Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ground Water Recovery and Treatment  

Science Journals Connector (OSTI)

Until the environmental revolution, the only ground water that was routinely treated to remove contamination was the impacted ground water that was extracted for beneficial use. With ... the recognition that cont...

Tie Li Ph.D.; Raaj U. Patel P.G.; David K. Ramsden Ph.D.…

2003-01-01T23:59:59.000Z

2

Ground Water Ground Sky Sky Water Vegetation Ground Vegetation Water  

E-Print Network (OSTI)

Bear Snow Vegetation RhinoWater Vegetation Ground Water Ground Sky Sky Rhino Water Vegetation Ground Vegetation Water Rhino Water Vegetation Ground Rhino Water Rhino Water Ground Ground Vegetation Water Rhino Vegetation Rhino Vegetation Ground Rhino Vegetation Ground Sky Rhino Vegetation Ground Sky

Chen, Tsuhan

3

Construction Summary and As-Built Report for Ground Water Treatment System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Summary and As-Built Report for Ground Water Treatment Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site More Documents & Publications Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008 Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah Performance Assessment and Recommendations for Rejuvenation of a Permeable

4

Effectiveness of aquamag ground brucite in water treatment processes  

Science Journals Connector (OSTI)

We present the results of laboratory tests of the physical and chemical properties of two size fractions of Aquamag ground brucite (particle sizes 0–45 µm and ... acid), as well as the effectiveness of brucite fo...

A. N. Belevtsev; S. A. Baikova; V. I. Zhavoronkova; N. N. Mel’nikova…

2007-05-01T23:59:59.000Z

5

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Household Wastewater Treatment  

E-Print Network (OSTI)

. This publication covers the following topics: 1. Septic tanks/soil absorption systems 2. Quantity of wastewater 3. Quality of wastewater 4. Collection of wastewater 5. Treatment systems 6. Disposal system 7. Assistance with failing systems or new designs 8.... Evaluation table Septic Tanks/Soil Absorption Systems The most common form of on-site waste- water treatment is a septic tank/soil absorption system. In this system, wastewater flows from the household sewage lines into an under- ground septic tank...

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

1997-08-29T23:59:59.000Z

6

Treatment and remediation methods for arsenic removal from the ground water  

Science Journals Connector (OSTI)

Globally, ground water is contaminating by arsenic continously, which needs economic treatment and remediation technologies. Physical, chemical and biological treatment methods have been developed, that include different kinds of filters, bucket type units, fill and draw, kalshi etc. The remediation methods discussed are air oxidation, reactive barriers, utilisation of deeper aquifers and sanitary protected dug wells. To the best of our knowledge no technology is available capable to remove arsenic from water at efficient, economic and commercial levels. Therefore, fast, efficient and economic arsenic removal technologies are required. Attempts have been made to suggest the future technologies of arsenic removal.

Imran Ali; Tabrez A. Khan; Iqbal Hussain

2011-01-01T23:59:59.000Z

7

Ground water and energy  

SciTech Connect

This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

Not Available

1980-11-01T23:59:59.000Z

8

Ground water provides drinking water, irrigation for  

E-Print Network (OSTI)

Ground water provides drinking water, irrigation for crops and water for indus- tries. It is also connected to surface waters, and maintains the flow of rivers and streams and the level of wetlands- tion of those along Lake Michigan, most communi- ties, farms and industries still rely on ground water

Saldin, Dilano

9

Remediation of ground water containing chlorinated and brominated hydrocarbons, benzene and chromate by sequential treatment using ZVI and GAC  

Science Journals Connector (OSTI)

A laboratory experiment with two sequenced columns was performed as a preliminary study for the installation of a permeable reactive barrier (PRB) at a site where a mixed ground water contamination exists. The...

Volkmar Plagentz; Markus Ebert; Andreas Dahmke

2006-03-01T23:59:59.000Z

10

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Livestock Manure Storage and Treatment Facilities  

E-Print Network (OSTI)

Improperly managed manure can contaminate both ground and surface water. Storing manure allows producers to spread it when crops can best use the nutrients. This publication explains safe methods of manure storage, as well as specifics about safe...

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

1997-08-29T23:59:59.000Z

11

EPA Final Ground Water Rule  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Safety and Environment Office of Nuclear Safety and Environment Nuclear Safety and Environment Information Brief HS-20-IB-2007-02 (March 2007) EPA Final Ground Water Rule Safe Drinking Water Act: National Primary Drinking Water Regulations Ground Water Rule - 40 CFR Parts 9, 141 and 142 Final Rule: 71 FR 65574 Effective Date: January 8, 2007 1 RULE SYNOPSIS On November 8, 2006, the U.S. Environmental Protection Agency (EPA) published a final Ground Water Rule (GWR) to promote increased protection against microbial pathogens that may be present in public water systems (PWSs) that use ground water sources for their supply (these systems are known as ground water systems). This Rule establishes a risk-targeted approach

12

Ground Water Management Regulations (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The rules and regulations apply to the management of the state's ground water resources. In addition, the Commissioner of Conservation has recommended that oil and gas operators with an interest...

13

Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 3. Historical Ground-Water  

E-Print Network (OSTI)

............................................................................................................................................................... 9 Mine history and ground-water development ....................................................................................................................................................... 11 Ground-water quality database.......................................................................................................................................................... 29 Compilation of complete database

14

Water Resources Water Quality and Water Treatment  

E-Print Network (OSTI)

Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

Sohoni, Milind

15

Worldwide Occurrences of Arsenic in Ground Water  

Science Journals Connector (OSTI)

...decision-making process of water managers, remediation specialists, and...The geologic and ground-water conditions that promote...water managers, remediation specialists, and...The geologic and ground-water conditions that promote...

D. Kirk Nordstrom

2002-06-21T23:59:59.000Z

16

Surfactants for ground water remediation  

Science Journals Connector (OSTI)

Ground water contamination is a most intractable form of pollution. Spilled solvent or fuel liquids are trapped below the water table by colloidal forces. Surfactants may be used to dramatically improve contaminated aquifer remediation rates. Principal remediation mechanisms include micellar solubilization and mobilization of the trapped liquids by lowering of the oil/water interfacial tension. Surfactant selection is a key to the successful design of a remediation effort, and involves consideration of factors including Krafft Point, surfactant adsorption onto the aquifer solids, and the phase behavior of the oil/water/surfactant system. Successful field demonstrations have occurred in recent months and the technology is moving rapidly toward commercialization. Critical research issues remain including acceptable clean-up levels, surfactant/contaminant in situ biodegradation rates, and surfactant decontamination and reuse.

Jeffrey H. Harwell; David A. Sabatini; R.C. Knox

1999-01-01T23:59:59.000Z

17

Limiting factors in ground water remediation  

Science Journals Connector (OSTI)

If one is charged with restoring a contaminated aquifer today, the procedure of pumping contaminated water to the surface for treatment and discharge is most often the state-of-practice technology. The perceived success of pump-and-treat technology can be misleading if the hydrology and contaminant characteristics at the site are not adequately understood. A failure to understand the processes controlling contaminant transport can result in extremely long pumping periods and, consequently, costly and inefficient remediation. Effects of tailing, sorption, and residual immiscible fluids on time required for pump-and-treat remediation of ground water are discussed.

Clinton W. Hall; Jeffrey A. Johnson

1992-01-01T23:59:59.000Z

18

Ground water contamination in the United States  

Science Journals Connector (OSTI)

...volume of ground water in storage exceeds the vol-ume...geo-thermal water; intruded seawater; water affected by evapotranspiration...pressure and the volume in storage may fluctuate according...Estimates of ground water in storage in the United States...communities have over-pumped their freshwater aquifers...

VI Pye; R Patrick

1983-08-19T23:59:59.000Z

19

Montana Ground Water Assessment Act (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This statute establishes a program to systematically assess and monitor the state's ground water and to disseminate the information to interested persons in order to improve the quality of ground...

20

Programmatic Environmental Impact Statement for Ground Water...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement for Ground Water Volumes I & II (October 1996) Optical character recognition has been applied to these files, but full search capabilities...

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Integrated Water Management Options in the Nebraska Ground Water Management &  

E-Print Network (OSTI)

Integrated Water Management Options in the Nebraska Ground Water Management & Protection Act by J of the Nebraska Ground Water Management & Protection Act (GMPA) 2. the special GMPA integrated water management a correlative rights framework, and 5. what additional water management tools are needed to effectively deal

Nebraska-Lincoln, University of

22

Appendix B Ground Water Management Policy  

Office of Legacy Management (LM)

Ground Water Management Policy Ground Water Management Policy for the Monticello Mill Tailings Site and Adjacent Areas This page intentionally left blank Docun~ent Number Q0029500 Appendix B State of Utah DEPARTblENT OF NATURAL RESOURCES DIVISION OF WATER RIGHTS Ground-Water Management Policy for the Mot~ticello Mill Tailings Site and Adjacent Areas The Monticello Mill Tailings Site is on the southeast portion of the tovm of Monticello in Sectton 36, T33S, K23E and Section 31, i33S. R24E, SLB&M. The mill site was used from 1942 to 1960 in the processing of uranium and vanadium. The U.S. Department of Energy (DOE) is currently cleaning up the site. The site is in the small canyon that forms the drainage for South Creek. The general direction of water flow, of both surface streams and the shallow

23

EPA - Ground Water Discharges (EPA's Underground Injection Control...  

Open Energy Info (EERE)

EPA - Ground Water Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water...

24

Electrodialysis in Water Treatment  

Science Journals Connector (OSTI)

This chapter focuses on the uses of electrodialysis and specially electrodialysis reversal for the treatment of brackish and groundwater to produce drinking water. Over the last 10–15 years,...

Andréa Moura Bernardes; Marco A. S. Rodrigues

2014-01-01T23:59:59.000Z

25

Appendix D Surface Water and Ground Water Time-Concentration Plots,  

Office of Legacy Management (LM)

Surface Water and Ground Water Time-Concentration Plots, Surface Water and Ground Water Time-Concentration Plots, Stream Discharge Measurements, Ground Water Level Data, and Ground Water Well Hydrographs This page intentionally left blank Contents Section .................................................................................. Surface Water Time-Concentration Plots D1.O ............................................................................................... Stream Discharge Measurements D2.0 ............................................................. Ground Water Time-Concentration Plots for Uranium D3.0 .......................................................................................................... Ground Water Level Data D4.0 ..............................................................................................

26

Ground-water sample collection and analysis plan for the ground-water surveillance project  

SciTech Connect

The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy`s (DOE`s) Hanford Site in support of DOE`s environmental surveillance responsibilities. The purpose of this document is to translate DOE`s General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives.

Bryce, R.W.; Evans, J.C.; Olsen, K.B.

1991-12-01T23:59:59.000Z

27

Ground-water sample collection and analysis plan for the ground-water surveillance project  

SciTech Connect

The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy's (DOE's) Hanford Site in support of DOE's environmental surveillance responsibilities. The purpose of this document is to translate DOE's General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives.

Bryce, R.W.; Evans, J.C.; Olsen, K.B.

1991-12-01T23:59:59.000Z

28

Water Rights: Ground Water (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water (Indiana) Ground Water (Indiana) Water Rights: Ground Water (Indiana) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Natural Resources It is the policy of the state to provide for the conservation of groundwater resources and limit groundwater waste. The Indiana Department of Natural Resources may designate restricted use areas and limit groundwater withdrawals by existing users in those areas, thus making groundwater use greater than 100,000 gallons per day subject to permitting

29

Water Quality Surface and Ground | Open Energy Information  

Open Energy Info (EERE)

Ground Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaterQualitySurfaceandGround&oldid612197" Category: NEPA Resources...

30

Ground-Water Table and Chemical Changes in an Alluvial Aquifer During  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground-Water Table and Chemical Changes in an Alluvial Aquifer Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells More Documents & Publications Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

31

Ground-Water Table and Chemical Changes in an Alluvial Aquifer During  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground-Water Table and Chemical Changes in an Alluvial Aquifer Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells More Documents & Publications Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

32

Treatment of brackish water  

SciTech Connect

Brackish water resulting from steam extraction of heavy crude oils, including oil sands bitumen, is processed for reuse by removing hydrocarbon contamination and removing mineral contamination. The purified water can be boiled in conventional boilers without scaling or fouling occurring. Heat economy is used in conducting the process. The brackish water is first subjected to oil removal by separating out as much of the free oil as possible, such as by using gravity separation and air flotation, and then stripping any residual oil by ozone treatment. The hydrocarbon-free water then is subjected to demineralization. The demineralization is effected by a first electrodialysis reversal step to remove minerals other than silica and a second silica removal step. 8 claims.

Ciepiela, E.J.

1983-07-26T23:59:59.000Z

33

120 Ground Water Monitoring & Remediation 32, no. 1/ Winter 2012/pages 120130 NGWA.org Ground Water Monitoring & Remediation  

E-Print Network (OSTI)

120 Ground Water Monitoring & Remediation 32, no. 1/ Winter 2012/pages 120­130 NGWA.org Ground Water Monitoring & Remediation © 2011, National Ground Water Association. Published 2011. This article known as emerging contaminants (ECs) to surrounding groundwater and surface water. ECs consist

34

Analysis of Contaminant Rebound in Ground Water in Extraction...  

Office of Environmental Management (EM)

Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba...

35

Diffusion Multilayer Sampling of Ground Water in Five Wells at...  

Office of Environmental Management (EM)

Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona,...

36

U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan  

Office of Legacy Management (LM)

GWMON 1.12-1 GWMON 1.12-1 U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan for the Land Farm Pilot Test Monument Valley, Arizona August 2000 Prepared by U.S. Department of Energy Grand Junction Ofice Grand Junction, Colorado Project Number UGW-5 1 1-001 5-21-000 Document Number U0106701 This page intentionally left blank Document Number U0106701 Contents Contents 1.0 Introduction ....................................................................................................................... 1 2.0 Purpose and Scope ........................................................................................................... 1 3.0 Pilot-Test Extraction Wellfield 2 4.0 Water Elevation Measurements and Monitoring ............... 4

37

Appendix E Supporting Information for Ground Water Modeling  

Office of Legacy Management (LM)

Supporting Information for Ground Water Modeling Supporting Information for Ground Water Modeling This page intentionally left blank Contents Section Geologic Map of Site Area ........................................................................................................ E1.O Stream Flow Measurements ...................................................................................................... E2.0 Estimates of Ground Water Flow .............................................................................................. E3.0 .......................................... MODFLOW Flow Budget Analysis for OU 1 1 1 Model Subregions E4.0 ............................................................................ Burro Canyon Aquifer Ground Water Model E5.0 This page intentionally left blank

38

Ground Water Management Act (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water Management Act (Virginia) Ground Water Management Act (Virginia) Ground Water Management Act (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Virginia Program Type Environmental Regulations Siting and Permitting Provider Virginia Department of Environmental Quality Under the Ground Water Management Act of 1992, Virginia manages ground water through a program regulating the withdrawals in certain areas called

39

Water_Treatment.cdr  

Office of Legacy Management (LM)

Since dewatering at the Weldon Spring site began in Since dewatering at the Weldon Spring site began in 1992, more than 290 million gallons of contaminated water have been treated and released into the Missouri River from two similar water treatment facilities at the site and the nearby Quarry. On September 30, 1999, dewatering efforts at the Chemical Plant site were completed, meeting one of the most substantial milestones of the project and bringing to an end a part of history that was started nearly 5 decades ago. From 1955 to 1966, uranium materials were processed at the U.S. Atomic Energy Commission's Uranium Feed Materials Plant. The ore was processed in a nitric acid solution that separated the uranium from other chemicals. The by-product, called raffinate, was neutralized with lime, then placed in four settling basins,

40

Hanford Site environmental data for calendar year 1990 -- Ground water  

SciTech Connect

This report tabulates ground-water radiological and chemical data for calendar year 1990 by the Ground-Water Surveillance Project, reported Resource Conservation and Recovery Act (RCRA) Monitoring, and Operational Monitoring. The Ground-Water Surveillance Project is conducted by the Pacific Northwest Laboratory and the RCRA and Operational Monitoring Projects are conducted by the Westinghouse Hanford Company. This document supplements the reports Hanford Site Ground-Water Monitoring for 1990 (Evans et al. 1992) and mental Report for Calendar Year 1990 (Woodruff and Hanf 1991). The data listings provided here were generated from the Hanford Environmental Information System database.

Dresel, P.E.; Bates, D.J.; Merz, J.K.

1993-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Ground Water Management District Rules | Open Energy Information  

Open Energy Info (EERE)

District Rules Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Ground Water Management District Rules Abstract This webpage provides information...

42

Hanford Site ground-water monitoring for 1994  

SciTech Connect

This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

1995-08-01T23:59:59.000Z

43

GRR/Section 19-TX-b - New Water Right Process For Surface Water and Ground  

Open Energy Info (EERE)

TX-b - New Water Right Process For Surface Water and Ground TX-b - New Water Right Process For Surface Water and Ground Water < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-b - New Water Right Process For Surface Water and Ground Water 19TXBNewWaterRightProcessForSurfaceWaterAndGroundWater.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Texas Water Development Board Regulations & Policies Tex. Water Code § 11 Triggers None specified Click "Edit With Form" above to add content 19TXBNewWaterRightProcessForSurfaceWaterAndGroundWater.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

44

Water treatment method  

DOE Patents (OSTI)

A method is described for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

Martin, F.S.; Silver, G.L.

1991-04-30T23:59:59.000Z

45

Basics of pump-and-treat ground-water remediation technology. Special report  

SciTech Connect

The pump-and-treat process, whereby contaminated ground water is pumped to the surface for treatment, is one of the most common ground-water remediation technologies used at hazardous waste sites. However, recent research has identified complex chemical and physical interactions between contaminants and the subsurface media which may impose limitations on the extraction part of the process. The report was developed to summarize the basic considerations necessary to determine when, where, and how pump-and-treat technology can be used effectively to remediate ground-water contamination.

Mercer, J.W.; Skipp, D.C.; Giffin, D.

1990-03-01T23:59:59.000Z

46

Introduction Application of numerical models of ground water flow  

E-Print Network (OSTI)

(Portniaguine and Solomon 1998), and ground water temperature (Doussan et al. 1994). Compared to calibration depended on calibration methodology; models calibrated with multiple targets simulated q more accurately of Calibration Methodology on Ground Water Flow Predictions by James E. Saiers1, David P. Genereux2, and Carl H

Saiers, James

47

Ground-water contribution to dose from past Hanford Operations  

SciTech Connect

The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

Freshley, M.D.; Thorne, P.D.

1992-08-01T23:59:59.000Z

48

GROUND-WATER CONTRIBUTION TO DOSE FROM PAST HANFORD OPERATIONS  

SciTech Connect

The Hanford Environmental Dose Reconstruction (HEOR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides originating in ground water on the Hanford Site could have reached the public have been identified: 1) through contaminated ground water migrating to the Columbia River; 2) through wells on or adjacent to the Hanford Site; 3) through wells that draw some or all of their water from the Columbia River (riparian wells); and 4) through atmospheric deposition resulting in the contamination of a small watershed that, in turn, results in contamination of a shallow well or spring. These four pathways make up the "ground-water pathway ," which is the subject of this study. The objective of the study was to assess the extent to which the groundwater pathway contributed to radiation doses that populations or individuals may have received from past operations at Hanford. The assessment presented in this report was performed by 1) reviewing the extensive ?literature on ground water and ground-water monitoring at Hanford and 2) performing simple calculations to estimate radionuclide concentrations in ground water and the Columbia River resulting from ground-water discharge. Radiation doses that would result from exposure to this ground water and surface water were calculated. The study conclusion is that the ground-water pathways did not contribute significantly to dose. Compared with background radiation in the TriCities {300 mrem/yr), estimated doses are small: 0.02 mrem/yr effective dose equivalent from discharge of contaminated ground water to the Columbia River; 1 mrem/yr effective dose equivalent from Hanford Site wells; 11 mrem/yr effective dose equivalent from riparian wells; and 1 mrem/yr effective dose equivalent from the watershed. Because the estimated doses are so small, the recommendation is that further work on the ground-water pathway be limited to tracking ongoing ground-water studies at the Hanford Site.

Freshley, M. D.; Thorne, P. D.

1992-01-01T23:59:59.000Z

49

Hanford Site ground-water monitoring for 1993  

SciTech Connect

This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

1994-09-01T23:59:59.000Z

50

Ground Water Protection (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water Protection (North Dakota) Ground Water Protection (North Dakota) Ground Water Protection (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting North Dakota has a degradation prevention program for groundwater protection, with standards established by the Department of Health. This section addresses groundwater standards, quality monitoring, notification

51

Ground Water Protection Act (New Mexico) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Protection Act (New Mexico) Water Protection Act (New Mexico) Ground Water Protection Act (New Mexico) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Mexico Program Type Environmental Regulations Provider New Mexico Environment Department The purpose of the Ground Water Protection Act is to provide substantive

52

Copyright Awwa Research Foundation 2006 Advanced Water Treatment Impacts onAdvanced Water Treatment Impacts on  

E-Print Network (OSTI)

, brackish groundwater, produced water, etc.produced water, etc. Advanced treatmentAdvanced treatment Water© Copyright Awwa Research Foundation 2006 Advanced Water Treatment Impacts onAdvanced Water Treatment Impacts on EnergyEnergy--Water LinkagesWater Linkages (The Water Utility Perspective)(The Water

Keller, Arturo A.

53

EPA Final Ground Water Rule Available Online, 3/07  

Energy.gov (U.S. Department of Energy (DOE))

On November 8, 2006, the U.S. Environmental Protection Agency (EPA) published a final Ground Water Rule (GWR) to promote increased protection against microbial pathogens that may be present in...

54

Natural Remediation Potential of Arsenic-Contaminated Ground Water  

Science Journals Connector (OSTI)

Migration of leachate from a municipal landfill in Saco, Maine has resulted in arsenic concentrations in ground water as high as 647 ?g/L.... Laboratory experimental data indicate the primary source of arsenic to...

Kenneth G. Stollenwerk; John A. Colman

2003-01-01T23:59:59.000Z

55

Remedial Costs for MTBE in Soil and Ground Water  

Science Journals Connector (OSTI)

The contamination of MTBE in ground water has introduced concerns about the increased cost of remediating MTBE/BTEX releases compared to remediating sites with BTEX only contamination. In an attempt to evaluat...

Barbara H. Wilson; John T. Wilson Ph.D.

2003-01-01T23:59:59.000Z

56

Analysis of Ground-Water Remediation During a Pesticide Application  

Science Journals Connector (OSTI)

Pesticides are widely used in the pest management. More than one hundred pesticides and their degradation products have been identified as potential ground-water contaminants (Miles, 1992) and many of these pe...

Richard Tykva

1996-01-01T23:59:59.000Z

57

Remediation of a uranium-contamination in ground water  

SciTech Connect

The former production site of NUKEM where nuclear fuel-elements were developed and handled from 1958 to 1988 was situated in the centre of an industrial park for various activities of the chemical and metallurgical industry. The size of the industrially used part is about 300.000 m{sup 2}. Regulatory routine controls showed elevated CHC (Chlorinated Hydro-Carbons) values of the ground water at the beginning of the 1990's in an area which represented about 80.000 m{sup 2} down-gradient of locations where CHC compounds were stored and handled. Further investigations until 1998 proved that former activities on the NUKEM site, like the UF{sub 6} conversion process, were of certain relevance. The fact that several measured values were above the threshold values made the remediation of the ground water mandatory. This was addressed in the permission given by the Ministry for Nuclear Installations and Environment of Hesse according to chap. 7 of the German atomic law in October 2000. Ground water samples taken in an area of about 5.000 m{sup 2} showed elevated values of total Uranium activity up to between 50 and 75 Bq/l in 2002. Furthermore in an area of another 20.000 m{sup 2} the samples were above threshold value. In this paper results of the remediation are presented. The actual alpha-activities of the ground waters of the remediation wells show values of 3 to 9 Bq/l which are dominated by 80 to 90 % U-234 activity. The mass-share of total Uranium for this nuclide amounts to 0,05% on average. The authority responsible for conventional water utilisation defined target values for remediation: 20 {mu}g/l for dissolved Uranium and 10 {mu}g/l for CHC. Both values have not yet been reached for an area of about 10.000 m{sup 2}. The remediation process by extracting water from four remediation wells has proved its efficiency by reduction of the starting concentrations by a factor of 3 to 6. Further pumping will be necessary especially in that area of the site where the contaminations were found later during soil remediation activities. Only two wells have been in operation since July 2002 when the remediation technique was installed and an apparatus for direct gamma-spectroscopic measurement of the accumulated activities on the adsorbers was qualified. Two further remediation wells have been in operation since August 2006, when the installed remediation technique was about to be doubled from a throughput of 5 m{sup 3}/h to 10 m{sup 3}/h. About 20.000 m{sup 3} of ground water have been extracted since from these two wells and the decrease of their Uranium concentrations behaves similar to that of the two other wells being extracted since the beginning of remediation. Both, total Uranium-concentrations and the weight-share of the nuclides U-234, U-235 and U-238 are measured by ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) besides measurements of Uranium-Alpha-Activities in addition to the measurement of CHC components of which PCE (Per-chlor-Ethene) is dominant in the contaminated area. CHC compounds are measured by GC (Gas Chromatography). Down-gradient naturally attenuated products are detected in various compositions. Overall 183.000 m{sup 3} of ground water have been extracted. Using a pump and treat method 11 kg Uranium have been collected on an ion-exchange material based on cellulose, containing almost 100 MBq U-235 activity, and almost 15 kg of CHC, essentially PCE, were collected on GAC (Granules of Activated Carbon). Less than 3% of the extracted Uranium have passed the adsorber-system of the remediation plant and were adsorbed by the sewage sludge of the industrial site's waste water treatment. The monthly monitoring of 19 monitoring wells shows that an efficient artificial barrier was built up by the water extraction. The Uranium contamination of two ground water plumes has drastically been reduced by the used technique dependent on the amounts of extracted water. The concentration of the CHC contamination has changed depending on the location of temporal pumping. Thereby maximum availability of this contaminan

Woerner, Joerg; Margraf, Sonja; Hackel, Walter [RD Hanau GmbH (Germany)

2007-07-01T23:59:59.000Z

58

Uranium isotopes in ground water as a prospecting technique  

SciTech Connect

The isotopic concentrations of dissolved uranium were determined for 300 ground water samples near eight known uranium accumulations to see if new approaches to prospecting could be developed. It is concluded that a plot of /sup 234/U//sup 238/U activity ratio (A.R.) versus uranium concentration (C) can be used to identify redox fronts, to locate uranium accumulations, and to determine whether such accumulations are being augmented or depleted by contemporary aquifer/ground water conditions. In aquifers exhibiting flow-through hydrologic systems, up-dip ground water samples are characterized by high uranium concentration values (> 1 to 4 ppB) and down-dip samples by low uranium concentration values (less than 1 ppB). The boundary between these two regimes can usually be identified as a redox front on the basis of regional water chemistry and known uranium accumulations. Close proximity to uranium accumulations is usually indicated either by very high uranium concentrations in the ground water or by a combination of high concentration and high activity ratio values. Ground waters down-dip from such accumulations often exhibit low uranium concentration values but retain their high A.R. values. This serves as a regional indicator of possible uranium accumulations where conditions favor the continued augmentation of the deposit by precipitation from ground water. Where the accumulation is being dispersed and depleted by the ground water system, low A.R. values are observed. Results from the Gulf Coast District of Texas and the Wyoming districts are presented.

Cowart, J.B.; Osmond, J.K.

1980-02-01T23:59:59.000Z

59

Guidelines for makeup water treatment  

SciTech Connect

The EPRI Fossil Plant Cycle Chemistry Program, RP 2712, was developed in recognition of the importance of controlling cycle water and steam purity in attainment of maximized unit availability, reliability and efficiency. This guideline characterizes the state-of-the-art technology for production of cycle makeup water. It is intended to complement other RP 2712 projects in the areas of cycle chemistry guidelines, instrumentation and control, guideline demonstration and verification, and related subject areas. This guideline reviews available technology for and preferred approaches to production of fossil plant cycle makeup from various raw water supplies. Subject areas covered include makeup water source and source characteristics, unit processes comprising makeup treatment systems, guidelines for process selection, resin and membrane selection guidelines, techniques for monitoring performance and cost effectiveness, and waste disposal considerations. The report also identifies additional research activity needed to advance the state-of-the-art for makeup water treatment, results of a utility industry survey and other related topics. 72 refs., 60 figs., 74 tabs.

Cline, D.A. Jr.; Shields, K.J. (Powell (Sheppard T.) Associates, Baltimore, MD (USA))

1990-03-01T23:59:59.000Z

60

Petroleum contaminated ground-water: Remediation using activated carbon  

Science Journals Connector (OSTI)

Ground-water contamination resulting from the leakage of crude oil and refined petroleum products during extraction and processing operations is a serious and a growing environmental problem in Nigeria. Consequently, a study of the use of activated carbon (AC) in the clean up was undertaken with the aim of reducing the water contamination to a more acceptable level. In the experiments described, crude-oil contamination of ground water was simulated under laboratory conditions using ground-water samples collected from existing hand-dug wells at Eagle Island, Port Harcourt, Nigeria. Different masses of the absorbent (i.e., activated carbon) were then added to the samples of ground water. The so treated water samples were left to equilibrate for 7 days, after which the total petroleum hydrocarbon (TPH) contents of the samples were measured. Adsorption isotherms were derived for the two forms of activated carbon used, namely granular activated-carbon (GAC) and powdered activated-carbon (PAC). Results of the TPH analyses showed that activated carbon is an excellent means for the stripping-off of the contaminant: there were decreases in contaminant concentration from an initial concentration of 9304.70 mg/l to average final concentrations of 361.00 and 12.37 mg/l, that is, 96% and 99.9% resulting from the same amounts of GAC and PAC applications respectively. The results of this study revealed that the powdered form of AC would be very effective in the remediation of petroleum-hydrocarbon contaminated ground water and its use is therefore recommended.

M.J. Ayotamuno; R.B. Kogbara; S.O.T. Ogaji; S.D. Probert

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Ground and Surface Water Protection (New Mexico) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Surface Water Protection (New Mexico) and Surface Water Protection (New Mexico) Ground and Surface Water Protection (New Mexico) < Back Eligibility Agricultural Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Program Info State New Mexico Program Type Environmental Regulations Fees Provider New Mexico Environment Department This regulation implements the New Mexico Water Quality Act. Any person intending to make a new water contaminant discharge or to alter the character or location of an existing water contaminant discharge, unless the discharge is being made or will be made into a community sewer system

62

Uranium in US surface, ground, and domestic waters. Volume 2  

SciTech Connect

The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

1981-04-01T23:59:59.000Z

63

Boiler feed water treatment using electrodialysis.  

E-Print Network (OSTI)

??Water treatment is the most important part of any power plant. Water from natural reservoir is fetched into plant and treated to reduce impurity level,… (more)

Patel, Ankit

2010-01-01T23:59:59.000Z

64

Volatile Halogenated Hydrocarbons in River Water, Ground Water, Drinking Water and Swimming-Pool Water in the Federal Republic of Germany  

Science Journals Connector (OSTI)

With increasing shortage of ground water it becomes more and more necessary to use surface water as a resource for drinking water and swimming-pool water preparation. In the judgement of water...

M. Sonneborn; S. Gerdes; R. Schwabe

1982-01-01T23:59:59.000Z

65

GRR/Section 19-CO-c - Designated Ground Water Basin Well Permitting Process  

Open Energy Info (EERE)

GRR/Section 19-CO-c - Designated Ground Water Basin Well Permitting Process GRR/Section 19-CO-c - Designated Ground Water Basin Well Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-c - Designated Ground Water Basin Well Permitting Process 19COCDesignatedGroundWaterBasinWellPermit.pdf Click to View Fullscreen Contact Agencies Colorado Division of Water Resources Colorado Ground Water Commission Regulations & Policies CRS 37-90-107 CRS 37-90-108 Ground Water Management District Rules 2 CCR 410-1 - Rules and Regulations for the Management and Control of Designated Ground Water Basins Triggers None specified Click "Edit With Form" above to add content 19COCDesignatedGroundWaterBasinWellPermit.pdf 19COCDesignatedGroundWaterBasinWellPermit.pdf

66

EPA Final Ground Water Rule Available Online, 3/07 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Final Ground Water Rule Available Online, 3/07 EPA Final Ground Water Rule Available Online, 3/07 EPA Final Ground Water Rule Available Online, 3/07 On November 8, 2006, the U.S. Environmental Protection Agency (EPA) published a final Ground Water Rule (GWR) to promote increased protection against microbial pathogens that may be present in public water systems (PWSs) that use ground water sources for their supply (these systems are known as ground water systems). This Rule establishes a risk-targeted approach to focus on ground water systems that are susceptible to fecal contamination, and requires ground water systems that are at risk of fecal contamination to take corrective action. A minor correction to the final Rule was published on November 21, 2006 (71 FR 67427). The GWR applies to all PWSs2 that use ground water

67

(Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)  

SciTech Connect

This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30 percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size.

Not Available

1992-04-01T23:59:59.000Z

68

Methods of minimizing ground-water contamination from in situ leach uranium mining. Final report  

SciTech Connect

This is the final report of a research project designed to study methods of minimizing ground-water contamination from in situ leach uranium mining. Fieldwork and laboratory experiments were conducted to identify excursion indicators for monitoring purposes during mining, and to evaluate effective aquifer restoration techniques following mining. Many of the solution constituents were found to be too reactive with the aquifer sediments to reliably indicate excursion of leaching solution from the ore zone; however, in many cases, the concentrations of chloride and sulfate and the total dissolved solids level of the solution were found to be good excursion indicators. Aquifer restoration by ground-water sweeping consumed large quantities of ground water and was not effective for the redox-sensitive contaminants often present in the ore zone. Surface treatment methods such as reverse osmosis and electrodialysis were effective in reducing the amount of water used, but also had the potential for creating conditions in the aquifer under which the redox-sensitive contaminants would be mobile. In situ restoration by chemical reduction, in which a reducing agent is added to the solution recirculated through the ore zone during restoration, can restore the ore-zone sediment as well as the ground water. This method could lead to a stable chemical condition in the aquifer similar to conditions before mining. 41 figures.

Deutsch, W.J.; Martin, W.J.; Eary, L.E.; Serne, R.J.

1985-03-01T23:59:59.000Z

69

Copyright 2009 The Author(s) Journal compilation 2009 National Ground Water Association.  

E-Print Network (OSTI)

.org Ground Water Monitoring & Remediation 29, no. 3/ Summer 2009/pages 93­104 93 Pore Water CharacteristicsCopyright © 2009 The Author(s) Journal compilation © 2009 National Ground Water Association. NGWA area). The concentrations of ethanol in ground water for both the bench- and pilot-scale experiments

Alvarez, Pedro J.

70

Ground and Water Source Heat Pump Performance and Design for Southern Climates  

E-Print Network (OSTI)

Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical...

Kavanaugh, S.

1988-01-01T23:59:59.000Z

71

HANFORD SITE ENVIRONMENTAL DATA FOR CALENDAR YEAR 1989 - GROUND WATER  

SciTech Connect

In a continuing effort for the U.S. Department of Energy, Pacific Northwest Laboratory (PNL) is conducting ground-water monitoring at the Hanford Site, near Richland, Washington. This document contains the data listing of monitoring results obtained by PNL and Westinghouse Hanford Company during the period January through December 1989. Samples taken during 1989 were analyzed and reported by United States Testing Company, Inc., Richland, Washington. The data listing contains all chemical results (above contractual reporting limits) and radiochemical results (for which the result is larger than two times the total error).

Bryce, R. W.; Gorst, W. R.

1990-12-01T23:59:59.000Z

72

Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California  

SciTech Connect

Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

Warner, J.L.; Lutz, J.D.

2006-01-01T23:59:59.000Z

73

Quasi-three dimensional ground-water modeling of the hydrologic influence of paleozoic rocks on the ground-water table at Yucca Mountain, Nevada  

E-Print Network (OSTI)

The proposed high-level radioactive waste repository site at Yucca Mountain, Nevada, has created a need to understand the, ground-water system at the site. One of the important hydrologic characteristics is a steep gradient on the ground-water table...

Lee, Si-Yong

2012-06-07T23:59:59.000Z

74

70 Ground Water Monitoring & Remediation 31, no. 4/ Fall 2011/pages 7076 NGWA.org 2011, The Author(s)  

E-Print Network (OSTI)

70 Ground Water Monitoring & Remediation 31, no. 4/ Fall 2011/pages 70­76 NGWA.org © 2011, The Author(s) Ground Water Monitoring & Remediation © 2011, National Ground Water Association. doi: 10.1111/j 93% to 117% for both spiked laboratory reagent water and natural ground- water matrices, the later

Alvarez, Pedro J.

75

5 CCR 1002-42 Site Specific Water Quality Standards for Ground...  

Open Energy Info (EERE)

Specific Water Quality Standards for Ground Water Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: 5 CCR 1002-42 Site Specific Water...

76

GRR/Section 14-CO-e - Ground Water Discharge Permit | Open Energy  

Open Energy Info (EERE)

CO-e - Ground Water Discharge Permit CO-e - Ground Water Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CO-e - Ground Water Discharge Permit 14COEGroundWaterDischargePermit.pdf Click to View Fullscreen Contact Agencies Colorado Department of Public Health and Environment Regulations & Policies Colorado Water Quality Control Act 5 CCR 1002-61 Colorado Discharge Permit System 5 CCR 1002-41 Basic Standards for Ground Water 5 CCR 1002-42 Site Specific Water Quality Standards for Ground Water Triggers None specified Click "Edit With Form" above to add content 14COEGroundWaterDischargePermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

77

GRR/Section 4-NV-b - Temporary Use of Ground Water for Exploration | Open  

Open Energy Info (EERE)

b - Temporary Use of Ground Water for Exploration b - Temporary Use of Ground Water for Exploration < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-NV-b - Temporary Use of Ground Water for Exploration 04NVBTemporaryUseOfGroundWaterForExploration.pdf Click to View Fullscreen Contact Agencies Nevada Division of Water Resources Regulations & Policies NAC 534.444 Waiver to use water to explore for oil, gas or geothermal resources Triggers None specified Click "Edit With Form" above to add content 04NVBTemporaryUseOfGroundWaterForExploration.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Division of Water Resources (NDWR) may grant a waiver of the

78

Regional ground-water mixing and the origin of saline fluids: Midcontinent, United States  

SciTech Connect

Ground waters in three adjacent regional flow systems in the midcontinent exhibit extreme chemical and isotopic variations that delineate large-scale fluid flow and mixing processes and two distinct mechanisms for the generation of saline fluids. Systematic spatial variations of major ion concentrations, H, O, and Sr isotopic compositions, and ground-water migration pathways indicate that each flow system contains water of markedly different origin. Mixing of the three separate ground waters exerts a fundamental control on ground-water composition. The three ground waters are: (i) dilute meteoric water recharged in southern Missouri; (ii) saline Na-Ca-Cl water in southeastern Kansas of far-traveled meteoric origin that acquired its salinity by halite dissolution; and (iii) Na-Ca-Cl brines in north-central Oklahoma that may have originated as Paleozoic seawater. 45 refs., 4 figs., 1 tab.

