National Library of Energy BETA

Sample records for ground water recovery

  1. Results of a ground-water and DNAPL recovery and containment strategy

    SciTech Connect (OSTI)

    Mazierski, P.F.; Connor, J.M. )

    1993-10-01

    Ground-water contamination and dense nonaqueous phase liquids (DNAPL) were discovered at the DuPont Necco Park Landfill in Niagara Falls, New York, shortly after the facility was closed in the late 1970s. The facility received a variety of solid and liquid process wastes, including chlorinated volatile and semivolatile organic compounds. A number of proactive response activities--including the operation of a ground-water recovery system, installation of a grout curtain, and DNAPL recovery--were implemented by DuPont concurrent with site characterization. These efforts minimized off-site contaminant migration and removed most of the recoverable free-phase DNAPL prior to completion of the full site characterization. Site investigations to characterize hydrogeologic controls over occurrence and migration of ground water and DNAPL revealed with distinct water-bearing zones beneath the site. A DNAPL recovery program, using gas-driven pump assemblies, was initiated in early 1989 at a small group of wells where DNAPL was frequently observed. The volume of recovered DNAPL declined over the next four years from a peak of 397 gallons per month in 1989 to little or no recovery in recent months.

  2. Ground water and energy

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  3. Resource Recovery Opportunities at America's Water Resource Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities | Department of Energy Resource Recovery Opportunities at America's Water Resource Recovery Facilities Resource Recovery Opportunities at America's Water Resource Recovery Facilities Breakout Session 3A-Conversion Technologies III: Energy from Our Waste (Will we Be Rich in Fuel or Knee Deep in Trash by 2025?) Resource Recovery Opportunities at America's Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL PDF icon

  4. Colorado Ground Water Commission | Open Energy Information

    Open Energy Info (EERE)

    Colorado Ground Water Commission Jump to: navigation, search Name: Colorado Ground Water Commission Place: Colorado Website: water.state.co.usgroundwater References: Colorado...

  5. Procedures for ground-water investigations

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual.

  6. Resource Recovery Opportunities at America's Water Resource Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL PDF icon williamsbiomass2014.pdf More Documents & ...

  7. Drain-Water Heat Recovery | Department of Energy

    Office of Environmental Management (EM)

    Heat & Cool Water Heating Drain-Water Heat Recovery Drain-Water Heat Recovery Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system....

  8. Drain-Water Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drain-Water Heat Recovery Drain-Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How...

  9. Tritium Ground Water Issues | Department of Energy

    Office of Environmental Management (EM)

    Ground Water Issues Tritium Ground Water Issues Presentation from the 35th Tritium Focus Group Meeting held in Princeton, New Jersey on May 05-07, 2015. PDF icon Tritium Ground Water Issues More Documents & Publications Managing Uncertainty and Demonstrating Compliance EA-1356: Final Environmental Assessment SRS FTF Section 3116 Basis for Determination

  10. Z-Bed Recovery Water Disposal

    Office of Environmental Management (EM)

    Z-Bed Recovery Water Disposal Tritium Programs Engineering Louis Boone Josh Segura Savannah River Nuclear Solutions, LLC M-TRT-H-00087 Rev 0 Date: 4/10/2014 Tritium Facilities Purpose * Provide detailed explanation of the plan to capture and dispose of Z-Bed Recovery (ZR) water. Agenda * New Technology * Background * Z-Bed Recovery Water Disposal * Cost Saving * Alternatives New Technology * Dry Disconnect Fittings * Double Door Transfer Container (DDTC) * Bucket (Stainless Steel ASME pressure

  11. [Waste water heat recovery system

    SciTech Connect (OSTI)

    Not Available

    1993-04-28

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  12. Remediation of Uranium-Contaminated Ground Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    costs, are highly energy efficient, and require no surface facilities or ground water pumpingrecharge (Freethey et al., 2002; Morrison and Spangler, 1992; Shoemaker et al., 1995). ...

  13. Procedures for ground-water investigations

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  14. Z-Bed Recovery Water Disposal

    Office of Environmental Management (EM)

    Z-Bed Recovery Water Disposal Tritium Programs Engineering Louis Boone Josh Segura Savannah River Nuclear Solutions, LLC M-TRT-H-00087 Rev 0 Date: 4102014 Tritium Facilities...

  15. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations Energy Positive Water Resource Recovery Workshop Presentations PDF icon McCormick4-28-2015.pdf PDF icon LuthyNSF-EPA-DOELuthyworkshop4-28v2.pdf PDF icon ...

  16. Document Number Q0029500 Ground Water Model 3.0 Ground Water Model

    Office of Legacy Management (LM)

    Ground Water Model 3.0 Ground Water Model This section presents a steady-state ground water flow model and a coupled solute transport model (ground water model) for the alluvial aquifer within OU 111 of the MMTS. Transport of uranium is simulated for a 50-yr period beginning October 2002. Uranium was selected among site COCs for transport modeling because it is the principal contributor to potential risk to human health. The model assumes stable ground water flow since completion of site

  17. Researching power plant water recovery

    SciTech Connect (OSTI)

    2008-04-01

    A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

  18. Natural radionuclides in ground waters and cores

    SciTech Connect (OSTI)

    Laul, J.C.; Smith, M.R.; Maiti, T.C.

    1988-01-01

    Investigations of natural radionuclides of uranium and thorium decay series in site-specific ground waters and cores (water/rock interaction) can provide information on the expected migration behavior of their radioactive waste and analog radionuclides in the unlikely event of radioactive releases from a repository. These data in ground waters can provide in situ retardation and sorption/desorption parameters for transport models and their associated kinetics (residence time). These data in cores can also provide information on migration or leaching up to a period of about one million years. Finally, the natural radionuclide data can provide baseline information for future monitoring of possible radioactive waste releases. The natural radionuclides of interest are {sup 238}U, {sup 234}Th, {sup 234}U, {sup 230}Th, {sup 226}Ra, {sup 222}Rn, {sup 210}Pb, {sup 210}Bi, {sup 210}Po, {sup 232}Th, {sup 228}Ra, {sup 228}Th, and {sup 224}Ra. The half-lives of the daughter radionuclides range from 3 days to 2.5 x 10{sup 5} yr. The data discussed are for low ionic strength ground waters from the Hanford (basalt) site and briny ground waters (high ionic strength) and cores from the Deaf Smith salt site. Similar applications of the natural radionuclide data can be extended to the Nevada Tuff repository site and subseabed disposal site. The concentrations of uranium, thorium, radium, lead, and polonium radionuclides are generally very low in ground waters. However, significant differences in disequilibrium exist between basalt and briny ground waters.

  19. Drain-Water Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating » Drain-Water Heat Recovery Drain-Water Heat Recovery Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water

  20. Appendix B Ground Water Management Policy

    Office of Legacy Management (LM)

    Ground Water Management Policy for the Monticello Mill Tailings Site and Adjacent Areas This page intentionally left blank Docun~ent Number Q0029500 Appendix B State of Utah DEPARTblENT OF NATURAL RESOURCES DIVISION OF WATER RIGHTS Ground-Water Management Policy for the Mot~ticello Mill Tailings Site and Adjacent Areas The Monticello Mill Tailings Site is on the southeast portion of the tovm of Monticello in Sectton 36, T33S, K23E and Section 31, i33S. R24E, SLB&M. The mill site was used

  1. Montana Ground Water Pollution Control System Permit Application...

    Open Energy Info (EERE)

    Ground Water Pollution Control System Permit Application Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution...

  2. Montana Ground Water Pollution Control System Information Webpage...

    Open Energy Info (EERE)

    Ground Water Pollution Control System Information Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution Control System...

  3. EPA - Ground Water Discharges (EPA's Underground Injection Control...

    Open Energy Info (EERE)

    Ground Water Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water...

  4. Water Quality Surface and Ground | Open Energy Information

    Open Energy Info (EERE)

    Water Quality Surface and Ground Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaterQualitySurfaceandGround&oldid612197" Feedback...

  5. Analysis of Contaminant Rebound in Ground Water in Extraction...

    Energy Savers [EERE]

    Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City,...

  6. An Updated Site Scale Saturated Zone Ground Water Transport Model...

    Office of Scientific and Technical Information (OSTI)

    An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca Mountain. Citation Details In-Document Search Title: An Updated Site Scale Saturated Zone Ground Water ...

  7. Energy Positive Water Resource Recovery Workshop Presentations | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Energy Positive Water Resource Recovery Workshop Presentations Energy Positive Water Resource Recovery Workshop Presentations Presentations: Keynote 1: Energy-Positive Water Resource Recovery Facilities Ed McCormick, President, WEF Keynote 2: Energy-Positive Wastewater Treatment and Re-Use Dr. Dick Luthy, Director, ReNUWIt, Stanford University Panel Discussion: Achieving Energy-Positive Water Resource Recovery Facilities Tom Speth, Director, Water Supply/Resources Division,

  8. Record of Decision for Ground Water | Department of Energy

    Energy Savers [EERE]

    Record of Decision for Ground Water Record of Decision for Ground Water Record of Decision for Ground Water (April 1997) PDF icon Record of Decision for Ground Water More Documents & Publications EIS-0198: Record of Decision EIS-0170: Record of Decision (April 1997) EIS-0251: Second Record of Decision (May 1997)

  9. Selenium in Oklahoma ground water and soil

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  10. Programmatic Environmental Impact Statement for Ground Water | Department

    Energy Savers [EERE]

    of Energy Programmatic Environmental Impact Statement for Ground Water Programmatic Environmental Impact Statement for Ground Water Programmatic Environmental Impact Statement for Ground Water Volumes I & II (October 1996) Optical character recognition has been applied to these files, but full search capabilities are not guaranteed. PDF icon Programmatic Environmental Impact Statement for Ground Water-Volume I PDF icon Programmatic Environmental Impact Statement for Ground Water-Volume

  11. Energy-Positive Water Resource Recovery Workshop Report Executive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Executive Summary Energy-Positive Water Resource Recovery Workshop Report Executive Summary Executive summary workshop report for the for the Energy-Positive Water Resource ...

  12. New Report Outlines Potential of Future Water Resource Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and the National Science Foundation (NSF) outlines a range of research and actions needed to transform today's water treatment plants into water resource recovery facilities. ...

  13. U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan

    Office of Legacy Management (LM)

    GWMON 1.12-1 U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan for the Land Farm Pilot Test Monument Valley, Arizona August 2000 Prepared by U.S. Department of Energy Grand Junction Ofice Grand Junction, Colorado Project Number UGW-5 1 1-001 5-21-000 Document Number U0106701 This page intentionally left blank Document Number U0106701 Contents Contents 1.0 Introduction

  14. Energy-Positive Water Resource Recovery Workshop Report | Department of

    Office of Environmental Management (EM)

    Energy Report Energy-Positive Water Resource Recovery Workshop Report Workshop report for the Energy-Positive Water Resource Recovery Workshop hosted by the National Science Foundation, the U.S. Environmental Protection Agency, and the U.S. Department of Energy on April 28-29, 2015, in Arlington, Virginia. PDF icon epwrr_workshop_report.pdf More Documents & Publications Energy-Positive Water Resource Recovery Workshop Report Executive Summary Resource Recovery Opportunities at America's

  15. A detection-level hazardous waste ground-water monitoring compliance plan for the 200 areas low-level burial grounds and retrievable storage units

    SciTech Connect (OSTI)

    Not Available

    1987-02-01

    This plan defines the actions needed to achieve detection-level monitoring compliance at the Hanford Site 200 Areas Low-Level Burial Grounds (LLBG) in accordance with the Resource Conservation and Recovery Act (RCRA). Compliance will be achieved through characterization of the hydrogeology and monitoring of the ground water beneath the LLBG located in the Hanford Site 200 Areas. 13 refs., 20 figs.

  16. Natural radionuclides in Hanford site ground waters

    SciTech Connect (OSTI)

    Smith, M.R.; Laul, J.C.; Johnson, V.G.

    1987-10-01

    Uranium, Th, Ra, Rn, Pb and Po radionuclide concentrations in ground waters from the Hanford Site indicate that U, Th, and Ra are highly sorbed. Relative to Rn, these radionuclides are low by factors of 10/sup -3/ to 10/sup -6/. Uranium sorption is likely due to its reduction from the +6 state, where it is introduced via surface waters, to the +4 state found in the confined aquifers. The distribution of radionuclides is very similar in all of the confined aquifers and significantly different from the distribution observed in the unconfined and surface waters. Barium correlates well with Ra over three orders of magnitude, indicating that stable element analogs may be useful for inferring the behavior of radioactive waste radionuclides in this candidate geologic repository. 8 refs., 7 figs., 1 tab.

  17. Designated Ground Water Basin Map | Open Energy Information

    Open Energy Info (EERE)

    Designated Ground Water Basin Map Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Designated Ground Water Basin Map Abstract This webpage provides...

