow and isothermal Cooper-Frye freezeout at early times, we analytically compute the flow harmonics $v_n(p_T)$ and study how they scale with the harmonic number $n$ and transverse momentum, as well as the system size, shear and bulk viscosity coefficients, and collision energy. In particular, we find that the magnitude of shear viscous corrections grows linearly with $n$. The mixing between different harmonics is also discussed. While this model is rather simple as compared to realistic heavy-ion collisions, we argue that the scaling results presented here may be meaningfully compared to experimental data collected over many energies, system sizes, and geometries.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowï‚— We wantInvestigationsMeasurementGroundwater
Numerical methods for the simulation of salt migration in regional groundwater
Vuik, Kees
Numerical methods for the simulation of salt migration in regional groundwater flow E.S. van Baaren . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.3 Groundwater flow equation . . . . . . . . . . . . . . . . . 10 2.3 Solute transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.2 Groundwater equation . . . . . . . . . . . . . . . . . . . . 20 3.2.3 Solute transport
An Evaluation of Unsaturated Flow Models in an Arid Climate
Dixon, J.
1999-12-01
The objective of this study was to evaluate the effectiveness of two unsaturated flow models in arid regions. The area selected for the study was the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site in Nye County, Nevada. The two models selected for this evaluation were HYDRUS-1D [Simunek et al., 1998] and the SHAW model [Flerchinger and Saxton, 1989]. Approximately 5 years of soil-water and atmospheric data collected from an instrumented weighing lysimeter site near the RWMS were used for building the models with actual initial and boundary conditions representative of the site. Physical processes affecting the site and model performance were explored. Model performance was based on a detailed sensitivity analysis and ultimately on storage comparisons. During the process of developing descriptive model input, procedures for converting hydraulic parameters for each model were explored. In addition, the compilation of atmospheric data collected at the site became a useful tool for developing predictive functions for future studies. The final model results were used to evaluate the capacities of the HYDRUS and SHAW models for predicting soil-moisture movement and variable surface phenomena for bare soil conditions in the arid vadose zone. The development of calibrated models along with the atmospheric and soil data collected at the site provide useful information for predicting future site performance at the RWMS.
Discrete-element modeling of particulate aerosol flows
Marshall, J.S. [School of Engineering, University of Vermont, 33 Colchecter Avenue, Burlington, Vermont 05405 (United States)], E-mail: jeffm@cems.uvm.edu
2009-03-20
A multiple-time step computational approach is presented for efficient discrete-element modeling of aerosol flows containing adhesive solid particles. Adhesive aerosol particulates are found in numerous dust and smoke contamination problems, including smoke particle transport in the lungs, particle clogging of heat exchangers in construction vehicles, industrial nanoparticle transport and filtration systems, and dust fouling of electronic systems and MEMS components. Dust fouling of equipment is of particular concern for potential human occupation on dusty planets, such as Mars. The discrete-element method presented in this paper can be used for prediction of aggregate structure and breakup, for prediction of the effect of aggregate formation on the bulk fluid flow, and for prediction of the effects of small-scale flow features (e.g., due to surface roughness or MEMS patterning) on the aggregate formation. After presentation of the overall computational structure, the forces and torques acting on the particles resulting from fluid motion, particle-particle collision, and adhesion under van der Waals forces are reviewed. The effect of various parameters of normal collision and adhesion of two particles are examined in detail. The method is then used to examine aggregate formation and particle clogging in pipe and channel flow.
FRAMES-2.0 Software System: Linking to the Groundwater Modeling System (GMS) RT3D and MT3DMS Models
Whelan, Gene; Castleton, Karl J.; Pelton, Mitch A.
2007-08-08
Linkages to the Groundwater Modeling System have been developed at Pacific Northwest National Laboratory to enable the Nuclear Regulatory Commission (NRC) to more realistically assess the risk to the public of radioactive contaminants at NRC-licensed sites. Common software tools presently in use are limited in that they cannot assess contaminant migration through complex natural environments. The purpose of this initiative is to provide NRC with a licensing safety-analysis tool with sufficient power, flexibility, and utility that it can serve as the primary software platform for analyzing the hazards associated with licensing actions at those “complex” sites at which the traditional tools are inappropriate. As a tool designed to realistically approximate prospective doses to the public, this initiative addresses NRC’s safety-performance goal by confirming that licensing actions do not result in undue risk to the public.
A Model of Electrodiffusion and Osmotic Water Flow and its Energetic Structure
Ciocan-Fontanine, Ionut
A Model of Electrodiffusion and Osmotic Water Flow and its Energetic Structure Yoichiro Moria 60612, U.S.A. Abstract We introduce a model for ionic electrodiffusion and osmotic water flow through are dissipated through viscous, electrodiffusive and osmotic flows. We discuss limiting models when certain
Modeling pedestrian flows in train stations: The example of Lausanne railway station
Bierlaire, Michel
Modeling pedestrian flows in train stations: The example of Lausanne railway station Flurin S, April 15 17, 2015 #12;Modeling pedestrian flows in train stations: The example of Lausanne railway Engineering EPFL Ecole Polytechnique Fédérale de Lausanne Modeling pedestrian flows in train stations
Daniels, Megan Hanako
2010-01-01
groundwater, land-surface, and mesoscale atmospheric model-and modification of mesoscale circulations. , Mon. Wea.J. Davis, The effects of mesoscale surface heterogeneity on
Model Reduction of Turbulent Fluid Flows Using the Supply Rate
Sharma, A S
2013-01-01
A method for finding reduced-order approximations of turbulent flow models is presented. The method preserves bounds on the production of turbulent energy in the sense of the $\\curly{L}_2$ norm of perturbations from a notional laminar profile. This is achieved by decomposing the Navier-Stokes system into a feedback arrangement between the linearised system and the remaining, normally neglected, nonlinear part. The linear system is reduced using a method similar to balanced truncation, but preserving bounds on the supply rate. The method involves balancing two algebraic Riccati equations. The bounds are then used to derive bounds on the turbulent energy production. An example of the application of the procedure to flow through a long straight pipe is presented. Comparison shows that the new method approximates the supply rate at least as well as, or better than, canonical balanced truncation.
Paris-Sud XI, Université de
BGD 2, 135, 2005 Submarine groundwater discharge inferred from radon and salinity J. Crusius et al Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences Submarine groundwater(s). This work is licensed under a Creative Commons License. 1 #12;BGD 2, 135, 2005 Submarine groundwater
Groundwater Everybody's Resource
Groundwater Everybody's Resource Everybody's Responsibility Take Action Now! Michigan Groundwater Stewardship Program Check Inside I Water Cycle . . . . . . . 2 I Groundwater Quiz . . 3 I Risky Practice/ Safe for the benefit of people today and tomorrow. Groundwater is the water that fills spaces between rocks and soil
Hanford Site ground-water monitoring for July through December 1987
Evans, J.C.; Dennison, D.I.; Bryce, R.W.; Mitchell, P.J.; Sherwood, D.R.; Krupka, K.M.; Hinman, N.W.; Jacobson, E.A.; Freshley, M.D.
1988-12-01
The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between July and December 1987 included monitoring ground-water elevations across the Site, monitoring hazardous chemicals and radionuclides in ground water, geochemical evaluations of unconfined ground-water data, and calibration of ground-water flow and transport models. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Central Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. The MINTEQ geochemical code was used to identify chemical reactions that may be affecting the concentrations of dissolved hazardous chemicals in the unconfined ground water. Results indicate that many cations are present mainly as dissolved carbonate complexes and that a majority of the ground-water samples are in near equilibrium with carbonate minerals (e.g., calcite, dolomite, otavite).
Watershed response and land energy feedbacks under climate change depend upon groundwater.
Maxwell, R M; Kollet, S J
2008-06-10
Human induced climate change will have a significant impact on the hydrologic cycle, creating changes in fresh water resources, land cover, and feedbacks that are difficult to characterize, which makes it an issue of global importance. Previous studies have not included subsurface storage in climate change simulations and feedbacks. A variably-saturated groundwater flow model with integrated overland flow and land surface model processes is used to examine the interplay between coupled water and energy processes under climate change conditions. A case study from the Southern Great Plains (SGP) USA, an important agricultural region that is susceptible to drought, is used as the basis for three scenarios simulations using a modified atmospheric forcing dataset to reflect predicted effects due to human-induced climate change. These scenarios include an increase in the atmospheric temperature and variations in rainfall amount and are compared to the present-day climate case. Changes in shallow soil saturation and groundwater levels are quantified as well as the corresponding energy fluxes at the land surface. Here we show that groundwater and subsurface lateral flow processes are critical in understanding hydrologic response and energy feedbacks to climate change and that certain regions are more susceptible to changes in temperature, while others to changes in precipitation. This groundwater control is critical for understanding recharge and drought processes, possible under future climate conditions.
Guo, Yi
2005-02-17
fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2004 Major Subject: Information and Operations Management FLOW IN INTERNET SHOPPING: A VALIDITY STUDY AND AN EXAMINATION OF A MODEL SPECIFYING...) ____________________________ ____________________________ Manjit Yadav Dean Wichern (Member) (Head of Department) December 2004 Major Subject: Information and Operations Management iii ABSTRACT Flow in Internet Shopping: A Validity Study and an Examination of a...
Weaver, T.R.; Bahr, J.M.; Anderson, M.P.
1990-01-01
Analyses of groundwater from wells in the Cambrian-Ordovician aquifer of eastern Wisconsin indicate that regions of the aquifer contain elevated concentrations of dissolved solids, chloride and sulfate. Groundwater from several wells in the area also approach or exceed the current drinking water standard for combined radium activity. Significant changes in groundwater chemistry occur where the aquifer becomes confined by the Maquoketa shale. Concentrations of Cl(-), SO4(2-) and Na(+) increase in the confined region, and the highest combined radium activities are typically observed in the area. Geochemical modeling implies that the observed changes in major ion groundwater chemistry occur in response to the presence of the confining unit which may act as a source of SO4(2-), through gypsum dissolution, and Na(+), through cation exchange. A finite difference groundwater flow model was linked to a particle tracking routine to determine groundwater flow paths and residence times in the aquifer near the boundary between unconfined and confined conditions. Results suggest that the presence of the confining unit produces a vertically stratified flow regime in the confined region.
Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy6-09.docAERMOD-PRIME, Units 4, 1,RidgeModel Fire|of|
Time-evolving measures and macroscopic modeling of pedestrian flow
Benedetto Piccoli; Andrea Tosin
2010-04-27
This paper deals with the early results of a new model of pedestrian flow, conceived within a measure-theoretical framework. The modeling approach consists in a discrete-time Eulerian macroscopic representation of the system via a family of measures which, pushed forward by some motion mappings, provide an estimate of the space occupancy by pedestrians at successive time steps. From the modeling point of view, this setting is particularly suitable to treat nonlocal interactions among pedestrians, obstacles, and wall boundary conditions. In addition, analysis and numerical approximation of the resulting mathematical structures, which is the main target of this work, follow more easily and straightforwardly than in case of standard hyperbolic conservation laws, also used in the specialized literature by some Authors to address analogous problems.
Hanford Site Groundwater Monitoring for Fiscal Year 2003
Hartman, Mary J.; Morasch, Launa F.; Webber, William D.
2004-04-12
This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2003 (October 2002 through September 2003) on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Concentrations of tritium, nitrate, and some other contaminants continued to exceed drinking water standards in groundwater discharging to the river in some locations. However, contaminant concentrations in river water remained low and were far below standards. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Hanford Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. Uranium exceeds standards in the 300 Area in the south part of the Hanford Site. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the ''Comprehensive Environmental Response, Compensation, and Liability Act'' is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. ''Resource Conservation and Recovery Act'' groundwater monitoring continued at 24 waste management areas during fiscal year 2003: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater; 7 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. During calendar year 2003, drillers completed seven new RCRA monitoring wells, nine wells for CERCLA, and two wells for research on chromate bioremediation. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2003. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. Soil vapor also was sampled to locate carbon tetrachloride sites with the potential to impact groundwater in the future. DOE uses geophysical methods to monitor potential movement of contamination beneath single-shell tank farms. During fiscal year 2003, DOE monitored selected boreholes within each of the 12 single-shell tank farms. In general, the contaminated areas appeared to be stable over time. DOE drilled new boreholes at the T Tank Farm to characterize subsurface contamination near former leak sites. The System Assessment Capability is a set of computer modules simulating movement of contaminants from waste sites through the vadose zone and groundwater. In fiscal year 2003, it was updated with the addition of an atmospheric transport module and with newer versions of models including an updated groundwater flow and transport model.
Regional Groundwater Evapotranspiration in Illinois
Yeh, Pat J-F.; Famiglietti, J. S
2009-01-01
characteristics of groundwater outflow and baseflow fromtween precipitation and shallow groundwater in Illinois. J.Coauthors, 2006: Groundwater-supported evapo- transpiration
Ground-water sapping processes, Western Desert, Egypt
Luo, W.; Arvidson, R.E.; Sultan, M.; Becker, R.; Crombie, M.K. [Washington Univ., St. Louis, MO (United States)] [Washington Univ., St. Louis, MO (United States); Sturchio, N. [Argonne National Lab., IL (United States)] [Argonne National Lab., IL (United States); Alfy, Z.E. [Egyptian Geological Survey and Mining Authority, Cairo (Egypt)] [Egyptian Geological Survey and Mining Authority, Cairo (Egypt)
1997-01-01
Depressions of the Western Desert of Egypt (specifically, Kharga, Farafra, and Kurkur regions) are mainly occupied by shales that are impermeable, but easily erodible by rainfall and runoff, whereas the surrounding plateaus are composed of limestones that are permeable and more resistant to fluvial erosion under semiarid to arid conditions. A computer simulation model was developed to quantify the ground-water sapping processes, using a cellular automata algorithm with coupled surface runoff and ground-water flow for a permeable, resistant layer over an impermeable, friable unit. Erosion, deposition, slumping, and generation of spring-derived tufas were parametrically modeled. Simulations using geologically reasonable parameters demonstrate that relatively rapid erosion of the shales by surface runoff, ground-water sapping, and slumping of the limestones, and detailed control by hydraulic conductivity inhomogeneities associated with structures explain the depressions, escarpments, and associated landforms and deposits. Using episodic wet pulses, keyed by {delta}{sup 18}O deep-sea core record, the model produced tufa ages that are statistically consistent with the observed U/Th tufa ages. This result supports the hypothesis that northeastern African wet periods occurred during interglacial maxima. This {delta}{sup 18}O-forced model also replicates the decrease in fluvial and sapping activity over the past million years. 65 refs., 21 figs., 2 tabs.
A generic model for transport in turbulent shear flows
Newton, Andrew P. L.; Kim, Eun-Jin [Department of Applied Mathematics, University of Sheffield, Sheffield, S3 7RH (United Kingdom)
2011-05-15
Turbulence regulation by large-scale shear flows is crucial for a predictive modeling of transport in plasma. In this paper the suppression of turbulent transport by large-scale flows is studied numerically by measuring the turbulent diffusion D{sub t} and scalar amplitude
Sullivan, Terry
2014-12-02
ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant in order to establish a new water treatment plant. There is some residual radioactive particles from the plant which need to be brought down to levels so an individual who receives water from the new treatment plant does not receive a radioactive dose in excess of 25 mrem/y?¹. The objectives of this report are: (a) To present a simplified conceptual model for release from the buildings with residual subsurface structures that can be used to provide an upper bound on contaminant concentrations in the fill material; (b) Provide maximum water concentrations and the corresponding amount of mass sorbed to the solid fill material that could occur in each building for use in dose assessment calculations; (c) Estimate the maximum concentration in a well located outside of the fill material; and (d) Perform a sensitivity analysis of key parameters.