Musgrove, M.; Banner, J.L. (Univ. of Texas, Austin (United States))

1993-03-26T23:59:59.000Z

79

Dynamics of Transboundary Ground Water Management: Lessons from1 North America2  

E-Print Network (OSTI)

-Society-Science in Transition. Water Resources Development and8 Management Series, Berlin: Springer-Verlag, pp. 167-196]9 101 Dynamics of Transboundary Ground Water Management: Lessons from1 North America2 Michael E Abstract11 Transboundary ground water management in the North American countries of Canada, the United

Kurapov, Alexander

80

A Multiscale Investigation of Ground Water Flow at Clear Lake, Iowa  

E-Print Network (OSTI)

targets. The model produced ground water inflow and outflow rates of 14,300 and 9200 m3/d, respectively­related problems in the lake and its water- shed, their likely causes, and potential remedial measuresA Multiscale Investigation of Ground Water Flow at Clear Lake, Iowa by William W. Simpkins Abstract

Simpkins, William W.

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Ground-water Compliance Activities at the Uranium Mill 5: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming SUMMARY This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill Tailings Site by using the selected alternative stated in the Final Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 1, 1997 EA-1155: Final Environmental Assessment Ground-water Compliance Activities at the Uranium Mill Tailings Site,

82

NGWA.org Ground Water Monitoring & Remediation 31, no. 3/ Summer 2011/pages 4754 47 2011, The Author(s)  

E-Print Network (OSTI)

NGWA.org Ground Water Monitoring & Remediation 31, no. 3/ Summer 2011/pages 47­54 47 © 2011, The Author(s) Ground Water Monitoring & Remediation © 2011, National Ground Water Association. doi: 10.1111/j underground stor- age. Thus, it is important to investigate the potential ground- water quality impacts

Alvarez, Pedro J.

83

Renewable Energy Powered Water Treatment Systems   

E-Print Network (OSTI)

There are many motivations for choosing renewable energy technologies to provide the necessary energy to power water treatment systems for reuse and desalination. These range from the lack of an existing electricity grid, ...

Richards, Bryce S.; Schäfer, Andrea

2009-01-01T23:59:59.000Z

84

INTEGRATED WATER TREATMENT SYSTEM PERFORMANCE EVALUATION  

SciTech Connect

This document describes the results of an evaluation of the current Integrated Water Treatment System (IWTS) operation against design performance and a determination of short term and long term actions recommended to sustain IWTS performance.

SEXTON RA; MEEUWSEN WE

2009-03-12T23:59:59.000Z

85

Nanotechnology in water treatment: an emerging trend  

Science Journals Connector (OSTI)

With advances in nanotechnology, different types of nanomaterial are emerging for applications in water purification and water treatment devices owing to their effectiveness against both chemical and biological contaminants. This paper discusses the application of nanoscale materials that are being evaluated or developed as functional materials for water treatment, e.g. nanomembranes (nanocomposite RO and NF and carbon nanotubes), metal nanoparticles, nanoadsorbents, magnetic nanoparticles, bioactive nanoparticles, carbonaceous nanomaterials, zeolites, dendrimers and nanofibres. Nanomaterials are intrinsically better in terms of performance than other substances used in water treatment because of their high surface area (surface/volume ratio). Owing to these characteristics, these may be used in future at large scale for water purification.

Hiren D. Raval; Jaydev M. Gohil

2010-01-01T23:59:59.000Z

86

ENVIRONMENTAL ASSESSMENT FOR WASTE WATER TREATMENT MODIFICATIONS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASTE WATER TREATMENT MODIFICATIONS WASTE WATER TREATMENT MODIFICATIONS FOR IMPROVED EFFLUENT COMPLIANCE BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK BROOKHAVEN SITE OFFICE JUNE 24, 2011 DOE/EA-1854 i Table of Contents 1.0 INTRODUCTION ............................................................................................................... 1 2.0 SUMMARY ........................................................................................................................ 1 3.0 PURPOSE AND NEED ....................................................................................................17 4.0 ALTERNATIVES ..............................................................................................................17 4.1 Alternative 1 - Groundwater Recharge System (Preferred Alternative) .............. 17

87

Non-Lawyers' Guide to Hearings before the Colorado Ground Water...  

Open Energy Info (EERE)

Lawyers' Guide to Hearings before the Colorado Ground Water Commission Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

88

Verification of Active and Passive Ground-Water Contamination Remediation Efforts  

Science Journals Connector (OSTI)

The verification of ground-water contamination remediation efforts requires thorough documentation of subsurface conditions ... comprehensive approach to the design and operation of remediation efforts with an em...

M. J. Barcelona

1995-01-01T23:59:59.000Z

89

E-Print Network 3.0 - alkaline ground waters Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

water from the Lake Calumet... , and ground ... Source: Bethke, Craig - Department of Geology, University of Illinois at Urbana-Champaign Collection: Environmental Sciences and...

90

ENVIRONMENTAL ASSESSMENT Waste Water Treatment Modifications for  

E-Print Network (OSTI)

Actions - Isolate and restore sand filter beds (~10 acres) - Remove UV light sanitation system ­ evaluateENVIRONMENTAL ASSESSMENT FOR Waste Water Treatment Modifications for Improved Effluent Compliance adhering to them. · Develop recharge basins for disposal of treated waste water. Polythiocarbonate

Homes, Christopher C.

91

GRR/Section 19-CO-i - Determination of Nontributary Ground Water Status |  

Open Energy Info (EERE)

19-CO-i - Determination of Nontributary Ground Water Status 19-CO-i - Determination of Nontributary Ground Water Status < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-i - Determination of Nontributary Ground Water Status 19COIDeterminationOfNontributaryGroundWaterStatus.pdf Click to View Fullscreen Contact Agencies Colorado Division of Water Resources Regulations & Policies Colorado Division of Water Resources Policy 2010-4 CRS 37-90-137 Permits to Construct Wells Outside of Designated Basins CRS 37-90-103 Underground Water Definitions CRS 37-82-101 Waters of Natural Surface Streams Subject to Appropriation CRS 37-92-102 Legislative Declaration - Basic Tenets of Colorado Water Law Triggers None specified Click "Edit With Form" above to add content

92

Quasi-three dimensional ground-water modeling of the hydrologic influence of paleozoic rocks on the ground-water table at Yucca Mountain, Nevada.  

E-Print Network (OSTI)

??The proposed high-level radioactive waste repository site at Yucca Mountain, Nevada, has created a need to understand the, ground-water system at the site. One of… (more)

Lee, Si-Yong

2012-01-01T23:59:59.000Z

93

Missouri Water Treatment Plant Upgraded | Department of Energy  

Energy Savers (EERE)

Missouri Water Treatment Plant Upgraded Missouri Water Treatment Plant Upgraded July 13, 2010 - 11:30am Addthis The high service pumps at the St. Peters Water Treatment Plant are...

94

Water resources data for Florida, water year 1992. Volume 1B. Northeast Florida ground water. Water-data report (Annual) October 1, 1991-September 30, 1992  

SciTech Connect

Water resources data for the 1992 for northeast Florida include continuous or daily discharge for 140 streams, periodic discharge for 10 streams, miscellaneous discharge for 14 streams, continuous or daily stage for 32 streams, continuous or daily tide stage for 3 sites, periodic stage for 23 streams, peak discharge for 3 streams, and peak stage for 11 streams; continuous or daily elevations for 36 lakes, periodic elevations for 47 lakes; continuous ground-water levels for 75 wells, periodic ground-water levels for 123 wells, and miscellaneous water-level measurements for 864 wells; and quality-of-water data for 38 surface-water sites and 66 wells.

Not Available

1993-01-01T23:59:59.000Z

95

EPA ENERGY STAR Webcast: Benchmarking Water/Wastewater Treatment...  

Energy Savers (EERE)

Benchmarking WaterWastewater Treatment Facilities in Portfolio Manager EPA ENERGY STAR Webcast: Benchmarking WaterWastewater Treatment Facilities in Portfolio Manager November...

96

NGWA.org Ground Water Monitoring & Remediation 31, no. 3/ Summer 2011/pages 111118 111 2011, The Author(s)  

E-Print Network (OSTI)

NGWA.org Ground Water Monitoring & Remediation 31, no. 3/ Summer 2011/pages 111­118 111 © 2011, The Author(s) Ground Water Monitoring & Remediation © 2011, National Ground Water Association. doi: 10.1111/j under- ground storage tank containing biofuel blends. Benzene is of particular concern due to its

Alvarez, Pedro J.

97

[Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 9, Removal action system design  

SciTech Connect

This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30 percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size.

Not Available

1992-04-01T23:59:59.000Z

98

Saving Energy, Water, and Money with Efficient Water Treatment Technologies  

SciTech Connect

Reverse Osmosis (RO) is a method of purifying water for industrial processes and human consumption; RO can remove mineral salts as well as contaminants such as bacteria and pesticides. Advances in water treatment technologies have enhanced and complemented the conventional RO process, reducing energy and water consumption, lowering capital and operating costs, and producing purer water. This publication of the Department of Energy's Federal Energy Management Program introduces RO, describes the benefits of high-efficiency reverse osmosis (HERO), and compares HERO with RO/electrodeionization (EDI) technology.

Not Available

2004-06-01T23:59:59.000Z

99

Water Purification by Using Microplasma Treatment  

Science Journals Connector (OSTI)

Dielectric barrier discharge microplasma generated at the surface of water is proposed as a solution for water treatment. It is an economical and an ecological technology for water treatment due to its generation at atmospheric pressure and low discharge voltage. Microplasma electrodes were placed at small distance above the water thus active species and radicals were flown by the gas towards the water surface and furthermore reacted with the target to be decomposed. Indigo carmine was chosen as the target to be decomposed by the effect of active species and radicals generated between the electrodes. Air, oxygen, nitrogen and argon were used as discharge gases. Measurement of absorbance showed the decomposition of indigo carmine by microplasma treatment. Active species and radicals of oxygen origin so called ROS (reactive oxidative species) were considered to be the main factor in indigo carmine decomposition. The decomposition rate increased with the increase of the treatment time as shown by the spectrophotometer analysis. Discharge voltage also influenced the decomposition process.

K Shimizu; N Masamura; M Blajan

2013-01-01T23:59:59.000Z

100

Desalination of brackish ground waters and produced waters using in-situ precipitation.  

SciTech Connect

The need for fresh water has increased exponentially during the last several decades due to the continuous growth of human population and industrial and agricultural activities. Yet existing resources are limited often because of their high salinity. This unfavorable situation requires the development of new, long-term strategies and alternative technologies for desalination of saline waters presently not being used to supply the population growth occurring in arid regions. We have developed a novel environmentally friendly method for desalinating inland brackish waters. This process can be applied to either brackish ground water or produced waters (i.e., coal-bed methane or oil and gas produced waters). Using a set of ion exchange and sorption materials, our process effectively removes anions and cations in separate steps. The ion exchange materials were chosen because of their specific selectivity for ions of interest, and for their ability to work in the temperature and pH regions necessary for cost and energy effectiveness. For anion exchange, we have focused on hydrotalcite (HTC), a layered hydroxide similar to clay in structure. For cation exchange, we have developed an amorphous silica material that has enhanced cation (in particular Na{sup +}) selectivity. In the case of produced waters with high concentrations of Ca{sup 2+}, a lime softening step is included.

Krumhansl, James Lee; Pless, Jason; Nenoff, Tina Maria; Voigt, James A.; Phillips, Mark L. F.; Axness, Marlene; Moore, Diana Lynn; Sattler, Allan Richard

2004-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Iowa's first electrodialysis reversal water treatment plant  

Science Journals Connector (OSTI)

In 1979 the City of Washington was notified by the Iowa Department of Natural Resources (IDNR) that the City was in violation of the radium standard for drinking water. The City of Washington authorized an engineering study to determine the most cost-effective and practical way to remove radium and, at the same time, improve overall water quality. Several possible treatment alternatives were evaluated. It was finally decided to utilize electrodialysis reversal (EDR). Washington obtains its water from three deep wells ranging in capacity from 600–780 gpm. The untreated water withdrawn from the wells first passes through the EDR units. There are three EDR units, each able to produce 285 gpm of finished water. In the future, another EDR unit can be easily added to the other three units, since the new plant was built and plumbed for an additional EDR unit if water demand increased. The Jordan aquifer supply is adequate for current and future needs. The average daily water usage in 1993 was 818,000 gal/d. In order to meet peak flows, it is possible to bypass the EDR units with part of the untreated water and then blend treated and untreated water. The treated water meets IDNR standards of 5.0 pC/L. After the EDR units, the water flows through an aerator where odor-causing gases and carbon dioxide are removed. Aeration reduces the amount of caustic soda and chlorine used in the finished water. The hydrogen sulfide gas leaves the water as it passes through the aerator, and this loss of gas creates less chlorine demand. Total and free chlorine residuals are now detected in every water main of the town, whereas before, the residuals would not be detected in certain area of Washington. Phosphates have been cut back from 7 pounds per day to one pound per day. Better water quality is now being achieved with fewer chemicals added to the finished water. Washington's water treatment plant is the first municipal EDR plant in the State of Iowa and one of the largest municipal installations in the United States.

John Hays

2000-01-01T23:59:59.000Z

102

Ground-water contribution to dose from past Hanford Operations. Hanford Environmental Dose Reconstruction Project  

SciTech Connect

The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ``ground-water pathway,`` which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

Freshley, M.D.; Thorne, P.D.

1992-08-01T23:59:59.000Z

103

Arsenic Leachability in Water Treatment Adsorbents  

Science Journals Connector (OSTI)

Arsenic Leachability in Water Treatment Adsorbents ... The EXAFS results indicate that As forms inner-sphere bidentate binuclear surface complexes on all five adsorbent surfaces. ... Extended X-ray absorption fine structure (EXAFS) was used for the first time to investigate the bonding structures of adsorbed As(V) ... ...

Chuanyong Jing; Suqin Liu; Manish Patel; Xiaoguang Meng

2005-06-02T23:59:59.000Z

104

Magnetic water treatment: A coming attraction?  

SciTech Connect

United Airlines and pharmaceutical company Eli Lilly and Company are among a number of users that are controlling scale and corrosion in cooling tower loops with magnetic water treatment, a controversial technology that has met with skepticism, disbelief, and claims of fraud. Experts and hundreds of published papers disagree on whether magnetic water treatment works, and if so, how. No scientific theory has proven how magnets can treat water, nor are there documented, reproducible laboratory test results. Field experience is mixed, with some installations working well and others failing. Despite the controversy and the lack of an adequately documented theoretical underpinning, the existence of large, apparently successful installations lends credence to the view that at least some magnetic water treatment systems are effective. The stakes are high. Most large HVAC systems are currently treated with chemicals. These chemicals generally work well, but they are costly, in many cases are environmentally damaging, and are subject to increasingly strict regulations. A reliable, low-cost, and more environmentally benign alternative that eliminates or sharply reduces the need for chemical treatment would have obvious benefits. Based on the review of the literature, discussions with users, vendors, and independent analysts, and tours of several apparently successful installations, E Source believes that this technology works in some cases and warrants further investigation. They caution prospective users to shop carefully and to select vendors with an established track record.

Fryer, L.

1995-10-01T23:59:59.000Z

105

EECBG Success Story: Missouri Water Treatment Plant Upgraded...  

Energy Savers (EERE)

Missouri Water Treatment Plant Upgraded EECBG Success Story: Missouri Water Treatment Plant Upgraded July 13, 2010 - 11:30am Addthis The high service pumps at the St. Peters Water...

106

Waste-Water Treatment: The Tide Is Turning  

Science Journals Connector (OSTI)

...combine to form water. The resins...by waste-water treatment standards. In electrodialysis, an electric...human use. Electrodialysis and reverse...brackish waste water, and these...problem in sewage treatment. The cost...

Robert W. Holcomb

1970-07-31T23:59:59.000Z

107

Study of the distribution of 226Ra in ground water near the uranium industry of Jharkhand, India  

Science Journals Connector (OSTI)

......levels of 226Ra observed in the ground water. Being a mineralised area, variation...226Ra activity concentration in ground water that is used for drinking purpose...Cretescu I. Characterisation and remediation of soils contaminated with uranium......

R. M. Tripathi; V. N. Jha; S. K. Sahoo; N. K. Sethy; A. K. Shukla; V. D. Puranik; H. S. Kushwaha

2012-01-01T23:59:59.000Z

108

ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER  

SciTech Connect

During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the reactor. Batch tests were conducted to examine naphthenic acid biodegradability under several conditions. The conditions used were seed from the anaerobic reactor, wetland sediments under aerobic and anaerobic conditions, and a sterile control. The naphthenic acid was from a commercial source isolated from Gulf Coast petroleum as was dosed at 2 mg/mL. The incubations were for 30 days at 30 C. The results showed that the naphthenic acids were not biodegraded under anaerobic conditions, but were degraded under aerobic conditions. Despite poor performance of the anaerobic reactor, it remains likely that anaerobic treatment of acetate, toluene, and, potentially, other produced-water components is feasible.

John R. Gallagher

2001-07-31T23:59:59.000Z

109

DC WRRC Report No. 127 GROUND WATER RESOURCE ASSESSMENT STUDY FOR  

E-Print Network (OSTI)

of the District of Columbia 4200 Connecticut Ave, NW Building 50, MB 5004 Washington, DC 20008 #12;ABSTRACT TITLE pollution on the District of Columbia's ground water. 'PROJECT STAFF *GOURND WATER RESOURCE ASSESSMENT STUDY Affairs Environmental Regulation Administration Water Resources Management Division Washington, DC 20020

District of Columbia, University of the

110

Field-scale estimation of volumetric water content using ground-penetrating radar ground wave techniques  

E-Print Network (OSTI)

sampling, time domain reflectometry (TDR), neutron probe logging, and tensiometers [Prichard, 1999 were compared to gravimetric water content, time domain reflectometry, and soil texture measurements

Hubbard, Susan

111

NGWA.org Ground Water Monitoring & Remediation 00, no. 0/ xxxx 0000/pages 0000 1 2012, The Author(s)  

E-Print Network (OSTI)

NGWA.org Ground Water Monitoring & Remediation 00, no. 0/ xxxx 0000/pages 00­00 1 © 2012, The Author(s) Ground Water Monitoring & Remediation © 2012, National Ground Water Association. doi: 10.1111/j). Bioaugmentation remediation methods that employ Dehalococcoides sp. (DHC) have been widely tested for treating

Clement, Prabhakar

112

Applications of nanotechnology in water and wastewater treatment  

E-Print Network (OSTI)

Applications of nanotechnology in water and wastewater treatment Xiaolei Qu, Pedro J.J. Alvarez and wastewater treatment Water reuse Sorption Membrane processes Photocatalysis Disinfection Microbial control. Nanotechnology holds great potential in advancing water and wastewater treatment to improve treatment efficiency

Alvarez, Pedro J.

113

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming  

SciTech Connect

This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site.

Not Available

1994-09-01T23:59:59.000Z

114

Ground penetrating radar characterization of wood piles and the water table in Back Bay, Boston  

E-Print Network (OSTI)

Ground penetrating radar (GPR) surveys are performed to determine the depth to the water table and the tops of wood piles beneath a residential structure at 122 Beacon Street in Back Bay, Boston. The area of Boston known ...

LeFrançois, Suzanne O'Neil, 1980-

2003-01-01T23:59:59.000Z

115

Public and Private Initiatives to Develop Ground Water Remediation Technologies in the U.S  

Science Journals Connector (OSTI)

Ground water at most hazardous waste sites in the ... most often the limiting factor for complete site remediation. Until recently, contaminants in surface soils ... were viewed as the only significant source of

Walter W. Kovalick Jr.; Rich Steimle

1996-01-01T23:59:59.000Z

116

Ground water remediation at the Moab, Utah, USA, former uranium-ore processing site  

Science Journals Connector (OSTI)

Seepage from the Moab, Utah, USA, former uranium-ore processing site resulted in ammonia and uranium contamination of naturally occurring saline ground water in alluvium adjacent to the Colorado River. An interim...

Donald R. Metzler; Joseph D. Ritchey; Kent A. Bostick…

2008-01-01T23:59:59.000Z

117

Prediction of postmine ground-water quality at a Texas surface lignite mine  

E-Print Network (OSTI)

The prediction Of postmine ground-water quality is encumbered with many complications resulting from the complex hydrologic system found in mine spoils. Current analytical methods such as acid/base accounting have only had limited success...

Wise, Clifton Farrell

1995-01-01T23:59:59.000Z

118

Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water Vapor Radiometer Pazmany, Andrew ProSensing Inc. Category: Instruments ProSensing Inc. has developed a G-band (183 GHz, 1.5 mm wavelength) water vapor radiometer (GVR) for the measurement of low concentrations of atmospheric water vapor and liquid water. The instrument's precipitable water vapor measurement precision is approximately 0.01 mm in dry (<2 mm vapor column) conditions. The ground-based version of the instrument was first deployed at ProSensing's facility in Amherst, MA in February 2005, then at the North Slope of Alaska DOE ARM site in Barrow AK in April 2005, where it has been continuously operating since. An airborne version, designed to operate from a standard PMS 2-D probe canister, is now being

119

GRR/Section 14-TX-e - Ground Water Discharge Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-TX-e - Ground Water Discharge Permit GRR/Section 14-TX-e - Ground Water Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-e - Ground Water Discharge Permit 14TXEGroundWaterDischargePermit (1).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas United States Environmental Protection Agency Regulations & Policies 16 TAC 3.8 (Rule 8) Triggers None specified Click "Edit With Form" above to add content 14TXEGroundWaterDischargePermit (1).pdf 14TXEGroundWaterDischargePermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Pits are used in drilling operations to contain drilling related fluids and

120

Final Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

58 58 Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Sites Final February 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-02GJ79491 DOE Grand Junction Office EA of Ground Water Compliance at the Slick Rock Sites February 2003 Final Page iii Contents Page Acronyms and Abbreviations...........................................................................................................v Executive Summary...................................................................................................................... vii 1.0 Introduction.............................................................................................................................1

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill  

SciTech Connect

Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

Fruland, R.M.

1986-10-01T23:59:59.000Z

122

A new technique to monitor ground-water quality at municipal solid waste landfills  

E-Print Network (OSTI)

A NEW TECHNIQUE TO MONITOR GROUND-WATER EQUALITY AT MUNICIPAL SOLID WASTE LANDFILLS A Thesis by STEVEN CHARLES HART Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1989 Major Subject: Geology A NEW TECHNIIIUE TO MONITOR GROUND-WATER IIUALITY AT MUNICIPAL SOLID WASTE LANDFILLS A Thesis by STEVEN CHARLES HART Approved as to style and content by: Christo her C. Mathewson (Chair...

Hart, Steven Charles

2012-06-07T23:59:59.000Z

123

Ground-water resources of Lanfair and Fenner Valleys and vicinity, San Bernardino County, California  

SciTech Connect

Lanfair and Fenner Valleys and vicinity cover about 1300 square miles in eastern San Bernardino County, California. Average annual precipitation ranges from 3 to 10 inches over the area. Ground water is utilized primarily for stock and domestic purposes, and occurs in the unconsolidated deposits as well as in the highly fractured consolidated rocks. Ground-water levels in wells range from 5 to 600 feet below land surface, and well yields range from 3 to 1200 gallons per minute throughout the study area. Records indicate that water levels are at or near their predevelopment levels. Springs occur along faults and formational contacts and generally discharge less than 5 gallons per minute. Measured ground-water outflow from Lanfair Valley at Piute Spring ranged from 100 to 630 acre-feet per year. Outflow from Fenner Valley was estimated to be 270 acre-feet per year. Most of the water is of good quality for domestic and stock use. However, water from two wells indicates a concentration of sulfate that exceeds the recommended limit for drinking water. Water supplies are adequate for present needs. However, large-scale pumping would result in the lowering of the water table and a reduction of the ground water in storage. 10 refs., 2 figs., 4 tabs.

Freiwald, D.A.

1984-07-01T23:59:59.000Z

124

GRR/Section 14-UT-e - Ground Water Quality Protection Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-UT-e - Ground Water Quality Protection Permit GRR/Section 14-UT-e - Ground Water Quality Protection Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-UT-e - Ground Water Quality Protection Permit 14UTEGroundWaterQualityProtectionPermit.pdf Click to View Fullscreen Contact Agencies Utah Department of Environmental Quality Regulations & Policies UAC R317-6 Triggers None specified Click "Edit With Form" above to add content 14UTEGroundWaterQualityProtectionPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Utah Department of Environmental Quality (DEQ) regulates discharges

125

Boiler System Efficiency Improves with Effective Water Treatment  

E-Print Network (OSTI)

Water treatment is an important aspect of boiler operation which can affect efficiency or result in damage if neglected. Without effective water treatment, scale can form on boiler tubes, reducing heat transfer, and causing a loss of boiler...

Bloom, D.

126

Radiological conditions at Bikini Atoll: Radionuclide concentrations in vegetation, soil, animals, cistern water, and ground water  

SciTech Connect

This report is intended as a resource document for the eventual cleanup of Bikini Atoll and contains a summary of the data for the concentrations of /sup 137/Cs, /sup 90/Sr, /sup 239 +240/Pu, and /sup 241/Am in vegetation through 1987 and in soil through 1985 for 14 islands at Bikini Atoll. The data for the main residence island, Bikini, and the most important island, Eneu, are extensive; these islands have been the subject of a continuing research and monitoring program since 1974. Data for radionuclide concentrations in ground water, cistern water, fish and other marine species, and pigs from Bikini and Eneu Islands are presented. Also included are general summaries of our resuspension and rainfall data from Bikini and Eneu Islands. The data for the other 12 islands are much more limited because samples were collected as part of a screening survey and the islands have not been part of a continuing research and monitoring program. Cesium-137 is the radionuclide that produces most of the estimated dose for returning residents, mostly through uptake by terrestrial foods and secondly by direct external gamma exposure. Remedial measures for reducing the /sup 137/Cs uptake in vegetation are discussed. 40 refs., 32 figs., 131 tabs.

Robison, W.L.; Conrado, C.L.; Stuart, M.L.

1988-05-31T23:59:59.000Z

127

Radon concentrations in ground and drinking water in the state of Chihuahua, Mexico  

Science Journals Connector (OSTI)

This paper reports 222Rn concentrations in ground and drinking water of nine cities of Chihuahua State, Mexico. Fifty percent of the 114 sampled wells exhibited 222Rn concentrations exceeding 11 Bq/L, the maximum contaminant level (MCL) recommended by the USEPA. Furthermore, around 48% (123 samples) of the tap-water samples taken from 255 dwellings showed radon concentrations over the MCL. There is an apparent correlation between total dissolved solids and radon concentration in ground-water. The high levels of 222Rn found may be entirely attributed to the nature of aquifer rocks.

L. Villalba; L. Colmenero Sujo; M.E. Montero Cabrera; A. Cano Jiménez; M. Rentería Villalobos; C.J. Delgado Mendoza; L.A. Jurado Tenorio; I. Dávila Rangel; E.F. Herrera Peraza

2005-01-01T23:59:59.000Z

128

Advanced Water Treatment System: Technological and Economic Evaluations  

Science Journals Connector (OSTI)

The supply of potable water from polluted rivers, lakes, unsafe wells, ... most effective methods to obtain low cost drinking water is desalination. In this chapter, an advanced water treatment system, based on electrodialysis

Artak Barseghyan

2011-01-01T23:59:59.000Z

129

Solar Farm Going Strong at Water Treatment Plant in Pennsylvania |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farm Going Strong at Water Treatment Plant in Pennsylvania Farm Going Strong at Water Treatment Plant in Pennsylvania Solar Farm Going Strong at Water Treatment Plant in Pennsylvania October 8, 2010 - 10:39am Addthis Aqua Pennsylvania, Inc. installed a 1 MW solar farm at its Ingram’s Mill Water Treatment Plant in East Bradford, Pa. The solar project is saving the water company $77,000 a year. | File photo Aqua Pennsylvania, Inc. installed a 1 MW solar farm at its Ingram's Mill Water Treatment Plant in East Bradford, Pa. The solar project is saving the water company $77,000 a year. | File photo Stephen Graff Former Writer & editor for Energy Empowers, EERE It takes a lot of energy to run a water treatment plant round-the-clock. And pumping 35 million gallons of water a day to hundreds of thousands businesses and residents can get expensive.

130

Protection of ground and surface waters, January 1982-August 1987: Citations from AGRICOLA (Agricultural Online Access) concerning diseases and other environmental considerations. Final report  

SciTech Connect

The citations in this bibliography are selected from English-language material from the international literature on the agricultural aspects of the pollution of ground and surface water by chemicals. Some of the subject areas include: Agricultural operations; Pesticides; Legislation; Land use; Urban hydrology and pollution; Food processing wastes; and Waste treatment.

Bebee, C.N.

1987-07-01T23:59:59.000Z

131

Final Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact Impact Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Sites AGENCY: U.S. DEP.4RTMENT OF ENERGY ACTIOK: FL&-DING OF NO SIGNIFICANT IMP-ACT (FONSI) SU$IM$RY: The U.S. Department of Energy (DOE) plans to implement ground lvater compliance strategies for two Uranium Mill Tailings Remedial Action (UMTR.4) Project sites near Slick Rock. Colorado. The purpose of the strategies is to comply with U.S. En\.ironmental Protection .Qency (EP.Aj ground n'ater standards defined in Title 40 Codr ~fF~d~w/ iieplutio?r.s (CFR) Part 192. and in so doing. protect human health and the en\.ironment. Ground water at the Slick Rock sites is contaminated with residual radioactive materials from hisTorica acti\,ities, associated with the processin of uranium ore, The planned action (~formeri>,.

132

Application of encapsulation (pH-sensitive polymer and phosphate buffer macrocapsules): A novel approach to remediation of acidic ground water  

Science Journals Connector (OSTI)

Macrocapsules, composed of a pH-sensitive polymer and phosphate buffer, offer a novel remediation alternative for acidic ground waters. To test their potential effectiveness, laboratory experiments were carried out followed by a field trial within a coal pile runoff (CPR) acidic contaminant plume. Results of traditional limestone and macrocapsule treatments were compared in both laboratory and field experiments. Macrocapsules were more effective than limestone as a passive treatment for raising pH in well water from 2.5 to 6 in both laboratory and field experiments. The limestone treatments had limited impact on pH, only increasing pH as high as 3.3, and armoring by iron was evident in the field trial. Aluminum, iron and sulfate concentrations remained relatively constant throughout the experiments, but phosphate increased (0.15–32 mg/L), indicating macrocapsule release. This research confirmed that macrocapsules may be an effective alternative to limestone to treat highly acidic ground water.

C. Marjorie Aelion; Harley T. Davis; Joseph R.V. Flora; Brian C. Kirtland; Mark B. Amidon

2009-01-01T23:59:59.000Z

133

Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site  

Office of Legacy Management (LM)

GJO-2000-177-TAR GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site December 2001 Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy Approved for public release; distribution is unlimited. GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site December 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Project Number UGW-511-0017-12-000 Document Number U0066302 Work Performed under DOE Contract No. DE-AC13-96GJ87335 Document Number U0066302 Contents DOE/Grand Junction Office Ground Water Compliance Action Plan for Old Rifle, Colorado

134

CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA PROJECT SITE |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA PROJECT SITE CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA PROJECT SITE August 2, 2010 - 12:00pm Addthis A sheep’s foot roller compacts the tailings in the disposal cell. A sheep's foot roller compacts the tailings in the disposal cell. Moab, UT MILL TAILINGS REMOVAL Sixteen million tons of uranium mill tailings 80 feet high stood on the banks of the Colorado River near Moab in southeast Utah, as a legacy to the former ore-processing site that operated for nearly three decades beginning in the mid-1950s. That is until April 2009, when the U.S. Department of Energy began moving the tailings by rail to an engineered disposal cell constructed 30 miles north near Crescent Junction, Utah. The mill tailings,

135

Ground water impact assessment report for the 216-B-3 Pond system  

SciTech Connect

Ground water impact assessments were required for a number of liquid effluent receiving sites according to the Hanford Federal Facility Agreement and Consent Order Milestones M-17-00A and M-17-00B, as agreed upon by the US Department of Energy. This report is one of the last three assessments required and addresses the impact of continued discharge of uncontaminated wastewater to the 216-B-3C expansion lobe of the B Pond system in the 200 East Area until June 1997. Evaluation of past and projected effluent volumes and composition, geohydrology of the receiving site, and contaminant plume distribution patterns, combined with ground water modeling, were used to assess both changes in ground water flow regime and contaminant-related impacts.

Johnson, V.G.; Law, A.G.; Reidel, S.P.; Evelo, S.D.; Barnett, D.B.; Sweeney, M.D.

1995-01-01T23:59:59.000Z

136

40 CFR 265 interim-status ground-water monitoring plan for the 2101-M pond  

SciTech Connect

This report outlines a ground-water monitoring plan for the 2101-M pond, located in the southwestern part of the 200-East Area on the Hanford Site in south-central Washington State. It has been determined that hazardous materials may have been discharged to the pond. Installation of an interim-status ground-water monitoring system is required under the Resource Conservation and Recovery Act to determine if hazardous chemicals are moving out of the pond. This plan describes the location of new wells for the monitoring system, how the wells are to be completed, the data to be collected, and how those data can be used to determine the source and extent of any ground-water contamination from the 2101-M pond. Four new wells are planned, one upgradient and three downgradient. 35 refs., 12 figs., 9 tabs.

Chamness, M.A.; Luttrell, S.P.; Dudziak, S.

1989-03-01T23:59:59.000Z

137

Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,  

Open Energy Info (EERE)

Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Details Activities (2) Areas (1) Regions (0) Abstract: In geothermal fields, open faults and fractures often act as high permeability pathways bringing hydrothermal fluids to the surface from deep reservoirs. The Mount Princeton area, in south-central Colorado, is an area that has an active geothermal system related to faulting and is therefore a suitable natural laboratory to test geophysical methods. The Sawatch range-front normal fault bordering the half-graben of the Upper Arkansas

138

Evidence for ground-water circulation in the brine-filled aquitard, Oak Ridge, Tennessee  

SciTech Connect

Various geologic, hydrologic, and geochemical methods were used to assess active ground-water circulation in a brine-filled, deep (> 50 m below land surface) aquitard underlying the Oak Ridge Reservation, Tennessee. In places, the brine which was presumed to be stagnant in the past, contains various contaminants. If ground-water circulation is viable in the brine-containing formations, then remediation or containment of the deep-seated contaminants should be considered a high priority. Data used to determine this included (1) spatial and temporal pressures and hydraulic heads measured in the aquitard, (2) hydraulic parameters of the formations in question, (3) vertical temperature gradients, and (4) spatial and temporal chemical and isotopic composition of the saline ground water. Conclusions suggest that the saline water contained at depth is not isolated (in terms of recharge and discharge) from the overlying active and fresh-water-(< 500 mg/l) bearing units. Consequently, influx of young water (and contamination) from land surface does occur. Potential discharge into the shallow aquifers was assumed where the hydraulic head of the saline water was higher than that in the shallow aquifers, accounting for temperature and salinity anomalies observed close to land surface. The confined water (and dissolved solutes) move along open conduits at relatively high velocity into adjacent, more permeable units.

Nativ, R. [Hebrew Univ. of Jerusalem (Israel). Dept. of Soil and Water Sciences; Halleran, A.; Hunley, A. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

1997-07-01T23:59:59.000Z

139

1.0 GAS TRANSFER An important process used in water and wastewater treatment. Also very important when  

E-Print Network (OSTI)

of H2S in septic sewers causing pipe corrosion. 2. CO2 Stripping of some ground waters, industrial1.0 GAS TRANSFER An important process used in water and wastewater treatment. Also very important wastewaters to the stream. Gas/Liquid Interface Gas Liquid Gas transfer to the liquid is absorption Gas

Stenstrom, Michael K.

140

Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill  

SciTech Connect

Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

1989-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ground-water hydrology of the Panther Junction area of Big Bend National Park, Texas  

E-Print Network (OSTI)

GROUND-WATER HYDROLOGY OF THE PANTHER JUNCTION AREA OF BIG BEND NATIONAL PARK, TEXAS A Thesis by JOHN LAWRENCE GIBSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1983 Major Subject: Geology GROUND-WATER HYDROLOGY OF THE PANTHER JUNCTION AREA OF BIG BEND NATIONAL PARK, TEXAS A Thesis by JOHN LAWRENCE GIBSON Approved as to style and content by: Melv'n C. Schroeder (Chairman...

Gibson, John Lawrence

2012-06-07T23:59:59.000Z

142

LRH: WETLANDS, Vol. 22, No. 3, 2002 RRH: Barbiro et al., GEOCHEMISTRY OF WATER AND GROUND WATER IN  

E-Print Network (OSTI)

LRH: WETLANDS, Vol. 22, No. 3, 2002 RRH: Barbiéro et al., GEOCHEMISTRY OF WATER AND GROUND WATER of the Nhecolândia, a sub-region of the Pantanal wetland in Brazil, is the presence of both saline and freshwater manuscript, published in "Wetlands 22, 3 (2002) 528-540" DOI : 10.1672/0277-5212(2002)022[0528:GOWAGW]2.0.CO

Paris-Sud XI, Université de

143

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated 77 percent of the water stream onsite, providing distilled water as the product. The average treated water cost per barrel over the demonstration period was

144

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated 77 percent of the water stream onsite, providing distilled water as the product. The average treated water cost per barrel over the demonstration period was

145

Borehole summary report for five ground-water monitoring wells constructed in the 1100 Area  

SciTech Connect

This report contains the data collected during the installation and initial sampling of five ground-water monitoring wells between the 1100 Area and Richland City water supply wells. The five wells were installed to provide for early detection of contaminants and to provide data that may be used in making decisions on the management of the North Richland Well Field and recharge basins. 2 refs., 1 fig.