  18. Appendix E Supporting Information for Ground Water Modeling

    Office of Legacy Management (LM)

    Supporting Information for Ground Water Modeling This page intentionally left blank Contents Section Geologic Map of Site Area ........................................................................................................ E1.O Stream Flow Measurements ...................................................................................................... E2.0 Estimates of Ground Water Flow .............................................................................................. E3.0

  19. Energy Positive Water Resource Recovery Workshop Report | Department of

    Energy Savers [EERE]

    Energy Energy Positive Water Resource Recovery Workshop Report Energy Positive Water Resource Recovery Workshop Report View the workshop presentations. Workshop Report: Water Resource Cover.jpg This report captures the proceedings of the Energy-Positive Water Resource Recovery (EPWRR) Workshop hosted jointly by the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), and the National Science Foundation (NSF) on April 28-29, 2015. The workshop gathered stakeholders

  20. Ground Water Management District Rules | Open Energy Information

    Open Energy Info (EERE)

    Water Management District Rules Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Ground Water Management District Rules Abstract This webpage provides...

  1. Two-Dimensional Ground Water Transport

    Energy Science and Technology Software Center (OSTI)

    1992-03-05

    FRACFLO computes the two-dimensional, space, time dependent, convective dispersive transport of a single radionuclide in an unbounded single or multiple parallel fracture system with constant aperture. It calculates the one-dimensional diffusive transport into the rock matrix as well as the mass flux and cumulative mass flux at any point in the fracture. Steady-state isothermal ground water flow and parallel streamlines are assumed in the fracture, and the rock matrix is considered to be fully saturatedmore » with immobile water. The model can treat a single or multiple finite patch source or a Gaussian distributed source subject to a step or band release mode.« less

  2. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    SciTech Connect (OSTI)

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; Normand, Jonathan; Dermond, Jeffrey A.; Fang, Yilin; Sullivan, E. C.

    2015-08-11

    A main issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3/yr-1 into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.

  3. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; Normand, Jonathan; Dermond, Jeffrey A.; Fang, Yilin; Sullivan, E. C.

    2015-08-11

    A main issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3/yr-1more » into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.« less

  4. New Report Outlines Potential of Future Water Resource Recovery Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Report Outlines Potential of Future Water Resource Recovery Facilities New Report Outlines Potential of Future Water Resource Recovery Facilities November 3, 2015 - 12:19pm Addthis New Report Outlines Potential of Future Water Resource Recovery Facilities A new report from a workshop held jointly by the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), and the National Science Foundation (NSF) outlines a range of research and actions

  5. Integration of a "Passive Water Recovery" MEA into a Portable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Integration of a "Passive Water Recovery" MEA into a Portable DMFC Power Supply Webinar Slides More Documents & Publications Polyvinylidene Fluoride-Based Membranes for ...

  6. natural gas+ condensing flue gas heat recovery+ water creation...

    Open Energy Info (EERE)

    natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

  7. Water-related Issues Affecting Conventional Oil and Gas Recovery...

    Office of Scientific and Technical Information (OSTI)

    Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Michael Vanden Berg; Paul Anderson; Janae Wallace;...

  8. Ground water hydrology report: Revision 1, Attachment 3. Final

    SciTech Connect (OSTI)

    1996-12-01

    This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards.

  9. Water-related Issues Affecting Conventional Oil and Gas Recovery...

    Office of Scientific and Technical Information (OSTI)

    Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Citation Details In-Document Search Title: Water-relat...

  10. Water-related Issues Affecting Conventional Oil and Gas Recovery...

    Office of Scientific and Technical Information (OSTI)

    Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Citation Details In-Document Search Title: Water-re...

  11. Appendix D Surface Water and Ground Water Time-Concentration Plots,

    Office of Legacy Management (LM)

    Surface Water and Ground Water Time-Concentration Plots, Stream Discharge Measurements, Ground Water Level Data, and Ground Water Well Hydrographs This page intentionally left blank Contents Section .................................................................................. Surface Water Time-Concentration Plots D1.O ............................................................................................... Stream Discharge Measurements D2.0

  12. Ground water in Animas Valley, Hidalgo County, New Mexico | Open...

    Open Energy Info (EERE)

    to library Report: Ground water in Animas Valley, Hidalgo County, New Mexico Author H. O. Reeder Published New Mexico State Engineer's Office, 1957 Report Number Technical...

  13. Hanford Site ground-water monitoring for 1994

    SciTech Connect (OSTI)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  14. Energy Positive Water Resource Recovery Workshop Presentations | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Presentations: Keynote 1: Energy-Positive Water Resource Recovery Facilities Ed McCormick, President, WEF Keynote 2: Energy-Positive Wastewater Treatment and Re-Use Dr. Dick Luthy, Director, ReNUWIt, Stanford University Panel Discussion: Achieving Energy-Positive Water Resource Recovery Facilities Tom Speth, Director, Water Supply/Resources Division, ORD-NRMRL, EPA (Moderator) Dr. Brent Giles, Senior Analyst, Lux Research Dr. Kartik Chandran, Director WWTP and Climate Change,

  15. Energy-Positive Water Resource Recovery Workshop Report Executive Summary |

    Office of Environmental Management (EM)

    Department of Energy Report Executive Summary Energy-Positive Water Resource Recovery Workshop Report Executive Summary Executive summary workshop report for the for the Energy-Positive Water Resource Recovery Workshop hosted by the National Science Foundation, the U.S. Environmental Protection Agency, and the U.S. Department of Energy on April 28-29, 2015, in Arlington, Virginia. PDF icon epwrr_workshop_executive_summary.pdf More Documents & Publications Energy-Positive Water Resource

  16. Procedures for ground-water investigations. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  17. GE Develops High Water Recovery Technology in China | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Develops High Water Recovery Technology in China Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window)...

  18. Energy Positive Water Resource Recovery Workshop Related Documents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Documents Energy Positive Water Resource Recovery Workshop Related Documents PDF icon WTE-Workshop-Report-Executive-Summary-DRAFT.pdf PDF icon WERF.ENER1C12-Executive-Summa...

  19. Energy Positive Water Resource Recovery Workshop Related Documents |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Related Documents Energy Positive Water Resource Recovery Workshop Related Documents PDF icon WTE-Workshop-Report-Executive-Summary-DRAFT.pdf PDF icon WERF.ENER1C12-Executive-Summary.pdf PDF icon FCTO-BETO-2015-Workshop-Summary-Outline.pdf More Documents & Publications Energy-Positive Water Resource Recovery Workshop Report Waste-to-Energy Workshop Summary Report "Wet" Waste-to-Energy in the Bioenergy Technologies Office

  20. 40 CFR 265 interim-status ground-water monitoring plan for the 2101-M pond

    SciTech Connect (OSTI)

    Chamness, M.A.; Luttrell, S.P.; Dudziak, S.

    1989-03-01

    This report outlines a ground-water monitoring plan for the 2101-M pond, located in the southwestern part of the 200-East Area on the Hanford Site in south-central Washington State. It has been determined that hazardous materials may have been discharged to the pond. Installation of an interim-status ground-water monitoring system is required under the Resource Conservation and Recovery Act to determine if hazardous chemicals are moving out of the pond. This plan describes the location of new wells for the monitoring system, how the wells are to be completed, the data to be collected, and how those data can be used to determine the source and extent of any ground-water contamination from the 2101-M pond. Four new wells are planned, one upgradient and three downgradient. 35 refs., 12 figs., 9 tabs.

  1. Hanford Site ground-water monitoring for 1993

    SciTech Connect (OSTI)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  2. Resource Recovery OpportunitiesatAmericas Water Resource Recovery Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 by CH2M HILL, Inc. CH2MHILL® Resource Recovery Opportunities at America's Water Resource Recovery Facilities By Todd Williams, PE, BCEE Wastewater Global Service Team Deputy Leader Biomass 2014: Growing the Future Bioeconomy Washington, DC July 30, 2014 CH2MHILL Today  Operations on all continents  Approximately 28,000 employees  100 percent owned by our employees  Broadly diversified across multiple business sectors  US$7 billion in revenue We are an industry leader in

  3. Recovery of Water from Boiler Flue Gas

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

    2008-09-30

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

  4. ARM - Field Campaign - AIRS Water Vapor Experiment - Ground ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsAIRS Water Vapor Experiment - Ground (AWEX-G) ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at...

  5. EPA Final Ground Water Rule Available Online, 3/07

    Broader source: Energy.gov [DOE]

    On November 8, 2006, the U.S. Environmental Protection Agency (EPA) published a final Ground Water Rule (GWR) to promote increased protection against microbial pathogens that may be present in...

  6. Ground-water flow and ground- and surface-water interaction at the Weldon Spring quarry, St. Charles County, Missouri

    SciTech Connect (OSTI)

    Imes, J.L.; Kleeschulte, M.J.

    1997-12-31

    Ground-water-level measurements to support remedial actions were made in 37 piezometers and 19 monitoring wells during a 19-month period to assess the potential for ground-water flow from an abandoned quarry to the nearby St. Charles County well field, which withdraws water from the base of the alluvial aquifer. From 1957 to 1966, low-level radioactive waste products from the Weldon Spring chemical plant were placed in the quarry a few hundred feet north of the Missouri River alluvial plain. Uranium-based contaminants subsequently were detected in alluvial ground water south of the quarry. During all but flood conditions, lateral ground-water flow in the bedrock from the quarry, as interpreted from water-table maps, generally is southwest toward Little Femme Osage Creek or south into the alluvial aquifer. After entering the alluvial aquifer, the ground water flows southeast to east toward a ground-water depression presumably produced by pumping at the St. Charles County well field. The depression position varies depending on the Missouri River stage and probably the number and location of active wells in the St. Charles County well field.

  7. Uranium isotopes in ground water as a prospecting technique

    SciTech Connect (OSTI)

    Cowart, J.B.; Osmond, J.K.

    1980-02-01

    The isotopic concentrations of dissolved uranium were determined for 300 ground water samples near eight known uranium accumulations to see if new approaches to prospecting could be developed. It is concluded that a plot of /sup 234/U//sup 238/U activity ratio (A.R.) versus uranium concentration (C) can be used to identify redox fronts, to locate uranium accumulations, and to determine whether such accumulations are being augmented or depleted by contemporary aquifer/ground water conditions. In aquifers exhibiting flow-through hydrologic systems, up-dip ground water samples are characterized by high uranium concentration values (> 1 to 4 ppB) and down-dip samples by low uranium concentration values (less than 1 ppB). The boundary between these two regimes can usually be identified as a redox front on the basis of regional water chemistry and known uranium accumulations. Close proximity to uranium accumulations is usually indicated either by very high uranium concentrations in the ground water or by a combination of high concentration and high activity ratio values. Ground waters down-dip from such accumulations often exhibit low uranium concentration values but retain their high A.R. values. This serves as a regional indicator of possible uranium accumulations where conditions favor the continued augmentation of the deposit by precipitation from ground water. Where the accumulation is being dispersed and depleted by the ground water system, low A.R. values are observed. Results from the Gulf Coast District of Texas and the Wyoming districts are presented.

  8. Water recovery using waste heat from coal fired power plants.

    SciTech Connect (OSTI)

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  9. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    SciTech Connect (OSTI)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  10. Revised ground-water monitoring compliance plan for the 300 area process trenches

    SciTech Connect (OSTI)

    Schalla, R.; Aaberg, R.L.; Bates, D.J.; Carlile, J.V.M.; Freshley, M.D.; Liikala, T.L.; Mitchell, P.J.; Olsen, K.B.; Rieger, J.T.

    1988-09-01

    This document contains ground-water monitoring plans for process-water disposal trenches located on the Hanford Site. These trenches, designated the 300 Area Process Trenches, have been used since 1973 for disposal of water that contains small quantities of both chemicals and radionuclides. The ground-water monitoring plans contained herein represent revision and expansion of an effort initiated in June 1985. At that time, a facility-specific monitoring program was implemented at the 300 Area Process Trenches as part of a regulatory compliance effort for hazardous chemicals being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interim-status facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The applicable monitoring requirements are described in the Resource Conservation and Recovery Act (RCRA), 40 CFR 265.90 of the federal regulations, and in WAC 173-303-400 of Washington State's regulations (Washington State Department of Ecology 1986). The program implemented for the process trenches was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. The plans for the program, contained in a document prepared by the US Department of Energy (USDOE) in 1985, called for monthly sampling of 14 of the 37 existing monitoring wells at the 300 Area plus the installation and sampling of 2 new wells. 27 refs., 25 figs., 15 tabs.

  11. UMTRA Ground Water Project management action process document

    SciTech Connect (OSTI)

    1996-03-01

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards.

  12. Energy Positive Water Resource Recovery Workshop Presentations | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Presentations Energy Positive Water Resource Recovery Workshop Presentations PDF icon McCormick_4-28-2015.pdf PDF icon Luthy_NSF-EPA-DOE_Luthy_workshop_4-28_v2.pdf PDF icon Giles_Washington_DC_April_2015_WW.pdf PDF icon Kartik_Chandran_DOE_EPA_NSF_Workshop_Presentation_Slides.pdf PDF icon Kohl_2014-04-28_Kohl_NSF_slides_for_Tom_Speth.pdf PDF icon Fillmore_WERF_NSF_panel.4.29.2015.pdf PDF icon Shuman_NSF_Conference_2015.pdf PDF icon

  13. ARM 17-30-10 - Ground Water Pollution Control System | Open Energy...

    Open Energy Info (EERE)

    - Ground Water Pollution Control System Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: ARM 17-30-10 - Ground Water...

