Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Water Quality Surface and Ground | Open Energy Information  

Open Energy Info (EERE)

Quality Surface and Ground Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaterQualitySurfaceandGround&oldid612197...

2

Appendix D Surface Water and Ground Water Time-Concentration Plots,  

Office of Legacy Management (LM)

Surface Water and Ground Water Time-Concentration Plots, Surface Water and Ground Water Time-Concentration Plots, Stream Discharge Measurements, Ground Water Level Data, and Ground Water Well Hydrographs This page intentionally left blank Contents Section .................................................................................. Surface Water Time-Concentration Plots D1.O ............................................................................................... Stream Discharge Measurements D2.0 ............................................................. Ground Water Time-Concentration Plots for Uranium D3.0 .......................................................................................................... Ground Water Level Data D4.0 ..............................................................................................

3

GRR/Section 19-TX-b - New Water Right Process For Surface Water and Ground  

Open Energy Info (EERE)

TX-b - New Water Right Process For Surface Water and Ground TX-b - New Water Right Process For Surface Water and Ground Water < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-b - New Water Right Process For Surface Water and Ground Water 19TXBNewWaterRightProcessForSurfaceWaterAndGroundWater.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Texas Water Development Board Regulations & Policies Tex. Water Code § 11 Triggers None specified Click "Edit With Form" above to add content 19TXBNewWaterRightProcessForSurfaceWaterAndGroundWater.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

4

Ground and Surface Water Protection (New Mexico) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Surface Water Protection (New Mexico) and Surface Water Protection (New Mexico) Ground and Surface Water Protection (New Mexico) < Back Eligibility Agricultural Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Program Info State New Mexico Program Type Environmental Regulations Fees Provider New Mexico Environment Department This regulation implements the New Mexico Water Quality Act. Any person intending to make a new water contaminant discharge or to alter the character or location of an existing water contaminant discharge, unless the discharge is being made or will be made into a community sewer system

5

Uranium in US surface, ground, and domestic waters. Volume 2  

Science Conference Proceedings (OSTI)

The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

1981-04-01T23:59:59.000Z

6

Ground Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Nature Bulletin No. 408-A February 27, 1971 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation GROUND WATER We take...

7

Stable isotopes of hydrogen and oxygen in surface water and ground water at selected sites on or near the Idaho National Engineering Laboratory, Idaho  

DOE Green Energy (OSTI)

Relative stable isotopic ratios for hydrogen and oxygen compared to standard mean ocean water are presented for water from 4 surface-water sites and 38 ground-water sites on or near the Idaho National Engineering Laboratory (INEL). The surface-water samples were collected monthly from March 1991 through April 1992 and after a storm event on June 18, 1992. The ground-water samples either were collected during 1991 or 1992. These data were collected as part of the US Geological Survey`s continuing hydrogeological investigations at the INEL. The relative isotopic ratios of hydrogen and oxygen are reported as delta {sup 2}H ({delta}{sup 2}H) and as delta {sup 18}O ({delta}{sup 18}O), respectively. The values of {delta}{sup 2}H and {delta}{sup 18}O in water from the four surface-water sites ranged from -143.0 to -122 and from -18.75 to -15.55, respectively. The values of {delta}{sup 2}H and {delta}{sup 18}O in water from the 38 ground-water sites ranged from -141.0 to -120.0 and from -18.55 to -14.95, respectively.

Ott, D.S.; Cecil, L.D.; Knobel, L.L.

1994-11-01T23:59:59.000Z

8

Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL). [Contaminant transport computer codes  

SciTech Connect

This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code.

Bandy, P.J.; Hall, L.F.

1993-03-01T23:59:59.000Z

9

Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL). Version 1.0  

SciTech Connect

This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG&G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code.

Bandy, P.J.; Hall, L.F.

1993-03-01T23:59:59.000Z

10

Study of the Reactions Controlling the Mobility of Uranium in Ground and Surface Water Systems in Contact with Apatite  

SciTech Connect

The objective of this project was to define the mechanisms, equilibria, kinetics, and extent of sorption of aqueous uranium onto hydroxyapatite (Ca{sub 5}(PO{sub 4}){sub 3}(OH)) for a range of pH, ionic strength, aqueous uranium concentration, dissolved carbon/air CO{sub 2}, and mineral surface area. We conducted chemical modeling, batch and flow-through experiments, chemical analysis, x-ray absorption and diffraction measurement, and electron microscopy. Our motivation was the need to immobilize U in water and soil to prevent it's entry into water supplies and ultimately, biological systems. Applying hydroxyapatite to in-situ treatment of uranium-bearing ground water could be an effective, low cost technology. We found that hydroxyapatite quickly, effectively, and reversibly sorbed uranium at a high capacity by inner-sphere complexation over a wide range of conditions. Our results indicate that at aqueous uranium concentrations below 10-20 ppb: (1) equilibrium sorption of uranium to hydroxyapatite occurs in hours, regardless of pH; (2) in ambient and CO{sub 2}-free atmospheres, over 98% of initial uranium is sorbed to hydroxyapatite, (3) in waters in equilibrium with higher air CO{sub 2} concentrations, sorption removed over 97% of aqueous uranium, except above pH 9, where aqueous uranium concentrations were reduced by less than 40%, and (4) at near-neutral pH, bicarbonate alkalinities in excess of 500 slightly retarded sorption of uranium to hydroxyapatite, relative to lower alkalinities. Uranium sorption and precipitation are reversible and are not appreciably affected by ionic strength. The reversibility of these reactions requires that in situ treatment be carefully monitored to avoid breakthrough and de-sorption of uranium unto ground water. At typical surface conditions, sorption is the only mode of uranium sequestration below 20-50 ppb U - above this range, precipitation of uranium phosphate minerals begins to dominate sequestration processes. We verified that one m{sup 2} of hydroxyapatite can sorb over 7.53 X 10{sup -6} moles or 1.8 mg of uranium in agreement with calculations based on phosphate and calcium oxide sites on the unit cell. Our work is significant because small masses of hydroxyapatite can sorb appreciable masses of uranium quickly over a wide range of chemistries. Preliminary work with ground water containing 260 ppb of uranium and cow bone char indicates that its sorptive capacity is appreciable less than pure hydroxyapatite. Pure crystalline hydroxyapatite sequestered 2.9 mg of uranium per m{sup 2} as opposed to 0.083 mg of uranium sequestered per m{sup 2} of cow bone char, or 27% versus 3.5% by surface area, respectively. Extended x-ray adsorption fine structure (EXAFS) spectroscopy defined mono- and bidentate sorption of uranium to phosphate and calcium oxide groups on the hydroxyapatite surface. The EXAFS data indicate that up to several thousand parts U per million parts hydroxyapatite, surface complexation, and not precipitation, is the predominant process. Above this uranium: hydroxyapatite mass ratio, precipitation of meta-autunite (H{sub 2}(UO{sub 2})2(PO{sub 4}){sub 2} x 10H{sub 2}0) dominates the sequestration process.

Taffet, M

2004-04-22T23:59:59.000Z

11

EPA Final Ground Water Rule  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Safety and Environment Office of Nuclear Safety and Environment Nuclear Safety and Environment Information Brief HS-20-IB-2007-02 (March 2007) EPA Final Ground Water Rule Safe Drinking Water Act: National Primary Drinking Water Regulations Ground Water Rule - 40 CFR Parts 9, 141 and 142 Final Rule: 71 FR 65574 Effective Date: January 8, 2007 1 RULE SYNOPSIS On November 8, 2006, the U.S. Environmental Protection Agency (EPA) published a final Ground Water Rule (GWR) to promote increased protection against microbial pathogens that may be present in public water systems (PWSs) that use ground water sources for their supply (these systems are known as ground water systems). This Rule establishes a risk-targeted approach

12

Ground Water Management Regulations (Louisiana) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water Management Regulations (Louisiana) Ground Water Management Regulations (Louisiana) Eligibility Agricultural Construction Developer Fuel Distributor Industrial...

13

Colorado Ground Water Commission | Open Energy Information  

Open Energy Info (EERE)

Water Commission Jump to: navigation, search Name Colorado Ground Water Commission Place Colorado Website http:water.state.co.usgroun References Colorado Ground Water Commission...

14

User`s Guide: Database of literature pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory  

SciTech Connect

Since its beginnings in 1949, hydrogeologic investigations at the Idaho National Engineering Laboratory (INEL) have resulted in an extensive collection of technical publications providing information concerning ground water hydraulics and contaminant transport within the unsaturated zone. Funding has been provided by the Department of Energy through the Department of Energy Idaho Field Office in a grant to compile an INEL-wide summary of unsaturated zone studies based on a literature search. University of Idaho researchers are conducting a review of technical documents produced at or pertaining to the INEL, which present or discuss processes in the unsaturated zone and surface water-ground water interactions. Results of this review are being compiled as an electronic database. Fields are available in this database for document title and associated identification number, author, source, abstract, and summary of information (including types of data and parameters). AskSam{reg_sign}, a text-based database system, was chosen. WordPerfect 5.1{copyright} is being used as a text-editor to input data records into askSam.

Hall, L.F.

1993-05-01T23:59:59.000Z

15

Introduction Application of numerical models of ground water flow  

E-Print Network (OSTI)

Introduction Application of numerical models of ground water flow almost always involves some sort (Yeh 1986; Poeter and Hill 1997; Hill et al. 1998). Other data beside hydraulic head have been used in calibration of ground water models, including rates of ground water exchange with streams and other surface

Saiers, James

16

Appendix B Ground Water Management Policy  

Office of Legacy Management (LM)

Ground Water Management Policy Ground Water Management Policy for the Monticello Mill Tailings Site and Adjacent Areas This page intentionally left blank Docun~ent Number Q0029500 Appendix B State of Utah DEPARTblENT OF NATURAL RESOURCES DIVISION OF WATER RIGHTS Ground-Water Management Policy for the Mot~ticello Mill Tailings Site and Adjacent Areas The Monticello Mill Tailings Site is on the southeast portion of the tovm of Monticello in Sectton 36, T33S, K23E and Section 31, i33S. R24E, SLB&M. The mill site was used from 1942 to 1960 in the processing of uranium and vanadium. The U.S. Department of Energy (DOE) is currently cleaning up the site. The site is in the small canyon that forms the drainage for South Creek. The general direction of water flow, of both surface streams and the shallow

17

Abstracts and parameter index database for reports pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory  

SciTech Connect

This report is a product generated by faculty at the University of Idaho in support of research and development projects on Unsaturated Zone Contamination and Transport Processes, and on Surface Water-Groundwater Interactions and Regional Groundwater Flow at the Idaho National Engineering Laboratory. These projects are managed by the State of Idaho`s INEL Oversight Program under a grant from the US Department of Energy. In particular, this report meets project objectives to produce a site-wide summary of hydrological information based on a literature search and review of field, laboratory and modeling studies at INEL, including a cross-referenced index to site-specific physical, chemical, mineralogic, geologic and hydrologic parameters determined from these studies. This report includes abstracts of 149 reports with hydrological information. For reports which focus on hydrological issues, the abstracts are taken directly from those reports; for reports dealing with a variety of issues beside hydrology, the abstracts were generated by the University of Idaho authors concentrating on hydrology-related issues. Each abstract is followed by a ``Data`` section which identifies types of technical information included in a given report, such as information on parameters or chemistry, mineralogy, stream flows, water levels. The ``Data`` section does not include actual values or data.

Bloomsburg, G.; Finnie, J.; Horn, D.; King, B.; Liou, J. [Idaho Univ., Moscow, ID (United States)

1993-05-01T23:59:59.000Z

18

Ground water protection management program plan  

SciTech Connect

U.S. Department of Energy (DOE) Order 5400.1 requires the establishment of a ground water protection management program to ensure compliance with DOE requirements and applicable federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office was prepared this Ground Water Protection Management Program Plan (ground water protection plan) whose scope and detail reflect the program`s significance and address the seven activities required in DOE Order 5400.1, Chapter III, for special program planning. This ground water protection plan highlights the methods designed to preserve, protect, and monitor ground water resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies technical guidance documents and site-specific documents for the UMTRA Project ground water protection management program. In addition, the plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA Project sites.

Not Available

1994-02-01T23:59:59.000Z

19

Montana Ground Water Assessment Act (Montana) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water Assessment Act (Montana) Montana Ground Water Assessment Act (Montana) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State...

20

Designated Ground Water Basin Map | Open Energy Information  

Open Energy Info (EERE)

Designated Ground Water Basin Map Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Designated Ground Water Basin Map Details Activities (0) Areas...

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EA-1406: Ground Water Compliance at the New Rifle, Colorado,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Ground Water Compliance at the New Rifle, Colorado, UMTRA Project Site, Rifle, Colorado EA-1406: Ground Water Compliance at the New Rifle, Colorado, UMTRA Project Site, Rifle,...

22

Vertical Distribution of Contamination in Ground Water at the...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site...

23

GRR/Section 19-CO-e - New Water Right Process for Surface Water and  

Open Energy Info (EERE)

19-CO-e - New Water Right Process for Surface Water and 19-CO-e - New Water Right Process for Surface Water and Tributary Ground Water < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-e - New Water Right Process for Surface Water and Tributary Ground Water 19COENewWaterRightProcessForSurfaceWaterAndTributaryGroundWater.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 19COENewWaterRightProcessForSurfaceWaterAndTributaryGroundWater.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Developers seeking a new water right to appropriate surface water and

24

Water budget for SRP burial ground area  

SciTech Connect

Radionuclide migration from the SRP burial ground for solid low-level waste has been studied extensively. Most of the buried radionuclides are fixed on the soil and show negligible movement. The major exception is tritium, which when leached from the waste by percolating rainfall, forms tritiated water and moves with the groundwater. The presence of tritium has been useful in tracing groundwater flow paths to outcrop. A subsurface tritium plume moving from the southwest corner of the burial ground toward an outcrop near Four Mile Creek has been defined. Groundwater movement is so slow that much of the tritium decays before reaching the outcrop. The burial ground tritium plume defined to date is virtually all in the uppermost sediment layer, the Barnwell Formation. The purpose of the study reported in this memorandum was to investigate the hypothesis that deeper flow paths, capable of carrying substantial amounts of tritium, may exist in the vicinity of the burial ground. As a first step in seeking deeper flow paths, a water budget was constructed for the burial ground site. The water budget, a materials balance used by hydrologists, is expressed in annual area inches of rainfall. Components of the water budget for the burial ground area were analyzed to determine whether significant flow paths may exist below the tan clay. Mean annual precipitation was estimated as 47 inches, with evapotranspiration, run-off, and groundwater recharge estimated as 30, 2, and 15 inches, respectively. These estimates, when combined with groundwater discharge data, suggest that 5 inches of the groundwater recharge flow above the tan clay and that 10 inches flow below the tan clay. Therefore, two-thirds of the groundwater recharge appears to follow flow paths that are deeper than those previously found. 13 references, 10 figures, 5 tables.

Hubbard, J.E.; Emslie, R.H.

1984-03-19T23:59:59.000Z

25

Ground water work breakdown structure dictionary  

SciTech Connect

This report contains the activities that are necessary to assess in ground water remediation as specified in the UMTRA Project. These activities include the following: site characterization; remedial action compliance and design documentation; environment, health, and safety program; technology assessment; property access and acquisition activities; site remedial actions; long term surveillance and licensing; and technical and management support.

NONE

1995-04-01T23:59:59.000Z

26

Selenium in Oklahoma ground water and soil  

SciTech Connect

Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

Atalay, A.; Vir Maggon, D.

1991-03-30T23:59:59.000Z

27

Water Rights: Ground Water (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water (Indiana) Ground Water (Indiana) Water Rights: Ground Water (Indiana) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Natural Resources It is the policy of the state to provide for the conservation of groundwater resources and limit groundwater waste. The Indiana Department of Natural Resources may designate restricted use areas and limit groundwater withdrawals by existing users in those areas, thus making groundwater use greater than 100,000 gallons per day subject to permitting

28

U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan  

Office of Legacy Management (LM)

GWMON 1.12-1 GWMON 1.12-1 U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan for the Land Farm Pilot Test Monument Valley, Arizona August 2000 Prepared by U.S. Department of Energy Grand Junction Ofice Grand Junction, Colorado Project Number UGW-5 1 1-001 5-21-000 Document Number U0106701 This page intentionally left blank Document Number U0106701 Contents Contents 1.0 Introduction ....................................................................................................................... 1 2.0 Purpose and Scope ........................................................................................................... 1 3.0 Pilot-Test Extraction Wellfield 2 4.0 Water Elevation Measurements and Monitoring ............... 4

29

Diffusion Multilayer Sampling of Ground Water in Five Wells at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona,...

30

Analysis of Contaminant Rebound in Ground Water in Extraction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City,...

31

Appendix E Supporting Information for Ground Water Modeling  

Office of Legacy Management (LM)

Supporting Information for Ground Water Modeling Supporting Information for Ground Water Modeling This page intentionally left blank Contents Section Geologic Map of Site Area ........................................................................................................ E1.O Stream Flow Measurements ...................................................................................................... E2.0 Estimates of Ground Water Flow .............................................................................................. E3.0 .......................................... MODFLOW Flow Budget Analysis for OU 1 1 1 Model Subregions E4.0 ............................................................................ Burro Canyon Aquifer Ground Water Model E5.0 This page intentionally left blank

32

Ground Water Management Act (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water Management Act (Virginia) Ground Water Management Act (Virginia) Ground Water Management Act (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Virginia Program Type Environmental Regulations Siting and Permitting Provider Virginia Department of Environmental Quality Under the Ground Water Management Act of 1992, Virginia manages ground water through a program regulating the withdrawals in certain areas called

33

GRR/Section 19-TX-b - New Water Right Process For Surface Water...  

Open Energy Info (EERE)

TX-b - New Water Right Process For Surface Water and Ground Water < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of...

34

GRR/Section 19-CO-e - New Water Right Process for Surface Water...  

Open Energy Info (EERE)

19-CO-e - New Water Right Process for Surface Water and Tributary Ground Water < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap...

35

Inefficient remediation of ground-water pollution  

SciTech Connect

The problem of trying to remove ground-water pollution by pumping and treating are pointed out. Various Superfund sites are discussed briefly. It is pointed out that many chemicals have been discarded in an undocumented manner, and their place in the groundwater is not known. Results of a remedial program to remove perchloroethylene at a concentration of 6132 parts per billion from groundwater in a site in New Jersey showed that with an average extraction rate of 300 gallons per minute from 1978 to 1984 contamination level was lowered below 100 parts per billion. However, after shutdown of pumping the level rose to 12,588 parts per billion in 1988. These results lead the author to propose that the practical solutions for water supplies may be treatment at the time it enters the system for use.

Abelson, P.H.

1990-11-09T23:59:59.000Z

36

UMTRA Ground Water Project management action process document  

Science Conference Proceedings (OSTI)

A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards.

NONE

1996-03-01T23:59:59.000Z

37

Monticello Mill Tailings, Operable Unit III Surface and Ground...  

Office of Legacy Management (LM)

Action activities included millsite dewatering and treatment, initiation of a ground water management policy to prevent use Monticello Mill Tailings Site, Operable Unit III...

38

Ground water hydrology report: Revision 1, Attachment 3. Final  

SciTech Connect

This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards.

NONE

1996-12-01T23:59:59.000Z

39

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado  

Science Conference Proceedings (OSTI)

The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

NONE

1995-05-01T23:59:59.000Z

40

GRR/Section 19-CO-i - Determination of Nontributary Ground Water Status |  

Open Energy Info (EERE)

19-CO-i - Determination of Nontributary Ground Water Status 19-CO-i - Determination of Nontributary Ground Water Status < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-i - Determination of Nontributary Ground Water Status 19COIDeterminationOfNontributaryGroundWaterStatus.pdf Click to View Fullscreen Contact Agencies Colorado Division of Water Resources Regulations & Policies Colorado Division of Water Resources Policy 2010-4 CRS 37-90-137 Permits to Construct Wells Outside of Designated Basins CRS 37-90-103 Underground Water Definitions CRS 37-82-101 Waters of Natural Surface Streams Subject to Appropriation CRS 37-92-102 Legislative Declaration - Basic Tenets of Colorado Water Law Triggers None specified Click "Edit With Form" above to add content

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado  

SciTech Connect

The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site is under way and is scheduled for completion in 1996. The tailings are being stabilized in-place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the environment. Currently, no points of exposure (e.g. a drinking water well); and no receptors of contaminated ground water have been identified at the Maybell site. Therefore, there are no current human health and ecological risks associated with exposure to contaminated ground water. Furthermore, if current site conditions and land- and water-use patterns do not change, it is unlikely that contaminated ground water would reach people or the ecological communities in the future.

NONE

1995-09-01T23:59:59.000Z

42

Hanford Site ground-water monitoring for 1994  

SciTech Connect

This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

1995-08-01T23:59:59.000Z

43

Impedance of surface footings on layered ground  

Science Conference Proceedings (OSTI)

Traditionally only the static bearing capacity and stiffness of the ground is considered in the design of wind turbine foundations. However, modern wind turbines are flexible structures with resonance frequencies as low as 0.2Hz. Unfortunately, environmental ... Keywords: Boundary elements, Domain-transformation method, Dynamic stiffness, Footing, Foundation, Layered soil, Wind turbine

L. Andersen; J. Clausen

2008-01-01T23:59:59.000Z

44

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

NONE

1995-08-01T23:59:59.000Z

45

Speciation and structural characterization of plutonium and actinide-organic complexes in surface and ground waters. Annual progress report, September 1996--September 1997  

SciTech Connect

'The authors proposed research is designed to study the association of actinides with dissolved organic complexes in subsurface waters. Actinide-humic matter associations in natural waters have been investigated previously, but the authors have postulated that much of the actinide binding activity may be supported by colloidal biopolymers. To investigate this, they are developing techniques to sample and identify organic constituents in groundwater, and to measure the Pu associated with different fractions of organic matter. Year 1 activities have focused on: (1) sampling techniques to minimize contamination and artifact formation, and to establish mass balances, (2) separation of Pu isotopes by oxidation state, and (3) analytical development of techniques for separation and identification of organic constituents from natural waters. The authors proposed research calls for field work at the Savannah River and Hanford Sites (SRS and HS, respectively). Towards this, they have been working on establishing protocols for ultra-clean (fg level) cross-flow filtration (CFF) techniques suitable for thermal ionization mass spectrometric (TIMS) analysis. A series of tests have been completed and the results have shown no Pu contamination from the CFF system was observable as long as the system is rigorously cleaned with acid, base and nano-pure water (Table 1). They have also collected a water sample from a pond near the laboratory in Woods Hole, MA to test blank conditions in the field, and to determine system mass balances. Blank levels were found to be satisfactory, and the mass balance is 100 \\261 10% for both {sup 239}Pu and {sup 240}Pu, the only two isotopes measurable in the sample. This is one of the major assurances for the success of the project because CFF will be the major sampling tool the authors will use to study natural Pu-organic complexes. Another important result from the field test is that > 80% of the dissolved Pu (based on the TIMS measurements) is in colloidal form.'

Buessler, K.O.; Repeta, D.J.

1997-01-01T23:59:59.000Z

46

Speciation and structural characterization of plutonium and actinide-organic complexes in surface and ground waters. Annual progress report, September 1996--September 1997  

SciTech Connect

'The authors proposed research is designed to study the association of actinides with dissolved organic complexes in subsurface waters. Actinide-humic matter associations in natural waters have been investigated previously, but they have postulated that much of the actinide binding activity may be supported by colloidal biopolymers. To investigate this, they are developing techniques to sample and identify organic constituents in groundwater, and to measure the Pu associated with different fractions of organic matter. Year 1 activities have focused on: (1) sampling techniques to minimize contamination and artifact formation, and to establish mass balances, (2) separation of Pu isotopes by oxidation state, and (3) analytical development of techniques for separation and identification of organic constituents from natural waters. Their proposed research calls for field work at the Savannah River and Hanford Sites (SRS and HS, respectively). Towards this, they have been working on establishing protocols for ultra-clean (fg level) cross-flow filtration (CFF) techniques suitable for thermal ionization mass spectrometric (TIMS) analysis. A series of tests have been completed and the results have shown no Pu contamination from the CFF system was observable as long as the system is rigorously cleaned with acid, base and nano-pure water. They have also collected a water sample from a pond near the laboratory in Woods Hole, MA to test blank conditions in the field, and to determine system mass balances. Blank levels were found to be satisfactory, and the mass balance is 100--210% for both {sup 239}Pu and {sup 240}Pu, the only two isotopes measurable in the sample. This is one of the major assurances for the success of the project because CFF will be the major sampling tool the authors will use to study natural Pu-organic complexes. Another important result from the field test is that > 80 % of the dissolved Pu (based on the TIMS measurements) is in colloidal form.'

Buessler, K.O.; Repeta, D.J.

1997-12-31T23:59:59.000Z

47

Regulations Establishing Water Quality Standards for Surface...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Establishing Water Quality Standards for Surface Water of the State of Arkansas (Arkansas) Regulations Establishing Water Quality Standards for Surface Water of the State of...

48

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado  

SciTech Connect

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site began in 1995 and is scheduled for completion in 1996. The tailings are being stabilized in place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results presented in this document and other evaluations will determine whether any action is needed to protect human health or the environment.

NONE

1996-03-01T23:59:59.000Z

49

Hanford Site ground-water monitoring for 1993  

Science Conference Proceedings (OSTI)

This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

1994-09-01T23:59:59.000Z

50

Ground Water Protection (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water Protection (North Dakota) Ground Water Protection (North Dakota) Ground Water Protection (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting North Dakota has a degradation prevention program for groundwater protection, with standards established by the Department of Health. This section addresses groundwater standards, quality monitoring, notification

51

Ground Water Protection Act (New Mexico) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Protection Act (New Mexico) Water Protection Act (New Mexico) Ground Water Protection Act (New Mexico) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Mexico Program Type Environmental Regulations Provider New Mexico Environment Department The purpose of the Ground Water Protection Act is to provide substantive

52

DOE/EA-1268: Environmental Assessment of Ground Water Compliance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Rev. 0 Environmental Assessment of Ground Water Compliance at the Tuba City Uranium Mill Tailings Site December 1998 Prepared by U.S. Department of Energy Grand Junction Office...

53

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

NONE

1995-09-01T23:59:59.000Z

54

Ground and Water Source Heat Pump Performance and Design for Southern Climates  

E-Print Network (OSTI)

Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical or horizontal ground-coupling, an open groundwater loop, or a surface water loop. This paper discusses system performance characteristics, component selection procedures presently being used, improvements currently being considered and future possibilities for improved efficiency and reliability. Optimum designs require proper matching of the heat pump unit to the water circulation system, the building space heating/cooling load and water heating requirements. General trends resulting from system and component choices will be discussed. Water heating methods with these heat pumps will be considered.

Kavanaugh, S.

1988-01-01T23:59:59.000Z

55

Computation of Ground Surface Conduction Heat Flux by Fourier Analysis of Surface Temperature  

Science Conference Proceedings (OSTI)

A method for computing the ground surface heat flux density is tested at two places in West Africa during the rainy season and during the dry season. This method is based upon the Fourier analysis of the experimental ground surface temperature. ...

Guy Cautenet; Michel Legrand; Yaya Coulibaly; Christian Boutin

1986-03-01T23:59:59.000Z

56

EA-1155: Ground-water Compliance Activities at the Uranium Mill...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook,...

57

Probability Models for Annual Extreme Water-Equivalent Ground Snow  

Science Conference Proceedings (OSTI)

A statistical analysis of annual extreme water-equivalents of ground snow (reported as inches of water) measured up through the winter of 1979–80 at 76 weather stations in the northeast quadrant of the United States is presented. The analysis ...

Bruce Ellingwood; Robert K. Redfield

1984-06-01T23:59:59.000Z

58

Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

NONE

1996-03-01T23:59:59.000Z

59

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1  

SciTech Connect

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

NONE

1995-11-01T23:59:59.000Z

60

Quasi-three dimensional ground-water modeling of the hydrologic influence of paleozoic rocks on the ground-water table at Yucca Mountain, Nevada  

E-Print Network (OSTI)

The proposed high-level radioactive waste repository site at Yucca Mountain, Nevada, has created a need to understand the, ground-water system at the site. One of the important hydrologic characteristics is a steep gradient on the ground-water table north of the repository site. This study investigates the cause of the steep gradient, based on the possible influence by Paleozoic rocks under the Yucca Mountain area. A quasi-three dimensional, steady-state, finite-difference model of the groundwater flow system of the Yucca Mountain Site and vicinity, was developed using a manual trial-and-error calibration technique to model the ground-water table. The ground-water system in the model was divided into a two layers, which consist of Cenozoic volcanic rocks and Paleozoic carbonate rocks. The carbonate rocks were defined to be a confined aquifer. The model simulates vertical flow from the volcanic rocks to the underlying carbonate rocks in an area where the Eleana Formation, a Paleozoic clastic aquitard, is absent. The model requires a vertical hydrologic connection in a particular region and a large difference in hydraulic heads between the volcanic rocks and the carbonates to create the steep gradient north of the repository site. The regions of different hydraulic gradient on the water-table surface could be simulated by spatial variations of the horizontal hydraulic conductivity in the volcanic rocks.

Lee, Si-Yong

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota  

SciTech Connect

This baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota, evaluates the potential impacts to public health or the environment from contaminated ground water at this site. This contamination is a result of the uraniferous lignite ashing process, when coal containing uranium was burned to produce uranium. Potential risk is quantified only for constituents introduced by the processing activities and not for the constituents naturally occurring in background ground water in the site vicinity. Background ground water, separate from any site-related contamination, imposes a percentage of the overall risk from ground water ingestion in the Bowman site vicinity. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to address soil and ground water contamination at the site. The UMTRA Surface Project involves the determination of the extent of soil contamination and design of an engineered disposal cell for long-term storage of contaminated materials. The UMTRA Ground Water Project evaluates ground water contamination. Based on results from future site monitoring activities as defined in the site observational work plan and results from this risk assessment, the DOE will propose an approach for managing contaminated ground water at the Bowman site.

1994-11-01T23:59:59.000Z

62

Contamination of ground and surface waters due to uranium mining and milling. Volume I: Biological processes for concentrating trace elements from uranium mine waters. Open file report 25 Jul 79-14 Sep 81  

Science Conference Proceedings (OSTI)

Wastewater from uranium mines in the Ambrosia Lake district near Grants, N. Mex., contains uranium, selenium, radium, and molybdenum. A novel treatment process for waters from two mines, sections 35 and 36, to reduce the concentrations of the trace contaminants was developed. Particulates are settled by ponding and the waters are passed through an ion exchange resin to remove uranium; barium chloride is added to precipitate sulfate and radium from the mine waters. The mine waters are subsequently passed through three consecutive algae ponds prior to discharge. Water, sediment, and biological samples were collected over a 4-year period and analyzed to assess the role of biological agents in removal of inorganic trace contaminants from the mine waters.

Brieley, C.L.; Brierley, J.A.

1981-11-01T23:59:59.000Z

63

Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site  

Science Conference Proceedings (OSTI)

This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as Attachment 1.

N /A

2003-04-23T23:59:59.000Z

64

Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,  

Open Energy Info (EERE)

Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Details Activities (2) Areas (1) Regions (0) Abstract: In geothermal fields, open faults and fractures often act as high permeability pathways bringing hydrothermal fluids to the surface from deep reservoirs. The Mount Princeton area, in south-central Colorado, is an area that has an active geothermal system related to faulting and is therefore a suitable natural laboratory to test geophysical methods. The Sawatch range-front normal fault bordering the half-graben of the Upper Arkansas

65

Definition: Surface Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Water Sampling Jump to: navigation, search Dictionary.png Surface Water Sampling Water sampling is done to characterize the chemical, thermal, or hydrological properties of a...

66

Surface Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Water Sampling Surface Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Surface Water Sampling Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Water Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids Thermal: Water temperature Dictionary.png Surface Water Sampling: Water sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Other definitions:Wikipedia Reegle Introduction Surface water sampling of hot and cold spring discharges has traditionally

67

Infiltration/ground water linkage in the southwest: Response of shallow ground water to interannual variations of precipitation, Jemez Mountains, New Mexico  

DOE Green Energy (OSTI)

Hydraulic gradients, residence times and the hydrochemistry of shallow ground water are linked to the episodic precipitation and recharge events characteristic of the arid southwest. In this region, the amount of precipitation, and corresponding biomass, is dependant upon altitude with greater frequency and duration in the montane highlands and less in the desert lowlands. Results from a four-year study at the Rio Calaveras research site in the Jemez Mountains of northern New Mexico show a strong correlation between the physical and hydrochemical properties of shallow ground water and variations of seasonal precipitation and infiltration. For example, the water table shows a dramatic response to snowmelt infiltration during years of abundant snow pack (El Nifio) and diminished response during years of reduced snow pack (La Niiia). The chemical structure of shallow ground water is also affected by the precipitation regime, primarily by variations in the flux of reductants (organic carbon) and oxidants (dissolved oxygen) from the vadose zone to the water table. Generally, oxic conditions persist during spring snowmelt infiltration shifting to anoxic conditions as biotic and abiotic processes transform dissolved oxygen. Other redox-sensitive constituents (ferrous iron, manganese, sulfate, nitrate, and nitrite) show increasing and decreasing concentrations as redox fluctuates seasonally and year-to-year. The cycling of these redox sensitive solutes in the subsurface depends upon the character of the aquifer materials, the biomass at the surface, moisture and temperature regime of the vadose zone, and frequency of infiltration events.

Groffman, A. R. (Armand R.)

2002-01-01T23:59:59.000Z

68

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

NONE

1996-02-01T23:59:59.000Z

69

GRR/Section 19-CO-c - Designated Ground Water Basin Well Permitting Process  

Open Energy Info (EERE)

GRR/Section 19-CO-c - Designated Ground Water Basin Well Permitting Process GRR/Section 19-CO-c - Designated Ground Water Basin Well Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-c - Designated Ground Water Basin Well Permitting Process 19COCDesignatedGroundWaterBasinWellPermit.pdf Click to View Fullscreen Contact Agencies Colorado Division of Water Resources Colorado Ground Water Commission Regulations & Policies CRS 37-90-107 CRS 37-90-108 Ground Water Management District Rules 2 CCR 410-1 - Rules and Regulations for the Management and Control of Designated Ground Water Basins Triggers None specified Click "Edit With Form" above to add content 19COCDesignatedGroundWaterBasinWellPermit.pdf 19COCDesignatedGroundWaterBasinWellPermit.pdf

70

EPA Final Ground Water Rule Available Online, 3/07 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Final Ground Water Rule Available Online, 3/07 EPA Final Ground Water Rule Available Online, 3/07 EPA Final Ground Water Rule Available Online, 3/07 On November 8, 2006, the U.S. Environmental Protection Agency (EPA) published a final Ground Water Rule (GWR) to promote increased protection against microbial pathogens that may be present in public water systems (PWSs) that use ground water sources for their supply (these systems are known as ground water systems). This Rule establishes a risk-targeted approach to focus on ground water systems that are susceptible to fecal contamination, and requires ground water systems that are at risk of fecal contamination to take corrective action. A minor correction to the final Rule was published on November 21, 2006 (71 FR 67427). The GWR applies to all PWSs2 that use ground water

71

A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California  

SciTech Connect

This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

2006-05-16T23:59:59.000Z

72

Bordering on Water Management: Ground and Wastewater in the United States - Mexico Transboundary Santa Cruz Basin  

E-Print Network (OSTI)

change and global water resources. Global Environmentalin Managing International Water Resources (No. WPS 1303):Darcy Lecture Tour. Ground Water, 45(4), 390-391. Sadoff,

Milman, Anita Dale

2009-01-01T23:59:59.000Z

73

Ground water control for an in situ oil shale retort  

SciTech Connect

An in situ oil shale retort is formed in a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of particles containing oil shale. An open base of operation is excavated in the formation above the retort site, and an access drift is excavated to the bottom of the retort site. Formation is explosively expanded to form the fragmented mass between the access drift and an elevation spaced below the bottom of the base of operation, leaving a horizontal sill pillar of unfragmented formation between the top of the fragmented mass and the bottom of the base of operation. The sill pillar provides a safe base of operation above the fragmented mass from which to control retorting operations. A plurality of blasting holes used in explosively expanding the formation extend from the base of operation, through the sill pillar, and open into the top of the fragmented mass. Trenches are formed in the base of operation for collecting ground water which enters the base of operation prior to and during retorting operations, and collected ground water is withdrawn from the base of operation. Casings can be placed in the blasting holes and adapted for controlling gas flow through the fragmented mass during retorting operations. The casings extend above the floor of the base of operation to inhibit flow of ground water through the blasting holes into the fragmented mass, and other blasting holes not having such casings are sealed. After retorting is completed, the floor of the base of operation can be covered with a layer of concrete and/or the blasting holes can be sealed with concrete to inhibit leakage of ground water into treated oil shale particles in the fragmented mass.