Bryce, R.W.; Goodwin, S.M.

1989-05-01T23:59:59.000Z

146

Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001  

SciTech Connect

A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA) led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)

Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.; Martin, David W. [Washington Closure Hanford, LLC, Richland, WA 99354 (United States)] [Washington Closure Hanford, LLC, Richland, WA 99354 (United States)

2013-07-01T23:59:59.000Z

147

Effect of faulting on ground-water movement in the Death Valley region, Nevada and California  

SciTech Connect

This study characterizes the hydrogeologic system of the Death Valley region, an area covering approximately 100,000 square kilometers. The study also characterizes the effects of faults on ground-water movement in the Death Valley region by synthesizing crustal stress, fracture mechanics,a nd structural geologic data. The geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. Faulting and associated fracturing is pervasive and greatly affects ground-water flow patterns. Faults may become preferred conduits or barriers to flow depending on whether they are in relative tension, compression, or shear and other factors such as the degree of dislocations of geologic units caused by faulting, the rock types involved, the fault zone materials, and the depth below the surface. The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional ground-water flow regime. Numerous examples of fault-controlled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths. 97 refs., 20 figs., 5 tabs.

Faunt, C.C.

1997-12-31T23:59:59.000Z

148

Onsite Wastewater Treatment Systems: Graywater Use and Water Quality  

E-Print Network (OSTI)

their homes in their landscapes. This reuse of graywater can reduce the amount of wastewater entering sewers or treatment systems, reduce the amount of fresh water used on landscapes and help preserve limited fresh water supplies. Onsite wastewater...-washing machines ? The code excludes water that has washed materials soiled with human waste, such as diapers, and water that has been in contact with toilet waste. This water, known as blackwater, includes flush water from toilets and urinals and wastewater...

Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

2008-08-28T23:59:59.000Z

149

Magnetic treatment of water prevents mineral build-up  

SciTech Connect

Increased demand for water and especially for water reuse combined with tighter restrictions on environmental pollution has dictated the need for improvement in water treatment. The effective treatment of a water supply to prevent or minimize the formation of scale or corrosion, for example, is complex and any process requiring little or no chemical additions represents an attractive alternative. Untreated water results in equipment failures, process interruptions and circulating water systems clogged by minerals. These problems are, in many instances, related to scale deposition and corrosion caused by dissolved and suspended solids in the water supply. Magnetic treatment of water is an effective method of overcoming these problems. The theory, application and case studies involving the use of magnetic treatment are discussed.

Quinn, C.J. [Purdue Univ., Fort Wayne, IN (United States); Molden, T.C. [Molden Associates, Inc., Michigan City, IN (United States); Sanderson, C.H. [Magnatech Corp., Fort Wayne, IN (United States). Superior Mfg. Div.

1997-07-01T23:59:59.000Z

150

ANAEROBIC BIOLOGICAL TREATMENT OF IN-SITU RETORT WATER  

E-Print Network (OSTI)

Phyllis Fox INTRODUCTION Oil shale retorting produces fromWaste Water from Oil Shale Processing" ACS Division of FuelEvaluates Treatments for Oil-Shale Retort Water," Industrial

Ossio, Edmundo

2012-01-01T23:59:59.000Z

151

Reverse-Osmosis Filtration Based Water Treatment and Special Water Purification for Nuclear Power Systems  

Science Journals Connector (OSTI)

This paper is devoted to the development and operation of specialized water treatment and water purification systems, based on the principle of reverse-osmosis filtration of water, for the operation of ... P. Ale...

V. N. Epimakhov; M. S. Oleinik; L. N. Moskvin

2004-04-01T23:59:59.000Z

152

K West integrated water treatment system subproject safety analysis document  

SciTech Connect

This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

SEMMENS, L.S.

1999-02-24T23:59:59.000Z

153

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Livestock Holding Pen Management  

E-Print Network (OSTI)

Open lots or holding pens for feeding or holding livestock can be sources of ground water contamination. The safety of such operations depends on their separation from water wells, characteristics of the site, and proper management. This publication...

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

1997-08-29T23:59:59.000Z

154

Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona  

SciTech Connect

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

NONE

1996-03-01T23:59:59.000Z

155

Revised ground-water monitoring compliance plan for the 300 area process trenches  

SciTech Connect

This document contains ground-water monitoring plans for process-water disposal trenches located on the Hanford Site. These trenches, designated the 300 Area Process Trenches, have been used since 1973 for disposal of water that contains small quantities of both chemicals and radionuclides. The ground-water monitoring plans contained herein represent revision and expansion of an effort initiated in June 1985. At that time, a facility-specific monitoring program was implemented at the 300 Area Process Trenches as part of a regulatory compliance effort for hazardous chemicals being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interim-status facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The applicable monitoring requirements are described in the Resource Conservation and Recovery Act (RCRA), 40 CFR 265.90 of the federal regulations, and in WAC 173-303-400 of Washington State's regulations (Washington State Department of Ecology 1986). The program implemented for the process trenches was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. The plans for the program, contained in a document prepared by the US Department of Energy (USDOE) in 1985, called for monthly sampling of 14 of the 37 existing monitoring wells at the 300 Area plus the installation and sampling of 2 new wells. 27 refs., 25 figs., 15 tabs.

Schalla, R.; Aaberg, R.L.; Bates, D.J.; Carlile, J.V.M.; Freshley, M.D.; Liikala, T.L.; Mitchell, P.J.; Olsen, K.B.; Rieger, J.T.

1988-09-01T23:59:59.000Z

156

The detection and modelling of surface thermal structures and ground water discharges  

E-Print Network (OSTI)

THE DETECTION AND MODELLING DF SURFACE THERMAL STRUCTURES AND GROUND WATER DISCHARGES A Thesis by DOUGLAS YINCENT ROBERTS Subm1tted to the Graduate Col leqe of Texas A&M University in part1al fulf1llment of the requirements or the degree... of MASTER OF SCIENCE August IgSS Major Subject: Geophys1cs THE DETECTION AND MODELLING OF SURFACE THERMAL STRUCTURES AND GROUND HATER DISCHARGES A Thesis DOUGLAS VINCENT ROBERTS Approved as to style and content by: Earl . oskins (Chair of Committee...

Roberts, Douglas Vincent

2012-06-07T23:59:59.000Z

157

Ground Water Surveillance Monitoring Implementation Guide for Use with DOE O 450.1, Environmental Protection Program  

Directives, Delegations, and Requirements

This Guide assists DOE sites in establishing and maintaining surveillance monitoring programs to detect future impacts on ground water resources from site operations, to track existing ground water contamination, and to assess the potential for exposing the general public to site releases. Canceled by DOE N 251.82.

2004-06-24T23:59:59.000Z

158

Effective Ship Ballast Water Treatment System Management  

Science Journals Connector (OSTI)

Besides its great effect on ship stability, ballast water causes an important problem. While a ship loads ballast water from any sea, it ... species. These species may have a great effect on the local ecological ...

Levent Bilgili; Kaan Ünlügenço?lu…

2013-01-01T23:59:59.000Z

159

Water Treatment using Electrocoagulation Ritika Mohan  

E-Print Network (OSTI)

Reverse Osmosis (HEROTM). Semiconductor industrial waste water amounts to approximately 105 ­ 106 gal of brine amounting to almost 103 104 gal/day water. The difference between conventional Reverse Osmosis

Fay, Noah

160

Global Water Sustainability:  

Science Journals Connector (OSTI)

...Ground Water and Drinking Water EPA 816-R-04-003...oil and gas produced water treatment. Journal of Hazardous...92-99 Jurenka B (2007) Electrodialysis (ED) and Electrodialysis...usbr.gov/pmts/water/publications/reportpdfs...

Kelvin B. Gregory; Radisav D. Vidic; David A. Dzombak

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Cleaning Membranes with Focused Ultrasound Beams for Drinking Water Treatment  

E-Print Network (OSTI)

Cleaning Membranes with Focused Ultrasound Beams for Drinking Water Treatment Jian-yu Lu1 , Xi Du2 micro pollutants such as harmful organics and cannot meet the demand for high-quality drinking water. Membrane technologies are known to produce drinking water of the highest quality. However, membrane fouling

Lu, Jian-yu

162

Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse  

Science Journals Connector (OSTI)

Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse ... Although existing infrastructure contributes inertia against a paradigm shift, these immense challenges call for a change toward integrated management of water and wastewater with a decentralized, differential treatment and reuse paradigm where water and wastewater are treated to the quality dictated by the intended use. ... Nanotechnology will likely play a critical role, not only supplementing and enhancing existing processes, but also facilitating the transformation of water supply systems toward a distributed differential treatment paradigm that integrates wastewater reuse with energy neutral operations, lower residuals production, and safer water quality. ...

Xiaolei Qu; Jonathon Brame; Qilin Li; Pedro J. J. Alvarez

2012-06-27T23:59:59.000Z

163

Reverse osmosis treatment to remove inorganic contaminants from drinking water  

SciTech Connect

The purpose of the research project was to determine the removal of inorganic contaminants from drinking water using several state-of-the-art reverse osmosis membrane elements. A small 5-KGPD reverse osmosis system was utilized and five different membrane elements were studied individually with the specific inorganic contaminants added to several natural Florida ground waters. Removal data were also collected on naturally occurring substances.

Huxstep, M.R.; Sorg, T.J.

1987-12-01T23:59:59.000Z

164

POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.

V. King

2000-06-19T23:59:59.000Z

165

INL Bettis Water Treatment Project Report  

SciTech Connect

Bechtel Bettis Atomic Power Laboratory (Bettis), West Mifflin, PA, requested that the Idaho National Laboratory (INL) (Battelle Energy Alliance) perform tests using water simulants and three specified media to determine if those ion-exchange (IX) resins will be effective at removing the plutonium contamination from water. This report details the testing and results of the tests to determine the suitability of the media to treat plutonium contaminated water at near nuetral pH.

Not Available

2009-06-01T23:59:59.000Z

166

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Hazardous Waste Management  

E-Print Network (OSTI)

or unwanted chemicals can become a big problem. Some common disposal practices not only threaten ground water but also may be illegal. Small, unusable amounts of these products often wind up spilled, buried, dumped, or flushed onto a property. Minimizing... rules require that environmentally protective conditions be met before some disposal practices are permit- ted. Other previously common disposal prac- tices are now illegal because of their potential risks to human health and the environment. This new...

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

1997-08-29T23:59:59.000Z

167

Ground-water hydrogeology and geochemistry of a reclaimed lignite surface mine  

E-Print Network (OSTI)

that generally parallels the Gulf Coast (Figure 1). Recent estimates place the total near-surface reserves at 11 billion short tons (Kaiser et al. , 1980). Energy companies are now developing lignite mines throughout the Texas lignite belt at a rapid... and accelerating rate. Surface mining of lignite could adversely affect another valuable Texas resource--ground water. Eighty percent of the near-surface lignite reserves are located within the Wilcox Group (Kaiser et al. , 1980), which is part of the Carrizo...

Pollock, Clifford Ralph

2012-06-07T23:59:59.000Z

168

Hydrogeological restrictions to saline ground-water discharge in the Red River of the North drainage basin, North Dakota  

SciTech Connect

Discharge of saline water from bedrock aquifers along the eastern margin of the Williston basin is restricted by surficial glacial till and lacustrine deposits in the Red River of the North drainage basin. Water from these aquifers reaches the surface by (1) diffusion; (2) slow, upward seepage along zones of relatively larger hydraulic conductivity in the till and lacustrine deposits; or (3) flow from artesian wells. Ground-water quality varies near the surface because of mixing of water being discharged from bedrock aquifers with shallower ground water in the surficial deposits. Ground-water quality, hydraulic-gradient, and hydraulic-conductivity data obtained from pumped-well and slug tests indicate that flow in the surficial deposits is eastward, but at slow rates because of small hydraulic conductivities. Base-flow and specific-conductance measurements of water in tributaries to the Red River of the North indicate that focused points of ground-water discharge result in substantial increases in salinity in surface water in the northern part of the basin in North Dakota. Core analyses and drillers' logs were used to generalize hydrogeologic characteristics of the deposits in the basin, and a two-dimensional ground-water-flow model was used to simulate the basin's geohydrologic processes. Model results indicate that the ground-water flow paths in the bedrock aquifers and surficial deposits converge, and that water from the bedrock aquifers contributes to the overall increase in ground-water discharge toward the east. Model results are supported by water-quality data collected along an east-west hydrogeologic section.

Strobel, M.L. (Geological Survey, Grand Forks, ND (United States) Univ. of North Dakota, Grand Forks, ND (United States))

1992-01-01T23:59:59.000Z

169

(Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)  

SciTech Connect

In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

Not Available

1991-10-01T23:59:59.000Z

170

Guide to ground water remediation at CERCLA response action and RCRA corrective action sites  

SciTech Connect

This Guide contains the regulatory and policy requirements governing remediation of ground water contaminated with hazardous waste [including radioactive mixed waste (RMW)], hazardous substances, or pollutants/contaminants that present (or may present) an imminent and substantial danger. It was prepared by the Office of Environmental Policy and Assistance, RCRA/CERCLA Division (EH-413), to assist Environmental Program Managers (ERPMs) who often encounter contaminated ground water during the performance of either response actions under CERCLA or corrective actions under Subtitle C of RCRA. The Guide begins with coverage of the regulatory and technical issues that are encountered by ERPM`s after a CERCLA Preliminary Assessment/Site Investigation (PA/SI) or the RCRA Facility Assessment (RFA) have been completed and releases into the environment have been confirmed. It is based on the assumption that ground water contamination is present at the site, operable unit, solid waste management unit, or facility. The Guide`s scope concludes with completion of the final RAs/corrective measures and a determination by the appropriate regulatory agencies that no further response action is necessary.

NONE

1995-10-01T23:59:59.000Z

171

Ground water monitoring system for effluent irrigated areas : a case study of Hawkesbury water recycling scheme.  

E-Print Network (OSTI)

??Water recycling schemes are increasingly being implemented across Australia as an effective means of converting wastewater into a valuable resource. There is currently a lack… (more)

Beveridge, Gavin John

2006-01-01T23:59:59.000Z

172

The Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on the Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants.

173

Water treatment facilities (excluding wastewater facilities). (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, construction, costs, and operation of water treatment facilities. Facilities covered include those that provide drinking water, domestic water, and water for industrial use. Types of water treatment covered include reverse osmosis, chlorination, filtration, and ozonization. Waste water treatment facilities are excluded from this bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-07-01T23:59:59.000Z

174

Drinking water treatment and distribution systems must comply with US EPA water quality regula-  

E-Print Network (OSTI)

Drinking water treatment and distribution systems must comply with US EPA water quality regula trihalomethanes (THMs). Drinking water providers do frequent, costly testing for THMs. Field real-time sensors PROJECT GOALS The goal of this project was to bring a team of experts in drinking water, polymers

Fay, Noah

175

Desalting and water treatment membrane manual: A guide to membranes for municipal water treatment. Water treatment technology program report No. 1  

SciTech Connect

The Bureau of Reclamation prepared this manual to provide an overview of microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and electrodialysis processes as they are used for water treatment. Membrane composition, the chemical processes, and the physical processes involved with each membrane type are described and compared. Because care and maintenance of water treatment membranes are vital to their performance and life expectancy, pretreatment, cleaning, and storage requirements are discussed in some detail. Options for concentrate disposal, also a problematic feature of membrane processes, are discussed. The culmination of this wealth of knowledge is an extensive comparison of water treatment membranes commercially available at this time. The tables cover physical characteristics, performance data, and operational tolerances.

Chapman-Wilbert, M.

1993-09-01T23:59:59.000Z

176

Acid mine water aeration and treatment system  

DOE Patents (OSTI)

An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

Ackman, Terry E. (Finleyville, PA); Place, John M. (Bethel Park, PA)

1987-01-01T23:59:59.000Z

177

Ground Water Protection Programs Implementation Guide for Use with DOE O 450.1, Environmental Protection Program  

Directives, Delegations, and Requirements

This Guide provides a description of the elements of an integrated site-wide ground water protection program that can be adapted to unique physical conditions and programmatic needs at each DOE site. Canceled by DOE N 251.82.

2005-05-05T23:59:59.000Z

178

Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1  

SciTech Connect

This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

Not Available

1994-08-01T23:59:59.000Z

179

inactivation of viral aggregates during water treatment  

E-Print Network (OSTI)

treatment. MS2 virus used as the model organism. peracetic acid (PAA) chosen as disinfectant (400 mM) were used to study the pH effect on disinfection rate constants of PAA/L PAA; all experiments showed pseudo-first order kinetics (fig. 1b): biggest aggregates

180

Treatment of aricultural drainage water: technological schemes and financial indicators  

Science Journals Connector (OSTI)

Treatment and application of agricultural drainage water (ADW) has become mandatory to cope with the shortage of potable water. In Egypt, current water supply plans comprise increasing utilization of the ample resource of ADW. The current limitations facing wider utilization of secondary sources in general and, ADW of particular, need extensive funding requirements. Best available technologies and consequently high level of capital have been required to implement treatment works. This paper presents techno-economic aspects of treatment and reuse of polluted surface water resulting from mixing river water with ADW. Proposed technological treatment schemes are first discussed. Further, the selected integrated treatment scheme based on conventional and advanced physicochemical techniques is elucidated. Membrane separation has been incorporated to achieve removal of residual pollutants as well as salinity reduction. Further, the paper is concluded with a techno-economic assessment of the proposed treatment train for 110,000 m3/d treatment facility. The results indicate promising features of the proposed scheme. Complementary studies are needed to assess potential environmental impacts under normal conditions.

Hala A. Talaat; Safaa R. Ahmed

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Linking ceragenins to water-treatment membranes to minimize biofouling.  

SciTech Connect

Ceragenins were used to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. While ceragenins have been used on bio-medical devices, use of ceragenins on water-treatment membranes is novel. Biofouling impacts membrane separation processes for many industrial applications such as desalination, waste-water treatment, oil and gas extraction, and power generation. Biofouling results in a loss of permeate flux and increase in energy use. Creation of biofouling resistant membranes will assist in creation of clean water with lower energy usage and energy with lower water usage. Five methods of attaching three different ceragenin molecules were conducted and tested. Biofouling reduction was observed in the majority of the tests, indicating the ceragenins are a viable solution to biofouling on water treatment membranes. Silane direct attachment appears to be the most promising attachment method if a high concentration of CSA-121a is used. Additional refinement of the attachment methods are needed in order to achieve our goal of several log-reduction in biofilm cell density without impacting the membrane flux. Concurrently, biofilm forming bacteria were isolated from source waters relevant for water treatment: wastewater, agricultural drainage, river water, seawater, and brackish groundwater. These isolates can be used for future testing of methods to control biofouling. Once isolated, the ability of the isolates to grow biofilms was tested with high-throughput multiwell methods. Based on these tests, the following species were selected for further testing in tube reactors and CDC reactors: Pseudomonas ssp. (wastewater, agricultural drainage, and Colorado River water), Nocardia coeliaca or Rhodococcus spp. (wastewater), Pseudomonas fluorescens and Hydrogenophaga palleronii (agricultural drainage), Sulfitobacter donghicola, Rhodococcus fascians, Rhodobacter katedanii, and Paracoccus marcusii (seawater), and Sphingopyxis spp. (groundwater). The testing demonstrated the ability of these isolates to be used for biofouling control testing under laboratory conditions. Biofilm forming bacteria were obtained from all the source water samples.

Hibbs, Michael R.; Altman, Susan Jeanne; Feng, Yanshu (Brigham Young University, Provo, Utah); Savage, Paul B. (Brigham Young University, Provo, Utah); Pollard, Jacob (Brigham Young University, Provo, Utah); Branda, Steven S.; Goeres, Darla (Montana State University, Bozeman, MT); Buckingham-Meyer, Kelli (Montana State University, Bozeman, MT); Stafslien, Shane (North Dakota State University, Fargo, ND); Marry, Christopher; Jones, Howland D. T.; Lichtenberger, Alyssa; Kirk, Matthew F.; McGrath, Lucas K. (LMATA, Albuquerque, NM)

2012-01-01T23:59:59.000Z

182

DOE/EA-1388: Environmental Assessment of Ground Water Compliance at the Shiprock Uranium Mill Tailings Site (September 2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

388 388 Environmental Assessment of Ground Water Compliance at the Shiprock Uranium Mill Tailings Site Final September 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 This Page Intentionally Blank DOE Grand Junction Office EA of Ground Water Compliance at the Shiprock Site September 2001 Final Page iii Contents Page Acronyms and Abbreviations ........................................................................................................ vii Executive Summary ....................................................................................................................... ix 1.0 Introduction .............................................................................................................................1

183

Geohydrology and ground-water geochemistry at a sub-Arctic Landfill, Fairbanks, Alaska. Water resources investigation  

SciTech Connect

The Fairbanks-North Star Borough landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water-supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperatures, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of ground-water flow from the landfill, and thus the leachate is not expected to affect the water-supply wells.

Downey, J.S.; Sinton, P.O.

1990-01-01T23:59:59.000Z

184

In situ Groundwater Remediation Using Treatment Walls  

Science Journals Connector (OSTI)

Development of treatment wall technology for the clean up of contaminated ground-water resources has expanded in the past few...ex situ and other in situ ground-water remediation approaches is reduced operation a...

Radisav D. Vidic; Frederick G. Pohland

2002-01-01T23:59:59.000Z

185

Radioactive residues associated with water treatment, use and disposal in Australia.  

E-Print Network (OSTI)

??Water resources are known to contain radioactive materials, either from natural or anthropogenic sources. Treatment, including wastewater treatment, of water for drinking, domestic, agricultural and… (more)

Kleinschmidt, Ross Ivan

2011-01-01T23:59:59.000Z

186

Behavior of partially miscible organic compounds in simulated ground water systems  

SciTech Connect

Serious ground water contamination problems result from leaks or spills of organic liquids which are partially miscible in water. Two important categories of these liquids include low molecular weight chlorinated solvents and gasoline. 1,1,1-Trichloroethane (TCA) abiotically degrades in water forming approximately 17-25% 1,1-dichloroethene (1,1-DCE) via an elimination reaction. Brominated analogs of TCA hydrolyze 11-13 times faster than TCA. As the number of bromines increase, the percent of elimination products increases. These geminal trihalides degrade by a unimolecular mechanism (E1/SN1). The rate coefficient for TCA degradation in buffered water at elevated temperature is approximately six times greater than hydrolysis of 1-chloropropane (SN2 mechanism) and more than 100 times greater than 1,1-dichloroethane. In the presence of sodium thiosulfate, the 1-chloropropane degradation rate increased by more than a factor of 100, 1,1-dichloroethane rate by 22 and TCA degradation by approximately two. The range of concentrations for major components of gasoline which partition into water was determined for 65 gasoline samples. Benzene concentrations in the water extracts ranged from 12.3-130 mg/l and toluene concentrations ranged from 23-185 mg/l. Fuel/water partition coefficients of seven major aromatic constituents were measured for 31 gasoline types and showed a standard deviation of 10-30%. These coefficients were highly correlated with the pure component solubilities. Chemometric techniques were applied to 20 peaks measured in the aqueous extracts of the 65 gasolines. Bivariate plots and principal component analyses show selected brands have distinguishing equilibrium concentrations, but complete separation of brands was not observed.

Cline, P.V.

1988-01-01T23:59:59.000Z

187

Innovative Treatment Technologies for Natural Waters and Wastewaters  

SciTech Connect

The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energy usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.

Childress, Amy E.

2011-07-01T23:59:59.000Z

188

Biological treatment options for consolidated tailings release waters  

SciTech Connect

Suncor Inc., Oil Sands Group, operates a large oil sands mining and extraction operation in northeastern Alberta. The extraction plant produces large volumes of a tailings slurry which resists dewatering and treatment, and is toxic to aquatic organisms. Consolidated tailings (CT) technology is used to treat tailings by either acid/lime or gypsum and enhances the possibility of treating residual fine tails in a ``dry`` land reclamation scenario and treating the release water in a wastewater treatment reclamation scenario. The objective was to assess the treatability of CT release water (i.e., the reduction of acute and chronic toxicities to trout, Ceriodaphnia, and bacteria) in bench-scale biological treatment systems. Microtox{reg_sign} IC20 test showed complete detoxification for the gypsum CT release water within 3 to 5 weeks compared with little reduction in toxicity for dyke drainage. Acute toxicity (fish) and chronic toxicity (Ceriodaphnia, bacterial) was removed from both CT release waters. Phosphate and aeration enhanced detoxification rates. Concentrations of naphthenic acids (an organic toxicant) were not reduced, but levels of dissolved organic compounds decreased faster than was the case for dyke drainage water, indicating that some of the organic compounds in both acid/lime and gypsum CT waters were more biodegradable. There was a pattern of increasing toxicity for dyke drainage water which confirmed observations during field-scale testing in the constructed wetlands and which was not observed for CT release waters. Acid/lime and gypsum CT water can be treated biologically in either an aeration pond, constructed wetlands, or a combination of both thereby avoiding the expense of long-term storage and/or conventional waste treatment systems.

Gunter, C.P.; Nix, P.G.; Sander, B. [EVS Environment Consultants, North Vancouver, British Columbia (Canada); Knezevic, Z.

1995-12-31T23:59:59.000Z

189

Computer simulation models relevant to ground water contamination from EOR or other fluids - state-of-the-art  

SciTech Connect

Ground water contamination is a serious national problem. The use of computers to simulate the behavior of fluids in the subsurface has proliferated extensively over the last decade. Numerical models are being used to solve water supply problems, various kinds of enertgy production problems, and ground water contamination problems. Modeling techniques have progressed to the point that their accuracy is only limited by the modeller's ability to describe the reservoir in question and the heterogeneities therein. Pursuant to the Task and Milestone Update of Project BE3A, this report summarizes the state of the art of computer simulation models relevant to contamination of ground water by enhanced oil recovery (EOR) chemicals and/or waste fluids. 150 refs., 6 tabs.

Kayser, M.B.; Collins, A.G.

1986-03-01T23:59:59.000Z

190

Novel Americium Treatment Process for Surface Water and Dust Suppression Water  

SciTech Connect

The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am-241 contaminated pond water, surface run-off and D and D dust suppression water during the later stages of the D and D effort at Rocky Flats. This novel chemical treatment system allowed for highly efficient, high-volume treatment of all contaminated waste waters to the very low stream standard of 0.15 pCi/1 with strict compliance to the RFCA discharge criteria for release to off-site surface waters. The rapid development and implementation of the treatment system avoided water management issues that would have had to be addressed if contaminated water had remained in Pond A-4 into the Spring of 2005. Implementation of this treatment system for the Pond A-4 waters and the D and D waters from Buildings 776 and 371 enabled the site to achieve cost-effective treatment that minimized secondary waste generation, avoiding the need for expensive off-site water disposal. Water treatment was conducted for a cost of less than $0.20/gal which included all development costs, capital costs and operational costs. This innovative and rapid response effort saved the RFETS cleanup program well in excess of $30 million for the potential cost of off-site transportation and treatment of radioactive liquid waste. (authors)

Tiepel, E.W.; Pigeon, P. [Golder Associates (United States); Nesta, S. [Kaiser-Hill Company, LLC (United States); Anderson, J. [Rocky Flats Closure Site Services - RFCSS (United States)

2006-07-01T23:59:59.000Z

191

Exergy and Energy analysis of a ground-source heat pump for domestic water heating under simulated occupancy conditions  

SciTech Connect

This paper presents detailed analysis of a water to water ground source heat pump (WW-GSHP) to provide all the hot water needs in a 345 m2 house located in DOE climate zone 4 (mixed-humid). The protocol for hot water use is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which aims to capture the living habits of the average American household and its impact on energy consumption. The entire house was operated under simulated occupancy conditions. Detailed energy and exergy analysis provides a complete set of information on system efficiency and sources of irreversibility, the main cause of wasted energy. The WW-GSHP was sized at 5.275 kW (1.5-ton) for this house and supplied hot water to a 303 L (80 gal) water storage tank. The WW-GSHP shared the same ground loop with a 7.56 kW (2.1-ton) water to air ground source heat pump (WA-GSHP) which provided space conditioning needs to the entire house. Data, analyses, and measures of performance for the WW-GSHP in this paper complements the results of the WA-GSHP published in this journal (Ally, Munk et al. 2012). Understanding the performance of GSHPs is vital if the ground is to be used as a viable renewable energy resource.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

192

BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT THE URAN~UM MILL TAILINGS  

Office of Legacy Management (LM)

I~:-:ii*.i: i,<;.;.-;_r- --:-:ir-- I~:-:ii*.i: i,<;.;.-;_r- --:-:ir-- - . . - -. . - . . - , -, . , , , - - - - . BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT THE URAN~UM MILL TAILINGS SITE NEAR RIVERTON, WYOMING I i I I I Prepared by the U.S. Department of Energy Albuquerque, New Mexico September 1995 INTENDED FOR PUBLIC RELEASE This report has been reproduced from the best available copy. Avai and microfiche Number of pages in this report: 166 DOE and DOE contractors can obtain copies of this report from: Office of Scientific and Technical information P.O. Box 62 Oak Ridge, TN 37831 (61 5) 576-8401 This report is publicly available from: National Technical information Service Department of Commerce 5285 Port Royal Road Springfield, VA 22161 (703) 487-4650 DOEIAL162350-65

193

New route for degradation of chlorinated ethylenes in exhaust gases from ground water remediation  

Science Journals Connector (OSTI)

On the basis of an approximate finite-size description, a UV photoreactor was devised and constructed for studying the photooxidation of the chlorinated ethylenes perchloroethylene (PCE), trichloroethylene (TCE), 1,2-dichloroethylenes (DCE), vinyl chloride (VC) and several saturated chlorinated hydrocarbons (CHC). In the cases of PCE and TCE, the efficiency of the photooxidation using irradiation by a 222 nm excimer lamp and subsequent photolysis for the initiation of the process was found to be sufficiently high so that a scaling up to an industrial purification plant of exhaust gases from ground water remediation can be hopefully envisaged. Thanks to consecutive reactions with the chain-sustaining chlorine atoms, this degradation route proves capable of decomposing the other chlorinated ethylenes which are not amenable to photolysis in a direct way. For saturated CHC the utilisability of this approach is limited.

Lutz Prager; Eberhard Hartmann

2001-01-01T23:59:59.000Z

194

Stable isotopes of hydrogen and oxygen in surface water and ground water at selected sites on or near the Idaho National Engineering Laboratory, Idaho  

SciTech Connect

Relative stable isotopic ratios for hydrogen and oxygen compared to standard mean ocean water are presented for water from 4 surface-water sites and 38 ground-water sites on or near the Idaho National Engineering Laboratory (INEL). The surface-water samples were collected monthly from March 1991 through April 1992 and after a storm event on June 18, 1992. The ground-water samples either were collected during 1991 or 1992. These data were collected as part of the US Geological Survey`s continuing hydrogeological investigations at the INEL. The relative isotopic ratios of hydrogen and oxygen are reported as delta {sup 2}H ({delta}{sup 2}H) and as delta {sup 18}O ({delta}{sup 18}O), respectively. The values of {delta}{sup 2}H and {delta}{sup 18}O in water from the four surface-water sites ranged from -143.0 to -122 and from -18.75 to -15.55, respectively. The values of {delta}{sup 2}H and {delta}{sup 18}O in water from the 38 ground-water sites ranged from -141.0 to -120.0 and from -18.55 to -14.95, respectively.

Ott, D.S.; Cecil, L.D.; Knobel, L.L.

1994-11-01T23:59:59.000Z

195

Fracture-zone dewatering to control ground water inflow in underground coal mines. Report of Investigations/1985  

SciTech Connect

The Bureau of Mines investigation focuses on the identification and control of ground-water inflow problems that occur in the active sections of underground Appalachian coal mines. A fracture inflow survey of eight underground mines was conducted. Three types of mine fracture intercepts were identified, which are typical of wet section mining conditions. A mine in Preston County, WV was selected as the site for a fracture-zone dewatering experiment. Fracture trace analysis was used to site dewatering wells in a fracture valley setting ahead of mine development. The design, implementation, and results of the dewatering experiment are presented. The investigation suggests that fracture zones are responsible for the sudden release of stored ground water, which often occurs as mining sections advance beneath fracture valley topography. It is concluded, therefore, that dewatering operations that are designed to intercept the component of ground water that is stored in fracture zones will be most effective in controlling infiltration to active mine sections.

Schmidt, R.D.

1985-01-01T23:59:59.000Z

196

Desalination and Water Treatment www.deswater.com  

E-Print Network (OSTI)

.22 µm. Seawater, reverse osmosis (RO) concentrate collected from a wastewater reclamation plant for the treatment of saline water and wastewater such as thermal distillation and reverse osmosis [2,3]. MD has several advantages compared to conventional thermal distillation and reverse osmosis processes [3

197

Modeling Urban Storm-Water Quality Treatment: Model Development and Application to a Surface Sand Filter  

E-Print Network (OSTI)

water impacts has led us to the develop- ment of different storm-water treatment strategies. Previous knowledge regarding traditional water treatment systems drink- ing and wastewater and the evaluation

198

Treatment of produced waters by electrocoagulation and reverse osmosis  

SciTech Connect

Two oil field produced waters and one coal bed methane produced water from Wyoming were treated with electrocoagulation and reverse osmosis. All three produced waters would require treatment to meet the new Wyoming Department of Environmental Quality requirements for effluent discharge into a class III or IV stream. The removal of radium 226 and oil and grease was the primary focus of the study. Radium 226 and oil and grease were removed from the produced waters with electrocoagulation. The best removal of radium 226 (>84%) was achieved with use of a non-sacrificial anode (titanium). The best removal of oil and grease (>93%) was achieved using a sacrificial anode (aluminum). By comparison, reverse osmosis removed up to 87% of the total dissolved solids and up to 95% of the radium 226.

Tuggle, K.; Humenick, M.; Barker, F.

1992-08-01T23:59:59.000Z

199

Review of technologies for oil and gas produced water treatment  

Science Journals Connector (OSTI)

Produced water is the largest waste stream generated in oil and gas industries. It is a mixture of different organic and inorganic compounds. Due to the increasing volume of waste all over the world in the current decade, the outcome and effect of discharging produced water on the environment has lately become a significant issue of environmental concern. Produced water is conventionally treated through different physical, chemical, and biological methods. In offshore platforms because of space constraints, compact physical and chemical systems are used. However, current technologies cannot remove small-suspended oil particles and dissolved elements. Besides, many chemical treatments, whose initial and/or running cost are high and produce hazardous sludge. In onshore facilities, biological pretreatment of oily wastewater can be a cost-effective and environmental friendly method. As high salt concentration and variations of influent characteristics have direct influence on the turbidity of the effluent, it is appropriate to incorporate a physical treatment, e.g., membrane to refine the final effluent. For these reasons, major research efforts in the future could focus on the optimization of current technologies and use of combined physico-chemical and/or biological treatment of produced water in order to comply with reuse and discharge limits.

Ahmadun Fakhru’l-Razi; Alireza Pendashteh; Luqman Chuah Abdullah; Dayang Radiah Awang Biak; Sayed Siavash Madaeni; Zurina Zainal Abidin

2009-01-01T23:59:59.000Z

200

Groundwater Treatment at the Fernald Preserve: Status and Path Forward for the Water Treatment Facility - 12320  

SciTech Connect

Operating a water treatment facility at the Fernald Preserve in Cincinnati, Ohio-to support groundwater remediation and other wastewater treatment needs-has become increasingly unnecessary. The Fernald Preserve became a U.S. Department of Energy Office of Legacy Management (LM) site in November 2006, once most of the Comprehensive Environmental Response, Compensation, and Liability Act environmental remediation and site restoration had been completed. Groundwater remediation is anticipated to continue beyond 2020. A portion of the wastewater treatment facility that operated during the CERCLA cleanup continued to operate after the site was transferred to LM, to support the remaining groundwater remediation effort. The treatment facility handles the site's remaining water treatment needs (for groundwater, storm water, and wastewater) as necessary, to ensure that uranium discharge limits specified in the Operable Unit 5 Record of Decision are met. As anticipated, the need to treat groundwater to meet uranium discharge limits has greatly diminished over the last several years. Data indicate that the groundwater treatment facility is no longer needed to support the ongoing aquifer remediation effort. (authors)

Powel, J. [U.S. Department of Energy Office of Legacy Management, Harrison, Ohio (United States); Hertel, B.; Glassmeyer, C.; Broberg, K. [S.M. Stoller Corporation, Harrison, Ohio (United States)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Treatment methods for breaking certain oil and water emulsions  

DOE Patents (OSTI)

Disclosed are treatment methods for breaking emulsions of petroleum oil and salt water, fatty oil and water, and those resulting from liquefication of organic material. The emulsions are broken by heating to a predetermined temperature at or above about 200.degree. C. and pressurizing to a predetermined pressure above the vapor pressure of water at the predetermined temperature to produce a heated and pressurized fluid. The heated and pressurized fluid is contained in a single vessel at the predetermined temperature and pressure for a predetermined period of time to effectively separate the emulsion into substantially distinct first and second phases, the first phase comprising primarily the petroleum oil, the second phase comprising primarily the water. The first and second phases are separately withdrawn from the vessel at a withdraw temperature between about 200.degree. C. and 374.degree. C. and a withdraw pressure above the vapor pressure of water at the withdraw temperature. Where solids are present in the certain emulsions, the above described treatment may also effectively separate the certain emulsion into a substantially distinct third phase comprising primarily the solids.