  14. U.A.C. R317-6: Ground Water Quality Protection | Open Energy...

    Open Energy Info (EERE)

    6: Ground Water Quality Protection Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: U.A.C. R317-6: Ground Water Quality...

  15. File:04NVBTemporaryUseOfGroundWaterForExploration.pdf | Open...

    Open Energy Info (EERE)

    NVBTemporaryUseOfGroundWaterForExploration.pdf Jump to: navigation, search File File history File usage Metadata File:04NVBTemporaryUseOfGroundWaterForExploration.pdf Size of this...

  16. Vertical Distribution of Contamination in Ground Water at the Tuba City,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona, Site | Department of Energy Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site PDF icon Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site More Documents & Publications EA-1268: Final Environmental Assessment Diffusion Multilayer

  17. Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba

    Office of Environmental Management (EM)

    City, Arizona, Site | Department of Energy Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site PDF icon Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site More Documents & Publications Analysis of MSE Cores Tuba City, Arizona,

  18. Isotopic discontinuities in ground water beneath Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Stuckless, J.S.; Whelan, J.F.; Steinkampf, W.C.

    1991-05-01

    Analytical data for stable isotopes in ground water from beneath Yucca Mountain, when examined in map view, show areal patterns of heterogeneity that can be interpreted in terms of mixing of at least three end members. One end member must be isotopically heavy in terms of hydrogen and oxygen and have a young apparent {sup 14}C age such as water found at the north end of Yucca Mountain beneath Fortymile Wash. A second end member must contain isotopically heavy carbon and have an old apparent {sup 14}C age such as water from the Paleozoic aquifer. The third end member cannot be tightly defined. It must be isotopically lighter than the first with respect of hydrogen and oxygen and be intermediate to the first and second end members with respect to both apparent {sup 14}C age and {delta}{sup 13}C. The variable isotopic compositions of hydrogen and oxygen indicate that two of the end members are waters, but the variable carbon isotopic composition could represent either a third water end member or reaction of water with a carbon-bearing solids such as calcite. 15 refs., 4 figs., 1 tab.

  19. RCRA ground-water monitoring: Draft technical guidance

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    The manual was prepared to provide guidance for implementing the ground-water monitoring regulations for regulated units contained in 40 CFR Part 264 Subpart F and the permitting standards of 40 CFR Part 270. The manual also provides guidance to owners and operators of treatment, storage, and disposal facilities (TSDFs) that are required to comply with the requirements of 40 CFR Part 264 Subparts J (Tank Systems), K (Surface Impoundments), L (Waste Piles), N (Landfills), and X (Miscellaneous Units). This document updates technical information contained in other sources of U.S. EPA guidance, such as chapter eleven of SW-846 (Revision O, September 1986) and the Technical Enforcement Guidance Document (TEGD).

  20. Combined heat recovery and make-up water heating system

    SciTech Connect (OSTI)

    Kim, S.Y.

    1988-05-24

    A cogeneration plant is described comprising in combination: a first stage source of hot gas; a duct having an inlet for receiving the hot gas and an outlet stack open to the atmosphere; a second stage recovery heat steam generator including an evaporator situated in the duct, and economizer in the duct downstream of the evaporator, and steam drum fluidly connected to the evaporator and the economizer; feedwater supply means including a deaerator heater and feedwater pump for supplying deaerated feedwater to the steam drum through the economizer; makeup water supply means including a makeup pump for delivering makeup water to the deaerator heater; means fluidly connected to the steam drum for supplying auxiliary steam to the deaerator heater; and heat exchanger means located between the deaerator and the economizer, for transferring heat from the feedwater to the makeup water, thereby increasing the temperature of the makeup water delivered to the deaerator and decreasing the temperature of the feedwater delivered to the economizer, without fluid exchange.

  1. Monitoring Environmental Recovery at Terminated Produced Water Discharge Sites in Coastal Louisiana Waters

    SciTech Connect (OSTI)

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents the results of a study of terminated produced water discharge sites in the coastal waters of Louisiana. Environmental recovery at the sites is documented by comparing pre-termination and post-termination (six months and one year) data. Produced water, sediments, and sediment interstitial water samples were analyzed for radionuclides, metals, and hydrocarbons. Benthic infauna were identified from samples collected in the vicinity of the discharge and reference sites. Radium isotope activities were determined in fish and crustacean samples. In addition, an environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  2. [Waste water heat recovery system]. Final report, September 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-04-28

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  3. Selected ground-water data for Yucca Mountain Region, Southern Nevada and Eastern California, through December 1997

    SciTech Connect (OSTI)

    La Camera, Richard J.; Locke, Glenn L.; Munson, Rodney H.

    1999-07-30

    Data on ground-water levels, discharges, and withdrawals from a variety of ground-water sources in the study area are reported for calendar year 1997.

  4. Oil Recovery Enhancement from Fractured, Low Permeability Reservoirs. [Carbonated Water

    DOE R&D Accomplishments [OSTI]

    Poston, S. W.

    1991-01-01

    The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks. Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.

  5. NMAC 20.6.2 Ground and Surface Water Protection | Open Energy...

    Open Energy Info (EERE)

    6.2 Ground and Surface Water Protection Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 20.6.2 Ground and Surface...

  6. Update to the Ground-Water Withdrawals Database for the Death Valley REgional Ground-Water Flow System, Nevada and California, 1913-2003

    SciTech Connect (OSTI)

    Michael T. Moreo; and Leigh Justet

    2008-07-02

    Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 19131998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

  7. Ground-Water Table and Chemical Changes in an Alluvial Aquifer During

    Office of Environmental Management (EM)

    Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells | Department of Energy Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the

  8. Construction Summary and As-Built Report for Ground Water Treatment System

    Office of Environmental Management (EM)

    Monticello, Utah, Permeable Reactive Barrier Site | Department of Energy Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site PDF icon Construction Summary and As-Built

  9. Non-Lawyers' Guide to Hearings before the Colorado Ground Water...

    Open Energy Info (EERE)

    Lawyers' Guide to Hearings before the Colorado Ground Water Commission Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  10. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    SciTech Connect (OSTI)

    1995-05-01

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

  11. Hanford Site ground-water monitoring for July through December 1987

    SciTech Connect (OSTI)

    Evans, J.C.; Dennison, D.I.; Bryce, R.W.; Mitchell, P.J.; Sherwood, D.R.; Krupka, K.M.; Hinman, N.W.; Jacobson, E.A.; Freshley, M.D.

    1988-12-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between July and December 1987 included monitoring ground-water elevations across the Site, monitoring hazardous chemicals and radionuclides in ground water, geochemical evaluations of unconfined ground-water data, and calibration of ground-water flow and transport models. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Central Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. The MINTEQ geochemical code was used to identify chemical reactions that may be affecting the concentrations of dissolved hazardous chemicals in the unconfined ground water. Results indicate that many cations are present mainly as dissolved carbonate complexes and that a majority of the ground-water samples are in near equilibrium with carbonate minerals (e.g., calcite, dolomite, otavite).

  12. Integration of a "Passive Water Recovery" MEA into a Portable DMFC Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supply | Department of Energy Integration of a "Passive Water Recovery" MEA into a Portable DMFC Power Supply Integration of a "Passive Water Recovery" MEA into a Portable DMFC Power Supply Download slides from the presentation by the University of North Florida at the July 17, 2012, Fuel Cell Technologies Program webinar, "Fuel Cells for Portable Power." PDF icon Integration of a "Passive Water Recovery" MEA into a Portable DMFC Power Supply Webinar

  13. 5 CCR 1002-42 Site Specific Water Quality Standards for Ground...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: 5 CCR 1002-42 Site Specific Water Quality Standards for Ground WaterLegal Abstract...

  14. Evaluation of the US Geological Survey ground-water data-collection program in Hawaii, 1992. Water-resources investigations

    SciTech Connect (OSTI)

    Anthony, S.S.

    1997-12-31

    This report describes an evaluation of the 1992 USGS ground-water data-collection program in Hawaii. The occurrence of ground water in the Hawaiian islands is briefly described. Objectives for the data-collection program are identified followed by a description of well networks needed to prepare maps of water levels and chloride concentrations. For the islands of Oahu, Kauai, Maui, Molokai, and Hawaii, the wells in the 1992 ground-water data-collection program are described followed by maps showing the distribution and magnitude of pumpage, and the distribution of proposed pumped wells. Wells in the 1992 USGS ground-water data-collection program that provide useful data for mapping water levels and chloride concentrations are identified followed by locations where additional wells are needed for water-level and chloride-concentration data. In addition, a procedure to store and review data is described.

  15. Ground-water data for 1990--91 and ground-water withdrawals for 1951--91, Nevada Test Site and vicinity, Nye County, Nevada

    SciTech Connect (OSTI)

    Wood, D.B.; Reiner, S.R.

    1996-12-31

    This report presents selected ground-water data collected from wells and test holes at and in the vicinity of the Nevada Test Site. Depth-to-water measurements were made at 74 sites at and in the vicinity of the Nevada Test Site during water years 1990--91. Measured depths to water ranged from 301 to 2,215 feet below land surface and measured altitudes of the ground-water surface at the Nevada Test Site ranged from 2,091 to 6,083 feet above sea level. Depth-to-water measurements were obtained by a combination of wire-line, electric-tape, iron-horse, and steel-tape methods. Available historic withdrawal and depth-to-water data for ground-water supply wells have been included to show changes through time. Water samples were collected and analyzed for tritium concentrations at 15 sites during water years 1990--91. Tritium concentrations in bailed water samples ranged from below detection limits to 5,550,000 picocuries per liter. Tritium concentrations in samples from three wells exceeded drinking water standards established by the US Environmental Protection Agency. All three wells are separate piezometers contained within a single test hole near an area of extensive underground nuclear testing.

  16. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    SciTech Connect (OSTI)

    James A Menart, Professor

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ???¢????????Finite Volume Based Computer Program for Ground Source Heat Pump Systems.???¢??????? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP system

  17. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado

    SciTech Connect (OSTI)

    1995-09-01

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site is under way and is scheduled for completion in 1996. The tailings are being stabilized in-place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the environment. Currently, no points of exposure (e.g. a drinking water well); and no receptors of contaminated ground water have been identified at the Maybell site. Therefore, there are no current human health and ecological risks associated with exposure to contaminated ground water. Furthermore, if current site conditions and land- and water-use patterns do not change, it is unlikely that contaminated ground water would reach people or the ecological communities in the future.

  18. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    SciTech Connect (OSTI)

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  19. Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Nick Rosenberry, Harris Companies

    2012-05-04

    A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

  20. Ground-water surveillance at the Hanford Site for CY 1983

    SciTech Connect (OSTI)

    Prater, L.S.; Rieger, J.T.; Cline, C.S.; Jensen, E.J.; Liikala, T.L.; Oster, K.R.

    1984-07-01

    Operations at the Hanford Site have resulted in the discharge of large volumes of process cooling water and other waste waters to the ground. These effluents contain low level of radioactive and chemical substances. During 1983, 328 monitoring wells were sampled at various times for radioactive and chemical constituents. Three of these constituents, specifically tritium, nitrate, and gross beta activity, were selected for detailed discussion in this report because they are more readily transported in the ground water than some of the other constituents. Transport of these constituents in the ground water has resulted in the formation of plumes that can be mapped by contouring the analytical data obtained from the monitoring wells. This report describes recent changes in the configuration of the tritium, nitrate and gross beta plumes. Changes or trends in contaminant levels in wells located within both the main plumes (originating from the 200 Areas) and the smaller plumes are discussed in this report. Two potential pathways for radionuclide transport from the ground water to the environmental are discussed in this report, and the radiological impacts are examined. In addition to describing the present status of the ground water beneath the Hanford Site, this report contains the results of studies conducted in support of the ground-water surveillance effort during CY 1983. 21 references, 26 figures, 5 tables.

  1. GE Develops High Water Recovery Technology in China | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Develops High Water Recovery Technology in China Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Develops High Water Recovery Technology in China Technology aims to boost development of China's household water purification industry SHANGHAI, September. 17, 2015 - A team of scientists led by the Coating and Membrane

  2. Water-related Issues Affecting Conventional Oil and Gas Recovery and

    Office of Scientific and Technical Information (OSTI)

    Potential Oil-Shale Development in the Uinta Basin, Utah (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Citation Details In-Document Search Title: Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Saline water disposal is one of the most pressing issues

  3. Integration of a "Passive Water Recovery" MEA into a Portable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Membrane Liquid Barrier Layer Optimization Extensive effort to control ... key to water balance MEA Performance Optimization * MEA optimization has resulted in ...

  4. DOE Moab Site Cost-Effectively Eliminates 200 Million Gallons of Contaminated Ground Water

    Broader source: Energy.gov [DOE]

    Grand Junction, CO ― The Department of Energy (DOE) announced today that it has extracted 200 million gallons of contaminated ground water from the Moab site in Utah as part of the Moab Uranium Mill Tailings Remedial Action Project.