Ridley, R.D.

1979-05-08T23:59:59.000Z

74

An update on the SRP burial ground area water balance and hydrology  

SciTech Connect

A water budget for the burial ground area prepared by Hubbard and Emslie concluded that about 15 inches, almost one-third of the average annual precipitation, normally infiltrates the land surface and recharges the groundwater. Also, evapotranspiration was estimated to average 30 inches annually, and runoff from the land surface was estimated as 1 to 3 inches. More information has become available recently from lysimeter studies, climatic stations, groundwater studies, and stream discharge measurements. These additional data generally support the conclusions above with some modifications. The type of vegetation cover on the land surface affects the site hydrology and water budget components of evapotranspiration and groundwater recharge. The lysimeter studies indicate that about 12 inches more water is lost annually to the atmosphere by evapotranspiration with deep-rooted pine trees present than in areas where bare soil or shallow-rooted grass cover occur. Therefore, recharge in the burial ground area may differ from that with similar soils in forested areas of the Savannah River Plant. Study of the hydrologic properties of soils in the burial ground area indicates that infiltration rates for the soils generally are relatively high, exceeding one inch per hour. Runoff as overland flow tends to occur only with intense rainfall events of 1 inch or more. The soil-water characteristic curves are representative of relatively coarse-textured soils.

Wells, D.G. [Westinghouse Savannah River Company, Aiken, SC (United States). Savannah River Site; Cook, J.W.

1986-01-09T23:59:59.000Z

75

Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

NONE

1995-08-01T23:59:59.000Z

76

Document Number Q0029500 Ground Water Model 3.0 Ground Water...  

Office of Legacy Management (LM)

and are not required by MODPATH or MT3D. 3.6.4 Flow Model Calibration The IRA Work Plan states that the model would be calibrated using October 2002 water levels. However,...

77

Hydrogeology and geochemistry of acid mine drainage in ground water in the vicinity of Penn Mine and Camanche Reservoir, Calaveras County, California. Summary report, 1993--1995  

Science Conference Proceedings (OSTI)

The report presents results from the ground-water investigation at the Penn Mine by the US Geological Survey from October 1991 to April 1995. The specific objectives of the investigation were to evaluate (1) the quantity and quality of ground water flowing toward Camanche Reservoir from the Penn Mine area; (2) the ground-water transport of metals, sulfate, and acidity between Mine Run and Camanche Reservoirs; and (3) the hydrologic interactions between the flooded mine workings and other ground water and surface water in the vicinity.

Alpers, C.N.; Hamlin, S.N.; Hunerlach, M.P.

1999-06-01T23:59:59.000Z

78

File:04NVBTemporaryUseOfGroundWaterForExploration.pdf | Open...  

Open Energy Info (EERE)

ryUseOfGroundWaterForExploration.pdf Jump to: navigation, search File File history File usage File:04NVBTemporaryUseOfGroundWaterForExploration.pdf Size of this preview: 463 599...

79

Assessment of MTI Water Temperature Thermal Discharge Retrievals with Ground Truth  

Science Conference Proceedings (OSTI)

Surface water temperatures calculated from Multispectral Thermal Imager (MTI) brightness temperatures and the robust retrieval algorithm, developed by the Los Alamos National Laboratory (LANL), are compared with ground truth measurements at a mid-latitude cold-water site along the Atlantic coast near Plymouth, MA. In contrast to the relative uniformity of the sea-surface temperature in the open ocean the water temperature near Pilgrim exhibits strong spatial gradients and temporal variability. This made it critical that all images be accurately registered in order to extract temperature values at the six buoy locations. Sixteen images during a one-year period from August 2000 to July 2001 were selected for the study. The RMS error of Pilgrim water temperature is about 3.5 C for the 4 buoys located in open water. The RMS error of the combined temperatures from 3 of the open-water buoys is 2.8 C. The RMS error includes errors in the ground truth. The magnitude of this error is estimated to range between 0.8 and 2.3 C. The two main components of this error are warm-layer effect and spatial variability. The actual error in the MTI retrievals for Pilgrim daytime conditions is estimated to be between 2.7 and 3.4 C for individual buoys and between 1.7 and 2.7 C for the combined open-water buoys.

Kurzeja, R.J.

2002-12-06T23:59:59.000Z

80

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Salt Lake City, Utah. Revision 1  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the first is the Surface Project, and the second is the Ground Water Project. For the UMTRA Project site known as the Vitro site, near Salt Lake City, Utah, Surface Project cleanup occurred from 1985 to 1987. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. A risk assessment is the process of describing a source of contamination and showing how that contamination may reach people and the environment. The amount of contamination people or the environment may be exposed to is calculated and used to characterize the possible health or environmental effects that may result from this exposure. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Vitro site. The results of this report and further site characterization of the Vitro site will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

NONE

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

GROUND WATER PROTECTION ISSUES WITH GEOTHERMAL HEAT PUMPS  

DOE Green Energy (OSTI)

Closed loop vertical boreholes used with geothermal heat pumps are grouted to facilitate heat transfer and prevent ground water contamination. The grout must exhibit suitable thermal conductivity as well as adequate hydraulic sealing characteristics. Permeability and infiltration tests were performed to assess the ability of cementitious grout to control vertical seepage in boreholes. It was determined that a superplasticized cement-sand grout is a more effective borehole sealant than neat cement over a range of likely operational temperatures. The feasibility of using non-destructive methods to verify bonding in heat exchangers is reviewed.

ALLAN,M.L.; PHILIPPACOPOULOS,A.J.

1999-10-01T23:59:59.000Z

82

Factors influencing biological treatment of MTBE contaminated ground water  

DOE Green Energy (OSTI)

Methyl tert-butyl ether (MTBE) contamination has complicated the remediation of gasoline contaminated sites. Many sites are using biological processes for ground water treatment and would like to apply the same technology to MTBE. However, the efficiency and reliability of MTBE biological treatment is not well documented. The objective of this study was to examine the operational and environmental variables influencing MTBE biotreatment. A fluidized bed reactor was installed at a fuel transfer station and used to treat ground water contaminated with MTBE and gasoline hydrocarbons. A complete set of chemical and operational data was collected during this study and a statistical approach was used to determine what variables were influencing MTBE treatment efficiency. It was found that MTBE treatment was more sensitive to up-set than gasoline hydrocarbon treatment. Events, such as excess iron accumulation, inhibited MTBE treatment, but not hydrocarbon treatment. Multiple regression analysis identified biomass accumulation and temperature as the most important variables controlling the efficiency of MTBE treatment. The influent concentration and loading of hydrocarbons, but not MTBE, also impacted MTBE treatment efficiency. The results of this study suggest guidelines for improving MTBE treatment. Long cell retention times in the reactor are necessary for maintaining MTBE treatment. The onset of nitrification only occurs when long cell retention times have been reached and can be used as an indicator in fixed film reactors that conditions favorable to MTBE treatment exist. Conversely, if the reactor can not nitrify, it is unlikely to have stable MTBE treatment.

Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

2001-09-14T23:59:59.000Z

83

Regulations Establishing Water Quality Standards for Surface Water of the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Establishing Water Quality Standards for Surface Water Establishing Water Quality Standards for Surface Water of the State of Arkansas (Arkansas) Regulations Establishing Water Quality Standards for Surface Water of the State of Arkansas (Arkansas) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting

84

Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada  

DOE Green Energy (OSTI)

The study area occupies about 14,500 square miles in southwestern Idaho and north-central Nevada. Thermal ground water occurs under artesian conditions, in discontinuous or compartmented zones, in igneous or sedimentary rocks of Tertiary age. Ground-water movement is generally northward. Temperatures of the ground water range from about 30/sup 0/ to more than 80/sup 0/C. Chemical analyses of water from 12 wells and 9 springs indicate that nonthermal waters are a calcium bicarbonate type; thermal waters are a sodium bicarbonate type. Chemical geothermometers indicate probable maximum reservoir temperatures are near 100/sup 0/C. Concentration of tritium in the thermal water water is near zero.

Young, H.W.; Lewis, R.E.

1980-12-01T23:59:59.000Z

85

Wind-induced Ground-surface Pressures Around a Single-Family House  

E-Print Network (OSTI)

numerical simulation value minus wind tunnel value, equationfor publication in The Journal of Wind Engineering andIndustrial Aerodynamics Wind-Induced Ground-Surface

Riley, W.J.

2008-01-01T23:59:59.000Z

86

GRR/Section 14-CO-e - Ground Water Discharge Permit | Open Energy  

Open Energy Info (EERE)

CO-e - Ground Water Discharge Permit CO-e - Ground Water Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CO-e - Ground Water Discharge Permit 14COEGroundWaterDischargePermit.pdf Click to View Fullscreen Contact Agencies Colorado Department of Public Health and Environment Regulations & Policies Colorado Water Quality Control Act 5 CCR 1002-61 Colorado Discharge Permit System 5 CCR 1002-41 Basic Standards for Ground Water 5 CCR 1002-42 Site Specific Water Quality Standards for Ground Water Triggers None specified Click "Edit With Form" above to add content 14COEGroundWaterDischargePermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

87

U.S. Department of Energy Uranium Mill Tailings Remedial Action Ground Water Project: Project plan  

SciTech Connect

The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA Project processing sites. The compliance strategy for the processing sites must satisfy the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1987). This scope of work will entail the following activities on a site-specific basis: Develop a compliance strategy based on modification of the UMTRA Surface Project RAPs or develop Ground Water Project RAPs with NRC concurrence on the RAP and full participation of the affected states and tribes. Implement the RAP to include institutional controls, where appropriate, as an interim measure until compliance with the standards is achieved. Institute long-term verification monitoring for transfer to a separate long-term surveillance program on or before the Project end date. Prepare certification or confirmation reports and modify the long-term surveillance plan (LTSP), where needed, on those sites completed prior to the Project end date.

Not Available

1994-09-01T23:59:59.000Z

88

Management and Storage of Surface Waters (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Environmental Protection regulates the use and storage of surface waters in the state. A permit from either the Department or the local Water Management District is required for...

89

Update to the Ground-Water Withdrawals Database for the Death Valley REgional Ground-Water Flow System, Nevada and California, 1913-2003  

SciTech Connect

Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913–1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

Michael T. Moreo; and Leigh Justet

2008-07-02T23:59:59.000Z

90

Water Rights: Surface Water (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Water (Indiana) Surface Water (Indiana) Water Rights: Surface Water (Indiana) < Back Eligibility Agricultural Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Natural Resources The Indiana Department of Natural Resources regulates the use and diversion of surface waters. An entity that creates additional stream volumes by releases from impoundments built and financed by the entity for the entity's purpose may use the increased flowage at all times. Any entity may be required to report the volume of water used. Diversion of water out of

91

Modeling Studies of Geothermal Systems with a Free Water Surface  

DOE Green Energy (OSTI)

Numerical simulators developed for geothermal reservoir engineering applications generally only consider systems which are saturated with liquid water and/or steam. However, most geothermal fields are in hydraulic communicatino with shallow ground water aquifers having free surface (water level), so that production or injection operations will cause movement of the surface, and of the air in the pore spaces above the water level. In some geothermal fields the water level is located hundreds of meters below the surface (e.g. Olkaria, Kenya; Bjornsson, 1978), so that an extensive so that an extensive unsaturated zone is present. In other the caprock may be very leaky or nonexistent [e.g., Klamath Falls, oregon (Sammel, 1976)]; Cerro Prieto, Mexico; (Grant et al., 1984) in which case ther eis good hydraulic communication between the geothermal reservoir and the shallow unconfined aquifers. Thus, there is a need to explore the effect of shallow free-surface aquifers on reservoir behavior during production or injection operations. In a free-surface aquifer the water table moves depending upon the rate of recharge or discharge. This results in a high overall storativity; typically two orders of magnitude higher than that of compressed liquid systems, but one or two orders of magnitude lower than that for liquid-steam reservoirs. As a consequence, various data analysis methods developed for compressed liquid aquifers (such as conventional well test analysis methods) are not applicable to aquifer with a free surface.

Bodvarsson, Gudmundur S.; Pruess, K.

1983-12-15T23:59:59.000Z

92

Glass Surfaces and Water in Glasses  

Science Conference Proceedings (OSTI)

Oct 9, 2012 ... Glass and Optical Materials: Glass Surfaces and Water in Glasses Program Organizers: Jincheng Du, University of North Texas; John Kieffer, ...

93

GRR/Section 4-NV-b - Temporary Use of Ground Water for Exploration | Open  

Open Energy Info (EERE)

b - Temporary Use of Ground Water for Exploration b - Temporary Use of Ground Water for Exploration < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-NV-b - Temporary Use of Ground Water for Exploration 04NVBTemporaryUseOfGroundWaterForExploration.pdf Click to View Fullscreen Contact Agencies Nevada Division of Water Resources Regulations & Policies NAC 534.444 Waiver to use water to explore for oil, gas or geothermal resources Triggers None specified Click "Edit With Form" above to add content 04NVBTemporaryUseOfGroundWaterForExploration.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Division of Water Resources (NDWR) may grant a waiver of the

94

EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Ground-water Compliance Activities at the Uranium Mill 5: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming SUMMARY This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill Tailings Site by using the selected alternative stated in the Final Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 1, 1997 EA-1155: Final Environmental Assessment Ground-water Compliance Activities at the Uranium Mill Tailings Site,

95

Surface Water Management Areas (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Water Management Areas (Virginia) Surface Water Management Areas (Virginia) Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General...

96

GRR/Section 19-CO-c - Designated Ground Water Basin Well Permitting...  

Open Energy Info (EERE)

GRRSection 19-CO-c - Designated Ground Water Basin Well Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help...

97

US Department of Energy Uranium Mill Tailings Remedial Action ground water Project. Revision 1, Version 1: Final project plan  

Science Conference Proceedings (OSTI)

The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA processing sites. The compliance strategy for the processing sites must satisfy requirements of the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1988). This scope of work will entail the following activities, on a site-specific basis: Development of a compliance strategy based upon modification of the UMTRA Surface Project remedial action plans (RAP) or development of Ground Water Project RAPs with NRC and state or tribal concurrence on the RAP; implementation of the RAP to include establishment of institutional controls, where appropriate; institution of long-term verification monitoring for transfer to a separate DOE program on or before the Project end date; and preparation of completion reports and final licensing on those sites that will be completed prior to the Project end date.

Not Available

1993-12-21T23:59:59.000Z

98

Construction Summary and As-Built Report for Ground Water Treatment System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Summary and As-Built Report for Ground Water Treatment Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site More Documents & Publications Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008 Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah Performance Assessment and Recommendations for Rejuvenation of a Permeable

99

Ground-Water Table and Chemical Changes in an Alluvial Aquifer During  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground-Water Table and Chemical Changes in an Alluvial Aquifer Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells More Documents & Publications Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

100

Ground-Water Table and Chemical Changes in an Alluvial Aquifer During  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground-Water Table and Chemical Changes in an Alluvial Aquifer Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells More Documents & Publications Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

TO: US Environmental Protection Agency (EPA) Office of Ground Water and Drinking Water  

E-Print Network (OSTI)

2001, which works to improve public water supply and sanitation. Thank you for the opportunity to submit a comment on the viability of bottled water as an alternative compliance option for chronic water contaminants for non-transient noncommunity water systems (NTNCWS), which are regulated under the Safe Water Drinking Act (SDWA) and 40 CFR s.141.101. Currently, bottled water may not be used by public water systems to achieve compliance with a Maximum Contaminant Level (MCL). This has been the policy over the past eight years. However, bottled water may be used on a temporary basis to avoid unreasonable risk to health. NTNCWS are public water systems. To put matters into perspective: According to the “Public Drinking Water Systems: Facts and Figures ” page on the EPA web site, last updated on February 28, 2006, almost 284 million people in the US are served by public water systems. Of these, only 6.9 million, or just under 2.5%, are served by NTNCWS. There are a total of 20,559 NTNCWS in the US. Type of Water Source: ? 821 of these systems rely on surface water, and serve 932,000 people.

Non-transient Non-community; Water Systems; Comment Arthur Cohen; Mph Convenor Of Saniplan

2006-01-01T23:59:59.000Z

102

Water vapor retrieval over many surface types  

SciTech Connect

In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

Borel, C.C.; Clodius, W.C.; Johnson, J.

1996-04-01T23:59:59.000Z

103

Water Surface Topography Retrieved from Color Images  

Science Conference Proceedings (OSTI)

Submerged objects viewed through wavy water surfaces appear distorted by refraction. An imaging system exploiting this effect is implemented using a submerged planar light source designed so that color images reveal features of small-amplitude ...

Jeffrey Koskulics; Steven Englehardt; Steven Long; Yongxiang Hu; Matteo Ottaviani; Knut Stamnes

2013-04-01T23:59:59.000Z

104

Desalination of brackish ground waters and produced waters using in-situ precipitation.  

Science Conference Proceedings (OSTI)

The need for fresh water has increased exponentially during the last several decades due to the continuous growth of human population and industrial and agricultural activities. Yet existing resources are limited often because of their high salinity. This unfavorable situation requires the development of new, long-term strategies and alternative technologies for desalination of saline waters presently not being used to supply the population growth occurring in arid regions. We have developed a novel environmentally friendly method for desalinating inland brackish waters. This process can be applied to either brackish ground water or produced waters (i.e., coal-bed methane or oil and gas produced waters). Using a set of ion exchange and sorption materials, our process effectively removes anions and cations in separate steps. The ion exchange materials were chosen because of their specific selectivity for ions of interest, and for their ability to work in the temperature and pH regions necessary for cost and energy effectiveness. For anion exchange, we have focused on hydrotalcite (HTC), a layered hydroxide similar to clay in structure. For cation exchange, we have developed an amorphous silica material that has enhanced cation (in particular Na{sup +}) selectivity. In the case of produced waters with high concentrations of Ca{sup 2+}, a lime softening step is included.

Krumhansl, James Lee; Pless, Jason; Nenoff, Tina Maria; Voigt, James A.; Phillips, Mark L. F.; Axness, Marlene; Moore, Diana Lynn; Sattler, Allan Richard

2004-08-01T23:59:59.000Z

105

Ground-Based FSSP and PVM Measurements of Liquid Water Content  

Science Conference Proceedings (OSTI)

Recently published ground-based measurements of liquid water content (LWC) measured in fogs by two microphysical instruments, the FSSP-100 and PVM-100, are evaluated. These publications had suggested that the PVM-100 underestimated LWC ...

H. Gerber; Glendon Frick; Alfred R. Rodi

1999-08-01T23:59:59.000Z

106

Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water Vapor Radiometer Pazmany, Andrew ProSensing Inc. Category: Instruments ProSensing Inc. has developed a G-band (183 GHz, 1.5 mm wavelength) water vapor radiometer (GVR) for the measurement of low concentrations of atmospheric water vapor and liquid water. The instrument's precipitable water vapor measurement precision is approximately 0.01 mm in dry (<2 mm vapor column) conditions. The ground-based version of the instrument was first deployed at ProSensing's facility in Amherst, MA in February 2005, then at the North Slope of Alaska DOE ARM site in Barrow AK in April 2005, where it has been continuously operating since. An airborne version, designed to operate from a standard PMS 2-D probe canister, is now being

107

GRR/Section 14-TX-e - Ground Water Discharge Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-TX-e - Ground Water Discharge Permit GRR/Section 14-TX-e - Ground Water Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-e - Ground Water Discharge Permit 14TXEGroundWaterDischargePermit (1).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas United States Environmental Protection Agency Regulations & Policies 16 TAC 3.8 (Rule 8) Triggers None specified Click "Edit With Form" above to add content 14TXEGroundWaterDischargePermit (1).pdf 14TXEGroundWaterDischargePermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Pits are used in drilling operations to contain drilling related fluids and

108

Final Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

58 58 Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Sites Final February 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-02GJ79491 DOE Grand Junction Office EA of Ground Water Compliance at the Slick Rock Sites February 2003 Final Page iii Contents Page Acronyms and Abbreviations...........................................................................................................v Executive Summary...................................................................................................................... vii 1.0 Introduction.............................................................................................................................1

109

Improved Ground Hydrology Calculations for Global Climate Models (GCMs): Soil Water Movement and Evapotranspiration  

Science Conference Proceedings (OSTI)

A physically based ground hydrology model is developed to improve the land-surface sensible and latent heat calculations in global climate models (GCMs). The processes of transpiration, evaporation from intercepted precipitation and dew, ...

F. Abramopoulos; C. Rosenzweig; B. Choudhury

1988-09-01T23:59:59.000Z

110

Radiological status of the ground water beneath the Hanford Site, January-December 1981  

Science Conference Proceedings (OSTI)

During 1981, 299 monitoring wells were sampled at various times for radionuclide chemical contaminants. This report is one of a series prepared annually to document and evaluate the status of ground water at the Hanford Site. Two substances, tritium and nonradioactive nitrate, are easily transported in ground water; therefore, these substances are used as primary tracers to monitor the movement of contaminated ground water. Data collected during 1981 describe the movement of tritium and the nonradioactive nitrate plumes as well as their response to the influences of ground-water flow, ionic dispersion, and radioactive decay. The gross beta (/sup 106/Ru) levels have become so low that it will no longer be considered a major radionuclide contaminant. The tritium plume continues to show increasing concentrations near the Columbia River. While it is mapped as having reached the Columbia River, its contribution to the river has not been distinguished from other sources at this time. This plume shows much the same configuration as in 1977, 1978, 1979, and 1980. The size of the nitrate plume appears stable. Concentrations of nitrate in the vicinity of the 100-H Area continue to be high as a result of past leaks from the evaporation facility. The overall quality of the ground water at the Hanford Site is generally comparable to that of other ground waters in eastern Washington. Any exceptions to this statement will be noted in this report.

Eddy, P.A.; Cline, C.S.; Prater, L.S.

1982-04-01T23:59:59.000Z

111

GRR/Section 14-UT-e - Ground Water Quality Protection Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-UT-e - Ground Water Quality Protection Permit GRR/Section 14-UT-e - Ground Water Quality Protection Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-UT-e - Ground Water Quality Protection Permit 14UTEGroundWaterQualityProtectionPermit.pdf Click to View Fullscreen Contact Agencies Utah Department of Environmental Quality Regulations & Policies UAC R317-6 Triggers None specified Click "Edit With Form" above to add content 14UTEGroundWaterQualityProtectionPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Utah Department of Environmental Quality (DEQ) regulates discharges

112

Ground-Based and Satellite-Derived Measurements of Surface Albedo on the North Slope of Alaska  

Science Conference Proceedings (OSTI)

Spatial and temporal variations of surface albedo on the North Slope of Alaska were investigated using both ground-based tower measurements and satellite remote sensing data. Ground-based measurements of incident and reflected solar radiation at ...

T. Zhang; T. Scambos; T. Haran; L. D. Hinzman; Roger G. Barry; D. L. Kane

2003-02-01T23:59:59.000Z

113

Wind-induced Ground-surface Pressures Around a Single-Family House  

SciTech Connect

Wind induces a ground-surface pressure field around a building that can substantially affect the flow of soil gas and thereby the entry of radon and other soil-gas contaminants into the building. To quantify the effect of the wind-induced groundsurface pressure field on contaminant entry rates, the mean ground-surface pressure field was experimentally measured in a wind tunnel for several incidence angles of the wind, two atmospheric boundary layers, and two house geometries. The experimentally measured ground-surface pressure fields are compared with those predicted by a k-e turbulence model. Despite the fundamental limitations in applying a k-e model to a system with flow separation, predictions from the numerical simulations were good for the two wind incidence angles tested.

Riley, W.J.; Gadgil, A.J.; Nazaroff, W.W.

1996-02-01T23:59:59.000Z

114

Final Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact Impact Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Sites AGENCY: U.S. DEP.4RTMENT OF ENERGY ACTIOK: FL&-DING OF NO SIGNIFICANT IMP-ACT (FONSI) SU$IM$RY: The U.S. Department of Energy (DOE) plans to implement ground lvater compliance strategies for two Uranium Mill Tailings Remedial Action (UMTR.4) Project sites near Slick Rock. Colorado. The purpose of the strategies is to comply with U.S. En\.ironmental Protection .Qency (EP.Aj ground n'ater standards defined in Title 40 Codr ~fF~d~w/ iieplutio?r.s (CFR) Part 192. and in so doing. protect human health and the en\.ironment. Ground water at the Slick Rock sites is contaminated with residual radioactive materials from hisTorica acti\,ities, associated with the processin of uranium ore, The planned action (~formeri>,.

115

Ocean Surface Wave Measurement Using a Steerable High-Frequency Narrow-Beam Ground Wave Radar  

Science Conference Proceedings (OSTI)

Ground wave radar is emerging as an important tool for routine monitoring of ocean surface conditions and for ship and sea-ice surveillance at ranges well beyond the line-of-sight horizon that limits conventional systems. A major Canadian advance ...

E. W. Gill; M. L. Khandekar; R. K. Howell; J. Walsh

1996-06-01T23:59:59.000Z

116

CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA PROJECT SITE |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA PROJECT SITE CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA PROJECT SITE August 2, 2010 - 12:00pm Addthis A sheep’s foot roller compacts the tailings in the disposal cell. A sheep's foot roller compacts the tailings in the disposal cell. Moab, UT MILL TAILINGS REMOVAL Sixteen million tons of uranium mill tailings 80 feet high stood on the banks of the Colorado River near Moab in southeast Utah, as a legacy to the former ore-processing site that operated for nearly three decades beginning in the mid-1950s. That is until April 2009, when the U.S. Department of Energy began moving the tailings by rail to an engineered disposal cell constructed 30 miles north near Crescent Junction, Utah. The mill tailings,

117

Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site  

Office of Legacy Management (LM)

GJO-2000-177-TAR GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site December 2001 Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy Approved for public release; distribution is unlimited. GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site December 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Project Number UGW-511-0017-12-000 Document Number U0066302 Work Performed under DOE Contract No. DE-AC13-96GJ87335 Document Number U0066302 Contents DOE/Grand Junction Office Ground Water Compliance Action Plan for Old Rifle, Colorado

118

Hanford Site ground-water monitoring for January through June 1988  

Science Conference Proceedings (OSTI)

The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between January and June 1988 included monitoring ground-water elevations across the Site, and monitoring hazardous chemicals and radionuclides in ground water. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Solid Waste Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. In addition, several new analytical initiatives were undertaken during this period. These include cyanide speciation in the BY Cribs plume, inductively coupled argon plasma/mass spectrometry (ICP/MS) measurements on a broad selection of samples from the 100, 200, 300, and 600 Areas, and high sensitivity gas chromatography measurements performed at the Solid Waste Landfill-Nonradioactive Dangerous Waste Landfill. 23 figs., 25 tabs.

Evans, J.C.; Bryce, R.W.; Sherwood, D.R.

1989-05-01T23:59:59.000Z

119

HOW WATER MEETS A HYDROPHOBIC SURFACE: RELUCTANTLY AND WITH FLUCTUATIONS  

E-Print Network (OSTI)

of the depleted region depended on whether the water contained dissolved gases. Ambient water produced an 11 Ã?HOW WATER MEETS A HYDROPHOBIC SURFACE: RELUCTANTLY AND WITH FLUCTUATIONS BY ADELE POYNOR TORIGOE B By definition hydrophobic substances hate water. Water placed on a hydrophobic surface will form a drop in order

Torigoe, Adele Poynor

120

Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii  

DOE Green Energy (OSTI)

This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

Sorey, M.L.; Colvard, E.M.

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Effects of uranium mining of ground water in Ambrosia Lake area, New Mexico  

SciTech Connect

The principal ore-bearing zone in the Ambrosia Lake area of the Grants uranium district is the Westwater Canyon Member of the Morrison Formation (Jurassic). This unit is also one of the major artesian aquifers in the region. Significant declines in the potentiometric lead within the aquifer have been recorded, although cones of depression do not appear to have spread laterally more than a few miles. Loss of potentiometric head in the Westwater Canyon Member has resulted in the interformational migration of ground water along fault zones from overlying aquifers of Cretaceous age. This migration has produced local deterioration in chemical quality of the ground water.

Kelly, T.E.; Link, R.L.; Schipper, M.R.

1980-01-01T23:59:59.000Z

122

Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill  

SciTech Connect

Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

1989-07-01T23:59:59.000Z

123

Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress report for the period July 1 to September 30, 1988: Volume 1, Text  

Science Conference Proceedings (OSTI)

This report describes the progress of 12 Hanford ground-water monitoring projects for the period July 1 to September 30, 1988. During this quarter, field activities at the 300 Area process trenches, the Nonradioactive Dangerous Waste Landfill, the 183-H Solar Evaporation Basins, the 1324-N/NA Surface Impoundment and Percolation Ponds, the 1301-N and 1325-N Liquid Waste Disposal Facilities, and the 216-A-36B Crib consisted of ground-water sampling and analyses, and water-level monitoring. The 200 Area Low-Level Burial Grounds section includes well development data, sediment analysis, and water-level measurements. Ground-water sampling was begun at this site, and results will be included in next quarter's report. Twelve new wells were installed during the quarter, two at the 216-A-29 Ditch, size at the 216-A-10 Crib, and four at the 216-B-3 Pond. Preliminary characterization data for these new wells are included in this report. Driller's logs and other drilling and site characterization data will be provided in the next quarterly report. At the 2101-M Pond, construction was completed on four wells, and initial ground-water samples were taken. The drilling logs, geophysical logging data, and as-built diagrams are included in this report in Volume 2. 19 refs., 24 figs., 39 tabs.

Fruland, R.M.; Bates, D.J.; Lundgren, R.E.

1989-02-01T23:59:59.000Z

124

Thermal-Structural Design of a Water Shield For Surface Reactor Missions  

SciTech Connect

Water shielding is an attractive option for an affordable lunar surface fission reactor program. The attractiveness of the water shielding option arises from the relative ease of proto-typing and ground testing, the relatively low development effort needed, as well as the fabrication and operating experience with stainless steel and water. The most significant limitation in using a water shield is temperature: to prevent the formation of voids and the consequent loss of cooling, the water temperature has to be maintained below the saturation temperature corresponding to the shield pressure. This paper examines natural convection for a prototypic water shield design using the computational fluid dynamics (CFD) code CFX-5 as well as analytical modeling. The results show that natural convection is adequate to keep the water well-mixed. The results also show that for the above-ground configuration, shield surface and water temperatures during lunar day conditions are high enough to require shield pressures up to 2.5 atm to prevent void formation. For the buried configuration, a set of ammonia heat pipes attached to the shield outer wall can be used to maintain water temperatures within acceptable limits. Overall the results show that water shielding is feasible for lunar surface applications. The results of the CFD analyses can also be used to guide development of testing plans for shield thermal testing. (authors)

Sadasivan, Pratap; Kapernick, Richard J.; Poston, David I. [D-5 Nuclear Systems Design Group MS K575, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 (United States)

2006-07-01T23:59:59.000Z

125

Pacific Northwest National Laboratory Grounds Maintenance: Best Management Practice Case Studies #4 and #5 - Water Efficient Landscape and Irrigation (Brochure)  

SciTech Connect

FEMP Water Efficiency Best Management Practices #4 and #5 Case Study: Overview of the Pacific Northwest National Laboratory grounds maintenance program and results.

Not Available

2009-08-01T23:59:59.000Z

126

Relaxations and Interfacial Water Ordering at the Corundum (110) Surface  

Science Conference Proceedings (OSTI)

In situ high resolution specular X-ray reflectivity measurements were used to examine relaxations and interfacial water ordering occurring at the corundum (110)-water interface. Sample preparation affected the resulting surface structure. Annealing in air at 1373 K produced a reconstructed surface formed through an apparently ordered aluminum vacancy. The effect of the reconstruction on in-plane periodicity was not determined. The remaining aluminum sites on the surface maintain full coordination by oxygen and the surface was coated with a layer of physically adsorbed water. Ordering of water further from the surface was not observed. Acid etching of this surface and preparing a surface through annealing at 723 K both produced an unreconstructed surface with identical relaxations and water ordering. Relaxations were confined primarily to the top {approx}4 {angstrom} of the surface and were dominated by an increased distribution width of the fully occupied surface aluminum site and outward relaxation of the oxygen surface functional groups. A layer of adsorbed water fully coated the surface and occurred in two distinct sites. Water above this showed signs of layering and indicated that water ordering extended 7-10 {angstrom} from the surface. Relaxations and the arrangement of interfacial water were nearly identical on both the unreconstructed corundum and isostructural hematite (110) surfaces. Comparison to corundum and hematite (012) suggests that the arrangement of interfacial water is primarily controlled by mineral surface structure.

Catalano, Jeffrey G. (WU)

2010-09-17T23:59:59.000Z

127

Surface Water Quality Standards (Kansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quality Standards (Kansas) Surface Water Quality Standards (Kansas) Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General PublicConsumer...

128

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Hazardous Waste Management  

E-Print Network (OSTI)

Products such as paints, solvents, adhesives, oils, cleaners, batteries, pesticides and wood preservatives are commonly used in households and on farms, but they can be hazardous to ground water if handled improperly. This publication explains proper methods of using, storing and disposing of hazardous materials.

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

1997-08-29T23:59:59.000Z

129

Selenium in Oklahoma ground water and soil. Quarterly report No. 6  

SciTech Connect

Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

Atalay, A.; Vir Maggon, D.

1991-03-30T23:59:59.000Z

130

Thermal ground water flow systems in the thrust zone in southeastern Idaho  

DOE Green Energy (OSTI)

The results of a regional study of thermal and non-thermal ground water flow systems in the thrust zone of southern Idaho and western Wyoming are presented. The study involved hydrogeologic and hydrochemical data collection and interpretation. Particular emphasis was placed on analyzing the role that thrust zones play in controlling the movement of thermal and non-thermal fluids.

Ralston, D.R.

1983-05-01T23:59:59.000Z

131

Baseline risk assessment of ground water contamination at the inactive uriniferous lignite ashing site near Belfield, North Dakota  

SciTech Connect

This Baseline Risk Assessment of Ground Water Contamination at the Inactive Uraniferous Lignite Ashing Site Near Belfield, North Dakota, evaluates potential impacts to public health or the environment resulting from ground water contamination at the site where coal containing uranium was burned to produce uranium. The US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project is evaluating plans to remedy soil and ground water contamination at the site. Phase I of the UMTRA Project consists of determining the extent of soil contamination. Phase II of the UMTRA Project consists of evaluating ground water contamination. Under Phase II, results of this risk assessment will help determine what remedial actions may be necessary for contaminated ground water at the site. This risk assessment evaluates the potential risks to human health and the environment resulting from exposure to contaminated ground water as it relates to historic processing activities at the site. Potential risk is quantified for constituents introduced from the processing activities, and not for those constituents naturally occurring in water quality in the site vicinity. Background ground water quality has the potential to cause adverse health effects from exposure through drinking. Any risks associated with contaminants attributable to site activities are incremental to these risks from background ground water quality. This incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition.

