Sample records for ground water system

  1. Montana Ground Water Pollution Control System Permit Application...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution Control System Permit Application Forms Webpage Abstract Provides a list of permit...

  2. Ground Water Ground Sky Sky Water Vegetation Ground Vegetation Water

    E-Print Network [OSTI]

    Chen, Tsuhan

    Bear Snow Vegetation RhinoWater Vegetation Ground Water Ground Sky Sky Rhino Water Vegetation Ground Vegetation Water Rhino Water Vegetation Ground Rhino Water Rhino Water Ground Ground Vegetation Water Rhino Vegetation Rhino Vegetation Ground Rhino Vegetation Ground Sky Rhino Vegetation Ground Sky

  3. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    SciTech Connect (OSTI)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16T23:59:59.000Z

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  4. Dolomitization by ground-water flow systems in carbonate platforms

    SciTech Connect (OSTI)

    Simms, M.

    1984-09-01T23:59:59.000Z

    Dolomite occurs throughout the subsurface of modern carbonate platforms such as the Bahamas. Groundwater flow systems must be responsible for delivery of reactants needed for dolomitization. Reflux, freshwater lens flows, and thermal convection are large-scale flow systems that may be widespread in active platforms. The author has evaluated some aspects of the dynamics and characteristics of these processes with ground-water flow theory and by scaled sandbox experiments. Reflux is not restricted to hypersaline brines, but can occur with bankwaters of only slightly elevated salinity such as those found on the Bahama Banks today (42%). The lack of evaporites in a stratigraphic section, therefore, does not rule out the possibility that reflux may have operated. Flows associated with freshwater lenses include flow in the lens, in the mixing zone, and in the seawater beneath and offshore of the lens. Upward transfer of seawater through the platform margins occurs when surrounding cold ocean water migrates into the platform and is heated. This type of thermal convection (Kohout convection) has been studied by Francis Kohout in south Florida. The ranges of mass flux of magnesium in these processes are all comparable and are all sufficient to account for young dolomites beneath modern platforms. Each process yields dolomitized zones of characteristic shape and location and perhaps may be distinguishable in ancient rocks. The concepts presented here may have application to exploration for dolomite reservoirs in the Gulf Coast and elsewhere.

  5. Hanford Site ground-water model: Geographic information system linkages and model enhancements, FY 1993

    SciTech Connect (OSTI)

    Wurstner, S.K.; Devary, J.L.

    1993-12-01T23:59:59.000Z

    Models of the unconfined aquifer are important tools that are used to (1) identify and quantify existing, emerging, or potential ground-water quality problems, (2) predict changes in ground-water flow and contaminant transport as waste-water discharge operations change, and (3) assess the potential for contaminants to migrate from the US Department of Energy`s Hanford Site through the ground water. Formerly, most of the numerical models developed at the Hanford Site were two-dimensional. However, contaminant concentrations cannot be accurately predicted with a two-dimensional model, which assumes a constant vertical distribution of contaminants in the aquifer. Development of two- and three-dimensional models of ground-water flow based on the Coupled Fluid, Energy, and Solute Transport (CFEST) code began in the mid- 1980s. The CFEST code was selected because of its ability to simulate both ground-water flow and contaminant transport. Physical processes that can be modeled by CFEST include aquifer geometry, heterogeneity, boundary conditions, and initial conditions. The CFEST ground-water modeling library has been integrated with the commercially available geographic information system (GIS) ARC/INFO. The display and analysis capabilities of a GIS are well suited to the size and diversity of databases being generated at the Hanford Site. The ability to visually inspect large databases through a graphical analysis tool provides a stable foundation for site assessments and ground-water modeling studies. Any ground-water flow model being used by an ongoing project should be continually updated and refined to reflect the most current knowledge of the system. The two-dimensional ground-water flow model being used in support of the Ground-Water Surveillance Project has recently been updated and enhanced. One major enhancement was the extension of the model area to include North Richland.

  6. Ground Water Management Act (Virginia)

    Broader source: Energy.gov [DOE]

    Under the Ground Water Management Act of 1992, Virginia manages ground water through a program regulating the withdrawals in certain areas called Ground Water Management Areas (GWMA). Currently,...

  7. Case Study/ Ground Water Sustainability: Methodology and

    E-Print Network [OSTI]

    Zheng, Chunmiao

    , or the lack thereof, of ground water flow systems driven by similar hydrogeologic and economic conditionsCase Study/ Ground Water Sustainability: Methodology and Application to the North China Plain of a ground water flow system in the North China Plain (NCP) subject to severe overexploitation and rapid

  8. GROUND WATER CONTAMINATION

    SciTech Connect (OSTI)

    Unknown

    1999-09-01T23:59:59.000Z

    As required by the terms of the above referenced grant, the following summary serves as the Final Report for that grant. The grant relates to work performed at two separate sites, the Hoe Creek Underground Coal Gasification Site south of Gillette, Wyoming, and the Rock Springs In-Situ Oil Shale Retort Site near Rock Springs, Wyoming. The primary concern to the State of Wyoming at each site is ground water contamination (the primary contaminants of concern are benzene and related compounds), and the purpose of the grant has been to provide tiding for a Geohydrologist at the appropriate State agency, specifically the Land Quality Division (LQD) of the Wyoming Department of Environmental Quality. The LQD Geohydrologist has been responsible for providing technical and regulatory support to DOE for ground water remediation and subsequent surface reclamation. Substantial progress has been made toward remediation of the sites, and continuation of LQD involvement in the remediation and reclamation efforts is addressed.

  9. Ground water provides drinking water, irrigation for

    E-Print Network [OSTI]

    Saldin, Dilano

    Ground water provides drinking water, irrigation for crops and water for indus- tries. It is also connected to surface waters, and maintains the flow of rivers and streams and the level of wetlands- tion of those along Lake Michigan, most communi- ties, farms and industries still rely on ground water

  10. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

    1997-12-31T23:59:59.000Z

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35{degrees}N., long 115{degrees}W and lat 38{degrees}N., long 118{degrees}W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system.

  11. Simulated effects of climate change on the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D`Agnese, F.A.; O`Brien, G.M.; Faunt, C.C.; San Juan, C.A.

    1999-04-01T23:59:59.000Z

    The US Geological Survey, in cooperation with the US Department of Energy, is evaluating the geologic and hydrologic characteristics of the Death Valley regional flow system as part of the Yucca Mountain Project. As part of the hydrologic investigation, regional, three-dimensional conceptual and numerical ground-water-flow models have been developed to assess the potential effects of past and future climates on the regional flow system. A simulation that is based on climatic conditions 21,000 years ago was evaluated by comparing the simulated results to observation of paleodischarge sites. Following acceptable simulation of a past climate, a possible future ground-water-flow system, with climatic conditions that represent a doubling of atmospheric carbon dioxide, was simulated. The steady-state simulations were based on the present-day, steady-state, regional ground-water-flow model. The finite-difference model consisted of 163 rows, 153 columns, and 3 layers and was simulated using MODFLOWP. Climate changes were implemented in the regional ground-water-flow model by changing the distribution of ground-water recharge. Global-scale, average-annual, simulated precipitation for both past- and future-climate conditions developed elsewhere were resampled to the model-grid resolution. A polynomial function that represents the Maxey-Eakin method for estimating recharge from precipitation was used to develop recharge distributions for simulation.

  12. Ground Water Management Regulations (Louisiana)

    Broader source: Energy.gov [DOE]

    The rules and regulations apply to the management of the state's ground water resources. In addition, the Commissioner of Conservation has recommended that oil and gas operators with an interest...

  13. Development of a three-dimensional ground-water model of the Hanford Site unconfined aquifer system: FY 1995 status report

    SciTech Connect (OSTI)

    Wurstner, S.K.; Thorne, P.D.; Chamness, M.A.; Freshley, M.D.; Williams, M.D.

    1995-12-01T23:59:59.000Z

    A three-dimensional numerical model of ground-water flow was developed for the uppermost unconfined aquifer at the Hanford Site in south-central Washington. Development of the model is supported by the Hanford Site Ground-Water Surveillance Project, managed by the Pacific Northwest National Laboratory, which is responsible for monitoring the sitewide movement of contaminants in ground water beneath the Hanford Site. Two objectives of the Ground-Water Surveillance Project are to (1) identify and quantify existing, emerging, or potential ground-water quality problems, and (2) assess the potential for contaminants to migrate from the Hanford Site through the ground-water pathway. Numerical models of the ground-water flow system are important tools for estimating future aquifer conditions and predicting the movement of contaminants through ground water. The Ground-Water Surveillance Project has supported development and maintenance of a two-dimensional model of the unconfined aquifer. This report describes upgrade of the two-dimensional model to a three-dimensional model. The numerical model is based on a three-dimensional conceptual model that will be continually refined and updated as additional information becomes available. This report presents a description of the three-dimensional conceptual model of ground-water flow in the unconfined aquifer system and then discusses the cur-rent state of the three-dimensional numerical model.

  14. In Situ Chemical Oxidation of Contaminated Ground Water: Permanganate Reactive Barrier Systems for the Long-Term Treatment of Contaminants

    SciTech Connect (OSTI)

    Li, X. David; Schwartz, Frank W.

    2004-03-31T23:59:59.000Z

    Oxidation of chlorinated solvents by permanganate has proven to be effective in destroying these compounds in the aqueous phase. A semi-passive, well-based permanganate reactive barrier system (PRBS) was designed in order for the long-term treatment of dissolved contaminant in the ground water. Results from laboratory experiments indicate the PRBS could deliver permanganate at a stable, constant and controllable rate. In this paper, different field designs of the PRBS are discussed. Numerical simulation was conducted to elucidate the parameters that will influence the field implementation of a PRBS. We investigated issues such as permanganate consumption by aquifer materials, variable density flow effect, as well as lateral spreading under different geological settings. Results from this study continue to point to the promise of an in situ chemical oxidation scheme. PRBS provides a potential treatment of the contaminated ground water at relatively low management cost as compared with other alternatives.

  15. Montana Ground Water Assessment Act (Montana)

    Broader source: Energy.gov [DOE]

    This statute establishes a program to systematically assess and monitor the state's ground water and to disseminate the information to interested persons in order to improve the quality of ground...

  16. Natural restoration of ground water in UCG

    SciTech Connect (OSTI)

    Humenick, M.J.; Britton, L.N.; Mattox, C.F.

    1982-01-01T23:59:59.000Z

    Ground water contamination from underground coal gasification (UCG) has been documented at several field tests in Texas and Wyoming. However, monitoring data following the termination of gasification operations has shown that contaminant concentrations decrease with time, apparently because of natural processes. This research evaluates the probable natural mechanisms for the reduction of organic contaminant concentrations in ground water. Results indicated that biological degradation and adsorption could be a significant mechanism for removal of organics from ground waters. 12 refs.

  17. Special Section on Ground Water Research in China Featured in This Issue of Ground Water

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    of Ground Water by Xun Zhou1, Jiu J. Jiao2, and Mary P. Anderson3 Contained in this issue of Ground Water, Groundwater Resources and the Related Environ- Hydrogeologic Problems in China, Beijing: Seismological Press

  18. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; Belcher, W.R.; San Juan, Carma

    2002-11-22T23:59:59.000Z

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this ''second-generation'' regional model was to enhance the knowledge and understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-stat e representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration.

  19. Hanford site ground water protection management plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities.

  20. Development and chemical quality of a ground-water system in cast overburden as the Gibbons Creek Lignite Mine

    E-Print Network [OSTI]

    Borbely, Evelyn Susanna

    1988-01-01T23:59:59.000Z

    -water conditions which develop in response to surface mining. TMPA has supported research at the Gibbons Creek Lignite Mine in order to meet the needs of mine develop- ment and permitting, Most of the data on ground-water conditions 1n reclaimed spoil has been... on the west by the Navasota River, on the south by Gibbons Creek, and on the north by State Highway 30 (Figure 1). This area includes the Gibbons Creek Steam Electric Station. Lignite is extracted from two pits within the permit boundary, termed the A...

  1. Proceedings of the National Groundwater National Ground Water Association Southwest focused ground water conference: Discussing the issue of MTBE and perchlorate in the ground water, Anaheim, CA, June 3-4, pp:87-90.

    E-Print Network [OSTI]

    ground water conference: Discussing the issue of MTBE and perchlorate in the ground water, Anaheim, CA

  2. Ground Water Cooling System

    E-Print Network [OSTI]

    Greaves, K.; Chave, G. H.

    1984-01-01T23:59:59.000Z

    Based on a thorough study of products and anticipated growth, the Turbine and Generator Division of Westinghouse Canada Inc. concluded that a component feeder plant for fabrication and machining of turbine components was required. This facility now...

  3. Ground and Water Source Heat Pump Performance and Design for Southern Climates 

    E-Print Network [OSTI]

    Kavanaugh, S.

    1988-01-01T23:59:59.000Z

    Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical...

  4. Ground and Water Source Heat Pump Performance and Design for Southern Climates

    E-Print Network [OSTI]

    Kavanaugh, S.

    1988-01-01T23:59:59.000Z

    Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical...

  5. Ground water protection management program plan

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 5400.1 requires the establishment of a ground water protection management program to ensure compliance with DOE requirements and applicable federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office was prepared this Ground Water Protection Management Program Plan (ground water protection plan) whose scope and detail reflect the program`s significance and address the seven activities required in DOE Order 5400.1, Chapter III, for special program planning. This ground water protection plan highlights the methods designed to preserve, protect, and monitor ground water resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies technical guidance documents and site-specific documents for the UMTRA Project ground water protection management program. In addition, the plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA Project sites.

  6. Ground Water Protection Act (New Mexico)

    Broader source: Energy.gov [DOE]

    The purpose of the Ground Water Protection Act is to provide substantive provisions and funding mechanisms to the extent that funds are available to enable the state to take corrective action at...

  7. International Borders, Ground Water Flow, and Hydroschizophrenia

    E-Print Network [OSTI]

    Wolf, Aaron

    International Borders, Ground Water Flow, and Hydroschizophrenia by Todd Jarvis1,2, Mark Giordano3 of Geosciences, 104 Wilkinson Hall, Corvallis, OR 97331 2Corresponding author: todd.jarvis@oregonstate.edu 3

  8. On the ground state calculation of a many-body system using a self-consistent basis and quasi-Monte Carlo: An application to water hexamer

    SciTech Connect (OSTI)

    Georgescu, Ionu?, E-mail: ionutg@gmail.com; Mandelshtam, Vladimir A. [Chemistry Department, University of California, Irvine, California 92697 (United States)] [Chemistry Department, University of California, Irvine, California 92697 (United States); Jitomirskaya, Svetlana [Department of Mathematics, University of California, Irvine, California 92697 (United States)] [Department of Mathematics, University of California, Irvine, California 92697 (United States)

    2013-11-28T23:59:59.000Z

    Given a quantum many-body system, the Self-Consistent Phonons (SCP) method provides an optimal harmonic approximation by minimizing the free energy. In particular, the SCP estimate for the vibrational ground state (zero temperature) appears to be surprisingly accurate. We explore the possibility of going beyond the SCP approximation by considering the system Hamiltonian evaluated in the harmonic eigenbasis of the SCP Hamiltonian. It appears that the SCP ground state is already uncoupled to all singly- and doubly-excited basis functions. So, in order to improve the SCP result at least triply-excited states must be included, which then reduces the error in the ground state estimate substantially. For a multidimensional system two numerical challenges arise, namely, evaluation of the potential energy matrix elements in the harmonic basis, and handling and diagonalizing the resulting Hamiltonian matrix, whose size grows rapidly with the dimensionality of the system. Using the example of water hexamer we demonstrate that such calculation is feasible, i.e., constructing and diagonalizing the Hamiltonian matrix in a triply-excited SCP basis, without any additional assumptions or approximations. Our results indicate particularly that the ground state energy differences between different isomers (e.g., cage and prism) of water hexamer are already quite accurate within the SCP approximation.

  9. Integrated Water Management Options in the Nebraska Ground Water Management &

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    ag chemical best management practices 7. soil testing 8. voluntary or mandatory educational programs regulate ground water development (well spacing regulations, well drilling prohibitions) and ground water by implementing the above GMA regulations, well drilling may be halted or conditioned. NRD permits are required

  10. Selenium in Oklahoma ground water and soil

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30T23:59:59.000Z

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  11. Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada

    E-Print Network [OSTI]

    Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada Ralph L. Seiler sources. Tungsten concentrations in 100 ground water samples from all aquifers used as drinking water indicates that W exhibits Tungsten con- centrations are strongly and positively correlated

  12. african ground water: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has Rossi, Vivien 10 Integrated Water Management Options in the Nebraska Ground Water Management & Environmental Sciences and Ecology Websites Summary: Integrated Water...

  13. A significant number of Iowa water treatment systems are dependent upon well-based water sources. Because of this, CIRAS efforts have been focused on the "Ground Water Levels" as reported by Iowa DNR. Currently, DNR officials are indicating that restricti

    E-Print Network [OSTI]

    Lin, Zhiqun

    A significant number of Iowa water treatment systems are dependent upon well-based water sources. Because of this, CIRAS efforts have been focused on the "Ground Water Levels" as reported by Iowa DNR. Currently, DNR officials are indicating that restrictions or loss of the water supply is not likely

  14. DEVELOPMENTS IN GROUND WATER HYDROLOGY : AN OVERVIEW C. P. Kumar

    E-Print Network [OSTI]

    Kumar, C.P.

    . Surface water storage and ground water withdrawal are traditional engineering approaches which of storage and circulation as ground water. The large alluvial tract extending over 2000 km in length from which allows ground water storage in the weathered residium and its circulation in the underlying

  15. Basic Ground-Water Hydrology By RALPH C. HEATH

    E-Print Network [OSTI]

    Sohoni, Milind

    #12;Basic Ground-Water Hydrology By RALPH C. HEATH Prepared in cooperation with the North Carolina., 1983, Basic ground-water hydrology: U .S. Geological Survey Water-Supply Paper 2220, 86 p. Library of Congress Cataloging-in-Publications Data Heath, Ralph C . Basic ground-water hydrology (Geological Survey

  16. Regional Estimation of Total Recharge to Ground Water in Nebraska

    E-Print Network [OSTI]

    Szilagyi, Jozsef

    )over long periods of time when the potential change in ground water storage becomes negligible compared storage other than discharge to streams. One such loss term is evapotranspiration (ET) from ground waterRegional Estimation of Total Recharge to Ground Water in Nebraska by Jozsef Szilagyi1m2,F. Edwin

  17. Copyright 2009 The Author(s) Journal compilation 2009 National Ground Water Association.

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Copyright © 2009 The Author(s) Journal compilation © 2009 National Ground Water Association. NGWA.org Ground Water Monitoring & Remediation 29, no. 3/ Summer 2009/pages 93­104 93 Pore Water Characteristics/day. This model aquifer system contained a residual nonaqueous phase liquid (NAPL) that extended from

  18. Hanford Site ground-water surveillance for 1989

    SciTech Connect (OSTI)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.; Kemner, M.L.

    1990-06-01T23:59:59.000Z

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs.

  19. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Household Wastewater Treatment

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    Household wastewater treatment systems (septic systems) can contaminate ground water unless they are properly designed, constructed and maintained. This publication describes various kinds of systems and guides the homeowner in assessing...

  20. DC WRRC Report No. 126 GROUND WATER RESOURCE ASSESSMENT STUDY

    E-Print Network [OSTI]

    District of Columbia, University of the

    DRILLING AND FIELD OPERATIONS REPORT FOR THE GROUP A WELLS D.C. WATER RESOURCES RESEARCH CENTER University No. 126 GROUND WATER RESOURCE ASSESSMENT STUDY FOR THE DISTRICT OF COLUMBIA WELL DRILLING AND FIELDDC WRRC Report No. 126 GROUND WATER RESOURCE ASSESSMENT STUDY FOR THE DISTRICT OF COLUMBIA WELL

  1. Analytical Studies on the Impact of Land Reclamation on Ground Water Flow

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    Analytical Studies on the Impact of Land Reclamation on Ground Water Flow by Jiu J, Jiaol, Subhas Nandy2, and Hailong LP Abstract Land reclamation has been a common practice to produce valuable land of the ground water system caused by reclamation. Introduction Land reclamation has played a significant role

  2. EPA - Ground Water Discharges (EPA's Underground Injection Control...

    Open Energy Info (EERE)

    Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water Discharges (EPA's...

  3. alkaline ground waters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydraulic Rhode Island, University of 28 Factors influencing biological treatment of MTBE contaminated ground water University of California eScholarship Repository Summary:...

  4. Hanford Site ground-water monitoring for 1994

    SciTech Connect (OSTI)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01T23:59:59.000Z

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  5. Ground-based measurements of soil water storage in Texas

    E-Print Network [OSTI]

    Yang, Zong-Liang

    Ground-based measurements of soil water storage in Texas Todd Caldwell Bridget Scanlon Di Long Michael Young Texas drought and beyond 22-23 October 2012 #12;Ground-based soil moisture Why do we need-limited TRANSPIRATION Water-limited Carbon storage ECOHYDROLOGY Stress, mortality, fire Oxygen limitations MICROBIAL

  6. Simplifying Ground Water Transfers in Integrated Management Plans

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    -714 need new high-capacity wells in FA basins for e.g. ethanol plants so ethanol plant buys water and/or ground water rights from local irrigators buying water: use on-site former irrigation well for ethanol plant or else pipe water from existing from irrigation well to ethanol plant buying rights: cap

  7. Ground-water contribution to dose from past Hanford Operations

    SciTech Connect (OSTI)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01T23:59:59.000Z

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  8. Appendixes 159 160 Simulation of Ground-Water/Surface-Water Flow in the Santa ClaraCalleguas Ground-Water Basin, Ventura County, California

    E-Print Network [OSTI]

    ­Calleguas Ground-Water Basin, Ventura County, California APPENDIX 1: DOCUMENTATION AND DESCRIPTION OF THE DIGITAL-Water/Surface-Water Flow in the Santa Clara­Calleguas Ground-Water Basin, Ventura County, California Figure A.1.2. Location-Water Basin, Ventura County, California Figure A1.4. Location of USGS_GWMODEL coverage. PacificOcean VENTURACO

  9. GROUND-WATER CONTRIBUTION TO DOSE FROM PAST HANFORD OPERATIONS

    SciTech Connect (OSTI)

    Freshley, M. D.; Thorne, P. D.

    1992-01-01T23:59:59.000Z

    The Hanford Environmental Dose Reconstruction (HEOR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides originating in ground water on the Hanford Site could have reached the public have been identified: 1) through contaminated ground water migrating to the Columbia River; 2) through wells on or adjacent to the Hanford Site; 3) through wells that draw some or all of their water from the Columbia River (riparian wells); and 4) through atmospheric deposition resulting in the contamination of a small watershed that, in turn, results in contamination of a shallow well or spring. These four pathways make up the "ground-water pathway ," which is the subject of this study. The objective of the study was to assess the extent to which the groundwater pathway contributed to radiation doses that populations or individuals may have received from past operations at Hanford. The assessment presented in this report was performed by 1) reviewing the extensive ?literature on ground water and ground-water monitoring at Hanford and 2) performing simple calculations to estimate radionuclide concentrations in ground water and the Columbia River resulting from ground-water discharge. Radiation doses that would result from exposure to this ground water and surface water were calculated. The study conclusion is that the ground-water pathways did not contribute significantly to dose. Compared with background radiation in the TriCities {300 mrem/yr), estimated doses are small: 0.02 mrem/yr effective dose equivalent from discharge of contaminated ground water to the Columbia River; 1 mrem/yr effective dose equivalent from Hanford Site wells; 11 mrem/yr effective dose equivalent from riparian wells; and 1 mrem/yr effective dose equivalent from the watershed. Because the estimated doses are so small, the recommendation is that further work on the ground-water pathway be limited to tracking ongoing ground-water studies at the Hanford Site.

  10. Hanford Site ground-water monitoring for 1993

    SciTech Connect (OSTI)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01T23:59:59.000Z

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  11. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    tool for geothermal water loop heat pump systems, 9thInternational IEA Heat Pump Conference, Zürich, Switzerland,Performance of ground source heat pump system in a near-zero

  12. Ground and Surface Water Protection (New Mexico)

    Broader source: Energy.gov [DOE]

    This regulation implements the New Mexico Water Quality Act. Any person intending to make a new water contaminant discharge or to alter the character or location of an existing water contaminant...

  13. EPA Final Ground Water Rule Available Online, 3/07

    Broader source: Energy.gov [DOE]

    On November 8, 2006, the U.S. Environmental Protection Agency (EPA) published a final Ground Water Rule (GWR) to promote increased protection against microbial pathogens that may be present in...

  14. Field and Laboratory Study of a Ground-Coupled Water Source Heat Pump with an Integral Enthalpy Exchange System for Classrooms 

    E-Print Network [OSTI]

    Domitrovic, R.; Hayzen, G. J.; Johnson, W. S.; Chen, F. C.

    2002-01-01T23:59:59.000Z

    water-source heat pump, coupled with a geothermal water loop and incorporating a forced fresh-air enthalpy exchange system was installed in a typical middle school classroom in Oak Ridge, Tennessee. This project is a joint effort among Oak Ridge School...

  15. Hanford Site ground-water monitoring for 1992

    SciTech Connect (OSTI)

    Dresel, P.E.; Newcomer, D.R.; Evans, J.C.; Webber, W.D.; Spane, F.A. Jr.; Raymond, R.G.; Opitz, B.E.

    1993-06-01T23:59:59.000Z

    Monitoring activities were conducted to determine the distribution of radionuclides and hazardous chemicals present in ground water as a result of Hanford Site operations and, whenever possible, relate the distribution of these constituents to Site operations. A total of 720 wells were sampled during 1992 by all Hanford ground-water monitoring activities. The Ground-Water Surveillance Project prepared water-table maps of DOE`s Hanford Site for June 1992 from water-level elevations measured in 287 wells across the Hanford Site and outlying areas. These maps are used to infer ground-water flow directions and gradients for the interpretation of contaminant transport. Water levels beneath the 200 Areas decreased as much as 0.75 m (2.5 ft) between December 1991 and December 1992. Water levels in the Cold Creek Valley decreased approximately 0.5 m in that same period. The water table adjacent to the Columbia River along the Hanford Reach continues to respond significantly to fluctuations in river stage. These responses were observed in the 100 and 300 areas. The elevation of the ground-water mound beneath B Pond did not change significantly between December 1991 and December 1992. However, water levels from one well located at the center of the mound indicate a water-level rise of approximately 0.3 m (1 ft) during the last quarter of 1992. Water levels measured from unconfined aquifer wells north and east of the Columbia River in 1992 indicate that the primary source of recharge is from irrigation practices.

  16. Commonality of ground systems in launch operations

    E-Print Network [OSTI]

    Quinn, Shawn M

    2008-01-01T23:59:59.000Z

    NASA is examining the utility of requiring a certain degree of commonality in both flight and ground systems in the Constellation Program. While the benefits of commonality seem obvious in terms of minimizing upfront ...

  17. Tritium Ground Water Issues | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon theTedRegion | Department of Energy TribesNorthernGround

  18. Ground-water effects of the UCG experiments at the Hoe Creek site in northeastern Wyoming

    SciTech Connect (OSTI)

    Mead, S.W.; Wang, F.T.; Stuermer, D.H.

    1981-06-01T23:59:59.000Z

    Ground-water changes and subsidence effects associated with three underground coal gasification (UCG) experiments have been monitored at the Hoe Creek site in northeastern Wyoming. Ground-water quality measurements have extended over a period of four years and have been supplemented by laboratory studies of contaminant sorption by coal. It was found that a broad range of residual gasification products are introduced into the ground-water system. These contaminants may be of environmental significance if they find their way, in sufficient concentrations, into surface waters, or into aquifers from which water is extracted for drinking or agricultural purposes. Fortunately, the concentrations of these contaminants are substantially reduced by sorption on the surrounding coal. However, recent field measurements indicate that there may be significant limitations on this natural cleansing process. The contaminants of potential concern, and the mechanisms that affect their deposition and persistence have been identified.

  19. GROUND WATER RESOURCE ASSESSMENT STUDY FOR THE DISTRICT OF COLUMBIA

    E-Print Network [OSTI]

    District of Columbia, University of the

    , leaking underground storage tanks, and chemical application to golf courses, gardens and landscapes report presents the findings of the background and field investigations as a comprehensive ground water of the project: Dr. Kobina Atobrah of Geomatrix, Inc., Mr. Michael Arbaugh of the Gascoyne Laboratories Field

  20. Uranium in US surface, ground, and domestic waters. Volume 2

    SciTech Connect (OSTI)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01T23:59:59.000Z

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  1. Bordering on Water Management: Ground and Wastewater in the United States - Mexico Transboundary Santa Cruz Basin

    E-Print Network [OSTI]

    Milman, Anita Dale

    2009-01-01T23:59:59.000Z

    change and global water resources. Global Environmentalin Managing International Water Resources (No. WPS 1303):Darcy Lecture Tour. Ground Water, 45(4), 390-391. Sadoff,

  2. Factors influencing methane distribution in Texas ground water

    SciTech Connect (OSTI)

    Zhang, C.; Grossman, E.L.; Ammerman, J.W. [Texas A and M Univ., College Station, TX (United States)

    1998-01-01T23:59:59.000Z

    To determine the factors that influence the distribution of methane in Texas ground water, water samples were collected from 40 wells in east-central and central Texas aquifers. Among the chemical parameters examined, sulfate is most important in controlling methane distribution. Methane occurs in high concentration in east-central Texas only where sulfate concentration is low, supporting the hypothesis that abundant microbial methane production does not begin until sulfate is depleted. Because water samples from central Texas are high in either oxygen or sulfate, methane concentrations are low in these waters. A positive correlation between methane and sulfate in these waters indicates a different, perhaps thermogenic, origin for the trace methane. The {sup 13}C/{sup 12}C ratios of dissolved methane ranged from {minus}80{per_thousand} to {minus}21{per_thousand} in east-central Texas and {minus}41.2{per_thousand} to {minus}8.5{per_thousand} in central Texas. Low values of < {minus}50{per_thousand} in the east-central Texas ground water indicate a microbial origin for methane and are consistent with the observed sulfate-methane relationship; high {sup 13}C/{sup 12}C ratios of > {minus}31{per_thousand} likely result from bacterial methane oxidation. Similarly, methane with high {sup 13}C/{sup 12}C ratios in central Texas may reflect partial oxidation of the methane pool. Overall, water samples from both regions show a positive correlation between sulfate concentration and the {sup 13}C/{sup 12}C ratio of methane, suggesting that methane oxidation may be associated with sulfate reduction in Texas ground water.