Assessing streamaquifer interactions through inverse modeling of flow routing q
Szilagyi, Jozsef
various water manage- ment areas such as: irrigation design and scheduling in agri- culture, water supply, as well as hydro- and nuclear power generation (pro- viding cooling water to the plant), just to name., 2001; Szilagyi, 2003a). Knowledge of this inter- action between streamflow and groundwater during flood
Models of stationary siphon flows in stratified, thermally conducting coronal loops: II Â Shocked to explore the conditions for the presence of stationary shocks in critical and supersonic siphon flows of stationary siphon flows in a semicircular solar coronal loop of constant cross section. The model was based
CFD modeling of entrained-flow coal gasifiers with improved physical and chemical sub-models
Ma, J.; Zitney, S.
2012-01-01
Optimization of an advanced coal-fired integrated gasification combined cycle system requires an accurate numerical prediction of gasifier performance. While the turbulent multiphase reacting flow inside entrained-flow gasifiers has been modeled through computational fluid dynamic (CFD), the accuracy of sub-models requires further improvement. Built upon a previously developed CFD model for entrained-flow gasification, the advanced physical and chemical sub-models presented here include a moisture vaporization model with consideration of high mass transfer rate, a coal devolatilization model with more species to represent coal volatiles and heating rate effect on volatile yield, and careful selection of global gas phase reaction kinetics. The enhanced CFD model is applied to simulate two typical oxygen-blown entrained-flow configurations including a single-stage down-fired gasifier and a two-stage up-fired gasifier. The CFD results are reasonable in terms of predicted carbon conversion, syngas exit temperature, and syngas exit composition. The predicted profiles of velocity, temperature, and species mole fractions inside the entrained-flow gasifier models show trends similar to those observed in a diffusion-type flame. The predicted distributions of mole fractions of major species inside both gasifiers can be explained by the heterogeneous combustion and gasification reactions and the homogeneous gas phase reactions. It was also found that the syngas compositions at the CFD model exits are not in chemical equilibrium, indicating the kinetics for both heterogeneous and gas phase homogeneous reactions are important. Overall, the results achieved here indicate that the gasifier models reported in this paper are reliable and accurate enough to be incorporated into process/CFD co-simulations of IGCC power plants for systemwide design and optimization.
FACT (Version 2.0) - Subsurface Flow and Contaminant Transport Documentation and User's Guide
Aleman, S.E.
2000-05-05
This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media.
Groundwater Quality 2010, Zrich, R. Enzenhoefer 1/14
Cirpka, Olaf Arie
Groundwater Quality 2010, Zürich, 13th - 18th June 2010 R. Enzenhoefer 1/14 Using probabilistic of Hydromechanics and Modeling of Hydrosystems #12;Groundwater Quality 2010, Zürich, 13th - 18th June 2010 R Results & Discussion #12;Groundwater Quality 2010, Zürich, 13th - 18th June 2010 R. Enzenhoefer 3/14 From
Coupled fluid flow and geomechanical deformation modeling Susan E. Minkoff a,*, C. Mike Stoneb,1
Peszynska, Malgorzata
Coupled fluid flow and geomechanical deformation modeling Susan E. Minkoff a,*, C. Mike Stoneb,1 reservoir properties. Pore pressures from flow are used as loads for the geomechanics code
Mass and charge flow in nanopores: numerical simulation via mesoscale models
Cecconi, Fabio
Mass and charge flow in nanopores: numerical simulation via mesoscale models Mauro Chinappi1 at nanoscale is here addressed via a recent developed mesoscale approach. In particular the flow
Modeling flow in a pressure-sensitive, heterogeneous medium
Vasco, Donald W.
2010-01-01
Coupling Porous Flow and Geomechanics, Society of Petroleumlapse time shifts: A geomechanics case study from Franklin
Department of Mathematics and Statistics Colloquium Modeling Geophysical Fluid Flows
Arnold, Elizabeth A.
, caves, sinkholes, fissures, etc. Because of this, water can flow through conduits or pipes in addition
Blood flow through axially symmetric sections of compliant vessels: new effective closed models
Canic, Suncica
Blood flow through axially symmetric sections of compliant vessels: new effective closed models S-Stokes) equations for blood flow in compliant vessels. Several "effec- tive" one-dimensional models have been used independent ring model) to model the vessel wall behavior. In this work we obtain an effective system
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
program through sampling. August 1, 2013 Conceptual model of water movement and geology at Los Alamos National Laboratory Conceptual model of water movement and geology at...
Multiphase flow in the advanced fluid dynamics model
Bohl, W.R.; Wilhelm, D.; Berthier, J.; Parker, F.P.; Ichikawa, S.; Goutagny, L.; Ninokata, H.
1988-01-01
This paper describes the modeling used in the Advanced Fluid Dynamics Model (AFDM), a computer code to investigate new approaches to simulating severe accidents in fast reactors. The AFDM code has 12 topologies describing what material contacts are possible depending on the presence or absence of a given material in a computational cell, the dominant liquid, and the continuous phase. Single-phase, bubbly, churn-turbulent, cellular, and dispersed flow are permitted for the pool situations modeled. Interfacial areas between the continuous and discontinuous phases are convected to allow some tracking of phenomenological histories. Interfacial areas also are modified by models of nucleation, dynamic forces, turbulence, flashing, coalescence, and mass transfer. Heat transfer generally is treated using engineering correlations. Liquid/vapor phase transitions are handled with a nonequililbrium heat-transfer-limited model, whereas melting and freezing processes are based on equilibrium considerations. The Los Alamos SESAME equation of state (EOS) has been inplemented using densities and temperatures as the independent variables. A summary description of the AFDM numerical algorithm is provided. The AFDM code currently is being debugged and checked out. Two sample three-field calculations also are presented. The first is a three-phase bubble column mixing experiment performed at Argonne National Laboratory; the second is a liquid-liquid mixing experiment performed at Kernforschungszentrum, Karlsruhe, that resulted in rapid vapor production. We conclude that only qualitative comparisons currently are possible for complex multiphase situations. Many further model developments can be pursued, but there are limits because of the lack of a comprehensive theory, the lack of detailed multicomponent experimental data, and the difficulties in keeping the resulting model complexities tractable.
A simple model of gas flow in a porous powder compact
Shugard, Andrew D.; Robinson, David B.
2014-04-01
This report describes a simple model for ideal gas flow from a vessel through a bed of porous material into another vessel. It assumes constant temperature and uniform porosity. Transport is treated as a combination of viscous and molecular flow, with no inertial contribution (low Reynolds number). This model can be used to fit data to obtain permeability values, determine flow rates, understand the relative contributions of viscous and molecular flow, and verify volume calibrations. It draws upon the Dusty Gas Model and other detailed studies of gas flow through porous media.
The Hanford Story: Groundwater
Broader source: Energy.gov [DOE]
This second chapter of The Hanford Story explains how more than 100 square miles of groundwater under the Hanford Site became contaminated and what workers are doing to restore groundwater to its highest beneficial use.
A Geometric Study of Ringed Ribosome Flow Model Equilibrium
Yirmeyahu J. Kaminski
2015-10-12
We perform a geometric study of the equilibrium locus of the Ribosome Flow Model on a Ring. We prove that when considering the set of all possible values of the parameters, the equilibrium locus is a smooth manifold with boundaries, while for a given value of the parameters, it is an embedded smooth and connected curve. For different values of the parameters, the curves are all isomorphic. Moreover, we show how to build a homotopy between different curves obtained for different values of the parameter set. This procedure allows the efficient computation of the equilibrium point for each value of some first integral of the system. This point would have been otherwise difficult to be computed for higher dimensions. We illustrate this construction by some numerical experiments.
A Geometric Study of Ringed Ribosome Flow Model Equilibrium
Yirmeyahu J. Kaminski
2015-09-25
We perform a geometric study of the equilibrium locus of the Ribosome Flow Model on a Ring. We prove that the for the set of all possible values of the parameters, the equilibrium locus is a smooth manifold with boundaries, while for a given value of the parameters, it is an embedded smooth and connected curve. For different values of the parameters, the curves are all isomorphic. Moreover, we show how to build a homotopy between different curves obtained for different values of the parameter set. This procedure allows the efficient computation of the equilibrium point for each value of some first integral of the system. This point would have been otherwise difficult to be computed for higher dimensions. We illustrate this construction by some numerical experiments.
The Tritium Under-flow Study at the Savannah River Site
Hiergesell, Robert A.
2008-01-15
An issue of concern at the Savannah River Site (SRS) over the past 20 years is whether tritiated groundwater originating at SRS might be the cause of low levels of tritium measured in certain domestic wells in Georgia. Tritium activity levels in several domestic wells have been observed to occur at levels comparable to what is measured in rainfall in areas surrounding SRS. Since 1988, there has been speculation that tritiated groundwater from SRS could flow under the river and find its way into Georgia wells. A considerable effort was directed at assessing the likelihood of trans-river flow, and 44 wells have been drilled by the USGS and the Georgia Department of Natural Resources. Also, as part of the data collection and analysis, the USGS developed a numerical model during 1997-98 to assess the possibility for such trans-river flow to occur. The model represented the regional groundwater flow system surrounding the Savannah River Site (SRS) in seven layers corresponding to the underlying hydrostratigraphic units, which was regarded as sufficiently detailed to evaluate whether groundwater originating at SRS could possibly flow beneath the Savannah River into Georgia. The model was calibrated against a large database of water-level measurements obtained from wells on both sides of the Savannah River and screened in each of the hydrostratigraphic units represented within the model. The model results verified that the groundwater movement in all hydrostratigraphic units proceeds laterally toward the Savannah River from both South Carolina and Georgia, and discharges into the river. Once the model was calibrated, a particle-track analysis was conducted to delineate areas of potential trans-river flow. Trans-river flow can occur in either an eastward or westward direction. The model indicated that all locations of trans-river flow are restricted to the Savannah River's flood plain, where groundwater passes immediately prior to discharging into the river. Whether the trans-river flow is eastward or westward depends primarily on the position of the Savannah River as it meanders back and forth within the flood plain and is limited to narrow sections of land adjacent to the river. With respect to the only location of westward trans-river flow that has a recharge area within the SRS, the new evaluations of hypothetical pumping scenarios indicated that only a very slight impact is incurred, even under the most extreme groundwater extraction scenario. The updated model did not result in a significant change in the location of the recharge areas at SRS and the only impact was measured in slight changes in the travel times associated with the travel path. The median groundwater travel times for particles released under each of the 4 groundwater extraction scenarios ranged from 366 to 507 years while. Under the most extreme scenario, that under which SRS groundwater extraction is discontinued, the shortest travel time was reduced from 90 to 79 years. It should be emphasized that the groundwater transit times do not include the time required for groundwater to migrate vertically downward across the uppermost aquifer (i.e. at the recharge area), thus the actual groundwater travel times could be up to several decades longer than what was calculated in the model. The exhaustive evaluations that have been conducted indicates that it is highly unlikely that tritiated groundwater originating at the SRS could migrate into Georgia and explain the low tritium activity levels that were originally observed in certain domestic water supply wells. Considering that those wells were located at some distance (several km) from the Savannah River, a far more likely explanation is that tritiated rainfall infiltrated the subsurface and recharged the shallow aquifer within which the well was finished.
GROUNDWATER QUALITY PROTECTION PRACTICES
#12;GROUNDWATER QUALITY PROTECTION PRACTICES Submitted to: Environment Canada 224 West Esplanade.............................................................................................1 2.0 GROUNDWATER RESOURCES WITHIN THE FRASER BASIN.................3 2.1 Lower Fraser Region..............................................................................5 3.0 COMMON SOURCES OF GROUNDWATER CONTAMINATION ...............6 3.1 Category 1 - Sources Designed
Paris-Sud XI, Université de
HESSD 4, 11331151, 2007 Groundwater vulnerability assessment and WFD K. Berkhoff Title Page are under open-access review for the journal Hydrology and Earth System Sciences Groundwater vulnerability@em.uni-frankfurt.de) 1133 #12;HESSD 4, 11331151, 2007 Groundwater vulnerability assessment and WFD K. Berkhoff Title Page
Model of critical heat flux in subcooled flow boiling
Fiori, Mario P.
1968-01-01
The physical phenomenon occurring before and at the critical heat flux (CHF) for subcooled flow boiling has been investigated. The first phase of this study established the basic nature of the flow structure at CHF. A ...
Modelling Flow through Porous Media under Large Pressure Gradients
Srinivasan, Shriram
2013-11-01
The most interesting and technologically important problems in the study of flow through porous media involve very high pressures and pressure gradients in the flow do- main such as enhanced oil recovery and carbon dioxide ...
Modeling of bubbly and slug flow behavior under microgravity conditions
Longeot, Matthieu Jean-Sebastien
1995-01-01
Two-phase flow systems for space applications have advantages over single-phase flow systems. Due to increased heat transfer coefficients, they can achieve the same energy management as single-phase systems with lower mass, size and pumping...
A Variable Refrigerant Flow Heat Pump Computer Model in EnergyPlus
Raustad, Richard A. [Florida Solar Energy Center
2013-01-01
This paper provides an overview of the variable refrigerant flow heat pump computer model included with the Department of Energy's EnergyPlusTM whole-building energy simulation software. The mathematical model for a variable refrigerant flow heat pump operating in cooling or heating mode, and a detailed model for the variable refrigerant flow direct-expansion (DX) cooling coil are described in detail.
Analytical model for transient gas flow in nuclear fuel rods. [PWR; BWR
Rowe, D.S.; Oehlberg, R.N.
1981-08-01
An analytical model for calculating gas flow and pressure inside a nuclear fuel rod is presented. Such a model is required to calculate the pressure loading of cladding during ballooning that could occur for postulated reactor accidents. The mathematical model uses a porous media (permeability) concept to define the resistance to gas flow along the fuel rod. 7 refs.
THE DYNAMICAL STRUCTURE FACTOR AND CRITICAL BEHAVIOR OF A TRAFFIC FLOW MODEL
Lübeck, Sven
261 THE DYNAMICAL STRUCTURE FACTOR AND CRITICAL BEHAVIOR OF A TRAFFIC FLOW MODEL L. ROTERS, S. L. The behavior of the model is determined by three parameters, the maximal velocity v max , the noise parameter P of the dynamical structure factor of the Nagel Schreckenberg traffic flow model based on the local occupation
ESTIMATION OF FLOW DISTRIBUTION FOR HYDROLOGICAL MODELLING Petter Pilesj
Harrie, Lars
distribution over a continuous surface. The significance of the proposed algorithm is that the topographic form the flow distribution values proportionally to the slope gradient, or raised slope gradient, in each if for all ß > 0 (1) where i,j = flow directions (1...8), fi = flow proportion (0...1) in direction i, tan ßi
2. Some simple models of fluid flow: exact solutions of the N-S equation
Read, Peter L.