  5. EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill...

  6. Environmental Assessment of Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    N /A

    2002-08-13

    The U.S. Department of Energy (DOE) is in the process of selecting a ground water compliance strategy for the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. This Environmental Assessment (EA) discusses two alternatives and the effects associated with each. The two alternatives are (1) natural flushing coupled with institutional controls and continued monitoring and (2) no action. The compliance strategy must meet U.S. Environmental Protection Agency (EPA) ground water standards defined in Title 40 ''Code of Federal Regulations'' Part 192, Subpart B, in areas where ground water beneath and around the site is contaminated as a result of past milling operations. It has been determined that contamination in the ground water at the Gunnison site consists of soluble residual radioactive material (RRM) as defined in the Uranium Mill Tailings Radiation Control Act (UMTRCA).

  7. 5 CCR 1002-41 Basic Standards for Ground Water | Open Energy...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: 5 CCR 1002-41 Basic Standards for Ground WaterLegal Abstract Regulations implementing the...

  8. An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca

    Office of Scientific and Technical Information (OSTI)

    Mountain. (Conference) | SciTech Connect An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca Mountain. Citation Details In-Document Search Title: An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca Mountain. Abstract not provided. Authors: Arnold, Bill Walter ; Kelkar, Sharad ; Ding, Mei ; Chu, Shaoping ; ROBINSON, BRUCE ; Meijer, Arend Publication Date: 2007-09-01 OSTI Identifier: 1147462 Report Number(s): SAND2007-5874C 521772 DOE Contract

  9. Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill

    SciTech Connect (OSTI)

    Fruland, R.M.

    1986-10-01

    Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

  10. Ground Water Compliance Action Plan for the Durango, Colorado,UMTRA Project Site

    Office of Legacy Management (LM)

    for the U.S. Department of Energy Approved for public release; distribution is unlimited. Ground Water Compliance Action Plan for the Durango, Colorado, UMTRA Project Site February 2008 This page intentionally left blank U0165200 Ground Water Compliance Action Plan for the Durango, Colorado, UMTRA Project Site February 2008 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed under DOE Contract No. DE-AC13-02GJ79491 This page intentionally left

  11. Ground-water monitoring at the Hanford Site, January-December 1984

    SciTech Connect (OSTI)

    Cline, C.S.; Rieger, J.T.; Raymond, J.R.

    1985-09-01

    This program is designed to evaluate existing and potential pathways of exposure to radioactivity and hazardous chemicals from site operations. This document contains an evaluation of data collected during CY 1984. During 1984, 339 monitoring wells were sampled at various times for radioactive and nonradioactive constituents. Two of these constituents, specifically, tritium and nitrate, have been selected for detailed discussion in this report. Tritium and nitrate in the primary plumes originating from the 200 Areas continue to move generally eastward toward the Columbia River in the direction of ground-water flow. The movement within these plumes is indicated by changes in trends within the analytical data from the monitoring wells. No discernible impact on ground water has yet been observed from the start-up of the PUREX plant in December 1983. The shape of the present tritium plume is similar to those described in previous ground-water monitoring reports, although slight changes on the outer edges have been noted. Radiological impacts from two potential pathways for radionuclide transport in ground water to the environment are discussed in this report. The pathways are: (1) human consumption of ground water from onsite wells, and (2) seepage of ground water into the Columbia River. Concentrations of tritium in spring samples that were collected and analyzed in 1983, and in wells sampled adjacent to the Columbia River in 1984 confirmed that constituents in the ground water are entering the river via springs and subsurface flow. The primary areas where radionuclides enter the Columbia River via ground-water flow are the 100-N and 300 Areas and the shoreline adjacent to the Hanford Townsite. 44 refs., 25 figs., 11 tabs.

  12. Final Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site

    Office of Environmental Management (EM)

    458 Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Sites Final February 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-02GJ79491 DOE Grand Junction Office EA of Ground Water Compliance at the Slick Rock Sites February 2003 Final Page iii Contents Page Acronyms and

  13. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado

    SciTech Connect (OSTI)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site began in 1995 and is scheduled for completion in 1996. The tailings are being stabilized in place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results presented in this document and other evaluations will determine whether any action is needed to protect human health or the environment.

  14. Shallow ground-water flow, water levels, and quality of water, 1980-84, Cowles Unit, Indiana Dunes National Lakeshore

    SciTech Connect (OSTI)

    Cohen, D.A.; Shedlock, R.J.

    1986-01-01

    The Cowles Unit of Indiana Dunes National Lakeshore in Porter County, northwest Indiana, contains a broad dune-beach complex along the southern shoreline of Lake Michigan and a large wetland, called the Great Marsh, that occupies the lowland between the shoreline dunes and an older dune-beach complex farther inland. Water levels and water quality in the surficial aquifer were monitored from 1977 to 1984 near settling ponds on adjacent industrial property at the western end of the Cowles Unit. Since 1980, when the settling pond bottoms were sealed, these intradunal lowlands contained standing water only during periods of high snowmelt or rainfall. Water level declines following the cessation of seepage ranged from 6 feet at the eastern-most settling pond to nearly 14 feet at the western-most pond. No general pattern of water table decline was observed in the Great Marsh or in the shoreline dune complex at distances > 3,000 ft east or north of the settling ponds. Since the settling ponds were sealed, the concentration of boron has decreased while concentrations of cadmium, arsenic, zinc, and molybdenum in shallow ground-water downgradient of the ponds show no definite trends in time. Arsenic, boron and molybdenum have remained at concentrations above those of shallow groundwater in areas unaffected by settling pond seepage. 11 refs., 10 figs., 1 tab.

  15. Radiological conditions at Bikini Atoll: Radionuclide concentrations in vegetation, soil, animals, cistern water, and ground water

    SciTech Connect (OSTI)

    Robison, W.L.; Conrado, C.L.; Stuart, M.L.

    1988-05-31

    This report is intended as a resource document for the eventual cleanup of Bikini Atoll and contains a summary of the data for the concentrations of /sup 137/Cs, /sup 90/Sr, /sup 239 +240/Pu, and /sup 241/Am in vegetation through 1987 and in soil through 1985 for 14 islands at Bikini Atoll. The data for the main residence island, Bikini, and the most important island, Eneu, are extensive; these islands have been the subject of a continuing research and monitoring program since 1974. Data for radionuclide concentrations in ground water, cistern water, fish and other marine species, and pigs from Bikini and Eneu Islands are presented. Also included are general summaries of our resuspension and rainfall data from Bikini and Eneu Islands. The data for the other 12 islands are much more limited because samples were collected as part of a screening survey and the islands have not been part of a continuing research and monitoring program. Cesium-137 is the radionuclide that produces most of the estimated dose for returning residents, mostly through uptake by terrestrial foods and secondly by direct external gamma exposure. Remedial measures for reducing the /sup 137/Cs uptake in vegetation are discussed. 40 refs., 32 figs., 131 tabs.

  16. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    SciTech Connect (OSTI)

    Dexin Wang

    2012-03-31

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  17. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    In April 1990 Wright-Patterson Air Force Base (WPAFB) initiated an investigation to evaluate a potential CERCLA removal action to prevent, to the extent practicable, the migration of ground-water contamination in the Mad River Valley Aquifer within and across WPAFB boundaries. The action will be based on a Focused Feasibility Study with an Action Memorandum serving as a decision document that is subject to approval by the Ohio Environmental Protection Agency. The first phase (Phase 1) of this effort involves an investigation of ground-water contamination migrating across the southwest boundary of Area C and across Springfield Pike adjacent to Area B. Task 4 of Phase 1 is a field investigation to collect sufficient additional information to evaluate removal alternatives. The field investigation will provide information in the following specific areas of study: water-level data which will be used to permit calibration of the ground-water flow model to a unique time in history; and ground-water quality data which will be used to characterize the current chemical conditions of ground water.

  18. Ground Water Levels for NGEE Areas A, B, C and D, Barrow, Alaska, 2012-2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Anna Liljedahl; Cathy Wilson

    2015-06-08

    Ice wedge polygonal tundra water levels were measured at a total of 45 locations representing polygon centers and troughs during three summers. Early season water levels, which were still affected by ice and snow, are represented by manual measurements only. Continuous (less than hourly) measurements followed through early fall (around mid-Sep). The data set contains inundation depth (cm), absolute water level and local ground surface elevation (masl).

  19. Method for simultaneous recovery of hydrogen from water and from hydrocarbons

    DOE Patents [OSTI]

    Willms, R. Scott (Los Alamos, NM)

    1996-01-01

    Method for simultaneous recovery of hydrogen and hydrogen isotopes from water and from hydrocarbons. A palladium membrane, when utilized in cooperation with a nickel catalyst in a reactor, has been found to drive reactions such as water gas shift, steam reforming and methane cracking to substantial completion by removing the product hydrogen from the reacting mixture. In addition, ultrapure hydrogen is produced, thereby eliminating the need for an additional processing step.

  20. Ground-water solutes and eolian processes: An example from the High Plains of Texas

    SciTech Connect (OSTI)

    Wood, W.W.; Sanford, W.E. (Geological Survey, Reston, VA (United States))

    1992-01-01

    Eolian dunes associated with saline-lake basins are important geologic features in arid and semiarid areas. The authors propose that eolian processes may also be important in controlling solute concentration and composition of ground water in these environments. A study of Double Lakes on the Southern High Plains of Texas suggests that approximately 200 megagrams of chloride enters this topographically closed basin from the surrounding water table aquifer, direct precipitation and surface runoff. Solute-transport simulation suggest that approximately 70 of the 200 megagrams of the chloride annually leaves the basin by diffusion and ground-water advection through a 30 meter-thick shale underlying the lake. The remaining 130 megagrams is hypothesized to be removed by eolian processes. Closed water-table contours around the lake and a hydrologic analysis suggest that it is improbable that solutes will reach the surrounding water-table aquifer by ground-water transport from this lake system. The conceptual eolian-transport model is further supported by observed chloride profiles in the unsaturated zone. When analyzed with estimates of recharge fluxes, these profiles suggest that approximately 150 megagrams of chloride enter the unsaturated zone downwind of the lake annually. Thus two independent methods suggest that 130 to 150 megagrams of chloride enter the unsaturated zone downwind of the lake annually. Thus two independent methods suggest that 130 to 150 megagrams of chloride are removed from the basin annually by eolian process and redeposited downwind of the lake. Eolian input to the ground water is consistent with the observed plume shape as well as with the solute and isotopic composition of ground water in the water-table aquifer downwind of the lake basin.

  1. Fukushima Nuclear Crisis Recovery: A Modular Water Treatment System Deployed in Seven Weeks - 12489

    SciTech Connect (OSTI)

    Denton, Mark S.; Mertz, Joshua L.; Bostick, William D.

    2012-07-01

    On March 11, 2011, the magnitude 9.0 Great East Japan earthquake, Tohoku, hit off the Fukushima coast of Japan. This was one of the most powerful earthquakes in recorded history and the most powerful one known to have hit Japan. The ensuing tsunami devastated a huge area resulting in some 25,000 persons confirmed dead or missing. The perfect storm was complete when the tsunami then found the four reactor, Fukushima-Daiichi Nuclear Station directly in its destructive path. While recovery systems admirably survived the powerful earthquake, the seawater from the tsunami knocked the emergency cooling systems out and did extensive damage to the plant and site. Subsequent hydrogen generation caused explosions which extended this damage to a new level and further flooded the buildings with highly contaminated water. Some 2 million people were evacuated from a fifty mile radius of the area and evaluation and cleanup began. Teams were assembled in Tokyo the first week of April to lay out potential plans for the immediate treatment of some 63 million gallons (a number which later exceeded 110 million gallons) of highly contaminated water to avoid overflow from the buildings as well as supply the desperately needed clean cooling water for the reactors. A system had to be deployed with a very brief cold shake down and hot startup before the rainy season started in early June. Joined by team members Toshiba (oil removal system), AREVA (chemical precipitation system) and Hitachi-GE (RO system), Kurion (cesium removal system following the oil separator) proposed, designed, fabricated, delivered and started up a one of a kind treatment skid and over 100 metric tons of specially engineered and modified Ion Specific Media (ISM) customized for this very challenging seawater/oil application, all in seven weeks. After a very short cold shake down, the system went into operation on June 17, 2011 on actual waste waters far exceeding 1 million Bq/mL in cesium and many other isotopes. One must remember that, in addition to attempting to do isotope removal in the competition of seawater (as high as 18,000 ppm sodium due to concentration), some 350,000 gallons of turbine oil was dispersed into the flooded buildings as well. The proposed system consisted of a 4 guard vessel skid for the oil and debris, 4 skids containing 16 cesium towers in a lead-lag layout with removable vessels (sent to an interim storage facility), and a 4 polishing vessel skid for iodine removal and trace cesium levels. At a flow rate of at least 220 gallons per minute, the system has routinely removed over 99% of the cesium, the main component of the activity, since going on line. To date, some 50% of the original activity has been removed and stabilized and cold shutdown of the plant was announced on December 10, 2011. In March and April alone, 10 cubic feet of Engineered Herschelite was shipped to Seabrook Nuclear Power Plant, NPP, to support the April 1, 2011 outage cleanup; 400 cubic feet was shipped to Oak Ridge National Laboratory (ORNL) for strontium (Sr-90) ground water remediation; and 6000 cubic feet (100 metric tons, MT, or 220,400 pounds) was readied for the Fukushima Nuclear Power Station with an additional 100 MT on standby for replacement vessels. This experience and accelerated media production in the U.S. bore direct application to what was to soon be used in Fukushima. How such a sophisticated and totally unique system and huge amount of media could be deployable in such a challenging and changing matrix, and in only seven weeks, is outlined in this paper as well as the system and operation itself. As demonstrated herein, all ten major steps leading up to the readiness and acceptance of a modular emergency technology recovery system were met and in a very short period of time, thus utilizing three decades of experience to produce and deliver such a system literally in seven weeks: - EPRI - U.S. Testing and Experience Leading to Introduction to EPRI - Japan and Subsequently TEPCO Emergency Meetings - Three Mile Island (TMI) Media and Vitrification Experience by PNNL - Commercial Nuclear Power Plant Media Experience (including long term Cs removal) - DOE Low Active Waste (LAW) and High Level Waste (HLW) in High Salt and pH Conditions Media and Vitrification Experience - National Laboratory (e.g. Oak Ridge National Laboratory, ORNL) Ground Water Media Experience - Gulf Oil Spill Media Experience in Seawater - All Media Had to be Fully Tested at High Rad Levels in Seawater and Oil Before Arriving in Japan - Final Waste Form and Disposal Experience (e.g., vitrification) - 100 Metric Tons (6000 cubic feet or 220,400 pounds) of Media had to be Immediately Available with the same amount in production as replacement media. [To date, for 2011, 400 MT of media have been prepared for Japan alone.] - Remote Operation, Modular Water Treatment Equipment Design and Fabrication in both Commercial NPP and DOE Canyon Operations. (authors)

  2. Hanford Site ground-water monitoring for April through June 1987

    SciTech Connect (OSTI)

    Evans, J.C.; Mitchell, P.J.; Dennison, D.I.