1994-08-01T23:59:59.000Z

132

Laboratory Investigation into the Contribution of Contaminants to Ground Water from Equipment Materials Used in Sampling  

SciTech Connect

Benzene contamination was detected in well water samples from the Ogallala Aquifer beneath and adjacent to the Department of Energy's Pantex Plant near Amarillo, Texas. This study assessed whether or not the materials used in multilevel sampling equipment at this site could have contributed to the contaminants found in well water samples. As part of this investigation, laboratory testing of the sample equipment material was conducted. Results from the laboratory test indicated three different materials from two types of multilevel samplers did, in fact, contribute volatile and semivolatile organic compounds to the ground water samples from static leach tests that were conducted during an eight week period. The nylon-11 tubing contributed trace concentrations of benzene (1.37 ?g/L) and relatively high concentrations of the plasticizer N-butylbenzenesulfonamide (NBSA) (764 mg/L) to the water; a urethane-coated nylon well liner contributed relatively high concentrations of toluene (278 ?g/L) and trace amounts of NBSA; and a sampling port spacer material made of nylon/polypropylene/polyester-composite contributed trace amounts of toluene and NBSA. While the concentrations of benzene and toluene measured in the laboratory tests were below the concentrations measured in actual ground water samples, the concentrations of organics from these equipment materials were sufficient to render the results reported for the ground water samples suspect.

Gilmore, Tyler J.; Mitroshkov, Alexandre V.; Dresel, P Evan; Sklarew, Debbie S.

2004-08-30T23:59:59.000Z

133

Urea for SCR-based NOx Control Systems and Potential Impacts to Ground Water Resources  

DOE Green Energy (OSTI)

One of the key challenges facing manufacturers of diesel engines for light- and heavy-duty vehicles is the development of technologies for controlling emissions of nitrogen oxides, In this regard, selective catalytic reduction (SCR) systems represent control technology that can potentially achieve the NOx removal efficiencies required to meet new U.S. EPA standards. SCR systems rely on a bleed stream of urea solution into exhaust gases prior to catalytic reduction. While urea's role in this emission control technology is beneficial, in that it supports reduced NOx emissions, it can also be an environmental threat to ground water quality. This would occur if it is accidentally released to soils because once in that environmental medium, urea is subsequently converted to nitrate--which is regulated under the U.S. EPA's primary drinking water standards. Unfortunately, nitrate contamination of ground waters is already a significant problem across the U.S. Historically, the primary sources of nitrate in ground waters have been septic tanks and fertilizer applications. The basic concern over nitrate contamination is the potential health effects associated with drinking water containing elevated levels of nitrate. Specifically, consumption of nitrate-contaminated water can cause a blood disorder in infants known as methemoglobinemia.

Layton, D.

2002-01-03T23:59:59.000Z

134

Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2003-2004 Annual Report.  

DOE Green Energy (OSTI)

This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA Natural Resources Conservation Service, assist landowners in developing Resource Management Systems (RMS) that address resource concerns in a specified land unit. These RMS plans are developed using a nine step planning process that acts to balance natural resource issues with economic and social needs. Soil, Water, Air, Plants, Animals, and Human resource concerns are the core focus in developing a framework for improving the efficiency and effectiveness of conservation activities in a given planning unit, while working within the guidelines set forth by the National Environmental Policy Act (NEPA), Clean Water Act (CWA), Endangered Species Act (ESA), Magnuson-Stevens Act (MSA), National Historic Preservation Act (NHPA), and other federal, state, and local laws. Implementation of this project has provided technical and implementation assistance for numerous on the ground projects, including over 50 WASCBs, several thousand feet of terraces, numerous spring developments, fencing, 7 implemented CREP contracts, and the development of 8 additional CREP projects slated for enrollment at the beginning of FY '05. Within the past contract year in Sherman County, 589.4 acres of CREP have been enrolled protecting 30.8 miles of riparian habitat. In addition to the increase in on the ground projects, coordination and outreach to solicit conservation projects in Sherman County has increased due to the additional staffing provided by BPA funds. As a result there is an abundance of potential conservation projects for water quality and riparian management improvement. With the sustained availability of coordination and technical assistance provided through this grant, BPA personnel funds will translate to a much higher dollar figure applied on the ground. This project has been very successful in keeping up with the demand for conservation projects within Sherman County.

Faucera, Jason (Sherman County Soil and Water Conservation District, Sherman County, OR)

2004-05-01T23:59:59.000Z

135

Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon : Coordination and Technical Assistance, 2004-2005 Annual Report.  

Science Conference Proceedings (OSTI)

This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA Natural Resources Conservation Service, assist landowners in developing Resource Management Systems (RMS) that address resource concerns in a specified land unit. These RMS plans are developed using a nine step planning process that acts to balance natural resource issues with economic and social needs. Soil, Water, Air, Plants, Animals, and Human resource concerns are the core focus in developing a framework for improving the efficiency and effectiveness of conservation activities in a given planning unit, while working within the guidelines set forth by the National Environmental Policy Act (NEPA), Clean Water Act (CWA), Endangered Species Act (ESA), Magnuson-Stevens Act (MSA), National Historic Preservation Act (NHPA), and other federal, state, and local laws. Implementation of this project has provided technical and implementation assistance for numerous on the ground projects, including over 50 WASCBs, several thousand feet of terraces, numerous spring developments, fencing, 5 implemented CREP contracts, and the development of 12 additional CREP projects slated for enrollment at the beginning of FY06. Within the past contract year in Sherman County, 355.4 acres of CREP have been enrolled protecting 19.3 miles of riparian habitat. In addition to the increase in on the ground projects, coordination and outreach to solicit conservation projects in Sherman County has increased due to the additional staffing provided by BPA funds. As a result there is an abundance of potential conservation projects for water quality and riparian management improvement. With the sustained availability of coordination and technical assistance provided through this grant, BPA personnel funds will translate to a much higher dollar figure applied on the ground. This project has been very successful in keeping up with the demand for conservation projects within Sherman County.

Faucera, Jason (Sherman County Soil and Water Conservation District, Sherman County, OR)

2005-06-01T23:59:59.000Z

136

Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2002-2003 Annual Report.  

Science Conference Proceedings (OSTI)

This project was designed to provide project coordination and technical assistance to producers in Sherman County for on the ground water quality enhancement and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Enhancement Reserve Program (CREP) and other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Three of those four streams and one other major Sherman County stream are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Temperature in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA Natural Resources Conservation Service, assist landowners in developing Resource Management Systems (RMS) that address resource concerns in a specified land unit. These RMS plans are developed using a nine step planning process that acts to balance natural resource issues with economic and social needs. Soil, Water, Air, Plants, Animals, and Human resource concerns are the core focus in developing a framework for improving the efficiency and effectiveness of conservation activities in a given planning unit, while working within the guidelines set forth by the National Environmental Policy Act (NEPA), Clean Water Act (CWA), Endangered Species Act (ESA), Magnuson-Stevens Act (MSA), National Historic Preservation Act (NHPA), and other federal, state, and local laws. Implementation of this project has resulted in providing technical and implementation assistance for numerous on the ground projects, including over 50 WASCBs, several thousand feet of terraces, two implemented CREP contracts, and the development of 3 additional CREP projects slated for enrollment at the beginning of FY '04. In addition to the increase in on the ground projects, coordination and outreach to solicit conservation projects in Sherman County has increased due to the additional staffing provided by BPA funds. As a result there is an abundance of potential conservation projects for water quality and riparian management improvement. With the sustained availability of coordination and technical assistance provided through this grant, BPA personnel funds will translate to a much higher dollar figure applied on the ground. This project has been very successful in reducing the backlog of conservation projects within Sherman County, while adhering to the objectives set forth for this grant.

Faucera, Jason (Sherman County Soil and Water Conservation District, Sherman County, OR)

2003-06-23T23:59:59.000Z

137

Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2005-2006 Annual Report.  

Science Conference Proceedings (OSTI)

This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA Natural Resources Conservation Service, assist landowners in developing Resource Management Systems (RMS) that address resource concerns in a specified land unit. These RMS plans are developed using a nine step planning process that acts to balance natural resource issues with economic and social needs. Soil, Water, Air, Plants, Animals, and Human resource concerns are the core focus in developing a framework for improving the efficiency and effectiveness of conservation activities in a given planning unit, while working within the guidelines set forth by the National Environmental Policy Act (NEPA), Clean Water Act (CWA), Endangered Species Act (ESA), Magnuson-Stevens Act (MSA), National Historic Preservation Act (NHPA), and other federal, state, and local laws. Implementation of this project has provided technical and implementation assistance for numerous on the ground projects, including 119 WASCBs, 74,591 feet of terraces, 3 spring developments, 24,839 feet of riparian or pasture cross fencing, 1,072 acres of direct seed trials, 14 landowners implementing 34 CREP contracts, and the development of 5 additional CREP contracts slated for enrollment at the beginning of FY07. Within the past contract year in Sherman County, 1898.3 acres of CREP have been enrolled protecting approximately 52 miles of riparian or intermittent stream channel habitat. In addition to the increase in on the ground projects, coordination and outreach to solicit conservation projects in Sherman County has increased due to the additional staffing provided by BPA funds. As a result there is an abundance of potential conservation projects for water quality and riparian management improvement. With the sustained availability of coordination and technical assistance provided through this grant, BPA personnel funds will translate to a much higher dollar figure applied on the ground. This project has been very successful in keeping up with the demand for conservation projects within Sherman County.

Faucera, Jason (Sherman County Soil and Water Conservation District, Sherman County, OR)

2006-06-01T23:59:59.000Z

138

Method for removing oil-based materials from water surface  

SciTech Connect

A method is described for removing oil-based materials floating on the surface of ballast water contained in the ballast tank of a cargo carrier having vertical steel surfaces. The method consists of adding to said surface a spreading agent having a spreading force greater than the oil-based material in an amount sufficient to force substantially all of the material against the surfaces. The ballast water is discharged from the tank at a point below the surface of the water, the oil-based material is forced to deposit on the steel surfaces vacated by the discharged water.

Shewmaker, J.E.

1981-10-06T23:59:59.000Z

139

Superfund Record of Decision (EPA region 8): Libby Ground Water Contamination Site, Libby, Montana, September 1986. Final report  

SciTech Connect

Abandoned wood-treating operations on the mill property are the source of ground-water contamination at the Libby Ground Water Contamination site in the northwest corner of Montana. In 1979, shortly after installation of private wells, some homeowners detected the presence of a creosote odor, and EPA monitoring in 1981 confirmed ground-water contamination. Based on 1984 well sample results, Champion International Corporation implemented the Buy Water Plan. Under this program, individuals with contaminated ground water wells agree to cease using their wells and use water from the public water system operated by the City of Libby. The program, indefinite in term, would be terminated upon the elimination of the threat of contamination, if the well owner provides a written termination notice, or if other alternatives become available. The primary contaminants of concern include: VOCs, PAHs, PCP, organics, inorganics, heavy metals, and creosote. Selected remedies are proposed and included in the report.

Not Available

1986-09-26T23:59:59.000Z

140

A cost-effective, environmentally-responsive ground-water monitoring procedure  

E-Print Network (OSTI)

Ground-water monitoring is the primary method used to protect our ground-water resources. The primary objectives of monitoring programs are to detect, to attribute, and to mitigate any changes in-water quality or quantity. Previous monitoring programs have had numerous problems including the failure to produce usable information and the failure to balance the competing factors of cost-effectiveness and environmental protection. A cost-effective, environmentally-responsive ground-water procedure was designed which consists of eight steps and two feedback loops. The reason for monitoring must first be determined before clear monitoring goals can be set. Characterization of the site allows proper design of the monitoring network. Data is then collected and analyzed creating usable information. Applying this new information to the information expansion loop permits a better understanding of the initial site characterization. Finally evaluating the entire routine to determine the effectiveness of the program allows the optimization loop to modify the system for greater efficiency. The value of this procedure was tested at selected sites in the Gibbons Creek Lignite Mine in Grimes County, Texas. The mine, which is currently in compliance with state regulations, is not operating an efficient monitoring program. The problems included over-monitoring of metals in and around reclaimed mine blocks, over-monitoring by monitoring wells in the same aquifer, and the failure to attribute changes in a monitoring well near a dewatering well. The feedback loops helped to optimize the entire program by recognizing problems in the stratigraphic column and modifying the monitoring program to lower monitoring costs. Three major benefits are gained by using this procedure: the ground-water monitoring routine can be made more cost-effective, environmental protection will be increased, and environmental liability will be decreased.

Doucette, Richard Charles

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Metropolitan Surface Water Management Act (Minnesota) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Metropolitan Surface Water Management Act (Minnesota) The Metropolitan Surface Water Management Act (Minnesota) The Metropolitan Surface Water Management Act (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting The Metropolitan Surface Water Management Act aims to protect, preserve,

142

Surface Wind Convergence as a Short-Term Predictor of Cloud-to-Ground Lightning at Kennedy Space Center  

Science Conference Proceedings (OSTI)

Cloud-to-ground lightning is a significant forecast problem at the Kennedy Space Center (KSC) in Florida. In this study, cloud-to-ground lightning is related in time and space to surface convergence for 244 days during the convective seasons of ...

Andrew I. Watson; Ronald L. Holle; Raúl E. López; Robert Ortiz; James R. Nicholson

1991-03-01T23:59:59.000Z

143

Guide to ground water remediation at CERCLA response action and RCRA corrective action sites  

SciTech Connect

This Guide contains the regulatory and policy requirements governing remediation of ground water contaminated with hazardous waste [including radioactive mixed waste (RMW)], hazardous substances, or pollutants/contaminants that present (or may present) an imminent and substantial danger. It was prepared by the Office of Environmental Policy and Assistance, RCRA/CERCLA Division (EH-413), to assist Environmental Program Managers (ERPMs) who often encounter contaminated ground water during the performance of either response actions under CERCLA or corrective actions under Subtitle C of RCRA. The Guide begins with coverage of the regulatory and technical issues that are encountered by ERPM`s after a CERCLA Preliminary Assessment/Site Investigation (PA/SI) or the RCRA Facility Assessment (RFA) have been completed and releases into the environment have been confirmed. It is based on the assumption that ground water contamination is present at the site, operable unit, solid waste management unit, or facility. The Guide`s scope concludes with completion of the final RAs/corrective measures and a determination by the appropriate regulatory agencies that no further response action is necessary.

NONE

1995-10-01T23:59:59.000Z

144

Water application related to oil shale listed  

SciTech Connect

A water right application filed by the Rio Blanco Oil Shale Company, Inc. is reported for surface waters and ground water in Rio Blanco County, Colorado.

1986-09-01T23:59:59.000Z

145

Viscous Sublayer Below a Wind-Disturbed Water Surface  

Science Conference Proceedings (OSTI)

Drift currents immediately below the water surface were systematically measured in a circulating wind-wave tank. The results confirmed the existence of a viscous sublayer at the air–water interface, with the current varying linearly with depth ...

Jin Wu

1984-01-01T23:59:59.000Z

146

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado  

SciTech Connect

This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

Not Available

1994-06-01T23:59:59.000Z

147

On the Linkage between Antarctic Surface Water Stratification and Global Deep-Water Temperature  

Science Conference Proceedings (OSTI)

The suggestion is advanced that the remarkably low static stability of Antarctic surface waters may arise from a feedback loop involving global deep-water temperatures. If deep-water temperatures are too warm, this promotes Antarctic convection, ...

Ralph F. Keeling; Martin Visbeck

2011-07-01T23:59:59.000Z

148

A Numerical Investigation of Land Surface Water on Landfalling Hurricanes  

Science Conference Proceedings (OSTI)

Little is known about the effects of surface water over land on the decay of landfalling hurricanes. This study, using the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory hurricane model, examines the surface ...

Weixing Shen; Isaac Ginis; Robert E. Tuleya

2002-02-01T23:59:59.000Z

149

EA-1093: Surface Water Drainage System, Golden, Colorado | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

maintain, the surface water drainage system serving the U.S. Department of Energy's Rocky Flats Environmental Technology Site located north of Golden, Colorado. PUBLIC COMMENT...

150

Impoundment of Surface Waters (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impoundment of Surface Waters (Virginia) Impoundment of Surface Waters (Virginia) Impoundment of Surface Waters (Virginia) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Program Info State Virginia Program Type Siting and Permitting Provider Virginia Department of Environmental Quality Many water withdrawal projects involve planning and engineering long before

151

Ground water and oil field waste sites: a study in Vermilion Parish  

Science Conference Proceedings (OSTI)

Water samples were obtained from 128 private water wells surrounding eight oil field waste sites in Vermilion Parish. The specimens were analyzed for five heavy metals: barium, arsenic, chromium, lead, and cadmium. Half of the specimens were then analyzed for 16 volatile organic compounds. A blood sample was obtained from healthy adults drinking water from the wells tested for volatile organic compounds and this blood sample was also analyzed for volatile organic compounds. None of the water samples had levels of heavy metals or volatile organic compounds that exceeded the National Primary Drinking Water Standards. Barium levels in excess of 250 parts per billion suggested that styrene, toluene, and chloroform might be present. Blood levels of volatile organic compounds were significantly higher than could be accounted for by water consumption with levels in smokers significantly higher than in nonsmokers. These data suggest that as yet there is no contamination of ground water supplies around these sites. Volatile organic accumulation in humans probably occurs from a respiratory rather than from an oral route.

Rainey, J.M.; Groves, F.D.; DeLeon, I.R.; Joubert, P.E. (LSU School of Medicine, New Orleans, LA (USA))

1990-06-01T23:59:59.000Z

152

Molecular dynamics studies of interfacial water at the alumina surface.  

DOE Green Energy (OSTI)

Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior at distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.

Argyris, Dr. Dimitrios [University of Oklahoma; Ho, Thomas [ORNL; Cole, David [Ohio State University

2011-01-01T23:59:59.000Z

153

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1  

SciTech Connect

This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.

Not Available

1994-09-01T23:59:59.000Z

154

Ground-water protection standards for inactive uranium tailings sites (40 CFR 192): Background information for final rule. Final report  

Science Conference Proceedings (OSTI)

The Final Background Information Document summarizes the information and data considered by the Agency in developing the ground-water protection standards. The report presents a brief description of the Title II ground water standard and how it can be used to develop the Title I rulemaking. A description of the 24 designated uranium-tailings sites and their current status in the DOE remedial-action program is included as well as a detailed analysis of the available data on the ground water in the vicinity of 14 of the 24 sites. It also describes different methods that can be used for the restoration of ground water and the costs of using these restoration methods.

Not Available

1989-03-01T23:59:59.000Z

155

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Pesticide Storage and Handling  

E-Print Network (OSTI)

Proper pesticide management is important to preventing ground water contamination. This publication contains helpful information about pesticide storage facilities, mixing and loading practices, and spill cleanup. A chart lists pesticides according to their "leachability.

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

1997-08-29T23:59:59.000Z

156

Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah  

Science Conference Proceedings (OSTI)

This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

Not Available

1994-09-01T23:59:59.000Z

157

Water and Surface Energy Balance Modeling in Botswana  

Science Conference Proceedings (OSTI)

From January-March 1989 an intensive field campaign was held in the eastern savanna of Botswana, Africa, to collect ground data to parameterize models which can be used to determine the physical status and water-balance terms of the earth's ...

A. A. Van de Griend; M. Owe; H. F. Vugts; S. D. Prince

1989-11-01T23:59:59.000Z

158

DOE/EA-1388: Environmental Assessment of Ground Water Compliance at the Shiprock Uranium Mill Tailings Site (September 2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

388 388 Environmental Assessment of Ground Water Compliance at the Shiprock Uranium Mill Tailings Site Final September 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 This Page Intentionally Blank DOE Grand Junction Office EA of Ground Water Compliance at the Shiprock Site September 2001 Final Page iii Contents Page Acronyms and Abbreviations ........................................................................................................ vii Executive Summary ....................................................................................................................... ix 1.0 Introduction .............................................................................................................................1

159

Surface Water and Groundwater Use and Protection (Mississippi) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Water and Groundwater Use and Protection (Mississippi) Surface Water and Groundwater Use and Protection (Mississippi) Surface Water and Groundwater Use and Protection (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting

160

Waste not Discharged to Surface Waters (North Carolina) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste not Discharged to Surface Waters (North Carolina) Waste not Discharged to Surface Waters (North Carolina) Waste not Discharged to Surface Waters (North Carolina) < Back Eligibility Commercial Industrial Construction Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Siting and Permitting The rules in this Subchapter apply to all persons proposing to construct, alter, extend, or operate any sewer system, treatment works, disposal system, contaminates soil treatment system, animal waste management system, stormwater management system or residual disposal/utilization system which does not discharge to surface waters of the state, including systems which discharge waste onto or below land surface.

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

(Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio)  

SciTech Connect

This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

Not Available

1991-10-01T23:59:59.000Z

162

Locating Ground-Water Discharge in the Hanford Reach of the Columbia River  

Science Conference Proceedings (OSTI)

A bottom-contacting probe for measuring electrical conductivity at the sediment-water interface was used to scan the bed of the Columbia River adjacent to the Hanford Site in southeast Washington State during a 10-day investigation. Four river-sections, each about a kilometer in length, were scanned for variations in electrical conductivity. The probe was towed along the riverbed at a speed of 1 m/s and is position was recorded using a Global Positioning System. The bottom tows revealed several areas of elevated electrical conductivity. Where these anomalies were relatively easy to access, piezometers were driven into the riverbed and porewater electrical conductivity ranged from 111 to 150 uS/cm. The piezometers, placed in electrical conductivity “hotspots,” yielded chemical or isotopic data consistent with previous analyses of water taken from monitoring wells and visible shoreline seeps. Tritium, nitrate, and chromium exceeded water quality standards in some porewaters. The highest tritium and nitrate levels were found near the Old Hanford Townsite at 120,000 pCi/L (+ 5,880 pCi/L total propagated analytical uncertainty) and ug/L (+ 5,880 ug/L), respectively. The maximum chromium (total and hexavalent) levels were found near 100-H reactor area where unfiltered porewater total chromium was 1,900 ug/L (+ 798 ug/L) and hexavalent chromium was 20 ug/L. The electrical conductivity probe provided rapid, cost-effective reconnaissance for ground-water discharge areas when used in combination with conventional piezometers. It may be possible to obtain quantitative estimates of both natural and contaminated ground-water discharge in the Hanford Reach with more extensive surveys of river bottom.

Lee, D.R.; Geist, D.R.; Saldi, K.; Hartwig, D.; Cooper, T.

1997-03-01T23:59:59.000Z

163

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Falls City, Texas: Revision 1  

Science Conference Proceedings (OSTI)

This baseline risk assessment of ground water contamination of the uranium mill tailings site near Falls City, Texas, evaluates potential impact to public health and the environment resulting from ground water contamination at the former Susquehanna Western, Inc. (SWI), uranium mill processing site. This document fulfills the following objectives: determine if the site presents immediate or potential future health risks, determine the need for interim institutional controls, serve as a key input to project planning and prioritization, and recommend future data collection efforts to more fully characterize risk. The Uranium Mill Tailings Remedial Action (UMTRA) Project has begun its evaluation of ground water contamination at the Falls City site. This risk assessment is one of the first documents specific to this site for the Ground Water Project. The first step is to evaluate ground water data collected from monitor wells at or near the site. Evaluation of these data show the main contaminants in the Dilworth ground water are cadmium, cobalt, fluoride, iron, nickel, sulfate, and uranium. The data also show high levels of arsenic and manganese occur naturally in some areas.

Not Available

1994-09-01T23:59:59.000Z

164

Raft River monitor well potentiometric head responses and water quality as related to the conceptual ground-water flow system  

DOE Green Energy (OSTI)

Ground-water monitoring near the Raft River site was initiated in 1974 by the IDWR. This effort consisted of semiannual chemical sampling of 22 irrigation wells near the Raft River geothermal development area. This program yielded useful baseline chemical data; however, several problems were inherent. For example, access to water pumped from the wells is limited to the irrigation season (April through September). All the wells are not continuously pumped; thus, some wells that are sampled one season cannot be sampled the next. In addition, information on well construction, completion, and production is often unreliable or not available. These data are to be supplemented by establishing a series of monitor wells in the proposed geothermal withdrawal and injection area. These wells were to be located and designed to provide data necessary for evaluating and predicting the impact of geothermal development on the Shallow Aquifer system.

Allman, D.W.; Tullis, J.A.; Dolenc, M.R.; Thurow, T.L.; Skiba, P.A.

1982-09-01T23:59:59.000Z

165

DIRECT MEASUREMENT OF WATER AND SOLUTE FLUXES USING A PASSIVE SURFACE WATER FLUX METER  

E-Print Network (OSTI)

DIRECT MEASUREMENT OF WATER AND SOLUTE FLUXES USING A PASSIVE SURFACE WATER FLUX METER J Surface Water Flux Meter (PSFM). Current techniques for estimating contaminant mass inputs to impaired flux meter, MS Thesis, UF. This work was supported by the United States Department of Agriculture

Watson, Craig A.

166

Dynamics of Ice Nucleation on Water Repellent Surfaces Azar Alizadeh,*,  

E-Print Network (OSTI)

for nonicing applications. 1. INTRODUCTION Ice accretion on surfaces of aircraft, wind turbine blades, oil on surfaces with various wettabilities during and subsequent to single water droplet impact. We use surface wetting and icing phase transition events. Our methodology provides insights into multiple ice

Dhinojwala, Ali

167

Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California  

SciTech Connect

Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

Warner, J.L.; Lutz, J.D.

2006-01-01T23:59:59.000Z

168

(Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)  

Science Conference Proceedings (OSTI)

In April 1990, Wright-Patterson Air Force Base (WPAFB) initiated an effort for the evaluation of potential removal of ground water contamination at the Base. This report presents a current assessment of the nature and extent of the contamination believed to be migrating across the southwestern boundary of Area C and the northern boundary of Area B based upon analysis of existing environmental data obtained from several sources. The existing data base indicates widespread, low-level contamination moving across Base boundaries at levels that pose no immediate threat to the Mad River Valley well fields. An investigation by the City of Dayton in May and June 1990, however, implies that a more identifiable plume of PCE and TCE may be crossing the southwestern boundary of Area C immediately downgradient of Landfill 5. More data is needed to delineate ground water contamination and to design and implement a suitable control system. This report concludes that although an extensive study of the boundaries in question would be the preferred approach, a limited, focused investigation and subsequent feasibility study can be accomplished with a reasonable certainty of achieving the desired outcome of this project.

Not Available

1991-10-01T23:59:59.000Z

169

Ground-state ammonia and water in absorption towards Sgr B2  

E-Print Network (OSTI)

We have used the Odin submillimetre-wave satellite telescope to observe the ground state transitions of ortho-ammonia and ortho-water, including their 15N, 18O, and 17O isotopologues, towards Sgr B2. The extensive simultaneous velocity coverage of the observations, >500 km/s, ensures that we can probe the conditions of both the warm, dense gas of the molecular cloud Sgr B2 near the Galactic centre, and the more diffuse gas in the Galactic disk clouds along the line-of-sight. We present ground-state NH3 absorption in seven distinct velocity features along the line-of-sight towards Sgr B2. We find a nearly linear correlation between the column densities of NH3 and CS, and a square-root relation to N2H+. The ammonia abundance in these diffuse Galactic disk clouds is estimated to be about (0.5-1)e-8, similar to that observed for diffuse clouds in the outer Galaxy. On the basis of the detection of H218O absorption in the 3 kpc arm, and the absence of such a feature in the H217O spectrum, we conclude that the water...

Wirström, E S; Black, J H; Hjalmarson, Å; Larsson, B; Olofsson, A O H; Encrenaz, P J; Falgarone, E; Frisk, U; Olberg, M; Sandqvist, Aa

2010-01-01T23:59:59.000Z

170

Surface Water Monitoring and Assessment (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Water Monitoring and Assessment (Ohio) Surface Water Monitoring and Assessment (Ohio) Surface Water Monitoring and Assessment (Ohio) < Back Eligibility Utility Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Tribal Government Low-Income Residential Multi-Family Residential Systems Integrator Transportation Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This law establishes criteria for three levels of credible data for a surface water quality monitoring and assessment program and establishes the necessary training and experience for persons to submit credible data, thereby increasing the information base upon which to enhance, improve and

171

Point Source Discharges to Surface Waters (North Carolina) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Point Source Discharges to Surface Waters (North Carolina) Point Source Discharges to Surface Waters (North Carolina) Point Source Discharges to Surface Waters (North Carolina) < Back Eligibility Commercial Industrial Construction Transportation Savings Category Buying & Making Electricity Program Info State North Carolina Program Type Siting and Permitting Provider Department of Environment and Natural Resources This rule requires permits for control of sources of water pollution by providing the requirements and procedures for application and issuance of state National Pollutant Discharge Elimination System (NPDES) permits for a discharge from an outlet, point source, or disposal system discharging to the surface waters of the state, and for the construction, entering a contract for construction, and operation of treatment works with such a

172

Computer simulation models relevant to ground water contamination from EOR or other fluids - state-of-the-art  

SciTech Connect

Ground water contamination is a serious national problem. The use of computers to simulate the behavior of fluids in the subsurface has proliferated extensively over the last decade. Numerical models are being used to solve water supply problems, various kinds of enertgy production problems, and ground water contamination problems. Modeling techniques have progressed to the point that their accuracy is only limited by the modeller's ability to describe the reservoir in question and the heterogeneities therein. Pursuant to the Task and Milestone Update of Project BE3A, this report summarizes the state of the art of computer simulation models relevant to contamination of ground water by enhanced oil recovery (EOR) chemicals and/or waste fluids. 150 refs., 6 tabs.

Kayser, M.B.; Collins, A.G.

1986-03-01T23:59:59.000Z

173

Simulating Continental Surface Waters: An Application to Holocene Northern Africa  

Science Conference Proceedings (OSTI)

A model (SWAM) to predict surface waters (lakes and wetlands) on the scale of atmospheric general circulation models is developed. SWAM is based on a linear reservoir hydrologic model and is driven by runoff, precipitation, evaporation, ...

Michael T. Coe

1997-07-01T23:59:59.000Z

174

Fermilab | Tritium at Fermilab | Tritium in Surface Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface Water Surface Water Fermilab map Fermilab has conducted an environmental monitoring program on site for roughly 40 years. In November of 2005, for the first time, we detected low levels of tritium in Indian Creek, one of three creeks that travel through the Fermilab site. Low but measurable levels of tritium continue to be detected in Indian Creek. All tritium levels found on site are well below any federal health and environmental standards. The Department of Energy standard for surface water is 1,900 picocuries per milliliter, and our readings to date have remained in the single digits. The levels of tritium detected in Indian Creek are extremely low compared to what is safe for a lifetime of continuous exposure to tritium in surface water. The low levels of tritium in Indian Creek stem from particle beams produced

175

Surface Water Quality Standards (New Jersey) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Water Quality Standards (New Jersey) Surface Water Quality Standards (New Jersey) Surface Water Quality Standards (New Jersey) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Jersey Program Type Siting and Permitting Provider Bureau of Water Quality Standards and Assessment These standards establish the designated uses and antidegradation

176

Water Management Plans for Surface Coal Mining Operations (North Dakota) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Plans for Surface Coal Mining Operations (North Management Plans for Surface Coal Mining Operations (North Dakota) Water Management Plans for Surface Coal Mining Operations (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting A water management plan is required for all surface coal mining operations. This plan must be submitted to the State Engineer of the State Water Commission at the same time a surface mining permit is submitted to the

177

Exergy and Energy analysis of a ground-source heat pump for domestic water heating under simulated occupancy conditions  

SciTech Connect

This paper presents detailed analysis of a water to water ground source heat pump (WW-GSHP) to provide all the hot water needs in a 345 m2 house located in DOE climate zone 4 (mixed-humid). The protocol for hot water use is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which aims to capture the living habits of the average American household and its impact on energy consumption. The entire house was operated under simulated occupancy conditions. Detailed energy and exergy analysis provides a complete set of information on system efficiency and sources of irreversibility, the main cause of wasted energy. The WW-GSHP was sized at 5.275 kW (1.5-ton) for this house and supplied hot water to a 303 L (80 gal) water storage tank. The WW-GSHP shared the same ground loop with a 7.56 kW (2.1-ton) water to air ground source heat pump (WA-GSHP) which provided space conditioning needs to the entire house. Data, analyses, and measures of performance for the WW-GSHP in this paper complements the results of the WA-GSHP published in this journal (Ally, Munk et al. 2012). Understanding the performance of GSHPs is vital if the ground is to be used as a viable renewable energy resource.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

178

Ground-Based Microwave Radiometric Observations of Precipitable Water Vapor: A Comparison with Ground Truth from Two Radiosonde Observing Systems  

Science Conference Proceedings (OSTI)

Dual-channel microwave radiometric measurements of precipitable water vapor are compared with values determined from two types of radiosondes. The first type is used in conventional soundings taken by the National Weather Service. The second is ...

Ed R. Westwater; Michael J. Falls; Ingrid A. Popa Fotino

1989-08-01T23:59:59.000Z

179

BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT THE URAN~UM MILL TAILINGS  

Office of Legacy Management (LM)

I~:-:ii*.i: i,<;.;.-;_r- --:-:ir-- I~:-:ii*.i: i,<;.;.-;_r- --:-:ir-- - . . - -. . - . . - , -, . , , , - - - - . BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT THE URAN~UM MILL TAILINGS SITE NEAR RIVERTON, WYOMING I i I I I Prepared by the U.S. Department of Energy Albuquerque, New Mexico September 1995 INTENDED FOR PUBLIC RELEASE This report has been reproduced from the best available copy. Avai and microfiche Number of pages in this report: 166 DOE and DOE contractors can obtain copies of this report from: Office of Scientific and Technical information P.O. Box 62 Oak Ridge, TN 37831 (61 5) 576-8401 This report is publicly available from: National Technical information Service Department of Commerce 5285 Port Royal Road Springfield, VA 22161 (703) 487-4650 DOEIAL162350-65

180

Gas phase water in the surface layer of protoplanetary disks  

E-Print Network (OSTI)

Recent observations of the ground state transition of HDO at 464 GHz towards the protoplanetary disk of DM Tau have detected the presence of water vapor in the regions just above the outer disk midplane (Ceccarelli et al 2005). In the absence of non-thermal desorption processes, water should be almost entirely frozen onto the grain mantles and HDO undetectable. In this Letter we present a chemical model that explores the possibility that the icy mantles are photo-desorbed by FUV (6eV water vapor above the disk midplane over the entire disk. Assuming a photo-desorption yield of 10^{-3}, the water abundance in this layer is predicted to be ~ 3 x 10^{-7} and the average H2O column density is ~ 1.6x 10^{15} cm^{-2}. The predictions are very weakly dependent on the details of the model, like the incident FUV radiation field, and the gas density in the disk. Based on this model, we predict a gaseous HDO/H2O ratio in DM Tau of ~1%. In addition, we predict the ground state transition of water at 557 GHz to be undetectable with ODIN and/or HSO-HIFI.