  3. Predicted impacts of future water level decline on monitoring wells using a ground-water model of the Hanford Site

    SciTech Connect (OSTI)

    Wurstner, S.K.; Freshley, M.D.

    1994-12-01T23:59:59.000Z

    A ground-water flow model was used to predict water level decline in selected wells in the operating areas (100, 200, 300, and 400 Areas) and the 600 Area. To predict future water levels, the unconfined aquifer system was stimulated with the two-dimensional version of a ground-water model of the Hanford Site, which is based on the Coupled Fluid, Energy, and Solute Transport (CFEST) Code in conjunction with the Geographic Information Systems (GIS) software package. The model was developed using the assumption that artificial recharge to the unconfined aquifer system from Site operations was much greater than any natural recharge from precipitation or from the basalt aquifers below. However, artificial recharge is presently decreasing and projected to decrease even more in the future. Wells currently used for monitoring at the Hanford Site are beginning to go dry or are difficult to sample, and as the water table declines over the next 5 to 10 years, a larger number of wells is expected to be impacted. The water levels predicted by the ground-water model were compared with monitoring well completion intervals to determine which wells will become dry in the future. Predictions of wells that will go dry within the next 5 years have less uncertainty than predictions for wells that will become dry within 5 to 10 years. Each prediction is an estimate based on assumed future Hanford Site operating conditions and model assumptions.

  4. Short communication Optimization of hybrid ground coupled and air source heat pump systems

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Short communication Optimization of hybrid ­ ground coupled and air source ­ heat pump systems 2008 Accepted 14 January 2010 Available online 28 January 2010 Keywords: Ground coupled heat pump Air to water heat pump Thermal storage device Hybrid HVAC system Energy efficiency Numerical simulation a b

  5. UMTRA Ground Water Project management action process document

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards.

  6. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site.

  7. APPLICATIONS OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS TO

    E-Print Network [OSTI]

    APPLICATIONS OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS TO BUILDINGS AND BRIDGE DECKS. By MAHADEVAN Chapter Page 1. Introduction 1.1. Overview of hybrid ground source heat pump systems 1.2. Literature review 1.3. Thesis objective and scope 2. Optimal sizing of hybrid ground source heat pump system

  8. On Termination and Derivation Lengths for Ground Rewrite Systems

    E-Print Network [OSTI]

    Giesl, Juergen

    On Termination and Derivation Lengths for Ground Rewrite Systems Dieter Hofbauer 1 Universit¨at GH@theory.informatik.uni­kassel.de Abstract. It is shown that for terminating ground term rewrite systems the length of derivations a suitable interpretation into the natural numbers. Terminating ground systems are not necessarily

  9. HANFORD SITE ENVIRONMENTAL DATA FOR CALENDAR YEAR 1989 - GROUND WATER

    SciTech Connect (OSTI)

    Bryce, R. W.; Gorst, W. R.

    1990-12-01T23:59:59.000Z

    In a continuing effort for the U.S. Department of Energy, Pacific Northwest Laboratory (PNL) is conducting ground-water monitoring at the Hanford Site, near Richland, Washington. This document contains the data listing of monitoring results obtained by PNL and Westinghouse Hanford Company during the period January through December 1989. Samples taken during 1989 were analyzed and reported by United States Testing Company, Inc., Richland, Washington. The data listing contains all chemical results (above contractual reporting limits) and radiochemical results (for which the result is larger than two times the total error).

  10. Water Quality Surface and Ground | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWater Power ForumGround Jump

  11. Ground-water maps of the Hanford Site Separations Area, December 1987

    SciTech Connect (OSTI)

    Schatz, A.L.; Ammerman, J.J.

    1988-03-01T23:59:59.000Z

    The ground-water maps of the Separations Area are prepared by the Environmental Technology Section of the Defense Waste Management Division of Westinghouse Hanford Company. The Separations Area consists of the 200 East and 200 West Areas, where chemical processing activities are carried out. This set of ground-water maps consists of a water-table map of the unconfined aquifer, a depth-to-water map of the unconfined aquifer, and a potentiometric map of the uppermost confined aquifer (the Rattlesnake Ridge sedimentary interbed) in the area where West Lake, the deactivated Gable Mountain Pond, and the B Pond system are located. The Separations Area water-table map is prepared from water-level measurements made in June and December. For the December 1987 map approximately 200 wells were used for contouring the water table. The water-table mound beneath the deactivated U Pond has decreased in size since the June 1987 measurements were taken, reflecting the impact of shutting off flow to the pond in the fall of 1984. This mound has declined approximately 8 ft. since 1984. The water-table map also shows the locations of wells where the December 1987 measurements were made, and the data for these measurements are listed.

  12. The Expanding Dairy Industry: Impact on Ground Water Quality and Quantity with Emphasis on Waste Management System Evaluation for Open Lot Dairies

    E-Print Network [OSTI]

    Sweeten, John M.; Wolfe, Mary Leigh

    of dairy waste management practices. The results of these studies will aid producers, engineers, planners, and regulatory officials in the refinement and adoption of appropriate practices for water quality protection....

  13. Factors influencing biological treatment of MTBE contaminated ground water

    SciTech Connect (OSTI)

    Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

    2001-09-14T23:59:59.000Z

    Methyl tert-butyl ether (MTBE) contamination has complicated the remediation of gasoline contaminated sites. Many sites are using biological processes for ground water treatment and would like to apply the same technology to MTBE. However, the efficiency and reliability of MTBE biological treatment is not well documented. The objective of this study was to examine the operational and environmental variables influencing MTBE biotreatment. A fluidized bed reactor was installed at a fuel transfer station and used to treat ground water contaminated with MTBE and gasoline hydrocarbons. A complete set of chemical and operational data was collected during this study and a statistical approach was used to determine what variables were influencing MTBE treatment efficiency. It was found that MTBE treatment was more sensitive to up-set than gasoline hydrocarbon treatment. Events, such as excess iron accumulation, inhibited MTBE treatment, but not hydrocarbon treatment. Multiple regression analysis identified biomass accumulation and temperature as the most important variables controlling the efficiency of MTBE treatment. The influent concentration and loading of hydrocarbons, but not MTBE, also impacted MTBE treatment efficiency. The results of this study suggest guidelines for improving MTBE treatment. Long cell retention times in the reactor are necessary for maintaining MTBE treatment. The onset of nitrification only occurs when long cell retention times have been reached and can be used as an indicator in fixed film reactors that conditions favorable to MTBE treatment exist. Conversely, if the reactor can not nitrify, it is unlikely to have stable MTBE treatment.

  14. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Well-Head Management and Conditions 

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    the risk it poses to your ground water. For example, a cracked well casing may allow fertilizer, nitrates, oil or pesticides to enter the well if these materials are spilled near the well. Feedlots, animal yards, septic systems and waste storage areas also... can release large amounts of bacteria, nitrates and other contam- inants that could pollute well water. The Texas Water Well Drillers Act (1985), the Water Well Pump Installer Act (1991) and vari- ous other legislative actions have guided devel- opment...

  15. Environmental assessment of ground-water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met.

  16. The detection and modelling of surface thermal structures and ground water discharges

    E-Print Network [OSTI]

    Roberts, Douglas Vincent

    1985-01-01T23:59:59.000Z

    . , Southern Illinois University Chairman of Advisory Committee: Dr. Earl R. Hoskins On March 29, 1973, data were collected by a thermal infrared scanner mounted in a twin-engine aircraft over a 55-mile stretch of the Clark Fork River in northwestern... on a VAX Il/750 interfaced with an I'S Model 70 processing system. Both qualitative and quantitative processing techniques were employed to identify and describe the surface temperature patterns and ground water discharges into the river. Computer...

  17. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, D.M.; Taft, W.E.

    1994-12-20T23:59:59.000Z

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  18. Ground-water temperature fluctuations at Lyons Ferry Fish Hatchery, Washington

    SciTech Connect (OSTI)

    Oberlander, P.L.; Myers, D.A.

    1987-06-01T23:59:59.000Z

    The well field serving the Lyons Ferry Fish Hatchery has experienced reduced water temperatures following continued, periodic withdrawal of large volumes of water. In January 1985, the well field temperature was 49/sup 0/F, which is less than the optimal 52/sup 0/F for raising salmon and steelhead trout. The aquifer supplying the hatchery is in hydraulic and thermal connection with the Snake River and a flooded embayment of the Palouse River. Ground-water temperatures in the well field cycle on an annual basis in response to changes in surface water temperature and pumping rate. Numerical simulation of the well field, using a simplified mixing cell model, demonstrates the coupling of well field hydraulics and aquifer thermal response. Alternative pumping schedules indicate that it is feasible to adjust ground-water pumping to effectively store heat in the aquifer during the summer months when surface water temperatures are elevated. Sensitivity analysis of this model indicated that the primary controls of the system's thermal response are the volume of the aquifer assumed to contribute to the well field and temperature of the overlying surface water body.

  19. Remote grounding device for subterranean power systems

    SciTech Connect (OSTI)

    Wilson, D.P.

    1987-04-28T23:59:59.000Z

    A remote grounding device is described for subterranean power cable of an insulated conducting cable which comprises: a grounding module and a grounding mechanism; the grounding module is an assembly of a power buss, an insulation sheath, a reducing tap plug and an insulating receptacle cap. The power buss is intimately connected to the conducting cable by a means of an attachment. The reducing tap plug fits concentrically over the power buss and has a tubular probe path void contiguous and in-line to the power buss and a lip around the outer periphery of the reducing tap plug. The insulating receptacle cap covers the tubular void. The insulating sheath covers and holds reducing tap plug and power cable by a multiplicity of locking means and a grounding mechanism assembly of a frame, a probe, a power drive means, a grounding means, a handle means.

  20. Cooperative heat transfer and ground coupled storage system

    DOE Patents [OSTI]

    Metz, Philip D. (Rocky Point, NY)

    1982-01-01T23:59:59.000Z

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  1. Purge water management system

    DOE Patents [OSTI]

    Cardoso-Neto, Joao E. (North Augusta, SC); Williams, Daniel W. (Aiken, SC)

    1996-01-01T23:59:59.000Z

    A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  2. Purge water management system

    DOE Patents [OSTI]

    Cardoso-Neto, J.E.; Williams, D.W.

    1995-01-01T23:59:59.000Z

    A purge water management system is described for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  3. Environmental assessment of ground water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming. Revision 0

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This document is an environmental assessment of the Spook, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site. It analyzes the impacts of the U.S. Department of Energy (DOE) proposed action for ground water compliance. The proposed action is to comply with the U.S. Environmental Protection Agency (EPA) standards for the UMTRA Project sites (40 CFR Part 192) by meeting supplemental standards based on the limited use ground water at the Spook site. This proposed action would not require site activities, including ground water monitoring, characterization, or institutional controls. Ground water in the uppermost aquifer was contaminated by uranium processing activities at the Spook site, which is in Converse County, approximately 48 miles (mi) (77 kilometers [km]) northeast of Casper, Wyoming. Constituents from the site infiltrated and migrated into the uppermost aquifer, forming a plume that extends approximately 2500 feet (ft) (800 meters [m]) downgradient from the site. The principal site-related hazardous constituents in this plume are uranium, selenium, and nitrate. Background ground water in the uppermost aquifer at the site is considered limited use. It is neither a current nor a potential source of drinking water because of widespread, ambient contamination that cannot be cleaned up using treatment methods reasonably employed in public water supply systems (40 CFR {section} 192.11 (e)). Background ground water quality also is poor due to first, naturally occurring conditions (natural uranium mineralization associated with an alteration front), and second, the effects of widespread human activity not related to uranium milling operations (uranium exploration and mining activities). There are no known exposure pathways to humans, animals, or plants from the contaminated ground water in the uppermost aquifer because it does not discharge to lower aquifers, to the surface, or to surface water.

  4. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium.

  5. Optimal Ground-Source Heat Pump System Design

    Broader source: Energy.gov (indexed) [DOE]

    Ground-Source Heat Pump System Design May 19, 2010 Geothermal Technologies Program 2010 Peer Review ENVIRON International PI : Metin Ozbek Track : GSHP Demonstration Projects This...

  6. Lightning Strikes on Airborne Grounded Systems

    E-Print Network [OSTI]

    Malinga, Gilbert Aporu

    2014-10-13T23:59:59.000Z

    LIST OF FIGURES Page Fig. 1-1 Histogram of the average wind speed over a 10 year period at an elevation of a) sH ? 100 m and b) sH ? 600 m, above the mean water level at Montauk, New York. Wind data accessed from the National Buoy Data Center.... The destructive power of lightning discharges to both land-based and airborne systems that cannot adequately dissipate large impulses of energy is well documented (Miyake et al., 1990; Sorensen et al., 1998; Uman and Rakov, 2003). Lightning discharges can...

  7. Cooling water distribution system

    DOE Patents [OSTI]

    Orr, Richard (Pittsburgh, PA)

    1994-01-01T23:59:59.000Z

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  8. Non-Lawyers' Guide to Hearings before the Colorado Ground Water...

    Open Energy Info (EERE)

    Lawyers' Guide to Hearings before the Colorado Ground Water Commission Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  9. Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    Methods Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,...

  10. Pattern of shallow ground water flow at Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    methods Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Pattern of shallow ground water flow at Mount Princeton Hot Springs,...

  11. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

  12. Cooling Water System Optimization

    E-Print Network [OSTI]

    Aegerter, R.

    2005-01-01T23:59:59.000Z

    During summer months, many manufacturing plants have to cut back in rates because the cooling water system is not providing sufficient cooling to support higher production rates. There are many low/no-cost techniques available to improve tower...

  13. Use of Mini-Sprinklers to Strip Trichloroethylene and Tetrachloroethylene from Contaminated Ground Water.

    SciTech Connect (OSTI)

    Brerisford, Yvette, C.; Bush, Parshall, B.; Blake, John, I.; Bayer, Cassandra L.

    2003-01-01T23:59:59.000Z

    Berisford, Y.C., P.B. Bush, J.I. Blake, and C.L. Bayer. 2003. Use of mini-sprinklers to strip trichloroethylene and tetrachloroethylene from contaminated ground water. J. Env. Qual. 32:801-815. Three low-volume mini-sprinklers were tested for their efficacy to strip trichloroethylene (TCE) and tetrachloroethylene (PCE) from water. Deionized water spiked with TCE and PCE was pumped through a mini-sprinkler supported on top of a 1.8-m-tall. Water was collected in collection vessels at 0.61 and 1.22 m above the ground on support columns that were spaced at 0.61-m intervals from the riser base, and samples were composited per height and distance from the riser. Overall, air-stripping reduced dissolved concentrations of TCE and PCE by 99.1 to 100 and 96.9 to 100%, respectively. Mini-sprinklers offer the advantages of (i) easy setup in series that can be used on practically any terrain; (ii) operation over a long period of time that does not threaten aquifer depletion; (iii) use in small or confined aquifers in which the capacity is too low to support large irrigation or pumping systems; and (iv) use in forests in which the small, low-impact droplets of the mini-sprinklers do not damage bark and in which trees can help manage (via evapotransporation) excess waste water.

  14. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    SciTech Connect (OSTI)

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01T23:59:59.000Z

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs.

  15. Combined permeable pavement and ground source heat pump systems 

    E-Print Network [OSTI]

    Grabowiecki, Piotr

    2010-01-01T23:59:59.000Z

    The PhD thesis focuses on the performance assessment of permeable pavement systems incorporating ground source heat pumps (GSHP). The relatively high variability of temperature in these systems allows for the survival of pathogenic organisms within...

  16. A capital cost comparison of commercial ground-source heat pump systems

    SciTech Connect (OSTI)

    Rafferty, K.

    1994-06-01T23:59:59.000Z

    The report provides a capital cost comparison of commercial ground source heat pump systems. The study includes groundwater systems, ground-coupled systems and hybrid systems.

  17. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION Robert Pitt, Shirley Clark, and Richard Field1

    E-Print Network [OSTI]

    Clark, Shirley E.

    GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION Robert Pitt, Shirley Clark, pathogens, metals, and salts and other dissolved minerals. The intention of this paper is to identify known stormwater contaminants as to their potential to contaminant ground water and to provide guidance

  18. "Hot Water" in Lassen Volcanic National Park--Fumaroles, Steaming Ground, and Boiling Mudpots

    E-Print Network [OSTI]

    Torgersen, Christian

    "Hot Water" in Lassen Volcanic National Park-- Fumaroles, Steaming Ground, and Boiling Mudpots U, ydrothermal (hot water) and steaming ground. These features are re- lated to active volcanism, the largest fumarole (steam and volcanic-gas vent) in the park. The temperature of the high-velocity steam

  19. Improved estimates of the total correlation energy in the ground state of the water molecule

    E-Print Network [OSTI]

    Anderson, James B.

    Improved estimates of the total correlation energy in the ground state of the water molecule Arne National Laboratory, Richland, Washington 99352 Received 1 October 1996; accepted 5 February 1997 Two new calculations of the electronic energy of the ground state of the water molecule yield energies lower than those

  20. Characterizing Hydraulic Properties and Ground-Water Chemistry in Fractured-Rock Aquifers: A User's Manual

    E-Print Network [OSTI]

    Characterizing Hydraulic Properties and Ground-Water Chemistry in Fractured-Rock Aquifers: A User source for science about the Earth, its natural and living resources, natural hazards., 2007, Characterizing hydraulic properties and ground-water chemistry in fractured-rock aquifers: A user

  1. Modeling of Standing Column Wells in Ground Source Heat Pump Systems Zheng Deng O'Neill, Ph.D., P.E.

    E-Print Network [OSTI]

    Modeling of Standing Column Wells in Ground Source Heat Pump Systems Zheng Deng O'Neill, Ph.D., P Montfort University, Leicester, United Kingdom 1. INTRODUCTION In recent years, ground source heat pump-surface environment: · Ground-coupled heat pump (GCHP) systems (Closed-loop) · Surface water heat pump (SWHP) systems

  2. Exergy and Energy analysis of a ground-source heat pump for domestic water heating under simulated occupancy conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

    2012-01-01T23:59:59.000Z

    This paper presents detailed analysis of a water to water ground source heat pump (WW-GSHP) to provide all the hot water needs in a 345 m2 house located in DOE climate zone 4 (mixed-humid). The protocol for hot water use is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which aims to capture the living habits of the average American household and its impact on energy consumption. The entire house was operated under simulated occupancy conditions. Detailed energy and exergy analysis provides a complete set of information on system efficiency and sources of irreversibility, the main cause of wasted energy. The WW-GSHP was sized at 5.275 kW (1.5-ton) for this house and supplied hot water to a 303 L (80 gal) water storage tank. The WW-GSHP shared the same ground loop with a 7.56 kW (2.1-ton) water to air ground source heat pump (WA-GSHP) which provided space conditioning needs to the entire house. Data, analyses, and measures of performance for the WW-GSHP in this paper complements the results of the WA-GSHP published in this journal (Ally, Munk et al. 2012). Understanding the performance of GSHPs is vital if the ground is to be used as a viable renewable energy resource.

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site is under way and is scheduled for completion in 1996. The tailings are being stabilized in-place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the environment. Currently, no points of exposure (e.g. a drinking water well); and no receptors of contaminated ground water have been identified at the Maybell site. Therefore, there are no current human health and ecological risks associated with exposure to contaminated ground water. Furthermore, if current site conditions and land- and water-use patterns do not change, it is unlikely that contaminated ground water would reach people or the ecological communities in the future.

  4. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  5. Ground-water contribution to dose from past Hanford Operations. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01T23:59:59.000Z

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ``ground-water pathway,`` which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  6. EPA (Environmental Protection Agency) activities related to sources of ground-water contamination

    SciTech Connect (OSTI)

    Black-Coleman, W.

    1987-02-01T23:59:59.000Z

    The report contains a listing of EPA programs and activities, as of October 1986, that address 33 sources of potential ground-water contamination. The information on each activity is presented in a matrix format that is organized by type of contamination source. The following information is presented for each program and activity listed: title, lead office, contact person, type of activity (study, regulation, guidance, strategy, etc.) status, and a summary of the activity. The 33 sources of ground-water contamination are discussed in the 1984 EPA Office of Technology report: Protecting the Nations Ground Water from Contamination.

  7. System for treating produced water

    DOE Patents [OSTI]

    Sullivan, Enid J. (Los Alamos, NM); Katz, Lynn (Austin, TX); Kinney, Kerry (Austin, TX); Bowman, Robert S. (Lemitar, NM); Kwon, Soondong (Kyungbuk, KR)

    2010-08-03T23:59:59.000Z

    A system and method were used to treat produced water. Field-testing demonstrated the removal of contaminants from produced water from oil and gas wells.

  8. Locating Ground-Water Discharge in the Hanford Reach of the Columbia River

    SciTech Connect (OSTI)

    Lee, D.R.; Geist, D.R.; Saldi, K.; Hartwig, D.; Cooper, T.

    1997-03-01T23:59:59.000Z

    A bottom-contacting probe for measuring electrical conductivity at the sediment-water interface was used to scan the bed of the Columbia River adjacent to the Hanford Site in southeast Washington State during a 10-day investigation. Four river-sections, each about a kilometer in length, were scanned for variations in electrical conductivity. The probe was towed along the riverbed at a speed of 1 m/s and is position was recorded using a Global Positioning System. The bottom tows revealed several areas of elevated electrical conductivity. Where these anomalies were relatively easy to access, piezometers were driven into the riverbed and porewater electrical conductivity ranged from 111 to 150 uS/cm. The piezometers, placed in electrical conductivity “hotspots,” yielded chemical or isotopic data consistent with previous analyses of water taken from monitoring wells and visible shoreline seeps. Tritium, nitrate, and chromium exceeded water quality standards in some porewaters. The highest tritium and nitrate levels were found near the Old Hanford Townsite at 120,000 pCi/L (+ 5,880 pCi/L total propagated analytical uncertainty) and ug/L (+ 5,880 ug/L), respectively. The maximum chromium (total and hexavalent) levels were found near 100-H reactor area where unfiltered porewater total chromium was 1,900 ug/L (+ 798 ug/L) and hexavalent chromium was 20 ug/L. The electrical conductivity probe provided rapid, cost-effective reconnaissance for ground-water discharge areas when used in combination with conventional piezometers. It may be possible to obtain quantitative estimates of both natural and contaminated ground-water discharge in the Hanford Reach with more extensive surveys of river bottom.

  9. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water.

  10. Streamflow, Infiltration, and Ground-Water Recharge at Abo Arroyo, New Mexico

    E-Print Network [OSTI]

    Streamflow, Infiltration, and Ground-Water Recharge at Abo Arroyo, New Mexico USGS Professional, California (amystew@gmail.com). 2 Present address D.B. Stephens and Associates, Albuquerque, New Mexico

  11. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Hazardous Waste Management 

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

    1997-08-29T23:59:59.000Z

    Products such as paints, solvents, adhesives, oils, cleaners, batteries, pesticides and wood preservatives are commonly used in households and on farms, but they can be hazardous to ground water if handled improperly. This publication explains...

  12. Environmental Assessment of Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    N /A

    2002-08-13T23:59:59.000Z

    The U.S. Department of Energy (DOE) is in the process of selecting a ground water compliance strategy for the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. This Environmental Assessment (EA) discusses two alternatives and the effects associated with each. The two alternatives are (1) natural flushing coupled with institutional controls and continued monitoring and (2) no action. The compliance strategy must meet U.S. Environmental Protection Agency (EPA) ground water standards defined in Title 40 ''Code of Federal Regulations'' Part 192, Subpart B, in areas where ground water beneath and around the site is contaminated as a result of past milling operations. It has been determined that contamination in the ground water at the Gunnison site consists of soluble residual radioactive material (RRM) as defined in the Uranium Mill Tailings Radiation Control Act (UMTRCA).

  13. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site.

  14. EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill...

  15. Ground penetrating radar characterization of wood piles and the water table in Back Bay, Boston

    E-Print Network [OSTI]

    LeFrançois, Suzanne O'Neil, 1980-

    2003-01-01T23:59:59.000Z

    Ground penetrating radar (GPR) surveys are performed to determine the depth to the water table and the tops of wood piles beneath a residential structure at 122 Beacon Street in Back Bay, Boston. The area of Boston known ...

  16. Ground-water hydrogeology and geochemistry of a reclaimed lignite surface mine

    E-Print Network [OSTI]

    Pollock, Clifford Ralph

    1982-01-01T23:59:59.000Z

    GROUND-WATER HYDROGEOLOGY AND GEOCHEMISTRY OF A RECLAIMED LIGNITE SURFACE MINE A Thesis by CLIFFORD RALPH POLLOCK Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE August 1982 Major Subject: Geology GROUND-WATER HYDROGEOLOGY AND GEOCHEMISTRY OF A RECLAIMED LIGNITE SURFACE MINE A Thesis by CLIFFORD RALPH POLLOCK Approved as to sty1e and content by: (Chairman of Committee) ember) (Member (Member) F...

  17. Ground-water monitoring at the Hanford Site, January-December 1984

    SciTech Connect (OSTI)

    Cline, C.S.; Rieger, J.T.; Raymond, J.R.

    1985-09-01T23:59:59.000Z

    This program is designed to evaluate existing and potential pathways of exposure to radioactivity and hazardous chemicals from site operations. This document contains an evaluation of data collected during CY 1984. During 1984, 339 monitoring wells were sampled at various times for radioactive and nonradioactive constituents. Two of these constituents, specifically, tritium and nitrate, have been selected for detailed discussion in this report. Tritium and nitrate in the primary plumes originating from the 200 Areas continue to move generally eastward toward the Columbia River in the direction of ground-water flow. The movement within these plumes is indicated by changes in trends within the analytical data from the monitoring wells. No discernible impact on ground water has yet been observed from the start-up of the PUREX plant in December 1983. The shape of the present tritium plume is similar to those described in previous ground-water monitoring reports, although slight changes on the outer edges have been noted. Radiological impacts from two potential pathways for radionuclide transport in ground water to the environment are discussed in this report. The pathways are: (1) human consumption of ground water from onsite wells, and (2) seepage of ground water into the Columbia River. Concentrations of tritium in spring samples that were collected and analyzed in 1983, and in wells sampled adjacent to the Columbia River in 1984 confirmed that constituents in the ground water are entering the river via springs and subsurface flow. The primary areas where radionuclides enter the Columbia River via ground-water flow are the 100-N and 300 Areas and the shoreline adjacent to the Hanford Townsite. 44 refs., 25 figs., 11 tabs.

  18. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site began in 1995 and is scheduled for completion in 1996. The tailings are being stabilized in place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results presented in this document and other evaluations will determine whether any action is needed to protect human health or the environment.

  19. Green Systems Solar Hot Water

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar panels not enough Generates heat energy Captures heat from generator and transfers it to water Stores Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1

  20. Implications of ground-water measurements at the Hoe Creek UCG site in northeastern Wyoming

    SciTech Connect (OSTI)

    Mead, S.W.; Wang, F.T.; Stuermer, D.H.; Raber, E.; Ganow, H.C.; Stone, R.

    1980-01-01T23:59:59.000Z

    Underground coal gasification (UCG) promises to become an important source of synthetic fuels. In an effort to provide timely information concerning the environmental implications of the UCG process, we are conducting investigations in conjunction with the UCG experiments carried out in northeastern Wyoming by the Lawrence Livermore National Laboratory. Our ground-water quality measurements have extended over a period of four years and have been supplemented by laboratory studies of contaminant sorption by coal. Cavity roof collapse and aquifer interconnection were also investigated, using surface and subsurface geotechnical instruments, post-burn coring, and hydraulic head measurements. We have found that a broad range of residual gasification products are introduced into the ground-water system. Fortunately, the concentrations of many of these contaminants are substantially reduced by sorption on the surrounding coal. However, some of these materials seem likely to remain in the local groundwater, at low concentrations, for several years. We have attempted to interpret our results in terms of concepts that will assist in the development of effective and practicable control technologies.

  1. Carbon and Water Resource Management for Water Distribution Systems

    E-Print Network [OSTI]

    Hendrickson, Thomas Peter

    2013-01-01T23:59:59.000Z

    4 April, 2013. (4) 2010 Water Use Survey Summary Estimates –State Totals; Texas Water Development Board: Austin, TX,indicators for urban water systems. Urban Water. 2004, 4,

  2. Effluent treatment options for nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Brockmann, J.E.

    1992-10-16T23:59:59.000Z

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

  3. Handling effluent from nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Allen, G.C.

    1992-09-09T23:59:59.000Z

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests.