    1988-01-01

    Pacific Northwest Laboratory (PNL) is conducting ground-water monitoring at the Hanford Site. Results for monitoring by PNL and Westinghouse Hanford Company (WHC) during April-June 1987 show that certain regulated hazardous materials and radionuclides exist in Hanford Site ground waters. The presence of regulated constituents in the ground water derives both from site operations and from natural sources. The major contamination problems defined by recent monitoring activities are carbon tetrachloride in the 200 West Area; cyanide in and north of the 200 East Area; hexavalent chromium contamination in the 100B, 100D, 100K, and 100H areas; chlorinated hydrocarbons in the vicinity of the Central Landfill; uranium at the 216-U-1 and 216-U-2 cribs in the 200 West Area; tritium across the site; and nitrate across the site. The distribution of hazardous materials related to site operations is more limited than the distribution of tritium and nitrate. 8 refs., 22 figs., 5 tabs.

  3. Hanford Site ground-water monitoring for January through June 1988

    SciTech Connect (OSTI)

    Evans, J.C.; Bryce, R.W.; Sherwood, D.R.

    1989-05-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between January and June 1988 included monitoring ground-water elevations across the Site, and monitoring hazardous chemicals and radionuclides in ground water. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Solid Waste Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. In addition, several new analytical initiatives were undertaken during this period. These include cyanide speciation in the BY Cribs plume, inductively coupled argon plasma/mass spectrometry (ICP/MS) measurements on a broad selection of samples from the 100, 200, 300, and 600 Areas, and high sensitivity gas chromatography measurements performed at the Solid Waste Landfill-Nonradioactive Dangerous Waste Landfill. 23 figs., 25 tabs.

  4. Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site

    Office of Legacy Management (LM)

    GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site December 2001 Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy Approved for public release; distribution is unlimited. GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site December 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Project

  5. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    SciTech Connect (OSTI)

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  6. Applications of permeable barrier technology to ground water contamination at the Shiprock, NM, UMTRA site

    SciTech Connect (OSTI)

    Thomson, B.M.; Henry, E.J.; Thombre, M.S.

    1996-12-31

    The Shiprock uranium mill tailings pile in far northwestern New Mexico consists of approximately 1.5 million tons of uranium mill tailings from an acid leach mill which operated from 1954 to 1968. Located on land owned by the Navajo Nation, it was one of the first tailings piles stabilized under the Uranium Mill Tailings Remedial Action (UMTRA) project. Stabilization activities were completed in 1986 and consisted principally of consolidating the tailings, contouring the pile to achieve good drainage, and covering the pile with a multi-layer cap to control infiltration of water, radon emanation, and surface erosion. No ground water protection or remediation measures were implemented other than limiting infiltration of water through the pile, although a significant ground water contamination plume exists in the flood plain adjacent to the San Juan River. The major contaminants at the Shiprock site include high concentrations of sulfate, nitrate, arsenic, and uranium. One alternative for remediation may be the use of a permeable barrier in the flood plain aquifer. As proposed for the Shiprock site, the permeable barrier would be a trench constructed in the flood plain that would be backfilled with a media that is permeable to ground water, but would intercept or degrade the pollutants. Work to date has focused on use of a mixed microbial population of sulfate and nitrate reducing organisms. These organisms would produce strongly reducing conditions which would result in precipitation of the metal contaminants (i.e., Se(IV) and U(IV)) in the barrier. One of the first considerations in designing a permeable barrier is developing an understanding of ground water flow at the site. Accordingly, a steady state numerical model of the ground water flow at the site was developed using the MODFLOW code.

  7. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    SciTech Connect (OSTI)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

  8. Cost Effective Recovery of Low-TDS Frac Flowback Water for Re-use

    SciTech Connect (OSTI)

    Claire Henderson; Harish Acharya; Hope Matis; Hareesh Kommepalli; Brian Moore; Hua Wang

    2011-03-31

    The project goal was to develop a cost-effective water recovery process to reduce the costs and envi-ronmental impact of shale gas production. This effort sought to develop both a flowback water pre-treatment process and a membrane-based partial demineralization process for the treatment of the low-Total Dissolved Solids (TDS) portion of the flowback water produced during hydrofracturing operations. The TDS cutoff for consideration in this project is < 35,000 {approx} 45,000 ppm, which is the typical limit for economic water recovery employing reverse osmosis (RO) type membrane desalination processes. The ultimate objective is the production of clean, reclaimed water suitable for re-use in hydrofracturing operations. The team successfully compiled data on flowback composition and other attributes across multiple shale plays, identified the likely applicability of membrane treatment processes in those shales, and expanded the proposed product portfolio to include four options suitable for various reuse or discharge applications. Pretreatment technologies were evaluated at the lab scale and down-selected based upon their efficacy in removing key contaminants. The chosen technologies were further validated by performing membrane fouling studies with treated flowback water to demonstrate the technical feasibility of flowback treatment with RO membranes. Process flow schemes were constructed for each of the four product options based on experimental performance data from actual flowback water treatment studies. For the products requiring membrane treatment, membrane system model-ing software was used to create designs for enhanced water recovery beyond the typical seawater desalination benchmark. System costs based upon vendor and internal cost information for all process flow schemes were generated and are below target and in line with customer expectations. Finally, to account for temporal and geographic variability in flowback characteristics as well as local disposal costs and regulations, a parametric value assessment tool was created to assess the economic attractiveness of a given flowback recovery process relative to conventional disposal for any combination of anticipated flowback TDS and local disposal cost. It is concluded that membrane systems in combination with appropriate pretreatment technologies can provide cost-effective recovery of low-TDS flow-back water for either beneficial reuse or safe surface discharge.

  9. Pacific Northwest National Laboratory Grounds Maintenance: Best Management Practice Case Studies #4 and #5 - Water Efficient Landscape and Irrigation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-08-01

    FEMP Water Efficiency Best Management Practices #4 and #5 Case Study: Overview of the Pacific Northwest National Laboratory grounds maintenance program and results.

  10. A dual phased approach for bioremediation of petroleum contaminated soil and ground water

    SciTech Connect (OSTI)

    Kennel, N.D.; Maher, A.; Buckallew, B.

    1994-12-31

    A case study will be presented to demonstrate an effective and timely method of site remediation which yields complete contaminant destruction rather than the contaminant transfer that traditional ground water extraction and treatment techniques result in. By utilizing bioremediation at this site, the client was able to completely degrade the contamination beneath the property, and in the process avoid future liability from transfer of the contamination to another party (i.e. landfill) or phase (i.e. liquid to vapor through air stripping). The provisions of a real estate transaction involving a former service station site in Central Iowa stipulated that the site be remediated prior to title transfer. Previous Environmental Investigative activities revealed significant soil and ground water contamination resulting from over 50 years of diesel and gasoline fuel storage and dispensing operations at the site. Microbial Environmental Services, Inc. (MES) utilized a dual phased bioremediation approach to meet regulatory clean-up guidelines in order for a timely property transfer to occur. To facilitate and expedite ground water remediation, contaminated soil was excavated and remediated via Advanced Biological Surface Treatment (ABST) techniques. ABST techniques are utilized by MES to treat excavated soil in closed cell to control emissions and treatment conditions. Following contaminant source removal, ground water was extracted and treated in a submerged, fixed film, flow through 1,000 gallon fixed film bioreactor at a rate of 2.5 gallons per minute.

  11. Selenium in Oklahoma ground water and soil. Quarterly report No. 6

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  12. Environmental Assessment of Ground Water Compliance at the Durango, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    N /A

    2002-11-29

    The U.S. Department of Energy (DOE) is proposing a ground water compliance strategy for the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Durango, Colorado. DOE has prepared this environmental assessment to provide the public with information concerning the potential effects of this proposed strategy.

  13. Effect of faulting on ground-water movement in the Death Valley region, Nevada and California

    SciTech Connect (OSTI)

    Faunt, C.C.

    1997-12-31

    This study characterizes the hydrogeologic system of the Death Valley region, an area covering approximately 100,000 square kilometers. The study also characterizes the effects of faults on ground-water movement in the Death Valley region by synthesizing crustal stress, fracture mechanics,a nd structural geologic data. The geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. Faulting and associated fracturing is pervasive and greatly affects ground-water flow patterns. Faults may become preferred conduits or barriers to flow depending on whether they are in relative tension, compression, or shear and other factors such as the degree of dislocations of geologic units caused by faulting, the rock types involved, the fault zone materials, and the depth below the surface. The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional ground-water flow regime. Numerous examples of fault-controlled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths. 97 refs., 20 figs., 5 tabs.

  14. Dispersal Limitations on Fish Community Recovery Following Long-term Water Quality Remediation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McManamay, Ryan A.; Jett, Robert T.; Ryon, Michael G.; Gregory, Scott M.; Stratton, Sally H.; Peterson, Mark J.

    2016-02-22

    Holistic restoration approaches, such as water quality remediation, are likely to meet conservation objectives because they are typically implemented at watershed scales, as opposed to individual stream reaches. However, habitat fragmentation may impose constraints on the ecological effectiveness of holistic restoration strategies by limiting colonization following remediation. We questioned the importance of dispersal limitations to fish community recovery following long-term water quality remediation and species reintroductions across the White Oak Creek (WOC) watershed near Oak Ridge, Tennessee (USA). Long-term (26 years) responses in fish species richness and biomass to water quality remediation were evaluated in light of habitat fragmentation andmore » population isolation from instream barriers, which varied in their passage potential. In addition, ordination techniques were used to determine the relative importance of habitat connectivity and water quality, in explaining variation fish communities relative to environmental fluctuations, i.e. streamflow. Ecological recovery (changes in richness) at each site was negatively related to barrier index, a measure of community isolation by barriers relative to stream distance. Following species reintroductions, dispersal by fish species was consistently in the downstream direction and upstream passage above barriers was non-existent. The importance of barrier index in explaining variation in fish communities was stronger during higher flow conditions, but decreased over time an indication of increasing community stability and loss of seasonal migrants. Compared to habitat fragmentation, existing water quality concerns (i.e., outfalls, point source discharges) were unrelated to ecological recovery, but explained relatively high variation in community dynamics. Our results suggest that habitat fragmentation limited the ecological effectiveness of intensive water quality remediation efforts and fish reintroduction efforts by impeding recolonization at isolated stream reaches.« less

  15. Tritium recovery from tritiated water with a two-stage palladium membrane reactor

    SciTech Connect (OSTI)

    Birdsell, S.A.; Willms, R.S.

    1997-04-01

    A process to recover tritium from tritiated water has been successfully demonstrated at TSTA. The 2-stage palladium membrane reactor (PMR) is capable of recovering tritium from water without generating additional waste. This device can be used to recover tritium from the substantial amount of tritiated water that is expected to be generated in the International Thermonuclear Experimental Reactor both from torus exhaust and auxiliary operations. A large quantity of tritiated waste water exists world wide because the predominant method of cleaning up tritiated streams is to oxidize tritium to tritiated water. The latter can be collected with high efficiency for subsequent disposal. The PMR is a combined catalytic reactor/permeator. Cold (non-tritium) water processing experiments were run in preparation for the tritiated water processing tests. Tritium was recovered from a container of molecular sieve loaded with 2,050 g (2,550 std. L) of water and 4.5 g of tritium. During this experiment, 27% (694 std. L) of the water was processed resulting in recovery of 1.2 g of tritium. The maximum water processing rate for the PMR system used was determined to be 0.5 slpm. This correlates well with the maximum processing rate determined from the smaller PMR system on the cold test bench and has resulted in valuable scale-up and design information.