C. Dominik; C. Ceccarelli; D. Hollenbach; M. Kaufman

2005-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach  

Science Conference Proceedings (OSTI)

This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site is largely developed yet its surface water system encompasses two arroyos, an engineered detention basin (Lake Haussmann), storm channels, and wetlands. Conversely, the more rural Site 300 includes approximately 7,000 acres of largely undeveloped land with many natural tributaries, riparian habitats, and wetland areas. These wetlands include vernal pools, perennial seeps, and emergent wetlands. The watersheds within which the Laboratory's sites lie provide local and community ecological functions and services which require protection. These functions and services include water supply, flood attenuation, groundwater recharge, water quality improvement, wildlife and aquatic habitats, erosion control, and (downstream) recreational opportunities. The Laboratory employs a watershed approach to protect these surface water systems. The intent of this approach, presented in this document, is to provide an integrated effort to eliminate or minimize any adverse environmental impacts of the Laboratory's operations and enhance the attributes of these surface water systems, as possible and when reasonable, to protect their value to the community and watershed. The Laboratory's watershed approach to surface water protection will use the U.S. Environmental Protection Agency's Watershed Framework and guiding principles of geographic focus, scientifically based management and partnerships1 as a foundation. While the Laboratory's unique site characteristics result in objectives and priorities that may differ from other industrial sites, these underlying guiding principles provide a structure for surface water protection to ensure the Laboratory's role in environmental stewardship and as a community partner in watershed protection. The approach includes pollution prevention, continual environmental improvement, and supporting, as possible, community objectives (e.g., protection of the San Francisco Bay watershed).

Coty, J

2009-03-16T23:59:59.000Z

182

Modeling studies of geothermal systems with a free water surface  

DOE Green Energy (OSTI)

A numerical simulator was developed for the modeling of air-steam-water systems. The simulator was applied to various problems involving injection into or production from a geothermal reservoir in hydraulic communication with a shallow free-surface aquifer. First, a one-dimensional column problem is considered and the water level movement during exploitation is studied using different capillary pressure functions. Second, a two-dimensional radial model is used to study and compare reservoir depletion for cases with and without a free-surface aquifer. Finally, the contamination of a shallow free-surface aquifer due to cold water injection is investigated. The primary aim of these studies is to obtain an understanding of the response of a reservoir in hydraulic communication with a unconfined aquifer during exploitation or injection and to determine under which circumstances conventional modeling techniques (fully saturated systems) can be applied to such systems.

Bodvarsson, G.S.; Pruess, K.

1983-12-01T23:59:59.000Z

183

A Critique of the Climatic Record of “Water Equivalent of Snow on the Ground” in the United States  

Science Conference Proceedings (OSTI)

The water equivalent of snow on the ground (SWE) has been measured daily since 1952 at National Weather Service first-order stations whenever snow depth exceeded 5 cm (2 in). These data are used in snowmelt analyses, snow climatology, and snow ...

Thomas W. Schmidlin

1990-11-01T23:59:59.000Z

184

Near-ground cooling efficacies of trees and high-albedo surfaces  

E-Print Network (OSTI)

diurnally; or (c) compare water intake by various species.plants. Comparisons of Water Intake By Various Species.Only a small fraction of water intake is employed in plant

Levinson, Ronnen Michael

1997-01-01T23:59:59.000Z

185

Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

Warm or Steaming Ground Warm or Steaming Ground Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Warm or Steaming Ground Dictionary.png Warm or Steaming Ground: An area where geothermal heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Steam rising from the ground at Eldvorp, a 10 km row of craters, in Southwestern Iceland. http://www.visiticeland.com/SearchResults/Attraction/eldvorp Warm or steaming ground is often an indicator of a geothermal system beneath the surface. In some cases a geothermal system may not show any

186

Acoustically enhanced remediation of contaminated soils and ground water. Volume 1  

SciTech Connect

The Phase 1 laboratory bench-scale investigation results have shown that acoustically enhanced remediation (AER) technology can significantly accelerate the ground water remediation of non-aqueous phase liquids (NAPLs) in unconsolidated soils. The testing also determined some of the acoustic parameters which maximize fluid and contaminant extraction rates. A technology merit and trade analysis identified the conditions under which AER could be successfully deployed in the field, and an analysis of existing acoustical sources and varying methods for their deployment found that AER technology can be successfully deployed in-situ. Current estimates of deployability indicate that a NAPL plume 150 ft in diameter can be readily remediated. This program focused on unconsolidated soils because of the large number of remediation sites located in this type of hydrogeologic setting throughout the nation. It also focused on NAPLs and low permeability soil because of the inherent difficult in the remediation of NAPLs and the significant time and cost impact caused by contaminated low permeability soils. This overall program is recommended for Phase 2 which will address the technology scaling requirements for a field scale test.

NONE

1995-10-01T23:59:59.000Z

187

Ceramic Coatings for Corrosion Resistant Nuclear Waste Container Evaluated in Simulated Ground Water at 90?C  

SciTech Connect

Ceramic materials have been considered as corrosion resistant coatings for nuclear waste containers. Their suitability can be derived from the fully oxidized state for selected metal oxides. Several types of ceramic coatings applied to plain carbon steel substrates by thermal spray techniques have been exposed to 90 C simulated ground water for nearly 6 years. In some cases no apparent macroscopic damage such as coating spallation was observed in coatings. Thermal spray processes examined in this work included plasma spray, High Velocity Oxy Fuel (HVOF), and Detonation Gun. Some thermal spray coatings have demonstrated superior corrosion protection for the plain carbon steel substrate. In particular the HVOF and Detonation Gun thermal spray processes produced coatings with low connected porosity, which limited the growth rate of corrosion products. It was also demonstrated that these coatings resisted spallation of the coating even when an intentional flaw (which allowed for corrosion of the carbon steel substrate underneath the ceramic coating) was placed in the coating. A model for prediction of the corrosion protection provided by ceramic coatings is presented. The model includes the effect of the morphology and amount of the porosity within the thermal spray coating and provides a prediction of the exposure time needed to produce a crack in the ceramic coating.

Haslam, J J; Farmer, J C

2004-03-31T23:59:59.000Z

188

Surface Water and Wetland Standards (North Carolina) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Wetland Standards (North Carolina) and Wetland Standards (North Carolina) Surface Water and Wetland Standards (North Carolina) < Back Eligibility Commercial Industrial Construction Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Siting and Permitting Provider Department of Environment and Natural Resources These rules state the standards for classification of water supply. Each stream in North Carolina has a classification based upon its designated uses. These rules provide the Environmental Management Commission a method of setting standards. The rules also establish the physical, chemical, and biological standards required to protect each stream class. Each stream in

189

Radiolysis Concerns for Water Shielding in Fission Surface Power Applications  

Science Conference Proceedings (OSTI)

This paper presents an overview of radiolysis concerns with regard to water shields for fission surface power. A review of the radiolysis process is presented and key parameters and trends are identified. From this understanding of the radiolytic decomposition of water, shield pressurization and corrosion are identified as the primary concerns. Existing experimental and modeling data addressing concerns are summarized. It was found that radiolysis of pure water in a closed volume results in minimal, if any net decomposition, and therefore reduces the potential for shield pressurization and corrosion.

Schoenfeld, Michael P. [NASA Marshall Space Flight Center, ER24, MSFC, AL 35812 (United States); Anghaie, Samim [Innovative Space Power and Propulsion Institute, 800 SW Archer Rd. Bldg.554, P.O. Box 116502, University of Florida, Gainesville, FL 32611-6502 (United States)

2008-01-21T23:59:59.000Z

190

Comparison of Radiation Budget at the TOA and Surface in the Antarctic from ERBE and Ground Surface Measurements  

Science Conference Proceedings (OSTI)

Radiative fluxes at the top of the atmosphere (TOA) and the surface were compared at two Antarctic stations, Syowa and the South Pole, using Earth Radiation Budget Experiment (ERBE) data and surface observations. Fluxes at both sites were plotted ...

Takashi Yamanouchi; Thomas P. Charlock

1995-12-01T23:59:59.000Z

191

Surface water waves and tsunamis By Walter Craig  

E-Print Network (OSTI)

Surface water waves and tsunamis By Walter Craig Department of Mathematics and Statistics McMaster University Hamilton, Ontario L8S 4K1, Canada http://www.math.mcmaster.ca/ craig Because of the enormous to be perfectly flat, a related theory (Rosales & Papanicolaou 1983 [13]) (Craig, Guyenne, Nicholls & Sulem 2005

Craig, Walter

192

Residential Ground Source Heat Pumps with Integrated Domestic Hot Water Generation: Performance Results from Long-Term Monitoring  

SciTech Connect

Ground source heat pumps (GSHPs) show promise for reducing house energy consumption, and a desuperheater can potentially further reduce energy consumption where the heat pump from the space conditioning system creates hot water. Two unoccupied houses were instrumented to document the installed operational space conditioning and water heating efficiency of their GSHP systems. This paper discusses instrumentation methods and field operation characteristics of the GSHPs, compares manufacturers' values of the coefficients of performance calculated from field measured data for the two GSHPs, and compares the measured efficiency of the desuperheater system to other domestic hot water systems.

Stecher, D.; Allison, K.

2012-11-01T23:59:59.000Z

193

Impervious Areas: Examining the Undermining Effects on Surface Water Quality  

E-Print Network (OSTI)

This study explored the relationship between increased proportions of imperviousness in a watershed on surface water quality and examined the effectiveness of using remote sensing to systematically and accurately determine impervious surfaces. A supervised maximum likelihood algorithm was used to classify the 2008 high resolution National Agriculture Imagery Program (NAIP) imagery into six classifications. A stratified random sampling scheme was conducted to complete an accuracy assessment of the classification. The overall accuracy was 85%, and the kappa coefficient was 0.80. Additionally, field sampling and chemical analysis techniques were used to examine the relationship between impervious surfaces and water quality in a rainfall simulation parking lot study. Results indicated that day since last rain event had the most significant effect on surface water quality. Furthermore, concrete produced higher dissolved organic carbon (DOC), dissolved organic nitrogen (DON), potassium and calcium in runoff concentrations than did asphalt. Finally, a pollutant loading application model was used to estimate pollutant loadings for three watersheds using two scenarios. Results indicated that national data may overestimate annual pollutant loads by approximately 700%. This study employed original techniques and methodology to combine the extraction of impervious surfaces, utilization of local rainfall runoff data and hydrological modeling to increase planners' and scientists' awareness of using local data and remote sensing data to employ predictive hydrological modeling.

Young, De'Etra Jenra

2010-12-01T23:59:59.000Z

194

Water-Mediated Proton Hopping on an Iron Oxide Surface  

Science Conference Proceedings (OSTI)

The diffusion of hydrogen atoms across solid oxide surfaces is often assumed to be accelerated by the presence of water molecules. Here we present a high-resolution, high-speed scanning tunneling microscopy (STM) study of the diffusion of H atoms on an FeO thin film. STM movies directly reveal a water-mediated hydrogen diffusion mechanism on the oxide surface at temperatures between 100 and 300 kelvin. Density functional theory calculations and isotope-exchange experiments confirm the STM observations, and a proton-transfer mechanism that proceeds via an H3O+-like transition state is revealed. This mechanism differs from that observed previously for rutile TiO2(110), where water dissociation is a key step in proton diffusion.

Merte, L. R.; Peng, Guowen; Bechstein, Ralf; Rieboldt, Felix; Farberow, Carrie A.; Grabow, Lars C.; Kudernatsch, Wilhelmine; Wendt, Stefen; Laegsgaard, E.; Mavrikakis, Manos; Besenbacher, Fleming

2012-05-18T23:59:59.000Z

195

DC WRRC Report No. 103 Background Study of the Ground Water in  

E-Print Network (OSTI)

Flow at outlet from tower: Water Spray Guns: Water quantity for conditioning: Water quantity by controlling the amount of water returned from the atomizing nozzles. The water, when sprayed into the tower around the outside of the tower, and connected to the spray headers by means of flexible hoses. Water

District of Columbia, University of the

196

Evaluation of a Ground-Based Sky Camera System for Use inSurface Irradiance Measurement  

Science Conference Proceedings (OSTI)

This paper describes the evaluation of a ground-based sky camera system for studying the effect of clouds on the level of the ambient ultraviolet radiation. The system has been developed for research in the characterization of the effect of ...

Jeff Sabburg; Joe Wong

1999-06-01T23:59:59.000Z

197

Mapping of a reactor coolant effluent ground disposal test using an infrared imaging system and ground water potential and temperature measurements  

SciTech Connect

The concept of reactor effluent disposal to ground in infiltration trenches was proposed by Nelson and Alkire in 1963. At that time the available data indicated that radionuclide infiltration rates were probably adequate for trench disposal and that decontamination factors of 10 to 100 should be obtainable. Field tests at 100-F Area 1965 and 100-D Area 1967 have indicated that the infiltration rates are adequate and DF`s of from 2.5 for {sup 51}Cr to 7276 for {sup 65}Zn were obtained during the 100-D test. The purpose of this report is to present the results and interpretations of data from studies conducted over a reactor coolant effluent disposal test site. Data presented in this report were collected over the 100-C Area test in which a significant percentage of the reactor coolant effluent was disposed to an existing trench for a five-month period. Results of infrared thermal surveys and ground water temperature and potential measurements collected during this test are presented.

Eliason, J.R.

1969-04-10T23:59:59.000Z

198

Subsurface Drip Irrigation As a Methold to Beneficiallly Use Coalbed Methane Produced Water: Initial Impacts to Groundwater, Soil Water, and Surface Water  

Science Conference Proceedings (OSTI)

Coalbed methane (CBM) currently accounts for >8% of US natural gas production. Compared to traditional sources, CBM co-produces large volumes of water. Of particular interest is CBM development in the Powder River Basin of Wyoming and Montana, the 2nd largest CBM production field in the US, where CBM produced waters exhibit low to moderate TDS and relatively high sodium-adsorption ratio (SAR) that could potentially impact the surface environment. Subsurface drip irrigation (SDI) is an emerging technology for beneficial use of pre-treated CBM waters (injectate) which are emitted into the root zone of an agricultural field to aid in irrigation. The method is designed to minimize environmental impacts by storing potentially detrimental salts in the vadose zone. Research objectives include tracking the transport and fate of the water and salts from the injected CBM produced waters at an SDI site on an alluvial terrace, adjacent to the Powder River, Johnson County, Wyoming. This research utilizes soil science, geochemical, and geophysical methods. Initial results from pre-SDI data collection and the first 6-months of post-SDI operation will be presented. Substantial ranges in conductivity (2732-9830 {micro}S/cm) and dominant cation chemistry (Ca-SO{sub 4} to Na-SO{sub 4}) have been identified in pre-SDI analyses of groundwater samples from the site. Ratios of average composition of local ground water to injectate demonstrate that the injectate contains lower concentrations of most constituents except for Cr, Zn, and Tl (all below national water quality standards) but exhibits a higher SAR. Composition of soil water varies markedly with depth and between sites, suggesting large impacts from local controls, including ion exchange and equilibrium with gypsum and carbonates. Changes in chemical composition and specific conductivity along surface water transects adjacent to the site are minimal, suggesting that discharge to the Powder River from groundwater underlying the SDI fields is negligible. Findings from this project provide a critical understanding of water and salt dynamics associated with SDI systems using CBM produced water. The information obtained can be used to improve SDI and other CBM produced water use/disposal technologies in order to minimize adverse impacts.

Engle, M.A.: Bern, C: Healy, R: Sams, J: Zupancic, J.: Schroeder, K.

2009-10-18T23:59:59.000Z

199

Mitigation, Adaptation, Uncertainty -- Growing Water  

E-Print Network (OSTI)

naturally flows into Lake Michigan; all surface and ground-reversed, away from Lake Michigan, making the river thewater (extracted from Lake Michigan) per day. This water

Felsen, Martin; Dunn, Sarah

2008-01-01T23:59:59.000Z

200

Surface Water Quality Standards (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska) Nebraska) Surface Water Quality Standards (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Nebraska Program Type Siting and Permitting Provider Environmental Quality These regulations, promulgated by the Department of Environmental Quality,

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Surface characterization of polymethylmetacrylate bombarded by charged water droplets  

Science Conference Proceedings (OSTI)

The electrospray droplet impact (EDI), in which the charged electrospray water droplets are introduced in vacuum, accelerated, and allowed to impact the sample, is applied to polymethylmetacrylate (PMMA). The secondary ions generated were measured by an orthogonal time-of-flight mass spectrometer. In EDI mass spectra for PMMA, fragment ions originating from PMMA could not be detected. This is due to the fact that the proton affinities of fragments formed from PMMA are smaller than those from acetic acid contained in the charged droplet. The x-ray photoelectron spectroscopy spectra of PMMA irradiated by water droplets did not change with prolonged cluster irradiation, i.e., EDI is capable of shallow surface etching for PMMA with a little damage of the sample underneath the surface.

Hiraoka, Kenzo; Takaishi, Riou; Asakawa, Daiki; Sakai, Yuji; Iijima, Yoshitoki [Clean Energy Research Center, University of Yamanashi, Takeda-4, Kofu 400-8511 (Japan); Japan Science and Technology Agency, Naka-ku, Hamamatsu 432-8561 (Japan); Electron Optics Sales Division, JEOL Ltd., 2-8-3 Akebono, Tachikawa, Tokyo 190-0012 (Japan)

2009-07-15T23:59:59.000Z

202

Water table recovery in a reclaimed surface lignite mine, Grimes County, Texas  

E-Print Network (OSTI)

Water table recovery in four reclaimed mine blocks containing replaced overburden has been monitored at Gibbons Creek Lignite Mine in Grimes County, Texas since 1986. Recovery analysis was conducted based on data recorded at 27 wells installed in the reclaimed land and 23 wells installed in adjacent unmined land. It was found that water table recovery in reclaimed mine blocks is predictable: recovery is an exponential function of time and may be described by the following equation: Ew = RC log (t) + Eo where Ew equals any water table elevation above the mine floor to which recovery has occurred over the time, t, transpired between the time recovery began to the time Ew is attained. The constant Eo is the y-intercept which approximates the water table elevation at the beginning time of recovery, to referenced from the time of spoil replacement. The Recovery Coefficient (RC) is the average slope of the recovery curve. RC is proportional to inflow rate and the magnitude (potential saturated thickness) of water table recovery. As RC increases, recovery rate and/or magnitude increases. If recovery is uniform with respect to mine floor elevation, RC distributions for wells in a mine block can be standardized with respect to the mine block dimensions such that one RC value is attained for each mine block. RC is controlled by the complex interrelationships of several factors which may be described by the following factorial equation: RC= f (MD, HS, HP, MB, S 99 where MD = Mine block Dimensions, HS = Hydrostratigraphic Setting, HP = Hydraulic Properties of the spoil, MB = Moisture Balance for the mine area, and SW = Surface Water contribution to spoil resaturation. Based on the analyses the following conclusions were made pertaining to water table recovery at Gibbons Creek Lignite Mine: 1) rate of recovery does not appear to be controlled by the amount of sand in the pre-mine overburden, 2) surface water impoundments do not significantly recharge the mine blocks, 3) water table drawdown during mining can impact the local water table down-gradient of the mined land, 4) mining in several locations over an area composed of fluvial-deltaic sediments forces hydraulic connection of many of the stratigraphic units producing an unconfined water table aquifer from the pre-mine confined ground-water systems.

Peace, Kelley H.

1995-01-01T23:59:59.000Z

203

Estimating Clear-Sky Regional Surface Fluxes in the Southern Great Plains Atmospheric Radiation Measurement Site with Ground Measurements and Satellite Observations  

Science Conference Proceedings (OSTI)

The authors compared methods for estimating surface fluxes under clear-sky conditions over a large heterogeneous area from a limited number of ground measurements and from satellite observations using data obtained from the southern Great Plains ...

W. Gao; R. L. Coulter; B. M. Lesht; J. Qiu; M. L. Wesely

1998-01-01T23:59:59.000Z

204

Evaporative Concentration of 100x J13 Ground Water at 60% Relative Humidity and 90C  

Science Conference Proceedings (OSTI)

In these experiments we studied the behavior of a synthetic concentrated J13 solution as it comes in contact with a Ni-Cr-Mo-alloy selected for waste canisters in the designated high-level nuclear-waste repository at Yucca Mountain, Nevada. Concentrated synthetic J13 solution was allowed to drip slowly onto heated test specimens (90 C, 60% relative humidity) where the water moved down the surface of the specimens, evaporated and minerals precipitated. Mineral separation or zoning along the evaporation path was not observed. We infer from solid analyses and geochemical modeling, that the most corrosive components (Ca, Mg, and F) are limited by mineral precipitation. Minerals identified by x-ray diffraction include thermonatrite, natrite, and trona, all sodium carbonate minerals, as well as kogarkoite (Na{sub 3}SO{sub 4}F), halite (NaCl), and niter (KNO{sub 3}). Calcite and a magnesium silicate precipitation are based on chemical analyses of the solids and geochemical modeling. The most significant finding of this study is that sulfate and fluoride concentrations are controlled by the solubility of kogarkoite. Kogarkoite thermodynamic data are needed in the Yucca Mountain Project database to predict the corrosiveness of carbonate brines and to establish the extent to which fluoride is removed from the brines as a solid.

Staggs, K; Maureen Alai,; Hailey, P; Carroll, S A; Sutton, M; Nguyen, Q A

2003-12-04T23:59:59.000Z

205

Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California  

E-Print Network (OSTI)

Length Design for Ground Source Heat Pumps. ” InternationalClosed-Loop/Ground-Source Heat Pump Systems Installationon Closed-Loop Ground-Source Heat Pump Systems. ” ASHRAE

Warner, J.L.

2009-01-01T23:59:59.000Z

206

Surface Skin Temperature and the Interplay between Sensible and Ground Heat Fluxes over Arid Regions  

Science Conference Proceedings (OSTI)

Over arid regions, two community land models [Noah and Community Land Model (CLM)] still have difficulty in realistically simulating the diurnal cycle of surface skin temperature. Based on theoretical arguments and synthesis of previous ...

Xubin Zeng; Zhuo Wang; Aihui Wang

2012-08-01T23:59:59.000Z

207

Global Soil Moisture from Satellite Observations, Land Surface Models, and Ground Data: Implications for Data Assimilation  

Science Conference Proceedings (OSTI)

Three independent surface soil moisture datasets for the period 1979–87 are compared: 1) global retrievals from the Scanning Multichannel Microwave Radiometer (SMMR), 2) global soil moisture derived from observed meteorological forcing using the ...

Rolf H. Reichle; Randal D. Koster; Jiarui Dong; Aaron A. Berg

2004-06-01T23:59:59.000Z

208

Horizon effects with surface waves on moving water  

E-Print Network (OSTI)

Surface waves on a stationary flow of water are considered, in a linear model that includes the surface tension of the fluid. The resulting gravity-capillary waves experience a rich array of horizon effects when propagating against the flow. In some cases three horizons (points where the group velocity of the wave reverses) exist for waves with a single laboratory frequency. Some of these effects are familiar in fluid mechanics under the name of wave blocking, but other aspects, in particular waves with negative co-moving frequency and the Hawking effect, were overlooked until surface waves were investigated as examples of analogue gravity [Sch\\"utzhold R and Unruh W G 2002 Phys. Rev. D 66 044019]. A comprehensive presentation of the various horizon effects for gravity-capillary waves is given, with emphasis on the deep water/short wavelength case kh>>1 where many analytical results can be derived. A similarity of the state space of the waves to that of a thermodynamic system is pointed out.

Germain Rousseaux; Philippe Maissa; Christian Mathis; Pierre Coullet; Thomas G. Philbin; Ulf Leonhardt

2010-04-30T23:59:59.000Z

209

Results of Year-Round Remotely Sensed Integrated Water Vapor by Ground-Based Microwave Radiometry  

Science Conference Proceedings (OSTI)

Based on two years of measurements with a time resolution of 1 min, some climatological findings on precipitable water vapor (PWV) and cloud liquid water (CLW) in central Europe are given. A weak diurnal cycle is apparent. The mean overall ...

J. Güldner; D. Spänkuch

1999-07-01T23:59:59.000Z

210

Novel Americium Treatment Process for Surface Water and Dust Suppression Water  

SciTech Connect

The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am-241 contaminated pond water, surface run-off and D and D dust suppression water during the later stages of the D and D effort at Rocky Flats. This novel chemical treatment system allowed for highly efficient, high-volume treatment of all contaminated waste waters to the very low stream standard of 0.15 pCi/1 with strict compliance to the RFCA discharge criteria for release to off-site surface waters. The rapid development and implementation of the treatment system avoided water management issues that would have had to be addressed if contaminated water had remained in Pond A-4 into the Spring of 2005. Implementation of this treatment system for the Pond A-4 waters and the D and D waters from Buildings 776 and 371 enabled the site to achieve cost-effective treatment that minimized secondary waste generation, avoiding the need for expensive off-site water disposal. Water treatment was conducted for a cost of less than $0.20/gal which included all development costs, capital costs and operational costs. This innovative and rapid response effort saved the RFETS cleanup program well in excess of $30 million for the potential cost of off-site transportation and treatment of radioactive liquid waste. (authors)

Tiepel, E.W.; Pigeon, P. [Golder Associates (United States); Nesta, S. [Kaiser-Hill Company, LLC (United States); Anderson, J. [Rocky Flats Closure Site Services - RFCSS (United States)

2006-07-01T23:59:59.000Z

211

The Validation of AIRS Retrievals of Integrated Precipitable Water Vapor Using Measurements from a Network of Ground-Based GPS Receivers over the Contiguous United States  

Science Conference Proceedings (OSTI)

A robust and easily implemented verification procedure based on the column-integrated precipitable water (IPW) vapor estimates derived from a network of ground-based global positioning system (GPS) receivers has been used to assess the quality of ...

M. K. Rama Varma Raja; Seth I. Gutman; James G. Yoe; Larry M. McMillin; Jiang Zhao

2008-03-01T23:59:59.000Z

212

Experimental Determination of Water Vapor Profiles from Ground-Based Radiometer Measurements at 21.0 and 31.4 GHz.  

Science Conference Proceedings (OSTI)

Water vapor profiles have been obtained from radiometer measurements at 21.0 and 31.4 GHz and ground values of humidity, temperature and pressure. The inversion technique was based on minimum variance estimation, including constraints derived ...

B. G. Skoog; J. I. H. Askne; G. Elgered

1982-03-01T23:59:59.000Z

213

Transmission Model and Ground-Truth Investigation of Satellite-Derived Sea Surface Temperatures  

Science Conference Proceedings (OSTI)

A band model of atmospheric transmission is used to investigate some of the multichannel sea surface temperature (MCSST) algorithms that are currently in use. The model is used with a set of atmospheric data to derive algorithms for the AVHRR and ...

I. J. Barton

1985-06-01T23:59:59.000Z

214

Diagnosis of Solar Water Heaters Using Solar Storage Tank Surface Temperature Data: Preprint  

DOE Green Energy (OSTI)

Study of solar water heaters by using surface temperature data of solar storage tanks to diagnose proper operations.

Burch, J.; Magnuson, L.; Barker, G.; Bullwinkel, M.

2009-04-01T23:59:59.000Z

215

Water Vapor Flux Measurements from Ground-Based Vertically Pointed Water Vapor Differential Absorption and Doppler Lidars  

Science Conference Proceedings (OSTI)

For the first time, two lidar systems were used to measure the vertical water vapor flux in a convective boundary layer by means of eddy correlation. This was achieved by combining a water vapor differential absorption lidar and a heterodyne wind ...

Andreas Giez; Gerhard Ehret; Ronald L. Schwiesow; Kenneth J. Davis; Donald H. Lenschow

1999-02-01T23:59:59.000Z

216

Ground water of Yucca Mountain: How high can it rise?; Final report  

SciTech Connect

This report describes the geology, hydrology, and possible rise of the water tables at Yucca Mountain. The possibilities of rainfall and earthquakes causing flooding is discussed.

NONE

1992-12-31T23:59:59.000Z

217

GRR/Section 19-TX-c - Surface Water Permit | Open Energy Information  

Open Energy Info (EERE)

19-TX-c - Surface Water Permit 19-TX-c - Surface Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-c - Surface Water Permit 19TXCSurfaceWaterPermit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 30 TAC 295 30 TAC 297 Triggers None specified Click "Edit With Form" above to add content 19TXCSurfaceWaterPermit.pdf 19TXCSurfaceWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Texas, the Texas Commission on Environmental Quality (TCEQ) issues surface water permits. Under, Tex. Water Code § 11, surface water permits

218

Definition: Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Ret LikeLike UnlikeLike You like this.Sign Up to see...

219

[Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 1, Site assessment report  

SciTech Connect

In April 1990, Wright-Patterson Air Force Base (WPAFB) initiated an effort for the evaluation of potential removal of ground water contamination at the Base. This report presents a current assessment of the nature and extent of the contamination believed to be migrating across the southwestern boundary of Area C and the northern boundary of Area B based upon analysis of existing environmental data obtained from several sources. The existing data base indicates widespread, low-level contamination moving across Base boundaries at levels that pose no immediate threat to the Mad River Valley well fields. An investigation by the City of Dayton in May and June 1990, however, implies that a more identifiable plume of PCE and TCE may be crossing the southwestern boundary of Area C immediately downgradient of Landfill 5. More data is needed to delineate ground water contamination and to design and implement a suitable control system. This report concludes that although an extensive study of the boundaries in question would be the preferred approach, a limited, focused investigation and subsequent feasibility study can be accomplished with a reasonable certainty of achieving the desired outcome of this project.

Not Available

1991-10-01T23:59:59.000Z

220

Continuous Water Vapor Profiles from Operational Ground—Based Active and Passive Remote Sensors  

Science Conference Proceedings (OSTI)

The Atmospheric Radiation Measurement program's Southern Great Plains Cloud and Radiation Testbed site central facility near Lamont, Oklahoma, offers unique operational water vapor profiling capabilities, including active and passive remote ...

D. D. Turner; W. F. Feltz; R. A. Ferrare

2000-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Automated Quality Control Procedure for the "Water Equivalent of Snow on the Ground" Measurement  

Science Conference Proceedings (OSTI)

Snow water equivalent (SWE) has been measured daily by the United States National Weather Service since 1952, whenever snow depth is 2 in. (5 cm) or greater. These data are used to develop design snow loads for buildings, for hydrological ...

Thomas W. Schmidlin; Daniel S. Wilks; Megan McKay; Richard P. Cember

1995-01-01T23:59:59.000Z

222

A Transient Numerical Simulation of Perched Ground-Water Flow at the Test Reactor Area, Idaho National Engineering and Environmental Laboratory, Idaho, 1952-94  

SciTech Connect

Studies of flow through the unsaturated zone and perched ground-water zones above the Snake River Plain aquifer are part of the overall assessment of ground-water flow and determination of the fate and transport of contaminants in the subsurface at the Idaho National Engineering and Environmental Laboratory (INEEL). These studies include definition of the hydrologic controls on the formation of perched ground-water zones and description of the transport and fate of wastewater constituents as they moved through the unsaturated zone. The definition of hydrologic controls requires stratigraphic correlation of basalt flows and sedimentary interbeds within the saturated zone, analysis of hydraulic properties of unsaturated-zone rocks, numerical modeling of the formation of perched ground-water zones, and batch and column experiments to determine rock-water geochemical processes. This report describes the development of a transient numerical simulation that was used to evaluate a conceptual model of flow through perched ground-water zones beneath wastewater infiltration ponds at the Test Reactor Area (TRA).

B. R. Orr (USGS)

1999-11-01T23:59:59.000Z

223

Earth pressure balance (EPB) shield tunneling in Bangkok : ground response and prediction of surface settlements using artificial neural networks  

E-Print Network (OSTI)

Although Earth Pressure Balance (EPB) shields have been used for several decades, very little information exists about the actual mechanisms of shield-ground interaction. The ground response mechanism induced by EPB tunneling ...

Suwansawat, Suchatvee, 1972-

2002-01-01T23:59:59.000Z

224

Measurement of Low Amounts of Precipitable Water Vapor Using Ground-Based Millimeterwave Radiometry  

Science Conference Proceedings (OSTI)

Extremely dry conditions characterized by amounts of precipitable water vapor (PWV) as low as 1–2 mm commonly occur in high-latitude regions during the winter months. While such dry atmospheres carry only a few percent of the latent heat energy ...

Paul E. Racette; Ed R. Westwater; Yong Han; Albin J. Gasiewski; Marian Klein; Domenico Cimini; David C. Jones; Will Manning; Edward J. Kim; James R. Wang; Vladimir Leuski; Peter Kiedron

2005-04-01T23:59:59.000Z

225

Heating and cooling of municipal buildings with waste heat from ground water  

DOE Green Energy (OSTI)

The feasibility of using waste heat from municipal water wells to replace natural gas for heating of the City Hall, Fire Station, and Community Hall in Wilmer, Texas was studied. At present, the 120/sup 0/F well water is cooled by dissipating the excess heat through evaporative cooling towers before entering the distribution system. The objective of the study was to determine the pumping cycle of the well and determine the amount of available heat from the water for a specified period. This data were correlated with the heating and cooling demand of the City's buildings, and a conceptual heat recovery system will be prepared. The system will use part or all of the excess heat from the water to heat the buildings, thereby eliminating the use of natural gas. The proposed geothermal retrofit of the existing natural gas heating system is not economical because the savings in natural gas does not offset the capital cost of the new equipment and the annual operating and maintenance costs. The fuel savings and power costs are a virtual trade-off over the 25-year period. The installation and operation of the system was estimated to cost $105,000 for 25 years which is an unamortized expense. In conclusion, retrofitting the City of Wilmer's municipal buildings is not feasible based on the economic analysis and fiscal projections as presented.

Morgan, D.S.; Hochgraf, J.

1980-10-01T23:59:59.000Z

226

GRR/Section 19-TX-d - Transfer of Surface Water Right | Open Energy  

Open Energy Info (EERE)

19-TX-d - Transfer of Surface Water Right 19-TX-d - Transfer of Surface Water Right < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-d - Transfer of Surface Water Right 19TXDTransferOfWaterRight.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 30 TAC 297.81 30 TAC 297.82 30 TAC 297.83 Triggers None specified Click "Edit With Form" above to add content 19TXDTransferOfWaterRight.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Texas water law allows surface water rights to be transferred from one party to another. (Tex. Water Code § 11)

227

Ground-water characterization field activities for 1995--1996 Laboratory for Energy-Related Health Research, University of California, Davis  

SciTech Connect

This report documents ground-water characterization field activities completed from August to December 1995 and in January 1996 at the Laboratory for Energy-Related Health Research (LEHR) in Davis, California. The ground water at LEHR is one of several operable units under investigation by Pacific Northwest National Laboratory for the US Department of Energy. The purpose of this work was to further characterize the hydrogeology beneath the LEHR site, with the primary focus on ground water. The objectives were to estimate hydraulic properties for the two uppermost saturated hydrogeologic units (i.e., HSU-1 and HSU-2), and to determine distributions of contaminants of concern in these units. Activities undertaken to accomplish these objectives include well installation, geophysical logging, well development, ground-water sampling, slug testing, Westbay ground-water monitoring system installation, continuous water-level monitoring, Hydropunch installation, and surveying. Ground-water samples were collected from 61 Hydropunch locations. Analytical results from these locations and the wells indicate high chloroform concentrations trending from west/southwest to east/northeast in the lower portion of HSU-1 and in the upper and middle portions of HSU-2. The chloroform appears to originate near Landfill 2. Tritium was not found above the MCL in any of the well or Hydropunch samples. Hexavalent chromium was found at four locations with concentrations above the MCL in HSU-1 and at one location in HSU-2. One well in HSU-1 had a total chromium concentration above the MCL. Nitrate-nitrogen above the MCL was found at several Hydropunch locations in both HSU-1 and HSU-2.