  4. Ground test accelerator control system software

    SciTech Connect (OSTI)

    Burczyk, L.; Dalesio, R.; Dingler, R.; Hill, J.; Howell, J.A.; Kerstiens, D.; King, R.; Kozubal, A.; Little, C.; Martz, V.; Rothrock, R.; Sutton, J.

    1988-01-01T23:59:59.000Z

    The GTA control system provides an environment in which the automation of a state-of-the-art accelerator can be developed. It makes use of commercially available computers, workstations, computer networks, industrial I/O equipment, and software. This system has built-in supervisory control (like most accelerator control systems), tools to support continuous control (like the process control industry), and sequential control for automatic startup and fault recovery (like few other accelerator control systems). Several software tools support these levels of control: a real-time operating system (VxWorks) with a real-time kernel (VRTX), a configuration database, a sequencer, and a graphics editor. VxWorks supports multitasking, fast context-switching, and preemptive scheduling. VxWorks/VRTX is a network-based development environment specifically designed to work in partnership with the UNIX operating system. A database provides the interface to the accelerator components. It consists of a run time library and a database configuration and editing tool. A sequencer initiates and controls the operation of all sequence programs (expressed as state programs). A graphics editor gives the user the ability to create color graphic displays showing the state of the machine in either text or graphics form. 11 refs., 2 figs.

  5. Optimization of Chilled Water Systems

    E-Print Network [OSTI]

    Gidwani, B. N.

    OPTIMIZATION OF CHILLED WATER SYSTEMS B. N. GIDWANI, P.E., Vice President? Roy F. Weston, Inc.?West Chester, Pennsylvania 19380 ABSTRACT Chilled water systems are one of the major energy consumers in industrial, commercial, and institutional... complexes. The centralization of chilled water systems presents numerous advantages, including simplified controls, reduced installation capacity due to diversity, and consolidated maintenance and operation. Centrally chilled water systems present...

  6. Ground Source Heat Pump System Data Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration and the CarryingPeer Review GSHP System

  7. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Slick Rock, Colorado. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    Two UMTRA (Uranium Mill Tailings Remedial Action) Project sites are near Slick Rock, Colorado: the North Continent site and the Union Carbide site. Currently, no one uses the contaminated ground water at either site for domestic or agricultural purposes. However, there may be future land development. This risk assessment evaluates possible future health problems associated with exposure to contaminated ground water. Since some health problems could occur, it is recommended that the contaminated ground water not be used as drinking water.

  8. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Well-Head Management and Conditions

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    The condition of a water well and its proximity to contamination sources determine the risk it poses to ground water. Topics covered include well location, well construction, well age and type, well depth, well maintenance, water testing...

  9. Seismic fragility formulations for segmented buried pipeline systems including the impact of differential ground subsidence

    SciTech Connect (OSTI)

    Pineda Porras, Omar Andrey [Los Alamos National Laboratory; Ordaz, Mario [UNAM, MEXICO CITY

    2009-01-01T23:59:59.000Z

    Though Differential Ground Subsidence (DGS) impacts the seismic response of segmented buried pipelines augmenting their vulnerability, fragility formulations to estimate repair rates under such condition are not available in the literature. Physical models to estimate pipeline seismic damage considering other cases of permanent ground subsidence (e.g. faulting, tectonic uplift, liquefaction, and landslides) have been extensively reported, not being the case of DGS. The refinement of the study of two important phenomena in Mexico City - the 1985 Michoacan earthquake scenario and the sinking of the city due to ground subsidence - has contributed to the analysis of the interrelation of pipeline damage, ground motion intensity, and DGS; from the analysis of the 48-inch pipeline network of the Mexico City's Water System, fragility formulations for segmented buried pipeline systems for two DGS levels are proposed. The novel parameter PGV{sup 2}/PGA, being PGV peak ground velocity and PGA peak ground acceleration, has been used as seismic parameter in these formulations, since it has shown better correlation to pipeline damage than PGV alone according to previous studies. By comparing the proposed fragilities, it is concluded that a change in the DGS level (from Low-Medium to High) could increase the pipeline repair rates (number of repairs per kilometer) by factors ranging from 1.3 to 2.0; being the higher the seismic intensity the lower the factor.

  10. Results of ground-water monitoring for radionuclides in the Separations Area, 1987

    SciTech Connect (OSTI)

    Serkowski, J.A.; Law, A.G.; Ammerman, J.J.; Schatz, A.L.

    1988-04-01T23:59:59.000Z

    The purpose of this report is to present a summary of the results for calendar year 1987 of the Westinghouse Hanford Company (Westinghouse Hanford) ground-water monitoring program for radiological constituents in the Separations Area of the Hanford Site. This monitoring program is implemented to partially fulfill the US Department of Energy (DOE) requirement that radioactivity in the environment be monitored. The program is also used to monitor operating disposal facilities for compliance with DOE requirements. The Separations Area radionuclide ground-water monitoring program is coordinated with other ground-water monitoring activities on the Hanford Site conducted by Westinghouse Hanford and Pacific Northwest Laboratory (PNL). The PNL program includes sampling for both radioactive and nonradioactive chemicals throughout the Site (including 100 and 300 Areas) and is responsible for estimating and evaluating the impact on ground water to the general public from all operations at the Hanford Site. Ground water characterization and monitoring for compliance with Resource Conservation and Recovery Act (RCRA) is also being conducted at facilities on the Hanford Site.

  11. Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application

    SciTech Connect (OSTI)

    Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

  12. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    the temperature of the residual water encountered by theof hot water and the residual water might occur: (1) thehot water might drive the residual water through the piping

  13. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    Transportation Water Heaters and Hot Water DistributionLaboratory). 2008. Water Heaters and Hot Water Distributionfor instantaneous gas water heaters; and pressure loss

  14. Ground-water heat pumps: an examination of hydrogeologic, environmental, legal, and economic factors affecting their use

    SciTech Connect (OSTI)

    Armitage, D.M.; Bacon, D.J.; Massey-Norton, J.T.; Miller, J.D.

    1980-11-12T23:59:59.000Z

    Groundwater is attractive as a potential low-temperature energy source in residential space-conditioning applications. When used in conjuncton with a heat pump, ground water can serve as both a heat source (for heating) and a heat sink (for cooling). Major hydrogeologic aspects that affect system use include groundwater temperature and availability at shallow depths as these factors influence operational efficiency. Ground-water quality is considered as it affects the performance and life-expectancy of the water-side heat exchanger. Environmental impacts related to groundwater heat pump system use are most influenced by water use and disposal methods. In general, recharge to the subsurface (usually via injection wells) is recommended. Legal restrictions on system use are often stricter at the municipal and county levels than at state and Federal levels. Although Federal regulations currently exist, the agencies are not equipped to regulate individual, domestic installations. Computer smulations indicate that under a variety of climatologic conditions, groundwater heat pumps use less energy than conventional heating and cooling equipment. Life-cycle cost comparisons with conventional equipment depend on alternative system choices and well cost options included in the groundwater heat pump system.

  15. Central Multifamily Water Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Building America Program is hosting a no-cost, webinar-based training on Central Multifamily Water Heating Systems. The webinar will focus the effective use of central heat pump water heaters...

  16. Bioremediation of ground water contaminants at a uranium mill tailings site

    SciTech Connect (OSTI)

    Barton, L.L.; Nuttall, H.E.; Thomson, B.M.; Lutze, W. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-12-31T23:59:59.000Z

    Ground water contaminated with uranium from milling operations must be remediated to reduce the migration of soluble toxic compounds. At the mill tailings site near Tuba City, Arizona (USA) the approach is to employ bioremediation for in situ immobilization of uranium by bacterial reduction of uranyl, U(VI), compounds to uraninite, U(IV). In this initial phase of remediation, details are provided to indicate the magnitude of the contamination problem and to present preliminary evidence supporting the proposition that bacterial immobilization of uranium is possible. Additionally, consideration is given to contaminating cations and anions that may be at toxic levels in ground water at this uranium mill tailing site and detoxification strategies using bacteria are addressed. A model concept is employed so that results obtained at the Tuba City site could contribute to bioremediation of ground water at other uranium mill tailings sites.

  17. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    SciTech Connect (OSTI)

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

    1992-11-01T23:59:59.000Z

    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992.

  18. The recovery of crude oil spilled on a ground water aquifer 

    E-Print Network [OSTI]

    Malter, Paul Lawrence

    1983-01-01T23:59:59.000Z

    THE RECOVERY OF CRUDE OIL SPILLED ON A GROUND WATER AQUIFER A Thesis by PAUL LAWRENCE MALTER Approved as to style and content by: oy W, ann, J (Ch irman of Committee) / Dona McDona (Head of Department) as (Me ) 0 s Le a . ~e e (Member...) May 1983 ABSTRACT The Recovery of Crude Oil Spilled on a Ground Water Aquifer. (Nay 1983) Paul Lawrence Malter, B. S. , Texas A6K University Chairman of Advisory Committee: Roy W. Bann, Jr. Case histories of previous petroleum spill cleanups...

  19. Carbon and Water Resource Management for Water Distribution Systems

    E-Print Network [OSTI]

    Hendrickson, Thomas Peter

    2013-01-01T23:59:59.000Z

    23 4.5 Water-Energy SustainabilityWater Distribution System Water-energy Sustainability ToolWastewater-energy Sustainability Tool v   Acknowledgements

  20. Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    None

    2003-04-23T23:59:59.000Z

    This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as Attachment 1.

  1. Environmental controls for underground coal gasification: ground-water effects and control technologies

    SciTech Connect (OSTI)

    Mead, W.; Raber, E.

    1980-03-14T23:59:59.000Z

    Underground coal gasfication (UCG) promises to provide economic access to an enormous deep-coal resource. It is, therefore, of considerable importance to develop appropriate environmental controls for use in conjunction with the UCG process. The Lawrence Livermore Laboratory has conducted three UCG experiments at its Hoe Creek site in northeastern Wyoming. Environmental studies are being conducted in conjunction with these UCG experiments, including an investigation of changes in local ground-water quality and subsidence effects. Ground-water monitoring and geotechnical measurements have helped to clarify the environmental significance of reaction-product contaminants that remain underground following gasification, and the implications of cavity roof collapse and aquifer interconnection. These investigations have led to the development of preliminary plans for a specific method of ground water quality restoration utilizing activated carbon adsorption. Unconventional technologies are also being investigated that may be appropriate for restoring ground water that has been contaminated as a result of UCG operations. These water treatment technologies are being explored as possible supplements to natural controls and process restrictions.

  2. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota, evaluates the potential impacts to public health or the environment from contaminated ground water at this site. This contamination is a result of the uraniferous lignite ashing process, when coal containing uranium was burned to produce uranium. Potential risk is quantified only for constituents introduced by the processing activities and not for the constituents naturally occurring in background ground water in the site vicinity. Background ground water, separate from any site-related contamination, imposes a percentage of the overall risk from ground water ingestion in the Bowman site vicinity. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to address soil and ground water contamination at the site. The UMTRA Surface Project involves the determination of the extent of soil contamination and design of an engineered disposal cell for long-term storage of contaminated materials. The UMTRA Ground Water Project evaluates ground water contamination. Based on results from future site monitoring activities as defined in the site observational work plan and results from this risk assessment, the DOE will propose an approach for managing contaminated ground water at the Bowman site.

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  4. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Tuba City, Arizona

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This document evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium mill site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1990 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine what remedial actions are necessary for contaminated ground water at the site.

  5. Pacific Northwest National Laboratory Grounds Maintenance: Best Management Practice Case Studies #4 and #5 - Water Efficient Landscape and Irrigation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-08-01T23:59:59.000Z

    FEMP Water Efficiency Best Management Practices #4 and #5 Case Study: Overview of the Pacific Northwest National Laboratory grounds maintenance program and results.

  6. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards.

  7. Baseline risk assessment of ground water contamination at the inactive uriniferous lignite ashing site near Belfield, North Dakota

    SciTech Connect (OSTI)

    NONE

    1994-08-01T23:59:59.000Z

    This Baseline Risk Assessment of Ground Water Contamination at the Inactive Uraniferous Lignite Ashing Site Near Belfield, North Dakota, evaluates potential impacts to public health or the environment resulting from ground water contamination at the site where coal containing uranium was burned to produce uranium. The US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project is evaluating plans to remedy soil and ground water contamination at the site. Phase I of the UMTRA Project consists of determining the extent of soil contamination. Phase II of the UMTRA Project consists of evaluating ground water contamination. Under Phase II, results of this risk assessment will help determine what remedial actions may be necessary for contaminated ground water at the site. This risk assessment evaluates the potential risks to human health and the environment resulting from exposure to contaminated ground water as it relates to historic processing activities at the site. Potential risk is quantified for constituents introduced from the processing activities, and not for those constituents naturally occurring in water quality in the site vicinity. Background ground water quality has the potential to cause adverse health effects from exposure through drinking. Any risks associated with contaminants attributable to site activities are incremental to these risks from background ground water quality. This incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition.

  8. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project`s second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water.

  9. Field evaluation of ground water sampling devices for volatile organic compounds

    SciTech Connect (OSTI)

    Muska, C F; Colven, W P; Jones, V D; Scogin, J T; Looney, B B; Price, V Jr

    1986-01-01T23:59:59.000Z

    Previous studies conducted under laboratory conditions demonstrated that the type of device used to sample ground water contaminated with volatile organic compounds can significantly influence and analytical results. The purpose of this study was to evaluate, under field conditions, both commercial and developmental ground water sampling devices as part of an ongoing ground water contamination investigation and remediation program at the Savannah River Plant (SRP). Ground water samples were collected using six types of sampling devices in monitoring wells of different depths and concentrations of volatile organic contaminants (primarily trichloroethylene and tetrachloroethylene). The study matrix was designed to statistically compare the reuslts of each sampling device under the test conditions. Quantitative and qualitative evaluation criteria were used to determine the relative performance of each device. Two categories of sampling devices were evaluated in this field study, positive displacement pumps and grab samplers. The positive displacement pumps consisted of a centrifugal (mechanical) pump and a bladder pump. The grab samples tested were a syringe sampler, a dual-check valve bailer, a surface bomb sampler, and a pressurized bailer. Preliminary studies were conducted to establish the analytical and sampling variability associated with each device. All six devices were then used to collect ground water samples in water table (unconfined), semi-confined aquifer, and confined aquifer monitoring wells. Results were evaluated against a set of criteria that included intrasampling device variability (precision), volatile organic concentration (accuracy), sampling and analytical logistics, and cost. The study showed that, by using careful and reproducible procedures, overall sampling variability is low regardless of sampling device.

  10. Soil Water and Temperature System (SWATS) Handbook

    SciTech Connect (OSTI)

    Bond, D

    2005-01-01T23:59:59.000Z

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the SGP climate research site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  11. Protected Water Area System (Iowa)

    Broader source: Energy.gov [DOE]

    The Natural Resource Commission maintains a state plan for the design and establishment of a protected water area system and those adjacent lands needed to protect the integrity of that system. A...

  12. Relation of soil-, surface-, and ground-water distributions of inorganic nitrogen with

    E-Print Network [OSTI]

    Macdonald, Ellen

    Relation of soil-, surface-, and ground-water distributions of inorganic nitrogen with topographic position in harvested and unharvested portions of an aspen-dominated catchment in the Boreal Plain M.L. Macrae, K.J. Devito, I.F. Creed, and S.E. Macdonald Abstract: Spatial distributions of soil extractable

  13. Ground-Water Recharge in the Arid and Semiarid Southwestern United States --

    E-Print Network [OSTI]

    Ground-Water Recharge in the Arid and Semiarid Southwestern United States -- Climatic and Geologic and semiarid southwest- ern United States results from the complex interplay of climate, geology and Range subregions. Introduction The arid and semiarid southwestern United States is among the fastest

  14. Status of the ground water flow model for the UMTRA Project, Shiprock, New Mexico, site

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    A two-dimensional numerical model was constructed for the alluvial aquifer in the area of the Uranium Mill Tailings Remedial Action (UMTRA) Project Shiprock, New Mexico, site. This model was used to investigate the effects of various hydrologic parameters on the evolution of the ground water flow field. Results of the model are useful for defining uncertainties in the site conceptual model and suggesting data collection efforts to reduce these uncertainties. The computer code MODFLOW was used to simulate the two-dimensional flow of ground water in the alluvium. The escarpment was represented as a no-flow boundary. The San Juan River was represented with the MODFLOW river package. A uniform hydraulic conductivity distribution with the value estimated by the UMTRA Project Technical Assistance Contractor (TAC) and a uniform recharge distribution was used. Infiltration from the flowing artesian well was represented using the well package. The ground water flow model was calibrated to ground water levels observed in April 1993. Inspection of hydrographs shows that these levels are representative of typical conditions at the site.

  15. Environmental Assessment of Ground Water Compliance at the Durango, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    N /A

    2002-11-29T23:59:59.000Z

    The U.S. Department of Energy (DOE) is proposing a ground water compliance strategy for the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Durango, Colorado. DOE has prepared this environmental assessment to provide the public with information concerning the potential effects of this proposed strategy.

  16. ReproducedfromJournalofEnvironmentalQuality.PublishedbyASA,CSSA,andSSSA.Allcopyrightsreserved. Ground Water Quality

    E-Print Network [OSTI]

    Simpkins, William W.

    for an unfractured till (Freeze als that preclude vertical and horizontal transport of and Cherry, 1979; JournalofEnvironmentalQuality.PublishedbyASA,CSSA,andSSSA.Allcopyrightsreserved. Ground Water Quality Fracture-Controlled Nitrate and Atrazine Transport in Four Iowa Till Units Martin F-quantify the influence of fractures on solute fate and transport using three conservative and two nonconservative tracers

  17. Selenium in Oklahoma ground water and soil. Quarterly report No. 6

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30T23:59:59.000Z

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  18. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado, evaluates potential public health and environmental impacts resulting from ground water contamination at the former North Continent (NC) and Union Carbide (UC) uranium mill processing sites. The tailings at these sites will be placed in a disposal cell at the proposed Burro Canyon, Colorado, site. The US Department of Energy (DOE) anticipates the start of the first phase remedial action by the spring of 1995 under the direction of the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project will evaluate ground water contamination. This baseline risk assessment is the first site-specific document for these sites under the Ground Water Project. It will help determine the compliance strategy for contaminated ground water at the site. In addition, surface water and sediment are qualitatively evaluated in this report.

  19. Baseline risk assessment of ground water contamination at the inactive uriniferous lignite ashing site near Belfield, North Dakota. Revision 1

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    This risk assessment evaluates the potential for impacts to public health or the environment from contaminated ground water at this site caused by the burning of coal containing uranium to produce uranium. Potential risk is quantified for constituents introduced from the processing activities and not for those constituents naturally occurring in background ground water in the site vicinity. Because background ground water quality has the potential to cause adverse health effects from exposure through drinking, any risks associated with contaminants attributable to site activities are incremental to these risks from background. The incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition. The US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to remedy soil and ground water contamination at the site. The UMTRA Surface Project consists of determining the extent of soil contamination and disposing of the contaminated soils in an engineered disposal cell. The UMTRA Ground Water Project consists of evaluating ground water contamination. Under the UMTRA Ground Water Project, results of this risk assessment will help determine what ground water compliance strategy may be applied at the site.

  20. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  1. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  2. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    efficient gas water heating appliance to market; a plan toefficient gas water heating appliance to market; and to planefficient gas water heating appliance to market; and 3) to

  3. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    24 Figure 7. Comparison of Daily Water Heater28 Figure 8. Monitored Field Efficiency of Tankless Water28 Figure 9. Monitored Lab Efficiency of Tankless Water

  4. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    step in developing a realistic degradation term for tankless water heatersstep (water draw event) in the simulation. Instantaneous Gas Water Heater

  5. Ground Water Surveillance Monitoring Implementation Guide for Use with DOE O 450.1, Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-06-24T23:59:59.000Z

    This Guide assists DOE sites in establishing and maintaining surveillance monitoring programs to detect future impacts on ground water resources from site operations, to track existing ground water contamination, and to assess the potential for exposing the general public to site releases. Canceled by DOE N 251.82.

  6. Optimization of Chilled Water Systems

    E-Print Network [OSTI]

    Gidwani, B. N.

    1984-01-01T23:59:59.000Z

    OPTIMIZATION OF CHILLED WATER SYSTEMS central 0 e m a In 8. N. Gidwani, P.E. Project Director Roy F. Weston, Inc. West Chester. Pennsylvania 19380 ABSTRACT Chilled water systems are one of the major energy consumers in industrial... manually, using a prescribed operating pro- cedure for each load level, or through automatic controls. The system configuration plays an important role in establishing the economics of sequencing. For example, sequencing of chillers in series...

  7. Carbon and Water Resource Management for Water Distribution Systems

    E-Print Network [OSTI]

    Hendrickson, Thomas Peter

    2013-01-01T23:59:59.000Z

    Reliability Corporation Polyethylene Polyvinyl chloride Society of Environmental Toxicology and Chemistry Water Distribution System

  8. HYBRID GROUND SOURCE HEAT PUMP SYSTEM SIMULATION USING VISUAL MODELING TOOL FOR HVACSIM+

    E-Print Network [OSTI]

    HYBRID GROUND SOURCE HEAT PUMP SYSTEM SIMULATION USING VISUAL MODELING TOOL FOR HVACSIM+ M.H. Khan, 74078, USA ABSTRACT This paper presents a simulation of a hybrid ground source heat pump system, performed using a new graphical user interface for HVACSIM+. Hybrid ground source heat pump systems

  9. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site`s contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determine what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination.

  10. Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

  11. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP). The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. The QAIP is authorized and approved by the TAC Project Manager and QA manager. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization activities are carried out in a manner that will protect public health and safety, promote the success of the UMTRA Project and meet or exceed contract requirements.

  12. Water in clay-water systems (1) Philip F. LOW

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Water in clay-water systems (1) Philip F. LOW Department of Agronomy, Purdue University. Agric. Exp. Stn., West Lafayette, IN 47907, U.S.A. SUMMARY The swelling of clay-water systems and the thermodynamic, hydrodynamic and spectroscopic properties of water in these systems are discussed. The swelling

  13. TECHNICAL EVALUATION REPORT TUBA CITY FINAL PHASE I GROUND-WATER COMPLIANCE ACTION PLAN

    E-Print Network [OSTI]

    unknown authors

    2000-01-01T23:59:59.000Z

    remediation at the site, and is expected to last approximately 3 years. Phase I includes installation of additional recovery wells and Phase II will include expansion of remediation capacity and monitoring to ensure the aquifer restoration standards are met. Phases I and II of ground-water remediation are expected to last approximately 12 years. DESCRIPTION OF THE REQUEST: The U.S. Department of Energy (DOE) has requested concurrence from the U.S. Nuclear

  14. U.S. Department of Energy Uranium Mill Tailings Remedial Action Ground Water Project: Project plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA Project processing sites. The compliance strategy for the processing sites must satisfy the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1987). This scope of work will entail the following activities on a site-specific basis: Develop a compliance strategy based on modification of the UMTRA Surface Project RAPs or develop Ground Water Project RAPs with NRC concurrence on the RAP and full participation of the affected states and tribes. Implement the RAP to include institutional controls, where appropriate, as an interim measure until compliance with the standards is achieved. Institute long-term verification monitoring for transfer to a separate long-term surveillance program on or before the Project end date. Prepare certification or confirmation reports and modify the long-term surveillance plan (LTSP), where needed, on those sites completed prior to the Project end date.

  15. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    For the UMTRA Project site located near Canonsburg, Pennsylvania (the Canonsburg site), the Surface Project cleanup occurred from 1983 to 1985, and involved removing the uranium processing mill tailings and radioactively contaminated soils and materials from their original locations and placing them in a disposal cell located on the former Canonsburg uranium mill site. This disposal cell is designed to minimize radiation emissions and further contamination of ground water beneath the site. The Ground Water Project will evaluate the nature and the extent of ground water contamination resulting from uranium processing at the former Canonsburg uranium mill site, and will determine a ground water strategy for complying with the US Environmental Protection Agency`s (EPA) ground water standards established for the UMTRA Project. For the Canonsburg site, an evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Canonsburg site. The results of this report and further site characterization of the Canonsburg site will be used to determine how to protect public health and the environment, and how to comply with the EPA standards.

  16. PV Grounding Sponsored by the Photovoltaic Systems Assistance Center, Sandia National Laboratories

    E-Print Network [OSTI]

    Johnson, Eric E.

    PV Grounding Continued John Wiles Sponsored by the Photovoltaic Systems Assistance Center, Sandia methods will be covered. The subject is quite complex. Grounding photovoltaic (PV) systems with both AC-grounding conductors in other DC circuits and in AC circuits are sized according to Table 250.122 in the NEC

  17. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

  18. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  19. The Design of Ground-Coupled Heat Pump Systems 

    E-Print Network [OSTI]

    Parker, J. D.

    1985-01-01T23:59:59.000Z

    Ground-coupled heat pumps are being installed in increasing numbers due to proven performance and economy. The overall thermal resistance between the ground coupling fluid and a given type of surrounding soil is affected by pipe material, wall...

  20. The Design of Ground-Coupled Heat Pump Systems

    E-Print Network [OSTI]

    Parker, J. D.

    1985-01-01T23:59:59.000Z

    Ground-coupled heat pumps are being installed in increasing numbers due to proven performance and economy. The overall thermal resistance between the ground coupling fluid and a given type of surrounding soil is affected by pipe material, wall...

  1. Integrated Planning for Water and Energy Systems

    E-Print Network [OSTI]

    Keller, Arturo A.

    of water in a specific location. #12;Water Extraction & Conveyance Water Treatment End-Use AgriculturalIntegrated Planning for Water and Energy Systems Integrated Planning for Water and Energy Systems Wilkinson, Ph.D. Director, Water Policy Program Bren School of Environmental Science and Management

  2. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Lakeview, Oregon. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the UMTRA Project site near Lakeview, Oregon, was completed in 1989. The mill operated from February 1958 to November 1960. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  4. Ground water elevation monitoring at the Uranium Mill Tailings Remedial Action Salt Lake City, Utah, Vitro processing site

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    In February 1994, a ground water level monitoring program was begun at the Vitro processing site. The purpose of the program was to evaluate how irrigating the new golf driving range affected ground water elevations in the unconfined aquifer. The program also evaluated potential impacts of a 9-hole golf course planned as an expansion of the driving range. The planned golf course expansion would increase the area to be irrigated and, thus, the water that could infiltrate the processing site soil to recharge the unconfined aquifer. Increased water levels in the aquifer could alter the ground water flow regime; contaminants in ground water could migrate off the site or could discharge to bodies of surface water in the area. The potential effects of expanding the golf course have been evaluated, and a report is being prepared. Water level data obtained during this monitoring program indicate that minor seasonal mounding may be occurring in response to irrigation of the driving range. However, the effects of irrigation appear small in comparison to the effects of precipitation. There are no monitor wells in the area that irrigation would affect most; that data limitation makes interpretations of water levels and the possibility of ground water mounding uncertain. Limitations of available data are discussed in the conclusion.

  5. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1996

    SciTech Connect (OSTI)

    LaCamera, R.J.; Locke, G.L.

    1997-12-31T23:59:59.000Z

    The US Geological Survey, in support of the US Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1996. Data collected prior to 1996 are graphically presented and data collected by other agencies (or as part of other programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals in support of US Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992--96. At two water-supply wells and a nearby observation well, median water levels for calendar year 1996 were slightly lower (0.3 to 0.4 foot) than for the respective baseline periods. At four other wells in Jackass Flats, median water levels for 1996 were unchanged, slightly lower (0.2 foot), and slightly higher (0.2 and 0.7 foot) than for the respective baseline periods.

  6. A better cooling water system

    SciTech Connect (OSTI)

    Gale, T.E.; Beecher, J.

    1987-12-01T23:59:59.000Z

    To prepare their newly constructed reduced crude conversion (RCC) open recirculating cooling water system for the implementation of a corrosion and deposit control water treatment program, Ashland Petroleum, Catlettsburg, Ky., made plans for and carried out precleaning and passivation procedures. Here, the authors share the results, and some potential guidelines for one's own operations. Inspection of equipment after precleaning showed that the precleaning procedures was very effective in removing undesirable matter. After precleaning and passivation of the system, the recommended cooling water treatment program was started. Corrosion rates for mild steel specimens ranged from 0.5 to 1.5 mils per year (mpy), with an average of 1.0 mpy. The corrosion rates for admiralty specimens ranged from 0.1 to 0.2 mpy. Benefits of the precleaning and passivating programs greatly outweigh the costs, since the normal cooling water treatment program for corrosion and deposit control can then operate more effectively.

  7. COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM

    SciTech Connect (OSTI)

    Jiang Zhu; Yong X. Tao

    2011-11-01T23:59:59.000Z

    In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

  8. Introduction Ground source heat pump (GSHP) systems are used

    E-Print Network [OSTI]

    to drilling of bore- holes for vertical ground heat exchangers (GHX), or excavation for horizontal GHX heating and cooling loads and their distribution over the year, as well as ground thermal properties, undisturbed ground temperature, and GHX design, as well as other factors. For low energy buildings the greatly

  9. Information Sources for Small Water Systems 

    E-Print Network [OSTI]

    Dozier, Monty; Theodori, Gene L.; Jensen, Ricard

    2007-02-19T23:59:59.000Z

    Managers of small waters systems must have information about a variety of topics. This publication lists essential printed and electronic resources on disaster preparedness, national drinking water standards, private water well management, water...