Sealock, Jr., L. John (W. Richland, WA); Baker, Eddie G. (Richland, WA); Elliott, Douglas C. (Richland, WA)

1992-01-01T23:59:59.000Z

202

Atmospheric bromine flux from the coastal Abu Dhabi sabkhat: A ground-water mass-balance investigation  

E-Print Network (OSTI)

2007; published 31 July 2007. [1] A solute mass-balance study of ground water of the 3000 km2 coastal area of active salt flats then it is a significant, and generally under recognized, input to the global., 2000; Keppler et al., 2000]. More relevant to this study area are reports in which bromide appears

203

RCRA (Resource Conservation and Recovery Act) ground-water monitoring projects for Hanford facilities: Annual Progress Report for 1989  

SciTech Connect

This report describes the progress during 1989 of 16 Hanford Site ground-water monitoring projects covering 25 hazardous waste facilities and 1 nonhazardous waste facility. Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act of 1976 and the State of Washington Administrative Code. 40 refs., 75 figs., 6 tabs.

Smith, R.M.; Gorst, W.R. (eds.)

1990-03-01T23:59:59.000Z

204

Land disposal of water treatment plant sludge -- A feasibility analysis  

SciTech Connect

In this study, the following alternative disposal methods for the Buffalo Pound Water Treatment Sludge were evaluated: landfilling, discharge into sanitary sewers, long-term lagooning, use in manufacturing, co-composting, alum recovery and land application. Land application was chosen at the best disposal alternative. Preliminary design resulted in a 1% dry alum sludge loading rate (25 tonnes/ha), requiring 35 ha over a nine-year period and a phosphorus fertilizer supplement of about 50kg/ha.

Viraraghavan, T.; Multon, L.M.; Wasylenchuk, E.J.

1998-07-01T23:59:59.000Z

205

OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER (FEAC307)  

SciTech Connect

Oil production is shifting from ''shallow'' wells (0-650 ft water depth) to off-shore, deep-water operations (>2,600 ft.). Production from these operations is now approaching 20%. By 2007, it is projected that as much as 70% of the U.S. oil production will be from deep-water operations. The crude oil from these deep wells is more polar, thus increasing the amount of dissolved hydrocarbons in the produced water. Early data from Gulf of Mexico (GOM) wells indicate that the problem with soluble organics will increase significantly as deep-water production increases. Existing physical/chemical treatment technologies used to remove dispersed oil from produced water will not remove dissolved organics. GOM operations are rapidly moving toward design of high-capacity platforms that will require compact, low-cost, efficient treatment processes to comply with current and future water quality regulations. This project is an extension of previous research to improve the applicability of ozonation and will help address the petroleum industry-wide problem of treating water containing soluble organics. The goal of this project is to maximize oxidation of water-soluble organics during a single-pass operation. The project investigates: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Industrial collaborators include Chevron, Shell, Phillips, BP Amoco, Statoil, and Marathon Oil through a joint project with the Petroleum Environmental Research Forum (PERF). The research and demonstration program consists of three phases: (1) Laboratory testing in batch reactors to compare effectiveness of organics destruction using corona discharge ozone generation methods with hydrogen peroxide generated sonochemically and to evaluate the enhancement of destruction by UV light and micro-bubble spraying. (2) Continuous-flow studies to determine the efficacy of various contactors, the dependency of organics destruction on process variables, and scale-up issues. (3) Field testing of a prototype system in close collaboration with an industrial partner to generate performance data suitable for scale-up and economic evaluation.

Klasson, KT

2001-03-20T23:59:59.000Z

206

Micro-purge low-flow sampling of uranium-contaminated ground water at the Fernald Environmental Management Project  

SciTech Connect

Efforts to sample representative, undisturbed distributions of uranium in ground water beneath the Fernald Environmental Management Project (FEMP) prompted the application of a novel technique that is less invasive in the monitoring well. Recent studies indicate that representative samples can and should be collected without prior well volume exchange purging or borehole evacuation. Field experiments conducted at the FEMP demonstrate that under specific sampling conditions in a well-defined hydrogeologic system, representative ground water samples for a monitoring program can be obtained without removing the conventional three well volumes from the well. The assumption is made that indicator parameter equilibration may not be necessary to determine when to collect representative samples at the FEMP. Preliminary results obtained form the field experiments suggest that this may be true. The technique employs low purge rates (< 1 L/min) with dedicated bladder pumps with inlets located in the screened interval of the well, while not disturbing the stagnant water column above the screened interval. If adopted, this technique, termed micro-purge low-flow sampling, will produce representative ground water samples significantly reduce sampling costs, and minimize waste water over the monitoring life cycle at the FEMP. This technique is well suited for sites that have been fully characterized and are undergoing long-term monitoring.

Shanklin, D.E. Sidle, W.C.; Ferguson, M.E.

1995-10-01T23:59:59.000Z

207

The influence of fracture properties on ground-water flow at the Bunker Hill Mine, Kellogg, Idaho  

SciTech Connect

The Bunker Hill Mine in northern Idaho is a large underground lead-zinc mine located in Precambrian metaquartzite rocks with virtually no primary porosity. Ground-water flow through these types of rocks is largely dependent upon the properties of fractures such as joints, faults and relict bedding planes. Ground water that flows into the mine via the fractures is contaminated by heavy metals and by the production of acid water, which results in a severe acid mine drainage problem. A more complete understanding of how the fractures influence the ground-water flow system is a prerequisite to the evaluation of reclamation alternatives to reduce acid drainage from the mine. Fracture mapping techniques were used to obtain detailed information on the fracture properties observed in the New East Reed drift of the Bunker Hill Mine. The data obtained include: (a) fracture type, (b) orientation, (c) trace length, (d) the number of visible terminations, (e) roughness (small-scale asperities), (f) waviness (larger-scale undulations), (g) infilling material, and (h) a qualitative measure of the amount of water flowing through each fracture.

Lachmar, T.E. [Utah State Univ., Logan, UT (United States). Dept. of Geology

1993-12-01T23:59:59.000Z

208

Clean option: Berkeley Pit water treatment and resource recovery strategy  

SciTech Connect

The US Department of Energy (DOE), Office of Technology Development, established the Resource Recovery Project (RRP) in 1992 as a five-year effort to evaluate and demonstrate multiple technologies for recovering water, metals, and other industrial resources from contaminated surface and groundwater. Natural water resources located throughout the DOE complex and the and western states have been rendered unusable because of contamination from heavy metals. The Berkeley Pit, a large, inactive, open pit copper mine located in Butte, Montana, along with its associated groundwater system, has been selected by the RRP for use as a feedstock for a test bed facility located there. The test bed facility provides the infrastructure needed to evaluate promising technologies at the pilot plant scale. Data obtained from testing these technologies was used to assess their applicability for similar mine drainage water applications throughout the western states and at DOE. The objective of the Clean Option project is to develop strategies that provides a comprehensive and integrated approach to resource recovery using the Berkeley Pit water as a feedstock. The strategies not only consider the immediate problem of resource recovery from the contaminated water, but also manage the subsequent treatment of all resulting process streams. The strategies also employ the philosophy of waste minimization to optimize reduction of the waste volume requiring disposal, and the recovery and reuse of processing materials.

Gerber, M.A.; Orth, R.J.; Elmore, M.R.; Monzyk, B.F.

1995-09-01T23:59:59.000Z

209

Effects of agrochemical use in agricultural activities on the drinking water quality of ground and surface water: a case study of Agogo in the Asanti-Akim North District.  

E-Print Network (OSTI)

??The effects of agrochemical use in agricultural activities on the quality of ground and surface water within Agogo, a prominent tomato growing area in the… (more)

Adonadaga, Melvin-Guy

2005-01-01T23:59:59.000Z

210

The relationship of the Yucca Mountain repository block to the regional ground-water system: A geochemical model  

SciTech Connect

Yucca Mountain, in southern Nevada, is being studied by the Department of Energy and the State of Nevada as the site of a high-level nuclear waste repository. Geochemical and isotopic modeling were used in this study to define the relationship of the volcanic tuff aquifers and aquitards to the underlying regional carbonate ground-water system. The chemical evolution of a ground water as it passes through a hypothetical tuffaceous aquifer was developed using computer models PHREEQE, WATEQDR and BALANCE. The tuffaceous system was divided into five parts, with specific mineralogies, reaction steps and temperatures. The initial solution was an analysis of a soil water from Rainier Mesa. The ending solution in each part became the initial solution in the next part. Minerals consisted of zeolites, smectites, authigenic feldspars and quartz polymorphs from described diagentic mineral zones. Reaction steps were ion exchange with zeolites. The solution from the final zone, Part V, was chosen as most representative, in terms of pH, element molalities and mineral solubilities, of tuffaceous water. This hypothetical volcanic water from Part V was mixed with water from the regional carbonate aquifer, and the results compared to analyses of Yucca Mountain wells. Mixing and modeling attempts were conducted on wells in which studies indicated upward flow.

Matuska, N.A.; Hess, J.W. [Nevada Univ., Reno, NV (United States). Water Resources Center

1989-08-01T23:59:59.000Z

211

Three-dimensional coupled ground water flow, thermal transport and/or migration of nuclides analysis by boundary element method  

SciTech Connect

In the safety analyses of radioactive waste disposal, it is important and indispensable to analyze coupled problems of ground water flow, thermal transport and/or migration of nuclides. The three-dimensional coupled problems is solved by boundary element method in this paper. The results of this method are compared with those experiments of JAERI and STRIPA SWEDEN on the thermal problem, and with those analyses of analytical and FEM results on the migration problem. In this formulation, natural convection is considered by Boussinesq approximation. An example of coupled ground water flow and migration of nuclides with decay chain U{sup 234} {yields} Th{sup 230} {yields} Ra{sup 226} is also tried.

Kawamura, Ryuji [Information and Mathematical Science Lab., Inc., Kanagawa (Japan)

1994-12-31T23:59:59.000Z

212

Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada  

SciTech Connect

The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the US Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. This report summarizes what is known and inferred about ground-water flow throughout the NTS region. The report identifies and updates what is known about some of the major controls on ground-water flow, highlights some of the uncertainties in the current understanding, and prioritizes some of the technical needs as related to the Environmental Restoration Program. 113 refs.

Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

1996-07-01T23:59:59.000Z

213

Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application  

SciTech Connect

In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

2014-01-01T23:59:59.000Z

214

Bordering on Water Management: Ground and Wastewater in the United States - Mexico Transboundary Santa Cruz Basin  

E-Print Network (OSTI)

Environmental Board (2005). Water Resources Management onEnvironmental Valuation and Its Economic Critics. Journal of Water Resources Planning and Management,Environmental Cooperation Commission, has encouraged unilateral decision making, as water management

Milman, Anita Dale

2009-01-01T23:59:59.000Z

215

Lessons from practice in the assessment and remediation of contaminated ground water  

Science Journals Connector (OSTI)

The famous American humorist Mark Twain once wrote “don’t let school interfere with your education”. This paper builds on this theme by examining important lessons that come from work on practical problems of ground

Franklin W. Schwartz; Eung Seok Lee; Yongje Kim

2008-06-01T23:59:59.000Z

216

Ground-water levels and tritium concentrations at the Maxey Flats low-level radioactive-waste-disposal site near Morehead, Kentucky, June 1984 to April 1989. Water - resources investigation  

SciTech Connect

The report, one in a series of reports by the USGS, summarizes ground-water level and tritium data that were collected by the USGS from June 1984 through April 1989. The report also describes the occurrence and distribution of tritium in water from selected wells. Data for ground-water levels in wells and disposal tranches and the concentrations of tritium in water from monitoring wells at the site are presented. Precipitation data were collected in conjunction with the water-level data to relate precipitation to ground-water recharge. Specific conductance data, routinely determined for ground-water samples, also were collected to compare changes in specific conductance to changes in tritium concentrations. All data are stored locally on the U.S. Geological Survey's National Water Information System (NWIS).

Wilson, K.S.; Lyons, B.E.

1991-01-01T23:59:59.000Z

217

Use of ceregenins to create novel biofouling resistant water water-treatment membranes.  

SciTech Connect

Scoping studies have demonstrated that ceragenins, when linked to water-treatment membranes have the potential to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced molecules that mimic antimicrobial peptides. Evidence includes measurements of CSA-13 prohibiting the growth of and killing planktonic Pseudomonas fluorescens. In addition, imaging of biofilms that were in contact of a ceragenin showed more dead cells relative to live cells than in a biofilm that had not been treated with a ceragenin. This work has demonstrated that ceragenins can be attached to polyamide reverse osmosis (RO) membranes, though work needs to improve the uniformity of the attachment. Finally, methods have been developed to use hyperspectral imaging with multivariate curve resolution to view ceragenins attached to the RO membrane. Future work will be conducted to better attach the ceragenin to the RO membranes and more completely test the biocidal effectiveness of the ceragenins on the membranes.

Kirk, Matthew F.; Jones, Howland D. T.; Feng, Yanshu; McGrath, Lucas K.; Altman, Susan Jeanne; Pollard, Jacob; Hibbs, Michael R.; Savage, Paul B.

2010-05-01T23:59:59.000Z

218

Biogeochemical Processes Responsible for the Enhanced Transport of Plutonium Under transient Unsaturated Ground Water Conditions  

SciTech Connect

To better understand longer-term vadose zone transport in southeastern soils, field lysimeter experiments were conducted at the Savannah River Site (SRS) near Aiken, SC, in the 1980s. Each of the three lysimeters analyzed herein contained a filter paper spiked with different Pu solutions, and they were left exposed to natural environmental conditions (including the growth of annual weed grasses) for 11 years. The resulting Pu activity measurements from each lysimeter core showed anomalous activity distributions below the source, with significant migration of Pu above the source. Such results are not explainable by adsorption phenomena alone. A transient variably saturated flow model with root water uptake was developed and coupled to a soil reactive transport model. Somewhat surprisingly, the fully transient analysis showed results nearly identical to those of a much simpler steady flow analysis performed previously. However, all phenomena studied were unable to produce the upward Pu transport observed in the data. This result suggests another transport mechanism such as Pu uptake by roots and upward transport due to transpiration. Thus, the variably saturated flow and reactive transport model was extended to include uptake and transport of Pu within the root xylem, along with computational methodology and results. In the extended model, flow velocity in the soil was driven by precipitation input along with transpiration and drainage. Water uptake by the roots determined the flow velocity in the root xylem, and this along with uptake of Pu in the transpiration stream drove advection and dispersion of the two Pu species in the xylem. During wet periods with high potential evapotranspiration, maximum flow velocities through the xylem would approached 600 cm/hr, orders of magnitude larger that flow velocities in the soil. Values for parameters and the correct conceptual viewpoint for Pu transport in plant xylem was uncertain. This motivated further experiments devoted to Pu uptake by corn roots and xylem transport. Plants were started in wet paper wrapped around each corn seed. When the tap roots were sufficiently long, the seedlings were transplanted to a soil container with the tap root extending out the container bottom. The soil container was then placed over a nutrient solution container, and the solution served as an additional medium for root growth. To conduct an uptake study, a radioactive substance, such as Pu complexed with the bacterial siderophore DFOB, was added to the nutrient solution. After a suitable elapsed time, the corn plant was sacrificed, cut into 10 cm lengths, and the activity distribution measured. Experimental results clarified the basic nature of Pu uptake and transport in corn plants, and resulting simulations suggested that each growing season Pu in the SRS lysimeters would move into the plant shoots and be deposited on the soil surface during the Fall dieback. Subsequent isotope ratio analyses showed that this did happen. OVERALL RESULTS AND CONCLUSIONS - (1) Pu transport downward from the source is controlled by advection, dispersion and adsorption, along with surface-mediated REDOX reactions. (2) Hysteresis, extreme root distribution functions, air-content dependent oxidation rate constants, and large evaporation rates from the soil surface were not able to explain the observed upward migration of Pu. (3) Small amounts of Pu uptake by plant roots and translocation in the transpiration stream creates a realistic mechanism for upward Pu migration (4) Realistic xylem cross-sectional areas imply high flow velocities under hot, wet conditions. Such flow velocities produce the correct shape for the observed activity distributions in the top 20 cm of the lysimeter soil. (5) Simulations imply that Pu should have moved into the above-ground grass tissue each year during the duration of the experiments, resulting in an activity residual accumulating on the soil surface. An isotope ratio analysis showed that the observed surface Pu residue was from the buried sources, not atmospheric fallout. (6) The

Fred J. Molz, III

2010-05-28T23:59:59.000Z

219

Treatment of produced water using chemical and biological unit operations.  

E-Print Network (OSTI)

??Water generated along with oil and gas during coal bed methane and oil shale operations is commonly known as produced water, formation water, or oilfield… (more)

Li, Liang

2010-01-01T23:59:59.000Z

220

Chlorofluorocarbons, Sulfur Hexafluoride, and Dissolved Permanent Gases in Ground Water from Selected Sites In and Near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994 - 1997  

SciTech Connect

From July 1994 through May 1997, the U.S. Geological Survey, in cooperations with the Department of Energy, sampled 86 wells completed in the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory (INEEL). The wells were sampled for a variety of constituents including one- and two-carbon halocarbons. Concentrations of dichlorodifluoromethane (CFC-12), trichlorofluoromethane (CFC-11), and trichlorotrifluororoethane (CFC-113) were determined. The data will be used to evaluate the ages of ground waters at INEEL. The ages of the ground water will be used to determine recharge rates, residence time, and travel time of water in the Snake River Plain aquifer in and near INEEL. The chromatograms of 139 ground waters are presented showing a large number of halomethanes, haloethanes, and haloethenes present in the ground waters underlying the INEEL. The chromatograms can be used to qualitatively evaluate a large number of contaminants at parts per trillion to parts per billion concentrations. The data can be used to study temporal and spatial distribution of contaminants in the Snake River Plain aquifer. Representative compressed chromatograms for all ground waters sampled in this study are available on two 3.5-inch high density computer disks. The data and the program required to decompress the data can be obtained from the U.S. Geological Survey office at Idaho Falls, Idaho. Sulfur hexafluoride (SF6) concentrations were measured in selected wells to determine the feasibility of using this environmental tracer as an age dating tool of ground water. Concentrations of dissolved nitrogen, argon, carbon dioxide, oxygen, and methane were measured in 79 ground waters. Concentrations of dissolved permanent gases are tabulated and will be used to evaluate the temperature of recharge of ground water in and near the INEEL.

Busenberg, E.; Plummer, L.N.; Bartholomay, R.C.; Wayland, J.E.

1998-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Survey of blasting effects on ground water supplies in Appalachia. Part 2. Open file report, August 1980-August 1982  

SciTech Connect

This report covers an 18-month study of the performance of a 300-ft-deep test water well located at the Ayrshire Mine of the AMAX Coal Co. near Evansville, IN. Well performance, as characterized by 10-hr drawdown tests, was monitored as the strip mining operation approached the well site from distances of 2,000 to 15 ft (overburden removal). Blast-induced ground motion was measured at the surface next to the test well, and peak particle velocities in excess of 4 in/s were obtained. No evidence of changes in water quantity or quality could be directly attributed to the blasts. However, some lowering of the static water level in the observation well, and a simultaneous increase in the adjusted specific capacity of the test well, suggest that overburden removal caused lateral stress relief with consequent opening of vertical fractures.

Berger, P.R.; Froedge, D.T.; Gould, J.A.; Kreps, L.F.

1982-08-01T23:59:59.000Z

222

On the challenges of tomography retrievals of a 2D water vapor field using ground-based microwave radiometers: An observation system simulation experiment  

Science Journals Connector (OSTI)

Two-dimensional water vapor fields were retrieved by simulated measurements from multiple ground-based microwave radiometers using a tomographic approach. The goal of this paper was to investigate how the various aspects of the instrument set-up (...

Véronique Meunier; David D. Turner; Pavlos Kollias

223

Ground water of Yucca Mountain: How high can it rise?; Final report  

SciTech Connect

This report describes the geology, hydrology, and possible rise of the water tables at Yucca Mountain. The possibilities of rainfall and earthquakes causing flooding is discussed.

NONE

1992-12-31T23:59:59.000Z

224

Solar trough concentration for fresh water production and waste water treatment  

Science Journals Connector (OSTI)

The present paper examines the concept of utilizing trough type solar concentration plants for water production, remediation and waste treatment. Solar trough plants are a mature technology which deserves to be diffused throughout the European Union and in the partner countries of the Mediterranean Area. The present study is intended to find applications of the solar through concentration technology beyond heat and refrigeration. At the present stage, a number of possibilities have been identified; the main ones which will be considered here are related to clean water production by processes such as solar distillation, atmospheric condensation, and waste processing. Although the technical feasibility of the proposed applications is not in discussion, before attempting to put such applications into practice, we’ll discuss their potential economical and environmental benefits in comparison to existing solutions.

A. Scrivani; T. El Asmar; U. Bardi

2007-01-01T23:59:59.000Z

225

Monitoring effective use of household water treatment and safe storage technologies in Ethiopia and Ghana  

E-Print Network (OSTI)

Household water treatment and storage (HWTS) technologies dissemination is beginning to scale-up to reach the almost 900 million people without access to an improved water supply (WHO/UNICEF/JMP, 2008). Without well-informed ...

Stevenson, Matthew M

2009-01-01T23:59:59.000Z

226

Electrocoagulation: A Technology for Water Recycle and Wastewater Treatment in Semiconductor Manufacturing  

E-Print Network (OSTI)

Electrocoagulation: A Technology for Water Recycle and Wastewater Treatment in Semiconductor of treating wastewater streams in the semiconductor manufacturing industry. Electrocoagulation involves wastewater is increasing greatly. The objective is that by using EC to treat wastewater streams, this water

Fay, Noah

227

Oil removal for produced water treatment and micellar cleaning of ultrafiltration membranes  

E-Print Network (OSTI)

a research project that evaluated the treatment of brine generated in oil fields (produced water) with ultrafiltration membranes. The characteristics of various ultrafiltration membranes for oil and suspended solids removal from produced water were...

Beech, Scott Jay

2006-10-30T23:59:59.000Z

228

Fouling mitigation in coagulation microfiltration hybrid system for drinking water treatment.  

E-Print Network (OSTI)

??Coagulation combined with microfiltration has been receiving a great attention and has been evolving in recent years as an alternative for surface water treatment. There… (more)

Sadreddini, Sara

2009-01-01T23:59:59.000Z

229

Removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant.  

E-Print Network (OSTI)

??Reject water, the liquid fraction produced after dewatering of anaerobically digested activated sludge on a municipal wastewater treatment plant (MWWTP), contains from 750 to 1500… (more)

Guo, Chenghong

2011-01-01T23:59:59.000Z

230

Forward osmosis for desalination and water treatment : a study of the factors influencing process performance.  

E-Print Network (OSTI)

??This thesis explores various factors that have significant impacts on FO process performance in desalination and water treatment. These factors mainly include working temperatures, solution… (more)

Zhao, Shuaifei

2012-01-01T23:59:59.000Z

231

Treatment of pulp mill sludges by supercritical water oxidation  

SciTech Connect

Supercritical water oxidation (SCWO) is new process that can oxidize organics very effectively at moderate temperatures (400 to 650{degree}C) and high pressure (3700 psi). It is an environmentally acceptable alternative for sludge treatment. In bench scale tests, total organic carbon (TOC) and total organic halide (TOX) reductions of 99 to 99.9% were obtained; dioxin reductions were 95 to 99.9%. A conceptual design for commercial systems has been completed and preliminary economics have been estimated. Comparisons confirm that SCWO is less costly than dewatering plus incineration for treating pulp mill sludges. SCWO can also compete effectively with dewatering plus landfilling where tipping fees exceed $35/yd{sup 3}. In some regions of the US, tipping fees are now $75/yd{sup 3} and rising steadily. In the 1995 to 2000 time frame, SCWO has a good chance of becoming the method of choice. MODEC's objective is to bring the technology to commercial availability by 1993. 10 refs., 6 figs., 19 tabs.

Modell, M.

1990-07-01T23:59:59.000Z

232

High-Resolution Estimation of Near-Subsurface Water Content using Surface GPR Ground Wave Information  

E-Print Network (OSTI)

-scarce agricultural areas. Conventional measurements of water content (such as from time domain reflectometry [TDR], neutron probe or gravimetric techniques) are intrusive and provide information at a 'point' scale, which

Rubin, Yoram

233

A Transient Numerical Simulation of Perched Ground-Water Flow at the Test Reactor Area, Idaho National Engineering and Environmental Laboratory, Idaho, 1952-94  

SciTech Connect

Studies of flow through the unsaturated zone and perched ground-water zones above the Snake River Plain aquifer are part of the overall assessment of ground-water flow and determination of the fate and transport of contaminants in the subsurface at the Idaho National Engineering and Environmental Laboratory (INEEL). These studies include definition of the hydrologic controls on the formation of perched ground-water zones and description of the transport and fate of wastewater constituents as they moved through the unsaturated zone. The definition of hydrologic controls requires stratigraphic correlation of basalt flows and sedimentary interbeds within the saturated zone, analysis of hydraulic properties of unsaturated-zone rocks, numerical modeling of the formation of perched ground-water zones, and batch and column experiments to determine rock-water geochemical processes. This report describes the development of a transient numerical simulation that was used to evaluate a conceptual model of flow through perched ground-water zones beneath wastewater infiltration ponds at the Test Reactor Area (TRA).

B. R. Orr (USGS)

1999-11-01T23:59:59.000Z

234

MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS  

SciTech Connect

This report describes work performed during the second year of the project ''Modified reverse osmosis system for treatment of produced waters.'' We performed two series of reverse osmosis experiments using very thin bentonite clay membranes compacted to differing degrees. The first series of 10 experiments used NaCl solutions with membranes that ranged between 0.041 and 0.064mm in thickness. Our results showed compaction of such ultra-thin clay membranes to be problematic. The thickness of the membranes was exceeded by the dimensional variation in the machined experimental cell and this is believed to have resulted in local bypassing of the membrane with a resultant decrease in solute rejection efficiency. In two of the experiments, permeate flow was varied as a percentage of the total flow to investigate results of changing permeate flow on solute rejection. In one experiment, the permeate flow was varied between 2.4 and 10.3% of the total flow with no change in solute rejection. In another experiment, the permeate flow was varied between 24.6 and 52.5% of the total flow. In this experiment, the solute rejection rate decreased as the permeate occupied greater fractions of the total flow. This suggests a maximum solute rejection efficiency for these clay membranes for a permeate flow of between 10.3 and 24.6% of the total; flow. Solute rejection was found to decrease with increasing salt concentration and ranged between 62.9% and 19.7% for chloride and between 61.5 and 16.8% for sodium. Due to problems with the compaction procedure and potential membrane bypassing, these rejection rates are probably not the upper limit for NaCl rejection by bentonite membranes. The second series of four reverse osmosis experiments was conducted with a 0.057mm-thick bentonite membrane and dilutions of a produced water sample with an original TDS of 196,250 mg/l obtained from a facility near Loco Hill, New Mexico, operated by an independent. These experiments tested the separation efficiency of the bentonite membrane for each of the dilutions. We found that membrane efficiency decreased with increasing solute concentration and with increasing TDS. The rejection of SO{sub 4}{sup 2-} was greater than Cl{sup -}. This may be because the SO{sub 4}{sup 2-} concentration was much lower than the Cl{sup -} concentration in the waters tested. The cation rejection sequence varied with solute concentration and TDS. The solute rejection sequence for multi-component solutions is difficult to predict for synthetic membranes; it may not be simple for clay membranes either. The permeate flows in our experiments were 4.1 to 5.4% of the total flow. This suggests that very thin clay membranes may be useful for some separations. Work on development of a spiral-wound clay membrane module found that it is difficult to maintain compaction of the membrane if the membrane is rolled and then inserted in the outer tube. A different design was tried using a cylindrical clay membrane and this also proved difficult to assemble with adequate membrane compaction. The next step is to form the membrane in place using hydraulic pressure on a thin slurry of clay in either water or a nonpolar organic solvent such as ethanol. Technology transfer efforts included four manuscripts submitted to peer-reviewed journals, two abstracts, and chairing a session on clays as membranes at the Clay Minerals Society annual meeting.

T.M. Whitworth; Liangxiong Li

2002-09-15T23:59:59.000Z

235

MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS  

SciTech Connect

This final report of ''Modified Reverse Osmosis System for Treatment of Produced Water,'' DOE project No. DE-FC26-00BC15326 describes work performed in the third year of the project. Several good results were obtained, which are documented in this report. The compacted bentonite membranes were replaced by supported bentonite membranes, which exhibited the same salt rejection capability. Unfortunately, it also inherited the clay expansion problem due to water invasion into the interlayer spaces of the compacted bentonite membranes. We noted that the supported bentonite membrane developed in the project was the first of its kind reported in the literature. An {alpha}-alumina-supported MFI-type zeolite membrane synthesized by in-situ crystallization was fabricated and tested. Unlike the bentonite clay membranes, the zeolite membranes maintained stability and high salt rejection rate even for a highly saline solution. Actual produced brines from gas and oil fields were then tested. For gas fields producing brine, the 18,300 ppm TDS (total dissolved solids) in the produced brine was reduced to 3060 ppm, an 83.3% rejection rate of 15,240 ppm salt rejection. For oilfield brine, while the TDS was reduced from 181,600 ppm to 148,900 ppm, an 18% rejection rate of 32,700 ppm reduction, the zeolite membrane was stable. Preliminary results show the dissolved organics, mainly hydrocarbons, did not affect the salt rejection. However, the rejection of organics was inconclusive at this point. Finally, the by-product of this project, the {alpha}-alumina-supported Pt-Co/Na Y catalytic zeolite membrane was developed and demonstrated for overcoming the two-step limitation of nonoxidation methane (CH{sub 4}) conversion to higher hydrocarbons (C{sub 2+}) and hydrogen (H{sub 2}). Detailed experiments to obtain quantitative results of H{sub 2} generation for various conditions are now being conducted. Technology transfer efforts included five manuscripts submitted to peer-reviewed journals and five conference presentations.

Robert L. Lee; Junghan Dong

2004-06-03T23:59:59.000Z

236

Breaking Ground in Miami-Dade | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breaking Ground in Miami-Dade Breaking Ground in Miami-Dade Breaking Ground in Miami-Dade October 15, 2010 - 4:28pm Addthis Existing Miami-Dade county water treatment facility. Existing Miami-Dade county water treatment facility. Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Officials from Miami-Dade County and the U.S. Department of Energy were on hand Wednesday, October 13th to formally break ground on an innovative project that will help improve the energy efficiency of one of the county's major water treatment facilities. The project will upgrade and expand the existing power generation system at the water plant which generates electricity from digester gas produced at the plant. Landfill gas, which is produced from the Solid Waste Department's South Dade Landfill, will be collected and piped across a

237

The optimal treatment method of water turbidity purification in tap-water plant.  

E-Print Network (OSTI)

??The main purpose of this study is to investigate the relationship between the water turbidity purification result with raw water turbidity, raw water pH value… (more)

Lin, Yi-Heng

2010-01-01T23:59:59.000Z

238

The Application of Electrodialysis for Drinking Water Treatment  

Science Journals Connector (OSTI)

Electrodialysis is applied for the removal of dissolved ionic substances from water. Amongst other desalination processes, such as ... and reverse osmosis, the main advantages of electrodialysis are high water re...

F. Hell; J. Lahnsteiner

2002-01-01T23:59:59.000Z

239

Household water treatment and safe storage product development in Ghana  

E-Print Network (OSTI)

Microbial and/or chemical contaminants can infiltrate into piped water systems, especially when the system is intermittent. Ghana has been suffering from aged and intermittent piped water networks, and an added barrier of ...

Yang, Shengkun, M. Eng. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

240

Effectiveness of purification processes in removing algae from Vaal Dam water at the Rand Water Zuikerbosch treatment plant in Vereeniging / H. Ewerts.  

E-Print Network (OSTI)

??The aim of this study was to investigate the efficacy of purification processes at the Rand Water Zuikerbosch treatment plant near Vereeniging. Raw water is… (more)

Ewerts, Hendrik

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Heating and cooling of municipal buildings with waste heat from ground water  

SciTech Connect

The feasibility of using waste heat from municipal water wells to replace natural gas for heating of the City Hall, Fire Station, and Community Hall in Wilmer, Texas was studied. At present, the 120/sup 0/F well water is cooled by dissipating the excess heat through evaporative cooling towers before entering the distribution system. The objective of the study was to determine the pumping cycle of the well and determine the amount of available heat from the water for a specified period. This data were correlated with the heating and cooling demand of the City's buildings, and a conceptual heat recovery system will be prepared. The system will use part or all of the excess heat from the water to heat the buildings, thereby eliminating the use of natural gas. The proposed geothermal retrofit of the existing natural gas heating system is not economical because the savings in natural gas does not offset the capital cost of the new equipment and the annual operating and maintenance costs. The fuel savings and power costs are a virtual trade-off over the 25-year period. The installation and operation of the system was estimated to cost $105,000 for 25 years which is an unamortized expense. In conclusion, retrofitting the City of Wilmer's municipal buildings is not feasible based on the economic analysis and fiscal projections as presented.

Morgan, D.S.; Hochgraf, J.

1980-10-01T23:59:59.000Z

242

Pesticide Levels in Ground and Surface Waters of Primavera do Leste Region, Mato Grosso, Brazil  

Science Journals Connector (OSTI)

......monoculture plantations, whose production has expanded greatly...and tends to sorb to organic matter from soil, it...reported as cells for minimum values means...by volatiliza- tion. Solar radiation also intensely...pesticides and other organic pollutants in river water......

Eliana F.G.C. Dores; Leandro Carbo; Maria L. Ribeiro; Ermelinda M. De-Lamonica-Freire

2008-08-01T23:59:59.000Z

243

The EPRI state-of-the-art cooling water treatment research project: A tailored collaboration program  

SciTech Connect

The EPRI Tailored Collaboration State-of-the-Art Cooling Water Treatment Research Program has been initiated with several electric utility participants. Started in January 1995, the program provides O&M cost reduction through improved cooling water system reliability and operation,. This effort is discussed along with the objectives and goals, the participants and project timetable. The program will provide three (3) main results to the participating utilities: cost effective optimization of cooling water treatment, production of a new Cooling Water Treatment Manual and updating of two (2) EPRI software products - SEQUIL and COOLADD. A review of the specific objectives, project timetable and results to date will be presented. 1 tab.

Zammitt, K. [Electric Power Research Institute, Palo Alto, CA (United States); Selby, K.A. [Puckorius & Associates, Inc., Evergreen, CO (United States); Brice, T. [Entergy Operations - River Bend Station, St. Francisville, LA (United States)] [and others

1996-08-01T23:59:59.000Z

244

Ground-water characterization field activities for 1995--1996 Laboratory for Energy-Related Health Research, University of California, Davis  

SciTech Connect

This report documents ground-water characterization field activities completed from August to December 1995 and in January 1996 at the Laboratory for Energy-Related Health Research (LEHR) in Davis, California. The ground water at LEHR is one of several operable units under investigation by Pacific Northwest National Laboratory for the US Department of Energy. The purpose of this work was to further characterize the hydrogeology beneath the LEHR site, with the primary focus on ground water. The objectives were to estimate hydraulic properties for the two uppermost saturated hydrogeologic units (i.e., HSU-1 and HSU-2), and to determine distributions of contaminants of concern in these units. Activities undertaken to accomplish these objectives include well installation, geophysical logging, well development, ground-water sampling, slug testing, Westbay ground-water monitoring system installation, continuous water-level monitoring, Hydropunch installation, and surveying. Ground-water samples were collected from 61 Hydropunch locations. Analytical results from these locations and the wells indicate high chloroform concentrations trending from west/southwest to east/northeast in the lower portion of HSU-1 and in the upper and middle portions of HSU-2. The chloroform appears to originate near Landfill 2. Tritium was not found above the MCL in any of the well or Hydropunch samples. Hexavalent chromium was found at four locations with concentrations above the MCL in HSU-1 and at one location in HSU-2. One well in HSU-1 had a total chromium concentration above the MCL. Nitrate-nitrogen above the MCL was found at several Hydropunch locations in both HSU-1 and HSU-2.

Liikala, T.L.; Lanigan, D.C.; Last, G.V. [and others

1996-05-01T23:59:59.000Z

245

September 3, 1999 Characterization of Arsenic Occurrence in US Drinking Water Treatment  

E-Print Network (OSTI)

September 3, 1999 Characterization of Arsenic Occurrence in US Drinking Water Treatment Facility amendments to the US Safe Drinking Water Act (SDWA) mandate revision of current maxi­ mum contaminant levels (MCLs) for various harmful substances in public drinking water supplies. The determination of a revised

246

Assessment of precipitable water vapor derived from ground-based BeiDou observations with Precise Point Positioning approach  

Science Journals Connector (OSTI)

Abstract Precipitable water vapor (PWV) estimation from Global Positioning System (GPS) has been extensively studied and used for meteorological applications. However PWV estimation using the emerging BeiDou Navigation Satellite System (BDS) is very limited. In this paper the PWV estimation strategy and the evaluation of the results inferred from ground-based BDS observations using Precise Point Positioning (PPP) method are presented. BDS and GPS data from 10 stations distributed in the Asia–Pacific and West Indian Ocean regions during the year 2013 are processed using the PANDA (Position and Navigation Data Analyst) software package. The BDS-PWV and GPS-PWV are derived from the BDS-only and GPS-only observations, respectively. The PPP positioning differences between BDS-only and GPS-only show a standard deviation (STD) Indian Ocean regions and that BDS alone can be used for PWV estimation with an accuracy comparable to GPS.

Min Li; Wenwen Li; Chuang Shi; Qile Zhao; Xing Su; Lizhong Qu; Zhizhao Liu

2014-01-01T23:59:59.000Z

247

Uranium-series isotopes transport in surface, vadose and ground waters at San Marcos uranium bearing basin, Chihuahua, Mexico  

Science Journals Connector (OSTI)

In the U deposit area at San Marcos in Chihuahua, Mexico, hydrogeological and climatic conditions are very similar to the Nopal I, Peña Blanca U deposit, 50 km away. The physicochemical parameters and activity concentrations of several 238U-series isotopes have been determined in surface, vadose and ground waters at San Marcos. The application of some published models to activity ratios of these isotopes has allowed assessing the order of magnitude of transport parameters in the area. Resulting retardation factors in San Marcos area are Rf238 ? 250–14,000 for the unsaturated zone and ?110–1100 for the saturated zone. The results confirm that the mobility of U in San Marcos is also similar to that of the Nopal I U deposit and this area can be considered as a natural analog of areas suitable for geologic repositories of high-level nuclear waste.