Liikala, T.L.; Lanigan, D.C.; Last, G.V. [and others

1996-05-01T23:59:59.000Z

228

Determining an optimal sampling frequency for measuring bulk temporal changes in ground-water quality  

Science Conference Proceedings (OSTI)

In the Data Quality Objectives (DQO) process, statistical methods are used to determine an optimal sampling and analysis plan. When the DQO decision rule for instituting remedial actions is based on a critical change in water quality, the monitoring program design must ensure that this change can be detected and measured with a specified confidence. Usually the focus is on the change at a single monitoring location and the process is limited to addressing the uncertainty inherent in the analytical methods and the variability at that location. However, new strategies that permit ranking the waste sites and prioritizing remedial activities require the means for assessing overall changes for small regions over time, where both spatial and temporal variability exist and where the uncertainty associated with these variations far exceeds measurement error. Two new methods for assessing these overall changes have been developed and are demonstrated by application to a waste disposal site in Oak Ridge, Tennessee. These methods incorporate historical data where available and allow the user to either test the statistical significance of a linear trend or of an annual change compared to a baseline year for a group of water quality wells.

Moline, G.R.; Beauchamp, J.J.; Wright, T. [Oak Ridge National Lab., TN (United States)

1996-07-01T23:59:59.000Z

229

On the Relationship between Water Vapor over the Oceans and Sea Surface Temperature  

Science Conference Proceedings (OSTI)

Monthly mean precipitable water data obtained from passive microwave radiometry (SMMR) are correlated with NMC-blended sea surface temperature data. It is shown that the monthly mean water vapor content of the atmosphere above the oceans can ...

Graeme L. Stephens

1990-06-01T23:59:59.000Z

230

A Model for the Formation and Melting of Ice on Surface Waters  

Science Conference Proceedings (OSTI)

Ice covers have an important influence on the hydrology of surface waters. The growth of ice layer on stationary waters, such as lakes or canals, depends primarily on meteorological parameters like temperature and humidity of the air, windspeed ...

H. A. R. De Bruin; H. R. A. Wessels

1988-02-01T23:59:59.000Z

231

Resource Conservation and Recovery Act ground-water monitoring projects for Hanford Facilities: Progress report for the period July 1 to September 30, 1989 - Volume 1 - Text  

Science Conference Proceedings (OSTI)

This is Volume 1 of a two-volume document that describes the progress of 14 Hanford Site ground-water monitoring projects for the period July 1 to September 30, 1989. This volume discusses the projects; Volume 2 provides as-built diagrams, completion/inspection reports, drilling logs, and geophysical logs for wells drilled, completed, or logged during this period. Volume 2 can be found on microfiche in the back pocket of Volume 1. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality.

Smith, R.M.; Bates, D.J.; Lundgren, R.E.

1989-12-01T23:59:59.000Z

232

Estimation of the Surface Water Budget of the La Plata Basin  

Science Conference Proceedings (OSTI)

The Variable Infiltration Capacity (VIC) land surface hydrology model forced by gridded observed precipitation and temperature for the period 1979–99 is used to simulate the land surface water balance of the La Plata basin (LPB). The modeled ...

Fengge Su; Dennis P. Lettenmaier

2009-08-01T23:59:59.000Z

233

Statistical Retrieval of Humidity Profiles from Precipitable Water Vapor and Surface Measurements of Humidity and Temperature  

Science Conference Proceedings (OSTI)

A new method is presented of statistical retrieval of humidity profiles based on measurements of surface temperature ?1, surface dewpoint ?2, and integrated water vapor ?3. In this method the retrieved values of humidity depend nonlinearly on ...

Viatcheslav V. Tatarskii; Maia S. Tatarskaia; Ed R. Westwater

1996-02-01T23:59:59.000Z

234

Horizontal Surface Tension Gradients Induced in Monolayers by Gravity Water Wave Action  

Science Conference Proceedings (OSTI)

Surface tension gradients have been measured for three different monolayers (oleyl alcohol, palmitic acid methyl ester and cetyl trimethyl ammonium bromide) spread on a wavy water surface (waves with 1-Hz frequency; 2 cm wave height). The wave-...

Philipp A. Lange; Heinrich Hühnerfuss

1984-10-01T23:59:59.000Z

235

DOE/EA-1312: Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) (September 1999)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Rev. 0 Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) Final September 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy EA of Ground Water Compliance at the Grand Junction UMTRA Project Site DOE Grand Junction Office Page ii Final September 1999 Contents Executive Summary.........................................................................................................................v 1.0 Introduction...............................................................................................................................1 1.1 Grand Junction UMTRA Project Site Location and Description.........................................1

236

DOE/EA-1313: Environmental Assessment of Ground Water Compliance at the Monument Valley, Arizona, Uranium Mill Tailings Site (03/22/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EA-1313 DOE/EA-1313 Rev. 0 Environmental Assessment of Ground Water Compliance at the Monument Valley, Arizona, Uranium Mill Tailings Site Final March 2005 Prepared by U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Document Number U0069700 This Page Intentionally Blank DOE Office of Legacy Management EA of Ground Water Compliance at the Monument Valley Site March 2005 Final Page iii Contents Page Acronyms and Abbreviations ....................................................................................................... vii Executive Summary.......................................................................................................................

237

Pesticides in ground water database: A compilation of monitoring studies, 1971-1991. Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming). Final report  

SciTech Connect

The report presents summary results on pesticide monitoring of ground water from 1971 to 1991. It is compiled from ground water monitoring projects performed primarily by federal agencies, state agencies and research institutions. The data is well and sample specific. The report is broken into a National Summary and 10 US EPA regional volumes. The information is presented as text, maps, graphs and tables on a national, EPA regional and state/county level. The Region 8 volume is comprised of data from Colorado, Montana, North Dakota, South Dakota and Wyoming.

Hoheisel, C.; Karrier, J.; Lees, S.; Davies-Hilliard, L.; Hannon, P.

1992-08-01T23:59:59.000Z

238

Geothermal assessment of the lower Bear River drainage and northern East Shore ground-water areas, Box Elder County, Utah  

DOE Green Energy (OSTI)

The Utah Geological and Mineral Survey (UGMS) has been researching the low-temperature geothermal resource potential in Utah. This report, part of an area-wide geothermal research program along the Wasatch Front, concerns the study conducted in the lower Bear River drainage and northern East Shore ground-water areas in Box Elder County, Utah. The primary purpose of the study is to identify new areas of geothermal resource potential. There are seven known low-temperature geothermal areas in this part of Box Elder County. Geothermal reconnaissance techniques used in the study include a temperature survey, chemical analysis of well and spring waters, and temperature-depth measurements in accessible wells. The geothermal reconnaissance techniques identified three areas which need further evaluation of their low-temperature geothermal resource potential. Area 1 is located in the area surrounding Little Mountain, area 2 is west and southwest of Plymouth, and area 3 is west and south of the Cutler Dam. 5 figures, 4 tables.

Klauk, R.H.; Budding, K.E.

1984-07-01T23:59:59.000Z

239

GRR/Section 19-TX-e - Temporary Surface Water Permit | Open Energy  

Open Energy Info (EERE)

-TX-e - Temporary Surface Water Permit -TX-e - Temporary Surface Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-e - Temporary Surface Water Permit 19-TX-e Temporary Surface Water Permit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11.138 Triggers None specified Click "Edit With Form" above to add content 19-TX-e Temporary Surface Water Permit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Texas, the Texas Commission on Environmental Quality (TCEQ), or in certain instances regional TCEQ offices or local Watermasters, issue

240

Improved Design Tools for Surface Water and Standing Column Well...  

Open Energy Info (EERE)

up to the level of the water table. Water is circulated from the well through the heat pump in an open-loop pipe circuit. Compared to closed-loop systems, the SCW system...

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Dynamics of water confined on the surface of titania and cassiterite nanoparticles  

DOE Green Energy (OSTI)

We present low-temperature inelastic neutron scattering spectra collected on two metal oxide nanoparticle systems, isostructural TiO2 rutile and SnO2 cassiterite, between 0-550 meV. Data were collected on samples with varying levels of water coverage, and in the case of SnO2, particles of different sizes. This study provides a comprehensive understanding of the structure and dynamics of the water confined on the surface of these particles. The translational movement of water confined on the surface of these nanoparticles is suppressed relative to that in ice-Ih and water molecules on the surface of rutile nanoparticles are more strongly restrained that molecules residing on the surface of cassiterite nanoparticles. The INS spectra also indicate that the hydrogen bond network within the hydration layers on rutile is more perturbed than for water on cassiterite. This result is indicative of stronger water-surface interactions between water on the rutile nanoparticles than for water confined on the surface of cassiterite nanoparticles. These differences are consistent with the recently reported differences in the surface energy of these two nanoparticle systems. The results of this study also support previous studies that suggest that water dissociation is more prevalent on the surface of SnO2 than TiO2.

Ross, Dr. Nancy [Virginia Polytechnic Institute and State University (Virginia Tech); Spencer, Elinor [Virginia Polytechnic Institute and State University (Virginia Tech); Levchenko, Andrey A. [Setaran Inc., Newark, CA; Kolesnikov, Alexander I [ORNL; Abernathy, Douglas L [ORNL; Boerio-Goates, Juliana [Brigham Young University; Woodfield, Brian [Brigham Young University; Navrotsky, Alexandra [University of California, Davis; Li, Guangshe [Chinese Academy of Sciences; Wang, Weixing [ORNL; Wesolowski, David J [ORNL

2011-01-01T23:59:59.000Z

242

Intercomparison of Water Vapor Data Measured with Lidar during IHOP_2002. Part I: Airborne to Ground-Based Lidar Systems and Comparisons with Chilled-Mirror Hygrometer Radiosondes  

Science Conference Proceedings (OSTI)

The water vapor data measured with airborne and ground-based lidar systems during the International H2O Project (IHOP_2002), which took place in the Southern Great Plains during 13 May–25 June 2002 were investigated. So far, the data collected ...

Andreas Behrendt; Volker Wulfmeyer; Hans-Stefan Bauer; Thorsten Schaberl; Paolo Di Girolamo; Donato Summa; Christoph Kiemle; Gerhard Ehret; David N. Whiteman; Belay B. Demoz; Edward V. Browell; Syed Ismail; Richard Ferrare; Susan Kooi; Junhong Wang

2007-01-01T23:59:59.000Z

243

Application Prospect Analysis of the Surface Water Source Heat-Pump in China  

E-Print Network (OSTI)

Surface water resources in China are rather abundant and it can be use as the heat or cool source for heat pump. The winter surface water temperatures of 17 typical cities are investigated in December, and they are all distributed in the interval of 2~5?. The critical technical issue in the surface water heat pump is how to extract the freezing latent heat. The urban surface water supplying areas of 102 large or median cities in China are measured and counted. The supply area ratio, and mean heating or cooling need index are calculated separately and the 102 cities are classified by the three parameters. The data indicate that surface water can supply heat and cool source for 42.1% of the urban waterside buildings in China.

Zhang, C.; Zhuang, Z.; Huang, L.; Li, X.; Li, G.; Sun, D.

2006-01-01T23:59:59.000Z

244

Ground-to-Air Gas Emission Rate Inferred from Measured Concentration Rise within a Disturbed Atmospheric Surface Layer  

Science Conference Proceedings (OSTI)

In reference to previously observed concentrations of methane released from a source enclosed by a windbreak, this paper examines a refined “inverse dispersion” approach for estimating the rate of emission Q from a small ground-level source, when ...

J. D. Wilson; T. K. Flesch; P. Bourdin

2010-09-01T23:59:59.000Z

245

Ab Initio Study of C4H3 Potential Energy Surface and Reaction of Ground-State  

E-Print Network (OSTI)

car- bon in its C(3 Pj) electronic ground state with unsaturated hydrocarbon molecules are of major own. Diacetylene (butadiyne) is the simplest hydro- carbon with conjugated triple bonds and its elec

Kaiser, Ralf I.

246

Combined characteristics and finite volume methods for sediment transport and bed morphology in surface water flows  

Science Conference Proceedings (OSTI)

Abstract: We propose a new numerical method for solving the equations of coupled sediment transport and bed morphology by free-surface water flows. The mathematical formulation of these models consists of the shallow water equations for the hydraulics, ... Keywords: Bed morphology, Finite volume scheme, Method of characteristics, Sediment transport, Shallow water equations

Fayssal Benkhaldoun; Mohammed Seaïd

2011-06-01T23:59:59.000Z

247

Health assessment for Ossineke ground water (Ossineke Residential Wells), Ossineke, Michigan, Region 5. CERCLIS No. MID980794440. Preliminary report  

SciTech Connect

Ossineke Residential Wells are listed on the National Priorities List. The site is located in Alpena County, Michigan. In 1977, several residential wells were determined to be contaminated with components of gasoline, benzene, toluene, xylene, phenol, and tetrachloroethylene. Possible contamination sources include leaking underground gas storage tanks, a lagoon used for waste disposal by a commercial laundromat, or an auto rustproofing operation. Ground water samples showed maximum concentrations detected in parts per billion (ppb): benzene, 21,000; toluene, 53,000; xylene, 11,000; and PCE, 7 ppb. Sampling of the residential wells in 1988 showed the following maximum concentrations in ppb: benzene, 6,590; toluene, 726; xylene, 2,500; tetrachloroethylene, 16; and phenol, 26. The site is of potential public-health concern because of the risk to human health that could result from possible exposure to hazardous substances at levels that may result in adverse health effects over time. Human exposure to benzene, tetrachloroethylene, toluene, xylene, and phenol may occur via the exposure pathways of ingestion, inhalation, and dermal contact.

Not Available

1989-03-10T23:59:59.000Z

248

UMTRA Ground Water Project  

Office of Legacy Management (LM)

... 7 Figure 3. Uranium Distribution from April 2013 Sampling at the Gunnison, Colorado, Processing Site...

249

Surface Water Quality Standards (New Jersey) | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

250

Surface Water Sampling At Raft River Geothermal Area (1973) | Open Energy  

Open Energy Info (EERE)

Surface Water Sampling At Raft River Geothermal Area (1973) Surface Water Sampling At Raft River Geothermal Area (1973) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Water Sampling At Raft River Geothermal Area (1973) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Surface Water Sampling Activity Date 1973 Usefulness not indicated DOE-funding Unknown Exploration Basis At least 380 hot springs and wells are known to occur throughout the central and southern parts of Idaho. Notes One hundred twenty-four of 380 hot springs and wells in the central and southern parts of Idaho were inventoried as a part of the study reported on herein. At the spring vents and wells visited, the thermal waters flow from rocks ranging in age from Precambrian to Holocene and from a wide range of

251

Incorporating Anthropogenic Water Regulation Modules into a Land Surface Model  

Science Conference Proceedings (OSTI)

Anthropogenic activities have been significantly perturbing global freshwater flows and groundwater reserves. Despite numerous advances in the development of land surface models (LSMs) and global terrestrial hydrological models (GHMs), relatively ...

Yadu Pokhrel; Naota Hanasaki; Sujan Koirala; Jaeil Cho; Pat J.-F. Yeh; Hyungjun Kim; Shinjiro Kanae; Taikan Oki

2012-02-01T23:59:59.000Z

252

GRR/Section 19-HI-a - Surface Water Use Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 19-HI-a - Surface Water Use Permit GRR/Section 19-HI-a - Surface Water Use Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-HI-a - Surface Water Use Permit 19HIASurfaceWaterUsePermit.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Land and Natural Resources Commission on Water Resource Management Regulations & Policies Hawaii Revised Statutes 174C Hawaii Administrative Rules Title 13, Chapter 171 Triggers None specified Click "Edit With Form" above to add content 19HIASurfaceWaterUsePermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Under Hawaii Revised Statutes 174C and Hawaii Administrative Rules Title

253

Engineering design and testing of a ground water remediation system using electrolytically generated hydrogen with a palladium catalyst for dehalogenation of chlorinated hydrogen  

DOE Green Energy (OSTI)

Recent studies have shown that dissolved hydrogen causes rapid dehalogenation of chlorinated hydrocarbons in the presence of a palladium catalyst. The speed and completeness of these reactions offer advantages in designing remediation technologies for certain ground water contamination problems. However, a practical design challenge arises in the need to saturate the aqueous phase with hydrogen in an expeditious manner. To address this issue, a two-stage treatment reactor has been developed. The first stage consists of an electrolytic cell that generates hydrogen by applying a voltage potential across the influent water stream. The second stage consists of a catalyst column of palladium metal supported on alumina beads. A bench-scale reactor has been used to test this design for treating ground water contaminated with trichloroethene and other chlorinated hydrocarbons. In influent streams containing contaminant concentrations up to 4 ppm, initial results confirm that destruction efficiencies greater than 95% may be achieved with residence times short enough to allow practical implementation in specially designed flow-through treatment wells. Results from the bench-scale tests are being used to design a pilot ground water treatment system.

Ruiz, R.

1997-12-01T23:59:59.000Z

254

Monitored natural attenuation of manufactured gas plant tar mono- and polycyclic aromatic hydrocarbons in ground water: a 14-year field study  

Science Conference Proceedings (OSTI)

Site 24 was the subject of a 14-year (5110-day) study of a ground water plume created by the disposal of manufactured gas plant (MGP) tar into a shallow sandy aquifer approximately 25 years prior to the study. The ground water plume in 1988 extended from a well-defined source area to a distance of approximately 400 m down gradient. A system of monitoring wells was installed along six transects that ran perpendicular to the longitudinal axis of the plume centerline. The MGP tar source was removed from the site in 1991 and a 14-year ground water monitored natural attenuation (MNA) study commenced. The program measured the dissolved mono- and polycyclic aromatic hydrocarbons (MAHs and PAHs) periodically over time, which decreased significantly over the 14-year period. Naphthalene decreased to less than 99% of the original dissolved mass, with mass degradation rates of 0.30 per year (half-life 2.3 years). Bulk attenuation rate constants for plume centerline concentrations over time ranged from 0.33 {+-} 0.09 per year (half-life 2.3 {+-} 0.8 years) for toluene and 0.45 {+-} 0.06 per year (half-life 1.6 {+-} 0.2 years) for naphthalene. The hydrogeologic setting at Site 24, having a sandy aquifer, shallow water table, clay confining layer, and aerobic conditions, was ideal for demonstrating MNA. However, these results demonstrate that MNA is a viable remedial strategy for ground water at sites impacted by MAHs and PAHs after the original source is removed, stabilized, or contained.

Neuhauser, E.F.; Ripp, J.A.; Azzolina, N.A.; Madsen, E.L.; Mauro, D.M.; Taylor, T. [Foth Infrastructure & Environment LLC, Green Bay, WI (United States)

2009-07-01T23:59:59.000Z

255

3Water on Planetary Surfaces Space is very cold!  

E-Print Network (OSTI)

many minutes? Space Math http://spacemath.gsfc.nasa.gov #12;Answer Key Problem 1: How much energy,600,000 Joules every hour. How many watts of electrical appliances can be run by this system? Water ice at 0 C every hour. How many watts of electrical appliances can be run by this system? Answer: 3,600,000 Joules

256

MEASURING SURFACE WATER FROM SPACE Douglas E. Alsdorf,1  

E-Print Network (OSTI)

the SRTM design to permit multitemporal mappings of h across the world's wetlands, floodplains, lakes are of the temporal and spatial variations in water stored in rivers, lakes, reservoirs, floodplains, and wetlands stored and flowing in rivers, lakes, and wetlands (see sections 2 and 3). Furthermore, the spatial extent

Howat, Ian M.

257

Surface Water Mixing in the Solomon Sea as Documented by a High-Resolution Coral 14C Record  

Science Conference Proceedings (OSTI)

A bimonthly coral-based record of the postbomb radiocarbon content of Solomon Sea surface waters is interpreted to reflect mixing of subtropical surface water and that advected in from the east by the equatorial branch of the South Equatorial ...

T. P. Guilderson; D. P. Schrag; M. A. Cane

2004-03-01T23:59:59.000Z

258

Seasonal Variations in the Heat and Water Balances for Nonvegetated Surfaces  

Science Conference Proceedings (OSTI)

A model is presented for estimating the seasonal variations of evaporation, soil-water content, and soil temperature over nonvegetated land surfaces, especially in arid and semiarid regions. In the model, several types of soil are taken into ...

Junsei Kondo; Jianqing Xu

1997-12-01T23:59:59.000Z

259

The Stochastic Parametric Mechanism for Growth of Wind-Driven Surface Water Waves  

Science Conference Proceedings (OSTI)

Theoretical understanding of the growth of wind-driven surface water waves has been based on two distinct mechanisms: growth due to random atmospheric pressure fluctuations unrelated to wave amplitude and growth due to wave coherent atmospheric ...

Brian F. Farrell; Petros J. Ioannou

2008-04-01T23:59:59.000Z

260

South Carolina Surface Water Withdrawal, Permitting Use, and Reporting Act (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

Surface water withdrawals exceeding three million gallons during any one month require a permit; a permit will only be granted if the Department of Health and Environmental Control determines that...

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Representation of Water Table Dynamics in a Land Surface Scheme. Part II: Subgrid Variability  

Science Conference Proceedings (OSTI)

A lumped unconfined aquifer model has been developed and interactively coupled to a land surface scheme in a companion paper. Here, the issue of the representation of subgrid variability of water table depths (WTDs) is addressed. A statistical–...

Pat J-F. Yeh; Elfatih A. B. Eltahir

2005-06-01T23:59:59.000Z

262

Real-Time Water Vapor Maps from a GPS Surface Network: Construction, Validation, and Applications  

Science Conference Proceedings (OSTI)

In this paper the construction of real-time integrated water vapor (IWV) maps from a surface network of global positioning system (GPS) receivers is presented. The IWV maps are constructed using a two-dimensional variational technique with a ...

Siebren de Haan; Iwan Holleman; Albert A. M. Holtslag

2009-07-01T23:59:59.000Z

263

The Mean Surface Water Balance over Africa and Its Interannual Variability  

Science Conference Proceedings (OSTI)

This article presents calculations of surface water balance for the African continent using a revised version of the Lettau climatonomy. Calculations are based on approximately 1400 rainfall stations, with records generally covering 60 yr or ...

S. E. Nicholson; J. Kim; M. B. Ba; A. R. Lare

1997-12-01T23:59:59.000Z

264

Surface Energy and Water Balance for the Arkansas–Red River Basin from the ECMWF Reanalysis  

Science Conference Proceedings (OSTI)

Average surface energy and water budgets, subsurface variables, and atmospheric profiles were computed online with an hourly timescale from the ECMWF reanalysis for five subbasins of the Mississippi River from 1985–93. The results for the ...

Alan K. Betts; Pedro Viterbo; Eric Wood

1998-11-01T23:59:59.000Z

265

Meteorological Applications of Temperature and Water Vapor Retrievals from the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI)  

Science Conference Proceedings (OSTI)

The Atmospheric Emitted Radiance Interferometer (AERI) is a well-calibrated ground-based instrument that measures high-resolution atmospheric emitted radiances from the atmosphere. The spectral resolution of the instrument is better than one ...

Wayne F. Feltz; William L. Smith; Robert O. Knuteson; Henry E. Revercomb; Harold M. Woolf; H. Ben Howell

1998-09-01T23:59:59.000Z

266

Impact of Scale and Aggregation on the Terrestrial Water Exchange: Integrating Land Surface Models and Rhône Catchment Observations  

Science Conference Proceedings (OSTI)

Land surface models (LSMs) used in climate modeling include detailed above-ground biophysics but usually lack a good representation of runoff. Both processes are closely linked through soil moisture. Soil moisture however has a high spatial ...

Reto Stöckli; Pier Luigi Vidale; Aaron Boone; Christoph Schär

2007-10-01T23:59:59.000Z

267

In situ photoelectron spectroscopy study of water adsorption on model biomaterial surfaces  

DOE Green Energy (OSTI)

Using in situ photoelectron spectroscopy at near ambient conditions, we compare the interaction of water with four different model biomaterial surfaces: self-assembled thiol monolayers on Au(111) that are functionalized with methyl, hydroxyl, and carboxyl groups, and phosphatidylcholine (POPC) lipid films on Silicon. We show that the interaction of water with biomaterial surfaces is mediated by polar functional groups that interact strongly with water molecules through hydrogen bonding, resulting in adsorption of 0.2-0.3 ML water on the polar thiol films in 700 mTorr water pressure and resulting in characteristic N1s and P2p shifts for the POPC films. Provided that beam damage is carefully controlled, in situ electron spectroscopy can give valuable information about water adsorption which is not accessible under ultra-high vacuum conditions.

Salmeron, Miquel; Ketteler, Guido; Ashby, Paul; Mun, B.S.; Ratera, I.; Bluhm, Hendrik; Kasemo, B.; Salmeron, Miquel

2007-07-10T23:59:59.000Z

268

Near-Surface Measurements of Quasi-Lagrangian Velocities in Open Water  

Science Conference Proceedings (OSTI)

Near-surface water velocities have been measured in the coastal zone of Lake Huron and Cape Cod Bay by tracking drifters and drogues using acoustic travel time and compass sighting techniques. The near-surface current, defined as the velocity of ...

J. H. Churchill; G. T. Csanady

1983-09-01T23:59:59.000Z

269

Techniques for Using MODIS Data to Remotely Sense Lake Water Surface Temperatures  

Science Conference Proceedings (OSTI)

This study describes a step-wise methodology used to provide daily, high spatial-resolution water surface temperatures from MODIS satellite data for use in a near-real-time system for the Great Salt Lake (GSL). Land surface temperature (LST) is ...

Joseph A. Grim; Jason C. Knievel; Erik T. Crosman

270

MEASUREMENTS OF THE 2001 APRIL 15 AND 2005 JANUARY 20 GROUND-LEVEL ENHANCEMENTS BY THE MILAGRO WATER CERENKOV  

E-Print Network (OSTI)

WATER CERENKOV DETECTOR BY Trevor Morgan B.S., University of New Hampshire (2004) DISSERTATION Submitted

California at Santa Cruz, University of

271

EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR  

SciTech Connect

Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

REID, ROBERT S. [Los Alamos National Laboratory; PEARSON, J. BOSIE [Los Alamos National Laboratory; STEWART, ERIC T. [Los Alamos National Laboratory

2007-01-16T23:59:59.000Z

272

Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor  

SciTech Connect

Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 deg. C. The CFD model with 1/6-g predicts a maximum water temperature of 88 deg. C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

Pearson, J. Boise; Stewart, Eric T. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Reid, Robert S. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States)

2007-01-30T23:59:59.000Z

273

Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions  

Science Conference Proceedings (OSTI)

In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

274

Surface water supply for the Clearlake, California Hot Dry Rock Geothermal Project  

DOE Green Energy (OSTI)

It is proposed to construct a demonstration Hot Dry Rock (HDR) geothermal plant in the vicinity of the City of Clearlake. An interim evaluation has been made of the availability of surface water to supply the plant. The evaluation has required consideration of the likely water consumption of such a plant. It has also required consideration of population, land, and water uses in the drainage basins adjacent to Clear Lake, where the HDR demonstration project is likely to be located. Five sources were identified that appear to be able to supply water of suitable quality in adequate quantity for initial filling of the reservoir, and on a continuing basis, as makeup for water losses during operation. Those sources are California Cities Water Company, a municipal supplier to the City of Clearlake; Clear Lake, controlled by Yolo County Flood Control and Water Conservation District; Borax Lake, controlled by a local developer; Southeast Regional Wastewater Treatment Plant, controlled by Lake County; and wells, ponds, and streams on private land. The evaluation involved the water uses, water rights, stream flows, precipitation, evaporation, a water balance, and water quality. In spite of California`s prolonged drought, the interim conclusion is that adequate water is available at a reasonable cost to supply the proposed HDR demonstration project.

Jager, A.R.

1996-03-01T23:59:59.000Z

275

Evaporation and wetting dynamics of sessile water droplets on submicron-scale patterned silicon hydrophobic surfaces  

SciTech Connect

The evaporation characteristics of 1 l sessile water droplets on hydrophobic surfaces are experimentally examined. The proposed hydrophobic surfaces are composed of submicron diameter and 4.2- m-height silicon post arrays. A digital image analysis algorithm was developed to obtain time-dependent contact angles, contact diameters, and center heights for both non-patterned polydimethylsiloxane (PDMS) surfaces and patterned post array surfaces, which have the same hydrophobic contact angles. While the contact angles exhibit three distinct stages during evaporation in the non-patterned surface case, those in the patterned silicon post array surface case decrease linearly. In the case of post array hydrophobic surfaces, the initial contact diameter remains unchanged until the portion of the droplet above the posts completely dries out. The edge shrinking velocity of the droplet shows nonlinear characteristics, and the velocity magnitude increases rapidly near the last stage of evaporation.

Choi, Chang Kyoung [Michigan Technological University; Shin, Dong Hwan [Chung-Ang University; Lee, Seong Hyuk [Chung-Ang University; Retterer, Scott T [ORNL

2010-01-01T23:59:59.000Z

276

Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site  

SciTech Connect

In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site.

Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

1995-03-01T23:59:59.000Z

277

A Relaxed Eddy Accumulator for Surface Flux Measurements on Ground-Based Platforms and Aboard Research Vessels  

Science Conference Proceedings (OSTI)

The relaxed eddy accumulation (REA) method has become a standard tool for scalar flux measurements near the surface during field experiments. With this technique, turbulent fluxes of relatively slowly reacting species are measured using the ...

A. Brut; D. Legain; P. Durand; P. Laville

2004-03-01T23:59:59.000Z

278

Deployment and Evaluation of a System for Ground-Based Measurement of Cloud Liquid Water Turbulent Fluxes  

Science Conference Proceedings (OSTI)

Direct interception of windblown cloud water by forests has been dubbed “occult deposition” because it represents a hydrological input that is hidden from rain gauges. Eddy correlation studies of this phenomenon have estimated cloud water fluxes ...

Andrew S. Kowalski; Peter M. Anthoni; Richard J. Vong; Anthony C. Delany; Gordon D. Maclean

1997-06-01T23:59:59.000Z

279

Water Induced Surface Reconstruction of the Oxygen (2x1) covered Ru(0001)  

DOE Green Energy (OSTI)

Low temperature scanning tunneling microscopy (STM) and density functional theory (DFT) were used to study the adsorption of water on a Ru(0001) surface covered with half monolayer of oxygen. The oxygen atoms occupy hcp sites in an ordered structure with (2x1) periodicity. DFT predicts that water is weakly bound to the unmodified surface, 86 meV compared to the ~;;200 meV water-water H-bond. Instead, we found that water adsorption causes a shift of half of the oxygen atoms from hcp sites to fcc sites, creating a honeycomb structure where water molecules bind strongly to the exposed Ru atoms. The energy cost of reconstructing the oxygen overlayer, around 230 meV per displaced oxygen atom, is more than compensated by the larger adsorption energy of water on the newly exposed Ru atoms. Water forms hydrogen bonds with the fcc O atoms in a (4x2) superstructure due to alternating orientations of the molecules. Heating to 185 K results in the complete desorption of the water layer, leaving behind the oxygen honeycomb structure, which is metastable relative to the original (2x1). This stable structure is not recovered until after heating to temperatures close to 260K.

Maier, Sabine; Cabrera-Sanfelix, Pepa; Stass, Ingeborg; Sanchez-Portal, Daniel; Arnau, Andres; Salmeron, Miquel

2010-08-06T23:59:59.000Z

280

Ground surface temperature reconstructions: Using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor  

Science Conference Proceedings (OSTI)

We have developed a borehole methodology to estimate formation thermal conductivity in situ with a spatial resolution of one meter. In parallel with a fiber-optic distributed temperature sensor (DTS), a resistance heater is deployed to create a controlled thermal perturbation. The transient thermal data is inverted to estimate the formation's thermal conductivity. We refer to this instrumentation as a Distributed Thermal Perturbation Sensor (DTPS), given the distributed nature of the DTS measurement technology. The DTPS was deployed in permafrost at the High Lake Project Site (67 degrees 22 minutes N, 110 degrees 50 minutes W), Nunavut, Canada. Based on DTPS data, a thermal conductivity profile was estimated along the length of a wellbore. Using the thermal conductivity profile, the baseline geothermal profile was then inverted to estimate a ground surface temperature history (GSTH) for the High Lake region. The GSTH exhibits a 100-year long warming trend, with a present-day ground surface temperature increase of 3.0 {+-} 0.8 C over the long-term average.

Freifeld, B.M.; Finsterle, S.; Onstott, T.C.; Toole, P.; Pratt, L.M.

2008-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

UMTRA Project water sampling and analysis plan, Salt Lake City, Utah. Revision 1  

Science Conference Proceedings (OSTI)

This water sampling and analysis plan describes planned, routine ground water sampling activities at the US Department of Energy Uranium Mill Tailings Remedial Action Project site in Salt Lake City, Utah. This plan identifies and justifies sampling locations, analytical parameters, detection limits, and sampling frequencies for routine monitoring of ground water, sediments, and surface waters at monitoring stations on the site.

NONE

1995-06-01T23:59:59.000Z

282

Relationships between {sup 222}Rn dissolved in ground water supplies and indoor {sup 222}Rn concentrations in some Colorado front range houses  

SciTech Connect

Indoor {sup 222}Rn concentrations were measured in 37 houses with alpha track detectors placed in water-use rooms near water sources (bathrooms, laundry rooms, and kitchens) and in non-water-use living rooms, dining rooms, and bedrooms away from water sources. Results show that relative contributions of {sup 222}Rn to indoor air from water use are insignificant when soil-gas concentrations are high but become increasingly important as the ratio of {sup 222}Rn-in-water:{sup 222}Rn-in-soil gas increases. High soil-gas {sup 222}Rn concentrations may mask {sup 222}Rn contributions from water even when waterborne {sup 222}Rn concentrations are as high as 750 kBq m{sup {minus}3}. Ground water in Precambrian Pikes Peak granite averages 340 kBq m{sup {minus}3} {sup 222}Rn, vs. 170 kBq m{sup {minus}3} in Precambrian migmatite, but average {sup 222}Rn concentrations in soil gas are also lower in migmatite. Because the ratio of {sup 222}Rn-in-water:{sup 222}Rn-in-soil gas may be consistently higher for houses in migmatite than in Pikes Peak granite, indoor air in houses built on migmatite have a greater relative contribution from water use even though average {sup 222}Rn concentrations in the water are lower. Continuous monitoring of {sup 222}Rn concentrations in air on 15-min intervals also indicates that additions to indoor concentrations from water use are significant and measurable only when soil-gas concentrations are low and concentrations in water are high. When soil-gas concentrations were mitigated to less than 150 Bq m{sup {minus}3} in one house, water contributed 20-40% of the annual indoor {sup 222}Rn concentration in the laundry room ({sup 222}Rn concentration in water of 670 kBq m{sup {minus}3}). Conversely, when the mitigation system is inactive, diurnal fluctuations and other variations in the soil-gas {sup 222}Rn contribution swamp the variability due to water use in the house. 9 refs., 8 figs., 8 tabs.

Folger, P.F. [Geological Survey, Denver, CO (United States)]|[Colorado School of Mines, Golden, CO (United States); Wanty, R.B. [Geological Survey, Denver, CO (United States); Poeter, E. [Colorado School of Mines, Golden, CO (United States); Nyberg, P. [Environmental Protection Agency, Denver, CO (United States)

1994-09-01T23:59:59.000Z

283

The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen  

DOE Green Energy (OSTI)

The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

Veirs, Douglas K. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Crowder, Mark L. [Savannah River National Laboratory

2012-06-20T23:59:59.000Z

284

Studies of the viscoelastic properties of water confined between surfaces of specified chemical nature.  

SciTech Connect

This report summarizes the work completed under the Laboratory Directed Research and Development (LDRD) project 10-0973 of the same title. Understanding the molecular origin of the no-slip boundary condition remains vitally important for understanding molecular transport in biological, environmental and energy-related processes, with broad technological implications. Moreover, the viscoelastic properties of fluids in nanoconfinement or near surfaces are not well-understood. We have critically reviewed progress in this area, evaluated key experimental and theoretical methods, and made unique and important discoveries addressing these and related scientific questions. Thematically, the discoveries include insight into the orientation of water molecules on metal surfaces, the premelting of ice, the nucleation of water and alcohol vapors between surface asperities and the lubricity of these molecules when confined inside nanopores, the influence of water nucleation on adhesion to salts and silicates, and the growth and superplasticity of NaCl nanowires.