2. Some simple models of fluid flow: exact solutions of the N-S equation To construct mathematical. Boundary conditions: fluid comes to rest at the walls z = ±h (`no-slip' condition, since flow is viscous flow remains rectilinear (`laminar'). If Re Recrit, turbulence usually sets in: We say
Under consideration for publication in J. Fluid Mech. 1 Edges in Models of Shear Flow
Lebovitz, Norman
Under consideration for publication in J. Fluid Mech. 1 Edges in Models of Shear Flow Norman)). The latter problem is ap- proached theoretically by considering first a laminar shear flow (plane Couette of the laminar flow. This places particular importance on understanding the nature of the boundary of the basin
Turbulent transition in a truncated 1D model for shear flow
Dawes, Jon
to a `turbulent' state (i) takes place more abruptly, with a boundary between laminar and `turbulent' flow at fixed Reynolds number are found to be consistent with exponential distributions. Keywords: fluid flowTurbulent transition in a truncated 1D model for shear flow By J. H. P. Dawes and W. J. Giles
Modeling Cerebral Blood Flow Control During Posture Change from Sitting to Standing
Modeling Cerebral Blood Flow Control During Posture Change from Sitting to Standing Mette Olufsen that can predict blood flow and pressure during posture change from sitting to standing. The mathematical flow ve- locity during postural change from sitting to standing. The most important short term
Farnham, Irene
2006-02-01
This report describes the results of a comprehensive geochemical evaluation of the groundwater flow system in the Yucca Flat/Climax Mine Corrective Action Unit (CAU). The main objectives of this study are to identify probable pathways for groundwater flow within the study area and to develop constraints on groundwater transit times between selected data collection sites. This work provides an independent means of testing and verifying predictive flow models being developed for this CAU using finite element methods. The Yucca Flat/Climax Mine CAU constitutes the largest of six underground test areas on the Nevada Test Site (NTS) specified for remedial action in the ''Federal Facility Agreement and Consent Order''. A total of 747 underground nuclear detonations were conducted in this CAU. Approximately 23 percent of these detonations were conducted below or near the water table, resulting in groundwater contamination in the vicinity and possibly downgradient of these underground test locations. Therefore, a rigorous evaluation of the groundwater flow system in this CAU is necessary to assess potential long-term risks to the public water supply at downgradient locations.
Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.
2008-01-01
temperature profiles or geothermal gradients within the UZthe UZ by ambient geothermal gradients. Any large increasein net heat flow or geothermal gradients, such that model
Continuum Limit of a Step Flow Model of Epitaxial Growth R.V. ...
2002-02-08
We inv estigate this boundary condition by numerical simulation of the step flow ... Monte-Carlo or molecular dynamics models, because of their time eÆciency.
Predictive Simulations to Assess Potential Effect of Mining Activities on Groundwater
Netoff, Theoden
Predictive Simulations to Assess Potential Effect of Mining Activities on Groundwater Resource Effect of Mining Activities on Groundwater April 23, 2010 Table of Contents 1.0 Introduction ............................................................................................................................................1 2.0 Effect of Mining Operations on the Groundwater Flow System
Unsaturated flow modeling of a retorted oil shale pile.
Bond, F.W.; Freshley, M.D.; Gee, G.W.
1982-10-01
The objective of this study was to demonstrate the capabilities of the UNSAT1D model for assessing this potential threat to the environment by understanding water movement through spent shale piles. Infiltration, redistribution, and drainage of water in a spent shale pile were simulated with the UNSAT1D model for two test cases: (1) an existing 35 m pile; and (2) a transient pile growing at a rate of 10 m/year for 5 years. The first test case simulated three different layering scenarios with each one being run for 1 year. The second test case simulated two different initial moisture contents in the pile with each simulation being run for 30 years. Grand Junction and Rifle, Colorado climatological data were used to provide precipitation and potential evapotranspiration for a wet (1979) and dry (1976) year, respectively. Hydraulic properties obtained from the literature on Paraho process spent shale soil, and clay were used as model input parameters to describe water retention and hydraulic conductivity characteristics. Plant water uptake was not simulated in either test case. The two test cases only consider the evaporation component of evapotranspiration, thereby maximizing the amount of water infiltrating into the pile. The results of the two test cases demonstrated that the UNSAT1D model can adequately simulate flow in a spent shale pile for a variety of initial and boundary conditions, hydraulic properties, and pile configurations. The test cases provided a preliminary sensitivity analysis in which it was shown that the material hydraulic properties, material layering, and initial moisture content are the principal parameters influencing drainage from the base of a pile. 34 figures, 4 tables.
Rutqvist, J.
2014-01-01
porosity models for fluid transport in jointed rock. Journalof coupled fluid flow, solute transport, and geomechanics ingeomechanics, fluid flow and transport in fractured rock
Modeling, Analysis and Simulation of Multiscale Preferential Flow - 8/05-8/10 - Final Report
Ralph Showalter; Malgorzata Peszynska
2012-07-03
The research agenda of this project are: (1) Modeling of preferential transport from mesoscale to macroscale; (2) Modeling of fast flow in narrow fractures in porous media; (3) Pseudo-parabolic Models of Dynamic Capillary Pressure; (4) Adaptive computational upscaling of flow with inertia from porescale to mesoscale; (5) Adaptive modeling of nonlinear coupled systems; and (6) Adaptive modeling and a-posteriori estimators for coupled systems with heterogeneous data.
Chapman Jenny,Pohlmann Karl
2011-02-01
The U.S. Department of Energy is implementing corrective actions at facilities where nuclear-related operations were conducted in Nevada. Among the most significant sites being addressed are the locations of underground nuclear tests on the Nevada National Security Site (NNSS). The process for implementing corrective actions for the Underground Test Area (UGTA) locations is defined in Appendix VI of a Federal Facility Agreement and Consent Order (1996, as amended). In broad terms, Appendix VI describes a Corrective Action Investigation followed by a Corrective Action Decision, and implementation of a Corrective Action Plan prior to closure. The Frenchman Flat Corrective Action Unit (CAU) is farthest along in the UGTA corrective action process. It includes ten underground tests within the Frenchman Flat topographic basin, in the southeastern portion of the NNSS. Data have been collected from drilling exploration, hydrologic testing, and field and laboratory studies. Modeling has been completed at a variety of scales and focusing on a variety of flow and transport aspects ranging from regional boundary conditions to process dynamics within a single nuclear cavity. The culmination of the investigations is a transport model for the Frenchman Flat CAU (Stoller Navarro Joint Venture, 2009) that has undergone rigorous peer review and been accepted by the State of Nevada, setting the stage for the Corrective Action Decision and progression from the investigation phase to the corrective action phase of the project.
Groundwater Study at Armand Bayou Nature Center
Morrison, Derek 1990-
2012-04-23
This paper describes the research done to determine the hydraulic gradient and direction of groundwater flow in two aquifers at the Armand Bayou wetland. One aquifer is an unconfined aquifer at a depth of approximately 15 ft. and the second aquifer...
Development of a model to predict flow oscillations in low-flow sodium boiling
Levin, Alan Edward
1980-01-01
An experimental and analytical program has been carried out in order to better understand the cause and effect of flow oscillations in boiling sodium systems. These oscillations have been noted in previous experiments with ...
Estimation of Groundwater Recharge at Pahute Mesa using the Chloride Mass-Balance Method
Cooper, Clay A [DRI] [DRI; Hershey, Ronald L [DRI] [DRI; Healey, John M [DRI] [DRI; Lyles, Brad F [DRI] [DRI
2013-07-01
Groundwater recharge on Pahute Mesa was estimated using the chloride mass-balance (CMB) method. This method relies on the conservative properties of chloride to trace its movement from the atmosphere as dry- and wet-deposition through the soil zone and ultimately to the saturated zone. Typically, the CMB method assumes no mixing of groundwater with different chloride concentrations; however, because groundwater is thought to flow into Pahute Mesa from valleys north of Pahute Mesa, groundwater flow rates (i.e., underflow) and chloride concentrations from Kawich Valley and Gold Flat were carefully considered. Precipitation was measured with bulk and tipping-bucket precipitation gauges installed for this study at six sites on Pahute Mesa. These data, along with historical precipitation amounts from gauges on Pahute Mesa and estimates from the PRISM model, were evaluated to estimate mean annual precipitation. Chloride deposition from the atmosphere was estimated by analyzing quarterly samples of wet- and dry-deposition for chloride in the bulk gauges and evaluating chloride wet-deposition amounts measured at other locations by the National Atmospheric Deposition Program. Mean chloride concentrations in groundwater were estimated using data from the UGTA Geochemistry Database, data from other reports, and data from samples collected from emplacement boreholes for this study. Calculations were conducted assuming both no underflow and underflow from Kawich Valley and Gold Flat. Model results estimate recharge to be 30 mm/yr with a standard deviation of 18 mm/yr on Pahute Mesa, for elevations >1800 m amsl. These estimates assume Pahute Mesa recharge mixes completely with underflow from Kawich Valley and Gold Flat. The model assumes that precipitation, chloride concentration in bulk deposition, underflow and its chloride concentration, have been constant over the length of time of recharge.
A Model of Electrodiffusion and Osmotic Water Flow and its Energetic Structure
Mori, Yoichiro; Eisenberg, Robert S
2011-01-01
We introduce a model for ionic electrodiffusion and osmotic water flow through cells and tissues. The model consists of a system of partial differential equations for ionic concentration and fluid flow with interface conditions at deforming membrane boundaries. The model satisfies a natural energy equality, in which the sum of the entropic, elastic and electrostatic free energies are dissipated through viscous, electrodiffusive and osmotic flows. We discuss limiting models when certain dimensionless parameters are small. Finally, we develop a numerical scheme for the one-dimensional case and present some simple applications of our model to cell volume control.
A Model of Electrodiffusion and Osmotic Water Flow and its Energetic Structure
Yoichiro Mori; Chun Liu; Robert S. Eisenberg
2011-01-27
We introduce a model for ionic electrodiffusion and osmotic water flow through cells and tissues. The model consists of a system of partial differential equations for ionic concentration and fluid flow with interface conditions at deforming membrane boundaries. The model satisfies a natural energy equality, in which the sum of the entropic, elastic and electrostatic free energies are dissipated through viscous, electrodiffusive and osmotic flows. We discuss limiting models when certain dimensionless parameters are small. Finally, we develop a numerical scheme for the one-dimensional case and present some simple applications of our model to cell volume control.
Poggiale, Jean-Christophe
Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 1 size-structured mathematical model of the energy flow through marine ecosystems, based on established the dynamic size-spectrum of marine ecosystems in term of energy con- tent per weight class as well as many
Adaptive Finite Element Discretization of Flow Problems for Goal-Oriented Model Reduction
. The emphasis is on laminar viscous incompressible flows governed by the Navier-Stokes equations. But also computation in a laminar viscous fluid modeled by the sta- tionary Navier-Stokes equations for velocity vAdaptive Finite Element Discretization of Flow Problems for Goal-Oriented Model Reduction Rolf
MODELING FOR FREE SURFACE FLOW WITH PHASE CHANGE XIAOYONG LUO, MINGJIU NI, ALICE YING, M. ABDOU
Abdou, Mohamed
of the incompressible flow with the heat and mass transfer model. We present a new second- order projection method methodology is successful in modeling the free surface with heat and mass transfer, though some severe surface flow with heat and mass transfer to help resolve feasibility issues encountered
Zhao, Tianshou
Simplified model and lattice Boltzmann algorithm for microscale electro-osmotic flows and heat The extremely small length scale of the electric double layer (EDL) of electro-osmotic flows (EOF and temperature as the velocity-slip and temperature-jump boundary conditions, form a simple model for the electro-osmotic
Multiscale Modeling and Simulations of Flows in Naturally Fractured Karst Reservoirs
Popov, Peter
) and a free flow region, where the fluid (oil, water, gas) meets no resistance form the surrounding rock [13Multiscale Modeling and Simulations of Flows in Naturally Fractured Karst Reservoirs Peter Popov1-Brinkman equations can naturally be used to model additional physical effects pertaining to vugular media
Mass Flow Estimation with Model Bias Correction for a Turbocharged Diesel Engine
Johansen, Tor Arne
Mass Flow Estimation with Model Bias Correction for a Turbocharged Diesel Engine Tomás Polóni. Based on an augmented observable Mean Value En- gine Model (MVEM) of a turbocharged Diesel engine in the intake duct. Keywords: Diesel engine, Mass flow estimation, Bias estimation, Kalman filtering, Mean value
Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel
Victoria, University of
Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller Bachelors of Engineering, University in a polymer electrolyte fuel cell is a critical issue in ensuring high cell performance. The water production
NUMERICAL SOLUTION OF RESERVOIR FLOW MODELS BASED ON LARGE TIME STEP OPERATOR SPLITTING ALGORITHMS
NUMERICAL SOLUTION OF RESERVOIR FLOW MODELS BASED ON LARGE TIME STEP OPERATOR SPLITTING ALGORITHMS focus is posed on the numerical solution algorithms for the saturation equation, which is a convectionÂ eral background for the reservoir flow model is reviewed, and the main features of the numerical
A Comparison of the AC and DC Power Flow Models for LMP Calculations
power flow model for LMP-based market calculations. The paper first provides a general discussion values include generator AVR status, LTC and phase shifting transformer tap positions, discrete switched shifting transformers is often dependent upon the transformer's tap value. Last, the power flow models
Numerical modeling of fluid flow and time-lapse seismics to monitor CO2
Santos, Juan
Numerical modeling of fluid flow and time-lapse seismics to monitor CO2 Sequestration in aquifers J, ITALY). IMAL, 30/5/2014 Numerical modeling of fluid flow and time-lapse seismics to monitor CO2 Sequestration in aquifers Â p. #12;Introduction. I Storage of CO2 in geological formations is a procedure
Impact of relative permeability models on fluid flow behavior for gas condensate reservoirs
Zapata Arango, Jose? Francisco
2002-01-01
more important. Modeling fluid flow in these systems must consider the dependence of relative permeability on both viscous and capillary forces. This research focuses on the evaluation of several recently proposed relative permeability models...
Flow field computation of the NREL S809 airfoil using various turbulence models
Chang, Y.L.; Yang, S.L.; Arici, O. [Michigan Technological Univ., Houghton, MI (United States). Mechanical Engineering-Engineering Mechanics Dept.
1996-10-01
Performance comparison of three popular turbulence models, namely Baldwin-Lomas algebraic model, Chien`s Low-Reynolds-Number {kappa}-{epsilon} model, and Wilcox`s Low-Reynolds-Number {kappa}-{omega} model, is given. These models were applied to calculate the flow field around the National Renewable Energy Laboratory S809 airfoil using Total Variational Diminishing scheme. Numerical results of C{sub P}, C{sub L}, and C{sub D} are presented along with the Delft experimental data. It is shown that all three models perform well for attached flow, i.e., no flow separation at low angles of attack. However, at high angles of attack with flow separation, convergence characteristics show Wilcox`s model outperforms the other models. Results of this study will be used to guide the authors in their dynamic stall research.
COUNTERCURRENT FLOW LIMITATION EXPERIMENTS AND MODELING FOR IMPROVED REACTOR SAFETY
Vierow, Karen
2008-09-26
This project is investigating countercurrent flow and “flooding” phenomena in light water reactor systems to improve reactor safety of current and future reactors. To better understand the occurrence of flooding in the surge line geometry of a PWR, two experimental programs were performed. In the first, a test facility with an acrylic test section provided visual data on flooding for air-water systems in large diameter tubes. This test section also allowed for development of techniques to form an annular liquid film along the inner surface of the “surge line” and other techniques which would be difficult to verify in an opaque test section. Based on experiences in the air-water testing and the improved understanding of flooding phenomena, two series of tests were conducted in a large-diameter, stainless steel test section. Air-water test results and steam-water test results were directly compared to note the effect of condensation. Results indicate that, as for smaller diameter tubes, the flooding phenomena is predominantly driven by the hydrodynamics. Tests with the test sections inclined were attempted but the annular film was easily disrupted. A theoretical model for steam venting from inclined tubes is proposed herein and validated against air-water data. Empirical correlations were proposed for air-water and steam-water data. Methods for developing analytical models of the air-water and steam-water systems are discussed, as is the applicability of the current data to the surge line conditions. This report documents the project results from July 1, 2005 through June 30, 2008.