Juan Carlos Burillo Montúfar; Manuel Reyes Cortés; Ignacio Alfonso Reyes Cortés; Ma. Socorro Espino Valdez; Octavio Raúl Hinojosa de la Garza; Diana Pamela Nevárez Ronquillo; Eduardo Herrera Peraza; Marusia Rentería Villalobos; María Elena Montero Cabrera

2012-01-01T23:59:59.000Z

248

Nanofiltration/reverse osmosis for treatment of coproduced waters  

SciTech Connect

Current high oil and gas prices have lead to renewed interest in exploration of nonconventional energy sources such as coal bed methane, tar sand, and oil shale. However oil and gas production from these nonconventional sources has lead to the coproduction of large quantities of produced water. While produced water is a waste product from oil and gas exploration it is a very valuable natural resource in the arid Western United States. Thus treated produced water could be a valuable new source of water. Commercially available nanofiltration and low pressure reverse osmosis membranes have been used to treat three produced waters. The results obtained here indicate that the permeate could be put to beneficial uses such as crop and livestock watering. However minimizing membrane fouling will be essential for the development of a practical process. Field Emission Scanning Electron Microscopy imaging may be used to observe membrane fouling.

Mondal, S.; Hsiao, C.L.; Wickramasinghe, S.R. [Colorado State University, Ft Collins, CO (United States)

2008-07-15T23:59:59.000Z

249

Water treatment process and system for metals removal using Saccharomyces cerevisiae  

DOE Patents (OSTI)

A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

Krauter, Paula A. W. (Livermore, CA); Krauter, Gordon W. (Livermore, CA)

2002-01-01T23:59:59.000Z

250

1.85 Water and Wastewater Treatment Engineering, Spring 2005  

E-Print Network (OSTI)

Theory and design of systems for treating industrial and municipal wastewater and potable water supplies. Methods for characterizing wastewater properties. Physical, chemical, and biological processes, including primary ...

Shanahan, Peter

251

Chemical Treatment Fosters Zero Discharge by Making Cooling Water Reusable  

E-Print Network (OSTI)

mechanical methods in this category are lime-soda side stream softening and vapor compression blowdown evaporation. Another approach is chemical treatment to promote scale inhibition and dispersion....

Boffardi, B. P.

252

Chemical and Isotopic Composition and Gas Concentrations of Ground Water and Surface Water from Selected Sites At and Near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994-97  

SciTech Connect

>From May 1994 through May 1997, the US Geological Survey, in cooperation with the US Department of Energy, collected water samples from 86 wells completed in the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory. The samples were analyzed for a variety of chemical constituents including all major elements and 22 trace elements. Concentrations of scandium, yttrium, and the lanthanide series were measured in samples from 11 wells and 1 hot spring. The data will be used to determine the fraction of young water in the ground water. The fraction of young water must be known to calculate the ages of ground water using chlorofluorocarbons. The concentrations of the isotopes deuterium, oxygen-18, carbon-13, carbon-14, and tritium were measured in many ground water, surface-water and spring samples. The isotopic composition will provide clues to the origin and sources of water in the Snake River Plain aquifer. Concentrations ! of helium-3 , helium-4, total helium, and neon were measured in most groundwater samples, and the results will be used to determine the recharge temperature, and to date the ground waters.

E. Busenberg; L. N. Plummer; M. W. Doughten; P. K. Widman; R. C. Bartholomay (USGS)

2000-05-30T23:59:59.000Z

253

Estimating Persistent Mass Flux of Volatile Contaminants from the Vadose Zone to Ground Water  

SciTech Connect

Contaminants may persist for long time periods within low permeability portions of the vadose zone where they cannot be effectively treated and are a potential continuing source of contamination to groundwater. Setting appropriate vadose zone remediation goals requires evaluating these persistent sources in terms of their impact on meeting groundwater remediation goals. One-dimensional approaches for estimating transport of volatile contaminants in the vadose zone are considered and compared to a one-dimensional flux-continuity-based assessment of vapor-phase contaminant movement from the vadose zone to the groundwater. The flux-continuity-based assessment demonstrates that the ability of the groundwater to move contaminant away from the water table controls the vapor-phase mass flux from the vadose zone across the water table. Limitations of the one-dimensional approaches are then discussed with respect to the need for further method development and application of two- or three-dimensional numerical modeling. The carbon tetrachloride (CT) plume at the U.S. Department of Energy Hanford Site is used as an example of a site where persistent vadose zone contamination needs to be considered in the context of groundwater remediation.

Truex, Michael J.; Oostrom, Martinus; Brusseau, Mark

2009-05-04T23:59:59.000Z

254

DOE/EA-1313: Environmental Assessment of Ground Water Compliance at the Monument Valley, Arizona, Uranium Mill Tailings Site (03/22/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EA-1313 DOE/EA-1313 Rev. 0 Environmental Assessment of Ground Water Compliance at the Monument Valley, Arizona, Uranium Mill Tailings Site Final March 2005 Prepared by U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Document Number U0069700 This Page Intentionally Blank DOE Office of Legacy Management EA of Ground Water Compliance at the Monument Valley Site March 2005 Final Page iii Contents Page Acronyms and Abbreviations ....................................................................................................... vii Executive Summary.......................................................................................................................

255

DOE/EA-1312: Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) (September 1999)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Rev. 0 Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) Final September 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy EA of Ground Water Compliance at the Grand Junction UMTRA Project Site DOE Grand Junction Office Page ii Final September 1999 Contents Executive Summary.........................................................................................................................v 1.0 Introduction...............................................................................................................................1 1.1 Grand Junction UMTRA Project Site Location and Description.........................................1

256

Economies of size in municipal water treatment technologies: Texas lower Rio Grande Valley  

E-Print Network (OSTI)

advancements have improved the economic viability of reverse-osmosis (RO) desalination of brackish-groundwater as a potable water source. Brackish-groundwater may be an alternative water source that provides municipalities an opportunity to hedge against... droughts, political shortfalls, and protection from potential surface-water contamination. This research specifically focuses on investigating economies of size for conventional surface-water treatment and brackish-groundwater desalination by using results...

Boyer, Christopher Neil

2008-10-10T23:59:59.000Z

257

Slow Strain Rate Testing of Alloy 22 in Simulated Concentrated Ground Waters  

SciTech Connect

The proposed engineering barriers for the high-level nuclear waste repository in Yucca Mountain include a double walled container and a detached drip shield. The candidate material for the external wall of the container is Alloy 22 (N06022). One of the anticipated degradation modes for the containers could be environmentally assisted cracking (EAC). The objective of the current research was to characterize the effect of applied potential and temperature on the susceptibility of Alloy 22 to EAC in simulated concentrated water (SCW) and other environments using the slow strain rate technique (SSRT). Results show that the temperature and applied potential have a strong influence on the susceptibility of Alloy 22 to suffer EAC in SCW solution. Limited results show that sodium fluoride solution is more detrimental than sodium chloride solution.

King, K J; Wong, L L; Estill, J C; Rebak, R B

2003-10-29T23:59:59.000Z

258

Performance of an experimental ground-coupled heat pump system for heating, cooling and domestic hot-water operation  

Science Journals Connector (OSTI)

Abstract The ground-coupled heat pump (GCHP) system is a type of renewable energy technology providing space heating and cooling as well as domestic hot water. However, experimental studies on GCHP systems are still insufficient. This paper first presents an energy-operational optimisation device for a GCHP system involving insertion of a buffer tank between the heat pump unit and fan coil units and consumer supply using quantitative adjustment with a variable speed circulating pump. Then, the experimental measurements are used to test the performance of the GCHP system in different operating modes. The main performance parameters (energy efficiency and CO2 emissions) are obtained for one month of operation using both classical and optimised adjustment of the GCHP system, and a comparative analysis of these performances is performed. In addition, using TRNSYS (Transient Systems Simulation) software, two simulation models of thermal energy consumption in heating, cooling and domestic hot-water operation are developed. Finally, the simulations obtained using TRNSYS are analysed and compared to experimental data, resulting in good agreement and thus the simulation models are validated.

Calin Sebarchievici; Ioan Sarbu

2015-01-01T23:59:59.000Z

259

ANAEROBIC BIOLOGICAL TREATMENT OF IN-SITU RETORT WATER  

E-Print Network (OSTI)

Wastewater Genera ted in Shale Oil Development 9 BattelleControl Technology for Shale Oil Wastewaters 9 11 inWaste Water from Oil Shale Processing" ACS Division of Fuel

Ossio, Edmundo

2012-01-01T23:59:59.000Z

260

ANAEROBIC BIOLOGICAL TREATMENT OF IN-SITU RETORT WATER  

E-Print Network (OSTI)

29,000 mg/1 nil a Source of sludge: City of Richmond WaterYen assessed the activated sludge process for the treatmentstudies using a digested sludge seed from a municipal

Ossio, Edmundo

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Desalination and Water Treatment www.deswater.com  

E-Print Network (OSTI)

of a solar-assisted pilot plant in the Arava Valley in Israel. It is argued that the proposed system would. Keywords: Brackish water; Irrigation; Nanofiltration; Reverse osmosis; Solar desalination 1. Agriculture

Messalem, Rami

262

Treatment of arsenic-contaminated water using akaganeite adsorption  

DOE Patents (OSTI)

The present invention comprises a method and composition using akaganeite, an iron oxide, as an ion adsorption medium for the removal of arsenic from water and affixing it onto carrier media so that it can be used in filtration systems.

Cadena C., Fernando (Las Cruces, NM); Johnson, Michael D. (Las Cruces, NM)

2008-01-01T23:59:59.000Z

263

Effects of land disposal of municipal sewage sludge on soil, streambed sediment, and ground- and surface-water quality at a site near Denver, Colorado  

SciTech Connect

The report describes the effects of burial and land application of municipal sewage sludge on soil and streambed sediment and water quality in the underlying aquifers and surface water within and around the Lowry sewage-sludge-disposal area. The existing ground-water observation-well network at the disposal area was expanded for the study. Surface-water-sampling sites were selected so that runoff could be sampled from intense rainstorms or snowmelt. The sampling frequency for ground-water and surface-water runoff was changed from yearly to quarterly, and soil samples were collected. Four years of data were collected from 1984 to 1987 during the expanded monitoring program at the Lowry sewage-sludge-disposal area. These data, in addition to the data collected by the U.S. Geological Survey from 1981 to 1983, were used to determine effects of sewage-sludge-disposal on soil and streambed sediment and surface- and ground-water quality at the disposal area.

Gaggiani, N.G.

1991-01-01T23:59:59.000Z

264

Evaporative Concentration of 100x J13 Ground Water at 60% Relative Humidity and 90C  

SciTech Connect

In these experiments we studied the behavior of a synthetic concentrated J13 solution as it comes in contact with a Ni-Cr-Mo-alloy selected for waste canisters in the designated high-level nuclear-waste repository at Yucca Mountain, Nevada. Concentrated synthetic J13 solution was allowed to drip slowly onto heated test specimens (90 C, 60% relative humidity) where the water moved down the surface of the specimens, evaporated and minerals precipitated. Mineral separation or zoning along the evaporation path was not observed. We infer from solid analyses and geochemical modeling, that the most corrosive components (Ca, Mg, and F) are limited by mineral precipitation. Minerals identified by x-ray diffraction include thermonatrite, natrite, and trona, all sodium carbonate minerals, as well as kogarkoite (Na{sub 3}SO{sub 4}F), halite (NaCl), and niter (KNO{sub 3}). Calcite and a magnesium silicate precipitation are based on chemical analyses of the solids and geochemical modeling. The most significant finding of this study is that sulfate and fluoride concentrations are controlled by the solubility of kogarkoite. Kogarkoite thermodynamic data are needed in the Yucca Mountain Project database to predict the corrosiveness of carbonate brines and to establish the extent to which fluoride is removed from the brines as a solid.

Staggs, K; Maureen Alai,; Hailey, P; Carroll, S A; Sutton, M; Nguyen, Q A

2003-12-04T23:59:59.000Z

265

In-situ remediation of nitrate-contaminated ground water by electrokinetics/iron wall processes  

Science Journals Connector (OSTI)

The feasibility of using electrokinetics coupled with a zero valent iron (Fe0) treatment wall to abiotically remediate nitrate-contaminated soils was investigated. Upon completion of each test run, the contaminated soil specimen was sliced into five parts and analyzed for nitrate-nitrogen, ammonia-nitrogen and nitrite-nitrogen. Nitrogen mass balance was used to determine the major transformation products. In control experiments where only electrokinetics was used at various constant voltages, 25 to 37% of the nitrate-nitrogen was transformed. The amount of nitrate-nitrogen transformed improved when a Fe0 wall (20 g or about 8–10% by weight) was placed near the anode. For test runs at various constant voltages, the amount of nitrate-nitrogen transformed ranged from 54 to 87%. By switching to constant currents, the amount of nitrate-nitrogen — transformed was about 84 to 88%. The major transformation products were ammonia-nitrogen and nitrogen gases. Nitrite-nitrogen was less than 1% in all experimental runs. Two localized pH conditions exist in the system, a low pH region near the anode and a high pH region near the cathode. Placing of an iron wall near the anode increases the pH in that area as time increases. Movement of the acid front did not flush across the cathode. This research has demonstrated that the electrokinetics/iron wall process can be used to remediate nitrate-contaminated groundwater.

Chin F. Chew; Tian C. Zhang

1998-01-01T23:59:59.000Z

266

Coagulation—ultrafiltration system for river water treatment  

Science Journals Connector (OSTI)

The “in-line” coagulation—ultrafiltration hybrid process has been investigated using three different coagulants, viz. FeCl3, Fe2(SO4)3 and Al2(SO4)3. The coagulants were dosed in the amounts of 2.4 mg Fe/dm3, 2.8 mg Fe/dm3 and 2.9 mg Al/dm3, respectively. Surface water from the Czarna Przemsza river (Silesia region, Poland) was used as raw water. The ultrafiltration membrane module with capillary polyethersulphone membranes was applied. It has been shown that the application of coagulant “in-line” contributes to the improvement of the quality of water as a result of growth of the removal of organic matter. It has also been statistically proven that the proper choice of the coagulant is of significant importance for the degree of removal of organic matter from the water. The highest efficiency of the process was achieved when the aluminum coagulant was used. Furthermore, it has been shown that the application of “in-line” coagulation and ultrafiltration with the most proper coagulant restricts the fouling of the membranes, so that contaminations deposited on the membrane can easily be removed using deionized water.

Krystyna Konieczny; Dorota S?kol; Joanna P?onka; Mariola Rajca; Micha? Bodzek

2009-01-01T23:59:59.000Z

267

``New`` countercurrent demineralization techniques are carving a place in water treatment  

SciTech Connect

This article describes how supplementing older treatment methods with modern advancements creates water treatment technology greater than the sum of its parts. Water treatment technology has rapidly advanced in recent years to where a myriad of options are now available for producing makeup water for utility boilers. Some of the newer methods include two-pass reverse osmosis (RO), RO followed by mixed-bed demineralization and triple-membrane treatment consisting of ultrafiltration, electrodialysis and RO. All of these techniques have performed well in various applications. A technique that is gaining attention is packed-bed, counter-currently regenerated demineralization. This process combines ion exchange with advanced regeneration methods in a system that produces water of significantly better quality than that of conventional cation/anion units.

Buecker, B.

1996-09-01T23:59:59.000Z

268

Bacterial Colonization of Pellet Softening Reactors Used during Drinking Water Treatment  

Science Journals Connector (OSTI)

...pellets, while assimilable organic carbon (AOC), dissolved organic carbon, and flow...These organisms removed as much as 60 of AOC from the water during treatment, thus contributing...Dissolved organic carbon (DOC) and AOC. The concentration of assimilable organic...

Frederik Hammes; Nico Boon; Marius Vital; Petra Ross; Aleksandra Magic-Knezev; Marco Dignum

2010-12-10T23:59:59.000Z

269

Assessment of sludge management options in a waste water treatment plant  

E-Print Network (OSTI)

This thesis is part of a larger project which began in response to a request by the Spanish water agengy, Cadagua, for advice on life cycle assessment (LCA) and environmental impacts of Cadagua operated wastewater treatment ...

Lim, Jong hyun, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

270

Water/Wastewater Treatment Plant Field Device Wiring Method Decision Analysis  

E-Print Network (OSTI)

The choice of field device wiring method for water and wastewater treatment plant design is extremely complex and contains many variables. The choice not only affects short-term startup and equipment costs, but also long-term operations...

Dicus, Scott C.

2011-12-16T23:59:59.000Z

271

Evaluation of physical-chemical and biological treatment of shale oil retort water  

SciTech Connect

Bench scale studies were conducted to evaluate conventional physical-chemical and biological treatment processes for removal of pollutants from retort water produced by in situ shale oil recovery methods. Prior to undertaking these studies, very little information had been reported on treatment of retort water. A treatment process train patterned after that generally used throughout the petroleum refining industry was envisioned for application to retort water. The treatment train would consist of processes for removing suspended matter, ammonia, biodegradable organics, and nonbiodegradable or refractory organics. The treatment processes evaluated include anaerobic digestion and activated sludge for removal of biodegradable organics and other oxidizable substances; activated carbon adsorption for removal of nonbiodegradable organics; steam stripping for ammonia removal; and chemical coagulation, sedimentation and filtration for removal of suspended matter. Preliminary cost estimates are provided.

Mercer, B.W.; Mason, M.J.; Spencer, R.R.; Wong, A.L.; Wakamiya, W.

1982-09-01T23:59:59.000Z

272

An ecological study examining the correlation of end-stage renal disease and ground water heavy metal content in Texas counties  

E-Print Network (OSTI)

An ecological study was conducted to examine the correlation of end-stage renal disease (ESRD) and the ground water heavy metal level of lead, arsenic, cadmium, mercury and the cumulative level of all four metals in Texas counties. The heavy meal...

Bishop, Scott Alan

2012-06-07T23:59:59.000Z

273

Numerical modelling of ground water flow using MODFLOW, Indian Journal of Science, 2013, 2(4), 86-92, www.discovery.org.in  

E-Print Network (OSTI)

management approaches. However, there should be no expectation of a single `true' model, and model outputsRESEARCH Kumar, Numerical modelling of ground water flow using MODFLOW, Indian Journal of Science management or impact of new development scenarios. However, if the modelling studies are not well designed

Kumar, C.P.

274

I. INTRODUCTION Previous research in water treatment has been  

E-Print Network (OSTI)

sharp nanosecond wavefront processes [2]. A third ED technique, pulsed arc electrohydraulic discharge-current/moderated high- voltage (few kV), slow microsecond wave front electrical discharge between two submersed electrodes [1,4-6,8,11]. The PAED process uses the creation of pulsed arc discharges within the water which

McMaster University

275

ACCEPTED BY WATER ENVIRONMENT RESEARCH ODOR AND VOC REMOVAL FROM WASTEWATER TREATMENT PLANT  

E-Print Network (OSTI)

of their high rates of chemical consumption. Additionally, chemical scrubbers are ineffective for the removalACCEPTED BY WATER ENVIRONMENT RESEARCH _______ ODOR AND VOC REMOVAL FROM WASTEWATER TREATMENT PLANT of biofilters for sequential removal of H2S and VOCs from wastewater treatment plant waste air. The biofilter

276

Microbial fuel cell treatment of ethanol fermentation process water  

DOE Patents (OSTI)

The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

Borole, Abhijeet P. (Knoxville, TN)

2012-06-05T23:59:59.000Z

277

Wastewater and water treatment: Anion exchange. (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect

The bibliography contains citations concerning the theory and methods of anion exchange in the treatment of potable water and wastewaters. Citations discuss anion exchange resins and membranes, desalination techniques, and process evaluations. Methods for anion analysis using chromatographic techniques are also considered. (Contains a minimum of 74 citations and includes a subject term index and title list.)

Not Available

1993-09-01T23:59:59.000Z

278

Wastewater and water treatment: Anion exchange. (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect

The bibliography contains citations concerning the theory and methods of anion exchange in the treatment of potable water and wastewaters. Citations discuss anion exchange resins and membranes, desalination techniques, and process evaluations. Methods for anion analysis using chromatographic techniques are also considered. (Contains a minimum of 74 citations and includes a subject term index and title list.)

Not Available

1994-01-01T23:59:59.000Z

279

Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment  

Science Journals Connector (OSTI)

The corona or corona-like system uses discharges of ?1 J/pulse, whereas the pulsed arc discharge uses energy of ?1 kJ/pulse and larger. ... AC, DC, and pulsed electric fields have been applied in conditions where the electrodes have been fully immersed in the liquid phase, where one electrode has been placed in an adjacent gas phase, and/or where arcing across the electrodes may occur. ... The electrohydraulic shock treatment of microorganisms was accomplished by discharging high-voltage electricity (8 to 15 kv.) across an electrode gap below the surface of aq. ...

B. R. Locke; M. Sato; P. Sunka; M. R. Hoffmann; J.-S. Chang

2005-12-31T23:59:59.000Z

280

Effectiveness of AOC removal by advanced water treatment systems: a case study  

Science Journals Connector (OSTI)

Recently, the appearance of assimilable organic carbon (AOC) in the water treatment system and effluent of the treatment plant has brought more attention to the environmental engineers. In this study, AOC removal efficiency at the Cheng-Ching Lake water treatment plant (CCLWTP) was evaluated. The main objectives of this study were to: (1) evaluate the treatability of AOC by the advanced treatment system at the CCLWTP, (2) assess the relativity of AOC and the variations of other water quality indicators, (3) evaluate the effects of sodium thiosulfate on AOC analysis, and (4) evaluate the efficiency of biofiltration process using granular activated carbon (GAC) and anthracite as the fillers. Results show that the averaged influent and final effluent AOC concentrations at the CCLWTP were approximately 124 and 30 ?g acetate-C/L, respectively. Thus, the treatment plant had an AOC removal efficiency of about 76%, and the AOC concentrations in the final effluent met the criteria established by the CCLWTP (50 ?g acetate-C/L). Results indicate that the biofiltration process might contribute to the removal of the trace AOC in the GAC filtration process. Moreover, the removal of AOC had a correlation with the decrease in concentrations of other drinking water indicators. Results from a column test show that GAC was a more appropriate material than anthracite for the AOC removal. Results from this study provide us insight into the mechanisms of AOC removal by advanced water treatment processes. These findings would be helpful in designing a modified water treatment system for AOC removal and water quality improvement.

C.C. Chien; C.M. Kao; C.D. Dong; T.Y. Chen; J.Y. Chen

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

UMTRA Ground Water Project  

Office of Legacy Management (LM)

... 7 Figure 3. Uranium Distribution from April 2013 Sampling at the Gunnison, Colorado, Processing Site ......

282

UMTRA Ground Water Project  

Office of Legacy Management (LM)

and viability of the compliance strategy. The current version of the GCAP is in review with NRC. Ongoing monitoring requirements will be evaluated and modified as...

283

Ground Water Cooling System  

E-Print Network (OSTI)

to conc~ntrate their turbine business efforts in the electric power generation market. In 1979, Westinghouse Canada Inc., Turbine and Generator Division, embarked on an intensive expansion program to increase production capabili ties and improve... capacity well was recorded. This well was drilled in the Town of Renfrew, February 1963, for United Dairy and Poultry Coop. From the well drillers log, it was determined that the well was approximately 700 feet deep with a casing diameter of eight...

Greaves, K.; Chave, G. H.

1984-01-01T23:59:59.000Z

284

Treatment of sea water using electrodialysis: Current efficiency evaluation  

Science Journals Connector (OSTI)

In this paper, desalination of seawater using a laboratory scale electrodialysis (ED) cell was investigated. At steady state operation of ED, the outlet concentration of dilute stream was measured at different voltages (2?6 V), flow rates (0.1?5.0 mL/s) and feed concentrations (5000?30,000 ppm). The electrical resistance of sea water solution in the dilute compartment was initially calculated using basic electrochemistry rules and average concentration of feed and dilute streams. Then, current intensity in each run was evaluated using Ohm's law. Finally, current efficiency (CE) which is an important parameter in determining the optimum range of applicability of an ED cell was calculated. It was found out that, at flow rates larger than 1.5 mL/s, higher feed concentrations lead to larger values of CE. However, exactly opposite behavior was observed at lower flow rates. Increasing the feed flow rate increases CE to a maximum value then decreases it down to zero for all cell voltages and feed concentrations. In the case of higher feed concentrations, maximum values of CE are obtained at higher flow rates. As expected, in almost all experiments, CE increases by intensifying cell voltage. CE values of up to 48 indicate effective ion transfer across the ion exchange membranes in spite of low separation performance of the ED cell.

Mohtada Sadrzadeh; Toraj Mohammadi

2009-01-01T23:59:59.000Z

285

Nanoparticle Doped Water -NeowaterTM The effects of the rf-treatments of water and aqueous solutions can be amplified and stabilized by  

E-Print Network (OSTI)

Nanoparticle Doped Water - NeowaterTM The effects of the rf-treatments of water and aqueous solutions can be amplified and stabilized by doping the water with low density of insoluble nanoparticles [1 is separated. In Fig A. we compare between the source powder and the nanoparticles at the clear doped water

Jacob, Eshel Ben

286

Dedicated to Sharing Information About Water Management and the Florida LAKEWATCH Program Volume 58 (2012) Volunteer Ground-Water Monitoring Coming to  

E-Print Network (OSTI)

Water Management Districts (WMDs) or the Florida Department of Environmental1 Dedicated to Sharing Information About Water Management and the Florida LAKEWATCH Program being monitored for water levels by the state's water management districts

Florida, University of

287

2005 Borchardt Conference: A Seminar on Advances in Water and Wastewater Treatment February 23-25, Ann Arbor, MI  

E-Print Network (OSTI)

-25, Ann Arbor, MI Conference Proceedings 1 Membrane Biofilm Reactors for Water and Wastewater Treatment and Wastewater Treatment February 23-25, Ann Arbor, MI Conference Proceedings 2 (sparging) to replenish oxygen: A Seminar on Advances in Water and Wastewater Treatment February 23-25, Ann Arbor, MI Conference Proceedings

Nerenberg, Robert

288

Atmospheric plasma treatment to improve durability of a water and oil repellent finishing for acrylic fabrics  

Science Journals Connector (OSTI)

In this study, the influence of an atmospheric plasma treatment on the durability of a commercial water and oil repellent finish was tested. Acrylic fabrics were processed with a RF atmospheric pressure plasma generator and afterwards a fluorocarbon finish was applied through a traditional pad-dry-cure method. Two gas mixtures were tested (helium and helium/oxygen) with different plasma treatment times. The ageing of the finishing was simulated through repeated accelerated laundry cycles. The water and oil repellencies were measured through standard test methods. While the initial water and oil repellency did not change, the plasma treatment improved the durability of the finish after artificial ageing. Scanning electron microscopy analyses were carried out to highlight morphological changes.

Alberto Ceria; Peter J. Hauser

2010-01-01T23:59:59.000Z

289

Assessment of compliance with ground water protection standards in the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada  

Science Journals Connector (OSTI)

Abstract Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. In support of this development and an associated license application to the U.S. Nuclear Regulatory Commission (NRC), the DOE completed an extensive performance assessment (PA) for the proposed YM repository in 2008. This presentation describes the assessment of compliance with ground water protection standards in the 2008 YM PA. The following topics are addressed: (i) regulatory background, (ii) analysis structure including characterization of uncertainty, and (iii) analysis results for each of the ground water protection standards. The present article is part of a special issue of Reliability Engineering and System Safety devoted to the 2008 YM PA; additional articles in the issue describe other aspects of the 2008 YM PA.

C.W. Hansen; G.A. Behie; K.M. Brooks; Y. Chen; J.C. Helton; S.P. Hommel; K.P. Lee; B. Lester; P.D. Mattie; S. Mehta; S.P. Miller; C.J. Sallaberry; S.D. Sevougian; M. Wasiolek

2014-01-01T23:59:59.000Z

290

Effect of heat treatment on stress corrosion of Alloy 718 in pressurized-water-reactor primary water  

SciTech Connect

Stress corrosion cracking (SCC) tests were conducted in 360{degrees}C pressurized-water-reactor (PWR) primary water using alloy 718 in various heat treatment conditions. Alloy X-750 in the HTH condition and an experimental heat of an alloy 718 variation, Hicoroy, were also tested for comparison. Fatigue-precracked, 12.5-mm-thick compact fracture specimens were subjected to a constant extension rate of 1.3 x 10{sup {minus}9} m/s. Crack growth rate was measured during testing using a reversing DC potential drop technique. Results in the form of SCC crack growth rate versus applied stress intensity demonstrate that the SCC resistance of alloy 718 in the PWR primary-side environment can be improved by changes in heat treatment.

Miglin, M.T.; Monter, J.V.; Wade, C.S. [Babcock & Wilcox Co., Alliance, OH (United States); Nelson, J.L. [Electric Power Research Institute, Palo Alto, CA (United States)

1992-12-31T23:59:59.000Z

291

The mutagenic potential of soil and runoff water from land treatment of three hazardous industrial wastes  

E-Print Network (OSTI)

THE MUTAGENIC POTENTIAL OF SOIL AND RUNOFF WATER FROM LAND TREATMENT OF THREE HAZARDOUS INDUSTRIAL WASTES A Thesis by PHEBE DAYOL Submitted to the Graduate College of Te xa s ASM Un i ver s i ty in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 1987 Major Subject: Soil Science THE MUTAGENIC POTENTIAL OF SOIL AND RUNOFF WATER FROM LAND TREATMENT OF THREE HAZARDOUS INDUSTRIAL WASTES A Thesis by PHEBE DAVDL Approved. s to style and content by: Kirk W...

Davol, Phebe

2012-06-07T23:59:59.000Z

292

Application of photoelectrochemical–electrodialysis treatment for the recovery and reuse of water from tannery effluents  

Science Journals Connector (OSTI)

The conventional tannery effluents treatment is not established in order to obtain water in such a quality, that it could be reused in the same process. This study was carried out in order to evaluate the electrochemical treatment of tannery effluents. The photoelectrochemical oxidation and the electrodialysis were applied in these effluents. The obtained results indicated a remarkable removal efficiency of more than 98.5% for all ion species present in effluents. It is noticeable that the effluent treated with combined PEO–ED techniques presents very similar values for the same parameter as the ones presented by normal feed water.

M.A.S. Rodrigues; F.D.R. Amado; J.L.N. Xavier; K.F. Streit; A.M. Bernardes; J.Z. Ferreira

2008-01-01T23:59:59.000Z

293

[Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 3, Sampling and analysis plan (SAP): Phase 1, Task 4, Field Investigation: Draft  

SciTech Connect

In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

Not Available

1991-10-01T23:59:59.000Z

294

Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal  

Science Journals Connector (OSTI)

A pilot plant had been built to test the behaviour of ultrafiltration (UF), reverse osmosis (RO), and electrodialysis reversal (EDR) in order to improve the quality of the water supplied to Barcelona metropolitan area from the Llobregat River. This paper presents results from two studies to reduce natural radioactivity. The results from the pilot plant with four different scenarios were used to design the full-scale treatment plant built (SJD WTP). The samples taken at different steps of the treatment were analysed to determine gross alpha, gross beta and uranium activity. The results obtained revealed a significant improvement in the radiological water quality provided by both membrane techniques (RO and EDR showed removal rates higher than 60%). However, UF did not show any significant removal capacity for gross alpha, gross beta or uranium activities. RO was better at reducing the radiological parameters studied and this treatment was selected and applied at the full scale treatment plant. The RO treatment used at the SJD WTP reduced the concentration of both gross alpha and gross beta activities and also produced water of high quality with an average removal of 95% for gross alpha activity and almost 93% for gross beta activity at the treatment plant.

M. Montaña; A. Camacho; I. Serrano; R. Devesa; L. Matia; I. Vallés

2013-01-01T23:59:59.000Z

295

Treatment of produced water by simultaneous removal of heavy metals and dissolved polycyclic aromatic hydrocarbons in a photoelectrochemical cell.  

E-Print Network (OSTI)

??Early produced water treatment technologies were developed before carbon dioxide emissions and hazardous waste discharge were recognised as operational priority. These technologies are deficient in… (more)

Igunnu, Ebenezer Temitope

2014-01-01T23:59:59.000Z

296

Determining the Viability of a Hybrid Experiential and Distance Learning Educational Model for Water Treatment Plant Operators in Kentucky.  

E-Print Network (OSTI)

?? Drinking water and wastewater industries are facing a nationwide workforce shortfall of qualified treatment plant operators due to factors including the en masse retirement… (more)

Fattic, Jana R.

2011-01-01T23:59:59.000Z

297

Fukushima Nuclear Crisis Recovery: A Modular Water Treatment System Deployed in Seven Weeks - 12489  

SciTech Connect

On March 11, 2011, the magnitude 9.0 Great East Japan earthquake, Tohoku, hit off the Fukushima coast of Japan. This was one of the most powerful earthquakes in recorded history and the most powerful one known to have hit Japan. The ensuing tsunami devastated a huge area resulting in some 25,000 persons confirmed dead or missing. The perfect storm was complete when the tsunami then found the four reactor, Fukushima-Daiichi Nuclear Station directly in its destructive path. While recovery systems admirably survived the powerful earthquake, the seawater from the tsunami knocked the emergency cooling systems out and did extensive damage to the plant and site. Subsequent hydrogen generation caused explosions which extended this damage to a new level and further flooded the buildings with highly contaminated water. Some 2 million people were evacuated from a fifty mile radius of the area and evaluation and cleanup began. Teams were assembled in Tokyo the first week of April to lay out potential plans for the immediate treatment of some 63 million gallons (a number which later exceeded 110 million gallons) of highly contaminated water to avoid overflow from the buildings as well as supply the desperately needed clean cooling water for the reactors. A system had to be deployed with a very brief cold shake down and hot startup before the rainy season started in early June. Joined by team members Toshiba (oil removal system), AREVA (chemical precipitation system) and Hitachi-GE (RO system), Kurion (cesium removal system following the oil separator) proposed, designed, fabricated, delivered and started up a one of a kind treatment skid and over 100 metric tons of specially engineered and modified Ion Specific Media (ISM) customized for this very challenging seawater/oil application, all in seven weeks. After a very short cold shake down, the system went into operation on June 17, 2011 on actual waste waters far exceeding 1 million Bq/mL in cesium and many other isotopes. One must remember that, in addition to attempting to do isotope removal in the competition of seawater (as high as 18,000 ppm sodium due to concentration), some 350,000 gallons of turbine oil was dispersed into the flooded buildings as well. The proposed system consisted of a 4 guard vessel skid for the oil and debris, 4 skids containing 16 cesium towers in a lead-lag layout with removable vessels (sent to an interim storage facility), and a 4 polishing vessel skid for iodine removal and trace cesium levels. At a flow rate of at least 220 gallons per minute, the system has routinely removed over 99% of the cesium, the main component of the activity, since going on line. To date, some 50% of the original activity has been removed and stabilized and cold shutdown of the plant was announced on December 10, 2011. In March and April alone, 10 cubic feet of Engineered Herschelite was shipped to Seabrook Nuclear Power Plant, NPP, to support the April 1, 2011 outage cleanup; 400 cubic feet was shipped to Oak Ridge National Laboratory (ORNL) for strontium (Sr-90) ground water remediation; and 6000 cubic feet (100 metric tons, MT, or 220,400 pounds) was readied for the Fukushima Nuclear Power Station with an additional 100 MT on standby for replacement vessels. This experience and accelerated media production in the U.S. bore direct application to what was to soon be used in Fukushima. How such a sophisticated and totally unique system and huge amount of media could be deployable in such a challenging and changing matrix, and in only seven weeks, is outlined in this paper as well as the system and operation itself. As demonstrated herein, all ten major steps leading up to the readiness and acceptance of a modular emergency technology recovery system were met and in a very short period of time, thus utilizing three decades of experience to produce and deliver such a system literally in seven weeks: - EPRI - U.S. Testing and Experience Leading to Introduction to EPRI - Japan and Subsequently TEPCO Emergency Meetings - Three Mile Island (TMI) Media and Vitrification Experience

Denton, Mark S.; Mertz, Joshua L. [Kurion, Inc., P.O. Box 5901, Oak Ridge, Tennessee 37831 (United States); Bostick, William D. [Materials and Chemistry Laboratory, Inc. (MCL) ETTP, Building K-1006, 2010 Highway 58, Suite 1000, Oak Ridge, Tennessee 37830 (United States)

2012-07-01T23:59:59.000Z

298

Removing Radium-226 Contamination From Ion Exchange Resins Used in Drinking Water Treatment  

E-Print Network (OSTI)

Removing Radium-226 Contamination From Ion Exchange Resins Used in Drinking Water Treatment P r o b of groundwater containing high levels of radium-226 activity (Objective 1) were regenerated with prescribed brine that the concentration of salt in the brine cleaning solution was the most influential factor in the resin regeneration

299

Statement of work for definitive design of the K basins integrated water treatment system project  

SciTech Connect

This Statement of Work (SOW) identifies the scope of work and schedule requirements for completing definitive design of the K Basins Integrated Water Treatment Systems (IWTS) Subproject. This SOW shall form the contractual basis between WHC and the Design Agent for the Definitive Design.

Pauly, T.R., Westinghouse Hanford

1996-07-16T23:59:59.000Z

300

Preliminary design report for the K basins integrated water treatment system  

SciTech Connect

This Preliminary Design Report (PDR) provides a revised concept for the K Basins Integrated Water Treatment Systems (IWTS). This PDR incorporates the 11 recommendations made in a May 1996 Value Engineering session into the Conceptual Design, and provides new flow diagrams, hazard category assessment, cost estimate, and schedule for the IWTS Subproject.

Pauly, T.R., Westinghouse Hanford

1996-08-12T23:59:59.000Z

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Author's personal copy Modelling and automation of water and wastewater treatment processes  

E-Print Network (OSTI)

and Jeppsson, 2006), including sewage systems and surrounding land use. From the methodological viewpoint on the applications of modelling and automation to water and wastewater treatment processes. The session, under sludge processes, to which unconventional and innovative control strategies were applied. But there were

302

The use of reverse osmosis technology for water treatment in power engineering  

Science Journals Connector (OSTI)

The results of operation of DVS-M/150 installations for a total output of 150 m3/h (ZAO NPK Mediana-Fil’tr) at the Water Treatment Department of the Novocherkassk Thermal Power Plant (NchGRES) are presented, and ...