  10. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    heat loss testing; part load performance curves for instantaneous gas water heaters; and pressure loss calculationsheat loss testing; part load performance curves for instantaneous gas water heaters; and pressure loss calculations

  11. Information Sources for Small Water Systems

    E-Print Network [OSTI]

    Dozier, Monty; Theodori, Gene L.; Jensen, Ricard

    2007-02-19T23:59:59.000Z

    E - 4 3 8 0 2 - 0 7 ?The protection of water quality is vital for managers of small water systems.? Information S o urces for Small Water System s Monty Dozier, Associate Professor and Extension Specialist; Gene Theodori, Associate Professor... and Extension Program Leader; and Ric Jensen, Assistant Research Scientist, Texas Water Resources Institute, The Texas A&M University T The protection of water quality is vital for managers of small water systems. Ample resources related to water quality...

  12. User`s Guide: Database of literature pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Hall, L.F.

    1993-05-01T23:59:59.000Z

    Since its beginnings in 1949, hydrogeologic investigations at the Idaho National Engineering Laboratory (INEL) have resulted in an extensive collection of technical publications providing information concerning ground water hydraulics and contaminant transport within the unsaturated zone. Funding has been provided by the Department of Energy through the Department of Energy Idaho Field Office in a grant to compile an INEL-wide summary of unsaturated zone studies based on a literature search. University of Idaho researchers are conducting a review of technical documents produced at or pertaining to the INEL, which present or discuss processes in the unsaturated zone and surface water-ground water interactions. Results of this review are being compiled as an electronic database. Fields are available in this database for document title and associated identification number, author, source, abstract, and summary of information (including types of data and parameters). AskSam{reg_sign}, a text-based database system, was chosen. WordPerfect 5.1{copyright} is being used as a text-editor to input data records into askSam.

  13. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Pesticide Storage and Handling

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    Proper pesticide management is important to preventing ground water contamination. This publication contains helpful information about pesticide storage facilities, mixing and loading practices, and spill cleanup. A chart lists pesticides according...

  14. Ground Water Protection Programs Implementation Guide for Use with DOE O 450.1, Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-05-05T23:59:59.000Z

    This Guide provides a description of the elements of an integrated site-wide ground water protection program that can be adapted to unique physical conditions and programmatic needs at each DOE site. Canceled by DOE N 251.82.

  15. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Fertilizer Storage and Handling

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

    1997-08-29T23:59:59.000Z

    Fertilizer is a major source of ground water contamination. This publication emphasizes the best management practices for storing fertilizers, whether you are building a new facility or modifying an existing one. It also includes information on safe...

  16. Ground-water protection standards for inactive uranium tailings sites (40 CFR 192): Background information for final rule. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The Final Background Information Document summarizes the information and data considered by the Agency in developing the ground-water protection standards. The report presents a brief description of the Title II ground water standard and how it can be used to develop the Title I rulemaking. A description of the 24 designated uranium-tailings sites and their current status in the DOE remedial-action program is included as well as a detailed analysis of the available data on the ground water in the vicinity of 14 of the 24 sites. It also describes different methods that can be used for the restoration of ground water and the costs of using these restoration methods.

  17. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.

  18. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

  19. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

  20. The prediction of the effectiveness of interceptor trenches in the remediation of ground-water contamination by petroleum hydrocarbons

    E-Print Network [OSTI]

    Mast, Mary Katherine

    1991-01-01T23:59:59.000Z

    means of ground-water remediation. Ground water at all three sites is contaminated by petroleum hydrocarbons. Sites B and C are service stations in which the source of contamination has been leaky underground storage tanks. Site C was chosen based... pumping from the interceptor trench on the surrounding observation wells. Slug tests were also performed at Site A previously by others to calculate transmissivity. Data from Site C was obtained by a consulting firm hired to provide remedial action...

  1. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment.

  2. The passage of LB962 accelerated efforts to conjunctively manage ground water and surface water in Nebraska. The drought across the High Plains

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    -fill. With more water, irrigation began earlier and was extended through pod-fill. For dry bean we couldBACKGROUND The passage of LB962 accelerated efforts to conjunctively manage ground water and surface water in Nebraska. The drought across the High Plains from 1999 to 2008 magnified the seriousness

  3. Ionospheric Threat Mitigation by Geometry Screening in Ground-Based Augmentation Systems

    E-Print Network [OSTI]

    Stanford University

    Ionospheric Threat Mitigation by Geometry Screening in Ground-Based Augmentation Systems Jiyun Lee observed during severe ionospheric storms pose potential threats to the integrity of the Ground threats, because ionospheric gradients are not observable to the ground monitor if they impact

  4. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Salt Lake City, Utah. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the first is the Surface Project, and the second is the Ground Water Project. For the UMTRA Project site known as the Vitro site, near Salt Lake City, Utah, Surface Project cleanup occurred from 1985 to 1987. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. A risk assessment is the process of describing a source of contamination and showing how that contamination may reach people and the environment. The amount of contamination people or the environment may be exposed to is calculated and used to characterize the possible health or environmental effects that may result from this exposure. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Vitro site. The results of this report and further site characterization of the Vitro site will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  5. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Falls City, Texas: Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This baseline risk assessment of ground water contamination of the uranium mill tailings site near Falls City, Texas, evaluates potential impact to public health and the environment resulting from ground water contamination at the former Susquehanna Western, Inc. (SWI), uranium mill processing site. This document fulfills the following objectives: determine if the site presents immediate or potential future health risks, determine the need for interim institutional controls, serve as a key input to project planning and prioritization, and recommend future data collection efforts to more fully characterize risk. The Uranium Mill Tailings Remedial Action (UMTRA) Project has begun its evaluation of ground water contamination at the Falls City site. This risk assessment is one of the first documents specific to this site for the Ground Water Project. The first step is to evaluate ground water data collected from monitor wells at or near the site. Evaluation of these data show the main contaminants in the Dilworth ground water are cadmium, cobalt, fluoride, iron, nickel, sulfate, and uranium. The data also show high levels of arsenic and manganese occur naturally in some areas.

  6. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

  7. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    multiple water-to-air heat pump units, which are connectedeach of the water-to-air heat pump units can run in eitheras other types of air source heat pumps, VRF systems need

  8. (Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio)

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  9. A preliminary study of the significance of flourides in Texas ground waters

    E-Print Network [OSTI]

    Dixon, Robert Melton

    1939-01-01T23:59:59.000Z

    of fluorine an4 the oomyocads Ln whLoh it is ecnhined~ Tho yayere have been fairlF wall y~, an4 represent a widslF distributed sffox't on ths part of Luvastigatoce in their effcxrte to cncyla1n xscny of the yhsncnnaua that were held to be related... to be inoxeased bf the realisation that thoxe is a widespread ooouxrenee of flnorMss in ground cscters that serve as dcniestio water suyylies end that there Ls an Lnoreasing tsndcnop to utilise ftuoxide oomyounds in th? ~eture of Lnseotioides, Whccre fluorine...

  10. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water, Revision 2

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This document contains the Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The QAIP outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QA program is designed to use monitoring, audit, and surveillance activities as management tools to ensure that UMTRA Project activities are carried out in amanner to protect public health and safety, promote the success of the UMTRA Project, and meet or exceed contract requirements.

  11. Ground-water hydrology of the Panther Junction area of Big Bend National Park, Texas

    E-Print Network [OSTI]

    Gibson, John Lawrence

    1983-01-01T23:59:59.000Z

    -made discharge in the Panther Junction area is 52 acre-ft/yr. The possible ground-water deficit from total discharge is calculated at nine acre-ft/ yr. Therefore, recharge and discharge may be in balance. Transmissivity coefficients for six wells penetrating... the Aguja aquifer are 600 gpd/ft or less. The transmissi- vity at well 47-201, which also penetrates the Aguja aqui- fer, is 30, 000 gpd/ft. The transmissivity is 5500 gpd/ft at one of two production wells penetrating the Chisos aquifer in the K-Bar area...

  12. File:04NVBTemporaryUseOfGroundWaterForExploration.pdf | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf Jump to: navigation,Information 4NVBTemporaryUseOfGroundWaterForExploration.pdf

  13. WATER DISTRIBUTION SYSTEM OPERATION: APPLICATION OF

    E-Print Network [OSTI]

    Mays, Larry W.

    CHAPTER 5 WATER DISTRIBUTION SYSTEM OPERATION: APPLICATION OF SIMULATED ANNEALING Fred E. Goldman Arizona State University, Tempe, Arizona 5.1 INTRODUCTION The operation of water distribution systems affects the water quality in these systems. EPA regulations require that water quality be maintained

  14. A review and assessment of variable density ground water flow effects on plume formation at UMTRA project sites

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    A standard assumption when evaluating the migration of plumes in ground water is that the impacted ground water has the same density as the native ground water. Thus density is assumed to be constant, and does not influence plume migration. This assumption is valid only for water with relatively low total dissolved solids (TDS) or a low difference in TDS between water introduced from milling processes and native ground water. Analyses in the literature suggest that relatively minor density differences can significantly affect plume migration. Density differences as small as 0.3 percent are known to cause noticeable effects on the plume migration path. The primary effect of density on plume migration is deeper migration than would be expected in the arid environments typically present at Uranium Mill Tailings Remedial Action (UMTRA) Project sites, where little or no natural recharge is available to drive the plume into the aquifer. It is also possible that at some UMTRA Project sites, a synergistic affect occurred during milling operations, where the mounding created by tailings drainage (which created a downward vertical gradient) and the density contrast between the process water and native ground water acted together, driving constituents deeper into the aquifer than either process would alone. Numerical experiments were performed with the U.S. Geological Survey saturated unsaturated transport (SUTRA) model. This is a finite-element model capable of simulating the effects of variable fluid density on ground water flow and solute transport. The simulated aquifer parameters generally are representative of the Shiprock, New Mexico, UMTRA Project site where some of the highest TDS water from processing has been observed.

  15. Complete characterization of the water dimer vibrational ground state and testing the VRT(ASP-W)III,

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Complete characterization of the water dimer vibrational ground state and testing the VRT(ASP-W)III, SAPT-5st, and VRT(MCY-5f) surfaces FRANK N. KEUTSCH1 , NIR GOLDMAN2 , HEATHER A. HARKER3 , CLAUDE of the water dimer very well. The VRT(MCY-5f) and especially the VRT(ASP-W)III potentials show larger

  16. What is Nonpoint Source Pollution? Nonpoint Source Pollution, or people pollution, is a contamination of our ground water,

    E-Print Network [OSTI]

    Rainforth, Emma C.

    , recreational water activities, the fishing industry, tourism and our precious drinking water resources, humans and fish. Do not dump used motor oil down storm drains or on the ground. Recycle all used motor such as fertilizing the lawn, walking pets, changing motor oil and littering. With each rainfall, pollutants generated

  17. Proposed ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This document presents the US DOE water resources protection strategy for the Green River, Utah mill tailings disposal site. The modifications in the original plan are based on new information, including ground water quality data collected after remedial action was completed, and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. All aspects are discussed in this report.

  18. Groundwater and Terrestrial Water Storage, 

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01T23:59:59.000Z

    T. E. Reilly, 2002: Flow and storage in groundwater systems.Estimating ground water storage changes in the Mississippistorage..

  19. PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION

    E-Print Network [OSTI]

    PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION M in a ground source heat pump system falls near or below 0o C, an antifreeze mixture must be used to prevent freezing in the heat pump. The antifreeze mixture type and concentration has a number of implications

  20. Efficiency improvement of a ground coupled heat pump system from energy management

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Efficiency improvement of a ground coupled heat pump system from energy management N. Pardo a,*, Á coupled heat pump Energy efficiency Numerical simulation a b s t r a c t The installed capacity of an air to improve the efficiency of a ground coupled heat pump air conditioning system by adapting its produced

  1. GROUND-COUPLED HEAT-PUMP-SYSTEM EXPERIMENTAL RESULTS* Philip D. Metz

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    the cost and feasibility of a residential ground coupled heat pump space conditioning system requiring#12;GROUND-COUPLED HEAT-PUMP-SYSTEM EXPERIMENTAL RESULTS* Philip D. Metz _Solar and Renewables house in Upton, Long Island, New York has been heated and cooled by a liquid source heat pump using

  2. Water Resource System Optimization by Geometric Programming

    E-Print Network [OSTI]

    Meier, W. L.; Shih, C. S.; Wray, D. J.

    Water resources planners and systems analysts are continually confronted with many complex optimization problems. Two major factors contribute to this problem. Firstly, mathematical modeling and system description capabilities in water resources...

  3. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Clemson University Water System System No, SC3910006 Clemson, SC 2008 Annual Water-Quality Report and reliable supply of high-quality drinking water. We test our water using sophisticated equipment

  4. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Clemson University Water System System No, SC3910006 Clemson, SC 2004 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  5. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Clemson University Water System System No, SC3910006 Clemson, SC 2005 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  6. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    of microbial contaminants. Maximum Residual Disinfectant Level Goal or (MRDLG): The level of drinking water1 Clemson University Water System System No, SC3910006 Clemson, SC 2007 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  7. Fant's Grove Water System System No, SC390112

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Fant's Grove Water System System No, SC390112 Clemson, SC 2003 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  8. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    of microbial contaminants. Maximum Residual Disinfectant Level Goal or (MRDLG): The level of drinking water1 Clemson University Water System System No, SC3910006 Clemson, SC 2006 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  9. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Clemson University Water System System No, SC3910006 Clemson, SC 2003 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  10. Fant's Grove Water System System No, SC390112

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Fant's Grove Water System System No, SC390112 Clemson, SC 2004 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  11. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21T23:59:59.000Z

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  12. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25T23:59:59.000Z

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  13. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I

    SciTech Connect (OSTI)

    None

    1996-10-01T23:59:59.000Z

    This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings " ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings." Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are in accordance with the final standards. The EPA reserves the right to modify the ground water standards, if necessary, based on changes in EPA drinking water standards. Appendix A contains a copy of the 1983 EPA ground water compliance standards, the 1987 proposed changes to the standards, and the 1995 final rule. Under UMTRA, DOE is responsible for bringing the designated processing sites into compliance with the EPA ground water standards and complying with all other applicable standards and requirements. The U.S. Nuclear Regulatory Commission (NRC) must concur with DOE's actions. States are full participants in the process. The DOE also must consult with any affected Indian tribes and the Bureau of Indian Affairs. Uranium processing activities at most of the inactive mill sites resulted in the contamination of ground water beneath and, in some cases, downgradient of the sites. This contaminated ground water often has elevated levels of constituents such as but not limited to uranium and nitrates. The purpose of the UMTRA Ground Water Project is to eliminate or reduce to acceptable levels the potential health and environmental consequences of milling activities by meeting the EPA ground water standards.

  14. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    SciTech Connect (OSTI)

    Hong, Tainzhen; Liu, Xaiobing

    2009-11-01T23:59:59.000Z

    With the current movement toward net zero energy buildings, many technologies are promoted with emphasis on their superior energy efficiency. The variable refrigerant flow (VRF) and ground source heat pump (GSHP) systems are probably the most competitive technologies among these. However, there are few studies reporting the energy efficiency of VRF systems compared with GSHP systems. In this article, a preliminary comparison of energy efficiency between the air-source VRF and GSHP systems is presented. The computer simulation results show that GSHP system is more energy efficient than the air-source VRF system for conditioning a small office building in two selected US climates. In general, GSHP system is more energy efficient than the air-source VRV system, especially when the building has significant heating loads. For buildings with less heating loads, the GSHP system could still perform better than the air-source VRF system in terms of energy efficiency, but the resulting energy savings may be marginal.

  15. Stealthy Deception Attacks on Water SCADA Systems

    E-Print Network [OSTI]

    Hu, Fei

    Stealthy Deception Attacks on Water SCADA Systems Saurabh Amin1 Xavier Litrico2 Alexandre M. Bayen1 The Gignac Water SCADA System Modeling of Cascade Canal Pools Attacks on PI Control Limits on Stability and Detectability #12;Recapitulation from last year The Gignac Water SCADA System Modeling of Cascade Canal Pools

  16. Ball State Completes Largest U.S. Ground-Source Geothermal System...

    Broader source: Energy.gov (indexed) [DOE]

    ground-source geothermal system, the nation's largest geothermal heating and cooling system, DOE announced on March 20. DOE played a part in the project by providing a 5 million...

  17. Comment and response document for the ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The US Department of Energy (DOE) responses to comments from both the US Nuclear Regulatory Commission (NRC) and the state of Utah are provided in this document. The Proposed Ground Water Protection Strategy for the Uranium Mill Tailings Site at Green River, Utah, presents the proposed (modified) ground water protection strategy for the disposal cell at the Green River disposal site for compliance with Subpart A of 40 CFR Part 192. Before the disposal cell was constructed, site characterization was conducted at the Green River Uranium Mill Tailings Remedial Action (UMTRA) Project site to determine an acceptable compliance strategy. Results of the investigation are reported in detail in the final remedial action plan (RAP) (DOE, 1991a). The NRC and the state of Utah have accepted the final RAP. The changes in this document relate only to a modification of the compliance strategy for ground water protection.

  18. US Department of Energy Uranium Mill Tailings Remedial Action ground water Project. Revision 1, Version 1: Final project plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-21T23:59:59.000Z

    The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA processing sites. The compliance strategy for the processing sites must satisfy requirements of the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1988). This scope of work will entail the following activities, on a site-specific basis: Development of a compliance strategy based upon modification of the UMTRA Surface Project remedial action plans (RAP) or development of Ground Water Project RAPs with NRC and state or tribal concurrence on the RAP; implementation of the RAP to include establishment of institutional controls, where appropriate; institution of long-term verification monitoring for transfer to a separate DOE program on or before the Project end date; and preparation of completion reports and final licensing on those sites that will be completed prior to the Project end date.

  19. Distrbuted Sensing Systems for Water Quality Assesment and Management

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Sensing Systems for Water Quality Assessment and ManagementSensing Systems for Water Quality Assessment and ManagementSensing Systems for Water Quality Assessment and Management

  20. Montana Ground Water Pollution Control System Information Webpage | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| Open Energy InformationEnergy

  1. Montana Ground Water Pollution Control System Permit Application Forms

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| Open Energy

  2. Rate Setting for Small Water Systems 

    E-Print Network [OSTI]

    Dozier, Monty; Theodori, Gene L.; Jensen, Ricard

    2007-03-28T23:59:59.000Z

    Jensen, Assistant Research Scientist, Texas Water Resources Institute; The Texas A&M University System K Knowing how to set the proper rate for water service is a daunting challenge for small water systems. The rates must be high enough to re- cover...

  3. Evaluation of health risks associated with proposed ground water standards at selected inactive uranium mill-tailings sites

    SciTech Connect (OSTI)

    Hamilton, L.D.; Medeiros, W.H.; Meinhold, A.; Morris, S.C.; Moskowitz, P.D.; Nagy, J.; Lackey, K.

    1989-04-01T23:59:59.000Z

    The US Environmental Protection Agency (EPA) has proposed ground water standards applicable to all inactive uranium mill-tailings sites. The proposed standards include maximum concentration limits (MCL) for currently regulated drinking water contaminants, as well as the addition of standards for molybdenum, uranium, nitrate, and radium-226 plus radium-228. The proposed standards define the point of compliance to be everywhere downgradient of the tailings pile, and require ground water remediation to drinking water standards if MCLs are exceeded. This document presents a preliminary description of the Phase 2 efforts. The potential risks and hazards at Gunnison, Colorado and Lakeview, Oregon were estimated to demonstrate the need for a risk assessment and the usefulness of a cost-benefit approach in setting supplemental standards and determining the need for and level of restoration at UMTRA sites. 8 refs., 12 tabs.

  4. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Livestock Manure Storage and Treatment Facilities

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    -tight design, stalled according to according to accepted medium-textured soils coarse-textured above ground) accepted engineering engineering standards (silt loam, loam). soils (sands, sandy standards and specifi- and specifications. Not Water table deeper... loam). Water table cations. Properly maintained. than 20 feet. or fractured bed- maintained. rock shallower than 20 feet. Concrete (liquid- Designed and in- Designed and installed Concrete cracked, Concrete cracked, tight design) stalled according...

  5. Resources for Small Water Systems in Texas 

    E-Print Network [OSTI]

    Dozier, Monty; Theodori, Gene L.; Jensen, Ricard

    2007-03-28T23:59:59.000Z

    and Extension Specialist; Monty Dozier, Assistant Professor and Extension Specialist; and Ric Jensen, Assistant Research Scientist, Texas Water Resources Institute; The Texas A&M University System There are many resources to help managers of small water...

  6. Rate Setting for Small Water Systems

    E-Print Network [OSTI]

    Dozier, Monty; Theodori, Gene L.; Jensen, Ricard

    2007-03-28T23:59:59.000Z

    Knowing how to set the proper rate for water service is a challenge for small water systems. They must generate enough revenue to remain solvent, but offer affordable service. This publication describes the various types of rates and explains...

  7. Brine contamination of ground water and streams in the Baxterville Oil Field Area, Lamar and Marion Counties, Mississippi. Water resources investigation

    SciTech Connect (OSTI)

    Kalkhoff, S.J.

    1993-12-31T23:59:59.000Z

    The report defines the extent of oil-field-brine contamination in ground water and streams in the Baxterville oil field area. The report is based largely on data collected during the period October 1984 through November 1985. Water samples were collected from streams and wells in the study area. Data from a previous study conducted in the vicinity of the nearby Tatum Salt Dome were used for background water-quality information. Natural surface-water quality was determined by sampling streamflow from a nearby basin having no oil field activities and from samples collected in an adjacent basin during a previous study.

  8. Ground state cooling of quantum systems via a one-shot measurement

    E-Print Network [OSTI]

    P. V. Pyshkin; Da-Wei Luo; J. Q. You; Lian-Ao Wu

    2015-03-13T23:59:59.000Z

    We prove that there exists a family of quantum systems that can be cooled to their ground states by a one-shot projective measurement on the ancillas coupled to these systems. Consequently, this proof gives rise to the conditions for achieving the one-shot measurement ground-state cooling (OSMGSC). We also propose a general procedure for finding unitary propagators and corresponding Hamiltonians to realize such cooling by means of inverse engineering technique.

  9. Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters via Reduction by Zero-Valent Metals

    SciTech Connect (OSTI)

    Yarmoff, Jory A.; Amrhein, Christopher

    1999-06-01T23:59:59.000Z

    Contaminated groundwater and surface waters are a problem throughout the United States and the world. In many instances, the types of contamination can be directly attributed to man's actions. For instance, the burial of chemical wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater and surface water contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements (including radioisotopes) that are soluble and mobile in soils and aquifers. Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. Uranium is a particularly widespread contaminant at most DOE sites including Oak Ridge, Rocky Flats, Hanford, Idaho (INEEL), and Fernald. The uranium contamination is associated with mining and milling of uranium ore (UMTRA sites), isotope separation and enrichment, and mixed waste and TRU waste burial. In addition, the careless disposal of halogenated solvents, such as carbon tetrachloride and trichloroethylene, has further contaminated many groundwaters at these sites. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used on an experimental basis at many DOE sites. Both in situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the contaminants and the iron surfaces. We are performing fundamental investigations of the interactions of the relevant chlorinated solvents and trace element-containing compounds with single- and poly-crystalline Fe surfaces. The aim of this work is to develop th e fundamental physical and chemical understanding that is necessary for the development of cleanup techniques and procedures.

  10. Acoustically enhanced remediation of contaminated soils and ground water. Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The Phase 1 laboratory bench-scale investigation results have shown that acoustically enhanced remediation (AER) technology can significantly accelerate the ground water remediation of non-aqueous phase liquids (NAPLs) in unconsolidated soils. The testing also determined some of the acoustic parameters which maximize fluid and contaminant extraction rates. A technology merit and trade analysis identified the conditions under which AER could be successfully deployed in the field, and an analysis of existing acoustical sources and varying methods for their deployment found that AER technology can be successfully deployed in-situ. Current estimates of deployability indicate that a NAPL plume 150 ft in diameter can be readily remediated. This program focused on unconsolidated soils because of the large number of remediation sites located in this type of hydrogeologic setting throughout the nation. It also focused on NAPLs and low permeability soil because of the inherent difficult in the remediation of NAPLs and the significant time and cost impact caused by contaminated low permeability soils. This overall program is recommended for Phase 2 which will address the technology scaling requirements for a field scale test.

  11. Contaminant Transport in Municipal Water Systems

    E-Print Network [OSTI]

    Stockie, John

    Chapter 1 Contaminant Transport in Municipal Water Systems Presented at the 3rd PIMS Industrial the inverse problem. We begin in the following sections with an overview of the physics of ow in water forcing to raise the hydraulic head of the water in the network. The nodes are either junctions, tanks

  12. Ground validation of an intermittent flow visualization system

    E-Print Network [OSTI]

    Myatt, James Harold

    1991-01-01T23:59:59.000Z

    of the bottom of the cartridge container. . ?. Fig. 48 Detailed drawing of the carnidge container and retainer . . . . . . . 90 92 . . . . 93 Fig. 49 Detailed drawing of the top of the cartridge container . . . . Fig. 50 Detailed drawing of the cartridge... of the pressure and visualization medium exit veloci- ties produced by the system ~ experimental verification that the system does not produce unsafe pressures or temperatures. DESIGN DEVELOPMENT System Requirements A system which can produce discrete...

  13. VOLUME 11, NUMBER 2 HVAC&R RESEARCH APRIL 2005 Ground-Source Heat Pump System Research--

    E-Print Network [OSTI]

    VOLUME 11, NUMBER 2 HVAC&R RESEARCH APRIL 2005 165 EDITORIAL Ground-Source Heat Pump System Research-- Past, Present, and Future J.D. Spitler, PhD, PE Fellow ASHRAE Ground-source heat pump (GSHP-source heat pumps installed worldwide. These systems may be closed-loop ("ground-coupled") or open

  14. www.iaei.org July.August 2005 IAEI NEWS 83 GROUNDING PV AND SYSTEMS FINE STRANDED CONDUCTORS

    E-Print Network [OSTI]

    Johnson, Eric E.

    with single inverters sized below about 10 kW. Figure 1 shows the dc grounding for a PV system as spelled outwww.iaei.org July.August 2005 IAEI NEWS 83 GROUNDING PV AND SYSTEMS FINE STRANDED CONDUCTORS Grounding In the "Perspectives on PV" article in the September- October 2004 issue of the IAEI News

  15. System for removal of arsenic from water

    DOE Patents [OSTI]

    Moore, Robert C.; Anderson, D. Richard

    2004-11-23T23:59:59.000Z

    Systems for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical systems for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A system for continuous removal of arsenic from water is provided. Also provided is a system for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  16. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    SciTech Connect (OSTI)

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01T23:59:59.000Z

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables.

  17. Performance Evaluation of a ground source heat pump system based on ANN and ANFIS models

    E-Print Network [OSTI]

    Sun, W.; Hu, P.; Lei, F.; Zhu, N.; Zhang,J.

    2014-01-01T23:59:59.000Z

    Performance evaluation of a ground source heat pump system based on ANN and ANFIS models Weijuan SUN a, Pingfang HUa,*, Fei Leia, Na Zhua, Jiangning Zhanga aHuazhong University of Science and Technology, Wuhan 430074, P. R. China Abstract...: The aim of this work is to calculate the heat pump coefficient of performance (COP) and the system COP of a ground source heat pump (GSHP) system based on an artificial neural network (ANN) model and (adaptive neuro-fuzzy inference system (ANFIS) model...

  18. Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

  19. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 3, Ground water hydrology report: Preliminary final

    SciTech Connect (OSTI)

    Not Available

    1994-03-04T23:59:59.000Z

    The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent ground water contamination resulting from processing activities at inactive uranium milling sites (52 FR 36000 (1987)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, 42 USC {section}7901 et seq., the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined that for Slick Rock, this assessment shall include hydrogeologic site characterization for two separate uranium processing sites, the Union Carbide (UC) site and the North Continent (NC) site, and for the proposed Burro Canyon disposal site. The water resources protection strategy that describes how the proposed action will comply with the EPA ground water protection standards is presented in Attachment 4. The following site characterization activities are discussed in this attachment: Characterization of the hydrogeologic environment, including hydrostratigraphy, ground water occurrence, aquifer parameters, and areas of recharge and discharge. Characterization of existing ground water quality by comparison with background water quality and the maximum concentration limits (MCL) of the proposed EPA ground water protection standards. Definition of physical and chemical characteristics of the potential contaminant source, including concentration and leachability of the source in relation to migration in ground water and hydraulically connected surface water. Description of local water resources, including current and future use, availability, and alternative supplies.

  20. Optimal Ground-Source Heat Pump System Design

    Broader source: Energy.gov [DOE]

    Project objectives: Develop a least-cost design tool (OptGSHP) that will enable GSHP developers to analyze system cost and performance in a variety of building applications to support both design, operational and purchase decisions. Integrate groundwater flow and heat transport into OptGSHP. Demonstrate the usefulness of OptGSHP and the significance of a systems approach to the design of GSHP systems.

  1. Ground difference compensating system | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Resources U.S. Science Information - Science.gov Global Science Information - WorldWideScience.org - Energy Technology Data Exchange - International Nuclear Information System...