Houston, Jack E.; Grest, Gary Stephen; Moore, Nathan W.; Feibelman, Peter J.

2010-09-01T23:59:59.000Z

285

St. Johns River Water Management District 4049 Reid Street P.O. Box 1429 Palatka, FL 32178-1429  

E-Print Network (OSTI)

, ground or surface water and· water from public and private utilities. Additional information Irrigation withdrawn from ground or surface· water, from a private well or pump, or from a public or private utility or transient housing units, hotel and motel units, and public medians and rights-of-way. #12;St. Johns River

Watson, Craig A.

286

"Nanoengineered Surfaces for Efficiency Enhancements in Energy and Water",  

NLE Websites -- All DOE Office Websites (Extended Search)

October 24, 2012, 4:15pm October 24, 2012, 4:15pm Colloquia MBG Auditorium "Nanoengineered Surfaces for Efficiency Enhancements in Energy and Water", Professor Kripa Varansi, Massachusetts Institute of Technology Thermal-fluid-surface interactions are ubiquitous in multiple industries including Energy, Water, Agriculture, Transportation, Electronics Cooling, Buildings, etc. Over the years, these systems have been designed for increasingly higher efficiency using incremental engineering approaches that utilize system-level design trade-offs. These system-level approaches are, however, bound by the fundamental constraint of the nature of the thermal-fluid-surface interactions, where the largest inefficiencies occur. In this talk, we show how surface/interface morphology and chemistry can be

287

Effects of a range of machined and ground surface finishes on the simulated reactor helium corrosion of several candidate structural materials. [Inconel MA 754  

SciTech Connect

This report discusses the corrosion behavior of several candidate reactor structural alloys in a simulated advanced high-temperature gas-cooled reactor (HTGR) environment over a range of lathe-machined and centerless-ground surface finishes. The helium environment contained 50 Pa H/sub 2//5 Pa CO/5 Pa CH/sub 4//<0.05 Pa H/sub 2/O (500 ..mu..atm H/sub 2//50 ..mu..atm CO/50 ..mu..atm CH/sub 4//<0.5 ..mu..atm H/sub 2/O) at 900/sup 0/C for a total exposure of 3000 h. The test alloys included two vacuum-cast superalloys (IN 100 and IN 713LC); a centrifugally cast austenitic alloy (HK 40); three wrought high-temperature alloys (Alloy 800H, Hastelloy X, and Inconel 617); and a nickel-base oxide-dispersion-strengthened alloy (Inconel MA 754). Surface finish variations did not affect the simulated advanced-HTGR corrosion behavior of these materials. Under these conditions, the availability of reactant gaseous impurities controls the kinetics of the observed gas-metal interactions. Variations in the near-surface activities and mobilities of reactive solute elements, such as chromium, which might be expected to be affected by changes in surface finish, do not seem to greatly influence corrosion in this simulated advanced HTGR environment. 18 figures, 4 tables.

Thompson, L.D.

1981-02-01T23:59:59.000Z

288

Water Prism Volume 1  

Science Conference Proceedings (OSTI)

This report documents the design and implementation of Water Prism, a decision support system that evaluates alternative management plans to obtain water resource sustainability at the regional, watershed or local levels. It considers surface, ground and impoundment waters, and all water using sectors (industrial, agricultural, municipal, electric power and the environment). This report will be of value to environment, generation, and planning managers within power companies, government agencies, ...

2012-12-06T23:59:59.000Z

289

Using Stable Water Isotopes to Evaluate Basin-Scale Simulations of Surface Water Budgets  

Science Conference Proceedings (OSTI)

Two rare but naturally occurring isotopes of water, 1H218O and 1H2H16O, are becoming of practical use in diagnosis of climate and earth system model performance. Their value as tracers and validation tools in hydrological subsystems derives from ...

A. Henderson-Sellers; K. McGuffie; D. Noone; P. Irannejad

2004-10-01T23:59:59.000Z

290

[Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio]. Volume 4, Health and Safety Plan (HSP); Phase 1, Task 4 Field Investigation report: Draft  

SciTech Connect

This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

Not Available

1991-10-01T23:59:59.000Z

291

Numerical Modeling of Coupled Groundwater and Surface Water Interactions in an Urban Setting  

Science Conference Proceedings (OSTI)

The Dominguez Channel Watershed (DCW), located in the southern portion of Los Angeles County (Figure A.1), drains about 345 square miles into the Los Angeles Harbor. The cities and jurisdictions in DCW are shown in Figure A.2. The largest of these include the cities of Los Angeles, Carson, and Torrance. This watershed is unique in that 93% of its land area is highly developed (i.e. urbanized). The watershed boundaries are defined by a complex network of storm drains and flood control channels, rather than being defined by natural topography. Table (1) shows a summary of different land uses in the Dominguez Channel Watershed (MEC, 2004). The Dominguez Watershed has the highest impervious area of all watersheds in the Los Angeles region. The more impervious the surface, the more runoff is generated during a storm. Storm water runoff can carry previously accumulated contaminants and transport them into receiving water systems. Point sources such as industrial wastewater and municipal sewage as well as urban runoff from commercial, residential, and industrial areas are all recognized as contributors to water quality degradation at DWC. Section 303(d) of the 1972 Federal Clean Water Act (CWA) requires states to identify and report all waters not meeting water quality standards and to develop action plans to pursue the water quality objectives. These plans specify the maximum amount of a given pollutant that the water body of concern can receive and still meet water quality standards. Such plans are called Total Maximum Daily Loads (TMDLs). TMDLs also specify allocations of pollutant loadings to point and non-point sources taking into account natural background pollutant levels. This demonstrates the importance of utilizing scientific tools, such as flow and transport models, to identify contaminant sources, understand integrated flow paths, and assess the effectiveness of water quality management strategies. Since overland flow is a very important component of the water balance and hydrology of DCW, a parallel, distributed watershed model that treats flow in groundwater and surface water in a dynamically coupled manner will be used to build a flow model of the watershed. This coupled model forms the basis for modeling and understanding the transport of contaminants through the Dominguez Channel Watershed, which can be used in designing and implementing TMDLs to manage the water quality in this basin. In this report, the coupled surface water-groundwater flow model of DCW will be presented. This flow model was calibrated against a storm that occurred in February 21st, 2004. The model and approach are explained further in the following sections.

Rihani, J F; Maxwell, R M

2007-09-26T23:59:59.000Z

292

Evaluation of Cavity Collapse and Surface Crater Formation at the Norbo Underground Nuclear Test in U8c, Nevada Nuclear Security Site, and the Impact on Stability of the Ground Surface  

SciTech Connect

Lawrence Livermore National Laboratory (LLNL) Containment Program performed a review of nuclear test-related data for the Norbo underground nuclear test in U8c to assist in evaluating this legacy site as a test bed for application technologies for use in On-Site Inspections (OSI) under the Comprehensive Nuclear Test Ban Treaty. This request is similar to one made for the Salut site in U8c (Pawloski, 2012b). Review of the Norbo site is complicated because the test first exhibited subsurface collapse, which was not unusual, but it then collapsed to the surface over one year later, which was unusual. Of particular interest is the stability of the ground surface above the Norbo detonation point. Proposed methods for on-site verification include radiological signatures, artifacts from nuclear testing activities, and imaging to identify alteration to the subsurface hydrogeology due to the nuclear detonation. Aviva Sussman from the Los Alamos National Laboratory (LANL) has also proposed work at this site. Both proposals require physical access at or near the ground surface of specific underground nuclear test locations at the Nevada Nuclear Security Site (NNSS), formerly the Nevada Test Site (NTS), and focus on possible activities such as visual observation, multispectral measurements, and shallow and deep geophysical surveys.

Pawloski, G A

2012-06-18T23:59:59.000Z

293

Evaluation of Cavity Collapse and Surface Crater Formation at the Salut Underground Nuclear Test in U20ak, Nevada National Security Site, and the Impact of Stability of the Ground Surface  

Science Conference Proceedings (OSTI)

At the request of Jerry Sweeney, the LLNL Containment Program performed a review of nuclear test-related data for the Salut underground nuclear test in U20ak to assist in evaluating this legacy site as a test bed for application technologies for use in On-Site Inspections (OSI) under the Comprehensive Nuclear Test Ban Treaty. Review of the Salut site is complicated because the test experienced a subsurface, rather than surface, collapse. Of particular interest is the stability of the ground surface above the Salut detonation point. Proposed methods for on-site verification include radiological signatures, artifacts from nuclear testing activities, and imaging to identify alteration to the subsurface hydrogeologogy due to the nuclear detonation. Sweeney's proposal requires physical access at or near the ground surface of specific underground nuclear test locations at the Nevada Nuclear Test Site (NNSS, formerly the Nevada Test Site), and focuses on possible activities such as visual observation, multispectral measurements, and shallow, and deep geophysical surveys.

Pawloski, G A

2012-04-25T23:59:59.000Z

294

Seasonally Resolved Surface Water (delta)14C Variability in the Lombok Strait: A Coralline Perspective  

SciTech Connect

We have explored surface water mixing in the Lombok Strait through a {approx}bimonthly resolved surface water {Delta}{sup 14}C time-series reconstructed from a coral in the Lombok Strait that spans 1937 through 1990. The prebomb surface water {Delta}{sup 14}C average is -60.5{per_thousand} and individual samples range from -72{per_thousand} to 134{per_thousand}. The annual average post-bomb maximum occurs in 1973 and is 122{per_thousand}. The timing of the post-bomb maximum is consistent with a primary subtropical source for the surface waters in the Indonesian Seas. During the post-bomb period the coral records regular seasonal cycles of 5-20{per_thousand}. Seasonal high {Delta}{sup 14}C occur during March-May (warm, low salinity), and low {Delta}{sup 14}C occur in September (cool, higher salinity). The {Delta}{sup 14}C seasonality is coherent and in phase with the seasonal {Delta}{sup 14}C cycle observed in Makassar Strait. We estimate the influence of high {Delta}{sup 14}C Makassar Strait (North Pacific) water flowing through the Lombok Strait using a two endmember mixing model and the seasonal extremes observed at the two sites. The percentage of Makassar Strait water varies between 16 and 70%, and between 1955 and 1990 it averages 40%. During La Nina events there is a higher percentage of Makassar Strait (high {Delta}{sup 14}C) water in the Lombok Strait.

Guilderson, T P; Fallon, S J; Moore, M D; Schrag, D P; Charles, C D

2008-04-23T23:59:59.000Z

295

Radiological monitoring plan for the Oak Ridge Y-12 Plant: Surface Water  

Science Conference Proceedings (OSTI)

The Y-12 Plant conducts a surface water monitoring program in response to DOE Orders and state of Tennessee requirements under the National Pollutant Discharge Elimination System (NPDES). The anticipated codification of DOE Order 5400.5 for radiation protection of the public and the environment (10 CFR Part 834) will require an environmental radiation protection plan (ERPP). The NPDES permit issued by the state of Tennessee requires a radiological monitoring plan (RMP) for Y-12 Plant surface waters. In a May 4, 1995 memo, the state of Tennessee, Division of Water Pollution Control, stated their desired needs and goals regarding the content of RMPs, associated documentation, and data resulting from the RMPs required under the NPDES permitting system (L. Bunting, General Discussion, Radiological Monitoring Plans, Tennessee Division of Water Pollution Control, May 4,1995). Appendix A provides an overview of how the Y-12 Plant will begin to address these needs and goals. It provides a more complete, documented basis for the current Y-12 Plant surface water monitoring program and is intended to supplement documentation provided in the Annual Site Environmental Reports (ASERs), NPDES reports, Groundwater Quality Assessment Reports, and studies conducted under the Y-12 Plant Environmental Restoration (ER) Program. The purpose of this update to the Y-12 Plant RMP is to satisfy the requirements of the current NPDES permit, DOE Order 5400.5, and 10 CFR Part 834, as current proposed, by defining the radiological monitoring plan for surface water for the Y-12 Plant. This plan includes initial storm water monitoring and data analysis. Related activities such as sanitary sewer and sediment monitoring are also summarized. The plan discusses monitoring goals necessary to determine background concentrations of radionuclides, to quantify releases, determine trends, satisfy regulatory requirements, support consequence assessments, and meet requirements that releases be ``as low as reasonably achievable`` (ALARA).

NONE

1997-10-01T23:59:59.000Z

296

UMTRA project water sampling and analysis plan, Grand Junction, Colorado  

Science Conference Proceedings (OSTI)

Surface remedial action will be completed at the Grand Junction processing site during the summer of 1994. Results of 1993 water sampling indicate that ground water flow conditions and ground water quality at the processing site have remained relatively constant with time. Uranium concentrations in ground water continue to exceed the maximum concentration limits, providing the best indication of the extent of contaminated ground water. Evaluation of surface water quality of the Colorado River indicate no impact from uranium processing activities. No compliance monitoring at the Cheney disposal site has been proposed because ground water in the Dakota Sandstone (uppermost aquifer) is classified as limited-use (Class 111) and because the disposal cell is hydrogeologically isolated from the uppermost aquifer. The following water sampling and water level monitoring activities are planned for calendar year 1994: (i) Semiannual (early summer and late fall) sampling of six existing monitor wells at the former Grand Junction processing site. Analytical results from this sampling will be used to continue characterizing hydrogeochemical trends in background ground water quality and in the contaminated ground water area resulting from source term (tailings) removal. (ii) Water level monitoring of approximately three proposed monitor wells projected to be installed in the alluvium at the processing site in September 1994. Data loggers will be installed in these wells, and water levels will be electronically monitored six times a day. These long-term, continuous ground water level data will be collected to better understand the relationship between surface and ground water at the site. Water level and water quality data eventually will be used in future ground water modeling to establish boundary conditions in the vicinity of the Grand Junction processing site. Modeling results will be used to help demonstrate and document the potential remedial alternative of natural flushing.

Not Available

1994-07-01T23:59:59.000Z

297

Ground motion data for International Collider models  

SciTech Connect

The proposed location for the International Linear Collider (ILC) in the Americas region is Fermilab in Batavia Illinois. If built at this location the tunnels would be located in the Galena Platteville shale at a depth of 100 or more meters below the surface. Studies using hydro static water levels and seismometers have been conducted in the MINOS hall and the LaFrange Mine in North Aurora Illinois to determine the level of ground motion. Both these locations are in the Galena Platteville shale and indicate the typical ground motion to be expected for the ILC. The data contains both natural and cultural noise. Coefficients for the ALT law are determined. Seismic measurements at the surface and 100 meters below the surface are presented.

Volk, J.T.; LeBrun, P.; Shiltsev, V.; Singatulin, S.; /Fermilab

2007-11-01T23:59:59.000Z

298

Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System  

E-Print Network (OSTI)

This paper presents two common forms of auxiliary heat source in surface water heat pump system and puts forward the idea that the disposal forms affect operation cost. It deduces operation cost per hour of the two forms. With a project calculation, it illuminates that the post-located auxiliary heat source cheaper and superior to the fore-located one.

Qian, J.; Sun, D.; Li, X.; Li, G.

2006-01-01T23:59:59.000Z

299

Sea Surface Temperature Sensitivity to Water Turbidity from Simulations of the Turbid Black Sea Using HYCOM  

Science Conference Proceedings (OSTI)

This paper examines the sensitivity of sea surface temperature (SST) to water turbidity in the Black Sea using the eddy-resolving (3.2-km resolution) Hybrid Coordinate Ocean Model (HYCOM), which includes a nonslab K-profile parameterization (KPP)...

A. Birol Kara; Alan J. Wallcraft; Harley E. Hurlburt

2005-01-01T23:59:59.000Z

300

Soil Surface Energy and Water Budgets during a Monsoon Season in Korea  

Science Conference Proceedings (OSTI)

In this study, attention has been focused on the climatology of some variables linked to the turbulent exchanges of heat and water vapor in the surface layer during a summer monsoon in Korea. In particular, the turbulent fluxes of sensible and ...

Claudio Cassardo; Seon Ki Park; Bindu Malla Thakuri; Daniela Priolo; Ying Zhang

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Impact of Land Cover Change on Surface Energy and Water Balance in Mato Grosso, Brazil  

Science Conference Proceedings (OSTI)

The sensitivity of surface energy and water fluxes to recent land cover changes is simulated for a small region in northern Mato Grosso, Brazil. The Simple Biosphere Model (SiB2) is used, driven by biophysical parameters derived from the Moderate ...

Julia Pongratz; Lahouari Bounoua; Ruth S. DeFries; Douglas C. Morton; Liana O. Anderson; Wolfram Mauser; Carlos A. Klink

2006-10-01T23:59:59.000Z

302

Measured and Estimated Water Vapor Advection in the Atmospheric Surface Layer  

Science Conference Proceedings (OSTI)

The flux of water vapor due to advection is measured using high resolution Raman lidar that was orientated horizontally across a land-lake transition. At the same time, a full surface energy balance is performed to assess the impact of scalar ...

Chad W. Higgins; Eric Pardyjak; Martin Froidevaux; Valentin Simeonov; Marc B. Parlange

303

The Freshening of Surface Waters in High Latitudes: Effects on the Thermohaline and Wind-Driven Circulations  

Science Conference Proceedings (OSTI)

The impacts of a freshening of surface waters in high latitudes on the deep, slow, thermohaline circulation have received enormous attention, especially the possibility of a shutdown in the meridional overturning that involves sinking of surface ...

Alexey Fedorov; Marcelo Barreiro; Giulio Boccaletti; Ronald Pacanowski; S. George Philander

2007-04-01T23:59:59.000Z

304

Determination of Ice Water Path Over the ARM SGP Using Combined Surface and Satellite Datasets  

NLE Websites -- All DOE Office Websites (Extended Search)

Determination of Ice Water Path Over the ARM SGP Using Determination of Ice Water Path Over the ARM SGP Using Combined Surface and Satellite Datasets J. Huang, M. M. Khaiyer, and P. W. Heck Analytical Services & Materials, Inc. Hampton, Virginia P. Minnis and B. Lin Atmospheric Sciences National Aeronautics and Space Administration Langley Research Center Hampton, Virginia T.-F. Fan Science Applications International Corporation Hampton, Virginia Introduction Global information of cloud ice water path (IWP) is urgently needed for testing of global climate models (GCMs) and other applications. Accurate quantification of the IWP is essential for characterizing the hydrological and radiation budget. For example, the reflection of shortwave radiation by ice clouds reduces the solar energy reaching the earth's surface. Ice clouds can also trap the longwave radiation

305

Economic costs of conventional surface-water treatment: A case study of the Mcallen northwest facility  

E-Print Network (OSTI)

Conventional water treatment facilities are the norm for producing potable water for U.S. metropolitan areas. Rapidly-growing urban populations, competing demands for water, imperfect water markets, and uncertainty of future water supplies contribute to high interests in alternative sources of potable water for many U.S. municipalities. In situations where multiple supply alternatives exist, properly analyzing which alternative is the most-economically efficient over the course of its useful life requires a sound economic and financial analysis of each alternative using consistent methodology. This thesis discusses such methodology and provides an assessment of the life-cycle costs of conventional water treatment using actual data from an operating surface-water treatment facility located in McAllen, Texas: the McAllen Northwest facility. This facility has a maximum-designed operating capacity of 8.25 million gallons per day (mgd), but due to required shutdown time and other limitations, it is currently operating at 78% of the designed capacity (6.44 mgd). The economic and financial life-cycle costs associated with constructing and operating the McAllen Northwest facility are analyzed using a newly-developed Excel 2 spreadsheet model, CITY H O ECONOMICS . Although specific results are applicable only to the McAllen Northwest facility, the baseline results of $771.67/acre-foot (acft)/ yr {$2.37/1,000 gallons/yr} for this analysis provide insight regarding the life-cycle costs for conventional surface-water treatment. The baseline results are deterministic (i.e., noninclusive of risk/uncertainty about datainput values), but are expanded to include sensitivity analyses with respect to several critical factors including the facility’s useful life, water rights costs, initial construction costs, and annual operations and maintenance, chemical, and energy costs. For example, alternative costs for water rights associated with sourcing water for conventional treatment facilities are considered relative to the assumed baseline cost of $2,300/ac-ft, with results ranging from a low of $653.34/ac-ft/yr (when water rights are $2,000/ac-ft) to a high of $1,061.83/ac-ft/yr (when water rights are $2,600/ac-ft). Furthermore, modifications to key data-input parameters and results are included for a more consistent basis of comparison to enable comparisons across facilities and/or technologies. The modified results, which are considered appropriate to compare to other similarly calculated values, are $667.74/ac-ft/yr {2.05/1,000 gallons/yr}.

Rogers, Callie Sue

2008-05-01T23:59:59.000Z

306

Directional Reactive Power Ground Plane Transmission  

Directional Reactive Power Ground Plane Transmission Technology Summary ... The invention can transmit electrical power through the surface of the ...

307

The development of a GIS methodology to assess the potential for water resource contamination due to new development in the 2012 Olympic Park site, London  

Science Conference Proceedings (OSTI)

The Initial Screening Tool (IST) has been developed to enable Planners to assess the potential risk to ground and surface water due to remobilisation of contaminants by new developments. The IST is a custom built GIS application that improves upon previous ... Keywords: Contaminated land, GIS, Ground water, Part IIa of the Environmental Protection Act (1990), Screening tool, Surface water

A. P. Marchant; V. J. Banks; K. R. Royse; S. P. Quigley

2013-02-01T23:59:59.000Z

308

Grounding intentionality  

E-Print Network (OSTI)

In this thesis, I argue that current attempts to ground intentionality face one of two challenges. Either the grounding feature of intentionality will be itself intentional or the grounding feature is disparate in nature from the representational capacity of an intentional mental state and therefore no connection between the two can be taken to exist. I examine two current accounts of intentionality and the features they utilize to ground it. I maintain that both views fall prey to one or both of the objections I raise. I conclude that any account of intentionality will need to meet both of these challenges in order to be counted successful.

Huizenga Steven R

2004-01-01T23:59:59.000Z

309

Posters Ground-Based Radiometric Observations  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Posters Ground-Based Radiometric Observations of Atmospheric Water for Climate Research J. B. Snider, D. A. Hazen, A. J. Francavilla, W. B. Madsen, and M. D. Jacobson National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Introduction Surface-based microwave and infrared radiometers have been employed by the National Oceanic and Atmospheric Administration's Environmental Technology Laboratory (NOAA/ETL) in climate research since 1987. The ability of these systems to operate continuously and unattended for extended periods of time has provided significant new information on atmospheric water vapor and cloud liquid. These data are being employed to improve our understanding of cloud-radiation feedback mechanisms, an understanding

310

An ecological study examining the correlation of end-stage renal disease and ground water heavy metal content in Texas counties  

E-Print Network (OSTI)

An ecological study was conducted to examine the correlation of end-stage renal disease (ESRD) and the ground water heavy metal level of lead, arsenic, cadmium, mercury and the cumulative level of all four metals in Texas counties. The heavy meal dab was collected from the United States Geologic Survey (USGS) measurement and covered the twenty-one year span 1970- 1990. The ESRD data was gathered from the Texas Department of Health Kidney Program ESRD Registry for the five-year span 1988-1992. This registry included more than 99% of incident ESRD cases over the same time period. The 1990 U.S. Census data was used to estimate county population by age, race and sex. Exposure was defined as residence in a county with ground water measurements that fell in the highest quartile for each metal (mercury 0.297ug/, arsenic 3.216ug/l, lead 4.685ug/l, cadmium 1.423ug/l, cumulative metal level 8.911ug/l). Outcome was defined as an incident case of ESRD between the years 1988-1992 and examined as five-year incidence of ESRD per 10,000 persons. Among 254 Texas counties, 52 had at least 7 years of metal measurements for lead and cadmium, 51 counties had at least 7 years of metal measurements for arsenic and mercury and 50 counties had 7 years of measurements for all four metals. Linear and logistic regression procedures were carried out to examine the relationship between heavy metal ground water levels and incidence of ESRD. None of the metals demonstrated a statistically significant positive relationship with five-year incidence of ESRD per 10,000 persons. Counties with high levels of heavy metals did not indicate an increased odds of having a five-year ESRD incidence per 10,000 persons above the 1988-1992 state average. The percentage of Black or Hispanic persons in a county was a positive predictor of increased five-year incidence of ESRD per 10,000 persons.

Bishop, Scott Alan

1999-01-01T23:59:59.000Z

311

Stick-Slip Sliding of Water Drops on Chemically Heterogeneous Surfaces  

E-Print Network (OSTI)

We present a comprehensive study of water drops sliding down chemically heterogeneous surfaces formed by a periodic pattern of alternating hydrophobic and hydrophilic stripes. Drops are found to undergo a stick-slip motion whose average speed is an order of magnitude smaller than that measured on a homogeneous surface having the same static contact angle. This motion is the result of the periodic deformations of the drop interface when crossing the stripes. Numerical simulations confirm this view and are used to elucidate the principles underlying the experimental observations.

Silvia Varagnolo; Davide Ferraro; Paolo Fantinel; Matteo Pierno; Giampaolo Mistura; Giorgio Amati; Luca Biferale; Mauro Sbragaglia

2013-05-06T23:59:59.000Z

312

Evaluating the Performance of a Surface Barrier on Reducing Soil-Water Flow  

SciTech Connect

One of the most common effective techniques for contaminant remediation in the vadose zone is to use a surface barrier to reduce or eliminate soil-water flow to reduce the contaminant flux to the underlying groundwater. Confirming the reduction of the soil-water flux rate is challenging because of the difficulty of determining the very low soil-water flux beneath the barrier. We propose a hydraulic-conductivity factor, fK, as a conservative indicator for quantifying the reduction of soil-water flow. The factor can be calculated using the measured soil-water content or pressure but does not require the knowledge of the saturated hydraulic conductivity or the hydraulic gradient. The formulas were tested by comparing with changes in hydraulic conductivity, K, from a drainage experiment. The pressure-based formula was further applied to evaluate the performance of the interim surface barrier at T Tank Farm on Hanford Site. Three years after barrier emplacement, the hydraulic conductivity decreased by a factor between 3.8 and 13.0 at the 1-, 2- and 5-m depths. The difference between the conductivity-reduction factor and the flux-rate-reduction factor, fq, was quantified with a numerical simulation. With the calculated fK, the numerically determined fK/fq ratio, and the assumed pre-barrier soil-water flux rate of 100 mm yr-1, the estimated soil-water flux rate 3 years after barrier emplacement was no more than 8.5 mm yr-1 at or above the 5-m depth.

Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.; Clayton, Ray E.

2012-08-31T23:59:59.000Z

313

Water-waves modes trapped in a canal by a body with the rough surface  

E-Print Network (OSTI)

The problem about a body in a three dimensional infinite channel is considered in the framework of the theory of linear water-waves. The body has a rough surface characterized by a small parameter $\\epsilon>0$ while the distance of the body to the water surface is also of order $\\epsilon$. Under a certain symmetry assumption, the accumulation effect for trapped mode frequencies is established, namely, it is proved that, for any given $d>0$ and integer $N>0$, there exists $\\epsilon(d,N)>0$ such that the problem has at least $N$ eigenvalues in the interval $(0,d)$ of the continuous spectrum in the case $\\epsilon\\in(0,\\epsilon(d,N)) $. The corresponding eigenfunctions decay exponentially at infinity, have finite energy, and imply trapped modes.

G. Cardone; T. Durante; S. A. Nazarov

2009-10-06T23:59:59.000Z

314

Comparison of MTI Satellite-Derived Surface Water Temperatures and In-Situ Measurements  

Science Conference Proceedings (OSTI)

Temperatures of the water surface of a cold, mid-latitude lake and the tropical Pacific Ocean were determined from MTI images and from in situ concurrent measurements. In situ measurements were obtained at the time of the MTI image with a floating, anchored platform, which measured the surface and bulk water temperatures and relevant meteorological variables, and also from a boat moving across the target area. Atmospheric profiles were obtained from concurrent radiosonde soundings. Radiances at the satellite were calculated with the Modtran radiative transfer model. The MTI infrared radiances were within 1 percent of the calculated values at the Pacific Ocean site but were 1-2 percent different over the mid-latitude lake.

Kurzeja, R.

2001-07-26T23:59:59.000Z

315

Stable water isotope simulation by current land-surface schemes:Results of IPILPS phase 1  

DOE Green Energy (OSTI)

Phase 1 of isotopes in the Project for Intercomparison of Land-surface Parameterization Schemes (iPILPS) compares the simulation of two stable water isotopologues ({sup 1}H{sub 2} {sup 18}O and {sup 1}H{sup 2}H{sup 16}O) at the land-atmosphere interface. The simulations are off-line, with forcing from an isotopically enabled regional model for three locations selected to offer contrasting climates and ecotypes: an evergreen tropical forest, a sclerophyll eucalypt forest and a mixed deciduous wood. Here we report on the experimental framework, the quality control undertaken on the simulation results and the method of intercomparisons employed. The small number of available isotopically-enabled land-surface schemes (ILSSs) limits the drawing of strong conclusions but, despite this, there is shown to be benefit in undertaking this type of isotopic intercomparison. Although validation of isotopic simulations at the land surface must await more, and much more complete, observational campaigns, we find that the empirically-based Craig-Gordon parameterization (of isotopic fractionation during evaporation) gives adequately realistic isotopic simulations when incorporated in a wide range of land-surface codes. By introducing two new tools for understanding isotopic variability from the land surface, the Isotope Transfer Function and the iPILPS plot, we show that different hydrological parameterizations cause very different isotopic responses. We show that ILSS-simulated isotopic equilibrium is independent of the total water and energy budget (with respect to both equilibration time and state), but interestingly the partitioning of available energy and water is a function of the models' complexity.

Henderson-Sellers, A.; Fischer, M.; Aleinov, I.; McGuffie, K.; Riley, W.J.; Schmidt, G.A.; Sturm, K.; Yoshimura, K.; Irannejad, P.

2005-10-31T23:59:59.000Z

316

Detection of water absorption in the dayside atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 microns  

E-Print Network (OSTI)

We report a 5 sigma detection of water absorption features in the dayside spectrum of the hot Jupiter HD 189733 b. We used high-resolution (R~100,000) spectra taken at 3.2 microns with CRIRES on the VLT to trace the radial velocity shift of the water features in the planet's dayside atmosphere during 5 hours of its 2.2 day orbit as it approached secondary eclipse. Despite considerable telluric contamination in this wavelength regime, we detect the signal within our uncertainties at the expected combination of systemic velocity (Vsys=-3 +5-6 km/s) and planet orbital velocity (Kp=154 +14-10 km/s), and determine a H2O line contrast ratio of (1.3+/-0.2)x10^-3 with respect to the stellar continuum. We find no evidence of significant absorption or emission from other carbon-bearing molecules, such as methane, although we do note a marginal increase in the significance of our detection with the inclusion of carbon dioxide in our template spectrum. This result demonstrates that ground-based, high-resolution spectrosc...

Birkby, J L; Brogi, M; de Mooij, E J W; Schwarz, H; Albrecht, S; Snellen, I A G

2013-01-01T23:59:59.000Z

317

Decision Support for IntegratedDecision Support for Integrated WaterWater--Energy PlanningEnergy Planning  

E-Print Network (OSTI)

Analysis · Simulated at the power plant level with 4841 individual plants modeled · Plants distinguishedProject Impetus · Energy-Water Roadmap findings: ­ Reduce fresh water consumption in electric power generation Surface Water Ground Water Population Growth Industry Fuels Wind Hydro Solar Thermoelectric #12;System

Keller, Arturo A.

318

Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995  

SciTech Connect

Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data.

Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M. [and others

1996-12-31T23:59:59.000Z

319

Ground Plane Identification Using LIDAR in Forested  

E-Print Network (OSTI)

To operate autonomously in forested environments, unmanned ground vehicles (UGVs) must be able to identify the load-bearing surface of the terrain (i.e. the ground). This paper presents a novel two-stage approach for ...

McDaniel, Matt W.

320

Multimodel Analysis of Energy and Water Fluxes: Intercomparisons between Operational Analyses, a Land Surface Model, and Remote Sensing  

Science Conference Proceedings (OSTI)

Using data from seven global model operational analyses (OA), one land surface model, and various remote sensing retrievals, the energy and water fluxes over global land areas are intercompared for 2003/04. Remote sensing estimates of ...

Raghuveer K. Vinukollu; Justin Sheffield; Eric F. Wood; Michael G. Bosilovich; David Mocko

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Water Vapor, Surface Temperature, and the Greenhouse Effect—A Statistical Analysis of Tropical-Mean Data  

Science Conference Proceedings (OSTI)

Water vapor feedback is one of the important factors that determine the response of the atmosphere to surface warming. To take into account the compensating drying effects in downdraft regions, averaging over the whole Tropics is necessary. ...

Hu Yang; Ka Kit Tung

1998-10-01T23:59:59.000Z

322

A Mechanism for the Increase of Wind Stress (Drag) Coefficient with Wind Speed over Water Surfaces: A Parametric Model  

Science Conference Proceedings (OSTI)

A mechanism is proposed for a physical explanation of the increase in wind stress (drag) coefficient with wind speed over water surfaces. The formula explicitly incorporates the contribution of both winds and waves through the parameterizations ...

S. A. Hsu

1986-01-01T23:59:59.000Z

323

Satellite-Model Coupled Analysis of Convective Potential in Florida with VAS Water Vapor and Surface Temperature Data  

Science Conference Proceedings (OSTI)

A system for time-continuous mesoscale weather analysis is applied to a study of convective cloud development in central Florida. The analysis system incorporates water vapor concentrations and surface temperatures retrieved from infrared VISSR (...

Alan E. Lipton; George D. Modica; Scot T. Heckman; Arthur J. Jackson

1995-11-01T23:59:59.000Z

324

A Satellite Study of the Relationship between Sea Surface Temperature and Column Water Vapor over Tropical and Subtropical Oceans  

Science Conference Proceedings (OSTI)

The known characteristics of the relationship between sea surface temperature (SST) and column water vapor (CWV) are reevaluated with recent satellite observations over tropical and subtropical oceans. Satellite data acquired by the Aqua Advanced ...

Kaya Kanemaru; Hirohiko Masunaga

2013-06-01T23:59:59.000Z

325

Monitoring Precipitable Water and Surface Wind over the Gulf of Mexico from Microwave and VAS Satellite Imagery  

Science Conference Proceedings (OSTI)

Spatial and temporal changes of atmospheric water vapor and surface wind speeds are investigated for a period following an intrusion of cold continental air over the Gulf of Mexico, during the Gulf of Mexico Experiment (GUFMEX) in March 1988. ...

Robert M. Rabin; Lynn A. McMurdie; Christopher M. Hayden; Gary S. Wade

1991-06-01T23:59:59.000Z

326

Water Prism, Volume 2: Prototype Applications  

Science Conference Proceedings (OSTI)

Water Prism is a decision support system (DSS) that evaluates alternative management plans to obtain water resource sustainability at the regional, watershed, or local levels. It considers surface, ground, and impoundment waters and all water-using sectors (industrial, agricultural, municipal, electric power, and the environment). This technical update illustrates how Water Prism is used by applying it to two large watersheds: the Muskingum River Basin (Ohio) and the Green River Basin ...