A. N. Samodurov; S. E. Lysenko; S. L. Gromov; A. A. Panteleev…

2006-06-01T23:59:59.000Z

303

Treatment of Methyl tert-Butyl Ether Contaminated Water Using a Dense  

E-Print Network (OSTI)

discharge of organic compounds require that new, innovative tech- nologies and methods of remediation dioxide, making the DMP reactor a promising tool in the future remediation of water. Chemical and physical is transformed into a more toxic material or a substance that is more difficult to remediate, the treatment

Dandy, David

304

Substation grounding.  

E-Print Network (OSTI)

??Designing a proper substation grounding system is quite complicating. Many parameters affect its design. In order for a grounding design to be safe, it needs… (more)

Baleva, Inna

2012-01-01T23:59:59.000Z

305

Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions  

SciTech Connect

In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

2012-01-01T23:59:59.000Z

306

Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site  

SciTech Connect

In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site.

Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

1995-03-01T23:59:59.000Z

307

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Well-Head Management and Conditions  

E-Print Network (OSTI)

can release large amounts of bacteria, nitrates and other contam- inants that could pollute well water. The Texas Water Well Drillers Act (1985), the Water Well Pump Installer Act (1991) and vari- ous other legislative actions have guided devel- opment... of regulations, primarily contained in Chapter 287 of the Texas Administrative Code, to provide for licensing of well drillers and pump installers and establish standards for drilling, capping and plugging water wells. For wells drilled before the effective date...

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

1997-08-29T23:59:59.000Z

308

Kinetic Studies on the Hydrogen Peroxide-Enhanced In Situ Biodegradation of Hydrocarbons in Water-Saturated Ground Zone  

Science Journals Connector (OSTI)

Techniques are rapidly developing for aerobic biodegradation of hydrocarbons in lower water-bearing formations. It is well known that...

Dr. E. R. Barenschee; Dr. O. Helmling; S. Dahmer; B. Del Grosso…

1990-01-01T23:59:59.000Z

309

Consulting, Construction and Operating Results of a Full-Scale Biotechnological Plant for the Oxidation of Iron and Manganese with Simultaneous Elimination of Volatile Chlorinated Hydrocarbons from Ground Water  

Science Journals Connector (OSTI)

The ground water in the south part of Hannover, known ... Südstadt”, is partially polluted with volatile chlorinated hydrocarbons (C1HC). This contamination originated from a ... the factory stands as well as the...

V. Quentmeier; M. Saake

1990-01-01T23:59:59.000Z

310

Variations in AOC and microbial diversity in an advanced water treatment plant  

Science Journals Connector (OSTI)

Summary The objective of this study was to evaluate the variations in assimilable organic carbon (AOC) and microbial diversities in an advanced water treatment plant. The efficiency of biofiltration on AOC removal using anthracite and granular activated carbon (GAC) as the media was also evaluated through a pilot-scale column experiment. Effects of hydrological factors (seasonal effects and river flow) on AOC concentrations in raw water samples and hydraulic retention time (HRT) of biofiltration on AOC treatment were also evaluated. Results show that AOC concentrations in raw water and clear water of the plant were about 138 and 27 ?g acetate-C/L, respectively. Higher AOC concentrations were observed in wet seasons probably due to the resuspension of organic-contained sediments and discharges of non-point source (NPS) pollutants from the upper catchment. This reveals that seasonal effect played an important role in the variations in influent AOC concentrations. Approximately 82% and 70% of AOC removal efficiencies were observed in GAC and anthracite columns, respectively. Results from column experiment reveal that the applied treatment processes in the plant and biofiltration system were able to remove AOC effectively. Microbial colonization on GAC and anthracite were detected via the observation of scanning electron microscopic (SEM) images. Results of polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and nucleotide sequence analysis reveal significant decrease in microbial diversities after the ozonation process. Higher HRT caused higher microbial contact time, and thus, more microbial colonies and higher microbial diversity were observed in the latter part of the biofilters. Some of the dominant microbial species in the biofiltration columns belonged to the beta-proteobacterium, which might contribute to the AOC degradation. Results of this study provide us insight into the variations in AOC and microbial diversity in the advanced water treatment processes.

B.M. Yang; J.K. Liu; C.C. Chien; R.Y. Surampalli; C.M. Kao

2011-01-01T23:59:59.000Z

311

Pilot scale test of a produced water-treatment system for initial removal of organic compounds  

SciTech Connect

A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to remove volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by an SMZ/MBR/RO system may be a feasible alternative to current methods for produced water treatment and disposal.

Sullivan, Enid J [Los Alamos National Laboratory; Kwon, Soondong [UT-AUSTIN; Katz, Lynn [UT-AUSTIN; Kinney, Kerry [UT-AUSTIN

2008-01-01T23:59:59.000Z

312

Assess of physical antiscale-treatments on conventional electrodialysis pilot unit during brackish water desalination  

Science Journals Connector (OSTI)

Abstract In electrodialysis (ED) desalination plants, calcium carbonate is the main component of meted scales. To prevent its formation several treatments were proposed. For more efficiency, treatments must be assessed at experimental conditions close to real ones. Thus, this work is a contribution to understand and evaluate three anti-calcareous physical treatments for ED desalination systems simulating real conditions. Magnetic field (MF) and ultrasonic field (UF) were applied to concentrate solution, compartment where scaling is imminent in the used ED pilot unit. The third treatment was a pulsed electric field (PEF) application. Tested solution was a synthetic brackish water. Results show that magnetic and ultrasonic treatments accelerate the precipitation of CaCO3 by reducing the nucleation time and the metastable domain. It is also shown that pulsed electric treatment accelerates CaCO3 precipitation resulting from desalination improvement comparing to stationary mode. However, all these treatments favor the homogeneous precipitation which prevents scale formation on membrane surfaces. It seems that MF improves the desalination only by preventing membrane scaling. However, UF and PEF application improve desalination by preventing membrane scaling and by improving the ions transfer during desalination; UF application acts on ions mobility or diffusion, while PEF application reduces the concentration polarization layer.

Ilhem BEN SALAH SAYADI; Philippe SISTAT; Mohamed Mouldi TLILI

2014-01-01T23:59:59.000Z

313

Water quality Water quantity  

E-Print Network (OSTI)

01-1 · Water quality · Water quantity · Remediation strategies MinE 422: Water Resources: Younger, Banwart and Hedin. 2002. Mine Water. Hydrology, Pollution, Remediation. Impacts of mining on water mining ­ Often the largest long term issue ­ Water quality affected, surface/ground water pollution

Boisvert, Jeff

314

Water quality Water quantity  

E-Print Network (OSTI)

· Water quality · Water quantity · Remediation strategies MinE 422: Water Resources: Younger, Banwart and Hedin. 2002. Mine Water. Hydrology, Pollution, Remediation. Impacts of mining on water mining ­ Often the largest long term issue ­ Water quality affected, surface/ground water pollution

Boisvert, Jeff

315

The prediction of the effectiveness of interceptor trenches in the remediation of ground-water contamination by petroleum hydrocarbons  

E-Print Network (OSTI)

. LIST OF FIGURES. . LIST OF TABLES INTRODUCTION. . Objectives. Previous Works Methods . . . . . . . . . . . . . . . . . . SITE DESCRIPTIONS . . Site A. Site B. Site C . . . FIELD STUDIES. . . Site A. . Site B. TABLE OF CONTENTS Page 15... . . 68 . 71 --. . 73 -- 77 Figure LIST OF FIGURES Page 1. General layout of Site A showing ground-flow in the vicinity of the interceptor trench 2. Schematic cross-sectional view of the interceptor trench at Site A. . . . . . . . . . . . . . . 10...

Mast, Mary Katherine

2012-06-07T23:59:59.000Z

316

Nutrients, pesticides, surfactants, and trace metals in ground water from the Howe and Mud Lake areas upgradient from the Idaho National Engineering Laboratory, Idaho  

SciTech Connect

Reconnaissance-level sampling for selected nutrients, pesticides, and surfactants in ground water upgradient from the Idaho National Engineering Laboratory was conducted during June 1989. Water samples collected from eight irrigation wells, five domestic or livestock wells, and two irrigation canals were analyzed for nutrients, herbicides, insecticides and polychlorinated compounds, and surfactants. In addition to the above constituents, water samples from one irrigation well, one domestic well, and one irrigation canal were analyzed for arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. Concentrations of nitrite plus nitrate as nitrogen ranged from less than the reporting to 6.10 mg/L (milligrams per liter), and orthophosphate concentrations as phosphorus ranged from less than the reporting level to 0.070 mg/L (micrograms per liter). Concentrations of 2,4-D in two water samples were 0.1 {mu}g/L and 0.10 {mu}g/L. Water samples analyzed for 15 other herbicides, 10 carbamate insecticides, 11 organophosphorus insecticides, and 15 organochlorine insecticides, gross polychlorinated biphenyls, and gross polychlorinated naphthalenes all had concentration below their reporting levels. Concentrations of surfactants ranged from 0.02 to 0.35 mg/L. Arsenic, barium, chromium, selenium, and silver concentrations exceeded reporting levels in most of the samples. 19 refs., 1 fig., 19 tabs.

Edwards, D.D.; Bartholomay, R.C.; Bennett, C.M.

1990-10-01T23:59:59.000Z

317

Current and Long-Term Effects of Delta Water Quality on Drinking Water Treatment Costs from Disinfection Byproduct Formation  

E-Print Network (OSTI)

for protecting public drinking water (CALFED 2000), are alsobest management options for drinking water sourced from theDelta Authority. 2004. Drinking water quality program multi-

Chen, Wei-Hsiang; Haunschild, Kristine; Lund, Jay R.; Fleenor, William E.

2010-01-01T23:59:59.000Z

318

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

SciTech Connect

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

319

Cs-137 in the Savannah River and the Beaufort-Jasper and Port Wentworth water-treatment plants  

SciTech Connect

Cesium-137 concentration measurements made in 1965 are reported for the Savannah River above and below the Savannah River Plant (SRP) and for the Beaufort-Jasper and Port Wentworth water treatment plants down river. These concentrations, measured when four SRP reactors (C, K, L, and P) were operating, were used to estimate Cs-137 reduction ratios for transport in the Savannah River and across each water treatment plant. In 1965 there was a 48% reduction in the Cs-137 concentration in the Savannah River between Highway 301 and the water treatment plant inlet points. Measured Cs-137 values in the finished water from Port Wentworth and the Beaufort-Jasper water treatment plants showed an 80% and 98% reduction in concentration level, respectively, when compared to Cs-137 concentration at Highway 301. The lower Cs-137 concentration (0.04 pCi/l) in the Beaufort-Jasper finished water is attributed to dilution in the canal from inflow of surface water (40%) and sediment cleanup processes that take place in the open portions of the canal (about 17 to 18 miles). Using the 1965 data, maximum Cs-137 concentrations expected in finished water in the Beaufort-Jasper and Port Wentworth water treatment plants following L-Reactor startup were recalculated. The recalculated values are 0.01 and 0.09 pCi/l for Beaufort-Jasper and Port Wentworth, respectively, compared to the 1.05 pCi/l value in the Environmental Assessment.

Hayes, D.W.; Boni, A.L.

1983-01-10T23:59:59.000Z

320

Characterization of organic-rich colloids from surface and ground waters at the actinide-contaminated Rocky Flats Environmental Technology Site (RFETS), Colorado, USA  

Science Journals Connector (OSTI)

Colloids, i.e. nanoparticles and macromolecules, play an important role in the environmental dispersion of actinides. Thus, colloids (3 kDa–0.5 ?m) were collected and purified from three different environments, i.e. surface water, pond water and near-surface ground water at the Rocky Flats Environmental Technology Site, Colorado, where elevated actinide concentrations had previously been documented. Their chemical composition was determined in order to better understand their role in actinide migration. All three types of colloid samples were found to be similar in chemical composition, with a higher percentage of organic carbon, OC (5–18%), than any other measured component, and only small amounts of Si, Mn, Al, and Fe (1.5% or below). Analytically determined components account for 40–56% of the colloidal matter, with water likely making up the difference. Transmission electron microscopy (TEM) images of colloidal material from all three sample types indicate the presence of cellulose or chitin, likely from plant (terrestrial and/or aquatic) material. Other major components include humic acid type particles, with only small amounts (<5%) of mineral particles. Our findings of colloids high in organic and low in inorganic matter content agree with previously reported results on Pu(IV) associated with an acidic natural macromolecular organic compound that also contains small amounts of Fe. Pu/OC and Fe/OC ratios both showed a steady decrease from surface water to pond water to groundwater, with a more marked decrease in the Fe/OC ratio, but no significant change in overall colloidal organic carbon (COC) concentrations.

Kimberly A. Roberts; Peter H. Santschi; Gary G. Leppard; M.Marcia West

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Low Molecular Weight Organic Contaminants in Advanced Treatment: Occurrence, Treatment and Implications to Desalination and Water Reuse Systems.  

E-Print Network (OSTI)

??Water reuse and desalination are increasingly considered as viable sources of potable water because improvements in materials and designs have decreased the cost of reverse… (more)

Agus, Eva

2011-01-01T23:59:59.000Z

322

Control System Development for Integrated Biological Waste Water Treatment Process of a Paper Production Plant  

Science Journals Connector (OSTI)

Abstract A bioreactor, integrated with an anoxic reactor and a settler for waste water treatment from a paper production plant is under investigation to implement a control system for enhancing effluent quality. In order to reveal the operation of the integrated process to achieve a specific goal, a methodology for control system development is proposed. In this paper, preliminary results of some steps of the methodology are presented, in order to address the oxygen uptake rate control. A dynamic model is developed for future analysis for the conceptual design of different generated control configurations.

Alicia Román-Martínez; Pastor Lanuza-Perez; Margarito Cepeda-Rodríguez; Elvia M. Mata-Padrón

2013-01-01T23:59:59.000Z

323

Evaluation of preservation methods for selected nutrients in ground water at the Idaho National Engineering Laboratory, Idaho  

SciTech Connect

Water from 28 wells completed in the Snake River Plain aquifer at the Idaho National Engineering Laboratory (INEL) was sampled as part of the US Geological Survey`s quality-assurance program to determine the effect of different preservation methods on nutrient concentrations. Samples were preserved with filtration and with mercuric chloride and chilling, chilling only, or sulfuric acid and chilling. The samples were analyzed for ammonia, nitrite, nitrite plus nitrate, and orthophosphate by the US Geological Survey National Water Quality Laboratory. The study was done in cooperation with the US Department of Energy. The comparison between samples preserved with mercuric chloride and chilling and samples preserved by chilling only showed that all sample pairs were in statistical agreement. Results for ammonia and nitrite plus nitrate samples preserved with sulfuric acid and chilling were within the 95 percent confidence level of the results for the samples preserved by the other two methods and can be considered equivalent to them. Results of this study indicate that discontinuing the use of mercuric chloride as a preservation method for nutrients in water samples will not affect the comparability of data collected at the INEL before and after October 1, 1994.

Bartholomay, R.C.; Williams, L.M.

1996-10-01T23:59:59.000Z

324

Economies of Size in Municipal Water-Treatment Technologies: A Texas Lower Rio Grande Valley Case Study  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Brackish Groundwater Reverse-Osmosis Desalination. . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ES Classification by Cost Category, Type, and Item. . . . . . . . . . . . . . . . . . . . . . . 56 ES Classification by Facility Segment.... . . . . . . . . . . . . . . . . . . . 3 2 Reported Cost of Supply and Treatment ($/1,000 gallons) for Surface-Water Treatment Facilities and RO Desalination Facilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Initial Construction Costs for a 2.0 mgd Facility...

Boyer, Christopher N.; Rister, M. Edward; Rogers, Callie S.; Sturdivant, Allen W.; Lacewell, Ronald D.; Browning, Charles Jr.; Elium III, James R.; Seawright, Emily K.

325

Treatment of nitrate-rich water in a baffled membrane bioreactor (BMBR) employing waste derived materials  

Science Journals Connector (OSTI)

Abstract Nitrate removal in submerged membrane bioreactors (MBRs) is limited as intensive aeration (for maintaining adequate dissolved oxygen levels and for membrane scouring) deters the formation of anoxic zones essential for biological denitrification. The present study employs baffled membrane bioreactor (BMBR) to overcome this constraint. Treatment of nitrate rich water (synthetic and real groundwater) was investigated. Sludge separation was achieved using ceramic membrane filters prepared from waste sugarcane bagasse ash. A complex external carbon source (leachate from anaerobic digestion of food waste) was used to maintain an appropriate C/N ratio. Over 90% COD and 95% NO3–N reduction was obtained. The bagasse ash filters produced a clear permeate, free of suspended solids. Sludge aggregates were observed in the reactor and were linked to the high extracellular polymeric substances (EPS) content. Lower sludge volume index (40 mL/g compared to 150 mL/g for seed sludge), higher settling velocity (47 m/h compared to 10 m/h for seed sludge) and sludge aggregates (0.7 mm aggregates compared to <0.2 mm for seed sludge) was observed. The results demonstrate the potential of waste-derived materials viz. food waste leachate and bagasse ash filters in water treatment.

Subhankar Basu; Saurabh K. Singh; Prahlad K. Tewari; Vidya S. Batra; Malini Balakrishnan

2014-01-01T23:59:59.000Z

326

Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas  

SciTech Connect

The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

James Spillane

2005-10-01T23:59:59.000Z

327

Storing carbon dioxide in saline formations : analyzing extracted water treatment and use for power plant cooling.  

SciTech Connect

In an effort to address the potential to scale up of carbon dioxide (CO{sub 2}) capture and sequestration in the United States saline formations, an assessment model is being developed using a national database and modeling tool. This tool builds upon the existing NatCarb database as well as supplemental geological information to address scale up potential for carbon dioxide storage within these formations. The focus of the assessment model is to specifically address the question, 'Where are opportunities to couple CO{sub 2} storage and extracted water use for existing and expanding power plants, and what are the economic impacts of these systems relative to traditional power systems?' Initial findings indicate that approximately less than 20% of all the existing complete saline formation well data points meet the working criteria for combined CO{sub 2} storage and extracted water treatment systems. The initial results of the analysis indicate that less than 20% of all the existing complete saline formation well data may meet the working depth, salinity and formation intersecting criteria. These results were taken from examining updated NatCarb data. This finding, while just an initial result, suggests that the combined use of saline formations for CO{sub 2} storage and extracted water use may be limited by the selection criteria chosen. A second preliminary finding of the analysis suggests that some of the necessary data required for this analysis is not present in all of the NatCarb records. This type of analysis represents the beginning of the larger, in depth study for all existing coal and natural gas power plants and saline formations in the U.S. for the purpose of potential CO{sub 2} storage and water reuse for supplemental cooling. Additionally, this allows for potential policy insight when understanding the difficult nature of combined potential institutional (regulatory) and physical (engineered geological sequestration and extracted water system) constraints across the United States. Finally, a representative scenario for a 1,800 MW subcritical coal fired power plant (amongst other types including supercritical coal, integrated gasification combined cycle, natural gas turbine and natural gas combined cycle) can look to existing and new carbon capture, transportation, compression and sequestration technologies along with a suite of extracting and treating technologies for water to assess the system's overall physical and economic viability. Thus, this particular plant, with 90% capture, will reduce the net emissions of CO{sub 2} (original less the amount of energy and hence CO{sub 2} emissions required to power the carbon capture water treatment systems) less than 90%, and its water demands will increase by approximately 50%. These systems may increase the plant's LCOE by approximately 50% or more. This representative example suggests that scaling up these CO{sub 2} capture and sequestration technologies to many plants throughout the country could increase the water demands substantially at the regional, and possibly national level. These scenarios for all power plants and saline formations throughout U.S. can incorporate new information as it becomes available for potential new plant build out planning.

Dwyer, Brian P.; Heath, Jason E.; Borns, David James; Dewers, Thomas A.; Kobos, Peter Holmes; Roach, Jesse D.; McNemar, Andrea; Krumhansl, James Lee; Klise, Geoffrey T.

2010-10-01T23:59:59.000Z

328

Chemical pre-treatment of waste water from the Morcinek Mine in Poland  

SciTech Connect

This report presents a treatment strategy for brine that is recovered from the Morcinek mine near the city of Kartowice in Upper Silesia, Poland. The purpose of the study is to provide sufficient chemical composition and solubility data to permit selection of equipment for a pilot scale waste water processing plant. The report delineates: (1) the pre-treatment steps necessary before the brine is delivered to a reverse osmosis unit; (2) the composition of the brine solution at various stages in the pretreatment process and during the reverse osmosis step; (3) the types and amounts of chemicals that need to be added to the brine during pre-treatment. Analysis of the composition of the brine slurry from the submerged combustion evaporator that follows the reverse osmosis unit and the composition of brine elements that might be carried into the exhaust stack of the evaporator will be dealt with later. The pretreatment process will consist of four steps: (1) aeration and addition of sodium carbonate, (2) multimedia filtration, (3) addition of hydrochloric acid, and (4) ultrafiltration. On the basis of one m{sup 3} of the brine that has a density of 1.03 g/cm{sup 3}, approximately 800 grams (1.7 lbs.) of sodium carbonate monohydrate (Na{sub 2}CO{sub 3}{center_dot}H{sub 2}O) and 60 grams (0.12 lbs.) of concentrated hydrochloric acid (HCI) will need to be added to the brine during pre-treatment. The goal of the pre-treatment is to produce a fluid that is always undersaturated with respect to all mineral phases. However, only the minimum amount of pre-treatment chemicals should be added in order to minimize costs. Therefore the overall goal is to generate a fluid that approaches but does not exceed saturation at the end of the reverse osmosis process. The suggested amounts of chemicals reported here are therefore the minimum amounts that need to be added during pre-treatment to keep all salts in solution during the reverse osmosis process.

Bourcier, W.; Jackson, K.J.

1994-06-01T23:59:59.000Z

329

Ground-water levels and tritium concentrations at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky, June 1984 to April 1989  

SciTech Connect

The Maxey Flats disposal site, Kentucky encompasses about 280 acres near the edge of a flat-topped ridge. The ridge is underlain by fractured shale and sandstone beds of the Nancy Member and the Farmers Member of the Borden Formation of Mississippian age. Groundwater flow in the strata beneath the site occurs through fractures, and flow patterns are difficult to delineate. The potentiometric surface also is difficult to delineate because several saturated and unsaturated zones are present in the rocks. Generally, ground-water levels in wells intersecting permeable fractures fluctuated seasonally and were lowest from December through June and highest from July through November. Water levels in the disposal trenches fluctuations less than those in wells, and for most trenches the fluctuations were less than 0.5 foot. From June 1984 to April 1989, tritium concentrations in groundwater ranged from 0 to 2,402,200 picocuries/ml. The greatest and most variable tritium concentrations were in wells along the northwest side of the site. The major conduit of groundwater flow from the trenches in the northwestern part of the site is a fractured sandstone bed that forms the base of most trenches. Elsewhere along the site perimeter, elevated levels of tritium were not detected in wells, and mean tritium were not detected in wells, and mean tritium concentrations showed little change between 1986 and 1988.

Wilson, K.S.; Lyons, B.E. (Geological Survey, Reston, VA (United States))

1991-01-01T23:59:59.000Z

330

Meeting the Need for Safe Drinking Water in Rural Mexico through Point-of-Use Treatment  

E-Print Network (OSTI)

Solar disinfection of drinking water and diarrhoea in Maasai2001. Solar disinfection of drinking water protects againstdisinfection of drinking water contained in transparent

Lang, Micah; Kaser, Forrest; Reygadas, Fermin; Nelson, Kara; Kammen, Daniel M.

2006-01-01T23:59:59.000Z

331

Novel hybrid materials in the remediation of ground waters contaminated with As(III) and As(V)  

Science Journals Connector (OSTI)

Natural mica type of clay mineral sericite was modified to obtain the materials viz., Al-HDTMA-sericite (AH) and Al-AMBA-sericite (AA) which was characterized by the FT-IR and XRD data and morphologically analyzed by the SEM images. Further, the simulated batch reactor data indicated that increase in sorptive concentration enhanced the uptake of these pollutants and the 1000 times increase in ionic strength i.e., background electrolyte concentration (NaNO3) caused an insignificant decrease in As(V) removal, which inferred that As(V) was adsorbed specifically onto the solid surface. However, it was affected greatly with As(III) pointed that As(III) was sorbed mainly through electrostatic or even with van der Waals attraction. pH dependence data showed that arsenic removal was greatly affected with change in solution pH. Simultaneous presence of phenol in the removal of As(III) or As(V) showed insignificant change in arsenic removal by these materials pointed that different sorption sites available for these two different contaminants. Results obtained under dynamic conditions inferred that materials were reasonably useful in the speciation/attenuation of these two metal ions from water bodies. The breakthrough data was fitted well to the Thomas equation and hence, the maximum amount of the As(III) or As(V) to be loaded was found to be 0.338 and 0.433 mg/g respectively for AA and AH for As(III) and 0.541 and 0.852 mg/g respectively for AA and AH for As(V) under the specified column reactor conditions. Comparing these two materials AH possessed with higher removal capacity than AA, at least, for these two contaminants.

Diwakar Tiwari; Seung Mok Lee

2012-01-01T23:59:59.000Z

332

POWDERED ACTIVATED CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION FOR DISINFECTION BY-PRODUCT CONTROL IN WATER TREATMENT PLANTS  

SciTech Connect

New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will further affect public water suppliers with respect to DBPs. Powdered activated carbon (PAC) has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. This project, a cooperative effort between the Energy & Environmental Research Center (EERC), the Grand Forks Water Treatment Plant, and the University of North Dakota Department of Civil Engineering, consists of several interrelated tasks. The objective of the research was to evaluate a cost-effective PAC produced from North Dakota lignite for removing NOM from water and reducing trihalomethane formation potential. The research approach was to develop a statistically valid testing protocol that can be used to compare dose-response relationships between North Dakota lignite-derived PAC and commercially available PAC products. A statistical analysis was performed to determine whether significant correlations exist between operating conditions, water properties, PAC properties, and dose-response behavior. Pertinent physical and chemical properties were also measured for each of the waters and each of the PACs.

Daniel J. Stepan; Thomas A. Moe; Melanie D. Hetland; Margaret L. Laumb

2001-06-01T23:59:59.000Z

333

BIO?REFINERIES: BIOPROCESS TECHNOLOGIES FOR WASTE?WATER TREATMENT, ENERGY AND PRODUCT VALORIZATION  

Science Journals Connector (OSTI)

Increasing pressure is being exerted on communities and nations to source energy from forms other than fossil fuels. Also potable water is becoming a scarce resource in many parts of the world and there remains a large divide in the demand and utilization of plant products derived from genetically modified organisms (GMOs) and non?GMOs. The most extensive user and manager of terrestrial ecosystems is agriculture which is also the de facto steward of natural resources. As stated by Miller (2008) no other industry or institution comes close to the comparative advantage held for this vital responsibility while simultaneously providing food fiber and other biology?based products including energy. Since modern commercial agriculture is transitioning from the production of bulk commodities to the provision of standardized products and specific?attribute raw materials for differentiated markets we can argue that processes such as mass cultivation of microalgae and the concept of bio?refineries be seen as part of a ‘new’ agronomy. EBRU is currently exploring the integration of bioprocess technologies using microalgae as biocatalysts to achieve waste?water treatment water polishing and endocrine disruptor (EDC) removal sustainable energy production and exploitation of the resultant biomass in agriculture as foliar fertilizer and seed coatings and for commercial extraction of bulk commodities such as bio?oils and lecithin. This presentation will address efforts to establish a fully operational solar?driven microalgae bio?refinery for use not only in waste remediation but to transform waste and biomass to energy fuels and other useful materials (valorisation) with particular focus on environmental quality and sustainability goals.

A. Keith Cowan

2010-01-01T23:59:59.000Z

334

Arsenic Epidemiology and Drinking Water Standards  

Science Journals Connector (OSTI)

...occurrences of arsenic in ground water." Dictionaries and...History, Study and Remediation is an Arsenic Project...also provided. The Ground Water and Drinking Water Division...resource page on arsenic in ground water of the United States...

Allan H. Smith; Peggy A. Lopipero; Michael N. Bates; Craig M. Steinmaus

2002-06-21T23:59:59.000Z

335

Characterization of Rio Blanco retort 1 water following treatment by lime-soda softening and reverse osmosis  

SciTech Connect

Laboratory research was initiated to evaluate the chemical, physical, and toxicological characteristics of treated and untreated Rio Blanco oil shale retort water. Wet chemical analyses, metals analyses, MICROTOX assays and particle-size analysis were performed on the wastewater before and after treatment by lime-soda softening and reverse osmosis. The reverse osmosis system successfully removed dissolved solids and organics from the wastewater. Based on MICROTOX tests, the water was much less toxic after treatment by reverse osmosis. 8 refs., 7 figs., 8 tabs.

Kocornik, D.J.

1985-12-01T23:59:59.000Z

336

Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management  

SciTech Connect

Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by nitrification helped to reduce the corrosivity and biocide demand. Also, the lower pH and alkalinity resulting from nitrification reduced the scaling to an acceptable level, without the addition of anti-scalant chemicals. Additional GAC adsorption treatment, MWW_NFG, yielded no net benefit. Removal of organic matter resulted in pitting corrosion in copper and cupronickel alloys. Negligible improvement was observed in scaling control and biofouling control. For all of the tertiary treatments, biofouling control was achievable, and most effectively with pre-formed monochloramine (2-3 ppm) in comparison with NaOCl and ClO2. Life cycle cost (LCC) analyses were performed for the tertiary treatment systems studied experimentally and for several other treatment options. A public domain conceptual costing tool (LC3 model) was developed for this purpose. MWW_SF (lime softening and sand filtration) and MWW_NF were the most cost-effective treatment options among the tertiary treatment alternatives considered because of the higher effluent quality with moderate infrastructure costs and the relatively low doses of conditioning chemicals required. Life cycle inventory (LCI) analysis along with integration of external costs of emissions with direct costs was performed to evaluate relative emissions to the environment and external costs associated with construction and operation of tertiary treatment alternatives. Integrated LCI and LCC analysis indicated that three-tiered treatment alternatives such as MWW_NSF and MWW_NFG, with regular chemical addition for treatment and conditioning and/or regeneration, tend to increase the impact costs and in turn the overall costs of tertiary treatment. River water supply and MWW_F alternatives with a single step of tertiary treatment were associated with lower impact costs, but the contribution of impact costs to overall annual costs was higher than all other treatment alternatives. MWW_NF and MWW_SF alternatives exhibited moderate external impact costs with moderate infrastructure and chemical conditioner dosing, which makes them (especially

David Dzombak; Radisav Vidic; Amy Landis

2012-06-30T23:59:59.000Z

337

Energy-Water Overview  

U.S. Energy Information Administration (EIA) Indexed Site

Emerging Issues and Challenges Emerging Issues and Challenges DOE/EIA 2010 Energy Conference Mike Hightower Sandia National Laboratories mmhight@sandia.gov, 505-844-5499 Energy and Water are ... Interdependent Water for Energy and Energy for Water Energy and power production require water: * Thermoelectric cooling * Hydropower * Energy minerals extraction/mining * Fuel Production (fossil fuels, H 2 , biofuels) * Emission control Water production, processing, distribution, and end-use require energy: * Pumping * Conveyance and Transport * Treatment * Use conditioning * Surface and Ground water Water Consumption by Sector U.S. Freshwater Consumption, 100 Bgal/day Livestock 3.3% Thermoelectric 3.3% Commercial 1.2% Domestic 7.1% Industrial 3.3% Mining 1.2% Irrigation 80.6% Energy uses 27 percent of all non-agricultural fresh water

338

Oil removal for produced water treatment and micellar cleaning of ultrafiltration membranes.  

E-Print Network (OSTI)

??Produced water is a major waste produced from oil and natural gas wells in the state of Texas. This water could be a possible source… (more)

Beech, Scott Jay

2006-01-01T23:59:59.000Z

339

Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

Hwang, In-Hee, E-mail: hwang@eng.hokudai.ac.jp [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan); Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan)

2012-03-15T23:59:59.000Z

340

Analysis of fruitland water production treatment and disposal, San Juan Basin. Topical report, October 1991-March 1993  

SciTech Connect

The San Juan Basin produces more coalbed methane than the rest of the world combined. Brackish water is produced with the gas. Water production climbed from 40,000 barrels per day in 1989 to 115,000 bpd by late 1992. Underground injection is used to dispose of virtually all the produced water. Water production is projected to increase to 180,000 bpd in 1995. 650 million to 1.1 billion barrels are projected to be produced over the next 20 years. Restricted injection capacity and aquifer storage capacity may necessitate additional disposal wells and, ultimately, other methods to dispose of the water. Alternative treatment technologies, especially electrodialysis and/or reverse osmosis, may be applicable at costs of $0.17 to $0.22 per barrel, a considerable savings over the $0.80 to $1.00/bbl cost of deep injection. With suitable treatment, the majority of the produced water could be made suitable for agricultural or municipal uses. Reservoir analysis and simulations indicate stimulations can be optimized, and that heating water prior to injection might increase injectivity in some wells.

Cox, D.O.; Decker, A.D.; Stevens, S.H.

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Coagulation/Flocculation Treatments for Flue-Gas-Derived Water from Oxyfuel Power Production with CO2 Capture  

Science Journals Connector (OSTI)

Coagulation/Flocculation Treatments for Flue-Gas-Derived Water from Oxyfuel Power Production with CO2 Capture ... The buffered solution is then sent back to the top of the tower, where it is sprayed into the upflowing oxyfuel gas stream, condensing and cleaning the ash-laden gas. ...

Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen Gerdemann; John Clark; Cathy Summers

2011-08-02T23:59:59.000Z

342

118-K-1 Burial Ground - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Receiving and Processing Facility Waste Sampling and Characterization Facility Waste Treatment Plant 118-K-1 Burial Ground Email Email Page | Print Print Page |Text Increase...

343

Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System  

SciTech Connect

This report summarizes work performed on this project from October 2004 through March 2005. In previous work, a surfactant modified zeolite (SMZ) was shown to be an effective system for removing BTEX contaminants from produced water. Additional work on this project demonstrated that a compost-based biofilter could biodegrade the BTEX contaminants found in the SMZ regeneration waste gas stream. However, it was also determined that the BTEX concentrations in the waste gas stream varied significantly during the regeneration period and the initial BTEX concentrations were too high for the biofilter to handle effectively. A series of experiments were conducted to determine the feasibility of using a passive adsorption column placed upstream of the biofilter to attenuate the peak gas-phase VOC concentrations delivered to the biofilter during the SMZ regeneration process. In preparation for the field test of the SMZ/VPB treatment system in New Mexico, a pilot-scale SMZ system was also designed and constructed during this reporting period. Finally, a cost and feasibility analysis was also completed. To investigate the merits of the passive buffering system during SMZ regeneration, two adsorbents, SMZ and granular activated carbon (GAC) were investigated in flow-through laboratory-scale columns to determine their capacity to handle steady and unsteady VOC feed conditions. When subjected to a toluene-contaminated air stream, the column containing SMZ reduced the peak inlet 1000 ppmv toluene concentration to 630 ppmv at a 10 second contact time. This level of buffering was insufficient to ensure complete removal in the downstream biofilter and the contact time was longer than desired. For this reason, using SMZ as a passive buffering system for the gas phase contaminants was not pursued further. In contrast to the SMZ results, GAC was found to be an effective adsorbent to handle the peak contaminant concentrations that occur early during the SMZ regeneration process. At a one second residence time, the GAC bed reduced peak contaminant concentrations by 97%. After the initial peak, the inlet VOC concentration in the SMZ regeneration gas stream drops exponentially with time. During this period, the contaminants on the GAC subsequently desorbed at a nearly steady rate over the next 45 hours resulting in a relatively steady effluent concentration of approximately 25 ppm{sub v}. This lower concentration is readily degradable by a downstream vapor phase biofilter (VPB) and the steady nature of the feed stream will prevent the biomass in the VPB from enduring starvation conditions between SMZ regeneration cycles. Repetitive sorption and desorption cycles that would be expected in the field were also investigated. It was determined that although the GAC initially lost some VOC sorption capacity, the adsorption and desorption profiles stabilized after approximately 6 cycles indicating that a GAC bed should be suitable for continuous operation. In preparation for the pilot field testing of the SMZ/VPB system, design, ''in-house'' construction and testing of the field system were completed during this project period. The design of the SMZ system for the pilot test was based on previous investigations by the PI's in Wyoming, 2002 and on analyses of the produced water at the field site in New Mexico. The field tests are scheduled for summer, 2005. A cost survey, feasibility of application and cost analyses were completed to investigate the long term effectiveness of the SMZ/VPB system as a method of treating produced water for re-use. Several factors were investigated, including: current costs to treat and dispose of produced water, end-use water quality requirements, and state and federal permitting requirements.

Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

2005-03-11T23:59:59.000Z

344

SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS  

SciTech Connect

We propose a process that uses sulfur dioxide from coal combustion as a raw material to synthesize polymeric ferric sulfate (PFS), a water treatment agent. The process uses sodium chlorate as an oxidant and ferrous sulfate as an absorbent. The major chemical mechanisms in this reaction system include oxidation, hydrolysis, and polymerization. Oxidation determines sulfur conversion efficiency while hydrolysis and polymerization control the quality of product. Many factors, including SO{sub 2} inlet concentration, flow rate of simulated flue gas, reaction temperature, addition rate of oxidant and stirring rate, may affect the efficiencies of SO{sub 2} removal. Currently, the effects of SO{sub 2} inlet concentration, the flow rate of simulated flue gas and addition rate of flue gas on removal efficiencies of SO{sub 2}, are being investigated. Experiments shown in this report have demonstrated that the conversion efficiencies of sulfur dioxide with ferrous sulfate as an absorbent are in the range of 60-80% under the adopted process conditions. However, the conversion efficiency of sulfur dioxide may be improved by optimizing reaction conditions to be investigated. Partial quality indices of the synthesized products, including Fe{sup 2+} concentration and total iron concentration, have been evaluated.