Hanford Site Groundwater Monitoring for Fiscal Year 1998
Hartman, M.J.
1999-03-24
This report presents the results of groundwater and vadose-zone monitoring and remediation for fiscal year (FY) 1998 on the Word Site, Washington. Soil-vapor extraction in the 200-West Area removed 777 kg of carbon tetrachloride in FY 1998, for a total of 75,490 kg removed since remediation began in 1992. Spectral gamma logging and evaluation of historical gross gamma logs near tank farms and liquid-disposal sites in the 200 Areas provided information on movement of contaminants in the vadose zone. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1997 and June 1998. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. One well completed in the basalt-confined aquifer beneath the 200-East Area exceeded the drinking water standard for technetium-99. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-l, Z-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level. Tetrachloroethylene exceeded its maximum contaminant level in several wells in the 300 Area for the first time since the 1980s. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; they are believed to represent natural components of groundwater. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during FY 1998: 17 under detection programs and data indicate that they are not adversely affecting groundwater, 6 under interim-status groundwater-quality-assessment programs to assess possible contamination, and 2 under final-status corrective-action programs. Groundwater remediation in the 100 Areas continued to reduce the amount of strontium-90 (100-N) and chromium (100-K, D, and H) reaching the Columbia River. Two systems in the 200-West Area operated to prevent the spread of carbon tetrachloride and technetide uranium plumes. Groundwater monitoring continued at these sites and at other sites where there is no active remediation. A three-dimensional, numerical groundwater model was applied to simulate radionuclide movement from sources in the 200 Areas following site closure in 2050. Contaminants will continue to move toward the southeast and north (through Gable Gap), but the areas with levels exceeding drinking water standards will diminish.
The development of a flood routing model for the flow analyses of mine tailings materials
Rokohl, Don Richard
1984-01-01
Flood, West Virginia Aberfsn Flow Slide, Wales Mochikoshi Tailings Dam, Japan A LITERATURE REVIEW OF EXISTING FLOOD ROUTING MODELS Theoretical Flood Routing Analysis Models Models Developed for Turbulent Flow Analysis U. S. Army Corps of Engineers... Front of Water Retaining Dam Showing Breach Formation 13 Characteristics of Bingham Plastic Model Characteristics of Modified Ramberg-Osgood Nodel Weight versus Velocity for Bunker Hill Tailings Vened Coaxial Viscometer 23 25 27 28 Comparison...
Situ treatment of contaminated groundwater
McNab, Jr., Walt W. (Concord, CA); Ruiz, Roberto (Tracy, CA); Pico, Tristan M. (Livermore, CA)
2001-01-01
A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.
Baranek, Pascale
1993-01-01
on the behavior of condensing two-phase flow in 0- g. Therefore s. new model was developed for condensing 0-g annular flow, using the universal velocity profile, the Karmsn momentum-heat transfer analogy and Wheeler's correlations for film thickness... the vapor and the condensate layer, he performed a momentum balance on the bulk liquid, and was able to estimate the profile of the bottom condensate layer and to define the area covered by the condensate film. Chaddock postulated that heat transfer...
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Saenz, Juan A.; Chen, Qingshan; Ringler, Todd
2015-05-19
Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWAmore »framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.« less
Andrews, Robert
2013-09-01
The Underground Test Area (UGTA) Corrective Action Unit (CAU) 97, Yucca Flat/Climax Mine, in the northeast part of the Nevada National Security Site (NNSS) requires environmental corrective action activities to assess contamination resulting from underground nuclear testing. These activities are necessary to comply with the UGTA corrective action strategy (referred to as the UGTA strategy). The corrective action investigation phase of the UGTA strategy requires the development of groundwater flow and contaminant transport models whose purpose is to identify the lateral and vertical extent of contaminant migration over the next 1,000 years. In particular, the goal is to calculate the contaminant boundary, which is defined as a probabilistic model-forecast perimeter and a lower hydrostratigraphic unit (HSU) boundary that delineate the possible extent of radionuclide-contaminated groundwater from underground nuclear testing. Because of structural uncertainty in the contaminant boundary, a range of potential contaminant boundaries was forecast, resulting in an ensemble of contaminant boundaries. The contaminant boundary extent is determined by the volume of groundwater that has at least a 5 percent chance of exceeding the radiological standards of the Safe Drinking Water Act (SDWA) (CFR, 2012).
Constitutive modelling approach for evaluating the triggering of flow slides
Buscarnera, Giuseppe
The paper presents a methodology to evaluate flow slide susceptibility in potentially liquefiable sandy slopes. The proposed approach accounts for both contractive and dilative volumetric behaviour during shearing using ...
Numerical modelling of flows involving submerged bodies and free surfaces
Topper, Mathew Bernard Robert
2011-06-28
Kinetic energy extraction devices for ocean and river flows are often located in the vicinity of the fluid free surface. This differs from wind turbines where the atmosphere may be considered to extend to infinity for ...
Groundwater Contamination Potential from Stormwater
Clark, Shirley E.
1 Groundwater Contamination Potential from Stormwater Infiltration Robert Pitt, University (CSOs). Introduction (cont.) · Scattered information is available addressing groundwater impacts cities · EPA 1983 NURP work on groundwater beneath Fresno and Long Island infiltration basins · NRC 1994
Modeling of stagnation-line nonequilibrium flows by means of quantum based collisional models
Munafò, A. Magin, T. E.
2014-09-15
The stagnation-line flow over re-entry bodies is analyzed by means of a quantum based collisional model which accounts for dissociation and energy transfer in N{sub 2}-N interactions. The physical model is based on a kinetic database developed at NASA Ames Research Center. The reduction of the kinetic mechanism is achieved by lumping the rovibrational energy levels of the N{sub 2} molecule in energy bins. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The governing equations are discretized in space by means of the Finite Volume method. A fully implicit time-integration is used to obtain steady-state solutions. The results show that the population of the energy bins strongly deviate from a Boltzmann distribution close to the shock wave and across the boundary layer. The sensitivity analysis to the number of energy bins reveals that accurate estimation of flow quantities (such as chemical composition and wall heat flux) can be obtained by using only 10 energy bins. A comparison with the predictions obtained by means of conventional multi-temperature models indicates that the former can lead to an overestimation of the wall heat flux, due to an inaccurate modeling of recombination in the boundary layer.
Modeling Plasma Flow in a Magnetic Nozzle with the Lattice-Boltzmann Method
Ebersohn, Frans Hendrik
2010-07-14
to induce plasma detachment are examined. In particular, super Alfv?nic detachment and resistive detachment are examined. A parametric study of the plasma flow is conducted. Plasma flow through a magnetic nozzle is simulated using a three-dimensional... between the results of the two models, the MHD method and the particle simulation method. This model has since been changed into a three dimensional model and is currently being used to study the plasma parameters and detachment process of plasma from...
Zhou, Quanlin
. Jordan ABSTRACT water levels were observed. The measured hydraulic conductivities demonstrate orders hydrogeologic units and even withinprovide substantial information for assessing and improving hydraulic measures implemented for remediation. We developed a three-dimen- a given unit. The variation within a unit
Scanlon, Bridget R.
Water Development Board, P.O. Box 13231, Capitol Station, 1700 N. Congress Avenue, Austin, TX 78711, USA
Taitel, Y. (Tel-Aviv Univ., Israel); Bornea, D.; Dukler, A.E.
1980-05-01
Models for predicting flow patterns in steady upward gas-liquid flow in vertical tubes (such as production-well tubing) delineate the transition boundaries between each of the four basic flow patterns for gas-liquid flow in vertical tubes: bubble, slug, churn, and dispersed-annular. Model results suggest that churn flow is the development region for the slug pattern and that bubble flow can exist in small pipes only at high liquid rates, where turbulent dispersion forces are high. Each transition depends on the flow-rate pair, fluid properties, and pipe size, but the nature of the dependence is different for each transition because of differing control mechanisms. The theoretical predictions are in reasonably good agreement with a variety of published flow maps based on experimental data.
Triangular flow in heavy ion collisions in a multiphase transport model
Xu, Jun; Ko, Che Ming.
2011-01-01
(RHIC) have provided important information on the properties of produced quark-gluon plasma (QGP) [1?4]. In particular, the large elliptic flow observed in experiments has led to the conclusion that the produced quark-gluon plasma is strongly...,10]. With the large parton scattering cross section, the transport model is also able to describe the hexadecupole flow measured at RHIC [11]. More recently, the importance of the triangular flow, which originates from fluctuations in the initial collision...
Protection of the Groundwater Resource
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Protection of the Groundwater Resource Protection of the Groundwater Resource Monitoring wells act as sentinels between suspected LANL contamination and the water supply. August 1,...
DAILY FLOW ROUTING WITH THE MUSKINGUM-CUNGE METHOD IN THE PECOS RIVER RIVERWARE MODEL
that is a general river basin modeling tool that runs in an object-oriented modeling environment. While for each river reach must also run one model timestep at a time. The resulting routing method in RiverDAILY FLOW ROUTING WITH THE MUSKINGUM-CUNGE METHOD IN THE PECOS RIVER RIVERWARE MODEL Craig B
R. A. Berry; R. Saurel; F. Petitpas; E. Daniel; O. Le Metayer; S. Gavrilyuk; N. Dovetta
2008-10-01
In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. Within the context of multiphase flows, two bubble-dynamic phenomena – boiling (heterogeneous) and flashing or cavitation (homogeneous boiling), with bubble collapse, are technologically very important to nuclear reactor systems. The main difference between boiling and flashing is that bubble growth (and collapse) in boiling is inhibited by limitations on the heat transfer at the interface, whereas bubble growth (and collapse) in flashing is limited primarily by inertial effects in the surrounding liquid. The flashing process tends to be far more explosive (and implosive), and is more violent and damaging (at least in the near term) than the bubble dynamics of boiling. However, other problematic phenomena, such as crud deposition, appear to be intimately connecting with the boiling process. In reality, these two processes share many details.
Pan, Dongqing; Chien Jen, Tien [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 (United States); Li, Tao [School of Mechanical Engineering, Dalian University of Technology, Dalian 116024 (China); Yuan, Chris, E-mail: cyuan@uwm.edu [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211 (United States)
2014-01-15
This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domain with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.
Modelling complex flood flow evolution in the middle Yellow River basin, China
Yu, Qian
Modelling complex flood flow evolution in the middle Yellow River basin, China Hongming He a January 2008 KEYWORDS Flood routing; Backwater flow; The middle Yellow River; River morphology Summary Flood routing processes in the middle Yellow River basin are complex since they consist of three types
Model-Based Multi-view Fusion of Cinematic Flow and Optical Imaging
Paragios, Nikos
Model-Based Multi-view Fusion of Cinematic Flow and Optical Imaging Mickael Savinaud1,2,3 , Martin-view Fusion of Cinematic Flow and Optical Imaging 669 optical imaging devices are now able to image does not enable cinematic acquisition. The use of temporal information involves either animal tracking
Modelling the mechanical interaction between flowing materials and retaining wire structures
Gagliardini, Olivier
Modelling the mechanical interaction between flowing materials and retaining wire structures Franc Sols Solides Structures, UJF-INPG-CNRS, Grenoble, France Received 10 March 2004; received in revised, design of structural elements may require analysing the mechanical interac- tion between a flowing
A Markov Random Field model of contamination source identification in porous media flow
Zabaras, Nicholas J.
A Markov Random Field model of contamination source identification in porous media flow Jingbo Wang A contamination source identification problem in constant porous media flow is addressed by solving the advection-dispersion equation (ADE) with a hierarchical Bayesian computation method backward through time. The contaminant
Coupled fluid flow and geomechanical deformation modeling Susan E. Minkoff a,*, C. Mike Stoneb,1
Minkoff, Susan E.
Coupled fluid flow and geomechanical deformation modeling Susan E. Minkoff a,*, C. Mike Stoneb,1 reservoir properties. Pore pressures from flow are used as loads for the geomechanics code-505-844-9297. 2 Fax: +1-512-232-2445. www.elsevier.com/locate/jpetscieng Journal of Petroleum Science
A MultiPhase Power Flow Model for Grid Analysis A. P. Sakis Meliopoulos
A MultiPhase Power Flow Model for µµµµGrid Analysis A. P. Sakis Meliopoulos School of Electrical power system with distributed energy sources forming a microgrid (µGrid). The µGrid is a radial multiphase power flow analysis method that provides exact solution to the operation of the µGrid under steady
Modelling Shale Gas Flow Using the Concept of Dynamic Apparent Permeability
Farid, Syed Munib Ullah
2015-05-12
The basic idea behind this research is to propose a work flow to model gas flow in numerical simulators, which would take into consideration all the complexities of the multiple porosity systems that exist in shale matrix and the different dynamics...
Acoustic modeling of perforated plates with bias flow for Large-Eddy Simulations
Mendez, Simon
Acoustic modeling of perforated plates with bias flow for Large-Eddy Simulations S. Mendez a,, J. D of California, Los Angeles, Los Angeles, CA 90095, USA. Abstract The study of the acoustic effect of perforated to provide data on the flow around a perforated plate and the associated acoustic damping is demonstrated
Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow
Boyer, Edmond
Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S the dynamical effects from the heat transfer process. The fluid flow in an enclosed disk system with axial with heat transfer along the stator, which corresponds to the experiment of Djaoui et al. [2]. Our results
Blood Pressure and Blood Flow Variation during Postural Change from Sitting to Standing: Model
1 Blood Pressure and Blood Flow Variation during Postural Change from Sitting to Standing: Model- tural change from sitting to standing involve complex interactions between the autonomic nervous system cerebral artery blood flow velocity during postural change from sitting to standing. Our cardiovascular
Cantrell, Kirk J.; Brown, Christopher F.
2014-06-13
In recent years depleted oil reservoirs have received special interest as carbon storage reservoirs because of their potential to offset costs through collaboration with enhanced oil recovery projects. Modeling is currently being conducted to evaluate potential risks to groundwater associated with leakage of fluids from depleted oil reservoirs used for storage of CO2. Modeling results reported here focused on understanding how toxic organic compounds found in oil will distribute between the various phases within a storage reservoir after introduction of CO2, understanding the migration potential of these compounds, and assessing potential groundwater impacts should leakage occur. Two model scenarios were conducted to evaluate how organic components in oil will distribute among the phases of interest (oil, CO2, and brine). The first case consisted of 50 wt.% oil and 50 wt.% water; the second case was 90 wt.% CO2 and 10 wt.% oil. Several key organic compounds were selected for special attention in this study based upon their occurrence in oil at significant concentrations, relative toxicity, or because they can serve as surrogate compounds for other more highly toxic compounds for which required input data are not available. The organic contaminants of interest (COI) selected for this study were benzene, toluene, naphthalene, phenanthrene, and anthracene. Partitioning of organic compounds between crude oil and supercritical CO2 was modeled using the Peng-Robinson equation of state over temperature and pressure conditions that represent the entire subsurface system (from those relevant to deep geologic carbon storage environments to near surface conditions). Results indicate that for a typical set of oil reservoir conditions (75°C, and 21,520 kPa) negligible amounts of the COI dissolve into the aqueous phase. When CO2 is introduced into the reservoir such that the final composition of the reservoir is 90 wt.% CO2 and 10 wt.% oil, a significant fraction of the oil dissolves into the vapor phase. As the vapor phase moves up through the stratigraphic column, pressures and temperatures decrease, resulting in significant condensation of oil components. The heaviest organic components condense early in this process (at higher pressures and temperatures), while the lighter components tend to remain in the vapor phase until much lower pressures and temperatures are reached. Based on the model assumptions, the final concentrations of COI to reach an aquifer at 1,520 kPa and 25°C were quite significant for benzene and toluene, whereas the concentrations of polynuclear aromatic hydrocarbons that reach the aquifer were very small. This work demonstrates a methodology that can provide COI source term concentrations in CO2 leaking from a reservoir and entering an overlying aquifer for use in risk assessments.