2013-10-01T23:59:59.000Z

327

The Electrochemical Surface Potential Due to Classical Point Charge Models Drives Anion Adsorption to the Air-Water Interface  

E-Print Network (OSTI)

We demonstrate that the driving forces for ion adsorption to the air-water interface for point charge models results from both cavitation and a term that is of the form of a negative electrochemical surface potential. We carefully characterize the role of the free energy due to the electrochemical surface potential computed from simple empirical models and its role in ionic adsorption within the context of dielectric continuum theory. Our research suggests that the electrochemical surface potential due to point charge models provides anions with a significant driving force to the air-water interface. This is contrary to the results of ab initio simulations that indicate that the average electrostatic surface potential should favor the desorption of anions at the air-water interface. The results have profound implications for the studies of ionic distributions in the vicinity of hydrophobic surfaces and proteins.

Marcel D. Baer; Abraham C. Stern; Yan Levin; Douglas J. Tobias; Christopher J. Mundy

2013-07-05T23:59:59.000Z

328

Appropriation or Use of Waters, Reservoirs, and Dams (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

It is state policy to control the use and appropriation of ground and surface waters of the state. A permit from the Department of the Environment is required prior to the construction or operation...

329

Water-hydroxyl phases on an open metal surface: breaking the ice rules Matthew Forster,a  

E-Print Network (OSTI)

Water-hydroxyl phases on an open metal surface: breaking the ice rules Matthew Forster,a Rasmita hexagonal c(2 Ã? 2) 2H2O:1OH network. None of these phases obey the conventional `ice rules', instead catalyzed redox reactions, yet establishing the phase diagram for water/hydroxyl adsorption on metal

Alavi, Ali

330

File:Rights to Surface Water in Texas.pdf | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:Rights to Surface Water in Texas.pdf Jump to: navigation, search File File history File usage Metadata File:Rights to Surface Water in Texas.pdf Size of this preview: 388 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Go! next page → next page → Full resolution ‎(825 × 1,275 pixels, file size: 910 KB, MIME type: application/pdf, 24 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:14, 1 July 2013 Thumbnail for version as of 12:14, 1 July 2013 825 × 1,275, 24 pages (910 KB) Abergfel (Talk | contribs)

331

TRITIUM UNCERTAINTY ANALYSIS FOR SURFACE WATER SAMPLES AT THE SAVANNAH RIVER SITE  

Science Conference Proceedings (OSTI)

Radiochemical analyses of surface water samples, in the framework of Environmental Monitoring, have associated uncertainties for the radioisotopic results reported. These uncertainty analyses pertain to the tritium results from surface water samples collected at five locations on the Savannah River near the U.S. Department of Energy's Savannah River Site (SRS). Uncertainties can result from the field-sampling routine, can be incurred during transport due to the physical properties of the sample, from equipment limitations, and from the measurement instrumentation used. The uncertainty reported by the SRS in their Annual Site Environmental Report currently considers only the counting uncertainty in the measurements, which is the standard reporting protocol for radioanalytical chemistry results. The focus of this work is to provide an overview of all uncertainty components associated with SRS tritium measurements, estimate the total uncertainty according to ISO 17025, and to propose additional experiments to verify some of the estimated uncertainties. The main uncertainty components discovered and investigated in this paper are tritium absorption or desorption in the sample container, HTO/H{sub 2}O isotopic effect during distillation, pipette volume, and tritium standard uncertainty. The goal is to quantify these uncertainties and to establish a combined uncertainty in order to increase the scientific depth of the SRS Annual Site Environmental Report.

Atkinson, R.

2012-07-31T23:59:59.000Z

332

Probability distributions of hydraulic conductivity for the hydrogeologic units of the Death Valley regional ground-water flow system, Nevada and California  

Science Conference Proceedings (OSTI)

The use of geologic information such as lithology and rock properties is important to constrain conceptual and numerical hydrogeologic models. This geologic information is difficult to apply explicitly to numerical modeling and analyses because it tends to be qualitative rather than quantitative. This study uses a compilation of hydraulic-conductivity measurements to derive estimates of the probability distributions for several hydrogeologic units within the Death Valley regional ground-water flow system, a geologically and hydrologicaly complex region underlain by basin-fill sediments, volcanic, intrusive, sedimentary, and metamorphic rocks. Probability distributions of hydraulic conductivity for general rock types have been studied previously; however, this study provides more detailed definition of hydrogeologic units based on lithostratigraphy, lithology, alteration, and fracturing and compares the probability distributions to the aquifer test data. Results suggest that these probability distributions can be used for studies involving, for example, numerical flow modeling, recharge, evapotranspiration, and rainfall runoff. These probability distributions can be used for such studies involving the hydrogeologic units in the region, as well as for similar rock types elsewhere. Within the study area, fracturing appears to have the greatest influence on the hydraulic conductivity of carbonate bedrock hydrogeologic units. Similar to earlier studies, we find that alteration and welding in the Tertiary volcanic rocks greatly influence conductivity. As alteration increases, hydraulic conductivity tends to decrease. Increasing degrees of welding appears to increase hydraulic conductivity because welding increases the brittleness of the volcanic rocks, thus increasing the amount of fracturing.

Belcher, W.R.; Sweetkind, D.S.; Elliott, P.E.

2002-11-19T23:59:59.000Z

333

Introducing hysteresis in snow depletion curves to improve the water budget of a land surface model in an Alpine catchment  

Science Conference Proceedings (OSTI)

The Durance watershed (14 000 km2), located in the French Alps, generates 10% of French hydro-power and provides drinking water to 3 million people. The Catchment Land Surface Model (CLSM), a distributed land surface model (LSM) with a multilayer, ...

Claire Magand; Agnès Ducharne; Nicolas Le Moine; Simon Gascoin

334

The reaction of clean Li surfaces with small molecules in ultrahigh vacuum. 2: Water  

DOE Green Energy (OSTI)

Reactions at the Li/H{sub 2}O interface were studied at 160 to 290 K in ultrahigh vacuum by a combination of spectroscopic ellipsometry and Auger electron spectroscopy. Ice multilayers, ca. 100 ML thick, were deposited on clean Li at 160 K. The evaporation rate of water at 160 K is sufficiently slow that the ice layer remains on the surface for about 1 h. After 10 min at 160 k, a pure LiOH layer ca. 70 {angstrom} thick is produced, and after 1 h there is evidence of a slow conversion to LiOH to Li{sub 2}O in the layer, probably at the Li/LiOH interface. Raising the temperature to 240 K results in desorption of the adsorbed water and conversion of all the LiOH to a porous (60% void) layer composed mostly of Li{sub 2}O (35%) with some metallic Li mixed in. Raising the temperature further to 290 K results in densification of the layer by both collapse of the voids and by diffusion of Li into the interstices of the Li{sub 2}O, increasing the Li content to 27% and shrinking the film thickness to 26 {angstrom}. Based on these results, a model for the behavior of small amounts of water in Li battery electrolyte is presented.

Zhuang, G.; Ross, P.N. Jr.; Kong, F.P.; McLarnon, F. [Lawrence Berkeley National Lab., CA (United States). Chemical Sciences Div.]|[Univ. of California, Berkeley, CA (United States). Environmental Energy Technologies Div.

1998-01-01T23:59:59.000Z

335

Combined Satellite- and Surface-Based Estimation of the Intracloud–Cloud-to-Ground Lightning Ratio over the Continental United States  

Science Conference Proceedings (OSTI)

Four years of observations from the NASA Optical Transient Detector and Global Atmospherics National Lightning Detection Network are combined to determine the geographic distribution of the climatological intracloud–cloud-to-ground (CG) lightning ...

Dennis J. Boccippio; Kenneth L. Cummins; Hugh J. Christian; Steven J. Goodman

2001-01-01T23:59:59.000Z

336

Correlation of Oil-Water and Air-Water Contact Angles of Diverse Silanized Surfaces and Relationship to Fluid Interfacial Tensions  

Science Conference Proceedings (OSTI)

The use of air-water, {Theta}{sub wa}, or air-liquid contact angles is customary in surface science, while oil-water contact angles {Theta}{sub ow}, are of paramount importance in subsurface multiphase flow phenomena including petroleum reocovery, nonaqueous phase liquid fate and transport, and geological carbon sequestration. In this paper we determine both the air-water and oil-water contact angles of silica surfaces modified with a diverse selection of silanes, using hexadecane as the oil. The silanes included alkylsilanes, alkylarylsilanes, and silanes with alkyl or aryl groups that are functionalized with heteroatoms such as N, O, and S. These silanes yielded surfaces with wettabilities from water-wet to oil wet, including specific silanized surfaces functionalized with heteroatoms that yield intermediate wet surfaces. The oil-water contact angles for clean and silanized surfaces, excluding one partially fluorinated surface, correlate linearly with air-water contact angles with a slope of 1.41 (R = 0.981, n = 13). These data were used to examine a previously untested theoretical treatment relating air-water and oil-water contact angles in terms of fluid interfacial energies. Plotting the cosines of these contact angles against one another, we obtain a linear relationship in excellent agreement with the theoretical treatment; the data fit cos {Theta}{sub ow} = 0.667 cos {Theta}{sub ow} + 0.384 (R = 0.981, n = 13), intercepting cos {Theta}{sub ow} = -1 at -0.284. The theoretical slope, based on the fluid interfacial tensions {Theta}{sub wa}, {Theta}{sub ow}, and {Theta}{sub oa}, is 0.67. We also demonstrate how silanes can be used to alter the wettability of the interior of a pore network micromodel device constructed in silicon/silica with a glass cover plate. Such micromodels are used to study multiphase flow phenomena. The contact angle of the resulting interior was determined in situ. An intermediate wet micromodel gave a contact angle in excellent agreement with that obtained on an open planar silica surface using the same silane.

Grate, Jay W.; Dehoff, Karl J.; Warner, Marvin G.; Pittman, Jonathan W.; Wietsma, Thomas W.; Zhang, Changyong; Oostrom, Martinus

2012-02-24T23:59:59.000Z

337

Commentary by Jerry S. Szymanski and C.B. Archambeau regarding ``Spring deposits and late pleistocene ground-water levels in southern Nevada``, by J. Quade. Special report number 16, Contract number 94/96.0003  

Science Conference Proceedings (OSTI)

This report is a critical analysis of a paper presented at the 5th Annual International Conference on High Level Radioactive Waste Management. The thrust of this paper was to determine the historic level of ground water in the vicinity of the proposed Yucca Mountain radioactive waste repository. This author reviews conclusions reached by the former author and analyzes reference materials used to obtain his assessment of paleo-ground water levels. This author disagrees with the conclusions and analytical methods used. This author presents information relative to water table fluctuations as a result of intrusion of geothermal fluids and makes claim that such intrusion would jeopardize the integrity of the repository by flooding.

Szymanski, J.S.; Archambeau, C.B.

1994-08-01T23:59:59.000Z

338

Surface Water Temperatures At Shore Stations, United States West Coast 1975 - 1976  

E-Print Network (OSTI)

that monitors the cooling intake water for the generators.Thermograph record of intake water at Pacific Gas andtakes daily water temperatures at the intake pipe to their

Scripps Institution of Oceanography

1978-01-01T23:59:59.000Z

339

Surface Water Temperatures, Salinities and Densities At Shore Stations, United States West Coast 1994  

E-Print Network (OSTI)

generators. The plant's water intake structure, which isoff the rocks near the water intake for the laboratory, andat the aquarium's water system intake located in a deep

Scripps Institution of Oceanography

1995-01-01T23:59:59.000Z

340

Surface Water Temperatures At Shore Stations, United States West Coast 1977  

E-Print Network (OSTI)

that monitors the cooling intake water for the generators.Thermograph record of intake water at Pacific Gas andtemperatures and water samples at the intake pipe to their

Scripps Institution of Oceanography

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Surface Water Temperatures At Shore Stations, United States West Coast 1978  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory.Off rocks near water intake for laboratory Thermographthat monitors the cooling intake water for the generators.

Scripps Institution of Oceanography

1979-01-01T23:59:59.000Z

342

Water at a hydrophilic solid surface probed by ab-initio molecular dynamics: inhomogeneous thin layers of dense fluid  

DOE Green Energy (OSTI)

We present a microscopic model of the interface between liquid water and a hydrophilic, solid surface, as obtained from ab-initio molecular dynamics simulations. In particular, we focused on the (100)surface of cubic SiC, a leading candidate semiconductor for bio-compatible devices. Our results show that, in the liquid in contact with the clean substrate, molecular dissociation occurs in a manner unexpectedly similar to that observed in the gas phase. After full hydroxylation takes place, the formation of a thin ({approx}3 {angstrom})interfacial layer is observed, which has higher density than bulk water and forms stable hydrogen bonds with the substrate. The liquid does not uniformly wet the surface, rather molecules preferably bind along directions parallel to the Si dimer rows. Our calculations also predict that one dimensional confinement between two hydrophilic surfaces at about 1.3 nm distance does not affect the structural and electronic properties of the whole water sample.

Cicero, G; Grossman, J; Galli, G; Catellani, A

2005-01-28T23:59:59.000Z

343

In situ photoelectron spectroscopy study of water adsorption on model biomaterial surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

184024 184024 (7pp) doi:10.1088/0953-8984/20/18/184024 In situ photoelectron spectroscopy study of water adsorption on model biomaterial surfaces G Ketteler 1 , P Ashby 2 , B S Mun 3,4 , I Ratera 5 , H Bluhm 6 , B Kasemo 1 and M Salmeron 2,5 1 Chalmers University of Technology, Department of Applied Physics, 41296 Gothenburg, Sweden 2 Molecular Foundry, Lawrence Berkeley National Laboratories, Berkeley, CA 94720, USA 3 Advanced Light Source, Lawrence Berkeley National Laboratories, Berkeley, CA 94720, USA 4 Department of Applied Physics, Hanyang University, Ansan, Kyunggi-Do 426-791, Korea 5 Materials Science Division, Lawrence Berkeley National Laboratories, Berkeley, CA 94720, USA 6 Chemical Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, CA 94720, USA Received 10 July 2007, in final form 13 September 2007 Published 17 April 2008 Online at stacks.iop.org/JPhysCM/20/184024

344

GSFLOW--Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff  

E-Print Network (OSTI)

management of wastewater treatment plant effluent using percolation ponds, injection wells, or controlled capacity of percolation ponds (infiltration rate/day x area x days/month) and of injection wells (gpm are explained next. Details of the DAU assignments are provided in the file "Daulist.xls" (Software and Data

345

Ground Loops for Heat Pumps and Refrigeration  

E-Print Network (OSTI)

Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water easy. Since refrigeration equipment runs more than heat pumps, energy savings can be large for ground-coupled refrigeration. The paper presents a design procedure for ground loops for heat pumps, hot water, ice machines, and water-cooled refrigeration. It gives an overview of the commercial ground-coupled systems in Louisiana that have both refrigeration and heat pumps. Systems vary from small offices to a three-story office building with 187 tons. A chain of hamburger outlets uses total ground-coupling in all of its stores. A grocery store has ground-coupling for heat pumps and refrigeration. Desuperheaters provide 80 percent of the hot water for a coin laundry in the same building. A comparison of energy costs in a bank with a ground-coupled heat pump system to a similar bank with air-conditioning and gas for heat revealed a 31 percent reduction in utility costs for the ground-coupled building. Two buildings of the Mississippi Power and Light Co. have ground-coupled heat pumps in one, and high efficiency air source heat pumps in the other. Energy savings in nine months was 60,000 kWh (25 percent), and electric peak demand was reduced 42 kW (35 percent).

Braud, H. J.

1986-01-01T23:59:59.000Z

346

The Reactions of Water Vapour on the Surfaces of Stoichiometric and Reduced Uranium Dioxide: A High Resolution XPS Study  

DOE Green Energy (OSTI)

The reaction of water with stoichiometric and O-defective UO{sub 2} thin film surfaces is studied by high-resolution photoelectron spectroscopy using synchrotron X-rays radiation. The decomposition of D{sub 2}O molecules and the oxidative healing of defects on the reduced surfaces was observed and quantified. D{sub 2}O adsorption on the stoichiometric UO{sub 2} surface at 300 K showed small amounts of OD species (ca. 532 eV) probably formed on trace amounts of surface defects, while at 95 K D2O ice (533.5 eV) was the main surface species. On the contrary, a large signal of OD species was seen on the 300 K-Ar{sup +}-sputtered (reduced) surface, UO{sub 2-x}. This was concomitant with a rapid healing of surface defects as monitored by their U4f signal. Quantitative analysis of the OD signal with increasing temperature showed their disappearance by 550 K. The disappearance of these species while hydrogen molecules are still desorbing from the surface as monitored by TPD [S.D. Senanayake, H. Idriss, Surf. Sci. 563 (1-3) (2004) 135; S.D. Senanayake, R. Rousseau, D. Colegrave, H. Idriss, J. Nucl. Mater. 342 (2005) 179] is shedding light on the re-combinative desorption mechanism from dissociatively adsorbed water molecules on the surfaces of this defective metal oxide.

Senanayake,S.; Waterhouse, G.; Chan, A.; Madey, T.; Mullins, D.; Idriss, H.

2007-01-01T23:59:59.000Z

347

Evaluating Surface Water Cycle Simulated by the Australian Community Land Surface Model (CABLE) across Different Spatial and Temporal Domains  

Science Conference Proceedings (OSTI)

The terrestrial water cycle in the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model has been evaluated across a range of temporal and spatial domains. A series of offline experiments were conducted using the forcing data from ...

Huqiang Zhang; Bernard Pak; Ying Ping Wang; Xinyao Zhou; Yongqiang Zhang; Liang Zhang

2013-08-01T23:59:59.000Z

348

In-situ Surface Enhanced Raman Spectroscopy Investigation of the Surface Films on Alloy 600 and Alloy 690 in Pressurized Water Reactor-Primary Water  

E-Print Network (OSTI)

jet engines [22], steam generators [23-24]. Alloy 600 is aAlloy 690 is used for steam generator tubes, tubesheets, andmaterial used for steam generator tubes of Pressurized Water

Wang, Feng

2012-01-01T23:59:59.000Z

349

Surfactant-assisted spreading of an oil-in-water emulsion on the surface of a liquid bath  

E-Print Network (OSTI)

This fluid dynamics video shows how an oil-in-water emulsion stabilized by an ionic surfactant spreads on the free surface of a layer of pure water. The spreading shows two intriguing features: a transparent area surrounding the source of oil droplets, and a fast retraction of the layer of oil droplets on itself once the source has emptied. We show that the dynamics of spreading are strongly connected to the interfacial/bulk properties of the surfactant.

Roche, Matthieu; Griffiths, Ian; Saint-Jalmes, Arnaud; Stone, Howard A

2010-01-01T23:59:59.000Z

350

Surface Water Temperatures At Shore Stations, United States West Coast 1984  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. MonoStation Off rocks near water intake for laboratory Trinidadthat monitors the cool- ing intake water for the generators.

Scripps Institution of Oceanography

1985-01-01T23:59:59.000Z

351

Surface Water Temperatures and Salinities At Shore Stations, United States West Coast 1987  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. Thethat monitors the cooling intake water for the generators.at the intake pipe to their aquarium water system located in

Scripps Institution of Oceanography

1988-01-01T23:59:59.000Z

352

Surface Water Temperatures, Salinities and Densities At Shore Stations, United States West Coast 1989  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. Thethat monitors the cooling intake water for the generators.at the intake pipe to their aquarium water system located in

Scripps Institution of Oceanography

1990-01-01T23:59:59.000Z

353

Surface Water Temperatures At Shore Stations, United States West Coast 1974  

E-Print Network (OSTI)

that monitors the cooling intake water for the generators.takes daily water temperatures at the intake pipe to theirof hot water is outside the bay, the intake temperatures are

Scripps Institution of Oceanography

1977-01-01T23:59:59.000Z

354

Surface Water Temperatures At Shore Stations, United States West Coast 1982  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory.that monitors the cooling intake water for the generators.for rocks near water laboratory intake Granite Canyon 55.0'W

Scripps Institution of Oceanography

1983-01-01T23:59:59.000Z

355

Surface Water Temperatures, Salinities and Densities At Shore Stations, United States West Coast 1988  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. Thethat monitors the cooling intake water for the generators.at the intake pipe to their aquarium water system located in

Scripps Institution of Oceanography

1989-01-01T23:59:59.000Z

356

Surface Water Temperatures, Salinities and Densities At Shore Stations, United States West Coast 1991  

E-Print Network (OSTI)

off tlw rocks near the water intake for the laboratory. T hthat monitors the cooling intake water for the gen- erators.of hot water is outside the bay, the intake temperatures are

Scripps Institution of Oceanography

1992-01-01T23:59:59.000Z

357

Surface Water Temperatures At Shore Stations, United States West Coast 1973  

E-Print Network (OSTI)

that monitors the cooling intake water for the generators.takes daily water temperatures at the intake pipe to theirof hot water is outside the bay, the intake temperatures are

Scripps Institution of Oceanography

1975-01-01T23:59:59.000Z

358

Surface Water Temperatures At Shore Stations, United States West Coast 1980  

E-Print Network (OSTI)

has a large-volume water intake from which the daily wateroff the rocks near the water intake for the laboratory.Off rocks near water Intake for laboratory Thermograph

1981-01-01T23:59:59.000Z

359

Surface Water Temperatures At Shore Stations, United States West Coast 1986  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. MonoStation Off rocks near water intake for laboratory Farallónthat monitors the cool­ ing intake water for the generators.

Scripps Institution of Oceanography

1987-01-01T23:59:59.000Z

360

Surface Water Temperatures At Shore Stations, United States West Coast 1983  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. MonoStation Off rocks near water intake for laboratory Granitethat monitors the cool­ ing intake water for the generators.

Scripps Institution of Oceanography

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Surface Water Temperatures, Salinities and Densities At Shore Stations, United States West Coast 1990  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. Thethat monitors the cooling intake water for the generators.of hot water is outside the bay, the intake temperatures

Scripps Institution of Oceanography

1991-01-01T23:59:59.000Z

362

Surface Water Temperatures, Salinities and Densities At Shore Stations, United States West Coast 1992  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. Thethat monitors the cooling intake water for the gen­ erators.of hot water is outside the bay, the intake temperatures are

Scripps Institution of Oceanography

1993-01-01T23:59:59.000Z

363

Surface Water Temperatures At Shore Stations, United States West Coast 1985  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory.Station Off rocks near water intake for laboratory Farallónthat monitors the cool­ ing intake water for the generators.

Scripps Institution of Oceanography

1986-01-01T23:59:59.000Z

364

Surface Water Temperatures, Salinities and Densities At Shore Stations, United States West Coast 1993  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. T hthat monitors the cooling intake water for the generators.of hot water is outside the bay, the intake temperatures are

Scripps Institution of Oceanography

1994-01-01T23:59:59.000Z

365

Energy-Water Overview  

U.S. Energy Information Administration (EIA) Indexed Site

Emerging Issues and Challenges Emerging Issues and Challenges DOE/EIA 2010 Energy Conference Mike Hightower Sandia National Laboratories mmhight@sandia.gov, 505-844-5499 Energy and Water are ... Interdependent Water for Energy and Energy for Water Energy and power production require water: * Thermoelectric cooling * Hydropower * Energy minerals extraction/mining * Fuel Production (fossil fuels, H 2 , biofuels) * Emission control Water production, processing, distribution, and end-use require energy: * Pumping * Conveyance and Transport * Treatment * Use conditioning * Surface and Ground water Water Consumption by Sector U.S. Freshwater Consumption, 100 Bgal/day Livestock 3.3% Thermoelectric 3.3% Commercial 1.2% Domestic 7.1% Industrial 3.3% Mining 1.2% Irrigation 80.6% Energy uses 27 percent of all non-agricultural fresh water

366

Wetland Water Cooling Partnership: The Use of Restored Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand on Surface Water Use  

NLE Websites -- All DOE Office Websites (Extended Search)

Pierina noceti Pierina noceti Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-5428 pierina.noceti@netl.doe.gov steven I. apfelbaum Principal Investigator Applied Ecological Services, Inc. 17921 Smith Road P.O. Box 256 Brodhead, WI 53520 608-897-8641 steve@appliedeco.com Wetland Water Cooling PartnershiP: the Use of restored Wetlands to enhanCe thermoeleCtriC PoWer Plant Cooling and mitigate the demand on sUrfaCe Water Use Background Thermoelectric power plants require a significant volume of water to operate, accounting for 39 percent of freshwater (136 billion gallons per day) withdrawn in the United States in 2000, according to a U.S. Geological Survey study. This significant use of water ranks second only to the agricultural sector

367

Surface water transport and distribution of uranium in contaminated sediments near a nuclear weapons processing facility  

E-Print Network (OSTI)

The extent of remobilization of uranium from contaminated soils adjacent to a nuclear weapons processing facility during episodic rain events was investigated. In addition, information on the solid phase associations of U in floodplain and suspended sediments was assessed by an eight-step sequential extraction procedure to gauge U chemical lability and its propensity for transport. Comparisons were drawn between the easily dispersible, or water dispersible clay fraction (WDC) of the floodplain sediments to the stream suspended sediments transported during storms. Mass flux estimates determined from base flow measurements potentially underestimate the amount of U transported from contaminated terrestrial sources to surface water systems. During the storm events measured, approximately 145 7 to 2 8 3 8 % more U was mobilized to Upper Three Runs Creek (UTRC) relative to base flow calculations. The suspended sediment load transports the bulk of U in labile forms predominantly as acid soluble (specifically adsorbed), MnO2 occluded and organically bound phases. This implies that U may be available to the environment under a range of changing conditions (e.g., Eh and pH). Sequential extractions of the floodplain sediments demonstrated the presence of chemically labile forms, but in different proportions to the suspended sediments. More U was associated with the organically bound phases in the floodplain sediments, while the easily dispersible fraction of floodplain sediments correlated with the suspended sediments. A strong relationship exists between the suspended sediments and the WDC fraction, suggesting that fine particles are eroded from the floodplain and transported in labile forms. This study demonstrates the need to revise current monitoring schemes to include mass transport evaluation during storms. In addition, sequential extraction studies provide knowledge of U chemical lability in contaminated sediments, which may suggest environmentally sound and more cost effective remediation techniques than ones currently in use.

Batson, Vicky Lynn

1994-01-01T23:59:59.000Z

368

Performance Testing Residential Heat Pump Water Heaters under South- and Central-Florida Climate Conditions: Hot, Humid Climate and Warm Ground Water Pose Unusual Operating Environment for Heat Pump Water Heaters  

Science Conference Proceedings (OSTI)

Heat pump water heaters (HPWHs) are known to provide considerable energy savings compared with electric resistance devices in many applications. However, as their performance is climate-dependent, it is important to understand their operation in extreme climates. Southern and Central Florida presents an extreme climate for HPWHs, as the air temperature, humidity, and entering water temperatures are all high nearly year-round. This report examines HPWH performance in the Florida Power & Light ...

2013-09-30T23:59:59.000Z

369

Theory of the effect of the change in the pH of water upon contact with the surface of finely dispersed solids (flint)  

Science Conference Proceedings (OSTI)

Based on estimates of the parameters of the structure of water in a water-flint powder system and the structure of water adsorbed on the surface of the flint, an explanation is given for the effect of the increase in the pH of water in contact with the flint.

Olodovskii, P.P. [Central Research Institute for Complex Utilization of Water Resources, Minsk (Belarus)

1995-10-01T23:59:59.000Z

370

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2014  

SciTech Connect

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2014 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring is performed by the GWPP during CY 2014 to achieve the following goals: 􀁸 to protect the worker, the public, and the environment; 􀁸 to maintain surveillance of existing and potential groundwater contamination sources; 􀁸 to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; 􀁸 to identify and characterize long-term trends in groundwater quality at Y-12; and 􀁸 to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12.

none,

2013-09-01T23:59:59.000Z

371

The Mean Age of Ocean Waters Inferred from Radiocarbon Observations: Sensitivity to Surface Sources and Accounting for Mixing Histories  

Science Conference Proceedings (OSTI)

A number of previous observational studies have found that the waters of the deep Pacific Ocean have an age, or elapsed time since contact with the surface, of 700–1000 yr. Numerical models suggest ages twice as old. Here, the authors present an ...

Geoffrey Gebbie; Peter Huybers

2012-02-01T23:59:59.000Z

372

LETTER TO THE EDITOR Forces between Mica Surfaces in PEO/Water and PEO/Toluene Solutions  

E-Print Network (OSTI)

In a recent paper ( 1) Marra and Hair present results on force-distance profiles between mica surfaces in a PEO/water solution) indicated that the PEO was aggregating from the solution and that ad- sorption, R. K., and White, L. R., J. Colloid Interface Sci. 78, 430 (1980). 3. Klein, J., and Luckham, P. F

Klein, Jacob

373

Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Laws Envirosearch Institutional Controls NEPA Activities RCRA RQ*Calculator Water HSS Logo Water Laws Overview of water-related legislation affecting DOE sites Clean...

374

Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 95. Progress report  

SciTech Connect

ESH-19 personnel collected soil and single-stage water samples around the perimeter of Area G at Los Alamos National Laboratory (LANL) during FY 95 to characterize possible radionuclide movement out of Area G through surface water and entrained sediment runoff. Soil samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241, and cesium-137. The single-stage water samples were analyzed for tritium and plutonium isotopes. All radiochemical data was compared with analogous samples collected during FY 93 and 94 and reported in LA-12986 and LA-13165-PR. Six surface soils were also submitted for metal analyses. These data were included with similar data generated for soil samples collected during FY 94 and compared with metals in background samples collected at the Area G expansion area.

Childs, M.; Conrad, R.

1997-09-01T23:59:59.000Z

375

The water ice rich surface of (145453) 2005 RR43: a case for a carbon-depleted population of TNOs?  

E-Print Network (OSTI)

Recent results suggest that there is a group of TNOs (2003 EL61 being the biggest member), with surfaces composed of almost pure water ice and with very similar orbital elements. We study the surface composition of another TNO that moves in a similar orbit, 2005 RR43, and compare it with the surface composition of the other members of this group. We report visible and near-infrared spectra, obtained with the 4.2m William Herschel Telescope and the 3.58m Telescopio Nazionale Galileo at the "Roque de los Muchachos" Observatory (La Palma, Spain). The spectrum of 2005 RR43 is neutral in color in the visible and dominated by very deep water ice absorption bands in the near infrared (D= 70.3 +/- 2.1 % and 82.8 +/- 4.9 % at 1.5 \\mu and 2.0 \\mu respectively). It is very similar to the spectrum of the group of TNOs already mentioned. All of them present much deeper water ice absorption bands (D>40 %) than any other TNO except Charon. Scattering models show that its surface is covered by water ice, a significant fraction in crytalline state with no trace (5 % upper limit) of complex organics. Possible scenarios to explain the existence of this population of TNOs are discussed: a giant collision, an originally carbon depleted composition, or a common process of continuous resurfacing. We conclude that TNO 2005 RR43 is member of a group, may be a population, of TNOs clustered in the space of orbital parameters that show abundant water ice and no signs of complex organics. The lack of complex organics in their surfaces suggests a significant smaller fraction of carbonaceous volatiles like CH4 in this population than in "normal" TNOs. A carbon depleted population of TNOs could be the origin of the population of carbon depleted Jupiter family comets already noticed by A'Hearn et al. (1995).

N. Pinilla-Alonso; J. Licandro; R. Gil-Hutton; R. Brunetto

2007-03-06T23:59:59.000Z

376

Theoretical studies of the reactions H + CH [yields] C + H[sub 2] and C + H[sub 2] [yields] CH[sub 2] using an ab ini global ground-state potential surface for CH[sub 2  

Science Conference Proceedings (OSTI)

Ab initio, multireference, configuration interaction (CI) calculations have been used to characterize the ground-state potential surface of methylene. The calculations employ a full-valence complete-active-space reference wave function and a (4s,3p,2d,If/3s,2p,1d) basis set. The calculations were carried out at approximately 6000 points, and the resulting energies were fit to a many-body expansion including conical intersections between the [sup 3]B[sub 1] and [sup 3]A[sub 2] states for C[sub 2v] geometries and between the [sup 3]II and [sup 3][Sigma][sup [minus

Harding, L.B. (Argonne National Lab., IL (United States)); Guadagnini, R.; Schatz, G.C. (Northwestern Univ., Evanston, IL (United States))

1993-05-27T23:59:59.000Z

377

Ground Source Heat Pumps Ground source heat pumps (GSHPs) use the earth's  

E-Print Network (OSTI)

Ground Source Heat Pumps Fact Sheet Ground source heat pumps (GSHPs) use the earth's constant. Waste heat can be used to heat hot water. System Types There are two types of ground source heat pumps, closed loop and open loop systems. Closed loop heat pumps use the earth as the heat source and heat sink

Paulsson, Johan

378

UMTRA Project water sampling and analysis plan, Falls City, Texas  

SciTech Connect

Surface remedial action will be completed at the Falls City, Texas, Uranium Mill Tailings Remedial Action Project site in the spring of 1994. Results of water sampling activity from 1989 to 1993 indicate that ground water contamination occurs primarily in the Deweesville/Conquista aquifer (the uppermost aquifer) and that the contamination migrates along four distinct contaminant plumes. Contaminated ground water from some wells in these regions has significantly elevated levels of aluminum, arsenic, cadmium, manganese, molybdenum, selenium, sulfate, and uranium. Contamination in the Dilworth aquifer was identified in monitor well 977 and in monitor well 833 at the southern edge of former tailings pile 4. There is no evidence that surface water quality in Tordilla and Scared Dog Creeks is impacted by tailings seepage. The following water sampling activities are planned for calendar year 1994: (1) Ground water sampling from 15 monitor wells to monitor the migration of the four major contaminant plumes within the Deweesville/Conquista aquifer. (2) Ground water sampling from five monitor wells to monitor contaminated and background ground water quality conditions in the Dilworth aquifer. Because of disposal cell construction activities, all plume monitor wells screened in the Dilworth aquifer were abandoned. No surface water locations are proposed for sampling. The monitor well locations provide a representative distribution of sampling points to characterize ground water quality and ground water flow conditions in the Deweesville/Conquista aquifer downgradient of the disposal cell. The list of analytes has been modified with time to reflect constituents currently related to uranium processing activities and natural uranium mineralization. Water sampling is normally conducted biannually in late summer and midwinter.

1994-02-01T23:59:59.000Z

379

E35: The Effect of Water Immersion on Surface Fracture of Kenaf ...  

Science Conference Proceedings (OSTI)

Water absorption tests were conducted by immersing composite specimens .... of Pt Nanoparticles on ITO Substrate: Morphological Effect on Ammonia Oxidation.

380

Surface Water Temperatures At Shore Stations, United States West Coast 1981  

E-Print Network (OSTI)

o f f the rocks near the water intake f o r the laboratory.a t monitors the cooling intake water f o r the generators.Thermograph record o f intake water a t P a c i f i c Gas

Scripps Institution of Oceanography

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Water Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

382

Evaluation of Surface Temperature and Emissivity Derived from ASTER Data: A Case Study Using Ground-Based Measurements at a Volcanic Site  

Science Conference Proceedings (OSTI)

The land surface temperature (LST) and emissivity (LSE) derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data were evaluated in a low spectral contrast volcanic site at an altitude of 2000 m on the island of ...

África Barreto; Manuel Arbelo; Pedro A. Hernández-Leal; Laia Núñez-Casillas; María Mira; César Coll

2010-10-01T23:59:59.000Z

383

Recent ground motion studies at Fermilab  

SciTech Connect

Understanding slow and fast ground motion is important for the successful operation and design for present and future colliders. Since 2000 there have been several studies of ground motion at Fermilab. Several different types of HLS (hydro static level sensors) have been used to study slow ground motion (less than 1 hertz) seismometers have been used for fast (greater than 1 hertz) motions. Data have been taken at the surface and at locations 100 meters below the surface. Data of recent slow ground motion measurements with HLSs, many years of alignment data and results of the ATL-analysis are presented and discussed.