Robert C. Brown; Maohong Fan

2001-12-01T23:59:59.000Z

345

Zinc Treatment Effects on Corrosion Behavior of 304 Stainless Steel in High Temperature, Hydrogenated Water  

SciTech Connect

Trace levels of soluble zinc(II) ions (30 ppb) maintained in mildly alkaline, hydrogenated water at 260 C were found to lower the corrosion rate of austenitic stainless steel (UNS S30400) by about a factor of five, relative to a non-zinc baseline test after 10,000 hr. Characterizations of the corrosion oxide layer via grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy in combination with argon ion milling and target factor analysis, confirmed the presence of two spinel oxide phases and minor amounts of recrystallized nickel. Based on the distribution of the three oxidized alloying constituents (Fe, Cr, Ni) with respect to depth and oxidation state, it was concluded that: (a) corrosion occurs in a non-selective manner, but approximately 30% of the oxidized iron is released to the water, and (b) the two spinel oxides exist as a ferrite-based outer layer (Ni{sub 0.1}Zn{sub 0.6}Fe{sub 0.3})(Fe{sub 0.95}Cr{sub 0.05}){sub 2}O{sub 4} on top of a chromite-based inner layer (Ni{sub 0.1}Zn{sub 0.2}Fe{sub 0.7})(Fe{sub 0.4}Cr{sub 0.6}){sub 2}O{sub 4}. These results suggest that immiscibility in the Fe{sub 3}O{sub 4}-ZnFe{sub 2}O{sub 4} binary may play a role in controlling the zinc content of the outer layer. On the other hand, the lower corrosion rate caused by zinc additions is believed to be a consequence of corrosion oxide film stabilization due to the substitution reaction equilibrium: z Zn{sup 2+}(aq) + FeCr{sub 2}O{sub 4}(s) {approx} z Fe{sup 2+}(aq) + (Zn{sub z}Fe{sub 1-z})Cr{sub 2}O{sub 4}(s). The liquid-solid distribution coefficient for the reaction, defined by the ratio of total zinc to iron ion concentrations in solution divided by the Zn(II)/Fe(II) ratio in the solid, z/(1-z), was found to be 0.184. This interpretation is consistent with the benefits of zinc treatment being concentration dependent.

S.E. Ziemniak; M. Hanson

2001-03-20T23:59:59.000Z

346

Solar disinfection: an approach for low-cost household water treatment technology in Southwestern Ethiopia  

Science Journals Connector (OSTI)

Disinfection of contaminated water using solar radiation (SODIS) is known to inactivate ... study was aiming to test the efficiency of solar disinfection using different water parameters as low-cost household wat...

Awrajaw Dessie; Esayas Alemayehu…

2014-01-01T23:59:59.000Z

347

Pharmaceutical Industry Wastewater: Review of the Technologies for Water Treatment and Reuse  

Science Journals Connector (OSTI)

The recovered waste stream can be used elsewhere in the process, and the water could be used for boiler feed or cooling towers and other operations thereby reducing consumption of precious raw water and drastically reducing operating costs. ...

Chandrakanth Gadipelly; Antía Pérez-González; Ganapati D. Yadav; Inmaculada Ortiz; Raquel Ibáñez; Virendra K. Rathod; Kumudini V. Marathe

2014-06-20T23:59:59.000Z

348

Meeting the Need for Safe Drinking Water in Rural Mexico through Point-of-Use Treatment  

E-Print Network (OSTI)

solar disinfection (SODIS), and UV disinfection are promising alternative approaches to meeting the urgent water quality needs of rural Mexico.

Lang, Micah; Kaser, Forrest; Reygadas, Fermin; Nelson, Kara; Kammen, Daniel M.

2006-01-01T23:59:59.000Z

349

Water treatment by reverse osmosis. (Latest citations from the U. S. Patent data base). Published Search  

SciTech Connect

The bibliography contains citations of selected patents concerning water purification systems and components using reverse osmosis technology. Patents include purification systems and devices for seawater, waste water, and drinking water. Topics also include complete purification systems, valves and distribution components, membranes, supports, storage units, and monitors. Water purification systems using activated charcoal are referenced in a related bibliography. (Contains a minimum of 135 citations and includes a subject term index and title list.)

Not Available

1992-10-01T23:59:59.000Z

350

An evaluation of household drinking water treatment systems in Peru : the table filter and the safe water system  

E-Print Network (OSTI)

(cont.) storage, and education. Tests on the SWSs in Peru demonstrated 99.6% E.coli removal and 95% total coliform removal. Only 30% of the SWSs tested contained water at or above the WHO-recommended concentration of free ...

Coulbert, Brittany, 1981-

2005-01-01T23:59:59.000Z

351

Emergency Water Treatment with Bleach in the United States: The Need to Revise EPA Recommendations  

Science Journals Connector (OSTI)

(2) However, research has dispelled this myth, showing instead that populations have increased waterborne illness risk only in those emergencies that cause flooding or displacement,(3, 4) or when infrastructure systems are damaged and do not provide safe, chlorinated water. ... Colorado ... It should be noted that surface water supplies had by far the most total coliforms contamination, and thus surface water supplies (and in particular flood waters) should only be used if there are no other options for water supply by the emergency-affected population. ...

Daniele Lantagne; Bobbie Person; Natalie Smith; Ally Mayer; Kelsey Preston; Elizabeth Blanton; Kristen Jellison

2014-03-31T23:59:59.000Z

352

Geophysical Monitoring of Foam used to Deliver Remediation1 Treatments within the Vadose Zone2  

E-Print Network (OSTI)

for transport of pollutants from the ground surface37 to ground water. Contaminants in the vadose zone1 Geophysical Monitoring of Foam used to Deliver Remediation1 Treatments within the Vadose Zone2 3 amendments into the vadose zone for in situ11 remediation; it is an approach being considered for in situ

Hubbard, Susan

353

Numerical simulation on the influence of water spray in thermal plasma treatment of CF4 gas  

Science Journals Connector (OSTI)

Nitrogen thermal plasma generated by a non-transferred DC arc plasma torch was used to decompose tetrafluoromethane (CF4). In the thermal decomposition process, water was used as a chemical reactant source. Two kinds of water spray methods were compared: water spray directly to the arc plasma flame and indirectly to the reactor tube wall. Although the same operating conditions of input power, waste gas, and sprayed water flow rate were employed for each water spray methods, a relatively higher decomposition rate was achieved in the case of water spray to the reactor wall. In order to investigate the effects of water spraying direction on the thermal decomposition process, a numerical simulation on the thermal plasma flow characteristics was carried out considering water injection in the reactor. The simulation was performed using commercial fluid dynamics software of the FLUENT, which is suitable for calculating a complex flow. From the results, it was revealed that water spray to the reactor wall and use of a relatively small quantity of water are more effective methods for decomposition of CF4, because a sufficiently high temperature area and long reaction time can be maintained over large area.

Tae-Hee Kim; Sooseok Choi; Dong-Wha Park

2012-01-01T23:59:59.000Z

354

Economic costs of conventional surface-water treatment: A case study of the Mcallen northwest facility  

E-Print Network (OSTI)

supplies.2 2 The majority of the groundwater in the Valley is brackish; therefore, the groundwater is not considered3 potable unless it is treated with a desalination process. In order to determine if water is brackish, the salinity of the water must....e., supply) include: groundwater wells, wastewater reuse, desalination of seawater and/or brackish groundwater, and rainwater harvesting. Efficiency-in-use improvements being applied in the Valley3 include on-farm and municipal water-conservation measures...

Rogers, Callie Sue

2009-05-15T23:59:59.000Z

355

Integrated Water Treatment System (IWTS) Process Flow Diagram Mass Balance Calculations for K West Basin  

SciTech Connect

The purpose of this calculation is to develop the rational for the material balances that are documented in the KW Basin water system Level 1 process flow diagrams.

REED, A.V.

2000-02-28T23:59:59.000Z

356

Removal of Emerging Contaminants in Water Treatment by Nanofiltration and Reverse Osmosis  

Science Journals Connector (OSTI)

The general rules established in abundant studies on removal of conventional pollutants from waters by reverse osmosis and nanofiltration were reconsidered in this contribution...

Branko Kunst; Krešimir Košuti?

2008-01-01T23:59:59.000Z

357

Nutritional value of sorghum grain after treatment with water and enzymes  

E-Print Network (OSTI)

. It appears that a breaking down oi the proteins and starch molecules of the ground grain by Protease and Amylase, respectively, into smaller molecules offered a better material for an anaerobic fermentation which might have caused the reduction... of the methionine and 45. 75/ of the cystine in the grain. It appears that a breaking down of the proteins and starch molecules by Protease and Amylase, respectively, into smaller molecules offered a better material for an anaerobic fermentation which might have...

Silva, Paulo Carlos

2012-06-07T23:59:59.000Z

358

Treatment of drinking water to improve its sanitary or bacteriological quality is  

E-Print Network (OSTI)

,000 gallons), such an approach can be wasteful, increasing energy costs for the well pump to refill the tank Chlorine Amounts To sanitize water properly, enough chlorine needs to be added to a storage tank to reach bacteria have been properly destroyed by the sanitation process, submit water samples from a faucet served

359

A Literature Review of the History and Future of Reclaimed Water Use in Florida Jamie Lewis  

E-Print Network (OSTI)

that the reclaimed water used for public access irrigation, fire protection, edible crop irrigation, toilet flushing treatment or from discharge of reclaimed water for wetlands restoration; Fire protection; or Other useful activities is critical to the protection of Florida's ground and surface water (FDEP, 2011). According

Ma, Lena

360

Characterization of Cu{sub 6}Sn{sub 5} intermetallic powders produced by water atomization and powder heat treatment  

SciTech Connect

Since the Cu{sub 6}Sn{sub 5} intermetallic shows its importance in industrial applications, the Cu{sub 6}Sn{sub 5} intermetallic-containing powders, produced by a powder processing route with a high production rate, were characterized. The route consisted of water atomization of an alloy melt (Cu–61 wt.% Sn) and subsequent heat treatment of the water-atomized powders. Characterization of the water-atomized powders and their heated forms was conducted by using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Fine water-atomized powder microstructures consisted of primary hexagonal ?-Cu{sub 6.25}Sn{sub 5} dendrites coexisting with interdendritic ?-Cu{sub 6.25}Sn{sub 5} + ?-Sn eutectic. Solidification of fine melt droplets was governed by surface nucleation and growth of the primary hexagonal ?-Cu{sub 6.25}Sn{sub 5} dendrites followed by ?-Cu{sub 6.25}Sn{sub 5} + ?-Sn eutectic solidification of the remnant liquid. In coarse melt droplets, nucleation and growth of primary ?-Cu{sub 3}Sn dendrites were followed by peritectic reaction (?-Cu{sub 3}Sn + liquid ? ?-Cu{sub 6.25}Sn{sub 5}) or direct crystallization of ?-Cu{sub 6.25}Sn{sub 5} phase from the undercooled melt. Finally, the ?-Cu{sub 6.25}Sn{sub 5} + ?-Sn eutectic solidification of the remnant liquid occurred. Heating of the water-atomized powders at different temperatures resulted in microstructural homogenization. The water-atomized powders with mixed phases were transformed to powders with single monoclinic ?-Cu{sub 6}Sn{sub 5} phase. - Highlights: • The Cu{sub 6}Sn{sub 5} intermetallic powder production route was proposed. • Single phase Cu{sub 6}Sn{sub 5} powders could be by water atomization and heating. • Water-atomized Cu–Sn powders contained mixed Cu–Sn phases. • Solidification and heat treatment of water-atomized Cu–Sn powders are explained.

Tongsri, Ruangdaj, E-mail: ruangdt@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Yotkaew, Thanyaporn, E-mail: thanyy@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Krataitong, Rungtip, E-mail: rungtipk@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Wila, Pongsak, E-mail: pongsakw@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Sir-on, Autcharaporn, E-mail: autchars@mtec.or.th [Materials Characterization Research Unit (MCRU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Muthitamongkol, Pennapa, E-mail: pennapm@mtec.or.th [Materials Characterization Research Unit (MCRU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Tosangthum, Nattaya, E-mail: nattayt@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand)

2013-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Nebraska Water Conference Council's Annual Water & Natural Resources Tour  

E-Print Network (OSTI)

in the Platte River valley and ground water contamination in southwestern Grand Island. ` The ongoing drought cycle. Ground water level changes and related ground water/surface water interaction research-owned water wells. Cleanup and remediation efforts will be discussed by Gary Mader, Utilities Director, City

Nebraska-Lincoln, University of

362

Fate of Triclosan and Triclosan-Methyl in Sewage TreatmentPlants and Surface Waters  

Science Journals Connector (OSTI)

The fate of triclosan in diverse stages of two sewage treatment ... two-stage biologic (activated sludge) process removed triclosan more efficiently than the STP with a ... not very effective. The elimination rat...

Kai Bester

2005-07-01T23:59:59.000Z

363

EPA ENERGY STAR Webcast: Benchmarking Water/Wastewater Treatment Facilities in Portfolio Manager  

Energy.gov (U.S. Department of Energy (DOE))

Learn how to track the progress of energy efficiency efforts and compare the energy use of wastewater treatment plants to other peer facilities across the country. Attendees will learn how to...

364

System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)  

SciTech Connect

This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP).

DERUSSEAU, R.R.

2000-04-18T23:59:59.000Z

365

Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

Warm or Steaming Ground Warm or Steaming Ground Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Warm or Steaming Ground Dictionary.png Warm or Steaming Ground: An area where geothermal heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Steam rising from the ground at Eldvorp, a 10 km row of craters, in Southwestern Iceland. http://www.visiticeland.com/SearchResults/Attraction/eldvorp Warm or steaming ground is often an indicator of a geothermal system beneath the surface. In some cases a geothermal system may not show any

366

How environmentally significant is water consumption during wastewater treatment?: Application of recent developments in LCA to WWT technologies used at 3 contrasted geographical locations  

Science Journals Connector (OSTI)

Abstract Environmental impact assessment models are readily available for the assessment of pollution-related impacts in life cycle assessment (LCA). These models have led to an increased focus on water pollution issues resulting in numerous LCA studies. Recently, there have been significant developments in methods assessing freshwater use. These improvements widen the scope for the assessment of wastewater treatment (WWT) technologies, now allowing us to apprehend, for the first time, a combination of operational (energy and chemicals use), qualitative (environmental pollution) and quantitative (water deprivation) issues in wastewater treatment. This enables us to address the following question: Is water consumption during wastewater treatment environmentally significant compared to other impacts? To answer this question, a standard life cycle inventory (LCI) was performed with a focus on consumptive water uses at plant level, where several WWT technologies were operating, in different climatic conditions. The impacts of water consumption were assessed by integrating regionalized characterization factors for water deprivation within an existing life cycle impact assessment (LCIA) method. Results at the midpoint level, show that water deprivation impacts are highly variable in relation to the chosen WWT technology (water volume used) and of WWTP location (local water scarcity). At the endpoint level, water deprivation impacts on ecosystem quality and on the resource damage categories are significant for WWT technologies with great water uses in water-scarce areas. Therefore, our study shows the consideration of water consumption-related impacts is essential and underlines the need for a greater understanding of the water consumption impacts caused by WWT systems. This knowledge will help water managers better mitigate local water deprivation impacts, especially in selecting WWT technologies suitable for arid and semi-arid areas.

Eva Risch; Philippe Loubet; Montserrat Núñez; Philippe Roux

2014-01-01T23:59:59.000Z

367

Treatment of sludge containing nitro-aromatic compounds in reed-bed mesocosms - Water, BOD, carbon and nutrient removal  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer It is necessary to improve existing and develop new sludge management techniques. Black-Right-Pointing-Pointer One method is dewatering and biodegradation of compounds in constructed wetlands. Black-Right-Pointing-Pointer The result showed high reduction of all tested parameters after treatment. Black-Right-Pointing-Pointer Plants improve degradation and Phragmites australis is tolerant to xenobiotics. Black-Right-Pointing-Pointer The amount of sludge could be reduced by 50-70%. - Abstract: Since the mid-1970s, Sweden has been depositing 1 million ton d.w sludge/year, produced at waste water treatment plants. Due to recent legislation this practice is no longer a viable method of waste management. It is necessary to improve existing and develop new sludge management techniques and one promising alternative is the dewatering and treatment of sludge in constructed wetlands. The aim of this study was to follow reduction of organic carbon, BOD and nutrients in an industrial sludge containing nitro-aromatic compounds passing through constructed small-scale wetlands, and to investigate any toxic effect such as growth inhibition of the common reed Phragmites australis. The result showed high reduction of all tested parameters in all the outgoing water samples, which shows that constructed wetlands are suitable for carbon and nutrient removal. The results also showed that P. australis is tolerant to xenobiotics and did not appear to be affected by the toxic compounds in the sludge. The sludge residual on the top of the beds contained low levels of organic carbon and is considered non-organic and could therefore be landfilled. Using this type of secondary treatment method, the amount of sludge could be reduced by 50-70%, mainly by dewatering and biodegradation of organic compounds.

Gustavsson, L., E-mail: Lillemor.Gustavsson@karlskogaenergi.se [Karlskoga Environment and Energy Company, Karlskoga (Sweden); Engwall, M. [Karlskoga Environment and Energy Company, Karlskoga (Sweden); School of Science and Technology, MTM - Man-Technology-Environment, Oerebro University, 701 82 Oerebro (Sweden)

2012-01-15T23:59:59.000Z

368

Bacterial Colonization of Pellet Softening Reactors Used during Drinking Water Treatment  

Science Journals Connector (OSTI)

...reactor biomass concentrations as high as 220 mg of ATP/m3 of reactor...were removed as a reusable product. High calcium and magnesium concentrations...such as scale deposits in water boilers, a higher demand for detergents in washing...

Frederik Hammes; Nico Boon; Marius Vital; Petra Ross; Aleksandra Magic-Knezev; Marco Dignum

2010-12-10T23:59:59.000Z

369

Bacterial Colonization of Pellet Softening Reactors Used during Drinking Water Treatment  

Science Journals Connector (OSTI)

...mM) was mixed with the SYBR Green I working solution at a ratio...fixed wavelength of 488 nm. Green fluorescence was collected at...The trigger was set on the green fluorescence channel, and data...obtained by mixing 50 bottled mineral water and 50 nonchlorinated...

Frederik Hammes; Nico Boon; Marius Vital; Petra Ross; Aleksandra Magic-Knezev; Marco Dignum

2010-12-10T23:59:59.000Z

370

Characterization of forest crops with a range of nutrient and water treatments using AISA Hyperspectral Imagery.  

SciTech Connect

This research examined the utility of Airborne Imaging Spectrometer for Applications (AISA) hyperspectral imagery for estimating the biomass of three forest crops---sycamore, sweetgum and loblolly pine--planted in experimental plots with a range of fertilization and irrigation treatments on the Savannah River Site near Aiken, South Carolina.

Gong, Binglei; Im, Jungho; Jensen, John, R.; Coleman, Mark; Rhee, Jinyoung; Nelson, Eric

2012-07-01T23:59:59.000Z

371

Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 7, 2011 June 7, 2011 Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility RICHLAND, Wash. - Construction of the largest ground- water treatment facility at the Hanford Site - a major American Recovery and Reinvestment Act project - is on schedule and more than 70 percent complete. Recovery Act workers with DOE contractor CH2M HILL Plateau Remediation Company are on pace to finish con- struction of the 200 West Groundwater Treatment Facil- ity this year. Funding for the project comes from the $1.6 billion the Richland Operations Office received from the Recovery Act. The 52,000-square-foot facility will pump contaminated water from the ground, remove contaminants with a combination of treatment technologies, and return clean water to the aquifer. The system will have the capacity to

372

Proceedings ASCE EWRI World Water and Environmental Resources Congress 2005 May 15-19, 2005 Modeling and evaluating temperature dynamics in wastewater treatment plants  

E-Print Network (OSTI)

Modeling and evaluating temperature dynamics in wastewater treatment plants Scott A. Wells1 , Dmitriy into receiving waters, there is much interest in providing a model of temperature dynamics in wastewater using detailed temperature data from a Washington County, Oregon, USA wastewater treatment facility

Wells, Scott A.

373

Activated charcoal filters: Water treatment, pollution control, and industrial applications. (Latest citations from the Patent Bibliographic database with exemplary claims. ) Published Search  

SciTech Connect

The bibliography contains citations of selected patents concerning activated charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic materials and contaminants are described. Applications include drinking water purification, filtering beverages, production of polymer materials, solvent and metal recovery, waste conversion, automotive fuel and exhaust systems, swimming pool filtration, tobacco smoke filters, kitchen ventilators, medical filtration treatment, and odor absorbing materials. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-08-01T23:59:59.000Z

374

Technology Evaluation for the Big Spring Water Treatment System at the Y-12 National Security Complex, Oak Ridge, Tennessee  

SciTech Connect

The Y-12 National Security Complex (Y-12 Complex) is an active manufacturing and developmental engineering facility that is located on the U.S. Department of Energy (DOE) Oak Ridge Reservation. Building 9201-2 was one of the first process buildings constructed at the Y-12 Complex. Construction involved relocating and straightening of the Upper East Fork Poplar Creek (UEFPC) channel, adding large quantities of fill material to level areas along the creek, and pumping of concrete into sinkholes and solution cavities present within the limestone bedrock. Flow from a large natural spring designated as ''Big Spring'' on the original 1943 Stone & Webster Building 9201-2 Field Sketch FS6003 was captured and directed to UEFPC through a drainpipe designated Outfall 51. The building was used from 1953 to 1955 for pilot plant operations for an industrial process that involved the use of large quantities of elemental mercury. Past operations at the Y-12 Complex led to the release of mercury to the environment. Significant environmental media at the site were contaminated by accidental releases of mercury from the building process facilities piping and sumps associated with Y-12 Complex mercury handling facilities. Releases to the soil surrounding the buildings have resulted in significant levels of mercury in these areas of contamination, which is ultimately transported to UEFPC, its streambed, and off-site. Bechtel Jacobs Company LLC (BJC) is the DOE-Oak Ridge Operations prime contractor responsible for conducting environmental restoration activities at the Y-12 Complex. In order to mitigate the mercury being released to UEFPC, the Big Spring Water Treatment System will be designed and constructed as a Comprehensive Environmental Response, Compensation, and Liability Act action. This facility will treat the combined flow from Big Spring feeding Outfall 51 and the inflow now being processed at the East End Mercury Treatment System (EEMTS). Both discharge to UEFPC adjacent to Bldg. 9201-2. The EEMTS treats mercury-contaminated groundwater that collects in sumps in the basement of Bldg. 9201-2. A pre-design study was performed to investigate the applicability of various treatment technologies for reducing mercury discharges at Outfall 51 in support of the design of the Big Spring Water Treatment System. This document evaluates the results of the pre-design study for selection of the mercury removal technology for the treatment system.

Becthel Jacobs Company LLC

2002-11-01T23:59:59.000Z

375

Physicochemical Properties Related to Long-Term Phosphorus Retention by Drinking-Water Treatment Residuals  

Science Journals Connector (OSTI)

It is necessary to determine the true long-term P sorption capacities of WTRs, if used to reduce soluble P in systems very high in P, such as in animal waste lagoons. ... Second-order rate coefficients for Fe-based WTRs were generally smaller than those of Al-based WTRs, consistent with there being less P sorption for the second biphasic (longer term) sorption stage. ... Typical air-dried Fe- and Al-based WTR show minimal bacterial activity (long-term storage, and chlorine addition during the drinking-water purification process (5). ...

Konstantinos C. Makris; Willie G. Harris; George A. O'Connor; Thomas A. Obreza; Herschel A. Elliott

2005-05-04T23:59:59.000Z

376

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques (Redirected from Ground Electromagnetic Methods) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

377

Advancement of chitosan-based adsorbents for enhanced and selective adsorption performance in water/wastewater treatment: review  

Science Journals Connector (OSTI)

This paper gives an overview of the results obtained by various researchers in the treatment of various suspensions and solutions by using Chitosan as an adsorbent. Chitosan, a partially deacetylated polymer obtained from the alkaline deacetylation of chitin, extracted from shellfish has been reviewed for its application in water and wastewater. Chitosan exhibits a variety of physicochemical and biological properties resulting in numerous applications in various fields. The review provides a summary of recent information obtained using batch studies, deals with the various adsorption mechanisms involved also summarises the equilibrium and kinetic modelling. It is attempted to identify the gaps in the use of Chitosan as an adsorbent and to indicate future directions useful for research.

Madhukar V. Jadhav; Yogesh S. Mahajan

2011-01-01T23:59:59.000Z

378

Nitrate removal from drinking water -- Review  

SciTech Connect

Nitrate concentrations in surface water and especially in ground water have increased in Canada, the US, Europe, and other areas of the world. This trend has raised concern because nitrates cause methemoglobiinemia in infants. Several treatment processes including ion exchange, biological denitrification, chemical denitrification, reverse osmosis, electrodialysis, and catalytic denitrification can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that ion exchange and biological denitrification are more acceptable for nitrate removal than reverse osmosis. Ion exchange is more viable for ground water while biological denitrification is the preferred alternative for surface water. This paper reviews the developments in the field of nitrate removal processes.

Kapoor, A.; Viraraghavan, T. [Univ. of Regina, Saskatchewan (Canada)

1997-04-01T23:59:59.000Z

379

Uranium-Loaded Water Treatment Resins: 'Equivalent Feed' at NRC and Agreement State-Licensed Uranium Recovery Facilities - 12094  

SciTech Connect

Community Water Systems (CWSs) are required to remove uranium from drinking water to meet EPA standards. Similarly, mining operations are required to remove uranium from their dewatering discharges to meet permitted surface water discharge limits. Ion exchange (IX) is the primary treatment strategy used by these operations, which loads uranium onto resin beads. Presently, uranium-loaded resin from CWSs and mining operations can be disposed as a waste product or processed by NRC- or Agreement State-licensed uranium recovery facilities if that licensed facility has applied for and received permission to process 'alternate feed'. The disposal of uranium-loaded resin is costly and the cost to amend a uranium recovery license to accept alternate feed can be a strong disincentive to commercial uranium recovery facilities. In response to this issue, the NRC issued a Regulatory Issue Summary (RIS) to clarify the agency's policy that uranium-loaded resin from CWSs and mining operations can be processed by NRC- or Agreement State-licensed uranium recovery facilities without the need for an alternate feed license amendment when these resins are essentially the same, chemically and physically, to resins that licensed uranium recovery facilities currently use (i.e., equivalent feed). NRC staff is clarifying its current alternate feed policy to declare IX resins as equivalent feed. This clarification is necessary to alleviate a regulatory and financial burden on facilities that filter uranium using IX resin, such as CWSs and mine dewatering operations. Disposing of those resins in a licensed facility could be 40 to 50 percent of the total operations and maintenance (O and M) cost for a CWS. Allowing uranium recovery facilities to treat these resins without requiring a license amendment lowers O and M costs and captures a valuable natural resource. (authors)

Camper, Larry W.; Michalak, Paul; Cohen, Stephen; Carter, Ted [Nuclear Regulatory Commission (United States)

2012-07-01T23:59:59.000Z

380

Activated-charcoal filters: water treatment, pollution control, and industrial applications. January 1970-July 1988 (citations from the US Patent data base). Report for January 1970-July 1988  

SciTech Connect

This bibliography contains citations of selected patents concerning activated-charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic gases and pollutants are described. Applications include drinking water purification, filtering beverages, production of polymer materials, solvent and metal recovery, swimming pool filtration, waste conversion, automobile fuel and exhaust systems, and footwear deodorizing. (Contains 129 citations fully indexed and including a title list.)

Not Available

1988-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation  

SciTech Connect

Purpose: A novel technique for optical dosimetry of dynamic intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 (TG-119) C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank doped with the fluorophore quinine sulfate. The ICCD acquisition was gated to the Linac target trigger pulse to reduce background light artifacts, read out for a single radiation pulse, and binned to a resolution of 512 × 512 pixels. The resulting videos were analyzed temporally for various regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR), and summed to obtain an overall light intensity distribution, which was compared to the expected dose distribution from the TPS using a gamma-index analysis. Results: The chosen camera settings resulted in 23.5 frames per second dosimetry videos. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.9% and 96.2% agreement between the experimentally captured Cherenkov light distribution and expected TPS dose distribution based upon a 3%/3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans, respectively. Conclusions: The results from this initial study demonstrate the first documented use of Cherenkov radiation for video-rate optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications.

Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Davis, Scott C. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States)] [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)] [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu [Department of Physics and Astronomy and Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Fox, Colleen J.; Gladstone, David J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)] [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

2014-06-15T23:59:59.000Z

382

Ground Vibration Measurement  

Science Journals Connector (OSTI)

Measurement of ground vibration is important for checking of amplitudes of ... confirmation of efficiency of control measures of ground vibration. The properties of measuring instruments used can affect the resul...

Dr. Milutin Srbulov

2010-01-01T23:59:59.000Z

383

A novel, integrated treatment system for coal waste waters. Quarterly report, September 2, 1993--December 1, 1993  

SciTech Connect

The aims of this study are to develop, characterize and optimize a novel treatment scheme that would be effective simultaneously against the toxic organics and the heavy metals present in coal conversion waste waters. In this report, the following findings have been reported and discussed. Adsorption of {beta}-naphthoic acid (NA) onto hectorite-CBDA containing different amounts of adsorbed CBDA is pH dependent, stronger at pH 4.5 and much weaker at pH 8.6. Partitioning into the hydrophobic patches of hectorite-CBDA and binding as counter ion to CBDA bilayers appear to be the dominant mechanisms of adsorption of NA to hectorite-CBDA. Anionic CR(VI) adsorbs very weakly to MONT-DT at pH 8.5 and this result verifies our earlier finding that the positive surface charge on MONT-DT decreases with increasing pH above pH 7.0. Potentiometric titrations of DT in water-isopropyl alcohol (EPA) binary solutions containing different volume fractions of IPA reveal that the pKa of DT is 7.6 {+-} 0.1 independent of EPA volume fraction. It is also shown that DT forms emulsions at pH lower than 4.0 and these emulsions tend to break up as pH is raised above 6.5. The formation of DT emulsions is reversible with respect to pH, but the process appears to be slow with a time constant of about 30 minutes.

Wang, H.Y.; Srinivasan, K.R.

1993-12-31T23:59:59.000Z

384

Effective water treatment for rural communities in Suriname : a comparison of point-of-use ceramic filters and centralized treatment with sand filters.  

E-Print Network (OSTI)

?? For countless communities around the world, acquiring access to safe drinking water is a daily challenge which many organizations endeavor to meet. The villages… (more)

Vincent, Ashlee K.

2012-01-01T23:59:59.000Z

385

A novel, integrated treatment system for coal waste waters. Quarterly report, March 2, 1994--June 1, 1994  

SciTech Connect

The aims of this study are to develop, characterize and optimize a novel treatment scheme that would be effective simultaneously against the toxic organics and the heavy metals present in coal conversion waste waters. A specific goal of the study is to remove and recover cationic and anionic heavy metals from aqueous solutions and coal conversion waste waters using modified-clay adsorbents developed in this study. To this end, a multi-step adsorption/desorption process has been carried out with hectorite-CBDA-DT (HCDT) as the adsorbent and Cr(VI) as the adsorbate. Adsorption was carried out at pH 4.0 in 0.02 M buffer, while desorption was effected at the same pH and in the same buffer with either 0.5 M NaCl or 0.02 M Na{sub 2}SO{sub 4} as the desorbates. Multi-step involves cycling the same adsorbent through these two sets of operating conditions with a washing step after each adsorption/desorption sequence. The authors results indicate that, during the first two cycles, the potency of the adsorbent remains unchanged, but it diminishes after the third and the fourth cycles. The total decrease in potency is, however, only 15% even after 4 cycles of adsorption/desorption. Addition of 20% isopropyl alcohol (IPA) to the reaction medium, however, diminishes the potency even more after 4 cycles of adsorption and desorption. Both the desorbates yielded identical results, and the overall mass balance on Cr(VI) was between 95 and 102%. Continuous leaching experiments on HCDT revealed that DT bound to HCDT is mobilized to the extent of only 10% after 44 hrs in aqueous medium while in 20% IPA-water mixtures the extent of dissolution of DT from the surface is close to 16%. Thus, the loss of potency of HCDT is attributed partly to the loss of DT from the surface and partly to the incomplete washing of the adsorbent between each adsorption/desorption step.

Wang, H.Y. [Univ. of Michigan, Ann Arbor, MI (United States); Wang, H.Y.; Srinivasan, K.R.

1994-09-01T23:59:59.000Z

386

Point-of-use water treatment and diarrhoea reduction in the emergency context: an effectiveness trial in Liberia  

E-Print Network (OSTI)

water storage have been shown to reduce diarrhoea in populations with poor hygiene and sanitation the provision of adequate water and sanitation can be fraught with challenges. Diarrhoea is widely considered of adequate sanitation and water supply, including both water quantity and quality, and hygiene education

Scharfstein, Daniel

387

Wastewater and Wastewater Treatment Systems (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

The Oklahoma Department of Environmental Quality administers regulations for waste water and waste water treatment systems. Construction of a municipal treatment work, non-industrial waste water...

388

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

389

Comparing removal of trace organic compounds and assimilable organic carbon (AOC) at advanced and traditional water treatment plants  

Science Journals Connector (OSTI)

Stability of drinking water can be indicated by the assimilable organic carbon (AOC). This AOC value represents the regrowth capacity of microorganisms...254, and AOC) from water, experimental results indicate th...

Jie-Chung Lou; Chung-Yi Lin; Jia-Yun Han…

2012-06-01T23:59:59.000Z

390

The study of potable water treatment process in Algeria (boudouaou station) -by the application of life cycle assessment (LCA)  

Science Journals Connector (OSTI)

In LCA studies, contributions by individuals to the environmental ... to double the volume of water used in agriculture to eradicate malnutrition in 2025 [23]. The fact remains that "the right to water is a palpa...

Messaoud-Boureghda Mohamed-Zine…

2013-12-01T23:59:59.000Z

391

Water treatment by reverse osmosis. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search  

SciTech Connect

The bibliography contains citations of selected patents concerning water purification systems and components using reverse osmosis technology. Patents include purification systems and devices for seawater, waste water, and drinking water. Topics also include complete purification systems, valves and distribution components, membranes, supports, storage units, and monitors. Water purification systems using activated charcoal are referenced in a related bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-01-01T23:59:59.000Z

392

Water treatment by reverse osmosis. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search  

SciTech Connect

The bibliography contains citations of selected patents concerning water purification systems and components using reverse osmosis technology. Patents include purification systems and devices for seawater, waste water, and drinking water. Topics also include complete purification systems, valves and distribution components, membranes, supports, storage units, and monitors. Water purification systems using activated charcoal are referenced in a related bibliography. (Contains a minimum of 146 citations and includes a subject term index and title list.)

Not Available

1994-02-01T23:59:59.000Z

393

A novel, integrated treatment system for coal waste waters. Quarterly report, June 2, 1993--September 1, 1993  

SciTech Connect

The aims of this study are to develop, characterize and optimize a novel treatment scheme that would be effective simultaneously against the toxic organics and the heavy metals present in coal conversion waste waters. In this report, the following findings have been reported and discussed. Acid-base titration of Duomeen-T (DT), a diamine surfactant, that has been used in this study to modify smectite surfaces to form smectite-DT complexes has been undertaken. In aqueous medium containing 5% by volume iso propyl alcohol (IPA), DT shows a broad distribution of pKa with a mean value of 7.55. This finding suggests that DT is a much weaker base than a typical diamine and helps explain the fact that Cu(II) adsorbs specifically onto DT with maximal affinity in the pH range 7.2--7.5. Electrokinetic sonic amplitude (ESA) measurements on DT-smectite complexes also reveal that the mean pKa of the adsorbed DT is around 7.0. This finding supports our earlier observations that Cu(II) and Cd(II) cations bind strongly through specific interaction to DT-smectite surface in the pH range 7.0--8.0. Our results also show that DT is fully protonated at pH 4.5, and it is at this pH that Cr(VI) is maximally adsorbed as counterions to the DT-smectite surface. These and our earlier results provide a firm basis to conclude that a heterogeneous mixture of diamine surfactants can be used to adsorb and desorb cationic and anionic heavy metals from their respective aqueous solutions as a function of the solution pH.

Wang, H.Y.; Srinivasan, K.R.

1993-12-31T23:59:59.000Z

394

Land treatment for seafood processing waste  

SciTech Connect

The purpose of this paper is twofold. The first is to describe selected waste water parameters at two small seafood processing plants in the eastern part of North Carolina. The second is to describe the land treatment system serving these industries and to characterize the quality of the shallow ground water exiting these systems. One of the seafood processing plants is a flounder fileting operation and the other processes crabs. Both plants employ between 10 and 40 individuals, and the processing operation is done mostly by hand.

Rubin, A.R.; McClease, J.D.; Morgan, C.B.

1983-12-01T23:59:59.000Z

395

Joint full-waveform analysis of off-ground zero-offset ground penetrating radar and electromagnetic induction synthetic data for estimating soil electrical properties  

Science Journals Connector (OSTI)

......produces much of our water resources, supports...processes that govern water resources and quality...sustainability, exploitation and remediation strategies. Amongst...geophysical techniques, ground penetrating radar (GPR...dielectric permittivity of water overwhelms the permittivity......

D. Moghadas; F. André; E. C. Slob; H. Vereecken; S. Lambot

2010-09-01T23:59:59.000Z

396

Substation grounding optimization.  