Detecting appropriate groundwater-level trends for safe groundwater development
Sohoni, Milind
Detecting appropriate groundwater-level trends for safe groundwater development Rahul Gokhale-monsoon Groundwater(GW) levels are important for the periodic categorisation of regions in India according to their GW-safety. A specific procedure has been recommended by the Groundwater Estimation Committee, 1997(GEC'97), constituted
An Analytical Flow Model for PTFE Paste through Annular Dies
Feng, James J.
or wire drawing.7 Although PTFE paste exhibits strain-harden- ing effects,1,2,4 little work has been, a fine powder of individual particles (diameter & 0.25 mm) is first mixed with a lubricating liquid (lube for processes such as wire coat- ing and tube fabrication.2,3 The flow mechanism associated with PTFE paste
Rheo-PIV Analysis of the Yielding and Flow of Model Waxy Crude Oils
Dimitriou, Christopher J.
Waxes are a commonly encountered precipitate that can result in the gelation of crude oils and cessation of flow in pipelines. In this work, we develop a model wax–oil system that exhibits rheological behavior similar to ...
Development of a novel in vitro model to study the tryptic : endothelial cells, monocytes and flow
Turjman, Alexis S. (Alexis Salomon)
2014-01-01
This thesis describes the development of a novel in vitro model of monocytes transmigration under flow and use in the study of early molecular events of atherogenesis. In this work, we focused on how endothelial dysfunction, ...
Singular front formation in a model for quasigeostrophic flow Peter Constantin
Tabak, Esteban G.
Singular front formation in a model for quasigeostrophic flow Peter Constantin Department of Mathematics, University of Chicago, Chicago, Illinois 60637 Andrew J. Majda Department of Mathematics, whether it predicts the formation of sharp fronts associated with boundaries between air masses
Turbine-Burner Model: Cavity Flameholding in a Converging, Turning Channel Flow
Liu, Feng
1 Turbine-Burner Model: Cavity Flameholding in a Converging, Turning Channel Flow Ben J. Colcord1 of California, Irvine Abstract A review of turbine-burner research and a discussion of some relevant background
A predictive, size-dependent continuum model for dense granular flows
Henann, David Lee
Dense granular materials display a complicated set of flow properties, which differentiate them from ordinary fluids. Despite their ubiquity, no model has been developed that captures or predicts the complexities of granular ...
Chang, F.C.; Hull, J.R.; Wang, Y.H.; Blazek, K.E.
1996-02-01
A computer model was developed to predict eddy currents and fluid flows in molten steel. The model was verified by comparing predictions with experimental results of liquid-metal containment and fluid flow in electromagnetic (EM) edge dams (EMDs) designed at Inland Steel for twin-roll casting. The model can optimize the EMD design so it is suitable for application, and minimize expensive, time-consuming full-scale testing. Numerical simulation was performed by coupling a three-dimensional (3-D) finite-element EM code (ELEKTRA) and a 3-D finite-difference fluids code (CaPS-EM) to solve heat transfer, fluid flow, and turbulence transport in a casting process that involves EM fields. ELEKTRA is able to predict the eddy- current distribution and the electromagnetic forces in complex geometries. CaPS-EM is capable of modeling fluid flows with free surfaces. Results of the numerical simulation compared well with measurements obtained from a static test.
Statistical Analysis of Microgravity Two-Phase Slug Flow via the Drift Flux Model
Larsen, Benjamin A
2014-05-01
of microgravity two-phase flow data difficult. Multiple researchers have postulated the microgravity drift flux model parameters to predict void fraction, however, these methods were initially developed with no consideration given to a microgravity environment...
FLOW AND REACTIVE TRANSPORT MODELING IN THE GTS-HPF EXPERIMENT
Politècnica de Catalunya, Universitat
repositories for L/IL radioactive waste ·Hyperalkaline solutions #12;GTS-HPF Grimsel Test Site - HyperalkalineFLOW AND REACTIVE TRANSPORT MODELING IN THE GTS-HPF EXPERIMENT Grimsel Test Site Hyperalkaline
Enable definition and calculation of the information flow in arbitrary models
Bauer, Bernhard
] Based on the Eclipse Modeling Framework (EMF) Control Flow Analysis REFERENCESREFERENCES 1. Christian-Entry-Single-Exit components Detection and completion of quasi-structured components Heuristic-based validation
Lo, Min-Hui; Famiglietti, James S; Yeh, P. J.-F.; Syed, T. H
2010-01-01
model using GRACE water storage and estimated base flow data,model using GRACE water storage and estimated base flow datawith esti- mated base flow data in the model calibration.
Koenig, W.M.; Hennecke, D.K.; Fottner, L.
1996-01-01
New blading concepts as used in modern transonic axial-flow compressors require improved loss and deviation angle correlations. The new model presented in this paper incorporates several elements and treats blade-row flows having subsonic and supersonic inlet conditions separately. The second part of the present report focuses on the extension of a well-known correlation for cascade losses at supersonic inlet flows. It was originally established for DCA bladings and is now modified to reflect the flow situation in blade rows having low-cambered, arbitrarily designed blades including precompression blades. Finally, the steady loss increase from subsonic to supersonic inlet-flow velocities demonstrates the matched performance of the different correlations of the new model.
Using multi-layer models to forecast gas flow rates in tight gas reservoirs
Jerez Vera, Sergio Armando
2007-04-25
USING MULTI-LAYER MODELS TO FORECAST GAS FLOW RATES IN TIGHT GAS RESERVOIRS A Thesis by SERGIO ARMANDO JEREZ VERA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2006 Major Subject: Petroleum Engineering USING MULTI-LAYER MODELS TO FORECAST GAS FLOW RATES IN TIGHT GAS RESERVOIRS A Thesis by SERGIO ARMANDO JEREZ VERA Submitted...
Simulation of heavy oil reservoir performance using a non-Newtonian flow model
Narahara, Gene Masao
1983-01-01
SIMULATION OF HEAVY OIL RESERVOIR PERFORMANCE USING A NON-NEWTONIAN FLOW MODEL A Thesis by GENE MASAO NARAHARA Submitted to the Graduate College of Texas AILM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1983 Major Subject: Petroleum Engineering SIMULATION OF HEAVY OIL RESERVOIR PERFORMANCE USING A NON-NEWTONIAN FLOW MODEL A Thesis by GENE MASAO NARAHARA Approved as to style and content by: lng . U an of Committee) R. . Morse...
Han, Qi "Chee"
and costly, as each sample must be collected by a technician. Second, the period between samples to a central node for analysis. Once deployed, the sen- sor network requires very little maintenance. Readings may be taken as often as several times a second, with minimal effect on the flow field as pumping
Boyer, Edmond
Sequential Thermo-Hydraulic Modeling of Variably Saturated Flow in High-Level Radioactive Waste-Malabry, France Key words: waste repository, geological disposal, thermo- hydraulic modeling Introduction The most developed a sequential model to predict the coupled thermo-hydraulic processes at a cell-scale radioactive
Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow
Wang, Chao-Yang
Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow W-dimensional model is developed to simulate discharge of a primary lithium/thionyl chloride battery. The model to the first task with important examples of lead-acid,1-3 nickel-metal hydride,4-8 and lithium-based batteries
Paper No. 9.06 1 NEWMARKIAN ANALYSIS OF LIQUEFIED FLOW IN CENTRIFUGE MODEL
Haigh, Stuart
Paper No. 9.06 1 NEWMARKIAN ANALYSIS OF LIQUEFIED FLOW IN CENTRIFUGE MODEL EARTHQUAKES S.K. Haigh S-pressure history either predicted using a suitable constitutive model, or measured during a centrifuge or shaking displacements using this procedure and displacements measured in centrifuge model tests with the same pore
Computational Modeling of Blood Flow in the TrapEase Inferior Vena Cava Filter
Singer, M A; Henshaw, W D; Wang, S L
2008-02-04
To evaluate the flow hemodynamics of the TrapEase vena cava filter using three dimensional computational fluid dynamics, including simulated thrombi of multiple shapes, sizes, and trapping positions. The study was performed to identify potential areas of recirculation and stagnation and areas in which trapped thrombi may influence intrafilter thrombosis. Computer models of the TrapEase filter, thrombi (volumes ranging from 0.25mL to 2mL, 3 different shapes), and a 23mm diameter cava were constructed. The hemodynamics of steady-state flow at Reynolds number 600 was examined for the unoccluded and partially occluded filter. Axial velocity contours and wall shear stresses were computed. Flow in the unoccluded TrapEase filter experienced minimal disruption, except near the superior and inferior tips where low velocity flow was observed. For spherical thrombi in the superior trapping position, stagnant and recirculating flow was observed downstream of the thrombus; the volume of stagnant flow and the peak wall shear stress increased monotonically with thrombus volume. For inferiorly trapped spherical thrombi, marked disruption to the flow was observed along the cava wall ipsilateral to the thrombus and in the interior of the filter. Spherically shaped thrombus produced a lower peak wall shear stress than conically shaped thrombus and a larger peak stress than ellipsoidal thrombus. We have designed and constructed a computer model of the flow hemodynamics of the TrapEase IVC filter with varying shapes, sizes, and positions of thrombi. The computer model offers several advantages over in vitro techniques including: improved resolution, ease of evaluating different thrombus sizes and shapes, and easy adaptation for new filter designs and flow parameters. Results from the model also support a previously reported finding from photochromic experiments that suggest the inferior trapping position of the TrapEase IVC filter leads to an intra-filter region of recirculating/stagnant flow with very low shear stress that may be thrombogenic.
Persistent energy flow for a stochastic wave equation model in nonequilibrium statistical mechanics
Lawrence E. Thomas
2012-04-29
We consider a one-dimensional partial differential equation system modeling heat flow around a ring. The system includes a Klein-Gordon wave equation for a field satisfying spatial periodic boundary conditions, as well as Ornstein-Uhlenbeck stochastic differential equations with finite rank dissipation and stochastic driving terms modeling heat baths. There is an energy flow around the ring. In the case of a linear field with different (fixed) bath temperatures, the energy flow can persist even when the interaction with the baths is turned off. A simple example is given.
L. V. Bravina; E. S. Fotina; V. L. Korotkikh; I. P. Lokhtin; L. V. Malinina; E. N. Nazarova; S. V. Petrushanko; A. M. Snigirev; E. E. Zabrodin
2015-09-09
The possible mechanisms contributing to anisotropic flow fluctuations in relativistic heavy ion collisions are discussed. The LHC data on event-by-event harmonic flow coefficients measured in PbPb collisions at center-of-mass energy 2.76 TeV per nucleon pair are analyzed and interpreted within the HYDJET++ model. To compare the model results with the experimental data the unfolding procedure is employed. It is shown that HYDJET++ correctly reproduces dynamical fluctuations of elliptic and triangular flows and related to it eccentricity fluctuations of the initial state.
Bravina, L V; Korotkikh, V L; Lokhtin, I P; Malinina, L V; Nazarova, E N; Petrushanko, S V; Snigirev, A M; Zabrodin, E E
2015-01-01
The possible mechanisms contributing to anisotropic flow fluctuations in relativistic heavy ion collisions are discussed. The LHC data on event-by-event harmonic flow coefficients measured in PbPb collisions at center-of-mass energy 2.76 TeV per nucleon pair are analyzed and interpreted within the HYDJET++ model. To compare the model results with the experimental data the unfolding procedure is employed. It is shown that HYDJET++ correctly reproduces dynamical fluctuations of elliptic and triangular flows and related to it eccentricity fluctuations of the initial state.
R.W.H. Carroll; R.L.Hershey; G.M. Pohll
2006-04-25
Current modeling of the southeastern portion of the Nevada Test Site (NTS) with a refined U.S. Geological Survey Death Valley regional groundwater flow system model shows that impacts from pumping by proposed Southern Nevada Water Authority (SNWA) and Vidler Water Company (VWC) wells can be substantial over 75 years of operation. Results suggest that significant drawdown at proposed well sites will occur with depths of drawdown ranging from 8 m to nearly 1,600 m. The areal extent of 0.5 m of drawdown is also significant, impacting Mercury Valley, Amargosa, Indian Springs, Three Lakes, and Frenchman Flat basins. Drawdown will impact Army No.1 Water Well in Mercury Valley by lowering water levels 2.1 m but will not impact other NTS production wells. It is also predicted that flowpaths from detonation sites within the NTS will be altered with the potential to move material out of the NTS. Impacts to both springs and regions of groundwater evapotranspiration (modeled as MODFLOW drain cells) appear very minimal, with an estimated 0.2-percent reduction in flow to these regions. This amounts to a loss of more that 55,000 m3/year (45 acre-ft/year), or more than 4,000,000 m3 (3,400 acre-ft) during 75 years of groundwater withdrawal by pumping at proposed SNWA and VWC wells. Whether the reduced flow will impact specific springs more than any others, or if the reduction in flow is enough to have significant ecological implications, was not addressed in this study.
Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir
Broader source: Energy.gov [DOE]
Project objectives: Better understand and model fluid injection into a tight reservoir on the edges of a hydrothermal field. Use seismic data to constrain geomechanical/hydrologic/thermal model of reservoir.
Turbulent Supersonic Channel Flow: Direct Numerical Simulation and Modeling
Heinz, Stefan
modeling: the turbulence frequency production mechanism, wall damping effects on turbulence model frequency production mechanisms and wall damping effects may be explained very well on the basis, Chik w = wall viscosity = kinematic viscosity, = T = turbulent kinematic viscosity, Ck d = pressure
Symmetry Methods for a Geophysical Mass Flow Model
Torrisi, Mariano; Tracina, Rita
2011-09-14
In the framework of symmetry analysis, the class of 2 x 2 PDE systems to whom belong the Savage and Hutter model and the Iverson model is considered. New classes of exact solutions are found.
MATHEMATICAL MODELING AND SIMULATION FOR FLUID FLOW IN POROUS MEDIA
Ewing, Richard E.
of environmental effects of air polution is extensive. Here we address the need for using similar models
Safe Compositional Equationbased Modeling of Constrained Flow Networks 1
Âtheoretic notions that enables large scale safety verification by allowing for compositional, as opÂ posed to wholeÂsystem veriÂ fication, Constraint based modeling 1. Introduction Many large scale systems can be modeled and other areas. Electric grids, vehicular road networks, and computer networks are all modeled cleanly
Development of a cell-based stream flow routing model
Raina, Rajeev
2005-08-29
This study presents the development of a cell-based routing model. The model developed is a two parameter hydrological routing model that uses a coarse resolution stream network to route runoff from each cell in the watershed to the outlet...