  16. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    SciTech Connect (OSTI)

    1995-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  17. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    SciTech Connect (OSTI)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  18. Ground Water Surveillance Monitoring Implementation Guide for Use with DOE O 450.1, Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-06-24

    This Guide assists DOE sites in establishing and maintaining surveillance monitoring programs to detect future impacts on ground water resources from site operations, to track existing ground water contamination, and to assess the potential for exposing the general public to site releases. Canceled by DOE N 251.82.

  19. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    SciTech Connect (OSTI)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer performance was also done, which shows this heat transfer enhancement approach works well in a wide parameters range for typical flue gas conditions. Better understanding of condensing heat transfer mechanism for porous membrane heat transfer surfaces, shows higher condensation and heat transfer rates than non-permeable tubes, due to existence of the porous membrane walls. Laboratory testing has documented increased TMC performance with increased exhaust gas moisture content levels, which has exponentially increased potential markets for the product. The TMC technology can uniquely enhance waste heat recovery in tandem with water vapor recovery for many other industrial processes such as drying, wet and dry scrubber exhaust gases, dewatering, and water chilling. A new metallic substrate membrane tube development and molded TMC part fabrication method, provides an economical way to expand this technology for scaled up applications with less than 3 year payback expectation. A detailed market study shows a broad application area for this advanced waste heat and water recovery technology. A commercialization partner has been lined up to expand this technology to this big market. This research work led to new findings on the TMC working mechanism to improve its performance, better scale up design approaches, and economical part fabrication methods. Field evaluation work needs to be done to verify the TMC real world performance, and get acceptance from the industry, and pave the way for our commercial partner to put it into a much larger waste heat and waste water recovery market. This project is addressing the priority areas specified for DOE Industrial Technologies Program's (ITP's): Energy Intensive Processes (EIP) Portfolio - Waste Heat Minimization and Recovery platform.

  20. BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT THE URAN~UM MILL TAILINGS

    Office of Legacy Management (LM)

    I~:-:ii*.i: i,<;.;.-;_r- --:-:ir-- - . . - -. . - . . - , -, . , , , - - - - . BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT THE URAN~UM MILL TAILINGS SITE NEAR RIVERTON, WYOMING I i I I I Prepared by the U.S. Department of Energy Albuquerque, New Mexico September 1995 INTENDED FOR PUBLIC RELEASE This report has been reproduced from the best available copy. Avai and microfiche Number of pages in this report: 166 DOE and DOE contractors can obtain copies of this report from: Office

  1. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    SciTech Connect (OSTI)

    Thompson, Bill

    1991-10-01

    In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

  2. Guide to ground water remediation at CERCLA response action and RCRA corrective action sites

    SciTech Connect (OSTI)

    1995-10-01

    This Guide contains the regulatory and policy requirements governing remediation of ground water contaminated with hazardous waste [including radioactive mixed waste (RMW)], hazardous substances, or pollutants/contaminants that present (or may present) an imminent and substantial danger. It was prepared by the Office of Environmental Policy and Assistance, RCRA/CERCLA Division (EH-413), to assist Environmental Program Managers (ERPMs) who often encounter contaminated ground water during the performance of either response actions under CERCLA or corrective actions under Subtitle C of RCRA. The Guide begins with coverage of the regulatory and technical issues that are encountered by ERPM`s after a CERCLA Preliminary Assessment/Site Investigation (PA/SI) or the RCRA Facility Assessment (RFA) have been completed and releases into the environment have been confirmed. It is based on the assumption that ground water contamination is present at the site, operable unit, solid waste management unit, or facility. The Guide`s scope concludes with completion of the final RAs/corrective measures and a determination by the appropriate regulatory agencies that no further response action is necessary.

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

  4. Recovery of energy from geothermal brine and other hot water sources

    DOE Patents [OSTI]

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  5. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    SciTech Connect (OSTI)

    1996-02-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

  6. Ground Water Protection Programs Implementation Guide for Use with DOE O 450.1, Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-05-05

    This Guide provides a description of the elements of an integrated site-wide ground water protection program that can be adapted to unique physical conditions and programmatic needs at each DOE site. Canceled by DOE N 251.82.

  7. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

  8. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

  9. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January 2000-December 2002

    SciTech Connect (OSTI)

    Locke, Glenn L. [US Geological Survey, Carson City, NV (United States); La Camera, Richard J. [US Geological Survey, Carson City, NV (United States)

    2003-12-31

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January 2000 through December 2002. Historical data on water levels, discharges, and withdrawals are graphically presented to indicate variations through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented for 19922002 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to selected baseline periods. Baseline periods varied for 198593. At six of the seven wells in Jackass Flats, the median water levels for 2002 were slightly higher (0.32.4 feet) than for their respective baseline periods. At the remaining well, data for 2002 was not summarized statistically but median water-level altitude in 2001 was 0.7 foot higher than that in its baseline period.

  10. Reactive chemical transport in ground-water hydrology: Challenges to mathematical modeling

    SciTech Connect (OSTI)

    Narasimhan, T.N.; Apps, J.A.

    1990-07-01

    For a long time, earth scientists have qualitatively recognized that mineral assemblages in soils and rocks conform to established principles of chemistry. In the early 1960's geochemists began systematizing this knowledge by developing quantitative thermodynamic models based on equilibrium considerations. These models have since been coupled with advective-dispersive-diffusive transport models, already developed by ground-water hydrologists. Spurred by a need for handling difficult environmental issues related to ground-water contamination, these models are being improved, refined and applied to realistic problems of interest. There is little doubt that these models will play an important role in solving important problems of engineering as well as science over the coming years. Even as these models are being used practically, there is scope for their improvement and many challenges lie ahead. In addition to improving the conceptual basis of the governing equations, much remains to be done to incorporate kinetic processes and biological mediation into extant chemical equilibrium models. Much also remains to be learned about the limits to which model predictability can be reasonably taken. The purpose of this paper is to broadly assess the current status of knowledge in modeling reactive chemical transport and to identify the challenges that lie ahead.

  11. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    SciTech Connect (OSTI)

    Warner, J.L.; Lutz, J.D.

    2006-01-01

    Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

  12. 40 CFR 265 interim status indicator-evaluation ground-water monitoring plan for the 216-B-63 trench

    SciTech Connect (OSTI)

    Bjornstad, B.N.; Dudziak, S.

    1989-03-01

    This document outlines a ground-water monitoring plan for the 216-B-63 trench located in the northeast corner of the 200-East Area on the Hanford Site in southeastern Washington State. It has been determined that hazardous materials (corrosives) were disposed of to the trench during past operations. Installation of an interim-status ground-water monitoring system is required to determine whether hazardous chemicals are leaching to the ground water from beneath the trench. This document summarizes the existing data that are available from near the 216-B-63 trench and presents a plan to determine the extent of ground-water contamination, if any, derived from the trench. The plan calls for the installation of four new monitoring wells located near the west end of the trench. These wells will be used to monitor ground-water levels and water quality immediately adjacent to the trench. Two existing RCRA monitoring wells, which are located near the trench and hydraulically upgradient of it, will be used as background wells. 46 refs., 15 figs., 12 tabs.

  13. Gills Onions Advanced Energy Recovery System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LEARNING FOR LOCAL LEADERS GILLS ONIONS ADVANCED ENERGY RECOVERY SYSTEM MAY 17, 2011 * INDUSTRIAL * FOODSERVICE * RETAIL * GENERATED UP TO 300,000 LBS OF ONION WASTE PER DAY (TOP, TAIL AND PEEL) * WASTE BECAME UNMANAGEABLE AND COST-PROHIBITIVE * CREATED ODOR PROBLEMS, POTENTIAL GROUND WATER CONTAMINATION SOLUTION ONION WASTE TO ENERGY ADVANCED ENERGY RECOVERY SYSTEM (AERS) * CONVERTS ONION WASTE TO RENEWABLE ENERGY, ULTRA-CLEAN BIOGAS AND CATTLE FEED * MEETS OUR GOALS FOR AIR QUALITY, ZERO WASTE

  14. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

    1997-12-31

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35{degrees}N., long 115{degrees}W and lat 38{degrees}N., long 118{degrees}W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system.

  15. Uranium-Loaded Water Treatment Resins: 'Equivalent Feed' at NRC and Agreement State-Licensed Uranium Recovery Facilities - 12094

    SciTech Connect (OSTI)

    Camper, Larry W.; Michalak, Paul; Cohen, Stephen; Carter, Ted

    2012-07-01

    Community Water Systems (CWSs) are required to remove uranium from drinking water to meet EPA standards. Similarly, mining operations are required to remove uranium from their dewatering discharges to meet permitted surface water discharge limits. Ion exchange (IX) is the primary treatment strategy used by these operations, which loads uranium onto resin beads. Presently, uranium-loaded resin from CWSs and mining operations can be disposed as a waste product or processed by NRC- or Agreement State-licensed uranium recovery facilities if that licensed facility has applied for and received permission to process 'alternate feed'. The disposal of uranium-loaded resin is costly and the cost to amend a uranium recovery license to accept alternate feed can be a strong disincentive to commercial uranium recovery facilities. In response to this issue, the NRC issued a Regulatory Issue Summary (RIS) to clarify the agency's policy that uranium-loaded resin from CWSs and mining operations can be processed by NRC- or Agreement State-licensed uranium recovery facilities without the need for an alternate feed license amendment when these resins are essentially the same, chemically and physically, to resins that licensed uranium recovery facilities currently use (i.e., equivalent feed). NRC staff is clarifying its current alternate feed policy to declare IX resins as equivalent feed. This clarification is necessary to alleviate a regulatory and financial burden on facilities that filter uranium using IX resin, such as CWSs and mine dewatering operations. Disposing of those resins in a licensed facility could be 40 to 50 percent of the total operations and maintenance (O and M) cost for a CWS. Allowing uranium recovery facilities to treat these resins without requiring a license amendment lowers O and M costs and captures a valuable natural resource. (authors)

  16. Apparatus and method for simultaneous recovery of hydrogen from water and from hydrocarbons

    DOE Patents [OSTI]

    Willms, R. Scott (Los Alamos, NM); Birdsell, Stephen A. (Los Alamos, NM)

    2000-01-01

    Apparatus and method for simultaneous recovery of hydrogen from water and from hydrocarbon feed material. The feed material is caused to flow over a heated catalyst which fosters the water-gas shift reaction (H.sub.2 O+COH.sub.2 +CO.sub.2) and the methane steam reforming reaction (CH.sub.4 +H.sub.2 O3 H.sub.2 +CO). Both of these reactions proceed only to partial completion. However, by use of a Pd/Ag membrane which is exclusively permeable to hydrogen isotopes in the vicinity of the above reactions and by maintaining a vacuum on the permeate side of the membrane, product hydrogen isotopes are removed and the reactions are caused to proceed further toward completion. A two-stage palladium membrane reactor was tested with a feed composition of 28% CQ.sub.4, 35% Q.sub.2 O (where Q=H, D, or T), and 31% Ar in 31 hours of continuous operation during which 4.5 g of tritium were processed. Decontamination factors were found to increase with decreasing inlet rate. The first stage was observed to have a decontamination factor of approximately 200, while the second stage had a decontamination factor of 2.9.times.10.sup.6. The overall decontamination factor was 5.8.times.10.sup.8. When a Pt/.alpha.-Al.sub.2 O.sub.3 catalyst is employed, decoking could be performed without catalyst degradation. However, by adjusting the carbon to oxygen ratio of the feed material with the addition of oxygen, coking could be altogether avoided.

  17. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention ? Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude oilcontaining formations or saline aquifers. The term ?globule? refers to the water or liquid carbon dioxide droplets sheathed with ultrafine particles dispersed in the continuous external medium, liquid CO{sub 2} or H{sub 2}O, respectively. The key to obtaining very small globules is the shear force acting on the two intermixing fluids, and the use of ultrafine stabilizing particles or nanoparticles. We found that using Kenics-type static mixers with a shear rate in the range of 2700 to 9800 s{sup -1} and nanoparticles between 100-300 nm produced globule sizes in the 10 to 20 ?m range. Particle stabilized emulsions with that kind of globule size should easily penetrate oil-bearing formations or saline aquifers where the pore and throat size can be on the order of 50 ?m or larger. Subsequent research focused on creating particle stabilized emulsions that are deemed particularly suitable for Permanent Sequestration of Carbon Dioxide. Based on a survey of the literature an emulsion consisting of 70% by volume of water, 30% by volume of liquid or supercritical carbon dioxide, and 2% by weight of finely pulverized limestone (CaCO{sub 3}) was selected as the most promising agent for permanent sequestration of CO{sub 2}. In order to assure penetration of the emulsion into tight formations of sandstone or other silicate rocks and carbonate or dolomite rock, it is necessary to use an emulsion consisting of the smallest possible globule size. In previous reports we described a high shear static mixer that can create such small globules. In addition to the high shear mixer, it is also necessary that the emulsion stabilizing particles be in the submicron size, preferably in the range of 0.1 to 0.2 ?m (100 to 200 nm) size. We found a commercial source of such pulverized limestone particles, in addition we purchased under this DOE Project a particle grinding apparatus that can provide particles in the desired size range. Additional work focused on attempts to generate particle stabilized emulsions with a flow through, static mixer based apparatus under a variety

  18. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    SciTech Connect (OSTI)

    Chad Knutson; Seyed Dastgheib; Yaning Yang; Ali Ashraf; Cole Duckworth; Priscilla Sinata; Ivan Sugiyono; Mark Shannon; Charles Werth

    2012-04-30

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO{sub 2} enhanced oil recovery (CO{sub 2}-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO{sub 2}-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13 ?? 23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.