  2. Remedial action plan and site design for stabilization of the inactive Uranium Mill Tailing site Maybell, Colorado. Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) has established health and environmental regulations to correct and prevent ground water contamination resulting from former uranium processing activities at inactive uranium processing sites (40 CFR Part 192 (1993)) (52 FR 36000 (1978)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC {section} 7901 et seq.), the U.S. Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has decided that each assessment will include information on hydrogeologic site characterization. The water resources protection strategy that describes the proposed action compliance with the EPA ground water protection standards is presented in Attachment 4, Water Resources Protection Strategy. Site characterization activities discussed in this section include the following: (1) Definition of the hydrogeologic characteristics of the environment, including hydrostratigraphy, aquifer parameters, areas of aquifer recharge and discharge, potentiometric surfaces, and ground water velocities. (2) Definition of background ground water quality and comparison with proposed EPA ground water protection standards. (3) Evaluation of the physical and chemical characteristics of the contaminant source and/or residual radioactive materials. (4) Definition of existing ground water contamination by comparison with the EPA ground water protection standards. (5) Description of the geochemical processes that affect the migration of the source contaminants at the processing site. (6) Description of water resource use, including availability, current and future use and value, and alternate water supplies.

  3. Water turbine system and method of operation

    DOE Patents [OSTI]

    Costin, Daniel P. (Montpelier, VT)

    2011-05-10T23:59:59.000Z

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  4. Water turbine system and method of operation

    DOE Patents [OSTI]

    Costin, Daniel P.

    2010-06-15T23:59:59.000Z

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  5. Water turbine system and method of operation

    DOE Patents [OSTI]

    Costin, Daniel P. (Montpelier, VT)

    2009-02-10T23:59:59.000Z

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  6. Water treatment process and system for metals removal using Saccharomyces cerevisiae

    DOE Patents [OSTI]

    Krauter, Paula A. W. (Livermore, CA); Krauter, Gordon W. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

  7. The common ground of genomics and systems biology

    E-Print Network [OSTI]

    Conesa, Ana; Mortazavi, Ali

    2014-01-01T23:59:59.000Z

    8/S2. Authors’ details Genomics of Gene Expression Lab,systems biology. Annu Rev. Genomics Hum. Genet 2001, 2:343-projection strategies. Genomics 2008, 92(6):373-83. 31.

  8. Bordering on Water Management: Ground and Wastewater in the United States - Mexico Transboundary Santa Cruz Basin

    E-Print Network [OSTI]

    Milman, Anita Dale

    2009-01-01T23:59:59.000Z

    have been caused to a lack of water; rather it is believedconsider how, given a lack of clear water management goals,incomplete due to a lack of surface water measurements. Not

  9. Final Environmental Assessment and Finding of No Significant Impact: Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    N /A

    2003-03-13T23:59:59.000Z

    This environmental assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Slick Rock, Colorado, Uranium Mill Tailings Remedial Action Project sites. The sites consist of two areas designated as the North Continent (NC) site and the Union Carbide (UC) site. In 1996, the U.S. Department of Energy (DOE) completed surface cleanup at both sites and encapsulated the tailings in a disposal cell 5 miles east of the original sites. Maximum concentration limits (MCLs) referred to in this environmental assessment are the standards established in Title 40 ''Code of Federal Regulations'' Part 192 (40 CFR 192) unless noted otherwise. Ground water contaminants of potential concern at the NC site are uranium and selenium. Uranium is more prevalent, and concentrations in the majority of alluvial wells at the NC site exceed the MCL of 0.044 milligram per liter (mg/L). Selenium contamination is less prevalent; samples from only one well had concentrations exceeding the MCL of 0.01 mg/L. To achieve compliance with Subpart B of 40 CFR 192 at the NC site, DOE is proposing the strategy of natural flushing in conjunction with institutional controls and continued monitoring. Ground water flow and transport modeling has predicted that concentrations of uranium and selenium in the alluvial aquifer will decrease to levels below their respective MCLs within 50 years.

  10. Integrated system dynamics toolbox for water resources planning.

    SciTech Connect (OSTI)

    Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don (University of Chicago, Chicago, IL); Hanson, Jason (University of New Mexico, Albuquerque, NM); Grimsrud, Kristine (University of New Mexico, Albuquerque, NM); Thacher, Jennifer (University of New Mexico, Albuquerque, NM); Broadbent, Craig (University of New Mexico, Albuquerque, NM); Brookshire, David (University of New Mexico, Albuquerque, NM); Chemak, Janie (University of New Mexico, Albuquerque, NM); Cockerill, Kristan (Cockeril Consulting, Boone, NC); Aragon, Carlos (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Hallett, Heather (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Vivoni, Enrique (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Roach, Jesse

    2006-12-01T23:59:59.000Z

    Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.

  11. Navigation System for Ground Vehicles using Temporally Interconnected Observers

    E-Print Network [OSTI]

    navigation technique for an automotive vehicle. This method involves several observers, each designed for a particular type of trajectory, that are turned on and off according to a switching policy. Each observer of observer design of vehicular systems. A typical example of such practices1 is found in the navigation

  12. Robot design for leak detection in water-pipe systems

    E-Print Network [OSTI]

    Choi, Changrak

    2012-01-01T23:59:59.000Z

    Leaks are major problem that occur in the water pipelines all around the world. Several reports indicate loss of around 20 to 30 percent of water in the distribution of water through water pipe systems. Such loss of water ...

  13. Ground-water flow and recharge in the Mahomet Bedrock Valley Aquifer, east-central Illinois: A conceptual model based on hydrochemistry

    SciTech Connect (OSTI)

    Panno, S.V.; Hackley, K.C.; Cartwright, K.; Liu, C.L. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-04-01T23:59:59.000Z

    Major-ion and isotopic analyses of ground water have been used to develop a conceptual model of flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA). The MVA is composed of clean, permeable sands and gravels and forms a basal'' fill up to 60 m thick in a buried, west-trending bedrock valley. A thick succession of glacial tills, some containing interbedded lenses of sand and gravel, covers the MVA. Three regions within the MVA have hydrochemically distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west.

  14. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress report for the period October 1 to December 31, 1989

    SciTech Connect (OSTI)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E. (eds.)

    1990-03-01T23:59:59.000Z

    This is Volume 1 of a two-volume document that describes the progress of 15 Hanford Site ground-water monitoring projects for the period October 1 to December 31, 1989. This volume discusses the projects. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the samples aquifer meets regulatory standards for drinking water quality. 51 refs., 35 figs., 86 tabs.

  15. Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL). Version 1.0

    SciTech Connect (OSTI)

    Bandy, P.J.; Hall, L.F.

    1993-03-01T23:59:59.000Z

    This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG&G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code.

  16. Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL). [Contaminant transport computer codes

    SciTech Connect (OSTI)

    Bandy, P.J.; Hall, L.F.

    1993-03-01T23:59:59.000Z

    This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code.

  17. PII S0016-7037(00)00369-0 Ra isotopes and Rn in brines and ground waters of the Jordan-Dead Sea Rift Valley

    E-Print Network [OSTI]

    Yehoshua, Kolodny

    PII S0016-7037(00)00369-0 Ra isotopes and Rn in brines and ground waters of the Jordan-Dead Sea Valley waters being mixtures of fresh water with saline brines. Ra is efficiently extracted from surrounding rocks into the brine end member. 228 Ra/226 Ra ratios are exceptionally low 0.07 to 0.9, mostly

  18. High temperature hot water systems: A primer

    SciTech Connect (OSTI)

    Govan, F.A. [NMD and Associates, Cincinnati, OH (United States)

    1998-01-01T23:59:59.000Z

    The fundamental principles of high temperature water (HTW) system technology and its advantages for thermal energy distribution are presented. Misconceptions of this technology are also addressed. The paper describes design principles, applications, HTW properties, HTW system advantages, selecting the engineer, load diversification, design temperatures, system pressurization, pump considerations, constant vs. VS pumps, HTW generator types, and burners and controls.

  19. Resources for Small Water Systems in Texas

    E-Print Network [OSTI]

    Dozier, Monty; Theodori, Gene L.; Jensen, Ricard

    2007-03-28T23:59:59.000Z

    This publication is a guide to finding the many resources available to help managers of small water systems in Texas. Details are provided about sources of financial assistance, tools for capacity building, training programs and educational...

  20. Renewable Energy Powered Water Treatment Systems 

    E-Print Network [OSTI]

    Richards, Bryce S.; Schäfer, Andrea

    2009-01-01T23:59:59.000Z

    There are many motivations for choosing renewable energy technologies to provide the necessary energy to power water treatment systems for reuse and desalination. These range from the lack of an existing electricity grid, ...

  1. Chlorofluorocarbons, Sulfur Hexafluoride, and Dissolved Permanent Gases in Ground Water from Selected Sites In and Near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994 - 1997

    SciTech Connect (OSTI)

    Busenberg, E.; Plummer, L.N.; Bartholomay, R.C.; Wayland, J.E.

    1998-08-01T23:59:59.000Z

    From July 1994 through May 1997, the U.S. Geological Survey, in cooperations with the Department of Energy, sampled 86 wells completed in the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory (INEEL). The wells were sampled for a variety of constituents including one- and two-carbon halocarbons. Concentrations of dichlorodifluoromethane (CFC-12), trichlorofluoromethane (CFC-11), and trichlorotrifluororoethane (CFC-113) were determined. The data will be used to evaluate the ages of ground waters at INEEL. The ages of the ground water will be used to determine recharge rates, residence time, and travel time of water in the Snake River Plain aquifer in and near INEEL. The chromatograms of 139 ground waters are presented showing a large number of halomethanes, haloethanes, and haloethenes present in the ground waters underlying the INEEL. The chromatograms can be used to qualitatively evaluate a large number of contaminants at parts per trillion to parts per billion concentrations. The data can be used to study temporal and spatial distribution of contaminants in the Snake River Plain aquifer. Representative compressed chromatograms for all ground waters sampled in this study are available on two 3.5-inch high density computer disks. The data and the program required to decompress the data can be obtained from the U.S. Geological Survey office at Idaho Falls, Idaho. Sulfur hexafluoride (SF6) concentrations were measured in selected wells to determine the feasibility of using this environmental tracer as an age dating tool of ground water. Concentrations of dissolved nitrogen, argon, carbon dioxide, oxygen, and methane were measured in 79 ground waters. Concentrations of dissolved permanent gases are tabulated and will be used to evaluate the temperature of recharge of ground water in and near the INEEL.

  2. VARIATIONS IN RADON-222 IN SOIL AND GROUND WATER AT THE NEVADA TEST SITE

    E-Print Network [OSTI]

    Wollenberg, H.

    2010-01-01T23:59:59.000Z

    water 222Rn by gamma-ray spectrometry. There was no clearlyradioelement content by gamma-ray spectrometry. Results are

  3. Rev. 02/15/10 Construction: Any construction project regardless of size that disturbs soil, ground cover, or uses water (including pressure washing) that

    E-Print Network [OSTI]

    Rev. 02/15/10 Construction: Any construction project regardless of size that disturbs soil, ground/proposed construction project: EHS Office Use Only Recommendations: ______________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ ___________________________________________ _____________________ Approval Date Storm Water Management Program The University of Texas at Austin Notification of Construction

  4. A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System

    E-Print Network [OSTI]

    Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

    2006-01-01T23:59:59.000Z

    In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS...

  5. A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System 

    E-Print Network [OSTI]

    Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

    2006-01-01T23:59:59.000Z

    In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS...

  6. Evaluation of two solid waste landfills, a Superfund site, and strip mining on ground water quality in Portage County, Ohio

    SciTech Connect (OSTI)

    Hunt, D.L. (OH/EPA, Logan, OH (United States)); Moody, J.B. (J.B. Moody and Associates, Athens, OH (United States)); Smith, G.W. (Ohio Univ., Athens, OH (United States). Dept. of Geology)

    1992-01-01T23:59:59.000Z

    The Willow Creek Landfill, the Jones Landfill, the Summit National Superfund Site, and Peterson Strip Mine are located in a 2 mi[sup 2] area in the SE portion of Portage County, OH. This study evaluated these potential sources of environmental pollution on ground water resources in 2 townships in Portage County, OH. The study area, comprising 15 mi[sup 2], is located in the glaciated portion of NE Ohio. The geology consists of alternating sandstones, siltstones, shales, and coal of the Pottsville Group of Pennsylvanian Age, overlain with glacial drift of the Wisconsin Glaciation of the Pleistocene Epoch. The Pottsville Formation was divided into 3 aquifers: shallow, intermediate, and deep for this study. 55 domestic wells in the study area and 13 monitoring wells at Willow Creek landfill were samples and analyzed for 23 inorganic chemical parameters. High concentrations of total dissolved solids, hardness, Cl, SO[sub 4], Ca, Fe, Mg, Mn, and Na were found in wells located to the SE and W of the potential contamination sources, from water in the shallow aquifer. The other two aquifers are inorganically uncontaminated at this time. The presence of a buried glacial valley is influencing the ground water flow patterns locally, which results in an increase in total dissolved solids with other inorganic geochemical parameters to the west of the four contamination sources.

  7. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...

    Energy Savers [EERE]

    Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America...

  8. Ground state cooling is not possible given initial system-thermal bath factorization

    E-Print Network [OSTI]

    Lian-Ao Wu; Dvira Segal; Paul Brumer

    2012-10-16T23:59:59.000Z

    In this paper we prove that a fundamental constraint on the cooling dynamic implies that it is impossible to cool, via a unitary system-bath quantum evolution, a system that is embedded in a thermal environment down to its ground state, if the initial state is a factorized product of system and bath states. The latter is a crucial but artificial assumption often included in many descriptions of system-bath dynamics. The analogous conclusion holds for 'cooling' to any pure state of the system.

  9. Arkansas Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    and heavy metals to surface runoff following storm events. Evaluating runoff water quality response, innovative domestic wastewater disposal systems, ground water modeling and landuse mapping, erosionArkansas Water Resources Center Annual Technical Report FY 2008 Arkansas Water Resources Center

  10. Second generation ground coupled solar assisted heat pump systems. Six month progress report

    SciTech Connect (OSTI)

    Rhodes, G W; Backlund, J C; Helm, J M

    1981-01-01T23:59:59.000Z

    Progress is reported on an investigation of the technical and commercial viability of a novel ground coupled, solar assisted heat pump system for residential space heating and cooling applications. Specific areas of study are solar collector/heat rejector performance, flat plate earth heat exchanger performance, system performance simulations, and commercialization and marketing analysis. Collector/rejector performance, determined by various thermal experiments, is discussed. The design and construction of an experimental site to study ground coupling is discussed. Theoretical analysis is also presented. The performance of the GCSAHP system and conventional alternatives, as determined by simple computer models, is presented and discussed. Finally, the commercial viability of this unique space conditioning system is examined.

  11. Water Usage for In-Situ Oil Shale Retorting – A Systems Dynamics Model

    SciTech Connect (OSTI)

    Earl D. Mattson; Larry Hull; Kara Cafferty

    2012-12-01T23:59:59.000Z

    A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9™ software package. Three phases of an insitu retort were consider; a construction phase primarily accounts for water needed for drilling and water produced during dewatering, an operation phase includes the production of water from the retorting process, and a remediation phase water to remove heat and solutes from the subsurface as well as return the ground surface to its natural state. Throughout these three phases, the water is consumed and produced. Consumption is account for through the drill process, dust control, returning the ground water to its initial level and make up water losses during the remedial flushing of the retort zone. Production of water is through the dewatering of the retort zone, and during chemical pyrolysis reaction of the kerogen conversion. The major water consumption was during the remediation of the insitu retorting zone.

  12. Foundation heat exchangers for residential ground source heat pump systems Numerical modeling and experimental validation

    SciTech Connect (OSTI)

    Xing, Lu [Oklahoma State University; Cullin, James [Oklahoma State University; Spitler, Jeffery [Oklahoma State University; Im, Piljae [ORNL; Fisher, Daniel [Oklahoma State University

    2011-01-01T23:59:59.000Z

    A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data-heat pump entering fluid temperatures typically within 1 C (1.8 F) - with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.

  13. Electrosorption on carbon aerogel electrodes as a means of treating low-level radioactive wastes and remediating contaminated ground water

    SciTech Connect (OSTI)

    Tran, Tri Duc; Farmer, Joseph C.; DePruneda, Jean H.; Richardson, Jeffery H.

    1997-07-01T23:59:59.000Z

    A novel separation process based upon carbon aerogel electrodes has been recently developed for the efficient removal of ionic impurities from aqueous streams. This process can be used as an electrical y- regenerated alternative to ion exchange, thereby reducing-the need for large quantities of chemical regenerants. Once spent (contaminated), these regenerants contribute to the waste that must be disposed of in landfills. The elimination of such wastes is especially beneficial in situations involving radioactive contaminants, and pump and treat processing of massive volumes of ground water. A review and analysis of potential applications will be presented.

  14. System for detecting and limiting electrical ground faults within electrical devices

    DOE Patents [OSTI]

    Gaubatz, Donald C. (Cupertino, CA)

    1990-01-01T23:59:59.000Z

    An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.

  15. STATE OF CALIFORNIA AIR, WATER SIDE SYSTEM, SERVICE HOT WATER & POOL REQUIREMENTS

    E-Print Network [OSTI]

    Certified Water Heater §111, §113 (a) Water Heater Efficiency §113 (b) Service Water Heating Installation/A" in the column next to the measure. 2: For each water heater, pool heat and domestic water loop (or groupsSTATE OF CALIFORNIA AIR, WATER SIDE SYSTEM, SERVICE HOT WATER & POOL REQUIREMENTS CEC-MECH-2C

  16. Ground water of Yucca Mountain: How high can it rise?; Final report

    SciTech Connect (OSTI)

    NONE

    1992-12-31T23:59:59.000Z

    This report describes the geology, hydrology, and possible rise of the water tables at Yucca Mountain. The possibilities of rainfall and earthquakes causing flooding is discussed.

  17. In-situ continuous water monitoring system

    DOE Patents [OSTI]

    Thompson, C.V.; Wise, M.B.

    1998-03-31T23:59:59.000Z

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer. 2 figs.

  18. In-situ continuous water monitoring system

    DOE Patents [OSTI]

    Thompson, Cyril V. (Knoxville, TN); Wise, Marcus B. (Kingston, TN)

    1998-01-01T23:59:59.000Z

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer.

  19. In Situ Production of Chlorine-36 in the Eastern Snake River Plain Aquifer, Idaho: Implications for Describing Ground-Water Contamination Near a Nuclear Facility

    SciTech Connect (OSTI)

    L. D. Cecil; L. L. Knobel; J. R. Green (USGS); S. K. Frape (University of Waterloo)

    2000-06-01T23:59:59.000Z

    The purpose of this report is to describe the calculated contribution to ground water of natural, in situ produced 36Cl in the eastern Snake River Plain aquifer and to compare these concentrations in ground water with measured concentrations near a nuclear facility in southeastern Idaho. The scope focused on isotopic and chemical analyses and associated 36Cl in situ production calculations on 25 whole-rock samples from 6 major water-bearing rock types present in the eastern Snake River Plain. The rock types investigated were basalt, rhyolite, limestone, dolomite, shale, and quartzite. Determining the contribution of in situ production to 36Cl inventories in ground water facilitated the identification of the source for this radionuclide in environmental samples. On the basis of calculations reported here, in situ production of 36Cl was determined to be insignificant compared to concentrations measured in ground water near buried and injected nuclear waste at the INEEL. Maximum estimated 36Cl concentrations in ground water from in situ production are on the same order of magnitude as natural concentrations in meteoric water.

  20. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Petroleum Product Storage

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

    1997-08-29T23:59:59.000Z

    Texas AgriLife Extension Service Petroleum Products Overview Storing liquid petroleum products, such as motor fuel and heating fuel, above ground or underground presents a potential threat to pub- lic health and the environment. Nearly one out... with Varying Permeability Land Surface Figure 1. Petroleum product seepage into soils. Source: Underground Tank Corrective Action Technologies, EPA/625/6-87-015, January 1987. filled. Overfill protection is either a warning device, such as, a buzzer or a...

  1. High temperature hot water distribution system study

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA0l-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: * Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. * Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

  2. Water injected fuel cell system compressor

    DOE Patents [OSTI]

    Siepierski, James S. (Williamsville, NY); Moore, Barbara S. (Victor, NY); Hoch, Martin Monroe (Webster, NY)

    2001-01-01T23:59:59.000Z

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  3. Energy optimization of water distribution system

    SciTech Connect (OSTI)

    Not Available

    1993-02-01T23:59:59.000Z

    In order to analyze pump operating scenarios for the system with the computer model, information on existing pumping equipment and the distribution system was collected. The information includes the following: component description and design criteria for line booster stations, booster stations with reservoirs, and high lift pumps at the water treatment plants; daily operations data for 1988; annual reports from fiscal year 1987/1988 to fiscal year 1991/1992; and a 1985 calibrated KYPIPE computer model of DWSD`s water distribution system which included input data for the maximum hour and average day demands on the system for that year. This information has been used to produce the inventory database of the system and will be used to develop the computer program to analyze the system.

  4. Study of the design Method of an Efficient Ground Source Heat Pump Thermal Source System in a Cold Area 

    E-Print Network [OSTI]

    Shu, H.; Duanmu, L.; Hua, R.; Zou, Y.; Du, G.

    2006-01-01T23:59:59.000Z

    The ground source heat pump (GSHP) system-an energy efficiency and environment friendly system-is becoming popular in many parts of China. However, an imbalance usually exists between the annual heat extracted from and rejected to the ground due...

  5. Hot Water Heating System Operation and Energy Conservation

    E-Print Network [OSTI]

    Shao, Z.; Chen, H.; Wei, P.

    2006-01-01T23:59:59.000Z

    Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

  6. Introduction of Heat Recovery Chiller Control and Water System Design

    E-Print Network [OSTI]

    Jia, J.

    2006-01-01T23:59:59.000Z

    The styles, feature and main concerns of heat recovery water system are discussed, and the entering condenser water temperature control is recommended for higher chiller efficiency and reliable operation. Three optimized water system designs...

  7. Introduction of Heat Recovery Chiller Control and Water System Design 

    E-Print Network [OSTI]

    Jia, J.

    2006-01-01T23:59:59.000Z

    The styles, feature and main concerns of heat recovery water system are discussed, and the entering condenser water temperature control is recommended for higher chiller efficiency and reliable operation. Three optimized water system designs...

  8. Documentation of INL’s In Situ Oil Shale Retorting Water Usage System Dynamics Model

    SciTech Connect (OSTI)

    Earl D Mattson; Larry Hull

    2012-12-01T23:59:59.000Z

    A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9™ software package. Three phases of an in situ retort were consider; a construction phase primarily accounts for water needed for drilling and water produced during dewatering, an operation phase includes the production of water from the retorting process, and a remediation phase water to remove heat and solutes from the subsurface as well as return the ground surface to its natural state. Throughout these three phases, the water is consumed and produced. Consumption is account for through the drill process, dust control, returning the ground water to its initial level and make up water losses during the remedial flushing of the retort zone. Production of water is through the dewatering of the retort zone, and during chemical pyrolysis reaction of the kerogen conversion. The document discusses each of the three phases used in the model.

  9. RELATIONS BETWEEN THE DETECTION OF METHYL TERT-BUTYL ETHER (MTBE) IN SURFACE AND GROUND WATER AND ITS CONTENT IN GASOLINE

    E-Print Network [OSTI]

    RELATIONS BETWEEN THE DETECTION OF METHYL TERT-BUTYL ETHER (MTBE) IN SURFACE AND GROUND WATER.S. Geological Survey 1608 Mt. View Rapid City, SD 57702 Methyl tert-butyl ether (MTBE) is commonly used today, the one used most commonly is MTBE. To meet the oxygen requirements of the CAA Amendments, gasoline

  10. Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed ServicesGround-Based MicrowaveVapor

  11. A pre-feasibility study to assess the potential of Open Loop Ground Source Heat to heat and cool the proposed Earth Science Systems Building

    E-Print Network [OSTI]

    A pre-feasibility study to assess the potential of Open Loop Ground Source Heat to heat and cool............................................................1 1.2. History of Ground Source Heat Pump Systems................................................3 1.3. Components of Ground Source Heat Pump Systems..........................................3 1.4. Types of Ground

  12. Electromagnetially-induced-transparency-like ground-state cooling in a double-cavity optomechanical system

    E-Print Network [OSTI]

    Yujie Guo; Kai Li; Wenjie Nie; Yong Li

    2014-07-19T23:59:59.000Z

    We propose to cool a mechanical resonator close to its ground state via an electromagnetically-induced-transparency- (EIT-) like cooling mechanism in a double-cavity optomechanical system, where an additional cavity couples to the original one in the standard optomechanical system. By choosing optimal parameters such that the cooling process of the mechanical resonator corresponds to the maximum value of the optical fluctuation spectrum and the heating process to the minimum one, the mechanical resonator can be cooled with the final mean phonon number less than that at the absence of the additional cavity. And we show the mechanical resonator may be cooled close to its ground state via such an EIT-like cooling mechanism even when the original resolved sideband condition is not fulfilled at the absence of the additional cavity.

  13. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    SciTech Connect (OSTI)

    James A Menart, Professor

    2013-02-22T23:59:59.000Z

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ���¢��������Finite Volume Based Computer Program for Ground Source Heat Pump Systems.���¢������� The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP system

  14. Finite Volume Based Computer Program for Ground Source Heat Pump System

    SciTech Connect (OSTI)

    Menart, James A. [Wright State University

    2013-02-22T23:59:59.000Z

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP systems.

  15. ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM

    E-Print Network [OSTI]

    ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM ENTRAINMENT IMPACTS Prepared For: California be obvious that large studies like these require the coordinated work of many people. We would first like from the Duke Energy South Bay and Morro Bay power plants and the PG&E Diablo Canyon Power Plant

  16. Optimization of California's Water Supply System: Results and Insights

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    headings: Optimization; California; Water supply; Water shortage. Introduction Water is scarceOptimization of California's Water Supply System: Results and Insights Marion W. Jenkins1 ; Jay R-engineering optimization model of California's water supply system. The results of this 4-year effort illustrate the value

  17. Simulation Models for Improved Water Heating Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2014-01-01T23:59:59.000Z

    Difference Across the Heater and Water Flow Rate MeasuredDifference Across the Heater and Water Flow Rate Measurednew_specs/downloads/water _heaters/Water_Heater_Market_

  18. Water delivery in the Early Solar System

    E-Print Network [OSTI]

    Dvorak, Rudolf; Süli, Áron; Sándor, Zsolt; Galiazzo, Mattia; Pilat-Lohinger, Elke

    2015-01-01T23:59:59.000Z

    As part of the national scientific network 'Pathways to Habitable Worlds' the delivery of water onto terrestrial planets is a key question since water is essential for the development of life as we know it. After summarizing the state of the art we show some first results of the transport of water in the early Solar System for scattered main belt objects. Hereby we investigate the questions whether planetesimals and planetesimal fragments which have gained considerable inclination due to the strong dynamical interactions in the main belt region around 2 AU can be efficient water transporting vessels. The Hungaria asteroid group is the best example that such scenarios are realistic. Assuming that the gas giants and the terrestrial planets are already formed, we monitor the collisions of scattered small bodies containing water (in the order of a few percent) with the terrestrial planets. Thus we are able to give a first estimate concerning the respective contribution of such bodies to the actual water content i...

  19. USGS Professional Paper 1703--Ground-Water Recharge in the Arid and Semiarid Southwestern United States--

    E-Print Network [OSTI]

    water at the land surface can occur at discreet locations, such as in stream channels, or be distributed on temperature include viscosity, density, and surface tension, all of which affect hydraulic conductivity the sun, radiant cooling into space, and evapotranspi- ration, in addition to the advective and conductive

  20. Prediction of postmine ground-water quality at a Texas surface lignite mine

    E-Print Network [OSTI]

    Wise, Clifton Farrell

    1995-01-01T23:59:59.000Z

    . The predominant factors which affect spoil water quality have not been completely identified to date. Therefore, the Gibbons Creek Lignite Mine in Grimes County, Texas was chosen as a test site to evaluate the potential factors that can affect the geochemical...

  1. Prediction of postmine ground-water quality at a Texas surface lignite mine 

    E-Print Network [OSTI]

    Wise, Clifton Farrell

    1995-01-01T23:59:59.000Z

    . The predominant factors which affect spoil water quality have not been completely identified to date. Therefore, the Gibbons Creek Lignite Mine in Grimes County, Texas was chosen as a test site to evaluate the potential factors that can affect the geochemical...

  2. Ground-water monitoring compliance projects for Hanford Site facilities: Volume 2, Appendices A and B: Progress report, January 1, 1987 to March 31, 1987

    SciTech Connect (OSTI)

    Not Available

    1987-05-01T23:59:59.000Z

    This report convers recent progress on ground-water monitoring programs for four Hanford Site facilities: the 300 Area Process Trenches, the 183-H Solar Evaporation Basins, the 200 Area Low-Level Burial Grounds, and the Nonradioactive Dangerous Waste Landfill. The time period covered by this covered by this report is January 1 to March 31, 1987. Volume 2 contains Appendices A and B.

  3. Containment system for supercritical water oxidation reactor

    DOE Patents [OSTI]

    Chastagner, P.

    1994-07-05T23:59:59.000Z

    A system is described for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary. 2 figures.

  4. Containment system for supercritical water oxidation reactor

    DOE Patents [OSTI]

    Chastagner, Philippe (3134 Natalie Cir., Augusta, GA 30909-2748)

    1994-01-01T23:59:59.000Z

    A system for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary.

  5. Acid mine water aeration and treatment system

    DOE Patents [OSTI]

    Ackman, Terry E. (Finleyville, PA); Place, John M. (Bethel Park, PA)

    1987-01-01T23:59:59.000Z

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  6. Modeling Water Resource Systems under Climate Change: IGSM-WRS

    E-Print Network [OSTI]

    Strzepek, K.

    Through the integration of a Water Resource System (WRS) component, the MIT Integrated Global System Model (IGSM) framework has been enhanced to study the effects of climate change on managed water-resource systems. ...