Boundary layer modeling of reactive flow over a porous surface with angled injection
Liu, Shiling; Fotache, Catalin G.; Hautman, Donald J.; Ochs, Stuart S. [United Technologies Research Center, MS 129-29, 411 Silver Lane, East Hartford, CT 06108 (United States); Chao, Beei-Huan [Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)
2008-08-15
An analytical model was developed to investigate the dynamics of nonpremixed flames in a shear layer established between a mainstream flow of fuel-rich combustion products and a porous surface with an angled injection of air. In the model, a one-step overall chemical reaction was employed, together with boundary layer conservation equations solved using similarity solutions. Parametric studies were performed to understand the effects of equivalence ratio, temperature, and mass flow rate of the fuel and air streams on the flame standoff distance, surface temperature, and heat flux at the surface. The analytical model predictions were compared with computational fluid dynamics results obtained using the FLUENT commercial code for both the laminar and the turbulent flow models. Qualitative agreement in surface temperature was observed. Finally, the flame stability limits predicted by the model were compared with available experimental data and found to agree qualitatively, as well. (author)
DEVELOPMENT AND VALIDATION OF A MULTIFIELD MODEL OF CHURN-TURBULENT GAS/LIQUID FLOWS
Elena A. Tselishcheva; Steven P. Antal; Michael Z. Podowski; Donna Post Guillen
2009-07-01
The accuracy of numerical predictions for gas/liquid two-phase flows using Computational Multiphase Fluid Dynamics (CMFD) methods strongly depends on the formulation of models governing the interaction between the continuous liquid field and bubbles of different sizes. The purpose of this paper is to develop, test and validate a multifield model of adiabatic gas/liquid flows at intermediate gas concentrations (e.g., churn-turbulent flow regime), in which multiple-size bubbles are divided into a specified number of groups, each representing a prescribed range of sizes. The proposed modeling concept uses transport equations for the continuous liquid field and for each bubble field. The overall model has been implemented in the NPHASE-CMFD computer code. The results of NPHASE-CMFD simulations have been validated against the experimental data from the TOPFLOW test facility. Also, a parametric analysis on the effect of various modeling assumptions has been performed.
Groundwater under stress: the importance of management
Vaux, Henry
2011-01-01
static or decline. Groundwater will be uniquely attractiveThe need to manage groundwater ef?ciently and effectively asthe aquifer. Most methods of groundwater management involve
Berejnov, Viatcheslav; Sinton, David; Djilali, Ned
2009-01-01
Experimental two-phase invasion percolation flow patterns were observed in hydrophobic micro-porous networks designed to model fuel cell specific porous media. In order to mimic the operational conditions encountered in the porous electrodes of polymer electrolyte membrane fuel cells (PEMFCs), micro-porous networks were fabricated with corresponding microchannel size distributions. The inlet channels were invaded homogeneously with flow rates corresponding to fuel cell current densities of 1.0 to 0.1 A/cm2 (Ca 10e-7-10e-8). A variety of fractal breakthrough patterns were observed and analyzed to quantify flooding density and geometrical diversity in terms of the total saturation, St, local saturations, s, and fractal dimension, D. It was found that St increases monotonically during the invasion process until the breakthrough point is reached, and s profiles indicate the dynamic distribution of the liquid phase during the process. Fractal analysis confirmed that the experiments fall within the flow regime of i...
1996-10-01
Volume III of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the data covering groundwater recharge and discharge. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.
Numerical modeling of the wind flow over a transverse dune
Ascânio D. Araújo; Eric J. R. Parteli; Thorsten Poeschel; José S. Andrade Jr.; Hans J. Herrmann
2013-09-30
Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee --- the {\\em{separation bubble}} --- displays a surprisingly strong dependence on the wind shear velocity, $u_{\\ast}$: it is nearly independent of $u_{\\ast}$ for shear velocities within the range between $0.2\\,$m$$s and $0.8\\,$m$$s but increases linearly with $u_{\\ast}$ for larger shear velocities. Our calculations show that transport in the direction opposite to dune migration within the separation bubble can be sustained if $u_{\\ast}$ is larger than approximately $0.39\\,$m$$s, whereas a larger value of $u_{\\ast}$ (about $0.49\\,$m$$s) is required to initiate this reverse transport.
Numerical modeling of the wind flow over a transverse dune
Araújo, Ascânio D; Poeschel, Thorsten; Andrade, José S; Herrmann, Hans J
2013-01-01
Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee --- the {\\em{separation bubble}} --- displays a surprisingly strong dependence on the wind shear velocity, $u_{\\ast}$: it is nearly independent of $u_{\\ast}$ for shear velocities within the range between $0.2\\,$m$$s and $0.8\\,$m$$s but increases linearly with $u_{\\ast}$ for larger shear velocities. Our calculations show that transport in the direction opposite to dune migration within the separation bubble can be sustained if $u_{\\ast}$ is larger than approximately $0.39\\,$m$$s, whereas a larger value of $u_{\\ast}$ (about $0.49\\,$m$$s) is required to initiate this reverse transport.
NEW MODEL AND MEASUREMENT PRINCIPLE OF FLOWING AND HEAT TRANSFER CHARACTERISTICS OF REGENERATOR
Chen, Y. Y.; Luo, E. C.; Dai, W.
2008-03-16
Regenerators play key role in oscillating-flow cryocoolers or thermoacoustic heat engine systems. However, their flowing and heat transfer mechanism is still not well understood. The complexities of the oscillating flow regenerator make traditional method of heat transfer research become difficult or helpless. In this paper, a model for porous media regenerator was given based on the linear thermoacoustic theory. Then the correlations for characteristic parameters were obtained by deducing universal expressions for thermoacoustic viscous function F{sub v} and thermal function F{sub T}. A simple acoustical method and experimental system to get F{sub v} and F{sub T} via measurements of isothermal regenerators were presented. Some measurements of packed stainless screen regenerators were performed, and preliminary experimental results for flow and convective coefficients were derived, which showing flowing friction factor is approximately within 132/Re to 173/Re.
A hybrid stochastic-deconvolution model for large-eddy simulation of particle-laden flow
Micha?ek, W. R., E-mail: w.michalek@tue.nl [Department of Mechanical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Kuerten, J. G. M. [Department of Mechanical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands) [Department of Mechanical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Faculty EEMCS, University of Twente, 7500 AE Enschede (Netherlands); Zeegers, J. C. H.; Liew, R. [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands)] [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Pozorski, J. [Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk (Poland)] [Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk (Poland); Geurts, B. J. [Faculty EEMCS, University of Twente, 7500 AE Enschede (Netherlands) [Faculty EEMCS, University of Twente, 7500 AE Enschede (Netherlands); Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands)
2013-12-15
We develop a hybrid model for large-eddy simulation of particle-laden turbulent flow, which is a combination of the approximate deconvolution model for the resolved scales and a stochastic model for the sub-grid scales. The stochastic model incorporates a priori results of direct numerical simulation of turbulent channel flow, which showed that the parameters in the stochastic model are quite independent of Reynolds and Stokes number. In order to correctly predict the flux of particles towards the walls an extra term should be included in the stochastic model, which corresponds to the term related to the well-mixed condition in Langevin models for particle dispersion in inhomogeneous turbulent flow. The model predictions are compared with results of direct numerical simulation of channel flow at a frictional Reynolds number of 950. The inclusion of the stochastic forcing is shown to yield a significant improvement over the approximate deconvolution model for the particles alone when combined with a Stokes dependent weight-factor for the well-mixed term.
Nevada National Security Site Groundwater Program Welcomes Peer Review Team
Broader source: Energy.gov [DOE]
Recently, an independent peer review team was invited to assess the groundwater characterization program at the Nevada National Security Site (NNSS). This nationally recognized group of experts, from various external organizations, will examine the computer modeling approach developed to better understand how historic underground nuclear testing in Yucca Flat affected the groundwater.
An Inertial Cell Model for the Drag Force in Multi-phase Flow
Tupper, Gary; Mainza, Aubrey
2015-01-01
A new model for the drag coefficient of a sphere in a concentrated system is described. It is based upon a cell-averaged model for the Stokes regime combined with a physically motivated extrapolation to arbitrary Reynolds number. It can be used as an alternative to the isolated particle drag coefficient in Euler-Lagrange modelling of solid-liquid multi-phase flow.The corresponding drag force also provides a dynamic bed equation for use in Euler-Euler modelling.
Francis, Simone
2006-04-12
influenced flow at the Flower Garden Banks, two small but thriving coral reef ecosystems in the northwest Gulf of Mexico. Flow past the modeled banks is characterized by vortex shedding, turbulent wake formation and strong return velocities in the near...
Mendoza Sanchez, Itza
2009-05-15
Contamination of surface and ground water has emerged as one of the most important environmental issues in developed and developing countries. Bioremediation of groundwater takes advantage of bacteria present in the environment to transform toxic...
Koenig, W.M.; Hennecke, D.K.; Fottner, L.
1996-01-01
New blading concepts as used in modern transonic axial-flow compressors require improved loss and deviation angle correlations. The new model presented in this paper incorporates several elements and treats blade-row flows having subsonic and supersonic inlet conditions separately. In the first part of this paper two proved and well-established profile loss correlations for subsonic flows are extended to quasi-two-dimensional conditions and to custom-tailored blade designs. Instead of a deviation angle correlation, a simple method based on singularities is utilized. The comparison between the new model and a recently published model demonstrates the improved accuracy in prediction of cascade performance achieved by the new model.
Nash Equilibria for a Model of Traffic Flow with Several Groups of Drivers
Nash Equilibria for a Model of Traffic Flow with Several Groups of Drivers Alberto Bressan and Ke population sizes 1, . . . , n, we prove the existence of a Nash equilibrium solution, where no driver can, and a characterization of this Nash equilibrium solution, are also discussed. 1 Introduction Consider a model of traffic
Integrated Modeling of Process-and Data-Centric Software Systems with PHILharmonicFlows
Ulm, Universität
Integrated Modeling of Process- and Data-Centric Software Systems with PHILharmonicFlows Carolina--Process- and data-centric software systems require a tight integration of processes, functions, data, and users methodological guidance for modeling large process- and data-centric software systems based on PHILharmonic
Potential Hydraulic Modelling Errors Associated with Rheological Data Extrapolation in Laminar Flow
Shadday, Martin A., Jr.
1997-03-20
The potential errors associated with the modelling of flows of non-Newtonian slurries through pipes, due to inadequate rheological models and extrapolation outside of the ranges of data bases, are demonstrated. The behaviors of both dilatant and pseudoplastic fluids with yield stresses, and the errors associated with treating them as Bingham plastics, are investigated.
Aalborg Universitet Comparison of Steady-State SVC Models in Load Flow Calculations
Bak-Jensen, Birgitte
that the electrical distance between the generators and the load centers is controlled. The shunt- connected FACTS-state models of static var compensator (SVC), i.e. the generator-fixed susceptance model, the total susceptance bus, equivalent SVC susceptance at the fundamental frequency and the load flow convergence rate when
MULTIPHASE CFD MODELING OF DEVELOPED AND SUPERCAVITATING FLOWS Robert F. Kunz
Kunz, Robert Francis
and in turbomachinery has led researchers to study and attempt to model large scale cavitation for decades. Comparatively simple analytical methods have been used widely and successfully to model developed cavitation, since the hydrodynamics of these flows are often dominated by irrotational and rotational inviscid
NUMERICAL SOLUTION OF RESERVOIR FLOW MODELS BASED ON LARGE TIME STEP OPERATOR SPLITTING ALGORITHMS
NUMERICAL SOLUTION OF RESERVOIR FLOW MODELS BASED ON LARGE TIME STEP OPERATOR SPLITTING ALGORITHMS. Special focus is posed on the numerical solution algorithms for the saturation equation, which. The general background for the reservoir ow model is reviewed, and the main features of the numerical
Modeling Reactive Flows in Porous Media Peter Lichtner (lead PI), Los Alamos National Laboratory
Mills, Richard
and reactive transport in porous media. Apply it to field-scale studies of Geologic CO2 sequestrationModeling Reactive Flows in Porous Media Peter Lichtner (lead PI), Los Alamos National Laboratory NCCS Users Meeting March 28, 2007 #12;Introduction Companion to SciDAC-II project, "Modeling
Bledsoe, Brian
The Nature Conservancy, Fort Collins, Colorado USA ABSTRACT Dams and water diversions can dramatically alter the hydraulic habitats of stream ecosystems. Predicting how water depth and velocity respond to flow alteration is possible using hydraulic models, such as Physical Habitat Simulation (PHABSIM); however, such models
Towards a model of large scale dynamics in transitional wall-bounded flows
Manneville, Paul
2015-01-01
A system of simplified equations is proposed to govern the feedback interactions of large-scale flows present in laminar-turbulent patterns of transitional wall-bounded flows, with small-scale Reynolds stresses generated by the self-sustainment process of turbulence itself modeled using an extension of Waleffe's approach (Phys. Fluids 9 (1997) 883-900), the detailed expression of which is displayed as an annex to the main text.
Groundwater dynamics along a hillslope: A test of the steady state hypothesis
McDonnell, Jeffrey J.
Groundwater dynamics along a hillslope: A test of the steady state hypothesis Jan Seibert,1 Kevin modeling is that the relation between groundwater levels and runoff can be described as a succession of steady state conditions. This results in a single- valued, monotonic function between the groundwater
Vrugt, Jasper A.
- duce considerable uncertainty in the model parameters and predictions. This is in part due increasingly popular for aquifer and reservoir characteriza- tion, and parameter and model predictive statistical analysis of uncertainty [Kennedy and O'Hagan, 2001], and use Markov chain Monte Carlo (MCMC
The flow of rivers into lakes: Experiments and models
Hogg, Charles
2014-06-12
was developed, giving the ratio of offshore extent of the plunge region to river width as equal to the initial densimetric Froude number. This theory agreed with the observed plunge location better than existing models. In laboratory experiments, the evolving...
NUMERICAL MODELING OF TURBULENT FLOW IN A COMBUSTION TUNNEL
Ghoniem, A.F.
2013-01-01
1VJcDona·ld, H. (1979) Combustion r 1 iodeJ·ing in Two and1979) Practical Turbulent-Combustion Interaction Models forInternation on Combustors. Combustion The 17th Symposium
L. V. Bravina; E. S. Fotina; V. L. Korotkikh; I. P. Lokhtin; L. V. Malinina; E. N. Nazarova; S. V. Petrushanko; A. M. Snigirev; E. E. Zabrodin
2015-11-06
The LHC data on event-by-event harmonic flow coefficients measured in PbPb collisions at center-of-mass energy 2.76 TeV per nucleon pair are analyzed and interpreted within the HYDJET++ model. To compare the model results with the experimental data the unfolding procedure is employed. The essentially dynamical origin of the flow fluctuations in hydro-inspired freeze-out approach has been established. It is shown that the simple modification of the model via introducing the distribution over spatial anisotropy parameters permits HYDJET++ to reproduce both elliptic and triangular flow fluctuations and related to it eccentricity fluctuations of the initial state at the LHC energy.
Unconventional Groundwater System Proves Effective in Reducing...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Unconventional Groundwater System Proves Effective in Reducing Contamination at West Valley Demonstration Project Unconventional Groundwater System Proves Effective in Reducing...