  19. Work plan for preliminary investigation of organic constituents in ground water at the New Rifle site, Rifle, Colorado. Revision 2

    SciTech Connect (OSTI)

    1996-01-01

    A special study screening for Appendix 9 (40 CFR Part 264) analytes identified the New Rifle site as a target for additional screening for organic constituents. Because of this recommendation and the findings in a recent independent technical review, the US Department of Energy (DOE) has requested that the Technical Assistance Contractor (TAC) perform a preliminary investigation of the potential presence of organic compounds in the ground water at the New Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project site, Rifle, Colorado. From 1958 to 1972, organic chemicals were used in large quantities during ore processing at the New Rifle site, and it is possible that some fraction was released to the environment. Therefore, the primary objective of this investigation is to determine whether organic chemicals used at the milling facility are present in the ground water. The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water well points at the New Rifle site. The selection of analytes and the procedures for collecting ground water samples for analysis of organic constituents are also described.

  20. Acoustically enhanced remediation of contaminated soils and ground water. Volume 1

    SciTech Connect (OSTI)

    1995-10-01

    The Phase 1 laboratory bench-scale investigation results have shown that acoustically enhanced remediation (AER) technology can significantly accelerate the ground water remediation of non-aqueous phase liquids (NAPLs) in unconsolidated soils. The testing also determined some of the acoustic parameters which maximize fluid and contaminant extraction rates. A technology merit and trade analysis identified the conditions under which AER could be successfully deployed in the field, and an analysis of existing acoustical sources and varying methods for their deployment found that AER technology can be successfully deployed in-situ. Current estimates of deployability indicate that a NAPL plume 150 ft in diameter can be readily remediated. This program focused on unconsolidated soils because of the large number of remediation sites located in this type of hydrogeologic setting throughout the nation. It also focused on NAPLs and low permeability soil because of the inherent difficult in the remediation of NAPLs and the significant time and cost impact caused by contaminated low permeability soils. This overall program is recommended for Phase 2 which will address the technology scaling requirements for a field scale test.

  1. Concentrations of 23 trace elements in ground water and surface water at and near the Idaho National Engineering Laboratory, Idaho, 1988--91

    SciTech Connect (OSTI)

    Liszewski, M.J.; Mann, L.J.

    1993-12-31

    Analytical data for 23 trace elements are reported for ground- and surface-water samples collected at and near the Idaho National Engineering Laboratory during 1988--91. Water samples were collected from 148 wells completed in the Snake River Plain aquifer, 18 wells completed in discontinuous deep perched-water zones, and 1 well completed in an alluvial aquifer. Surface-water samples also were collected from three streams, two springs, two ponds, and one lake. Data are categorized by concentrations of total recoverable of dissolved trace elements. Concentrations of total recoverable trace elements are reported for unfiltered water samples and include results for one or more of the following: aluminum, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, selenium, silver, and zinc. Concentrations of dissolved trace elements are reported for water samples filtered through a nominal 0.45-micron filter and may also include bromide, fluoride, lithium, molybdenum, strontium, thallium, and vanadium. Concentrations of dissolved hexavalent chromium also are reported for many samples. The water samples were analyzed at the US Geological Survey`s National Water Quality Laboratory in Arvada, Colorado. Methods used to collect the water samples and quality assurance instituted for the sampling program are described. Concentrations of chromium equaled or exceeded the maximum contaminant level at 12 ground-water quality monitoring wells. Other trace elements did not exceed their respective maximum contaminant levels.

  2. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    SciTech Connect (OSTI)

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables.

  3. Reconnaissance of ground-water quality in the Papio-Missouri river natural resources district, Eastern Nebraska, July through September 1992. Water resources investigation

    SciTech Connect (OSTI)

    Verstraeten, I.M.; Ellis, M.J.

    1995-12-31

    The purpose of this report is to describe the water quality of the principal aquifers in the study area. Wells representative of the geology and land use in the study area were selected for water-quality sampling. Variations in constituent concentration among aquifers are discussed. The report describes the spatial distributions of dissolved nitrite plus-nitrate as nitrogen and triazine and other acetanilide herbicides and evaluates the effects of cropland application of nitrogen and herbicides on the ground-water quality within the study area. The report also summarizes the concentrations of dissolved major and trace constituents including radionuclide activity and concentration.

  4. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-07-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the US Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. This report summarizes what is known and inferred about ground-water flow throughout the NTS region. The report identifies and updates what is known about some of the major controls on ground-water flow, highlights some of the uncertainties in the current understanding, and prioritizes some of the technical needs as related to the Environmental Restoration Program. 113 refs.

  5. Final Environmental Assessment and Finding of No Significant Impact: Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    N /A

    2003-03-13

    This environmental assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Slick Rock, Colorado, Uranium Mill Tailings Remedial Action Project sites. The sites consist of two areas designated as the North Continent (NC) site and the Union Carbide (UC) site. In 1996, the U.S. Department of Energy (DOE) completed surface cleanup at both sites and encapsulated the tailings in a disposal cell 5 miles east of the original sites. Maximum concentration limits (MCLs) referred to in this environmental assessment are the standards established in Title 40 ''Code of Federal Regulations'' Part 192 (40 CFR 192) unless noted otherwise. Ground water contaminants of potential concern at the NC site are uranium and selenium. Uranium is more prevalent, and concentrations in the majority of alluvial wells at the NC site exceed the MCL of 0.044 milligram per liter (mg/L). Selenium contamination is less prevalent; samples from only one well had concentrations exceeding the MCL of 0.01 mg/L. To achieve compliance with Subpart B of 40 CFR 192 at the NC site, DOE is proposing the strategy of natural flushing in conjunction with institutional controls and continued monitoring. Ground water flow and transport modeling has predicted that concentrations of uranium and selenium in the alluvial aquifer will decrease to levels below their respective MCLs within 50 years.

  6. Measured water heating performance of a vertical-bore water-to-water ground source heat pump (WW-GSHP) for domestic water heating over twelve months under simulated occupancy loads

    SciTech Connect (OSTI)

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D; Gehl, Anthony C

    2014-01-01

    This paper presents monthly performance metrics of a 5.275 kW (1.5 ton) WW-GSHP providing 227 L day-1 domestic hot water at 49 C. Daily water use is simulated as stipulated in the Building America Research Benchmark Definition capturing the living habits of the average U.S household. The 94.5m vertical-bore ground loop is shared with a separate GSHP for space conditioning the 251m2 residential home. Data on entering water temperatures, energy extracted from the ground, delivered energy, compressor electricity use, COP, WW-GSHP run times, and the impact of fan and pump energy consumption on efficiency are presented for each month. Factors influencing performance metrics are highlighted.

  7. In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)

    DOE Patents [OSTI]

    Robertson, Eric P

    2011-05-24

    A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

  8. Remedial action plan and site design for stabilization of the inactive Uranium Mill Tailing site Maybell, Colorado. Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The U.S. Environmental Protection Agency (EPA) has established health and environmental regulations to correct and prevent ground water contamination resulting from former uranium processing activities at inactive uranium processing sites (40 CFR Part 192 (1993)) (52 FR 36000 (1978)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC {section} 7901 et seq.), the U.S. Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has decided that each assessment will include information on hydrogeologic site characterization. The water resources protection strategy that describes the proposed action compliance with the EPA ground water protection standards is presented in Attachment 4, Water Resources Protection Strategy. Site characterization activities discussed in this section include the following: (1) Definition of the hydrogeologic characteristics of the environment, including hydrostratigraphy, aquifer parameters, areas of aquifer recharge and discharge, potentiometric surfaces, and ground water velocities. (2) Definition of background ground water quality and comparison with proposed EPA ground water protection standards. (3) Evaluation of the physical and chemical characteristics of the contaminant source and/or residual radioactive materials. (4) Definition of existing ground water contamination by comparison with the EPA ground water protection standards. (5) Description of the geochemical processes that affect the migration of the source contaminants at the processing site. (6) Description of water resource use, including availability, current and future use and value, and alternate water supplies.

  9. From South Carolina to Massachusetts, Recovery Act Boosts Domestic Wind |

    Office of Environmental Management (EM)

    Department of Energy From South Carolina to Massachusetts, Recovery Act Boosts Domestic Wind From South Carolina to Massachusetts, Recovery Act Boosts Domestic Wind November 2, 2010 - 5:02pm Addthis Jacques Beaudry-Losique Director, Wind & Water Program Last week, Clemson University broke ground on a facility critical to the expansion of domestic wind power. At a converted Navy base in North Charleston, this one-of-a-kind center will test large drivetrains - the machinery that converts

  10. Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)

    SciTech Connect (OSTI)

    Abhijit Dandekar; Shirish Patil; Santanu Khataniar

    2008-12-31

    Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project, cyclic water injection tests using high as well as low salinity were also conducted on several representative ANS core samples. These results indicate that less pore volume of water is required to recover the same amount of oil as compared with continuous water injection. Additionally, in cyclic water injection, oil is produced even during the idle time of water injection. It is understood that the injected brine front spreads/smears through the pores and displaces oil out uniformly rather than viscous fingering. The overall benefits of this project include increased oil production from existing Alaskan reservoirs. This conclusion is based on the performed experiments and results obtained on low-salinity water injection (including ANS lake water), vis-a-vis slightly altering the wetting conditions. Similarly, encouraging cyclic water-injection test results indicate that this method can help achieve residual oil saturation earlier than continuous water injection. If proved in field, this would be of great use, as more oil can be recovered through cyclic water injection for the same amount of water injected.

  11. Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada

    SciTech Connect (OSTI)

    Young, H.W.; Lewis, R.E.

    1982-01-01

    Chemical analyses of water from 12 wells and 9 springs indicate that nonthermal waters are a calcium bicarbonate type; thermal waters are a sodium carbonate or bicarbonate type. Chemical geothermometers indicate probable maximum reservoir temperatures are near 100/sup 0/ Celsius. Concentration of tritium in the thermal water is near zero. Depletion of stable isotopes in the hot waters relative to present-day meteoric waters indicates recharge to the system probably occurred when the climate averaged 3/sup 0/ to 5/sup 0/ Celsius colder than at present. Temperatures about 3.5/sup 0/ Celsius colder than at present occurred during periods of recorded Holocene glacial advances and indicate a residence time of water in the system of at least several thousand years. Residence time calculated on the basis of reservoir volume and thermal-water discharge is 3400 to 6800 years for an effective reservoir porosity of 0.05 and 0.10, respectively. Preliminary analyses of carbon-14 determinations indicate an age of the hot waters of about 18,000 to 25,000 years. The proposed conceptual model for the area is one of an old system, where water has circulated for thousands, even tens of thousands, of years. Within constraints imposed by the model described, reservoir thermal energy for the geothermal system in southwestern Idaho and north-central Nevada is about 130 x 10/sup 18/ calories.

  12. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

  13. Method and apparatus for enhanced heat recovery from steam generators and water heaters

    DOE Patents [OSTI]

    Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

    2006-06-27

    A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

  14. Water-soluble polymers for recovery of metal ions from aqueous streams

    DOE Patents [OSTI]

    Smith, Barbara F. (Los Alamos, NM); Robison, Thomas W. (Los Alamos, NM)

    1998-01-01

    A process of selectively separating a target metal contained in an aqueous solution by contacting the aqueous solution containing a target metal with an aqueous solution including a water-soluble polymer capable of binding with the target metal for sufficient time whereby a water-soluble polymer-target metal complex is formed, and, separating the solution including the water-soluble polymer-target metal complex from the solution is disclosed.

  15. Recovery of carboxylic acids from water by precipitation from organic solutions

    DOE Patents [OSTI]

    King, C. Judson (Kensington, CA); Starr, John (Albany, CA)

    1992-01-01

    Carboxylic acids are recovered from wet organic solutions by reducing the solutions' water content thus causing the acids to precipitate as recoverable crystals.

  16. Ground water of Yucca Mountain: How high can it rise?; Final report

    SciTech Connect (OSTI)

    1992-12-31

    This report describes the geology, hydrology, and possible rise of the water tables at Yucca Mountain. The possibilities of rainfall and earthquakes causing flooding is discussed.

  17. Electrosorption on carbon aerogel electrodes as a means of treating low-level radioactive wastes and remediating contaminated ground water

    SciTech Connect (OSTI)

    Tran, Tri Duc; Farmer, Joseph C.; DePruneda, Jean H.; Richardson, Jeffery H.

    1997-07-01

    A novel separation process based upon carbon aerogel electrodes has been recently developed for the efficient removal of ionic impurities from aqueous streams. This process can be used as an electrical y- regenerated alternative to ion exchange, thereby reducing-the need for large quantities of chemical regenerants. Once spent (contaminated), these regenerants contribute to the waste that must be disposed of in landfills. The elimination of such wastes is especially beneficial in situations involving radioactive contaminants, and pump and treat processing of massive volumes of ground water. A review and analysis of potential applications will be presented.