  7. IAEI NEWS January.February 2008 www.iaei.org ground-fault protection for pv systems

    E-Print Network [OSTI]

    Johnson, Eric E.

    IAEI NEWS January.February 2008 www.iaei.org ground-fault protection for pv systems O nce upon was elaborating on the ex- cellence of their photovoltaic (PV) test facility in the distant Land of Enchantment. They showed some se- nior firefighters a picture of a burned PV module that had been subject to a ground fault

  8. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    E-Print Network [OSTI]

    Warner, J.L.

    2009-01-01T23:59:59.000Z

    the temperature of the residual water encountered by theof hot water and the residual water might occur: (1) thehot water might drive the residual water through the piping

  9. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies

    SciTech Connect (OSTI)

    Schroeder, Jenna N.

    2014-12-16T23:59:59.000Z

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  10. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  11. Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building 

    E-Print Network [OSTI]

    Zhu, N.

    2014-01-01T23:59:59.000Z

    Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building Na Zhu*, Yu Lei, Pingfang Hu, Linghong Xu, Zhangning Jiang Department of Building Environment and Equipment Engineering... heat pump system integrated with phase change cooling storage technology could save energy and shift peak load. This paper studied the optimal design of a ground source heat pump system integrated with phase change thermal storage tank in an office...

  12. Critical review of water based radiant cooling system design methods

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Bauman, Fred; Schiavon, Stefano

    2014-01-01T23:59:59.000Z

    Embedded Radiant Heating and Cooling Systems, InternationalWATER BASED RADIANT COOLING SYSTEM DESIGN METHODS Jingjuan (Keywords: Radiant Cooling System, Design Approach,

  13. Army Energy and Water Reporting System Assessment

    SciTech Connect (OSTI)

    Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.; Connell, Linda M.

    2011-09-01T23:59:59.000Z

    There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. In this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on integrating with other existing data sources, thus minimizing manually entered data.

  14. A stock water solar heating system

    SciTech Connect (OSTI)

    Nydahl, J.; Carlson, B.

    1999-07-01T23:59:59.000Z

    This paper reports on the progress in the development of an inexpensive but rugged solar system to heat stock water. Insulation encased in fiber reinforced concrete is the main structural component for the collector and the partition between the unheated stock tank and the heated section. A fully wetted, drain-back collector was designed to produce a high optical efficiency and to permit its water passage to be opened for cleaning. A unique double-glazed design is used in which the inner glazing is a film with a large thermal expansion coefficient. This causes a significant drop in the stagnation temperatures since a single glazed configuration is approached at high temperatures. The collector and the partially covered insulated tank prevented freezing, and held the average water temperature at 6.4 C (44 F) during the day while the mean daily ambient temperature was {minus}5.4 C (22 F) over a nine day test.

  15. IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER

    E-Print Network [OSTI]

    IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS #12;ii IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS............................................................... 2 1.3. Overview of the Parameter Estimation Water-to-Water Heat Pump Model ........... 5 1

  16. UMTRA ground water sampling techniques: Comparison of the traditional and low flow methods

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This report describes the potential changes in water quality data that may occur with the conversion from MBV (multiple bore volume) to LF (low flow) sampling and provides two examples of how such a change might impact Project decisions. The existing scientific literature on LF sampling is reviewed and the new LF data from three UMTRA Uranium Mill Tailings Remedial Action Project sites are evaluated seeking answers to the questions posed above. Several possible approaches, that the UMTRA Project may take to address issues unanswered by the literature are presented and compared, and a recommendation is offered for the future direction of the LF conversion effort.

  17. U.A.C. R317-6: Ground Water Quality Protection | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpType B:7-15: Water

  18. Interactions of woody biofuel feedstock production systems with water resources: Considerations for sustainability.

    SciTech Connect (OSTI)

    Trettin, Carl,C.; Amatya, Devendra; Coleman, Mark.

    2008-07-01T23:59:59.000Z

    Abstract. Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and non-irrigated systems has demonstrated that woody biofuel production systems do not impair water quality. Water quality actually improves from conversion of idle or degraded agricultural lands to woody biomass plantations. Site water balance may be altered by cultivation of woody biomass plantations relative to agricultural use, due to increases in evapostranspiration (ET) and storage. Incorporation of woody biomass production plantations within the landscape provides an opportunity to improve the quality of runoff water and soil conservation. Given the centrality of water resources to the sustainability of ecosystem services and other values derived, the experience with woody biofuels feedstock production systems is positive. Keywords. Short rotation woody crop, forest hydrology, water quality, hardwood plantation.

  19. Prevention of significant deterioration application for approval to construct SP-100 Ground Engineering System Test Site

    SciTech Connect (OSTI)

    Not Available

    1990-04-01T23:59:59.000Z

    The following application is being submitted by the US Department of Energy, Richland Operations Office, P.O. Box 550, Richland, Washington 99352, pursuant to WAC 173-403-080, and in compliance with the Department of Ecology Guide to Processing a Prevention of Significant Deterioration (PSD) Permit'' for a new source of airborne radionuclide emissions at the Hanford Site in Washington State. The new source, the SP-100 Ground Engineering System (GES) Test Site, will be located in the 309 Building of the 300 Area. The US Department of Energy (DOE), the National Aeronautics and Space Administration (NASA), and the US Department of Defense (DOD) have entered into an agreement to jointly develop space nuclear reactor power system technology. The DOE has primary responsibility for developing and ground testing the nuclear subsystem. A ground test of a reactor is necessary to demonstrate technology readiness of this major subsystem before proceeding with the flight system development and demonstration. The SP-100 GES Test Site will provide a location for the operation and testing of a prototype space-based, liquid metal-cooled, fast flux nuclear reactor in an environment closely simulating the vacuum and temperature conditions of space operations. The purpose of the GES is to develop safe, compact, light-weight and durable space reactor power system technology. This technology will be used to provide electric power, in the range of tens to hundreds of kilowatts, for a variety of potential future civilian and military space missions requiring long-term, high-power level sources of energy. 20 refs., 8 figs., 7 tabs.

  20. Numerical Simulation of a Latent Heat Storage System of a Solar-Aided Ground Source Heat Pump 

    E-Print Network [OSTI]

    Wang, F.; Zheng, M.; Li, Z.; Lei, B.

    2006-01-01T23:59:59.000Z

    In this study, the rectangular phase change storage tank (PCST) linked to a solar-aided ground source heat pump (SAGSHP) system is investigated experimentally and theoretically. The container of the phase change material (PCM) is the controlling...

  1. Numerical Simulation of a Latent Heat Storage System of a Solar-Aided Ground Source Heat Pump

    E-Print Network [OSTI]

    Wang, F.; Zheng, M.; Li, Z.; Lei, B.

    2006-01-01T23:59:59.000Z

    In this study, the rectangular phase change storage tank (PCST) linked to a solar-aided ground source heat pump (SAGSHP) system is investigated experimentally and theoretically. The container of the phase change material (PCM) is the controlling...

  2. Cloud-to-ground lightning characteristics of warm season Mesoscale Convection Systems in the Central United States: 1992-1993

    E-Print Network [OSTI]

    Hoeth, Brian Richard

    1998-01-01T23:59:59.000Z

    This study provides a detailed analysis of cloud-to-aphics. ground (CG) lightning flashes within individual Mesoscale Convective Systems (MCSs) that occurred in the Central United States during May-August of 1992 and 1993. Analysis of the CG...

  3. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Appendixes to Attachment 3: Appendix A, Hydrological services calculations: Appendix B, Ground water quality by location, Final report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This report contains chemical analysis data for ground water for the following: elements; cyanides; chlorides; dissolved organic carbon; fluorides; silica; sulfates; sulfides; dissolved solids; nitrates; and nitrites.

  4. Geothermal assessment of the lower Bear River drainage and northern East Shore ground-water areas, Box Elder County, Utah

    SciTech Connect (OSTI)

    Klauk, R.H.; Budding, K.E.

    1984-07-01T23:59:59.000Z

    The Utah Geological and Mineral Survey (UGMS) has been researching the low-temperature geothermal resource potential in Utah. This report, part of an area-wide geothermal research program along the Wasatch Front, concerns the study conducted in the lower Bear River drainage and northern East Shore ground-water areas in Box Elder County, Utah. The primary purpose of the study is to identify new areas of geothermal resource potential. There are seven known low-temperature geothermal areas in this part of Box Elder County. Geothermal reconnaissance techniques used in the study include a temperature survey, chemical analysis of well and spring waters, and temperature-depth measurements in accessible wells. The geothermal reconnaissance techniques identified three areas which need further evaluation of their low-temperature geothermal resource potential. Area 1 is located in the area surrounding Little Mountain, area 2 is west and southwest of Plymouth, and area 3 is west and south of the Cutler Dam. 5 figures, 4 tables.

  5. Ground water and snow sensor based on directional detection of cosmogenic neutrons.

    SciTech Connect (OSTI)

    Cooper, Robert Lee; Marleau, Peter; Griffin, Patrick J.

    2011-06-01T23:59:59.000Z

    A fast neutron detector is being developed to measure the cosmic ray neutron flux in order to measure soil moisture. Soil that is saturated with water has an enhanced ability to moderate fast neutrons, removing them from the backscatter spectrum. The detector is a two-element, liquid scintillator detector. The choice of liquid scintillator allows rejection of gamma background contamination from the desired neutron signal. This enhances the ability to reconstruct the energy and direction of a coincident neutron event. The ability to image on an event-by-event basis allows the detector to selectively scan the neutron flux as a function of distance from the detector. Calibrations, simulations, and optimization have been completed to understand the detector response to neutron sources at variable distances and directions. This has been applied to laboratory background measurements in preparation for outdoor field tests.

  6. Continuous Commissioning of a Central Chilled Water & Hot Water System

    E-Print Network [OSTI]

    Deng, S.; Turner, W. D.; Batten, T.; Liu, M.

    2000-01-01T23:59:59.000Z

    the campus loops and the building loops. Some optimization of the plant chiller 1 boiler operation is also necessary and beneficial. In general, through Continuous Commissioning, chilled water and hot water loop temperature differences will be improved...

  7. Department of Health application for approval of construction SP-100 Ground Engineering System Test Site

    SciTech Connect (OSTI)

    Not Available

    1990-04-01T23:59:59.000Z

    The following Application For Approval of Construction is being submitted by the US Department of Energy-Richland Operations Office, for the SP-100 Ground Engineering System Test Site, which will provide a new source of radioactive emissions to the atmosphere. The US Department of Energy, the National Aeronautics and Space Administration, and the US Department of Defense have entered into an agreement to jointly develop space nuclear reactor power system technology. A ground test of a reactor is necessary to demonstrate technology readiness of this major subsystem before proceeding with the flight system development and demonstration. It is proposed that the SP-100 test reactor be tested in the existing decommissioned Plutonium Recycle Test Reactor containment building (309 Building). The reactor will be operated for at least three months and up to 2 yr. Following the test, the 309 Building will be decontaminated for potential use in other programs. It is projected this new source of emissions will contribute approximately 0.05 mrem/yr dose to the maximally exposed offsite individual. This application is being submitted in response to those projected emissions that would provide the described offsite dose. 28 refs., 9 figs., 7 tabs.

  8. A cost-effective, environmentally-responsive ground-water monitoring procedure

    E-Print Network [OSTI]

    Doucette, Richard Charles

    1994-01-01T23:59:59.000Z

    allows the optimization loop to modify the system for greater efficiency. The value of this procedure was tested at selected sites in the Gibbons Creek Lignite Mine in Grimes County, Texas. The mine, which is currently in compliance with state regulations...

  9. An ecological study examining the correlation of end-stage renal disease and ground water heavy metal content in Texas counties

    E-Print Network [OSTI]

    Bishop, Scott Alan

    1999-01-01T23:59:59.000Z

    An ecological study was conducted to examine the correlation of end-stage renal disease (ESRD) and the ground water heavy metal level of lead, arsenic, cadmium, mercury and the cumulative level of all four metals in Texas counties. The heavy meal...

  10. Conference Topic: Integrated Water Resources and Coastal Areas Management National Water Information Systems: A Tool to Support Integrated Water Resources

    E-Print Network [OSTI]

    Barthelat, Francois

    of compartmentalized data, lack of central storage, and limited access to data for decision-making in water managementConference Topic: Integrated Water Resources and Coastal Areas Management National Water Information Systems: A Tool to Support Integrated Water Resources Management in the Caribbean Marie-Claire St

  11. K West integrated water treatment system subproject safety analysis document

    SciTech Connect (OSTI)

    SEMMENS, L.S.

    1999-02-24T23:59:59.000Z

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  12. Sustaining Sherman Island: A Water Management and Agricultural Diversification System

    E-Print Network [OSTI]

    Fischer, Richard

    2011-01-01T23:59:59.000Z

    Tank Production Systems: Aquaponics-Integrating Fish andand environmental resources. The Aquaponics Water Managementstorage zone. The aquaponics system is a bio- integrated

  13. Carbon and Water Resource Management for Water Distribution Systems

    E-Print Network [OSTI]

    Hendrickson, Thomas Peter

    2013-01-01T23:59:59.000Z

    Buckley, C. A. ; Carbon footprint analysis for increasingeffectively reduce their carbon footprint. To accomplish7 February 2013. (8) The Carbon Footprint of Water; River

  14. Water-loop heat pump systems

    SciTech Connect (OSTI)

    Eley, C.; Hydeman, M. (Eley (Charles) Associates, San Francisco, CA (United States))

    1992-12-01T23:59:59.000Z

    Water-loop heat pump (WLHP) systems are reliable, versatile, energy-efficient alternatives to conventional systems such as packaged rooftop or central chiller systems. These systems offer low installed costs, unparalleled design flexibility, and an inherent ability to recover heat in a variety of commercial and multifamily residential buildings for both new construction and retrofit markets. Southern California Edison Co. (SCE) teamed with EPRI to develop a comprehensive design guide for WLHP systems that incorporated recent research by EPRI, SCE, and others. The project team reviewed current literature, equipment data, and design guidelines from equipment manufacturers. They next discussed design and application practices with consulting engineers as well as design and building contractors. The team also ran extensive computer simulations on commercial and multifamily residential building models for Southern California, both to determine the sensitivity of energy use to WLHP system design parameters and to establish optimal design parameters. This information culminated in a comprehensive engineering guide. Volume 1 of this report, provides step-by-step technical design data for selection, application, and specification of WLHP systems. This guide emphasizes energy-efficient design principles and incorporates the findings of the computer simulations and research. For example, it recommends lowering the loop temperature in buildings dominated by internal loads. Reducing the loop temperature from 90 to 80[degrees]F provides a 7--10% savings in the total system energy in Southern California climate areas. Other recommendations include (1) installing a cooling tower with a propeller fan, which uses one fourth to one third of the energy of a cooling tower with a centrifugal fan; and (2) incorporating variable-speed pumps in conjunction with two-position valves in the heat pumps to reduce the system pump energy use by up to 50%.

  15. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    heat pump, and the energy consumption of the whole GSHP system given the accurate information of the building, GSHP system, weather data,

  16. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    V. King

    2000-06-19T23:59:59.000Z

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.

  17. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Milking Center Wastewater Treatment

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    be affected by manure, milk solids, ammonia, phosphorus, and detergents. Wastewater from the dairy milking center is made up of waste from the milking parlor (manure, feed solids, hoof dirt, bulk tank rinse water and detergent used in cleaning), and should... topics: 1. Combining wastes 2. Application methods 3. Slow surface infiltration Combining Wastes When milking center wastes are combined with manure a common disposal system can be used for both types of waste. A liquid manure storage facility, properly...

  18. Discussion of an Optimization Scheme for the Ground Source Heat Pump System of HVAC 

    E-Print Network [OSTI]

    Mu, W.; Wang, S.; Pan, S.; Shi, Y.

    2006-01-01T23:59:59.000Z

    With the implementation of the global sustainable development strategy, people pay more attention to renewable energy resources such as ground source heat pumps. The technology of ground source heat pump is widely applied to heat and cold...

  19. Design package for solar domestic hot water system

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  20. Simulation Models for Improved Water Heating Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2014-01-01T23:59:59.000Z

    and Simulation of a Smart Water Heater. ” In Workshop inFreezers, Furnaces, Water Heaters, Room and Central AirNovember. ADL. 1982b. Water Heater Computer Model User’s

  1. Water Rights: Ground Water (Indiana)

    Broader source: Energy.gov [DOE]

    It is the policy of the state to provide for the conservation of groundwater resources and limit groundwater waste. The Indiana Department of Natural Resources may designate restricted use areas...

  2. CC Retrofits and Optimal Controls for Hot Water Systems

    E-Print Network [OSTI]

    Wu, L.; Liu, M.; Wang, G.

    2007-01-01T23:59:59.000Z

    Continuous Commissioning (CC) technologies, three old boilers (13.39 MMBH each) were replaced by three new boilers (1.675 MMBH each) and hot water pumps. Optimal controls for the hot water systems included optimal hot water temperature reset, hot water pump...

  3. Charles J. Vrsmarty & the UNH Water Systems Analysis Group

    E-Print Network [OSTI]

    Slatton, Clint

    .1 billion people lack clean drinking water 2.6 billion people lack basic sanitationCharles J. Vörösmarty & the UNH Water Systems Analysis Group Fall Water Institute Seminar Series Corridor #12;Goals for This Discussion · Describe chief forces shaping the contemporary and future water

  4. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems (DE-EE0002961)

    SciTech Connect (OSTI)

    Spitler, J.D.; Culling, J.R.; Conjeevaram, K.; Ramesh, M.; Selvakumar, M.

    2012-11-30T23:59:59.000Z

    Ground-source heat pump (GSHP) systems are perhaps the most widely used “sustainable” heating and cooling systems, with an estimated 1.7 million installed units with total installed heating capacity on the order of 18 GW. They are widely used in residential, commercial, and institutional buildings. Standing column wells (SCW) are one form of ground heat exchanger that, under the right geological conditions, can provide excellent energy efficiency at a relatively low capital cost. Closed-loop surface water heat pump (SWHP) systems utilize surface water heat exchangers (SWHE) to reject or extract heat from nearby surface water bodies. For building near surface water bodies, these systems also offer a high degree of energy efficiency at a low capital cost. However, there have been few design tools available for properly sizing standing column wells or surface water heat exchangers. Nor have tools for analyzing the energy consumption and supporting economics-based design decisions been available. The main contributions of this project lie in providing new tools that support design and energy analysis. These include a design tool for sizing surface water heat exchangers, a design tool for sizing standing column wells, a new model of surface water heat pump systems implemented in EnergyPlus and a new model of standing column wells implemented in EnergyPlus. These tools will better help engineers design these systems and determine the economic and technical feasibility.

  5. Enhanced monitor system for water protection

    DOE Patents [OSTI]

    Hill, David E. (Knoxville, TN) [Knoxville, TN; Rodriquez, Jr., Miguel [Oak Ridge, TN; Greenbaum, Elias (Knoxville, TN) [Knoxville, TN

    2009-09-22T23:59:59.000Z

    An automatic, self-contained device for detecting toxic agents in a water supply includes an analyzer for detecting at least one toxic agent in a water sample, introducing a means for introducing a water sample into the analyzer and discharging the water sample from the analyzer, holding means for holding a water sample for a pre-selected period of time before the water sample is introduced into the analyzer, and an electronics package that analyzes raw data from the analyzer and emits a signal indicating the presence of at least one toxic agent in the water sample.

  6. Analysis of Selection of Single or Double U-bend Pipes in a Ground Source Heat Pump System

    E-Print Network [OSTI]

    Shu, H.; Duanmu, L.; Hua, R.

    2006-01-01T23:59:59.000Z

    The ground source heat pump (GSHP) system is widely used because of its energy-saving and environmental-friendly characteristics. The buried pipes heat exchangers play an important role in the whole GSHP system design. However, in most cases, single...

  7. UMTRA Ground Water Project

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations Guide Doc.5 R A D ISaltVerification

  8. UMTRA Ground Water Project

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations Guide Doc.5 R A D

  9. Installation package for a Sunspot Cascade Solar Water Heating System

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    Elcam, Incorporated of Santa Barbara, California, has developed two solar water heating systems. The systems have been installed at Tempe, Arizona and San Diego, California. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank and controls. General guidelines are provided which may be utilized in development of detailed instalation plans and specifications. In addition, it provides instruction on operation, maintenance and installation of solar hot water systems.

  10. Building America Webinar: Central Multifamily Water Heating Systems

    Broader source: Energy.gov [DOE]

    Hosted by DOE's Building America program, this webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution.

  11. Building America Webinar: Central Multifamily Water Heating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to 4:30PM EST This free webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water...

  12. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    Comparison of energy efficiency between variable refrigeranttheir superior energy efficiency. The variable refrigerantfew studies reporting the energy efficiency of VRF systems

  13. Feasibility and design of blast mitigation systems for naval applications using water mist fire suppression systems

    E-Print Network [OSTI]

    Kitchenka, Julie A

    2004-01-01T23:59:59.000Z

    The recent trend of using fine water mist systems to replace the legacy HALON- 1301 fire suppression systems warrants further study into other applications of the water mist systems. Preliminary research and investigation ...

  14. A system theoretic safety analysis of friendly fire prevention in ground based missile systems

    E-Print Network [OSTI]

    McCarthy, Scott (Scott Lewis)

    2013-01-01T23:59:59.000Z

    This thesis used Dr. Leveson's STAMP (Systems-Theoretic Accident Model and Process) model of accident causation to analyze a friendly fire accident that occurred on 22 March 03 between a British Tornado aircraft and a US ...

  15. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 2. Special test cases

    SciTech Connect (OSTI)

    Simmons, C.S.; Cole, C.R.

    1985-08-01T23:59:59.000Z

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. Volume 1, titled ''Guideline Approach,'' consists of Chapters 1 through 5 and a glossary. Chapters 2 through 5 provide the more detailed discussions about the code selection approach. This volume, Volume 2, consists of four appendices reporting on the technical evaluation test cases designed to help verify the accuracy of ground-water transport codes. 20 refs.

  16. Institute of Water Research Annual Technical Report

    E-Print Network [OSTI]

    and ground water protection. One project entitled "Decision Support System for Natural Resource Planning" (02 analysis, technology transfer, urban water systems, water quality, water quality management, watershed) was funded to address these problems and issues. In addition, support for the Institute of Water Research

  17. Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    Broader source: Energy.gov [DOE]

    Project objective: Create a new modeling Ťdecision? tool that will enable ground source heat pump (GSHP) designers and customers to make better design and purchasing decisions.

  18. Homeland Security Challenges Facing Small Water Systems in Texas 

    E-Print Network [OSTI]

    Dozier, Monty; Theodori, Gene L.; Jensen, Ricard

    2007-05-31T23:59:59.000Z

    and Extension Specialist; and Ric Jensen, Assistant Research Scientist, Texas Water Resources Institute; The Texas A&M University System Water systems of all sizes, including small systems, may be vulner- able to man-made and natural threats that can...

  19. STATE OF CALIFORNIA SOLAR DOMESTIC HOT WATER SYSTEMS (SDHW)

    E-Print Network [OSTI]

    attached CEC F-Chart) # of Collectors in System Collector Size Solar Tank Volume (gallons) §150(j)1B piping shall be insulated. §150(j)4: Solar water-heating system and/or/collectors are certifiedSTATE OF CALIFORNIA SOLAR DOMESTIC HOT WATER SYSTEMS (SDHW) CEC- CF-6R-MECH-02 (Revised 08

  20. El Dorado County Water Systems Energy Generation Project

    E-Print Network [OSTI]

    water systems within the El Dorado Irrigation District and the Georgetown Divide Public UtilityEl Dorado County Water Systems Energy Generation Project RENEWABLE ENERGY RESEARCH www systems, there is significant room for improvement in energy management, efficiency, and reducing demand

  1. Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE) plumes in ground water at leaking underground fuel tank (LUFT) sites

    SciTech Connect (OSTI)

    Happel, A.M.; Rice, D. [Lawrence Livermore National Lab., CA (United States); Beckenbach, E. [California Univ., Berkeley, CA (United States); Savalin, L.; Temko, H.; Rempel, R. [California State Water Resources Control Board, Sacramento, CA (United States); Dooher, B. [California Univ., Los Angeles, CA (United States)

    1996-11-01T23:59:59.000Z

    The 1990 Clean Air Act Amendments mandate the addition of oxygenates to gasoline products to abate air pollution. Currently, many areas of the country utilize oxygenated or reformulated fuel containing 15- percent and I I-percent MTBE by volume, respectively. This increased use of MTBE in gasoline products has resulted in accidental point source releases of MTBE containing gasoline products to ground water. Recent studies have shown MTBE to be frequently detected in samples of shallow ground water from urban areas throughout the United States (Squillace et al., 1995). Knowledge of the subsurface fate and transport of MTBE in ground water at leaking underground fuel tank (LUFT) sites and the spatial extent of MTBE plumes is needed to address these releases. The goal of this research is to utilize data from a large number of LUFT sites to gain insights into the fate, transport, and spatial extent of MTBE plumes. Specific goals include defining the spatial configuration of dissolved MTBE plumes, evaluating plume stability or degradation over time, evaluating the impact of point source releases of MTBE to ground water, and attempting to identify the controlling factors influencing the magnitude and extent of the MTBE plumes. We are examining the relationships between dissolved TPH, BTEX, and MTBE plumes at LUFT sites using parallel approaches of best professional judgment and a computer-aided plume model fitting procedure to determine plume parameters. Here we present our initial results comparing dissolved benzene and MTBE plumes lengths, the statistical significance of these results, and configuration of benzene and MTBE plumes at individual LUFT sites.

  2. Ground-water hydrologic effects resulting from underground coal gasification experiments at the Hoe Creek Site near Gillette, Wyoming. Interim report, October 1979-March 1980

    SciTech Connect (OSTI)

    Raber, E.; Stone, R.

    1980-05-01T23:59:59.000Z

    This technical note summarizes our activities, to date, on the research project: Ground-Water Hydrologic Effects Resulting from Underground Coal Gasification Experiments (EPA-IAG-79-D-X0795). The gasified coal seam (Felix No. 2 coal) and two overlying aquifers (Felix No. 1 coal and overlying sand) appear to have become interconnected as a result of roof collapse and subsidence at both Hoe Creek Sites II and III near Gillette, Wyoming. To evaluate changes in the ground-water flow regime at the two sites, completion of supplementary wells was necessary to define the distance versus head drawdown relationships in each of the three aquifers. Hydraulic head potentials have been measured at Site III since gasification ended on October 10, 1979. These data are presented in graphic format. Although hydraulic head measurements at Site II seemed to be approaching a steady-state condition 1.5 years after gasification, the subsequent gasification at Site III temporarily altered the ground-water flow patterns. These changes will have a definite effect on contaminant dispersal and will need to be taken into consideration.

  3. Sensor Networks for Monitoring and Control of Water Distribution Systems

    E-Print Network [OSTI]

    Whittle, Andrew

    Water distribution systems present a significant challenge for structural monitoring. They comprise a complex network of pipelines buried underground that are relatively inaccessible. Maintaining the integrity of these ...

  4. Building America Webinar: Central Multifamily Water Heating Systems

    Broader source: Energy.gov [DOE]

    This U.S. Department of Energy Building America webinar, Central Multifamily Water Heating Systems, will take place on January 21, 2015.

  5. VAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE FROM

    E-Print Network [OSTI]

    ) and their binary mixtures (between 348 and 393 K). The properties of supercritical carbon dioxide were determinedVAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE the vapor-liquid equilibrium of water (between 323 and 573 K), carbon dioxide (between 230 and 290 K

  6. WATER RESOURCES NEWS NEBRASKA WATER RESOURCES RESEARCH INSTITUTE

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    , display the results of management changes, and forecast the effects of waste management practices operations on the Hanford ground-water regime which moves through ancient sand and gravel channels deep under system for the .Atlantic Richfield Hanford Company which will accept models of ground-water conditions

  7. Convergence acceleration techniques in CAD systems for grounding analysis in layered soils

    E-Print Network [OSTI]

    Colominas, Ignasi

    real grounding grids in real-time in personal computers. The ex- tension of this approach- drical conductors buried to a certain depth of the ground surface (0.5 - 1.0 m), and supplemented be kept under certain maximum safe limits (step, touch and mesh voltages) [1, 2]. In the last four decades

  8. Reducing Disinfection By-Products in Small Drinking Water Systems

    E-Print Network [OSTI]

    not decrease the residual TOC by 0.3 mg/L. #12;Guidelines: Coagulant dosages for water supplies where NOMReducing Disinfection By-Products in Small Drinking Water Systems by M. Robin Collins, James P. Malley, Jr, & Ethan Brooke Water Treatment Technology Assistance Center Department of Civil Engineering

  9. Challenges of Handling Storm Water Runoff Through Municipal Sewer Systems

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    cleaned and retained as a Best Management Practice (BMP). Receives only non-industrial storm water on storm water are leading municipalities to change permitting practices. As a result, facilitiesChallenges of Handling Storm Water Runoff Through Municipal Sewer Systems A South Carolina Case

  10. Design of Hard Water Stable Emulsifier Systems for Petroleum-

    E-Print Network [OSTI]

    Clarens, Andres

    Design of Hard Water Stable Emulsifier Systems for Petroleum- and Bio-based Semi for petroleum and bio-based MWFs that improve fluid lifetime by providing emulsion stability under hard water. The newly developed petroleum and bio-based formulations with improved hard water stability are competitive

  11. Seismic Fragility of the LANL Fire Water Distribution System

    SciTech Connect (OSTI)

    Greg Mertz

    2007-03-30T23:59:59.000Z

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10{sup -3} that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels. Assumptions are presented in Section 2.2 of this report.