Shiltsev, V.; Volk, J.; /Fermilab; Singatulin, S.; /Novosibirsk, IYF

2009-04-01T23:59:59.000Z

384

Analysis of Ground-Water Levels and Associated Trends in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1951-2003  

Science Conference Proceedings (OSTI)

Almost 4,000 water-level measurements in 216 wells in the Yucca Flat area from 1951 to 2003 were quality assured and analyzed. An interpretative database was developed that describes water-level conditions for each water level measured in Yucca Flat. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes narratives that discuss the water-level history of each well. Water levels in 34 wells were analyzed for variability and for statistically significant trends. An attempt was made to identify the cause of many of the water-level fluctuations or trends. Potential causes include equilibration following well construction or development, pumping in the monitoring well, withdrawals from a nearby supply well, recharge from precipitation, earthquakes, underground nuclear tests, land subsidence, barometric pressure, and Earth tides. Some of the naturally occurring fluctuations in water levels may result from variations in recharge. The magnitude of the overall water-level change for these fluctuations generally is less than 2 feet. Long-term steady-state hydrographs for most of the wells open to carbonate rock have a very similar pattern. Carbonate-rock wells without the characteristic pattern are directly west of the Yucca and Topgallant faults in the southwestern part of Yucca Flat. Long-term steady-state hydrographs from wells open to volcanic tuffs or the Eleana confining unit have a distinctly different pattern from the general water-level pattern of the carbonate-rock aquifers. Anthropogenic water-level fluctuations were caused primarily by water withdrawals and nuclear testing. Nuclear tests affected water levels in many wells. Trends in these wells are attributed to test-cavity infilling or the effects of depressurization following nuclear testing. The magnitude of the overall water-level change for wells with anthropogenic trends can be large, ranging from several feet to hundreds of feet. Vertical water-level differences at 27 sites in Yucca Flat with multiple open intervals were compared. Large vertical differences were noted in volcanic rocks and in boreholes where water levels were affected by nuclear tests. Small vertical differences were noted within the carbonate-rock and valley-fill aquifers. Vertical hydraulic gradients generally are downward in volcanic rocks and from pre-Tertiary clastic rocks toward volcanic- or carbonate-rock units.

J.M. Fenelon

2005-10-05T23:59:59.000Z

385

Surface coating of condenser tubing and CO? sparging for preventing fouling and water use reduction.  

E-Print Network (OSTI)

??Fouling reduces heat transfer efficiency and increases the amount of water use, which result in lower energy production and increased fuel consumption in thermoelectric power… (more)

Sun, Jinyan, 1986-

2010-01-01T23:59:59.000Z

386

3D Simulation of Missing Pellet Surface Defects in Light Water Reactor Fuel Rods  

Science Conference Proceedings (OSTI)

The cladding on light water reactor (LWR) fuel rods provides a stable enclosure for fuel pellets and serves as a first barrier against fission product release. Consequently, it is important to design fuel to prevent cladding failure due to mechanical interactions with fuel pellets. Cladding stresses can be effectively limited by controlling power increase rates. However, it has been shown that local geometric irregularities caused by manufacturing defects known as missing pellet surfaces (MPS) in fuel pellets can lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. Nuclear fuel performance codes commonly use a 1.5D (axisymmetric, axially-stacked, one-dimensional radial) or 2D axisymmetric representation of the fuel rod. To study the effects of MPS defects, results from 1.5D or 2D fuel performance analyses are typically mapped to thermo-mechanical models that consist of a 2D plane-strain slice or a full 3D representation of the geometry of the pellet and clad in the region of the defect. The BISON fuel performance code developed at Idaho National Laboratory employs either a 2D axisymmetric or 3D representation of the full fuel rod. This allows for a computational model of the full fuel rod to include local defects. A 3D thermo-mechanical model is used to simulate the global fuel rod behavior, and includes effects on the thermal and mechanical behavior of the fuel due to accumulation of fission products, fission gas production and release, and the effects of fission gas accumulation on thermal conductivity across the fuel-clad gap. Local defects can be modeled simply by including them in the 3D fuel rod model, without the need for mapping between two separate models. This allows for the complete set of physics used in a fuel performance analysis to be included naturally in the computational representation of the local defect, and for the effects of the local defect to be coupled with the global fuel rod model. This approach for modeling fuel with MPS defects is demonstrated and compared with alternative techniques. The effects of varying parameters of the MPS defect are studied using this technique and presented here.

B.W. Spencer; J.D. Hales; S.R. Novascone; R.L. Williamson

2012-09-01T23:59:59.000Z

387

Impact of Climate Change on Irrigation Water Availability, Crop Water Requirements and Soil Salinity in the SJV, CA  

E-Print Network (OSTI)

on Irrigation Water Availability, Crop Water Requirementsreduced surface water availability can be managed byrequirement and water availability (surface water and

Hopmans, Jan W; Maurer, Edwin P

2008-01-01T23:59:59.000Z

388

Surface water processes in the Indonesian Throughflow as documented by a high-resolution coral (Delta)14C record  

SciTech Connect

To explore the seasonal to decadal variability in surface water masses that contribute to the Indonesian Throughflow we have generated a 115-year bi-monthly coral-based radiocarbon time-series from a coral in the Makassar Straits. In the pre-bomb (pre-1955) era from 1890 to 1954, the radiocarbon time series occasionally displays a small seasonal signal (10-15{per_thousand}). After 1954 the radiocarbon record increases rapidly, in response to the increased atmospheric {sup 14}C content caused by nuclear weapons testing. From 1957 to 1986 the record displays clear seasonal variability from 15 to 60{per_thousand} and the post-bomb peak (163 per mil) occurred in 1974. The seasonal cycle of radiocarbon can be attributed to variations of surface waters passing through South Makassar Strait. Southern Makassar is under the influence of the Northwest Monsoon, which is responsible for the high Austral summer radiocarbon (North Pacific waters) and the Southeast Monsoon that flushes back a mixture of low (South Pacific and upwelling altered) radiocarbon water from the Banda Sea. The coral record also shows a significant {sup 14}C peak in 1955 due to bomb {sup 14}C water advected into this region in the form of CaCO{sub 3} particles (this implies that the particles were advected intact and then become entrapped in the coral skeleton--is this what we really mean? Wouldn't even fine particles settle out over the inferred transit time from Bikini to MAK?) or water particles with dissolved labeled CO{sub 2} produced during fallout from the Castle tests in 1954.

Fallon, S J; Guilderson, T P

2008-04-23T23:59:59.000Z

389

Water quality in vicinity of Fenton Hill Site, 1975  

DOE Green Energy (OSTI)

Water quality at 9 surface water stations, 14 ground water stations, and drilling and testing operations at the Fenton Hill Site has been studied as a measure of the environmental impact on the Los Alamos Scientific Laboratory's geothermal site in the Jemez Mountains. Slight variations in the chemical quality of the water at individual stations were observed during the year. Predominant ions and total dissolved solids in the surface and ground water declined slightly in comparison to previous data. These variations in quality are not considered significant considering seasonal and annual stream flow variations. Surface water discharge records from three U.S. Geological Survey gaging stations on the Rio Guadalupe and Jemez River were analyzed to provide background data for the impact study. Direct correlations were determined between mean annual discharge at each of two stations in the upper reach of the drainage and at the station in the lower reach.

Purtymun, W.D.; Adams, W.H.; Stoker, A.K.; West, F.G.

1976-09-01T23:59:59.000Z

390

Enhancement of ARM Surface Meteorological Observations during the Fall 1996 Water Vapor Intensive Observation Period  

Science Conference Proceedings (OSTI)

This work describes in situ moisture sensor comparisons that were performed in conjunction with the first Water Vapor Intensive Observation Period (IOP) conducted at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) ...

Scott J. Richardson; Michael E. Splitt; Barry M. Lesht

2000-03-01T23:59:59.000Z

391

Estimation of land surface water and energy balance flux components and closure relation using conditional sampling  

E-Print Network (OSTI)

Models of terrestrial water and energy balance include numerical treatment of heat and moisture diffusion in the soil-vegetation-atmosphere continuum. These two diffusion and exchange processes are linked only at a few ...

Farhadi, Leila

2012-01-01T23:59:59.000Z

392

Control, Prevention, and Abatement of Pollution of Surface Waters (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

It is the policy of North Dakota to protect, maintain, and improve the quality of the waters in the state, and to require necessary and reasonable treatment of sewage, industrial, or other wastes....

393

Estimating Potential Evaporation from Vegetated Surfaces for Water Management Impact Assessments Using Climate Model Output  

Science Conference Proceedings (OSTI)

River basin managers concerned with maintaining water supplies and mitigating flood risk in the face of climate change are taking outputs from climate models and using them in hydrological models for assessment purposes. While precipitation is the ...

Victoria A. Bell; Nicola Gedney; Alison L. Kay; Roderick N. B. Smith; Richard G. Jones; Robert J. Moore

2011-10-01T23:59:59.000Z

394

Surface Water Vapor Pressure and Temperature Trends in North America during 1948–2010  

Science Conference Proceedings (OSTI)

Over one-quarter billion hourly values of temperature and relative humidity observed at 309 stations located across North America during 1948–2010 were studied. The water vapor pressure was determined and seasonal averages were computed. Data were ...

V. Isaac; W. A. van Wijngaarden

2012-05-01T23:59:59.000Z

395

Surface Ocean Fluxes and Water-Mass Transformation Rates in the Coupled NCAR Climate System Model  

Science Conference Proceedings (OSTI)

The global distributions of the air–sea fluxes of heat and freshwater and water mass transformation rates from a control integration of the coupled National Center for Atmospheric Research (NCAR) Climate System Model (CSM) are compared with ...

Scott C. Doney; William G. Large; Frank O. Bryan

1998-06-01T23:59:59.000Z

396

Satellite-Scale Snow Water Equivalent Assimilation into a High-Resolution Land Surface Model  

Science Conference Proceedings (OSTI)

Four methods based on the ensemble Kalman filter (EnKF) are tested to assimilate coarse-scale (25 km) snow water equivalent (SWE) observations (typical of passive microwave satellite retrievals) into finescale (1 km) land model simulations. ...

Gabriëlle J. M. De Lannoy; Rolf H. Reichle; Paul R. Houser; Kristi R. Arsenault; Niko E. C. Verhoest; Valentijn R. N. Pauwels

2010-04-01T23:59:59.000Z

397

Biomimicry using Nano-Engineered Enhanced Condensing Surfaces for Sustainable Fresh Water Technology  

E-Print Network (OSTI)

Nanotube Forests”. In: Nano Letters 3 (2003), p. 1701. [37]Namib Desert Beetle”. In: Nano Letters 6.6 (2006), pp. 1213–Surface Energy”. In: ACS Nano 3.7 (2009), pp. 1703–1710. [

Al-Beaini, Sara

2012-01-01T23:59:59.000Z

398

Effects of Micro/Nano-Scale Surface Characteristics on the Leidenfrost Point Temperature of Water  

E-Print Network (OSTI)

In recent film boiling heat transfer studies with nanofluids, it was reported that deposition of nanoparticles on a surface significantly increases the nominal minimum heat flux (MHF) or Leidenfrost Point (LFP) temperature, ...

Hu, Lin-Wen

399

Nitric Acid–Sea Salt Reactions: Implications for Nitrogen Deposition to Water Surfaces  

Science Conference Proceedings (OSTI)

Many previous studies have indicated the importance of nitric acid (HNO3) reactions on sea salt particles for flux divergence of HNO3 in the marine surface layer. The potential importance of this reaction in determining the spatial and temporal ...

S. C. Pryor; L. L. Sørensen

2000-05-01T23:59:59.000Z

400

GRR/Section 19-ID-a - Water Access and Water Rights | Open Energy  

Open Energy Info (EERE)

19-ID-a - Water Access and Water Rights 19-ID-a - Water Access and Water Rights < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-ID-a - Water Access and Water Rights 19IDAWaterAccessAndWaterRightsIssues.pdf Click to View Fullscreen Contact Agencies Idaho Department of Water Resources Regulations & Policies Idaho Code Title 42 Triggers None specified Click "Edit With Form" above to add content 19IDAWaterAccessAndWaterRightsIssues.pdf 19IDAWaterAccessAndWaterRightsIssues.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Idaho Department of Water Resources (IDWR) has the exclusive authority for regulation of appropriation of the public surface and ground waters of

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Transmission Line Grounding  

Science Conference Proceedings (OSTI)

In 2008, the Electric Power Research Institute (EPRI) published a comprehensive grounding report. Published in two parts, the report covered the theoretical and practical aspects of transmission line grounding practices. To further improve the tools available for grounding analysis, an investigation into practical ways to calculate the fault current distribution and ground potential rise of the transmission line grounding system was conducted. Furthermore, a survey of utilities has documented industry pr...

2011-12-23T23:59:59.000Z

402

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques (Redirected from Ground Electromagnetic Methods) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

403

Water quality in vicinity of Fenton Hill Site, 1974  

DOE Green Energy (OSTI)

The water quality at nine surface water stations, eight ground water stations, and the drilling operations at the Fenton Hill Site have been studied as a measure of the environmental impact of the Los Alamos Scientific Laboratory geothermal experimental studies in the Jemez Mountains. Surface water quality in the Jemez River drainage area is affected by the quality of the inflow from thermal and mineral springs. Ground water discharges from the Cenozoic Volcanics are similar in chemical quality. Water in the main zone of saturation penetrated by test hole GT-2 is highly mineralized, whereas water in the lower section of the hole, which is in granite, contains a higher concentration of uranium. (auth)

Purtymun, W.D.; Adams, W.H.; Owens, J.W.

1975-09-01T23:59:59.000Z

404

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2011  

SciTech Connect

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2011 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2011 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2011 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2011 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2011 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2011) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

Elvado Environmental LLC

2010-12-01T23:59:59.000Z

405

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2012  

SciTech Connect

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2012 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2012 is in accordance with the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2012 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. Each modification to the monitoring program will be approved by the Y-12 GWPP manager and documented as an addendum to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2012 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding a data summary table presented in Section 4) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2012) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

Elvado Environmental, LLC

2011-09-01T23:59:59.000Z

406

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2010  

Science Conference Proceedings (OSTI)

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2010 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2010 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2010 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2010 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2010 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2010) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

Elvado Environmental LLC

2009-09-01T23:59:59.000Z

407

Interfacial Energy Transfer during Gamma Radiolysis of Water on the Surface of ZrO2 and Some Other Oxides  

SciTech Connect

Effect of oxide interface on 60Co gamma radiolysis of water molecules was studied. Based on the molecular hydrogen yield when compared with that from the radiolysis of pure gas-phase water, all tested oxides can be classified into three groups: (i) inhibitors - MnO2, Co3O4, CuO and Fe2O3; (ii) oxides with H2 yields, which are similar to or slightly greater than radiolysis of pure gas-phase water - MgO, CaO, SrO, BaO, ZnO, CdO, Cu2O, NiO, Cr2O3, Al2O3, CeO2, SiO2, TiO2, Nb2O5 and WO3; (iii) promoters - Ga2O3, Y2O3, La2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Yb2O3, Er2O3, HfO2, and ZrO2. H2O radiolysis enhancement for ZrO2 and other promoters is result of effective energy transfer at the oxide/water interface, presumably due to migration of excitons to the surface and their resonant coupling with the H2O adsorption complex. Plot''effective H2 yield vs. band-gap (Eg) energy'' shows a maximum near 5 eV.

Petrik, Nikolay G. (BATTELLE (PACIFIC NW LAB)); Alexandrov, Alexandr B. (ASSOC WESTERN UNIVERSITY); Vall, Andrey I. (Institute of Technology)

2000-12-01T23:59:59.000Z

408

Comparison of Column Water Vapor Measurements Using Downward-looking Near-Infrared and Infrared Imaging Systems and Upward-looking Microwave Radiometers  

Science Conference Proceedings (OSTI)

Remote soundings of precipitable water vapor from three systems are compared with each other and with ground truth from radiosondes. Ancillary data from a mesoscale network of surface observing stations and from wind-profiling radars are also ...

Bo-Cai Gao; Alexander F. H. Goetz; Ed R. Westwater; B. Boba Stankov; D. Birkenheuer

1992-10-01T23:59:59.000Z

409

Complete Urban Surface Temperatures  

Science Conference Proceedings (OSTI)

An observation program using ground and airborne thermal infrared radiometers is used to estimate the surface temperature of urban areas, taking into account the total active surface area. The authors call this the complete urban surface ...

J. A. Voogt; T. R. Oke

1997-09-01T23:59:59.000Z

410

Empirical Modeling of Layered Integrated Water Vapor Using Surface Mixing Ratio in Nigeria  

Science Conference Proceedings (OSTI)

Using the available upper-air data for three stations in Nigeria (Lagos, a coastal station; Minna, an inland station; and Kano, a sub-Sahelian station), an intensive examination has been carried out on the linkage between surface mixing ratio rs ...

B. Adeyemi

2009-02-01T23:59:59.000Z

411

Winter convection transports Atlantic Water heat to the surface layer in the eastern Arctic Ocean.  

Science Conference Proceedings (OSTI)

A one year (2009–2010) record of temperature and salinity profiles from Ice Tethered Profiler (ITP) buoys in the Eurasian Basin (EB) of the Arctic Ocean is used to quantify the flux of heat from the upper pycnocline to the surface mixed layer. The ...

Igor V. Polyakov; Andrey V. Pnyushkov; Robert Rember; Laurie Padman; Eddy C. Carmack; Jennifer M. Jackson

412

Winter Convection Transports Atlantic Water Heat to the Surface Layer in the Eastern Arctic Ocean  

Science Conference Proceedings (OSTI)

A 1-yr (2009/10) record of temperature and salinity profiles from Ice-Tethered Profiler (ITP) buoys in the Eurasian Basin (EB) of the Arctic Ocean is used to quantify the flux of heat from the upper pycnocline to the surface mixed layer. The upper ...

Igor V. Polyakov; Andrey V. Pnyushkov; Robert Rember; Laurie Padman; Eddy C. Carmack; Jennifer M. Jackson

2013-10-01T23:59:59.000Z

413

Surface Melt Area and Water Balance Modeling on the Greenland Ice Sheet 1995–2005  

Science Conference Proceedings (OSTI)

SnowModel, a physically based snow-evolution modeling system that includes four submodels—MicroMet, EnBal, SnowPack, and SnowTran-3D—was used to simulate variations in Greenland [including the Greenland Ice Sheet (GrIS)] surface snow and ice melt,...

Sebastian H. Mernild; Glen E. Liston; Christopher A. Hiemstra; Konrad Steffen

2008-12-01T23:59:59.000Z

414

Ground subsidence due to mining operations. (Latest citations from the Compendex database). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning ground subsidence associated with mining operations. Mine subsidence is discussed with reference to mathematical modeling, forecasting extent of cavitation, and rock mechanics and mechanisms of stress relaxation. Damage to above and below-ground structures as well as agricultural areas, and mining techniques designed to prevent or reduce subsidence are included. Monitoring of subsidence and detection of cavitation for surface, underground, and ocean floor mining areas are discussed and examples are analyzed. Subsidence due to aquifer water removal is referenced in a related bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-06-01T23:59:59.000Z

415

Evaluation of AMIP II Global Climate Model Simulations of the Land Surface Water Budget and Its Components over the GEWEX-CEOP Regions  

Science Conference Proceedings (OSTI)

The land surface water balance components simulated by 20 atmospheric global circulation models (AGCMs) participating in phase II of the Atmospheric Model Intercomparison Project (AMIP II) are analyzed globally and over seven Global Energy and ...

P. Irannejad; A. Henderson-Sellers

2007-06-01T23:59:59.000Z

416

On the Potential Change in Surface Water Vapor Deposition over the Continental United States due to Increases in Atmospheric Greenhouse Gases  

Science Conference Proceedings (OSTI)

Characteristics of surface water vapor deposition (WVD) over the continental United States under the present climate and a future climate scenario reflecting the mid-twenty-first-century increased greenhouse gas concentrations were evaluated by ...

Zaitao Pan; Moti Segal; Charles Graves

2006-04-01T23:59:59.000Z

417

Mesoscale Characterization of Coupled Hydromechanical Behavior of a Fractured Porous Slope in Response to Free Water-Surface Movement  

Science Conference Proceedings (OSTI)

To better understand the role of groundwater-level changes on rock-slope deformation and damage, a carbonate rock slope (30 m x 30 m x 15 m) was extensively instrumented for mesoscale hydraulic and mechanical measurements during water-level changes. The slope is naturally drained by a spring that can be artificially closed or opened by a water gate. In this study, a 2-hour slope-dewatering experiment was analyzed. Changes in fluid pressure and deformation were simultaneously monitored, both at discontinuities and in the intact rock, using short-base extensometers and pressure gauges as well as tiltmeters fixed at the slope surface. Field data were analyzed with different coupled hydromechanical (HM) codes (ROCMAS, FLAC{sup 3D}, and UDEC). Field data indicate that in the faults, a 40 kPa pressure fall occurs in 2 minutes and induces a 0.5 to 31 x 10{sup -6} m normal closure. Pressure fall is slower in the bedding-planes, lasting 120 minutes with no normal deformation. No pressure change or deformation is observed in the intact rock. The slope surface displays a complex tilt towards the interior of the slope, with magnitudes ranging from 0.6 to 15 x 10{sup -6} rad. Close agreement with model for both slope surface and internal measurements is obtained when a high variability in slope-element properties is introduced into the models, with normal stiffnesses of k{sub n{_}faults} = 10{sup -3} x k{sub n{_}bedding-planes} and permeabilities of k{sub h{_}faults} = 10{sup 3} x k{sub h{_}bedding-planes}. A nonlinear correlation between hydraulic and mechanical discontinuity properties is proposed and related to discontinuity damage. A parametric study shows that 90% of slope deformation depends on HM effects in a few highly permeable and highly deformable discontinuities located in the basal, saturated part of the slope while the remaining 10% are related to elasto-plastic deformations in the low-permeability discontinuities induced by complex stress/strain transfers from the high-permeability zones. The periodicity and magnitude of free water-surface movements cause 10 to 20% variations in those local stress/strain accumulations related to the contrasting HM behavior for high and low-permeable elements of the slope. Finally, surface-tilt monitoring coupled with internal localized pressure/deformation measurements appears to be a promising method for characterizing the HM properties and behavior of a slope, and for detecting its progressive destabilization.

Rutqvist, Jonny; Guglielmi, Y.; Cappa, F.; Rutqvist, J.; Tsang, C.-F.; Thoraval, A.

2008-05-15T23:59:59.000Z

418

Time-dependent quantum wave packet study of the Ar+H{sub 2}{sup +}{yields}ArH{sup +}+H reaction on a new ab initio potential energy surface for the ground electronic state (1{sup 2}A Prime )  

SciTech Connect

A new global potential energy surface for the ground electronic state (1{sup 2}A Prime ) of the Ar+H{sub 2}{sup +}{yields}ArH{sup +}+H reaction has been constructed by multi-reference configuration interaction method with Davidson correction and a basis set of aug-cc-pVQZ. Using 6080 ab initio single-point energies of all the regions for the dynamics, a many-body expansion function form has been used to fit these points. The quantum reactive scattering dynamics calculations taking into account the Coriolis coupling (CC) were carried out on the new potential energy surface over a range of collision energies (0.03-1.0 eV). The reaction probabilities and integral cross sections for the title reaction were calculated. The significance of including the CC quantum scattering calculation has been revealed by the comparison between the CC and the centrifugal sudden approximation calculation. The calculated cross section is in agreement with the experimental result at collision energy 1.0 eV.

Hu Mei; Liu Xinguo; Tan Ruishan; Li Hongzheng [College of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Xu Wenwu [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

2013-05-07T23:59:59.000Z

419

Field and Laboratory Study of a Ground-Coupled Water Source Heat Pump with an Integral Enthalpy Exchange System for Classrooms  

E-Print Network (OSTI)

School classroom space-conditioning equipment in hot and humid climates is often excessively burdened by the requirement to dehumidify incoming air to maintain proper thermal comfort and air quality. To that end, application of new or modified technologies is needed to increase the dehumidification abilities of equipment without compromising energy efficiency or the need for fresh ventilation air. To study the effectiveness of integrated heat pump and enthalpy exchange equipment, a nominal 4-ton water-source heat pump, coupled with a geothermal water loop and incorporating a forced fresh-air enthalpy exchange system was installed in a typical middle school classroom in Oak Ridge, Tennessee. This project is a joint effort among Oak Ridge School District, Tennessee Valley Authority, Energy Office of the State of Tennessee, and Oak Ridge National Laboratory. The retrofit classroom, along with a similar baseline classroom (employing a water source heat pump supplied by a boiler/cooling tower loop), were instrumented with an Internet-based system to control and monitor performance, efficiency, and a variety of air states. Those include classroom air, outdoor air, semi-conditioned fresh air, and supply air. Particular attention was dedicated to the humidity content and the carbon dioxide content of conditioned space (classroom) air and to the intake rate of forced fresh air. This field study builds on a previous laboratory study of a water-source heat pump coupled to an enthalpy recovery system. The laboratory work showed good potential for reducing the moisture load from forced ventilation air. At simulated outdoor conditions of 90°F (32.2°C) and 90% RH, the enthalpy recovery wheel in the nominal 2-ton system was able to capture and exhaust 9.9 lb of moisture that would otherwise have to be handled solely by the cooling coil.

Domitrovic, R.; Hayzen, G. J.; Johnson, W. S.; Chen, F. C.

2002-01-01T23:59:59.000Z

420

Electrical Subsurface Grounding Analysis  

SciTech Connect

The purpose and objective of this analysis is to determine the present grounding requirements of the Exploratory Studies Facility (ESF) subsurface electrical system and to verify that the actual grounding system and devices satisfy the requirements.

J.M. Calle

2000-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas  

SciTech Connect

As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

Walters, W.H.; Dirkes, R.L.; Napier, B.A.

1992-04-01T23:59:59.000Z

422

Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas  

Science Conference Proceedings (OSTI)

As part of the Hanford Environmental Dose Reconstruction (HEDR) Project, Battelle, Pacific Northwest Laboratories reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Radionuclide concentration data were used in preliminary estimates of individual dose for the period 1964 through 1966. This report summarizes the literature and database reviews and the results of the preliminary dose estimates.

Walters, W.H.; Dirkes, R.L.; Napier, B.A.

1992-11-01T23:59:59.000Z

423

Use of a Coupled Land Surface General Circulation Model to Examine the Impacts of Doubled Stomatal Resistance on the Water Resources of the American Southwest  

Science Conference Proceedings (OSTI)

Tiny openings on the surfaces of leaves, stomata, control the flux of CO2, water vapor, and other gases between the atmosphere and the earth’s vegetated surface. An increase in atmospheric CO2 could have an effect on stomatal openings, causing ...

Marian Martin; Robert E. Dickinson; Zong-Liang Yang

1999-12-01T23:59:59.000Z

424

Supplement to the UMTRA Project water sampling and analysis plan, Ambrosia Lake, New Mexico  

SciTech Connect

The Ambrosia Lake Uranium Mill Tailings Remedial Action (UMTRA) Project site is in McKinley County, New Mexico. As part of UMTRA surface remediation, residual radioactive materials were consolidated on the site in a disposal cell that was completed July 1995. The need for ground water monitoring was evaluated and found not to be necessary beyond the completion of the remedial action because the ground water in the uppermost aquifer is classified as limited use.

NONE

1995-08-01T23:59:59.000Z

425

Calibration and validation of a distributed energy water balance model using satellite data of land surface temperature and ground discharge measurements  

Science Conference Proceedings (OSTI)

Distributed hydrological models of energy and mass balance need as inputs many soil and vegetation parameters, which are usually difficult to define. This paper will try to approach this problem by performing a pixel to pixel calibration procedure ...

Chiara Corbari; Marco Mancini

426

Local Water Quality Districts (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Water Quality Districts (Montana) Local Water Quality Districts (Montana) Local Water Quality Districts (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Institutional Multi-Family Residential Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Environmental Quality This statute provides for the creation of local water quality districts to prevent and mitigate ground and surface water contamination. Each local

427

Uranium Mill Tailings Remedial Action Project surface project management plan  

SciTech Connect

This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

Not Available

1994-09-01T23:59:59.000Z

428

Burial Ground Uptake Studies - Surface Contamination  

SciTech Connect

This study reports the findings from surficial, aerially deposited materials present at a particular distance from H- and F-Area stacks. A mathematical computer model, DOSTOMAN, has been developed to evaluate the long-term potential hazard associated with burying low-level beta-gamma TRU wastes. The model predicts the dose to man due to radionuclide transfer through environmental pathways after plans operations and waste surveillance cease.

Gay, D.D.

2001-08-16T23:59:59.000Z

429

Observations of Northern Latitude Ground-Surface  

E-Print Network (OSTI)

significant temperature trends. #12;New Borehole Surveys · Platinum RTD, calibrated to ±0.01o C · Fit straight

Woodbury, Allan D.

430

Preliminary study of the potential environmental concerns associated with surface waters and geothermal development of the Valles Caldera  

DOE Green Energy (OSTI)

A preliminary evaluation is presented of possible and probable problems that may be associated with hydrothermal development of the Valles Caldera Known Geothermal Resource Area (KGRA), with specific reference to surface waters. Because of the history of geothermal development and its associated environmental impacts, this preliminary evaluation indicates the Valles Caldera KGRA will be subject to these concerns. Although the exact nature and size of any problem that may occur is not predictable, the baseline data accumulated so far have delineated existing conditions in the streams of the Valles Caldera KGRA. Continued monitoring will be necessary with the development of geothermal resources. Further studies are also needed to establish guidelines for geothermal effluents and emissions.

Langhorst, G.J.

1980-06-01T23:59:59.000Z

431

COMPARISON OF RESULTS FOR QUARTER 1 SURFACE WATER SPLIT SAMPLES COLLECTED AT THE NUCLEAR FUEL SERVICES SITE ERWIN, TENNESSEE  

Science Conference Proceedings (OSTI)

Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on August 22, 2012. Representatives from the U.S. Nuclear Regulatory Commission and Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses. The comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER ? 3 indicates that, at a 99% confidence interval, split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty. The NFS split sample report does not specify the confidence level of reported uncertainties. Therefore, standard two sigma reporting is assumed and uncertainty values were divided by 1.96. A comparison of split sample results, using the DER equation, indicates one set with a DER greater than 3. A DER of 3.1 is calculated for gross alpha results from ORAU sample 5198W0003 and NFS sample MCU-310212003. The ORAU result is 0.98 ± 0.30 pCi/L (value ± 2 sigma) compared to the NFS result of -0.08 ± 0.60 pCi/L. Relatively high DER values are not unexpected for low (e.g., background) analyte concentrations analyzed by separate laboratories, as is the case here. It is noted, however, NFS uncertainties are at least twice the ORAU uncertainties, which contributes to the elevated DER value. Differences in ORAU and NFS minimum detectable activities are even more pronounced. comparison of ORAU and NFS split samples produces reasonably consistent results for low (e.g., background) concentrations.

David A. King, CHP, PMP

2012-10-10T23:59:59.000Z

432

Little Climates -- Weather Just Above The Ground  

NLE Websites -- All DOE Office Websites (Extended Search)

Weather Just Above The Ground Weather Just Above The Ground Nature Bulletin No. 481-A February 17, 1973 Forest Preserve District of Cook County George W, Dunne, President Roland F. Eisenbeis, Supt. of Conservation LITTLE CLIMATES -- Weather Just Above the Ground In a previous bulletin we talked about little climates, underground, resulting from weather conditions in the soil. Just above the ground there is another "little climate" equally important. We frequently see evidences of it without realizing how and why they were produced. Just above the earth, there lies a narrow layer of changeable weather that is affected at both surfaces by its mighty neighbors: the land below and the restless air in the atmosphere above it. Under the spell of gravity, it clings to the ground in spite of all but the swiftest winds. In this layer there are special weather conditions overlooked by nearly everyone.

433

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

434

Surface Environmental Surveillance Project: Locations Manual Volume 1 – Air and Water Volume 2 – Farm Products, Soil & Vegetation, and Wildlife  

SciTech Connect

This report describes all environmental monitoring locations associated with the Surface Environmental Surveillance Project. Environmental surveillance of the Hanford site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 450.1, Environmental Protection Program, and DOE Order 5400.5, Radiation Protection of the Public and the Environment. The environmental surveillance sampling design is described in the Hanford Site Environmental Monitoring Plan, United States Department of Energy, Richland Operation Office (DOE/RL-91-50). This document contains the locations of sites used to collect samples for the Surface Environmental Surveillance Project (SESP). Each section includes directions, maps, and pictures of the locations. A general knowledge of roads and highways on and around the Hanford Site is necessary to successfully use this manual. Supplemental information (Maps, Gazetteer, etc.) may be necessary if user is unfamiliar with local routes. The SESP is a multimedia environmental surveillance effort to measure the concentrations of radionuclides and chemicals in environmental media to demonstrate compliance with applicable environmental quality standards and public exposure limits, and assessing environmental impacts. Project personnel annually collect selected samples of ambient air, surface water, agricultural products, fish, wildlife, and sediments. Soil and vegetation samples are collected approximately every 5 years. Analytical capabilities include the measurement of radionuclides at very low environmental concentrations and, in selected media, nonradiological chemicals including metals, anions, volatile organic compounds, and total organic carbon.

Fritz, Brad G.; Patton, Gregory W.; Stegen, Amanda; Poston, Ted M.

2009-01-01T23:59:59.000Z

435

Electrical grounding prong socket  

SciTech Connect

The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket.

Leong, Robert (Dublin, CA)

1991-01-01T23:59:59.000Z

436

Predaceous Ground Beetles  

E-Print Network (OSTI)

Predaceous ground beetles can be a nuisance to homeowners, especially when they are numerous. This publication describes the beetles and discusses ways to prevent and treat them.

Sansone, Chris; Minzenmayer, Rick

2003-06-30T23:59:59.000Z

437

Substation grounding programs  

SciTech Connect

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 3, is a users manual and an installation and validation manual for the computer program SGSYS (Substation Grounding SYStem Analysis Program). This program analyzes the substation ground field given the total electric current injected into the ground field and the design of the grounding system. Standard outputs of the program are (1) total ground resistance, (2) step voltage, (3) touch voltage, (4) voltages on a grid of points, (5) voltage profile along straight lines, (6) transfer voltages, (7) ground potential rise, (8) body currents, (9) step voltage profile along straight lines, and (10) touch voltage profile along straight lines. This program can be utilized in an interactive or batch mode. In the interactive mode, the user defines the grounding system geometry, soil parameters, and output requests interactively, with the use of a user friendly conversational program. The users manual describes data requirements and data preparation procedures. An appendix provides forms which facilitate data collection procedures. The installation and validation manual describes the computer files which make up the program SGSYS and provides a test case for validation purposes.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

438

Definition: Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Ground Electromagnetic Techniques Jump to: navigation, search Dictionary.png Ground Electromagnetic Techniques Ground electromagnetic techniques measure electromagnetic fields in order to determine subsurface electrical resistivity with the earth surface as the observation point.[1] View on Wikipedia Wikipedia Definition The electromagnetic force is one of the four fundamental interactions in nature, the other three being the strong interaction, the weak interaction, and gravitation. This force is described by electromagnetic fields, and has innumerable physical instances including the interaction of electrically charged particles and the interaction of uncharged magnetic force fields with electrical conductors. The word

439

Validating the Validation: The Influence of Liquid Water Distribution in Clouds on the Intercomparison of Satellite and Surface Observations  

Science Conference Proceedings (OSTI)

The intercomparison of LWP retrievals from observations by a geostationary satellite imager [Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board Meteosat Second Generation (MSG)] and a ground-based microwave (MW) radiometer is ...

N. A. J. Schutgens; R. A. Roebeling

2009-08-01T23:59:59.000Z

440