Miamisburg Environmental Management Project Archived Soil & Groundwate...
Office of Environmental Management (EM)
Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports...
Fernald Environmental Management Project Archived Soil & Groundwater...
Office of Environmental Management (EM)
Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald...
Measurement of Flow Phenomena in a Lower Plenum Model of a Prismatic Gas-Cooled Reactor
Hugh M. McIlroy, Jr.; Donald M. McEligot; Robert J. Pink
2008-05-01
Mean-velocity-field and turbulence data are presented that measure turbulent flow phenomena in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic gas-cooled reactor (GCR) similar to a General Atomics Gas-Turbine-Modular Helium Reactor (GTMHR) design. The data were obtained in the Matched-Index-of-Refraction (MIR) facility at Idaho National Laboratory (INL) and are offered for assessing computational fluid dynamics (CFD) software. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. This paper reviews the experimental apparatus and procedures, presents a sample of the data set, and reviews the INL Standard Problem. Results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). The flow in the lower plenum consists of multiple jets injected into a confined cross flow - with obstructions. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to approximate flow scaled to that expected from the staggered parallel rows of posts in the reactor design. The model is fabricated from clear, fused quartz to match the refractive-index of the mineral oil working fluid so that optical techniques may be employed for the measurements. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in complex passages in and around objects to be obtained without locating intrusive transducers that will disturb the flow field and without distortion of the optical paths. An advantage of the INL system is its large size, leading to improved spatial and temporal resolution compared to similar facilities at smaller scales. A three-dimensional (3-D) Particle Image Velocimetry (PIV) system was used to collect the data. Inlet jet Reynolds numbers (based on the jet diameter and the time-mean average flow rate) are approximately 4,300 and 12,400. Uncertainty analysis and a discussion of the standard problem are included. The measurements reveal undeveloped, non-uniform, turbulent flow in the inlet jets and complicated flow patterns in the model lower plenum. Data include three-dimensional vector plots, data displays along the coordinate planes (slices) and presentations that describe the component flows at specific regions in the model. Information on inlet conditions are also presented.
Uncertainties in modelling and scaling of critical flows and pump model in TRAC-PF1/MOD1
Rohatgi, U.S.; Yu, Wen-Shi
1987-01-01
The USNRC has established a Code Scalability, Applicability and Uncertainty (CSAU) evaluation methodology to quantify the uncertainty in the prediction of safety parameters by the best estimate codes. These codes can then be applied to evaluate the Emergency Core Cooling System (ECCS). The TRAC-PF1/MOD1 version was selected as the first code to undergo the CSAU analysis for LBLOCA applications. It was established through this methodology that break flow and pump models are among the top ranked models in the code affecting the peak clad temperature (PCT) prediction for LBLOCA. The break flow model bias or discrepancy and the uncertainty were determined by modelling the test section near the break for 12 Marviken tests. It was observed that the TRAC-PF1/MOD1 code consistently underpredicts the break flow rate and that the prediction improved with increasing pipe length (larger L/D). This is true for both subcooled and two-phase critical flows. A pump model was developed from Westinghouse (1/3 scale) data. The data represent the largest available test pump relevant to Westinghouse PWRs. It was then shown through the analysis of CE and CREARE pump data that larger pumps degrade less and also that pumps degrade less at higher pressures. Since the model developed here is based on the 1/3 scale pump and on low pressure data, it is conservative and will overpredict the degradation when applied to PWRs.
An Information Flow Model of Fault Detection Margaret C. Thompson ?
Massachusetts at Amherst, University of
not be practical. Nonethe less, Relay provides insight into testing and fault de tection and suggests an approach and Computer Science Amherst, MA 01003 University of California Irvine, CA 92717 Abstract Relay is a model of how a fault causes a failure on execution of some test datum. This process begins with introduction
Physical Model Development and Benchmarking for MHD Flows in Blanket Design
Ramakanth Munipalli; P.-Y.Huang; C.Chandler; C.Rowell; M.-J.Ni; N.Morley; S.Smolentsev; M.Abdou
2008-06-05
An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as “canonical”,) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.
Analytical solution for two-phase flow in a wellbore using the drift-flux model
Pan, L.; Webb, S.W.; Oldenburg, C.M.
2011-11-01
This paper presents analytical solutions for steady-state, compressible two-phase flow through a wellbore under isothermal conditions using the drift flux conceptual model. Although only applicable to highly idealized systems, the analytical solutions are useful for verifying numerical simulation capabilities that can handle much more complicated systems, and can be used in their own right for gaining insight about two-phase flow processes in wells. The analytical solutions are obtained by solving the mixture momentum equation of steady-state, two-phase flow with an assumption that the two phases are immiscible. These analytical solutions describe the steady-state behavior of two-phase flow in the wellbore, including profiles of phase saturation, phase velocities, and pressure gradients, as affected by the total mass flow rate, phase mass fraction, and drift velocity (i.e., the slip between two phases). Close matching between the analytical solutions and numerical solutions for a hypothetical CO{sub 2} leakage problem as well as to field data from a CO{sub 2} production well indicates that the analytical solution is capable of capturing the major features of steady-state two-phase flow through an open wellbore, and that the related assumptions and simplifications are justified for many actual systems. In addition, we demonstrate the utility of the analytical solution to evaluate how the bottomhole pressure in a well in which CO{sub 2} is leaking upward responds to the mass flow rate of CO{sub 2}-water mixture.
Cirpka, Olaf Arie
methods Mathematical modelling CO2 storage Enhanced oil recovery Groundwater contamination Multi-phase multi-component flow processes are fundamental to engineering applications in hydrocarbon and geothermal The transport of dissolved chemical components (e.g., CO2, NaCl, CH4) in different fluid phases (e.g., water
Probabilistic risk analysis of groundwater remediation strategies
Bolster, Diogo
Probabilistic risk analysis of groundwater remediation strategies D. Bolster,1 M. Barahona,1 M uncertainty quantification and risk analysis. When these modeling components are ignored, the failure is emerging that risk analysis must be an integral part of decision making in subsurface hydrology, its
McKenzie, Jeffrey M.
Analytical solutions for benchmarking cold regions subsurface water flow and energy transport Freezing and thawing a b s t r a c t Numerous cold regions water flow and energy transport models have of powerful simulators of cold regions subsurface water flow and energy transport have emerged in recent years
A gas kinetic scheme for the Baer-Nunziato two-phase flow model
Pan, Liang, E-mail: panliangjlu@sina.com [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China) [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); The Graduate School of China Academy of Engineering Physics, Beijing 100088 (China); Zhao, Guiping, E-mail: zhaogp@nsfc.gov.cn [National Natural Science Foundation of China, Beijing 100085 (China)] [National Natural Science Foundation of China, Beijing 100085 (China); Tian, Baolin, E-mail: tian_baolin@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China) [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Wang, Shuanghu, E-mail: wang_shuanghu@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China) [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)
2012-09-15
Numerical methods for the Baer-Nunziato (BN) two-phase flow model have attracted much attention in recent years. In this paper, we present a new gas kinetic scheme for the BN two-phase flow model containing non-conservative terms in the framework of finite volume method. In the view of microscopic aspect, a generalized Bhatnagar-Gross-Krook (BGK) model which matches with the BN model is constructed. Based on the integral solution of the generalized BGK model, we construct the distribution functions at the cell interface. Then numerical fluxes can be obtained by taking moments of the distribution functions, and non-conservative terms are explicitly introduced into the construction of numerical fluxes. In this method, not only the complex iterative process of exact solutions is avoided, but also the non-conservative terms included in the equation can be handled well.
Christopher Ness; Jin Sun
2014-12-11
Shear flow of dense, non-Brownian suspensions is simulated using the discrete element method, taking particle contact and hydrodynamic lubrication into account. The resulting flow regimes are mapped in the parametric space of solid volume fraction, shear rate, fluid viscosity and particle stiffness. Below a critical volume fraction $\\phi_c$, the rheology is governed by the Stokes number, which distinguishes between viscous and inertial flow regimes. Above $\\phi_c$, a quasistatic regime exists for low and moderate shear rates. At very high shear rates, the $\\phi$ dependence is lost and soft particle rheology is explored. The transitions between rheological regimes are associated with the evolving contribution of lubrication to the suspension stress. Transitions in microscopic phenomena such as inter-particle force distribution, fabric and correlation length are found to correspond to those in the macroscopic flow. Motivated by the bulk rheology, a constitutive model is proposed combining a viscous pressure term with a dry granular model presented by Chialvo, Sun and Sundaresan [Phys. Rev. E. \\textbf{85}, 021305 (2012)]. The model is shown to successfully capture the flow regime transitions.
Elliptic flow from pQCD + saturation + hydro model
Eskola, K J; Ruuskanen, P V
2008-01-01
We have previously predicted multiplicities and transverse momentum spectra of hadrons for the most central LHC Pb+Pb collisions at $\\sqrt{s_{NN}}=5.5$ TeV using initial state for hydrodynamic evolution from pQCD + final state saturation model. By considering binary collision and wounded nucleon profiles we extend these studies to non-central collisions, and predict the $p_{T}$ dependence of minimum bias $v_{2}$ for pions at the LHC. For protons we also show how the $p_{T}$ dependence of $v_2$ changes from RHIC to the LHC.
Elliptic flow from pQCD + saturation + hydro model
K. J. Eskola; H. Niemi; P. V. Ruuskanen
2007-05-15
We have previously predicted multiplicities and transverse momentum spectra of hadrons for the most central LHC Pb+Pb collisions at $\\sqrt{s_{NN}}=5.5$ TeV using initial state for hydrodynamic evolution from pQCD + final state saturation model. By considering binary collision and wounded nucleon profiles we extend these studies to non-central collisions, and predict the $p_{T}$ dependence of minimum bias $v_{2}$ for pions at the LHC. For protons we also show how the $p_{T}$ dependence of $v_2$ changes from RHIC to the LHC.
On the uniqueness of flow in a recent tsunami model
Mustafa, Octavian G
2011-01-01
We give an elementary proof of uniqueness for the integral curve starting from the vertical axis in the phase-plane analysis of the recent model [A. Constantin, R.S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynam. Res. 40 (2008), 175--211]. Our technique can be applied easily in circumstances where the reparametrization device from [A. Constantin, A dynamical systems approach towards isolated vorticity regions for tsunami background states, Arch. Rational Mech. Anal. doi: 10.1007/s00205-010-0347-1] might lead to some serious difficulties.
On the uniqueness of flow in a recent tsunami model
Octavian G. Mustafa
2011-03-12
We give an elementary proof of uniqueness for the integral curve starting from the vertical axis in the phase-plane analysis of the recent model [A. Constantin, R.S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynam. Res. 40 (2008), 175--211]. Our technique can be applied easily in circumstances where the reparametrization device from [A. Constantin, A dynamical systems approach towards isolated vorticity regions for tsunami background states, Arch. Rational Mech. Anal. doi: 10.1007/s00205-010-0347-1] might lead to some serious difficulties.
Groundwater Data Analysis Lalit Kumar
Sohoni, Milind
Groundwater Data Analysis Lalit Kumar (10305073) Guide: Prof. Milind Sohoni Department of Computer BombayGroundwater Data Analysis Oct 25, 2011 1 / 23 #12;Outline Motivation Objective Terminology Case Sohoni (Department of Computer Science and EngineeringIndian Institute of Technology BombayGroundwater
GROUNDWATER REMEDIATION DESIGN USING SIMULATED
Mays, Larry W.
CHAPTER 8 GROUNDWATER REMEDIATION DESIGN USING SIMULATED ANNEALING Richard L. Skaggs Pacific? There has been an emergence in the use of combinatorial methods such as simulated annealing in groundwater for groundwater management applications. The algorithm incor- porates "directional search" and "memory
2, 939970, 2005 Groundwater com-
Paris-Sud XI, Université de
HESSD 2, 939970, 2005 Groundwater com- partmentalisation E. A. Mohamed and R. H. Worden Title Page-access review for the journal Hydrology and Earth System Sciences Groundwater compartmentalisation is licensed under a Creative Commons License. 939 #12;HESSD 2, 939970, 2005 Groundwater com
Topological groundwater hydrodynamics Garrison Sposito
Chen, Yiling
Topological groundwater hydrodynamics Garrison Sposito Department of Civil and Environmental; received in revised form 10 November 2000; accepted 15 November 2000 Abstract Topological groundwater, the topological characteristics of groundwater ¯ows governed by the Darcy law are studied. It is demonstrated that
CFD modeling of commercial-scale entrained-flow coal gasifiers
Ma, J.; Zitney, S.
2012-01-01
Optimization of an advanced coal-fired integrated gasification combined cycle system requires an accurate numerical prediction of gasifier performance. Computational fluid dynamics (CFD) has been used to model the turbulent multiphase reacting flow inside commercial-scale entrained-flow coal gasifiers. Due to the complexity of the physical and chemical processes involved, the accuracy of sub-models requires further improvement. Built upon a previously developed CFD model for entrained-flow gasification, the advanced physical and chemical sub-models presented in this paper include a moisture vaporization model with consideration of high mass transfer rate and a coal devolatilization model with more species to represent coal volatiles and the heating rate effect on volatile yield. The global gas phase reaction kinetics is also carefully selected. To predict a reasonable peak temperature of the coal/O{sub 2} flame inside an entrained-flow gasifier, the reserve reaction of H{sub 2} oxidation is included in the gas phase reaction model. The enhanced CFD model is applied to simulate two typical commercial-scale oxygen-blown entrained-flow configurations including a single-stage down-fired gasifier and a two-stage up-fired gasifier. The CFD results are reasonable in terms of predicted carbon conversion, syngas exit temperature, and syngas exit composition. The predicted profiles of velocity, temperature, and species mole fractions inside the entrained-flow gasifier models show trends similar to those observed in a diffusion-type flame. The predicted distributions of mole fractions of major species inside both gasifiers can be explained by the heterogeneous combustion and gasification reactions and the homogeneous gas phase reactions. It was also found that the syngas compositions at the CFD model exits are not in chemical equilibrium, indicating the kinetics for both heterogeneous and gas phase homogeneous reactions are important. Overall, the results achieved here indicate that the gasifier models reported in this paper are reliable and accurate enough to be incorporated into process/CFD co-simulations of IGCC power plants for system-wide design and optimization.
Quinn, N.W.T.
1992-01-01
The San Joaquin-Tulare Conjunctive Use Model (SANTUCM) was developed to evaluate possible long-term scenarios for long term management of drainage and drainage related problems in the western San Joaquin Valley of California. The unique aspect of the conjunctive use model is its coupling of a surface water delivery operations model with a regional groundwater model. A salinity model has been added to utilize surface water model output and allow assessment of compliance with State Water Resources Control Board water quality objectives for the San Joaquin River. The results of scenario runs, performed to data, using the SANTUCM model show table lowering and consequent drainage reduction can be achieved through a combination of source control, land retirement and regional groundwater pumping. The model also shows that water transfers within the existing distribution system are technically feasible and might allow additional releases to be made from Friant Dam for water quality maintenance in the San Joaquin River. However, upstream of Mendota Pool, considerable stream losses to the aquifer are anticipated, amounting to as much as 70% of in-stream flow.
Abarca, Elena
Detailed field measurements are combined with a numerical modeling to characterize the groundwater dynamics beneath the discharge zone at Waquoit Bay, Massachusetts. Groundwater salinity values revealed a saline circulation ...