  12. Rig-site system allows water reuse, cuts cleanup costs

    SciTech Connect (OSTI)

    Neidhardt, D.

    1985-03-04T23:59:59.000Z

    A new well-site treatment system is described which extends the use of solids control equipment to help solve the common drilling problems of water supply and/or wastewater disposal. The new closed-loop system combines water treatment with more conventional solids handling to continuously create clean water. The results include: re-use of water for rig cleaning, mud, and even cement makeup with no need to eject liquid to the environment; greatly reduced water-input requirements; and division of the conventional wastewater pit into an active treatment operations pit and an overflow reserve pit for emergency storage.

  13. This study explores how the EU Emissions Trading System (EU ETS) actually works on the ground affecting corporate climate strategies.

    E-Print Network [OSTI]

    This study explores how the EU Emissions Trading System (EU ETS) actually works on the ground@bookpoint.co.uk May 2013 322 pages Hardback 978-1-4094-6078-7 Ł60.00 Corporate Responses to EU Emissions Trading at The Fridtjof Nansen Institute, Norway `With greenhouse gas emissions trading schemes emerging worldwide

  14. 152 / JOURNAL OF HYDROLOGIC ENGINEERING / APRIL 1999 UNCERTAINTY OF ONE-DIMENSIONAL GROUND-WATER FLOW IN

    E-Print Network [OSTI]

    Zhan, Hongbin

    -WATER FLOW IN STRONGLY HETEROGENEOUS FORMATIONS By Hongbin Zhan1 and Stephen W. Wheatcraft2 ABSTRACT

  15. Vulnerability assessment of water supply systems for insufficient fire flows

    E-Print Network [OSTI]

    Kanta, Lufthansa Rahman

    2009-05-15T23:59:59.000Z

    supply systems are vulnerable to many forms of terrorist acts, most of the vulnerability analysis studies on these systems have been for chemical and biological threats. Because of the interdependency of water supply infrastructure and emergency fire...

  16. Improving Heating System Operations Using Water Re-Circulation

    E-Print Network [OSTI]

    Li, F.; Han, J.

    2006-01-01T23:59:59.000Z

    In order to solve the imbalance problem of a heating system, brought about by consumer demand and regulation, and save the electricity energy consumed by a circulation pump, a water mixing and pressure difference control heating system is proposed...

  17. Economic-impact study for proposed Ground-water-Quality Standards 35 IL Admin. Code 260. Final report

    SciTech Connect (OSTI)

    Lantz, R.; Buss, D.F.

    1990-12-01T23:59:59.000Z

    The state passed the Illinois Groundwater Protection Act (IGPA) in September 1987, which among other things, directed the Illinois Environmental Protection Agency (IEPA) to develop groundwater classification system and nondegradation procedures. The IGPA also mandated that the Illinois Department of Energy and Natural Resources conduct an Economic Impact Study of the IEPA's proposed regulations. The report also analyzed alternatives considered during the development of the Code 620 regulations in addition to the final outcome. The proposed regulations would establish a groundwater classification which would be partially use-based and partially water quality-based. Numeric groundwater quality standards are also established which apply to General Resource and Potable Resource Groundwater. Cleanup criteria are identified for sites of contamination. As determined by this investigation, the most significant costs of the IEPA's proposed regulations could be expected to be groundwater remediation costs, which are those costs associated with returning contaminated groundwater to compliance with the standards.

  18. Minimizing Energy Consumption in a Water Distribution System: A Systems Modeling Approach

    E-Print Network [OSTI]

    Johnston, John

    2011-08-08T23:59:59.000Z

    In a water distribution system from groundwater supply, the bulk of energy consumption is expended at pump stations. These pumps pressurize the water and transport it from the aquifer to the distribution system and to elevated storage tanks. Each...

  19. Fourteenth Service Water System Reliability Improvement Seminar Proceedings

    SciTech Connect (OSTI)

    None

    2002-06-01T23:59:59.000Z

    This report contains information presented at the Fourteenth Service Water System Reliability Improvement (SWSRI) Seminar held June 24-25, 2002, in San Diego, California. The bi-annual seminar--sponsored by EPRI--provided an opportunity for participants to exchange technical information and experiences regarding the monitoring, repair, and replacement of service water system components.

  20. Analysis Model for Domestic Hot Water Distribution Systems: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Krarti, M.; Fang, X.

    2011-11-01T23:59:59.000Z

    A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

  1. Evaporative system for water and beverage refrigeration in hot countries

    E-Print Network [OSTI]

    Evaporative system for water and beverage refrigeration in hot countries A Saleh1 and MA Al-Nimr2 1 Abstract: The present study proposes an evaporative refrigerating system used to keep water or other are found to be consistent with the available literature data. Keywords: evaporative refrigeration, heat

  2. Performance Monitoring of Residential Hot Water Distribution Systems

    SciTech Connect (OSTI)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11T23:59:59.000Z

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  3. Multiscale modeling of clay-water systems

    E-Print Network [OSTI]

    Ebrahimi, Davoud

    2014-01-01T23:59:59.000Z

    The engineering properties of soils are highly affected by clay content and clay-water interactions. However, existing macro-scale continuum models have no length scale to describe the evolution of the clay microstructure ...

  4. As you know, water costs continue to rise, but you can do something to help yourself. Households can check their plumbing fixtures and irrigation systems for leaks. This checklist will

    E-Print Network [OSTI]

    . Households can check their plumbing fixtures and irrigation systems for leaks. This checklist will help you a certification program focused on water efficiency to ensure that your in-ground irrigation system is not leaking tape and a wrench. 8. Consult with an irrigation installer (WaterSense partner) who has passed

  5. MODELING, SIMULATION AND OPTIMIZATION OF GROUND SOURCE

    E-Print Network [OSTI]

    MODELING, SIMULATION AND OPTIMIZATION OF GROUND SOURCE HEAT PUMP SYSTEMS By MUHAMMAD HAIDER KHAN AND OPTIMIZATION OF GROUND SOURCE HEAT PUMP SYSTEMS Thesis Approved..................................................................................................................... 1 1.1 Overview of Ground Source Heat Pump Systems.............................................. 1 1

  6. Ceramic coating system or water oxidation environments

    DOE Patents [OSTI]

    Hong, Glenn T. (Tewksbury, MA)

    1996-01-01T23:59:59.000Z

    A process for water oxidation of combustible materials in which during at least a part of the oxidation corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises titanium dioxide coated onto a titanium metal substrate. Such ceramic composites have been found to be highly resistant to environments encountered in the process of supercritical water oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases, and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 700.degree. C. The ceramic composites are also resistant to degradation mechanisms caused by thermal stresses.

  7. [Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio]. Volume 4, Health and Safety Plan (HSP); Phase 1, Task 4 Field Investigation report: Draft

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  8. Polar versus temperate grounding-line sedimentary systems and marine glacier stability during sea level rise by global warming

    SciTech Connect (OSTI)

    Powell, R.D. (Illinois Univ., DeKalb, IL (United States). Geology Dept.); Pyne, A.R. (Victoria Univ., Wellington (New Zealand). Antarctic Research Center); Hunter, L.E.; Rynes, N.R.

    1992-01-01T23:59:59.000Z

    Marine-ending glaciers may retreat with global warming as sea level rises by ocean thermal expansion. If the sea floor rises by sediment accumulation, then glaciers may not feel the effect of sea level rise. A submersible ROV and other techniques have been used to collect data from temperate and polar glaciers to compare sediment production and mass balance of their grounding-line systems. Temperature Alaskan valley glaciers flow at about 0.2--2 km/a and have high volumes of supraglacial, englacial and subglacial debris. However, most sediment contributed to the base of their tidewater cliffs comes from subglacial streams or squeezing out subglacial sediment and pushing it with other marine sediment into a morainal bank. Blue Glacier, a thin, locally fed polar glacier in Antarctica, flows slowly and has minimal glacial debris. The grounding-line system at the tidewater cliff is a morainal bank that forms solely by pushing of marine sediment. An Antarctic polar outlet glacier, Mackay Glacier, terminating as a floating glacier-tongue, has similar volumes of basal debris to Alaskan temperature glaciers and flows at 250 m/a. However, no subglacial streams issued from Mackay's grounding line and all sedimentation was by rockfall and grainfall rainout from seawater undermelt of the tongue. A grounding-line wedge of glacimarine diamicton is deposited over subglacial (lodgement ) till. Although Antarctic grounding-line accumulation rates are three orders of magnitude smaller than Alaskan rates, both are capable of compensating for predicted rises in sea level by thermal heating from global warming.

  9. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Livestock Manure Storage and Treatment Facilities 

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    , accumulating manure in a con- centrated area can be risky to the environment and to human and animal health unless done properly. Federal and state drinking water standards state that nitrate levels in drinking water should not exceed 10 milligrams per liter... (equivalent to parts per million for water mea- sure). Nitrate nitrogen levels higher than this can pose health problems for infants under 6 months of age, including the condition known as methemoglobinemia (blue baby syndrome). Nitrate also can affect adults...

  10. Integrated Heat Pump (IHP) System Development - Air-Source IHP Control Strategy and Specifications and Ground-Source IHP Conceptual Design

    SciTech Connect (OSTI)

    Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL

    2007-05-01T23:59:59.000Z

    The integrated heat pump (IHP), as one appliance, can provide space cooling, heating, ventilation, and dehumidification while maintaining comfort and meeting domestic water heating needs in near-zero-energy home (NZEH) applications. In FY 2006 Oak Ridge National Laboratory (ORNL) completed development of a control strategy and system specification for an air-source IHP. The conceptual design of a ground-source IHP was also completed. Testing and analysis confirm the potential of both IHP concepts to meet NZEH energy services needs while consuming 50% less energy than a suite of equipment that meets current minimum efficiency requirements. This report is in fulfillment of an FY06 DOE Building Technologies (BT) Joule Milestone.

  11. Method and appartus for converting static in-ground vehicle scales into weigh-in-motion systems

    DOE Patents [OSTI]

    Muhs, Jeffrey D. (Lenior City, TN); Scudiere, Matthew B. (Oak Ridge, TN); Jordan, John K. (Oak Ridge, TN)

    2002-01-01T23:59:59.000Z

    An apparatus and method for converting in-ground static weighing scales for vehicles to weigh-in-motion systems. The apparatus upon conversion includes the existing in-ground static scale, peripheral switches and an electronic module for automatic computation of the weight. By monitoring the velocity, tire position, axle spacing, and real time output from existing static scales as a vehicle drives over the scales, the system determines when an axle of a vehicle is on the scale at a given time, monitors the combined weight output from any given axle combination on the scale(s) at any given time, and from these measurements automatically computes the weight of each individual axle and gross vehicle weight by an integration, integration approximation, and/or signal averaging technique.

  12. Milli-Q Reference Water Purification System

    E-Print Network [OSTI]

    Woodall, Jerry M.

    , they must do so at a faster pace, while meeting increasing standards and often operating in laboratories water quality Large digital & graphic screen with detailed procedures for full on line support Inside graphics help you perform specific tasks such as maintenance. From the same screen, you can even print

  13. Hamerschlag Hall Green Roof Project Water Monitoring System

    E-Print Network [OSTI]

    Andrews, Peter B.

    1 Hamerschlag Hall Green Roof Project Water Monitoring System Plans and Specifications Created By: David Carothers Date: 2/17/05 #12;2 Hamerschlag Hall Green Roof Project Date: 2/14/05 Created By: David and the flumes shall be water tight. (Figures 1&2) · The connection between the flume and the green roof membrane

  14. New computerized system saves water and money By Kate Weidaw

    E-Print Network [OSTI]

    Johnston, Daniel

    New computerized system saves water and money By Kate Weidaw Updated: Thursday, October 10, 2013 on the University of Texas campus in Austin and the savings is counted in more than just gallons of water on the savings are just coming in and the changes have resulted in a savings of nearly one million dollars a year

  15. Analyzing risk and uncertainty for improving water distribution system security from malevolent water supply contamination events

    E-Print Network [OSTI]

    Torres, Jacob Manuel

    2009-05-15T23:59:59.000Z

    Previous efforts to apply risk analysis for water distribution systems (WDS) have not typically included explicit hydraulic simulations in their methodologies. A risk classification scheme is here employed for identifying vulnerable WDS components...

  16. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-07-01T23:59:59.000Z

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  17. Stealthy Deception Attacks on Water SCADA Systems Saurabh Amin

    E-Print Network [OSTI]

    day irrigation canal systems. This type of monitoring and control infrastructure is also commonStealthy Deception Attacks on Water SCADA Systems Saurabh Amin Department of CEE UC Berkeley, CA the vulnerabilities of Supervisory Control and Data Acquisition (SCADA) systems which mon- itor and control the modern

  18. MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE

    E-Print Network [OSTI]

    MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE HEAT PUMP SYSTEMS By CENK SOURCE HEAT PUMP SYSTEMS Thesis Approved: ___________________________________________ Thesis Adviser scale test data. The short-term behavior of ground-coupled heat pump systems is important for the design

  19. Boiler Upgrades and Decentralizing Steam Systems Save Water and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Systems Save Water and Energy at Naval Air Station Oceana Case study details Naval Air Station Oceana findings that its heating needs could be met more efficiently by...

  20. Strategic indicators for characterization of water system infrastructure and management

    E-Print Network [OSTI]

    Garvin, Michael J. (Michael Joseph)

    2001-01-01T23:59:59.000Z

    Shifts in the US water industry are characteristic of the flux found across all infrastructure sectors. Economic, environmental, market, regulatory and systemic forces are pushing the industry toward a different future ...

  1. Homeland Security Challenges Facing Small Water Systems in Texas

    E-Print Network [OSTI]

    Dozier, Monty; Theodori, Gene L.; Jensen, Ricard

    2007-05-31T23:59:59.000Z

    across Texas A&M are now developing graduate classes on such areas as government programs related to homeland security, haz- ard mitigation, cybersecurity, public health and critical infrastructure protection related to water and wastewater systems...

  2. Water Rights Analysis Package (WRAP) Modeling System Reference Manual

    E-Print Network [OSTI]

    Wurbs, Ralph A.

    . Basin-wide impacts of water resources development projects and management strategies may be evaluated. The software package is generalized for application to any river/reservoir/use system, with input files being developed for the particular river basin...

  3. EA-1093: Surface Water Drainage System, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to correct deficiencies in, and then to maintain, the surface water drainage system serving the U.S. Department of Energy's Rocky Flats...

  4. auxiliary water systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Topic Index 1 Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System Texas A&M University - TxSpace Summary: This paper presents two common...

  5. Water Distribution and Wastewater Systems Operators (North Dakota)

    Broader source: Energy.gov [DOE]

    All public water supply and wastewater disposal systems are subject to classification and regulation by the State of North Dakota, and must obtain certification from the State Department of Health.

  6. Water oxidation reaction in natural and artificial photosynthetic systems

    SciTech Connect (OSTI)

    Yano, Junko; Yachandra, Vittal [Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720 (United States)

    2013-12-10T23:59:59.000Z

    Understanding the structure and mechanism of water oxidation catalysts is an essential component for developing artificial photosynthetic devices. In the natural water oxidation catalyst, the geometric and electronic structure of its inorganic core, the Mn{sub 4}CaO{sub 5} cluster, has been studied by spectroscopic and diffraction measurements. In inorganic systems, metal oxides seem to be good candidates for water oxidation catalysts. Understanding the reaction mechanism in both natural and oxide-based catalysts will helpin further developing efficient and robust water oxidation catalysts.

  7. Water augmented indirectly-fired gas turbine systems and method

    DOE Patents [OSTI]

    Bechtel, Thomas F. (Lebanon, PA); Parsons, Jr., Edward J. (Morgantown, WV)

    1992-01-01T23:59:59.000Z

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  8. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    SciTech Connect (OSTI)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01T23:59:59.000Z

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  9. Missouri Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    the mentoring team. Renewable Energy Ground source heat pump technology is being studied with application with the Water Center, is installing ground source systems on turkey farms in Central Missouri. The energy system to the agriculture sector. The constant temperature of the ground represents an incredible source of environmentally

  10. WATER DATA MANAGEMENT SYSTEMS INTEGRATIONS WITH MODELS

    E-Print Network [OSTI]

    Rhode Island, University of

    Acquisition (SCADA) system that can control operations in treatment plants, as well as continuously check and SCADA interfaces for even more integrated analyses, which is important since many suppliers are implementing SCADA systems. However, only about thirty-five (35) percent of the suppliers have a functioning

  11. The water megamaser in the merger system Arp299

    E-Print Network [OSTI]

    A. Tarchi; P. Castangia; C. Henkel; K. M. Menten

    2006-10-30T23:59:59.000Z

    We present preliminary results of an interferometric study of the water megamaser in the merger system Arp299. This system is composed of two main sources: IC694 and NGC3690. There is clear evidence that most of the water maser emission is associated with the nucleus of the latter, confirming the presence of an optically obscured AGN as previously suggested by X-ray observations. Furthermore, emission arises from the inner regions of IC694, where an OH megamaser is also present. The velocity of the water maser line is blueshifted w.r.t. the optically determined systemic velocity and is consistent with that of the OH megamaser line. This finding might then indicate that both masers are associated with the same (expanding) structure and that, for the first time, strong 22 GHz water and 1.67 GHz OH maser emission has been found to coexist.

  12. Energy and Water Use in Irrigated Agriculture During Drought Conditions

    E-Print Network [OSTI]

    Ritschard, R.L.

    2011-01-01T23:59:59.000Z

    is overdrafted from ground water storage basins. 3 In 1976supply, pumping from ground water storage reservoirs mayIn of ground formation which reduces the water storage

  13. New mud system produces solids-free, reusable water

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The Corpus Christi, Texas, based Cameron Equipment Co., Inc., has developed a closed-loop mud treating system that removes solids from water-based systems and leaves the separated fluid clean and chemical free enough to be re-used directly on the rig. The system has been successfully applied by a Gulf of Mexico operator in areas where zero discharge is required. The alternative mud conditions program offered by the developers is called the Cameron Fluid Recycling System. Designed for closed-loop water-based fluids, the system is a new method of removing solids from normally discharged fluids such as drilling mud, waste and wash water, or any other water-based fluid that contains undesirable solids. The patented method efficiently produces end products that are (1) dry solids; and (2) essentially 100% solids-free fluid that can be re-used in the same mud system. All excess drilling mud, and all wash water that would normally go to the reserve pit or a cuttings barge are collected in a tank. Recycled fluid is compatible with the mud system fluid, no harmful chemicals are used, and pH is not altered.

  14. Turtles All The Way Down: A Clean-Slate, Ground-Up, First-Principles Approach to Secure Systems

    E-Print Network [OSTI]

    Peisert, Sean; Talbot, Ed; Bishop, Matt

    2012-01-01T23:59:59.000Z

    The Way Down: ? A Clean-Slate, Ground-Up, First-Principlesrequirements for a “clean-slate, ground-up, ?rst-principles”

  15. LANSCE Drift Tube Linac Water Control System Refurbishment

    SciTech Connect (OSTI)

    Marroquin, Pilar S. [Los Alamos National Laboratory

    2011-01-01T23:59:59.000Z

    There are several refurbishment projects underway at the Los Alamos National Laboratory LANSCE linear accelerator. Systems involved are: RF, water cooling, networks, diagnostics, timing, controls, etc. The Drift Tube Linac (DTL) portion of the accelerator consists of four DTL tanks, each with three independent water control systems. The systems are about 40 years old, use outdated and non-replaceable equipment and NIM bin control modules, are beyond their design life and provide unstable temperature control. Insufficient instrumentation and documentation further complicate efforts at maintaining system performance. Detailed design of the replacement cooling systems is currently in progress. Previous design experience on the SNS accelerator water cooling systems will be leveraged, see the SNS DTL FDR. Plans call for replacement of water piping, manifolds, pumps, valves, mix tanks, instrumentation (flow, pressure and temperature) and control system hardware and software. This presentation will focus on the control system design with specific attention on planned use of the National Instruments Compact RIO platform with the Experimental Physics and Industrial Control system (EPICS) software toolkit.

  16. Energy Conservation in Process Chilled Water Systems

    E-Print Network [OSTI]

    Ambs, L. L.; DiBella, R. A.

    The energy consumption of the chiller and cooling tower in a process cooling application was analyzed using the TRNSYS computer code. The basic system included a constant speed centrifugal chiller and an induced-draft, counterflow cooling tower...

  17. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    E-Print Network [OSTI]

    Warner, J.L.

    2009-01-01T23:59:59.000Z

    Outdoor Temperature for District Heating Systems. ” ASHRAEAssessment of Buried District Heating Piping. ” ASHRAE

  18. Reduction of Vinyl Chloride in Metallic Iron-Water Systems

    E-Print Network [OSTI]

    Deng, Baolin

    Reduction of Vinyl Chloride in Metallic Iron-Water Systems B A O L I N D E N G * Department to groundwater and soil contamination. In particular, VC can be produced as an intermediate in the reductive- lenging. Traditional "pump-and-treat" treatment systems have proven to be costly and ineffective in many

  19. A multilayer shallow water system for polydisperse sedimentation

    E-Print Network [OSTI]

    Bürger, Raimund

    functions. The resulting multilayer sedimentation-flow model can be written as a hyperbolic systemA multilayer shallow water system for polydisperse sedimentation E.D. Fern´andez-Nieto , E.H. Kon of a fluid containing one disperse substance consisting of small particles that belong to different species

  20. Detection of the Water Reservoir in a Forming Planetary System

    E-Print Network [OSTI]

    Hogerheijde, Michiel R; Brinch, Christian; Cleeves, L Ilsedore; Fogel, Jeffrey K J; Blake, Geoffrey A; Dominik, Carsten; Lis, Dariusz C; Melnick, Gary; Neufeld, David; Panic, Olja; Pearson, John C; Kristensen, Lars; Yildiz, Umut A; van Dishoeck, Ewine F

    2011-01-01T23:59:59.000Z

    Icy bodies may have delivered the oceans to the early Earth, yet little is known about water in the ice-dominated regions of extra-solar planet-forming disks. The Heterodyne Instrument for the Far-Infrared on-board the Herschel Space Observatory has detected emission from both spin isomers of cold water vapor from the disk around the young star TW Hydrae. This water vapor likely originates from ice-coated solids near the disk surface hinting at a water ice reservoir equivalent to several thousand Earth Oceans in mass. The water's ortho-to-para ratio falls well below that of Solar System comets, suggesting that comets contain heterogeneous ice mixtures collected across the entire solar nebula during the early stages of planetary birth.

  1. NGWA.org Ground Water Monitoring & Remediation 31, no. 3/ Summer 2011/pages 4754 47 2011, The Author(s)

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    contaminated with fuel ethanol blends. Introduction Ethanol is increasingly being used as a blending agent of an Ethanol Blend by Jie Ma, Zongming Xiu, Amy L. Monier, Irina Mamonkina, Yi Zhang, Yongzhi He, Brent P release of 10% v:v ethanol solution in water mixed with benzene and toluene (50 mg/L each

  2. Solar space and water heating system installed at Charlottesville, Virginia

    SciTech Connect (OSTI)

    Greer, Charles R.

    1980-09-01T23:59:59.000Z

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, consists of 88 single glazed, Sunworks Solector copper base plate collector modules; hot water coils in the hot air ducts; a domestic hot water (DHW) preheat tank; a 3,000 gallon concrete urethane-insulated storage tank and other miscellaneous components. This report includes extracts from the site files, specifications, drawings, installation, operation and maintenance instructions.

  3. Construction Summary and As-Built Report for Ground Water Treatment System

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluor Federal Services -EnergyPowerSafety1,

  4. ARM 17-30-10 - Ground Water Pollution Control System | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation, search Name:APPQuality Jump

  5. Technical Feasibility Study for Deployment of Ground-Source Heat Pump Systems: Portsmouth Naval Shipyard -- Kittery, Maine

    SciTech Connect (OSTI)

    Hillesheim, M.; Mosey, G.

    2014-11-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. Portsmouth Naval Shipyard (PNSY) is a United States Navy facility located on a series of conjoined islands in the Piscataqua River between Kittery, ME and Portsmouth, NH. EPA engaged NREL to conduct a study to determine technical feasibility of deploying ground-source heat pump systems to help PNSY achieve energy reduction goals.

  6. Design of a high temperature hot water central heating system

    SciTech Connect (OSTI)

    Beaumont, E.L.; Johnson, R.C.; Weaver, J.M.

    1981-11-01T23:59:59.000Z

    The paper reviews the conceptual design of a central heating system at Los Alamos Scientific Laboratory. The resource considered for this heating system design was hot dry rock geothermal energy. Design criteria were developed to ensure reliability of energy supply, to provide flexibility for adaptation to multiple energy resources, to make optimum use of existing equipment and to minimize reinvestment cost. A variable temperature peaking high temperature water system was selected for this purpose.

  7. Design manual for high temperature hot water and steam systems

    SciTech Connect (OSTI)

    Cofield, R.E. Jr.

    1984-01-01T23:59:59.000Z

    The author presents aspects of high temperature hot water and steam generating systems. It covers all the calculations that must be made for sizing and then selecting the equipment that will make up an energy system. The author provides essential information on loan analysis, types of fuel, storage requirements, handling facilities, waste disposal, HVAC needs, and back-up systems. Also included are the calculations needed for determining the size of compressors, air pollution devices, fans, filters, and other supplementary equipment.

  8. National emissions standards for hazardous air pollutants application for approval of construction SP-100 Ground Engineering System Test Site

    SciTech Connect (OSTI)

    Not Available

    1990-04-01T23:59:59.000Z

    The following Application for Approval of Construction is being submitted by the US Department of Energy --- Richland Operations Office, for the SP-100 Ground Engineering System Test Site, which will provide a new source of radioactive emissions to the atmosphere. The US Department of Energy, the National Aeronautics and Space Administration, and the US Department of Defense have entered into an agreement to jointly develop space nuclear reactor power system. A ground test of a reactor is necessary to demonstrate technology readiness of this major subsystem before proceeding with the flight system development and demonstration. It is proposed that the SP-100 test reactor be tested in the existing decommissioned Plutonium Recycle Test Reactor containment building (309 Building). The reactor will be operated for at least three months and up to 2 yr. Following the test, the 309 Building will be decontaminated for potential use in other programs. It is projected that this new source of emissions will contribute approximately 0.05 mrem/yr dose to the maximally exposed offsite individual. This application is being submitted in response to those projected emissions that would provide the described offsite dose. 8 refs., 9 figs., 2 tabs.

  9. Ground-water monitoring compliance projects for Hanford Site facilities: Progress report for the period January 1--March 31, 1988: Volume 1, Text

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    This report describes the progress of eight Hanford Site ground-water monitoring projects for the period January 1 to March 31, 1988. The facilities represented by the eight projects are the 300 Area Process trenches, 183-H Solar Evaporation Basins, 200 Areas Low-Level Burial Grounds, Nonradioactive Dangerous Waste Landfill, 216-A-36B Crib, 1301-N Liquid Waste Disposal Facility, 1325-N Liquid Waste Disposal Facility, and 1324-N/NA Surface Impoundment and Percolation Ponds. The latter four projects are included in this series of quarterly reports for the first time. This report is the seventh in a series of periodic status reports; the first six cover the period from May 1, 1986, through December 31, 1987 (PNL 1986; 1987a, b, c, d; 1988a). This report satisfies the requirements of Section 17B(3) of the Consent Agreement and Compliance Order issued by the Washington State Department of Ecology (1986a) to the US Department of Energy-Richland Operations Office. 13 refs., 19 figs., 24 tabs.

  10. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Livestock Holding Pen Management

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    of yard surface 7) Manure storage and utilization 8) Abandoned livestock yards 9) Evaluation table A glossary in the back of this publication will clarify the terminology used. Separation Distance From Well Wells should be located in an elevated area..., so it remains relatively dry except during and immediately after rainfall. Manure typically accumulates on the surface, and decaying or decomposing manure is mixed into the soil by animal traffic, sealing the sur- face and reducing infiltration. Water...

  11. Hot Water Distribution System Model Enhancements

    SciTech Connect (OSTI)

    Hoeschele, M.; Weitzel, E.

    2012-11-01T23:59:59.000Z

    This project involves enhancement of the HWSIM distribution system model to more accurately model pipe heat transfer. Recent laboratory testing efforts have indicated that the modeling of radiant heat transfer effects is needed to accurately characterize piping heat loss. An analytical methodology for integrating radiant heat transfer was implemented with HWSIM. Laboratory test data collected in another project was then used to validate the model for a variety of uninsulated and insulated pipe cases (copper, PEX, and CPVC). Results appear favorable, with typical deviations from lab results less than 8%.