E-Print Network (OSTI)

??Substation grounding is a critical part of the overall electric power system. It is designed to not only provide a path to dissipate electric currents… (more)

Balev, Vadim

2014-01-01T23:59:59.000Z

397

Substation grounding programs  

SciTech Connect

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 3, is a users manual and an installation and validation manual for the computer program SGSYS (Substation Grounding SYStem Analysis Program). This program analyzes the substation ground field given the total electric current injected into the ground field and the design of the grounding system. Standard outputs of the program are (1) total ground resistance, (2) step voltage, (3) touch voltage, (4) voltages on a grid of points, (5) voltage profile along straight lines, (6) transfer voltages, (7) ground potential rise, (8) body currents, (9) step voltage profile along straight lines, and (10) touch voltage profile along straight lines. This program can be utilized in an interactive or batch mode. In the interactive mode, the user defines the grounding system geometry, soil parameters, and output requests interactively, with the use of a user friendly conversational program. The users manual describes data requirements and data preparation procedures. An appendix provides forms which facilitate data collection procedures. The installation and validation manual describes the computer files which make up the program SGSYS and provides a test case for validation purposes.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

398

Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation  

SciTech Connect

The main goal of this research was to investigate the feasibility of using a combined physicochemical/biological treatment system to remove the organic constituents present in saline produced water. In order to meet this objective, a physical/chemical adsorption process was developed and two separate biological treatment techniques were investigated. Two previous research projects focused on the development of the surfactant modified zeolite adsorption process (DE-AC26-99BC15221) and development of a vapor phase biofilter (VPB) to treat the regeneration off-gas from the surfactant modified zeolite (SMZ) adsorption system (DE-FC26-02NT15461). In this research, the SMZ/VPB was modified to more effectively attenuate peak loads and to maintain stable biodegradation of the BTEX constituents from the produced water. Specifically, a load equalization system was incorporated into the regeneration flow stream. In addition, a membrane bioreactor (MBR) system was tested for its ability to simultaneously remove the aromatic hydrocarbon and carboxylate components from produced water. The specific objectives related to these efforts included the following: (1) Optimize the performance VPBs treating the transient loading expected during SMZ regeneration: (a) Evaluate the impact of biofilter operating parameters on process performance under stable operating conditions. (b) Investigate how transient loads affect biofilter performance, and identify an appropriate technology to improve biological treatment performance during the transient regeneration period of an SMZ adsorption system. (c) Examine the merits of a load equalization technology to attenuate peak VOC loads prior to a VPB system. (d) Evaluate the capability of an SMZ/VPB to remove BTEX from produced water in a field trial. (2) Investigate the feasibility of MBR treatment of produced water: (a) Evaluate the biodegradation of carboxylates and BTEX constituents from synthetic produced water in a laboratory-scale MBR. (b) Evaluate the capability of an SMZ/MBR system to remove carboxylates and BTEX from produced water in a field trial. Laboratory experiments were conducted to provide a better understanding of each component of the SMZ/VPB and SMZ/MBR process. Laboratory VPB studies were designed to address the issue of influent variability and periodic operation (see DE-FC26-02NT15461). These experiments examined multiple influent loading cycles and variable concentration loadings that simulate air sparging as the regeneration option for the SMZ system. Two pilot studies were conducted at a produced water processing facility near Farmington, New Mexico. The first field test evaluated SMZ adsorption, SMZ regeneration, VPB buffering, and VPB performance, and the second test focused on MBR and SMZ/MBR operation. The design of the field studies were based on the results from the previous field tests and laboratory studies. Both of the biological treatment systems were capable of removing the BTEX constituents in the laboratory and in the field over a range of operating conditions. For the VPB, separation of the BTEX constituents from the saline aqueous phase yielded high removal efficiencies. However, carboxylates remained in the aqueous phase and were not removed in the combined VPB/SMZ system. In contrast, the MBR was capable of directly treating the saline produced water and simultaneously removing the BTEX and carboxylate constituents. The major limitation of the MBR system is the potential for membrane fouling, particularly when the system is treating produced water under field conditions. The combined process was able to effectively pretreat water for reverse osmosis treatment and subsequent downstream reuse options including utilization in power generation facilities. The specific conclusions that can be drawn from this study are summarized.

Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare

2007-12-31T23:59:59.000Z

399

Course Information and Syllabus Water Policy  

E-Print Network (OSTI)

Desalination November 10 Water Quality, Wastewater Treatment, and Water Recycling November 15 Economics

California at Santa Barbara, University of

400

New and Underutilized Technology: Commercial Ground Source Heat Pumps |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Ground Source Heat Commercial Ground Source Heat Pumps New and Underutilized Technology: Commercial Ground Source Heat Pumps October 8, 2013 - 2:59pm Addthis The following information outlines key deployment considerations for commercial ground source heat pumps within the Federal sector. Benefits Commercial ground source heat pumps are ground source heat pump with loops that feed multiple packaged heat pumps and a single ground source water loop. Unit capacity is typically 1-10 tons and may be utilized in an array of multiple units to serve a large load. Application Condensing boilers are appropriate for housing, service, office, and research and development applications. Key Factors for Deployment FEMP has made great progress with commercial ground source heat pump technology deployment within the Federal sector. Primary barriers deal with

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fiscal Year 1990 program report: New Hampshire Water Resources Research Center  

SciTech Connect

The report covers the activities of the New Hampshire Water Resource Research Center for the period July 1, 1990 through June 30, 1991. The projects include: effects of the forest land application of municipal wastewater treatment plant sludge, the analysis of how contaminants attach to lake sediments, oil spill response plans on the Piscataqua River, literature review of motor boat and personal water craft on environmental quality, performance evaluation of point-of-entry treatment units for gasoline-contaminated ground waters and automation of a portable pressure filtration system for community water supplies.

Ballestero, T.P.

1991-08-01T23:59:59.000Z

402

Substation grounding programs  

SciTech Connect

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. It can be used to compute transient ground potential rise due to lightning or switching, and the ground impedance (i.e. resistance and reactance) at specified frequencies. This report, Volume 4, is a users manual and an installation and validation manual for the computer program TGRND (Transient GRouNDing System Analysis Program). This program computes transient ground potential rise resulting from lightning, switching, or other transient electric currents injected to a grounding system. The program also computes the impedance (i.e. resistance and reactance) of a grounding system as a function of frequency. This program can be utilized in an interactive or batch mode. The users manual describes data requirements and data preparation procedures. The installation and validation manual describes the computer files which make up the program TGRND and provides a test case for validation purposes.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

403

Strategies for Compliance with Stage 2 Disinfectants and Disinfection Byproducts Rule for Surface Water Treatment Facilities in Northeastern Oklahoma.  

E-Print Network (OSTI)

??The Environmental Protection Agency (EPA) recently created new regulations that better protect human health but that also make achieving compliance more difficult for existing water… (more)

Wintle, Brian N.

2012-01-01T23:59:59.000Z

404

Biologically active filtration for treatment of produced water and fracturing flowback wastewater in the O&G industry.  

E-Print Network (OSTI)

??Sustainable development of unconventional oil and gas reserves, particularly tight oil, tight gas, and shale gas, requires prudent management of water resources used during drilling,… (more)

Freedman, Daniel E.

2014-01-01T23:59:59.000Z

405

Remediation of Risks in Natural Gas Storage Produced Waters: The Potential Use of Constructed Wetland Treatment Systems.  

E-Print Network (OSTI)

??Natural gas storage produced waters (NGSPWs) are generated in large volumes, vary in composition, and often contain constituents in concentrations and forms that are toxic… (more)

Johnson, Brenda

2006-01-01T23:59:59.000Z

406

Use of bioassays to assess the water quality of wastewater treatment plants for the occurrence of estrogens and androgens  

E-Print Network (OSTI)

exposed to reconstituted reverse osmosis water (Control) andprocesses included reverse osmosis, filtration/chlorinationbeen treated with reverse osmosis. Our results also suggest

Schlenk, Daniel

2005-01-01T23:59:59.000Z

407

Ground Motion Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

2nd Advanced ICFA Beam Dynamics Workshop 2nd Advanced ICFA Beam Dynamics Workshop on Ground Motion in Future Accelerators November 6 - 9, 2000 SLAC Coordinators: Andrei Seryi & Tor Raubenheimer Proceedings Updated June 26, 2001 Agenda and Presentations Workshop photos Summaries Useful links Poster Goals Introduction to the problems Structure Registration Registered participants Committees Location, Accommodations and Travel Workshop on Ground Motion in Future Accelerators A workshop was held at SLAC that was devoted to ground motion and its effects on future accelerators. Ground motion and vibration can be a limiting effect in synchrotron light sources, hadron circular colliders, and electron/positron linear colliders. Over the last several years, there has been significant progress in the understanding of the ground motion and its effects, however, there are

408

Water Scarcity, Climate Change, and Water Quality: Three Economic Essays  

E-Print Network (OSTI)

essays by implicitly incorporating uncertainty about future climate, water demand from all types of water use, a spatial river flow relationship, interaction between ground and surface water, institutional regulations, and the possibilities of inter-basin...

Cai, Yongxia

2010-07-14T23:59:59.000Z

409

Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling  

SciTech Connect

A methodology is presented to calculate the total combined cost (TCC) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated municipal wastewater (MWW) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0 - 3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondarytreated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant.

Walker, Michael E.; Theregowda, Ranjani B.; Safari, Iman; Abbasian, Javad; Arastoopour, Hamid; Dzombak, David A.; Hsieh, Ming-Kai; Miller, David C.

2013-10-01T23:59:59.000Z

410

Challenges and approach to integrated water resource management  

Science Journals Connector (OSTI)

Water is the natural resource on which human life, food security and the health of ecosystems depend. The requirement for water is increasing rapidly owing to progressive increase in the demand for irrigation, rapid industrialisation, population growth and improving living standards. The existing water resources are diminishing due to (a) unequal distribution of rain leading to drought, (b) excessive exploitation of groundwater sources and (c) deterioration of water quality owing to the discharge of domestic and industrial effluents without adequate treatment. A large number of villages in India and several other parts of the world are known to be suffering from excess salinity, fluoride, iron, arsenic and microbial contaminations of ground water. There are areas that face perennial water shortage. Thus, the sustainable management of water is one of the key challenges that our society is facing today. This paper discusses different challenges and approaches to integrated water resource management.

P.K. Tewari

2011-01-01T23:59:59.000Z

411

Shale gas development impacts on surface water quality in Pennsylvania  

Science Journals Connector (OSTI)

...fractured shale aquifers . Ground Water 50 ( 6 ): 826 – 828...2011) Investigation of Ground Water Contamination near Pavillion...poses a threat to surface waters. Front Ecol Environ...Acid mine drainage remediation options: A review...

Sheila M. Olmstead; Lucija A. Muehlenbachs; Jhih-Shyang Shih; Ziyan Chu; Alan J. Krupnick

2013-01-01T23:59:59.000Z

412

Treatment of methyl t-butyl ether contaminated water using a dense medium plasma reactor, a mechanistic and kinetic investigation  

E-Print Network (OSTI)

, a mechanistic and kinetic investigation Derek C. Johnson1 , Vasgen A. Shamamian2 , John H. Callahan2 , Ferencz S in the future remediation of water. Chemical and physical mechanisms, together with carbon balances, are used

Dandy, David

413

Status of household water treatment and safe storage in 45 countries and a case study in Northern India  

E-Print Network (OSTI)

This thesis examines the present of the status of HWTS technologies across the world, and in one location Lucknow, India. The data for the global status of HWTS was collected by contacting the Water, Sanitation and Hygiene ...

Jain, Mehul

2010-01-01T23:59:59.000Z

414

40 ELR 11106 ENVIRONMENTAL LAW REPORTER 11-2010 Gaining Ground: Wetlands,  

E-Print Network (OSTI)

40 ELR 11106 ENVIRONMENTAL LAW REPORTER 11-2010 Gaining Ground: Wetlands, Hurricanes .5% dis- count rate). Marine waters, wetlands, swamps, agricultural lands, and forests provide natural goods and services . The 1 . David Batker et al ., Gaining Ground: Wetlands, Hurricanes

Vermont, University of

415

Substation grounding programs  

SciTech Connect

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 2, is a users manual and an installation and validation manual for the computer program SMECC (Substation Maximum Earth Current Computation Program). This program analyzes the electric current distribution among grounded structures inside and outside a substation for different fault conditions. The fault conditions are automatically selected by the program, or they may be specified by the user, or both. The fault condition resulting in maximum substation earth current is identified and reported. Data requirements for this program are: ground impedance, transformer data, transmission line data, transmission line grounding impedances, etc. The program provides four types of standard outputs: (1) a report of voltages and current flow in the unfaulted system, (2) a brief report of the maximum ground potential rise (worst fault condition), (3) a summary report of all fault conditions which have been analyzed by the program, and (4) a detailed report of voltages and current flow for a selected set of fault conditions.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

416

Institute of Water Research Annual Technical Report  

E-Print Network (OSTI)

environmental problems presently facing the state of Michigan are surface and ground water quality management on research, and extended education programs on watershed management and surface and ground water protection transfer, urban water systems, water quality, water quality management, watershed management, wetlands

417

Arkansas Water Resources Center Annual Technical Report  

E-Print Network (OSTI)

) in cooperation with the US Geological Survey and the National Institutes for Water Resources has focused wastewater disposal systems, ground water modeling and land use mapping, water resource economics, water

418

Physico-chemical fracturing and cleaning of coal. [Treatment with CO/sub 2/ in water at high pressure  

DOE Patents (OSTI)

This invention relates to a method of producing a crushable coal and reducing the metallic values in coal represented by Si, Al, Ca, Na, K, and Mg, which comprises contacting a coal/water mix in a weight ratio of from about 4:1 to 1:6 in the presence of CO/sub 2/ at pressures of about 100 to 1400 psi and a minimum temperature of about 15/sup 0/C for a period of about one or more hours to produce a treated coal/water mix. In the process the treated coal/water mix has reduced values for Ca and Mg of up to 78% over the starting mix and the advantageous CO/sub 2/ concentration is in the range of about 3 to 30 g/L. Below 5 g/L CO/sub 2/ only small effects are observed and above 30 g/L no further special advantages are achieved. The coal/water ratios in the range 1:2 to 2:1 are particularly desirable and such ratios are compatible with coal water slurry applications.

Sapienza, R.S.; Slegeir, W.A.R.

1983-09-30T23:59:59.000Z

419

Steam plasma jet for treatment of contaminated water with high-concentration 1,4-dioxane organic pollutants  

Science Journals Connector (OSTI)

A steam plasma jet (SPJ) by using both water and 1,4-dioxane aqueous solution (DAS) as working medium was injected into contaminated water to decompose 1,4-dioxane. The optical emission spectroscopy analysis showed that the formation of the excited species CH* and C2* depended on the concentration of 1,4-dioxane. The influences of SPJ gas temperatures for different working mediums were discussed. The 1,4-dioxane decomposition was enhanced when DAS was used as working medium and SPJ was injected into DAS. Synthesis gas (a mixture of H2 and CO) and CO2 were the main products in gaseous effluents.

G. H. Ni; Y. Zhao; Y. D. Meng; X. K. Wang; H. Toyoda

2013-01-01T23:59:59.000Z

420

Artificial Neural Networks Modelling of PID and Model Predictive Controlled Waste Water Treatment Plant Based on the Benchmark Simulation Model No.1  

Science Journals Connector (OSTI)

The paper presents techniques for the design and training of Artificial Neural Networks (ANN) models for the dynamic simulation of the controlled Benchmark Simulation Model no. 1 (BSM1) Waste Water Treatment Plant (WWTP). The developed ANN model of the WWTP and its associated control system is used for the assessment of the plant behaviour in integrated urban waste water system simulations. Both embedded PID (Proportional-Integral-Derivative) control and Model Predictive Control (MPC) structures for the WWTP are investigated. The control of the Dissolved Oxygen (DO) mass concentration in the aerated reactors and nitrate (NO) mass concentration in the anoxic compartments are presented. The ANN based simulators reveal good accuracy for predicting important process variables and an important reduction of the simulation time, compared to the first principle WWTP simulator.

Vasile-Mircea Cristea; Cristian Pop; Paul Serban Agachi

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ground-Based Microwave Radiometer Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

Ground-Based Microwave Radiometer Measurements Ground-Based Microwave Radiometer Measurements and Radiosonde Comparisons During the WVIOP2000 Field Experiment D. Cimini University of L'Aquila L'Aquil, Italy E. R. Westwater Cooperative Institute for Research in the Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Y. Han Science System Applications National Aeronautics Space Administration Goddard Space Flight Center Greenbelt, Maryland S. Keihm Jet Propulsion Laboratory California Institute of Technology Pasadena, California Introduction During September to October 2000, a water vapor intensive operational period (WVIOP) was conducted at the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains (SGP) Cloud and

422

Substation grounding programs  

SciTech Connect

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 5, is an applications guide of the three computer programs. SOMIP, SMECC, and SGSYS, for the purpose of designing a safe substation grounding system. The applications guide utilizes four example substation grounding systems for the purpose of illustrating the application of the programs, SOMIP, SMECC, and SGSYS. The examples are based on data provided by four contributing utilities, namely, Houston Lighting and Power Company, Southern Company Services, Puget Sound Power and Light Company, and Arizona Public Service Company. For the purpose of illustrating specific capabilities of the computer programs, the data have been modified. As a result, the final designs of the four systems do not necessarily represent actual grounding system designs by these utilities. The example system 1 is a 138 kV/35 kV distribution substation. The example system 2 is a medium size 230 kV/115 kV transmission substation. The third example system is a generation substation while the last is a large 525 kV/345 kV/230 kV transmission substation. The four examples cover most of the practical problems that a user may encounter in the design of substation grounding systems.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

423

Decision Document for the Storm Water Outfalls/Industrial Wastewater Treatment Plant, Pesticide Rinse Area, Old Fire Fighting Training Pit, Illicit PCB Dump Site, and the Battery Acid Pit Fort Lewis, Washington  

SciTech Connect

PNNL conducted independent site evaluations for four sites at Fort Lewis, Washington, to determine their suitability for closure on behalf of the installation. These sites were recommended for "No Further Action" by previous invesitgators and included the Storm Water Outfalls/Industrial Waste Water Treatment Plant (IWTP), the Pesticide Rinse Area, the Old Fire Fighting Training Pit, and the Illicit PCB Dump Site.

Cantrell, Kirk J.; Liikala, Terry L.; Strenge, Dennis L.; Taira, Randal Y.

2000-12-11T23:59:59.000Z

424

Lab 10: Contaminated water and remediation Water on and in the Earth  

E-Print Network (OSTI)

Lab 10: Contaminated water and remediation Water on and in the Earth Where is Earth's water located that the vast majority of the fresh water available for our uses is stored in the ground (the large grey slice in ice and glaciers. Another 30 percent of freshwater is in the ground. Thus, surface-water sources (such

Li, X. Rong

425

Ground Gravity Survey | Open Energy Information  

Open Energy Info (EERE)

Ground Gravity Survey Ground Gravity Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Gravity Survey Details Activities (48) Areas (34) Regions (2) NEPA(2) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Gravity Techniques Information Provided by Technique Lithology: Distribution of density in the subsurface enables inference of rock type. Stratigraphic/Structural: Delineation of steeply dipping formations, geological discontinuities and faults, intrusions and large-scale deposition of silicates due to hydrothermal activity. Hydrological: Density of sedimentary rocks are strongly influenced by fluid contained within pore space. Dry bulk density refers to the rock with no moisture, while the wet bulk density accounts for water saturation; fluid content may alter density by up to 30%.(Sharma, 1997)

426

GRR/Section 19-CO-e - New Water Right Process for Surface Water and  

Open Energy Info (EERE)

19-CO-e - New Water Right Process for Surface Water and 19-CO-e - New Water Right Process for Surface Water and Tributary Ground Water < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-e - New Water Right Process for Surface Water and Tributary Ground Water 19COENewWaterRightProcessForSurfaceWaterAndTributaryGroundWater.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 19COENewWaterRightProcessForSurfaceWaterAndTributaryGroundWater.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Developers seeking a new water right to appropriate surface water and

427

Substation grounding programs  

SciTech Connect

The five volume report comprises the user manual, installation, and validation manual and an applications guide for the SGA (Substation Grounding Analysis) software package. SGA consists of four computer programs: (1) SOMIP, (2) SMECC, (3) SGSYS, and (4) TGRND. The first three programs provide a comprehensive analysis tool for the design of substation grounding systems to meet safety standards. The fourth program, TGRND, provides a state of the art analysis tool for computing transient ground potential rise and ground system impedance. This part of the report, Volume 1, is a users manual and an installation and validation manual for the computer program SOMIP (SOil Measurement Interpretation Program). This program computes the best estimate of the parameters of a two layer soil model from usual soil resistivity measurements. Four pin or three pin soil measurements can be accommodated. In addition, it provides error bounds on the soil parameters for a given confidence level. The users manual describes data requirements and data preparation procedures. The installation and validation manual describes the computer files which make up the program SOMIP and provides two test cases for validation purposes. 4 refs.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). School of Electrical Engineering)

1992-05-01T23:59:59.000Z

428

Solar Colletors Combined with Ground-Source Heat Pumps in Dwellings - Analyses of System Performance.  

E-Print Network (OSTI)

??The use of ground-source heat pumps for heating buildings and domestic hot water in dwellings is increasing rapidly in Sweden. The heat pump extracts heat… (more)

Kjellsson, Elisabeth

2009-01-01T23:59:59.000Z

429

Literature research and review of groundwater quality and treatment systems for basin F Rocky Mountain Arsenal. Final engineering report  

SciTech Connect

The purposes of this report are to review applicable literature and previous RMA studies and recommend a ground water treatment system for Basin F that can treat organics using activated carbon and/or an alternative and is capable of removing Cl and F. The technologies are compared for ability to meet treatment goals; capital and operating costs; and treatment flexibility. Findings and recommendations include best alternative to GAC for removal of organics is UV-catalyzed ozonation; best method for the removal of Cl and F appears to be electrodialysis followed by vapor compression evaporation; and Basin F interim response ground water treatment system should include lime softening and Mn removal for pretreatment and UV-ozone and GAC for organic.

NONE

1987-06-01T23:59:59.000Z

430

Sources of Water Surface water and groundwater are present throughout  

E-Print Network (OSTI)

Sources of Water Surface water and groundwater are present throughout Kentucky's 39,486 square miles. Surface water occurs as rivers, streams, ponds, lakes, and wetlands. Ground- water occurs underlain by soluble carbonate rocks (for example, limestone). Water Supply � Approximately 49 inches

MacAdam, Keith

431

Evaluation of Selective Ion Exchange Resins for Removal of Mercury from the H-Area Water Treatment Unit  

SciTech Connect

This study investigated the ability of seven ion exchange (IX) resins, some of which were mercury specific, to remove mercury in H-Area WTU waters from three sources (Reverse Osmosis (RO) Feed, RO Permeate from Train A, and a mercury ''hot spot'' extraction well HEX 18). Seven ion exchange resins, including ResinTech CG8 and Dowex 21K (the cation and anion exchange resins currently used at the H-Area WTU) were screened against five alternative ion exchange materials plus an experimental blank. Mercury decontamination factors (DFs), mercury breakthrough, and post-test contaminant concentrations of IX resins were determined for each IX material tested.

Serkiz, S.M.

2000-09-05T23:59:59.000Z

432

Situ treatment of contaminated groundwater  

DOE Patents (OSTI)

A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

McNab, Jr., Walt W. (Concord, CA); Ruiz, Roberto (Tracy, CA); Pico, Tristan M. (Livermore, CA)

2001-01-01T23:59:59.000Z

433

Document Number Q0029500 Ground Water Model 3.0 Ground Water...  

Office of Legacy Management (LM)

Creek. Each boundary is described under the following headings. U.S. Department of Energy st Grand Junction MMTS OU 111 Remedial Investigation AddendundFacirsed Feasibility...

434

State of ISRAEL Water Resources Management  

E-Print Network (OSTI)

Supply System #12;State of ISRAEL Complexity of the water distribution system · Different Sources to the main system: ground water, surface water, desalinated water · Utilization of the different sources. Water wells purification and aquifers water quality improvement. Increasing capacity of waste water

Einat, Aharonov

435

NORDIC WASTE WATER TREATMENT SLUDGE TREATMENT  

E-Print Network (OSTI)

biogas, electricity and fertilizer from 30 000 tons of annually waste. The plant was opened in March 2008 together it an- nually produces 18,9 GWh biogas and around 10 GWh of elec- tricity. The Cambi THP ­process

436

Ground Squirrels and Gophers  

NLE Websites -- All DOE Office Websites (Extended Search)

Squirrels and Gophers Squirrels and Gophers Nature Bulletin No. 224-A April 2, 1966 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation GROUND SQUIRRELS AND GOPHERS On sunny summer days, a dusty-colored animal with yellowish and brown stripes, about the size of a small rat, often may be noticed creeping through the grass of prairies, pastures, golf courses or lawns. Watch him. He pauses every few feet to sit up, look and listen for a moment. Nervous and timid, he crouches low at every distant sound or passing shadow. Startle him and he scurries away, and then may suddenly halt and freeze, bolt upright, as stiff and straight as a stake driven in the ground. If approached, he gives a loud shrill trilling whistle and, with a flip of his tail, pops out of sight. Watch that spot closely and, in less than a minute, a snaky head appears. Be quiet. He has many enemies above ground and he also has a lot of curiosity. Presently he sits up upon his haunches again.

437

Posters Ground-Based Radiometric Observations  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Posters Ground-Based Radiometric Observations of Atmospheric Water for Climate Research J. B. Snider, D. A. Hazen, A. J. Francavilla, W. B. Madsen, and M. D. Jacobson National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Introduction Surface-based microwave and infrared radiometers have been employed by the National Oceanic and Atmospheric Administration's Environmental Technology Laboratory (NOAA/ETL) in climate research since 1987. The ability of these systems to operate continuously and unattended for extended periods of time has provided significant new information on atmospheric water vapor and cloud liquid. These data are being employed to improve our understanding of cloud-radiation feedback mechanisms, an understanding

438

Paper No. RBCSR RESPONSE OF A BURIED CONCRETE PIPELINE TO GROUND  

E-Print Network (OSTI)

Paper No. RBCSR RESPONSE OF A BURIED CONCRETE PIPELINE TO GROUND RUPTURE: A FULL-SCALE EXPERIMENT A typical water distribution system includes a network of steel and concrete pipelines. Concrete segmental pipelines are particularly vulnerable to damage by ground rupture. Ground displacements may produce

Michalowski, Radoslaw L.

439

Arkansas Water Resources Center Annual Technical Report  

E-Print Network (OSTI)

) program in cooperation with the US Geological Survey and the National Institutes for Water Resources has wastewater disposal systems, ground water modeling and land use mapping, erosion and pollution, water quality

440

Assimilable Organic Carbon (AOC) in Drinking Water  

Science Journals Connector (OSTI)

Developments in water treatment The removal in water treatment of microorganisms causing the so-called “water-borne” diseases and the prevention of contamination of drinking water with these orga...

D. van der Kooij

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Identification and treatment of lithium as the primary toxicant in a groundwater treatment facility effluent  

SciTech Connect

{sup 6}Li is used in manufacturing nuclear weapons, shielding, and reactor control rods. Li compounds have been used at DOE facilities and Li-contaminated waste has historically been land disposed. Seep water from burial grounds near Y-12 contain small amounts of chlorinated hydrocarbons, traces of PCBs, and 10-19 mg/L Li. Seep treatment consists of oil-water separation, filtration, air stripping, and carbon adsorption. Routine biomonitoring tests using fathead minnows and {ital Ceriodaphnia}{ital dubia} are conducted. Evaluation of suspected contaminants revealed that toxicity was most likely due to Li. Laboratory tests showed that 1 mg Li/L reduced the survival of both species; 0.5 mg Li/L reduced {ital Ceriodaphnia} reproduction and minnow growth. However, the toxicity was greatly reduced in presence of sodium (up to 4 mg Li/L, Na can fully negate the toxic effect of Li). Because of the low Na level discharged from the treatment facility, Li removal from the ground water was desired. SuperLig{reg_sign} columns were used (Li-selective organic macrocycle bonded to silica gel). Bench-scale tests showed that the material was very effective for removing Li from the effluent, reducing the toxicity.

Kszos, L.A. [Oak Ridge National Lab., TN (United States); Crow, K.R. [Oak Ridge Y-12 Plant, TN (United States)

1996-10-01T23:59:59.000Z

442

The Relationship between Water and Energy: Optimizing Water and Energy  

E-Print Network (OSTI)

understanding that the highest value opportunities for water conservation usually exist where there is the strongest interaction of water and energy. Steam management systems, process cooling, high quality water production and waste water treatment represent...

Finley, T.; Fennessey, K.; Light, R.

2007-01-01T23:59:59.000Z

443

The LOFT Ground Segment  

E-Print Network (OSTI)

LOFT, the Large Observatory For X-ray Timing, was one of the ESA M3 mission candidates that completed their assessment phase at the end of 2013. LOFT is equipped with two instruments, the Large Area Detector (LAD) and the Wide Field Monitor (WFM). The LAD performs pointed observations of several targets per orbit (~90 minutes), providing roughly ~80 GB of proprietary data per day (the proprietary period will be 12 months). The WFM continuously monitors about 1/3 of the sky at a time and provides data for about ~100 sources a day, resulting in a total of ~20 GB of additional telemetry. The LOFT Burst alert System additionally identifies on-board bright impulsive events (e.g., Gamma-ray Bursts, GRBs) and broadcasts the corresponding position and trigger time to the ground using a dedicated system of ~15 VHF receivers. All WFM data are planned to be made public immediately. In this contribution we summarize the planned organization of the LOFT ground segment (GS), as established in the mission Yellow Book 1 . We...

Bozzo, E; Argan, A; Barret, D; Binko, P; Brandt, S; Cavazzuti, E; Courvoisier, T; Herder, J W den; Feroci, M; Ferrigno, C; Giommi, P; Götz, D; Guy, L; Hernanz, M; Zand, J J M in't; Klochkov, D; Kuulkers, E; Motch, C; Lumb, D; Papitto, A; Pittori, C; Rohlfs, R; Santangelo, A; Schmid, C; Schwope, A D; Smith, P J; Webb, N A; Wilms, J; Zane, S

2014-01-01T23:59:59.000Z

444

WATER RESOURCES NEWS NEBRASKA WATER RESOURCES RESEARCH INSTITUTE  

E-Print Network (OSTI)

BUILDING THE UNIVERSITY OF NEBRASKA LINCOLN, NEBRASKA 68503 Volume 5 Number 6 FROM THE DESK OF THE DIRECTOR of Water Use; (2) Nonpoint Source Pollution; (3) Meeting Water Requirements; (4) Energy-Water Relationships; (5) Maintenance of Environmental Quality; and (6) Conjunctive Management of Ground and Surface Water

Nebraska-Lincoln, University of

445

Water Current University of Nebraska Water Center/Environmental Programs  

E-Print Network (OSTI)

, nonpoint source issues, recycling, composting, remediation, hazardous waste and many other waste- and water Ground Water," for the Nebraska Depart- ment of Agriculture. The results of this study will be made avaWater Current University of Nebraska Water Center/Environmental Programs wASTEmanagement problem

Nebraska-Lincoln, University of

446

Fresh Water Increased temperature means higher proportion of water  

E-Print Network (OSTI)

Fresh Water Increased temperature means higher proportion of water falling on surface higher evaporation higher rainfall greater intensity of floods and droughts. Water use has grown four on How much storage compared to average flow Demand as percentage of supply How much ground water is used

Houston, Paul L.

447

Surface Water Development in Texas.  

E-Print Network (OSTI)

an annual yield of ground water for all Texas river basins of 4.3 million acre-feet per year. By comparison, the Board shows annual use of ground water for irrigation alone to exceed 10.0 million acre-feet per year. Other uses increase the annual defi... purposes, with small allocations used almost entirely for petroleum production. Water for fu- ture mining needs will largely be met by local surface and ground water resources. A small amount of power is produced by hydro- electric plants in Texas...

McNeely, John G.; Lacewell, Ronald D.

1977-01-01T23:59:59.000Z

448

Ground potential rise monitor  

DOE Patents (OSTI)

A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.

Allen, Zachery W. (Mandan, ND); Zevenbergen, Gary A. (Arvada, CO)

2012-04-03T23:59:59.000Z

449

Effect of Drip Irrigation with Saline Water on Water Use Efficiency and Quality of Watermelons  

Science Journals Connector (OSTI)

High ground water salinity, high water table and secondary soil salinization are dominant ... the purposes of eliminating secondary salinity and enhancing water use efficiency, drip irrigation of watermelons with...

Lei Tingwu; Xiao Juan; Li Guangyong; Mao Jianhua…

2003-12-01T23:59:59.000Z

450

Unexploded ordnance issues at Aberdeen Proving Ground: Background information  

SciTech Connect

This document summarizes currently available information about the presence and significance of unexploded ordnance (UXO) in the two main areas of Aberdeen Proving Ground: Aberdeen Area and Edgewood Area. Known UXO in the land ranges of the Aberdeen Area consists entirely of conventional munitions. The Edgewood Area contains, in addition to conventional munitions, a significant quantity of chemical-munition UXO, which is reflected in the presence of chemical agent decomposition products in Edgewood Area ground-water samples. It may be concluded from current information that the UXO at Aberdeen Proving Ground has not adversely affected the environment through release of toxic substances to the public domain, especially not by water pathways, and is not likely to do so in the near future. Nevertheless, modest but periodic monitoring of groundwater and nearby surface waters would be a prudent policy.

Rosenblatt, D.H.

1996-11-01T23:59:59.000Z

451

Water treatment by reverse osmosis. November 1970-October 1989 (Citations from the US Patent data base). Report for November 1970-October 1989  

SciTech Connect

This bibliography contains citations of selected patents concerning water purification systems and components using reverse-osmosis technology. Patents include systems and devices for sea water, waste water, and drinking water purification. Topics include complete purification systems, valves and distribution components, membranes, supports, storage units, and monitors. Water purification systems using activated charcoal are referenced in a related published bibliography. (Contains 103 citations fully indexed and including a title list.)

Not Available

1990-01-01T23:59:59.000Z

452

Conditioning of aggressive water in Suriname:.  

E-Print Network (OSTI)

??In Suriname groundwater is mostly used for drinking water production. Depending on the ground layers from which groundwater is extracted, groundwater is characterized as aggressive… (more)

Salmin, A.

2008-01-01T23:59:59.000Z

453

Drinking Water Problems: MTBE  

E-Print Network (OSTI)

Methyl tertiary-butyl ether, a gasoline additive commonly known as MTBE, can contaminate ground water and cause health problems for those exposed to it for a long time. However, filtering devices can remove this and other additives from well water...

Dozier, Monty; Lesikar, Bruce J.

2008-08-28T23:59:59.000Z

454

On LHCb muon MWPC grounding  

E-Print Network (OSTI)

My goal is to study how a big MWPC system, in particular the LHCb muon system, can be protected against unstable operation and multiple spurious hits, produced by incorrect or imperfect grounding in the severe EM environment of the LHCb experiment. A mechanism of penetration of parasitic current from the ground loop to the input of the front-end amplifier is discussed. A new model of the detector cell as the electrical bridge is considered. As shown, unbalance of the bridge makes detector to be sensitive to the noise in ground loop. Resonances in ground loop are specified. Tests of multiple-point and single-point grounding conceptions made on mock-up are presented.

Kashchuk, A

2006-01-01T23:59:59.000Z

455

Ground-source Heat Pumps Applied to Commercial Buildings  

SciTech Connect

Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

Parker, Steven A.; Hadley, Donald L.

2009-07-14T23:59:59.000Z

456

Ground-Source Heat Pumps Applied to Commercial Buildings  

SciTech Connect

Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

Parker, Steven A.; Hadley, Donald L.

2006-12-31T23:59:59.000Z

457

Regional analysis of ground and above-ground climate  

SciTech Connect

The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

Not Available

1981-12-01T23:59:59.000Z

458

BULKING SLUDGE TREATMENT BY MICROSCOPIC OBSERVATION AND MECHANICAL TREATMENT  

E-Print Network (OSTI)

for the operation of the biological stage of waste water treatment plants. If the threatening extensive growth of wastewater treatment plants often need a complex control for the optimal processing. The measurement status and for the regulation of biological parts in waste water treatment plants. Furthermore, e

459

Effects of different irrigation regimes on yield and water use efficiency of cucumber crop  

Science Journals Connector (OSTI)

Abstract This study was conducted to investigate the effects of four irrigation regimes on yield, growth parameters and water use efficiency of cucumber crop under greenhouse cultivation. A field experiment was carried out at the experimental farm of Palestine Technical University Kadoorie, located at Tulkarm, Palestine. Cucumber seedlings were planted on 14 February 2012 in greenhouse at a rate of 1500 seedlings per 1000 square meters. Four irrigation regimes were examined during the growing period as follows: farmer irrigation (FI), tensiometer based irrigation (TI), irrigation at full \\{ETc\\} data (ETc), and irrigation at 70% of \\{ETc\\} (70% ETc). Plant data were collected during the growing period for evaluating the total yield, plant height, number of harvested fruits per plant, weight of harvested fruits per plant, dry matter of above and under ground parts. The results indicated that the 70% \\{ETc\\} treatment obtained the highest crop yield followed by ETc, FI, and TI treatments, respectively. On average, cucumber yield under 70% \\{ETc\\} treatment was 24%, 6% and 4% higher than that under TI, FI and \\{ETc\\} treatments, respectively. At the end of harvesting stage plant height, above-ground dry matter obtained by 70% \\{ETc\\} treatment was higher than the other treatments. The smallest plant height and dry matter was obtained under TI treatment. Results also indicated that, when using scheduled irrigation methods large amount of water were saved and found to be 139, 104 and 26 mm for TI, 70% \\{ETc\\} and \\{ETc\\} treatments, respectively, compared to FI treatment. The highest water use efficiency (WUE) was obtained under 70% \\{ETc\\} treatment followed by ETc, TI and FI treatments, respectively.

M.H. Rahil; A. Qanadillo

2015-01-01T23:59:59.000Z

460

Institute of Water Research Annual Technical Report  

E-Print Network (OSTI)

environmental problems presently facing the state of Michigan are surface and ground water quality management analysis, technology transfer, urban water systems, water quality, water quality management, watershed management, wetlands Water Problems and Issues Introduction Michigan has a very abundant and diverse supply

Note: This page contains sample records for the topic "ground water treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NLS ground states on graphs  

E-Print Network (OSTI)

We investigate the existence of ground states for the subcritical NLS energy on metric graphs. In particular, we find out a topological assumption that guarantees the nonexistence of ground states, and give an example in which the assumption is not fulfilled and ground states actually exist. In order to obtain the result, we introduce a new rearrangement technique, adapted to the graph where it applies. Owing to such a technique, the energy level of the rearranged function is improved by conveniently mixing the symmetric and monotone rearrangement procedures.

Riccardo Adami; Enrico Serra; Paolo Tilli

2014-06-16T23:59:59.000Z