Wolberg, George
1 EAS 44600/B4600 GROUNDWATER HYDROLOGY Fall 2014 Instructor: Dr. Pengfei Zhang, MR-932, 212 a working knowledge of groundwater. Course material will cover hydrologic cycle, fundamental physics of porous media flow, aquifer evaluation, chemical properties of groundwater, and contaminant transport
Modeling tidal flow in the Great Bay Estuary, New Hampshire, using a depth averaged
Modeling tidal flow in the Great Bay Estuary, New Hampshire, using a depth averaged flooding, University of New Hampshire, USA. 2 Numerical Methods Lab., Dartmouth College, USA. 3 Ocean Process Analysis Lab., University of New Hampshire, USA. Abstract Current, sea level and bed load transport
Nash Equilibria for a Model of Traffic Flow with Several Groups of Drivers
Bressan, Alberto
Nash Equilibria for a Model of Traffic Flow with Several Groups of Drivers Alberto Bressan and Ke population sizes 1, . . . , n, we prove the existence of a Nash equilibrium solution, where no driver can, and a characterization of this Nash equilibrium solution, are also discussed. Key words: Scalar conservation law
Rheo-PIV Analysis of the Yielding and Flow of Model Waxy Crude Oils
Rheo-PIV Analysis of the Yielding and Flow of Model Waxy Crude Oils Christopher J. Dimitriou@mit.edu Abstract Waxes are a commonly encountered precipitate that can result in gelation of crude oils behavior similar to waxy crude oils encountered in production scenarios. To study the consequences
Mathematical Modeling of Flow-Generated Forces in an In Vitro System of Cardiac Valve Development
Weidner, John W.
Mathematical Modeling of Flow-Generated Forces in an In Vitro System of Cardiac Valve Development) Abstract--Heart valve defects are the most common cardiac defects. Therefore, defining the mechanisms of cardiac valve development is critical to our understanding and treatment of these disorders. At early
On the notion of laminar and weakly turbulent elementary fluid flows: a simple mathematical model
Gianluca Argentini
2006-08-28
An elementary analytical fluid flow is composed by a geometric domain, a list of analytical constraints and by the function which depends on the physical properties, as Reynolds number, of the considered fluid. For this object, notions of laminar or weakly turbulent behavior are described using a simple mathematical model.
Barber, Stuart
4 th World Congress on Industrial Process Tomography, Aizu, Japan Modelling and predicting flow of Statistics, University of Leeds, Leeds, LS2 9JT, UK, robert@maths.leeds.ac.uk ABSTRACT The aim of industrial without intruding into the industrial process, but produce highly correlated and noisy data, and hence
Harilal, S. S.
Modeling hydrogen and helium entrapment in flowing liquid metal surfaces as plasma the viability of specific liquid candidates as renewable di- vertor surfaces. Hydrogen isotope (DT) particles solubility of the hydrogen in liquid lithium. This will result in a low- recycling divertor and a high edge
MODELING THE EFFECT OF FLOW FIELD DESIGN ON PEM FUEL CELL PERFORMANCE
Van Zee, John W.
and transportation applications. One aspect that is crucial to optimizing the performance of PEM fuel cellsMODELING THE EFFECT OF FLOW FIELD DESIGN ON PEM FUEL CELL PERFORMANCE Jeffrey Glandt, Sirivatch Shimpalee, Woo-kum Lee, and John W. Van Zee Fuel Cell Research Laboratory Department of Chemical Engineering
Numerical modeling of fluid flow and time-lapse seismograms applied to
Santos, Juan
; and CO2 and CO2 are the CO2 mole fraction and the CO2 mass fraction in the brine phase. This conversionNumerical modeling of fluid flow and time-lapse seismograms applied to CO2 storage and monitoring G and time-lapse seismograms applied to CO2 storage and monitoring p. #12;Introduction · Fossil
Application of the ``Ke'' model to open channel flows in a magnetic field
Abdou, Mohamed
of turbulence) by a strong magnetic field. Based on the experimental data, the laminarization in channel flows-133 Engineering IV, Los Angeles, CA 90095-1597, USA b Department of Nuclear Engineering, Kyoto University, Japan. The model coefficients have been tuned by a computer optimization using available experimental data
An adiabatic homogeneous model for the flow around a multi-perforated plate
Mendez, Simon
homogeneous model to account for multi-perforated lin- ers in combustion chamber flow simulations is described in industrial full-scale computations of gas turbine combustion chambers, where effusion cooling is commonly in the streamwise direction Post-doctoral fellow, CFD team, mendez@cerfacs.fr, AIAA Member Professor, I3M CNRS UMR
Radio frequency induced ionized collisional flow model for application at atmospheric pressures
Roy, Subrata
Radio frequency induced ionized collisional flow model for application at atmospheric pressures and radio frequency (rf) induced plasma-sheath dynamics, using multifluid equations. For the former, argon inherent in nonequilibrium discharges such as obtained through radio frequency (rf) or microwave excitation
A non-continuum approach to obtain a macroscopic model for the flow of traffic
Tyagi, Vipin
2007-09-17
by continuum models for the flow of traffic. The number of vehicles in a typical section of a freeway does not justify traffic being treated as a continuum. It is also important to recognize that the basic premises of kinetic theory are not appropriate...
CIRQ: Qualitative fluid flow modelling for aerospace FMEA applications Neal Snooke
Snooke, Neal
M2 CIRQ: Qualitative fluid flow modelling for aerospace FMEA applications Neal Snooke Department- oped on top of the MCIRQ simulator with the aim to produce an automated FMEA for aircraft fuel systems similar to pre- viously developed automated electrical FMEA. Introduction This paper describes a circuit
Huppert, Herbert
Static and flowing regions in granular collapses down channels: Insights from a sedimenting shallow extend the model of Larrieu 2006 to include an estimation for the interface between the static, 043301 2007 . An empirical sedimentation term Ls and the instantaneous removal of a static deposit wedge
LABORATORY-NUMERICAL MODEL COMPARISONS OF CANYON FLOWS: A PARAMETER STUDY.
LABORATORY-NUMERICAL MODEL COMPARISONS OF CANYON FLOWS: A PARAMETER STUDY. DON L. BOYER Cite Scientifique 59655 - Villeneuve d'Ascq cedex (France) ABSTRACT An integrated set of laboratory surrounding a coastal canyon and, further, to explore the degree to which laboratory experiments can provide
Self-sustaining turbulence in a restricted nonlinear model of plane Couette flow
Thomas, Vaughan L.; Gayme, Dennice F.; Lieu, Binh K.; Jovanovi?, Mihailo R.; Farrell, Brian F.; Ioannou, Petros J.
2014-10-15
This paper demonstrates the maintenance of self-sustaining turbulence in a restricted nonlinear (RNL) model of plane Couette flow. The RNL system is derived directly from the Navier-Stokes equations and permits higher resolution studies of the dynamical system associated with the stochastic structural stability theory (S3T) model, which is a second order approximation of the statistical state dynamics of the flow. The RNL model shares the dynamical restrictions of the S3T model but can be easily implemented by reducing a DNS code so that it retains only the RNL dynamics. Comparisons of turbulence arising from DNS and RNL simulations demonstrate that the RNL system supports self-sustaining turbulence with a mean flow as well as structural and dynamical features that are consistent with DNS. These results demonstrate that the simplified RNL system captures fundamental aspects of fully developed turbulence in wall-bounded shear flows and motivate use of the RNL/S3T framework for further study of wall-turbulence.
Föllmer, Hans
Risk assessment for uncertain cash flows: Model ambiguity, discounting ambiguity, and the role of bubbles Beatrice Acciaio Hans F¨ollmer Irina Penner August 26, 2010 Abstract We study the risk assessment penalization, and how they cause a breakdown of asymptotic safety of the risk assessment procedure. Mathematics
WAVE SPEEDS FOR AN ELASTOPLASTIC MODEL FOR TWODIMENSIONAL DEFORMATIONS WITH A NONASSOCIATIVE FLOW of variables, the character istic speeds of plane wave solutions of the system are computed. For both plastic and elastic deformations, there are two nonzero wave speeds, referred to as fast and slow waves. It is shown
On the application of robust numerical methods to a complete-flow wave-current model
Madden, Niall
-current interaction in the presence of weakly turbulent flow leading to an Orr-Sommerfeld type problem, and a system of two singularly perturbed reaction-diffusion equations from a k- turbulence model. The numerical of modifying the scheme to stabilize it, a mesh tailored to the specific problem is used. In this study we
On the application of robust numerical methods to a complete-flow wave-current model
Madden, Niall
-current interaction in the presence of weakly turbulent flow leading to an Orr-Sommerfeld type problem and a system of two singularly perturbed reaction-diffusion equations from a k- turbulence model. The numerical layers. Instead of modifying the scheme to stabilize it, a mesh tailored to the specific problem is used
Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow
Boyer, Edmond
Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S in a rotor-stator cavity subjected to a superimposed throughflow with heat transfer. Nu- merical predictions field from the heat transfer process. The turbulent flux is approximated by a gradient hypothesis
A Model of Plasma Heating by Large-Scale Flow
Pongkitiwanichakul, P; Boldyrev, S; Mason, J; Perez, J C
2015-01-01
In this work we study the process of energy dissipation triggered by a slow large scale motion of a magnetized conducting fluid. Our consideration is motivated by the problem of heating the solar corona, which is believed to be governed by fast reconnection events set off by the slow motion of magnetic field lines anchored in the photospheric plasma. To elucidate the physics governing the disruption of the imposed laminar motion and the energy transfer to small scales, we propose a simplified model where the large-scale motion of magnetic field lines is prescribed not at the footpoints but rather imposed volumetrically. As a result, the problem can be treated numerically with an efficient, highly-accurate spectral method, allowing us to use a resolution and statistical ensemble exceeding those of the previous work. We find that, even though the large-scale deformations are slow, they eventually lead to reconnection events that drive a turbulent state at smaller scales. The small-scale turbulence displays many...
Buda-Lund hydro model and the elliptic flow at RHIC
M. Csanad; T. Csorgo; B. Lorstad
2004-02-12
The ellipsoidally symmetric Buda-Lund hydrodynamic model describes naturally the transverse momentum and the pseudorapidity dependence of the elliptic flow in Au+Au collisions at $\\sqrt{s_{NN}} = 130$ and 200 GeV. The result confirms the indication of quark deconfinement in Au+Au collisions at RHIC, obtained from Buda-Lund hydro model fits to combined spectra and HBT radii of BRAHMS, PHOBOS, PHENIX and STAR.
Stress-induced patterns in ion-irradiated Silicon: a model based on anisotropic plastic flow
Scott A. Norris
2012-07-24
We present a model for the effect of stress on thin amorphous films that develop atop ion-irradiated silicon, based on the mechanism of ion-induced anisotropic plastic flow. Using only parameters directly measured or known to high accuracy, the model exhibits remarkably good agreement with the wavelengths of experimentally-observed patterns, and agrees qualitatively with limited data on ripple propagation speed. The predictions of the model are discussed in the context of other mechanisms recently theorized to explain the wavelengths, including extensive comparison with an alternate model of stress.
High-resolution quantification of groundwater flux using a heat tracer: laboratory sandbox tests
Konetchy, Brant Evan
2014-12-31
and groundwater flux. In this work, we constructed a sandbox to simulate a sand aquifer and performed a series of heat tracer tests under different flow rates. By analyzing the temperature responses among different tests, we developed a quantitative temperature...
Manera, Annalisa [Delft University of Technology (Netherlands); Prasser, Horst-Michael [Forschungszentrum Rossendorf (Germany); Hagen, Tim H.J.J. van der [Delft University of Technology (Netherlands)
2005-10-15
An assessment of void-fraction correlations and drift-flux models applied to stationary and transient flashing flows in a vertical pipe has been performed. Experiments have been carried out on a steam/water loop that can be operated both in forced- and natural-circulation conditions to provide data for the assessment. The GE-Ramp and Dix models are found to give very good predictions both for forced- and natural-circulation flow conditions, in the whole range of measured void fractions.Advanced instrumentation, namely, wire-mesh sensors, has been used to obtain a detailed picture of the void-fraction development in the system. On the basis of experimental data, a three-dimensional visualization of the transient flow pattern during flashing was achieved. A transition of the flow pattern between bubbly and slug/churn regimes was found.
Fluid-particle flow modelling and validation using two-way-coupled mesoscale SPH-DEM
Robinson, Martin; Ramaioli, Marco
2013-01-01
We present a meshless simulation method for multiphase fluid-particle flows coupling Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM). Rather than fully resolving the interstitial fluid, which is often infeasible, the unresolved fluid model is based on the locally averaged Navier Stokes equations, which are coupled with a DEM model for the solid phase. In contrast to similar mesh-based Discrete Particle Methods (DPMs), this is a purely particle-based method and enjoys the flexibility that comes from the lack of a prescribed mesh. It is suitable for problems such as free surface flow or flow around complex, moving and/or intermeshed geometries. It can be used for both one and two-way coupling and is applicable to both dilute and dense particle flows. A comprehensive validation procedure for fluid-particle simulations is presented and applied to the SPH-DEM method, using simulations of single and multiple particle sedimentation in a 3D fluid column and comparison with analytical model...
A Comparison between Two Simple Models of a Slug Flow in a Long Flexible Marine Riser
Pollio, A
2009-01-01
Slug flows are extremely interesting multiphase regime phenomena which frequently occur in flexible marine risers used by the petroleum industry in offshore environments and have both a liquid and gaseous phase. This paper describes two simple models of the slug flow regime by means of an equivalent monophase flow with a non-constant density. The slug regime is modelled as a monophase density-varying flow with a sinusoidal density, travelling along the pipe itself towards the top end node of the riser. Starting from the bottom end, it is characterized by adiabatic processes and energy loss along the entire length of the pipe. In the first model, the slug wavelength is supposed to be independent of the riser inclination, while in the second one a simple linear relationship between the slug wavelength and the pipe inclination was imposed. The global equation of the motion of the riser (written in a two-dimensional domain throughout the plane containing the riser) was solved using a Matlab code in the time domai...
Severinghaus, Jeffrey P.
In situ cosmogenic radiocarbon production and 2-D ice flow line modeling for an Antarctic blue ice; accepted 12 April 2012; published 24 May 2012. [1] Radiocarbon measurements at ice margin sites and blue and 2-D ice flow line modeling for an Antarctic blue ice area, J. Geophys. Res., 117, F02029, doi:10
MacDonald, Mark
1 Title: Flow modeling in Pelton turbines by an accurate Eulerian and a fast Lagrangian evaluation Fluids Dynamics (CFD) has allowed the flow modeling in impulse hydro turbines that includes complex-parametric design optimization of the turbine's runner. In the present work, a CFD Eulerian approach is applied
A Formal Model for Verifying the Impact of Stealthy Attacks on Optimal Power Flow in Power Grids
Wang, Yongge
- mal Power Flow; Formal Model 1. INTRODUCTION Power system control centers employ a numberA Formal Model for Verifying the Impact of Stealthy Attacks on Optimal Power Flow in Power Grids the integrity of OPF and undermine the economic and secure system operation. We present a formal verification
Zero gravity two-phase flow regime transition modeling compared with data and relap5-3d predictions
Ghrist, Melissa Renee
2009-05-15
This thesis compares air/water two-phase flow regime transition models in zero gravity with data and makes recommendations for zero gravity models to incorporate into the RELAP5-3D thermal hydraulic computer code. Data ...