  12. Arkansas Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    wastewater disposal systems, ground water modeling and land use mapping, erosion and pollution, water quality focused on helping local, state and federal agencies understand, manage and protect water resources within Arkansas. AWRC has contributed substantially to the understanding and management of water resources through

  13. Water Use in Agricultural Watersheds Derrel Martin, Professor, Irrigation and Water Resources Engineer, Dept. of Biological Systems

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Water Use in Agricultural Watersheds Derrel Martin, Professor, Irrigation and Water Resources Engineer, Dept. of Biological Systems Engineering, UNL Background Concerns about water use have intensified and Republican River Basins, and the implementation of LB 962. To understand water use it is helpful to consider

  14. Keywordscondensation tube, surface modification, waste heat and condensation water recovery system

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Keywordscondensation tube, surface modification, waste heat and condensation water recovery techniques is waste heat and condensation water recovery system. Waste heat and condensation water recovery system is one of the most important facilities in power plants. High efficiency waste heat

  15. Reliability-Based Design Optimization for Durability of Ground Vehicle Suspension System Components

    E-Print Network [OSTI]

    Grujicic, Mica

    structures infused with impact resistant epoxy polymer systems) as well as in the integration of multifunc

  16. PARAMETRIC STUDY OF GROUND SOURCE HEAT PUMP SYSTEM FOR HOT AND HUMID CLMATE

    SciTech Connect (OSTI)

    Jiang Zhu; Yong X. Tao

    2011-11-01T23:59:59.000Z

    The U-tube sizes and varied thermal conductivity with different grout materials are studied based on the benchmark residential building in Hot-humid Pensacola, Florida. In this study, the benchmark building is metered and the data is used to validate the simulation model. And a list of comparative simulation cases with varied parameter value are simulated to study the importance of pipe size and grout to the ground source heat pump energy consumption. The simulation software TRNSYS [1] is employed to fulfill this task. The results show the preliminary energy saving based on varied parameters. Future work needs to be conducted for the cost analysis, include the installation cost from contractor and materials cost.

  17. NGWA.org Ground Water Monitoring & Remediation 00, no. 0/ xxxx 0000/pages 0000 1 2012, The Author(s)

    E-Print Network [OSTI]

    Clement, Prabhakar

    1745­6592.2012.01392.x Modeling Dehalococcoides sp. Augmented Bioremediation in a Single Fracture System by Jagadish Torlapati, T. Prabhakar Clement, Charles E. Schaefer, and Kang-Kun Lee Introduction efforts has resulted in widespread contamination of groundwater and soil systems. The toxicity

  18. Fundamental Studies of The Removal of Contaminants from Ground and Waste Waters Via Reduction By Zero-Valent metals

    SciTech Connect (OSTI)

    Jory A. Yarmoff; Christopher Amrhein

    2002-04-23T23:59:59.000Z

    Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites, and in other areas of the U.S.. A potential remediation method is to react the contaminated water with zero-valent iron (ZVI). We are performing fundamental investigations of the interactions of the relevant compounds with Fe filings and single- and poly-crystalline surfaces. The aim of this work is to develop the physical and chemical understanding that is necessary for the development of cleanup techniques and procedures.

  19. Biofuels, land and water : a systems approach to sustainability.

    SciTech Connect (OSTI)

    Gopalakrishnan, G.; Negri, M. C.; Wang, M.; Wu, M.; Snyder, S. W.; LaFreniere, L.

    2009-08-01T23:59:59.000Z

    There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels. This study presents a systems approach where the agricultural, energy, and environmental sectors are considered as components of a single system, and environmental liabilities are used as recoverable resources for biomass feedstock production. We focus on efficient use of land and water resources. We conducted a spatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration for the state of Nebraska. Results indicate that utilizing marginal land resources such as riparian and roadway buffer strips, brownfield sites, and marginal agricultural land could produce enough feedstocks to meet a maximum of 22% of the energy requirements of the state compared to the current supply of 2%. Degraded water resources such as nitrate-contaminated groundwater and wastewater were evaluated as sources of nutrients and water to improve feedstock productivity. Spatial overlap between degraded water and marginal land resources was found to be as high as 96% and could maintain sustainable feedstock production on marginal lands. Other benefits of implementing this strategy include feedstock intensification to decrease biomass transportation costs, restoration of contaminated water resources, and mitigation of greenhouse gas emissions.

  20. Evaluation of Analytical and Numerical Techniques for Defining the Radius of Influence for an Open-Loop Ground Source Heat Pump System

    SciTech Connect (OSTI)

    Freedman, Vicky L.; Mackley, Rob D.; Waichler, Scott R.; Horner, Jacob A.

    2013-09-26T23:59:59.000Z

    In an open-loop groundwater heat pump (GHP) system, groundwater is extracted, run through a heat exchanger, and injected back into the ground, resulting in no mass balance changes to the flow system. Although the groundwater use is non-consumptive, the withdrawal and injection of groundwater may cause negative hydraulic and thermal impacts to the flow system. Because GHP is a relatively new technology and regulatory guidelines for determining environmental impacts for GHPs may not exist, consumptive use metrics may need to be used for permit applications. For consumptive use permits, a radius of influence is often used, which is defined as the radius beyond which hydraulic impacts to the system are considered negligible. In this paper, the hydraulic radius of influence concept was examined using analytical and numerical methods for a non-consumptive GHP system in southeastern Washington State. At this location, the primary hydraulic concerns were impacts to nearby contaminant plumes and a water supply well field. The results of this study showed that the analytical techniques with idealized radial flow were generally unsuited because they over predicted the influence of the well system. The numerical techniques yielded more reasonable results because they could account for aquifer heterogeneities and flow boundaries. In particular, the use of a capture zone analysis was identified as the best method for determining potential changes in current contaminant plume trajectories. The capture zone analysis is a more quantitative and reliable tool for determining the radius of influence with a greater accuracy and better insight for a non-consumptive GHP assessment.

  1. Energy, Exergy and Uncertainty Analyses of the Thermal Response Test for a Ground Heat Exchanger

    E-Print Network [OSTI]

    Al-Shayea, Naser Abdul-Rahman

    exchanger, Ground coupled heat pump Corresponding author, Tel.: +1-617-308-7214, Fax: +1-617-253-3484, E calibration DAS data acquisition system g ground H heater loss1 losses from the heating section loss2 losses heating and cooling, water heating, crop drying, agricultural greenhouses, etc. In vertical U

  2. {sup 222}Rn in water: A comparison of two sample collection methods and two sample transport methods, and the determination of temporal variation in North Carolina ground water

    SciTech Connect (OSTI)

    Hightower, J.H. III [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering] [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering

    1994-12-31T23:59:59.000Z

    Objectives of this field experiment were: (1) determine whether there was a statistically significant difference between the radon concentrations of samples collected by EPA`s standard method, using a syringe, and an alternative, slow-flow method; (2) determine whether there was a statistically significant difference between the measured radon concentrations of samples mailed vs samples not mailed; and (3) determine whether there was a temporal variation of water radon concentration over a 7-month period. The field experiment was conducted at 9 sites, 5 private wells, and 4 public wells, at various locations in North Carolina. Results showed that a syringe is not necessary for sample collection, there was generally no significant radon loss due to mailing samples, and there was statistically significant evidence of temporal variations in water radon concentrations.

  3. Solar/performance goals for solar and ground-coupled heat pump systems

    SciTech Connect (OSTI)

    Andrews, J.W.

    1980-09-01T23:59:59.000Z

    Cost goals for combined solar/heat pump systems are developed. Three methods of analysis are used: simple payback, positive cash flow, and life cycle costing. The goals are parameterized on system energy efficiency, with the air-to-air heat pump as the conventional system which is used as a basis for comparison. Cost goals for nine systems are determined in three generic climates.

  4. Monitoring microbial corrosion in large oilfield water systems

    SciTech Connect (OSTI)

    Chen, E.Y.; Chen, R.B.

    1983-03-01T23:59:59.000Z

    Monitoring of microbial corrosion is always difficult because of the sessile nature of bacteria and the lack of meaningful correlation between routine bacteria counts and bacterial activity. This problem is further aggravated in a large oilfield water system because of its size and sampling difficulties. This paper discusses some monitoring techniques currently used in the oil industry, their limitations and the possible areas for improvement. These suggested improvements either are presently being implemented or will be implemented in the Aramco systems.

  5. Monitoring microbial corrosion in large oilfield water systems

    SciTech Connect (OSTI)

    Chen, E.Y.; Chen, R.B.

    1984-07-01T23:59:59.000Z

    Monitoring of microbial corrosion is always difficult because of the sessile nature of bacteria and the lack of meaningful correlation between routine bacteria counts and bacterial activity. This problem is further aggravated in a large oilfield water system because of size and sampling difficulties. This paper discusses some monitoring techniques currently used in the oil industry, their limitations, and possible areas for improvement. These improved techniques are in use or will be implemented in the Aramco systems.

  6. Hydrocarbon Formation in Metallic Iron/Water Systems

    E-Print Network [OSTI]

    Deng, Baolin

    Hydrocarbon Formation in Metallic Iron/Water Systems B A O L I N D E N G , , § T I M O T H Y J . C-labeled hydrocarbons are produced. In the absence of chlorinated ethenes, however, lower con- centrations of many of the same hydrocarbons (methane and C2-C6 alkanes and alkenes) are also produced. Hardy and Gillham (1996

  7. EA-1905: Double Eagle Water System, Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    This EA, prepared by the U.S. Department of the Interior’s Bureau of Land Management Carlsbad Field Office and adopted by DOE, evaluates the expansion and upgrade of the City of Carlsbad’s Double Eagle Water System.

  8. System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)

    SciTech Connect (OSTI)

    DERUSSEAU, R.R.

    2000-04-18T23:59:59.000Z

    This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP).

  9. Abstracts and parameter index database for reports pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Bloomsburg, G.; Finnie, J.; Horn, D.; King, B.; Liou, J. [Idaho Univ., Moscow, ID (United States)

    1993-05-01T23:59:59.000Z

    This report is a product generated by faculty at the University of Idaho in support of research and development projects on Unsaturated Zone Contamination and Transport Processes, and on Surface Water-Groundwater Interactions and Regional Groundwater Flow at the Idaho National Engineering Laboratory. These projects are managed by the State of Idaho`s INEL Oversight Program under a grant from the US Department of Energy. In particular, this report meets project objectives to produce a site-wide summary of hydrological information based on a literature search and review of field, laboratory and modeling studies at INEL, including a cross-referenced index to site-specific physical, chemical, mineralogic, geologic and hydrologic parameters determined from these studies. This report includes abstracts of 149 reports with hydrological information. For reports which focus on hydrological issues, the abstracts are taken directly from those reports; for reports dealing with a variety of issues beside hydrology, the abstracts were generated by the University of Idaho authors concentrating on hydrology-related issues. Each abstract is followed by a ``Data`` section which identifies types of technical information included in a given report, such as information on parameters or chemistry, mineralogy, stream flows, water levels. The ``Data`` section does not include actual values or data.

  10. Ground-source Heat Pumps Applied to Commercial Buildings

    SciTech Connect (OSTI)

    Parker, Steven A.; Hadley, Donald L.

    2009-07-14T23:59:59.000Z

    Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

  11. The convective structures associated with cloud-to-ground lightning in TOGA COARE Mesoscale Convective Systems

    E-Print Network [OSTI]

    Restivo, Michael Edward

    1995-01-01T23:59:59.000Z

    suggested that the threshold of about 40 dBZ at the -10 C level for rapid cloud electrification found in New Mexico by Dye et al. (1989) could be valid for tropical convection as well. Orville and Henderson (1986), and Goodman and Christian (1993), have... along with small ice and supercooled liquid water for cloud electrification and lightning to occur. Since most oceanic VPRR drop off rapidly above the freezing level compared to continental VPRR, this would provide evidence that the updraft velocities...

  12. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    SciTech Connect (OSTI)

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01T23:59:59.000Z

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  13. The Development of an Energy Evaluation Tool for Chilled Water Systems

    E-Print Network [OSTI]

    Stocki, M.; Kosanovic, D.; Ambs, L.

    An energy evaluation tool for chilled water systems was developed. This tool quantifies the energy usage of various chilled water systems and typical energy conservation measures that are applied to these systems. It can be used as a screening tool...

  14. TREATMENT OF PRODUCED WATERS USING A SURFACTANT MODIFIED ZEOLITE/VAPOR PHASE BIOREATOR SYSTEM

    SciTech Connect (OSTI)

    LYNN E. KATZ; KERRY A. KINNEY; R.S. BOWMAN; E.J. SULLIVAN

    2003-10-01T23:59:59.000Z

    Co-produced water from the oil and gas industry is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some of them must be treated to remove organic constituents before the water is discharged. An efficient, cost-effective treatment technology is needed to remove these constituents. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. Our previous DOE research work (DE-AC26-99BC15221) demonstrated that SMZ could successfully remove BTEX compounds from the produced water. In addition, SMZ could be regenerated through a simple air sparging process. The primary goal of this project is to develop a robust SMZ/VPB treatment system to efficiently remove the organic constituents from produced water in a cost-effective manner. This report summarizes work of this project from March 2003 through September 2003. We have continued our investigation of SMZ regeneration from our previous DOE project. Ten saturation/stripping cycles have been completed for SMZ columns saturated with BTEX compounds. The results suggest that BTEX sorption capacity is not lost after ten saturation/regeneration cycles. The composition of produced water from a site operated by Crystal Solutions Ltd. in Wyoming has been characterized and was used to identify key semi-volatile components. Isotherms with selected semi-volatile components have been initiated and preliminary results have been obtained. The experimental vapor phase bioreactors for this project have been designed and assembled to treat the off-gas from the SMZ regeneration process. These columns will be used both in the laboratory and in the proposed field testing to be conducted next year. Innocula for the columns that degrade all of the BTEX columns have been developed.

  15. The Next Generation Integrity Monitor Testbed (IMT) for Ground System Development

    E-Print Network [OSTI]

    Stanford University

    that apply to Category I precision approach. With support from the U.S. Federal Aviation Administration (FAA.0 INTRODUCTION The U.S. Federal Aviation Administration (FAA) is developing the Local Area Augmentation System

  16. Towards Practical and Grounded Knowledge Representation Systems for Autonomous Household Robots

    E-Print Network [OSTI]

    Cremers, Daniel

    Moritz Tenorth, Michael Beetz Intelligent Autonomous Systems, Technische Universit¨at M¨unchen {tenorth, beetz}@cs.tum.edu Abstract-- Mobile household robots need much knowledge about objects, places

  17. Application of a water rights analysis program to reservoir system yield calculations

    E-Print Network [OSTI]

    Walls, William Brian

    1988-01-01T23:59:59.000Z

    corrected to approximate naturalized flows. As water management becomes more critical, it is necessary to gage the effect of governmental institutions on reservoir yields. In Texas and elsewhere, water users are governed by a system of water rights.... The effect of this system on firm yields must be quantified in order to provide effective water management. This thesis documents research into the effect of the Texas water rights system on the Brazos River Authority reservoir system. A new generalized...

  18. Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in which heating and cooling are provided by a single piece of equipment.

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in whichGCHP program was developed by a previous MS student to optimize the design of hybrid systems. The current design changes when actual yearly weather data are used and develop a means to increase the optimization

  19. Physical Modeling of Scaled Water Distribution System Networks.

    SciTech Connect (OSTI)

    O'Hern, Timothy J.; Hammond, Glenn Edward; Orear, Leslie ,; van Bloemen Waanders, Bart G.; Paul Molina; Ross Johnson

    2005-10-01T23:59:59.000Z

    Threats to water distribution systems include release of contaminants and Denial of Service (DoS) attacks. A better understanding, and validated computational models, of the flow in water distribution systems would enable determination of sensor placement in real water distribution networks, allow source identification, and guide mitigation/minimization efforts. Validation data are needed to evaluate numerical models of network operations. Some data can be acquired in real-world tests, but these are limited by 1) unknown demand, 2) lack of repeatability, 3) too many sources of uncertainty (demand, friction factors, etc.), and 4) expense. In addition, real-world tests have limited numbers of network access points. A scale-model water distribution system was fabricated, and validation data were acquired over a range of flow (demand) conditions. Standard operating variables included system layout, demand at various nodes in the system, and pressure drop across various pipe sections. In addition, the location of contaminant (salt or dye) introduction was varied. Measurements of pressure, flowrate, and concentration at a large number of points, and overall visualization of dye transport through the flow network were completed. Scale-up issues that that were incorporated in the experiment design include Reynolds number, pressure drop across nodes, and pipe friction and roughness. The scale was chosen to be 20:1, so the 10 inch main was modeled with a 0.5 inch pipe in the physical model. Controlled validation tracer tests were run to provide validation to flow and transport models, especially of the degree of mixing at pipe junctions. Results of the pipe mixing experiments showed large deviations from predicted behavior and these have a large impact on standard network operations models.3

  20. Portable water filtration system for oil well fractionation

    SciTech Connect (OSTI)

    Seibert, D. L.

    1985-08-13T23:59:59.000Z

    The invention comprises a portable, multi-stage filtration system utilized in filtering water for an oil and gas stimulation process commonly known as fracking. Three stages are used, the first being a straining operation reducing the size of particulate matter in the water to about three-eighths of an inch. The second stage is a centrifugal separator, reducing the particle size to about 50 microns. The final stage utilizes a cartridge-type filter giving a final particle size in the water of about 5 microns. In this manner, water which is injected into the well head during the fracking process and which is obtained from readily available sources such as ponds, streams and the like is relatively free of particulate matter which can foul the fracking process. The invention, by virtue of being mounted on a trailer, is portable and thus can be easily moved from site to site. Water flow rates obtained using the invention are between 250 and 300 gallons per minute, sufficient for processing a small to medium sized well.

  1. Stormwater and Urban Water Systems Modeling Conference. In: Models and Applications to Urban Water Systems, Vol. 12 (edited by W. James). CHI. Guelph, Ontario, pp. 257 294. 2004.

    E-Print Network [OSTI]

    Pitt, Robert E.

    Stormwater and Urban Water Systems Modeling Conference. In: Models and Applications to Urban Water AND EXAMINATION OF A MUNICIPAL SEPARATE STORM SEWER SYSTEM DATABASE Robert Pitt, Alex Maestre, Renee Morquecho of Water 104(b)3 grant in 2001 to collect and evaluate stormwater data from a representative number

  2. Ground Loops for Heat Pumps and Refrigeration 

    E-Print Network [OSTI]

    Braud, H. J.

    1986-01-01T23:59:59.000Z

    Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water...

  3. Ground Loops for Heat Pumps and Refrigeration

    E-Print Network [OSTI]

    Braud, H. J.

    1986-01-01T23:59:59.000Z

    Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water...

  4. Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China 

    E-Print Network [OSTI]

    Chen, H.; Li, D.; Dai, X.

    2006-01-01T23:59:59.000Z

    This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air...

  5. Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China

    E-Print Network [OSTI]

    Chen, H.; Li, D.; Dai, X.

    2006-01-01T23:59:59.000Z

    This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air...

  6. Phosphate and ammonium removal from waste water, using constructed wetland systems 

    E-Print Network [OSTI]

    Drizo, Aleksandra

    1998-01-01T23:59:59.000Z

    Phosphorus and nitrogen in waste water from sewerage systems contribute to excessive nutrient enrichment of surface waters, presenting a threat to nature conservation, domestic and industrial water supplies, and recreation. ...

  7. Water: Challenges at the Intersection of Human and Natural Systems

    SciTech Connect (OSTI)

    Futrell, J.H.; Gephart, R. E.; Kabat-Lensch, E.; McKnight, D. M.; Pyrtle, A.; Schimel, J. P.; Smyth, R. L.; Skole, D. L. Wilson, J. L.; Gephart, J. M.

    2005-09-01T23:59:59.000Z

    There is a growing recognition about the critical role water plays in sustaining people and society. This workshop established dialog between disciplinary scientists and program managers from diverse backgrounds in order to share perspectives and broaden community understanding of ongoing fundamental and applied research on water as a complex environmental problem. Three major scientific themes emerged: (1) coupling of cycles and process, with emphasis on the role of interfaces; (2) coupling of human and natural systems across spatial and temporal scales; and (3) prediction in the face of uncertainty. In addition, the need for observation systems, sensors, and infrastructure; and the need for data management and synthesis were addressed. Current barriers to progress were noted as educational and institutional barriers and the integration of science and policy.

  8. PURPOSE: This product provides simulation capabilities to allow water resource managers to meet operational and water quality objectives in a basin wide approach under the System-Wide

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Manage- ment System (CWMS). ERDC TN-SWWRP-11-2 February 2011 Meeting Water Quality and Water Control operational and water quality objectives in a basin wide approach under the System-Wide Water Resources the impact of water quality in reservoir operations system decision-making. As a result, integration

  9. Water Rights Analysis Package (WRAP) Modeling System Programming Manual

    E-Print Network [OSTI]

    Wurbs, R.; Hoffpauir, R.

    2012-10-01T23:59:59.000Z

    WRAP interface program was developed as a Fortran QuickWin application. SIM simulates the river/reservoir water allocation/management/use system for input sequences of monthly naturalized flows and net evaporation rates. (Chapter 2) SIMD (D for daily... management, and other utility functions. Many different Fortran compiler/IDE packages are sold by various companies. The WRAP programs are in standard Fortran that can be compiled with the various compilers. The compiler, linker, and development...

  10. Hydrogeologic Evaluation of a Ground-Source Cooling System at the BSF/CSF on the Battelle Campus: Final Report

    SciTech Connect (OSTI)

    Freedman, Vicky L.; Mackley, Rob D.; Waichler, Scott R.; Horner, Jacob A.; Moon, Thomas W.; Newcomer, Darrell R.; DeSmet, Darrell J.; Lindsey, K. A.; Porcello, J. J.

    2010-05-12T23:59:59.000Z

    This report documents both the field characterization activities and the numerical modeling effort at the BSF/CSF site to determine the viability of an open-loop ground source heat pump (GSHP). The primary purpose of the integrated field and modeling study was to determine far-field impacts related to a non-consumptive use water right for the well field containing four extraction and four injection wells. In the field, boreholes were logged and used to develop the geologic conceptual model. Hydraulic testing was performed to identify hydraulic properties and determine sustainable pumping rates. Estimates of the Ringold hydraulic conductivity (60-150 m/d) at the BSF/CSF site were consistent with the local and regional hydrogeology as well as estimates previously published by other investigators. Sustainable pumping rates at the extraction wells were variable (100 – 700 gpm), and confirmed field observations of aquifer heterogeneity. Field data were used to develop a numerical model of the site. Simulations assessed the potential of the well field to impact nearby contaminant plumes, neighboring water rights, and the thermal regime of nearby surface water bodies. Using steady-state flow scenarios in conjunction with particle tracking, a radius of influence of 400–600 m was identified around the well field. This distance was considerably shorter than the distance to the closest contaminant plume (~1.2 km northwest to the DOE Horn Rapids Landfill) and the nearest water right holder (~1.2 km southeast to the City of Richland Well Field). Results demonstrated that current trajectories for nearby contaminant plumes will not be impacted by the operation of the GSHP well field. The objective of the energy transport analysis was to identify potential thermal impacts to the Columbia River under likely operational scenarios for the BSF/CSF well field. Estimated pumping rates and injection temperatures were used to simulate heat transport for a range of hydraulic conductivity estimates for the Ringold Formation. Two different operational scenarios were simulated using conservative assumptions, such as the absence of river water intrusion in the near shore groundwater. When seasonal injection of warm and cool water occurred, temperature impacts were insignificant at the Columbia River (< +0.2şC), irrespective of the hydraulic conductivity estimate. The second operational scenario simulated continuous heat rejection, a condition anticipated once the BSF/CSF is fully loaded with laboratory and computer equipment. For the continuous heat rejection case, where hourly peak conditions were simulated as month-long peaks, the maximum change in temperature along the shoreline was ~1şC. If this were to be interpreted as an absolute change in a static river temperature, it could be considered significant. However, the warmer-than-ambient groundwater flux that would potentially discharge to the Columbia River is very small relative to the flow in the river. For temperatures greater than 17.0şC, the flow relative to a low-flow condition in the river is only 0.012%. Moreover, field data has shown that diurnal fluctuations in temperature are as high as 5şC along the shoreline.

  11. Water spray ventilator system for continuous mining machines

    DOE Patents [OSTI]

    Page, Steven J. (Pittsburgh, PA); Mal, Thomas (Pittsburgh, PA)

    1995-01-01T23:59:59.000Z

    The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.

  12. Modeling Integrated Decisions for a Municipal Water System with Recourse and Uncertainties

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    for a municipal water system to cost-effectively accommodate a distribution of water shortages. Alternative robust in action costs, life spans, water volumes gained or saved, shortage levels, and shortage probabilities make water shortages pressing or impending realities for Amman, Jordan and many other urban water

  13. START-3: Operational Evaluations of the ISUS Engine Ground Demonstration Thermionic Power System

    SciTech Connect (OSTI)

    Luchau, D.W.; Luke, J.R.; Wyant, F.J.

    1998-10-08T23:59:59.000Z

    START-3 was a test program conducted in order to demonstrate and characterize the operational performance of the prototype Integrated Solar Upper Stage (ISUS) thermionic power system. The test device consisted of a graphite thermal storage uni~ multilayer foil insulation, and sixteen thermionic converters electrically connected in a series array. Several thermal input conditions were achieved during the test, which resulted in measuring converter performance at average converter hot shoe temperatures in the range of 1600 K to 2000 K. Results indicate that the ;hermionic converter; did not perform as weil as expected in the array individual sixteen converters is currently being performed.

  14. MODELING, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP

    E-Print Network [OSTI]

    MODELING, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS Thesis Approved by: Dr.................................................................................................................... 16 MODELING OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS

  15. START-3: Operational evaluations of the ISUS engine ground demonstration thermionic power system

    SciTech Connect (OSTI)

    Wyant, Francis J. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States)] Luke, James R. [New Mexico Engineering Research Institute, 901 University Blvd., SE, Albuquerque, New Mexico 87106 (United States)] Luchau, David W. [TEAM Specialty Services, Inc., 11030 Cochiti Rd., SE, Albuquerque, New Mexico 87123 (United States)

    1999-01-01T23:59:59.000Z

    START-3 was a test program conducted in order to demonstrate and characterize the operational performance of the prototype Integrated Solar Upper Stage (ISUS) thermionic power system. The test device consisted of a graphite thermal storage unit, multilayer foil insulation, and sixteen thermionic converters electrically connected in a series array. Several thermal input conditions were achieved during the test, which resulted in measuring converter performance at average converter hot shoe temperatures in the range of 1600 K to 2000 K. Results indicate that the thermionic converters did not perform as well as expected in the array configuration. Follow-on testing of the individual sixteen converters is currently being performed. {copyright} {ital 1999 American Institute of Physics.}

  16. The ASME handbook on water technology for thermal power systems

    SciTech Connect (OSTI)

    Cohen, P. (ed.)

    1989-01-01T23:59:59.000Z

    The idea that a handbook on water technology be developed was initially put forth in 1978 by the ASME Research Committee on Water in Thermal Power Systems. A prospectus was issued in 1979 to solicit funding from industry and government. The preparation of the handbook began in 1980 under the direct control of a Handbook Steering Subcommittee established by the Research Committee and an editor reporting to that subcommittee. Handbook content was carefully monitored by an editorial committee of industry experts and by a special honorary editorial committee from the Chemistry Committee of the Edison Electric Institute. This handbook summarizes the current state of the art of water technology for steam power plant cycles. It is intended to serve both as a training text and a reference volume for power station chemists, engineers, manufacturers, and research and development institutions. While the primary emphasis is on Electric Utility Power Generation cycles (fossil and nuclear), the book will also serve as a valuable reference on high pressure industrial steam system technology.

  17. Promising freeze protection alternatives in solar domestic hot water systems

    SciTech Connect (OSTI)

    Bradley, D.E.

    1997-12-31T23:59:59.000Z

    Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

  18. Selenium speciation in ground water

    SciTech Connect (OSTI)

    Atalay, A.

    1990-07-10T23:59:59.000Z

    Selenium toxicity diseases in animals may occur when the intake exceeds 4 mg/kg and selenium deficiency symptoms may occur when dietary intake is less than 0.04 mg/kg. Since the selenium dietary requirement is very close to toxic concentration, it is important to understand the distribution of selenium in the environment. Selenium occurs in four oxidation states (-II, 0, +IV, and +VI) as selenide, elemental selenium, selenite and selenate. Selenate is reported as more soluble and less adsorbed than selenite. Selenate is more easily leached from soils and is the most available form for plants. Increased mobility of Se into the environment via anthropogenic activities, and the potential oxidation-reduction behavior of the element have made it imperative to study the aquatic chemistry of Se. For this purpose, Se species are divided into two different categories: dissolved Se (in material that passes through filters with 0.45 u openings) and particulate Se (in material of particle size > 0.45 mm) typically suspended sediment and other suspended solids. Element and colloidal phase, not truly dissolved, but passing through the filter is deemed to consist of selenium (-2,0). In dissolved state selenium may exist in three of its four oxidation states; Se(-II), Se(+IV), and Se(+VI). Particulate Se may exist in the same oxidation states as dissolved Se and can be found in different phases of the particulate matter. In sediments, Se may be within the organic material, iron and manganese oxides, carbonates or other mineral phases. The actual chemical forms of Se may be adsorbed to or coprecipitated with these phases (primarily selenite, SeO{sub 3}{sup 2{minus}}) and selenate, SeO{sub 4}{sup 2{minus}}. Selenide, Se(-II), can be covalently bound in the organic portion of a sediment. In addition, Se may be found in anoxic sediments as insoluble metal selenide precipitates, an insoluble elemental Se or as ferroselite (FeSe{sub 2}) and Se containing pyrite.

  19. Ground Water Protection (North Dakota)

    Broader source: Energy.gov [DOE]

    North Dakota has a degradation prevention program for groundwater protection, with standards established by the Department of Health. This section addresses groundwater standards, quality...

  20. Ground-Coupled Heat Pump Applications and Case Studies 

    E-Print Network [OSTI]

    Braud, H. J.

    1989-01-01T23:59:59.000Z

    The paper presents an overview of ground loops for space-conditioning heat pumps, hot water, ice machines, and water-cooled refrigeration in residential and commercial applications. In Louisiana, a chain of hamburger drive-ins uses total ground...