  18. Report from the Field: Nutrient and Energy Recovery at DC Water

    Broader source: Energy.gov [DOE]

    Presentation by Mark Ramirez, DC Water, during the "Technological State of the Art" panel at the Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop held March 18–19, 2015.

  19. Pattern of shallow ground water flow at Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    Mt. Princeton hot water production (4.3-4.9)103m3day at approximately 60-86C). A temperature map indicates that a third upwelling zone termed U4 may exist at the southern...

  20. Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    Mt. Princeton hot water production (4.3-4.9) 103 m3day at approximately 60-86C). A temperature map indicates that a third upwelling zone termed U4 may exist at the southern...

  1. User`s Guide: Database of literature pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Hall, L.F.

    1993-05-01

    Since its beginnings in 1949, hydrogeologic investigations at the Idaho National Engineering Laboratory (INEL) have resulted in an extensive collection of technical publications providing information concerning ground water hydraulics and contaminant transport within the unsaturated zone. Funding has been provided by the Department of Energy through the Department of Energy Idaho Field Office in a grant to compile an INEL-wide summary of unsaturated zone studies based on a literature search. University of Idaho researchers are conducting a review of technical documents produced at or pertaining to the INEL, which present or discuss processes in the unsaturated zone and surface water-ground water interactions. Results of this review are being compiled as an electronic database. Fields are available in this database for document title and associated identification number, author, source, abstract, and summary of information (including types of data and parameters). AskSam{reg_sign}, a text-based database system, was chosen. WordPerfect 5.1{copyright} is being used as a text-editor to input data records into askSam.

  2. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 2, Work plan: Phase 1, Task 4, Field Investigation: Draft

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    In April 1990 Wright-Patterson Air Force Base (WPAFB) initiated an investigation to evaluate a potential CERCLA removal action to prevent, to the extent practicable, the migration of ground-water contamination in the Mad River Valley Aquifer within and across WPAFB boundaries. The action will be based on a Focused Feasibility Study with an Action Memorandum serving as a decision document that is subject to approval by the Ohio Environmental Protection Agency. The first phase (Phase 1) of this effort involves an investigation of ground-water contamination migrating across the southwest boundary of Area C and across Springfield Pike adjacent to Area B. Task 4 of Phase 1 is a field investigation to collect sufficient additional information to evaluate removal alternatives. The field investigation will provide information in the following specific areas of study: water-level data which will be used to permit calibration of the ground-water flow model to a unique time in history; and ground-water quality data which will be used to characterize the current chemical conditions of ground water.

  3. Geohydrologic study of the Michigan Basin for the applicability of Jack W. McIntyre`s patented process for simultaneous gas recovery and water disposal in production wells

    SciTech Connect (OSTI)

    Maryn, S.

    1994-03-01

    Geraghty & Miller, Inc. of Midland, Texas conducted a geohydrologic study of the Michigan Basin to evaluate the applicability of Jack McIntyre`s patented process for gas recovery and water disposal in production wells. A review of available publications was conducted to identify, (1) natural gas reservoirs which generate large quantities of gas and water, and (2) underground injection zones for produced water. Research efforts were focused on unconventional natural gas formations. The Antrim Shale is a Devonian gas shale which produces gas and large quantities of water. Total 1992 production from 2,626 wells was 74,209,916 Mcf of gas and 25,795,334 bbl of water. The Middle Devonian Dundee Limestone is a major injection zone for produced water. ``Waterless completion`` wells have been completed in the Antrim Shale for gas recovery and in the Dundee Limestone for water disposal. Jack McIntyre`s patented process has potential application for the recovery of gas from the Antrim Shale and simultaneous injection of produced water into the Dundee Limestone.

  4. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOE Patents [OSTI]

    Tsai, Shih-Perng (Naperville, IL)

    1997-01-01

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.

  5. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOE Patents [OSTI]

    Tsai, S.P.

    1997-07-08

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants-containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid. 6 figs.

  6. Ground state analytical ab initio intermolecular potential for the Cl{sub 2}-water system

    SciTech Connect (OSTI)

    Hormain, Laureline; Monnerville, Maurice Toubin, Cline; Duflot, Denis; Pouilly, Brigitte; Briquez, Stphane; Bernal-Uruchurtu, Margarita I.; Hernndez-Lamoneda, Ramn

    2015-04-14

    The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl{sub 2} molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl{sub 2} ? H{sub 2}O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by the comparison of ab initio results of Cl{sub 2} interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl{sub 2} on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.

  7. Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas

    SciTech Connect (OSTI)

    Mohan, Arvind Murali; Hartsock, Angela; Hammack, Richard W.; Vidic, Radisav D; Gregory, Kelvin B.

    2013-12-01

    Hydraulic fracturing for natural gas extraction from shale produces waste brine known as flowback that is impounded at the surface prior to reuse and/or disposal. During impoundment, microbial activity can alter the fate of metals including radionuclides, give rise to odorous compounds, and result in biocorrosion that complicates water and waste management and increases production costs. Here, we describe the microbial ecology at multiple depths of three flowback impoundments from the Marcellus shale that were managed differently. 16S rRNA gene clone libraries revealed that bacterial communities in the untreated and biocide-amended impoundments were depth dependent, diverse, and most similar to species within the taxa [gamma]-proteobacteria, [alpha]-proteobacteria, ?-proteobacteria, Clostridia, Synergistetes, Thermotogae, Spirochetes, and Bacteroidetes. The bacterial community in the pretreated and aerated impoundment was uniform with depth, less diverse, and most similar to known iodide-oxidizing bacteria in the [alpha]-proteobacteria. Archaea were identified only in the untreated and biocide-amended impoundments and were affiliated to the Methanomicrobia class. This is the first study of microbial communities in flowback water impoundments from hydraulic fracturing. The findings expand our knowledge of microbial diversity of an emergent and unexplored environment and may guide the management of flowback impoundments.

  8. Ground-water monitoring compliance projects for Hanford Site facilities: Progress Report for the Period July 1 to September 30, 1987

    SciTech Connect (OSTI)

    Not Available

    1987-11-01

    This report documents the progress of four Hanford Site ground-water monitoring projects for the period from July 1 to September 310, 1987. The four disposal facilities are the 300 Area Process Trenches, 183-H Solar Evaporation Basins, 200 Area Low-Level Burial Grounds, and Nonradioactive Dangerous Waste (NRDW) Landfill. This report is the fifth in a series of periodic status reports. During this reporting period, field activities consisted of completing repairs on five monitoring wells originally present around the 183-H Basins and completing construction of 25 monitoring wells around the 200 Area Burial Grounds. The 14 wells in the 200 East Area were completed by Kaiser Engineers Hanford (KEH) and the 11 wells in the 200 West Area were compelted by ONWEGO Well Drilling. The NRDW Landfill interim characterization report was submitted to the WDOE and the USEPA in August 1987. Analytical results for the 300 Area, 183-H, and the NRDW Landfill indicate no deviations from previously established trends. Results from the NRDW Land-fill indiate that the facility has no effect on the ground-water quality beneath the facility, except for the detection of coliform bacteria. A possible source of this contamination is the solid-waste lanfill (SWL) adjacent to the NRDW Landfill. Ground-water monitoring data for the NRDW and SWL will be evaluated together in the future. Aquifer testing was completed in the 25 new wells surrounding the 200 Area buiral grounds. 13 refs., 19 refs., 13 tabs.

  9. Ground water and snow sensor based on directional detection of cosmogenic neutrons.

    SciTech Connect (OSTI)

    Cooper, Robert Lee; Marleau, Peter; Griffin, Patrick J.

    2011-06-01

    A fast neutron detector is being developed to measure the cosmic ray neutron flux in order to measure soil moisture. Soil that is saturated with water has an enhanced ability to moderate fast neutrons, removing them from the backscatter spectrum. The detector is a two-element, liquid scintillator detector. The choice of liquid scintillator allows rejection of gamma background contamination from the desired neutron signal. This enhances the ability to reconstruct the energy and direction of a coincident neutron event. The ability to image on an event-by-event basis allows the detector to selectively scan the neutron flux as a function of distance from the detector. Calibrations, simulations, and optimization have been completed to understand the detector response to neutron sources at variable distances and directions. This has been applied to laboratory background measurements in preparation for outdoor field tests.

  10. Data, exergy, and energy analysis of a vertical-bore, ground-source heat pump to for domestic water heating under simulated occupancy conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D; Gehl, Anthony C

    2015-01-01

    Evidence is provided to support the view that greater than two-thirds of energy required to produce domestic hot water may be extracted from the ground which serves as renewable energy resource. The case refers to a 345 m2 research house located in Oak Ridge, Tennessee, 36.01 N 84.26 W in a mixed-humid climate with HDD of 2218 C-days (3993 F-days) and CDD of 723 C-days (1301 F-days). The house is operated under simulated occupancy conditions in which the hot water use protocol is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which captures the water consumption lifestyles of the average family in the United States. The 5.275 (1.5-ton) water-to-water ground source heat pump (WW-GSHP) shared the same vertical bore with a 7.56 KW water-to-air ground source heat pump for space conditioning the same house. Energy and exergy analysis of data collected continuously over a twelve month period provide performance metrics and sources of inherent systemic inefficiencies. Data and analyses are vital to better understand how WW-GSHPs may be further improved to enable the ground to be used as a renewable energy resource.

  11. Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water

    SciTech Connect (OSTI)

    Hwang, In-Hee; Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

  12. A Highly Efficient Six-Stroke Internal Combustion Engine Cycle with Water Injection for In-Cylinder Exhaust Heat Recovery

    SciTech Connect (OSTI)

    Conklin, Jim; Szybist, James P

    2010-01-01

    A concept is presented here that adds two additional strokes to the four-stroke Otto or Diesel cycle that has the potential to increase fuel efficiency of the basic cycle. The engine cycle can be thought of as a 4 stroke Otto or Diesel cycle followed by a 2-stroke heat recovery steam cycle. Early exhaust valve closing during the exhaust stroke coupled with water injection are employed to add an additional power stroke at the end of the conventional four-stroke Otto or Diesel cycle. An ideal thermodynamics model of the exhaust gas compression, water injection at top center, and expansion was used to investigate this modification that effectively recovers waste heat from both the engine coolant and combustion exhaust gas. Thus, this concept recovers energy from two waste heat sources of current engine designs and converts heat normally discarded to useable power and work. This concept has the potential of a substantial increase in fuel efficiency over existing conventional internal combustion engines, and under appropriate injected water conditions, increase the fuel efficiency without incurring a decrease in power density. By changing the exhaust valve closing angle during the exhaust stroke, the ideal amount of exhaust can be recompressed for the amount of water injected, thereby minimizing the work input and maximizing the mean effective pressure of the steam expansion stroke (MEPsteam). The value of this exhaust valve closing for maximum MEPsteam depends on the limiting conditions of either one bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens to discard the spent gas mixture in the sixth stroke. The range of MEPsteam calculated for the geometry of a conventional gasoline spark-ignited internal combustion engine and for plausible water injection parameters is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEPcombustion) of naturally aspirated gasoline engines are up to 10 bar, thus this concept has the potential to significantly increase the engine efficiency and fuel economy while not resulting in a decrease in power density.

  13. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; Belcher, W.R.; San Juan, Carma

    2002-11-22

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this ''second-generation'' regional model was to enhance the knowledge and understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-stat e representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration.

  14. ''A ground water resources study of a Pacific Ocean atoll - Tarawa, Gilbert Islands,'' by J. W. Lloyd, J. C. Miles, G. R. Chessmand, and S. F. Bugg

    SciTech Connect (OSTI)

    Wheatcraft, S.W.; Buddemeier, R.W.

    1981-10-01

    Several inherent problems in the methodology employed in the ground water resource study of Tarawa Atoll (Lloyd, et al., 1981) are described. Studies of Enewetak Atoll have provided data that require a significantly different conceptual model of the atoll hydrogeology system. Comparison of well, lagoon, and ocean tidal observations with a mathematical model that assumes horizontal tidal propagation indicates that the observed results are more consistent with a system that is controlled by vertical coupling between the unconsolidated surface aquifer and an underlying aquifer of more permeable limestone. This indicates that most fresh water recharged to the aquifer migrates downward and mixes with the sea water in a deeper aquifer providing easy exchange with the ocean. Lloyd, et al., do not take tidal mixing or vertical transport into account and it therefore seems likely that fresh water inventories are significantly overestimated. Failure to include these significant loss terms in the island water budget may also account for calculated heads above ground level. (JMT)

  15. Ground water flow velocity in the bank of the Columbia River, Hanford, Washington

    SciTech Connect (OSTI)

    Ballard, S.

    1995-12-01

    To properly characterize the transport of contaminants from the sediments beneath the Hanford Site into the Columbia River, a suite of In Situ Permeable Flow Sensors was deployed to accurately characterize the hydrologic regime in the banks of the river. The three dimensional flow velocity was recorded on an hourly basis from mid May to mid July, 1994 and for one week in September. The first data collection interval coincided with the seasonal high water level in the river while the second interval reflected conditions during relatively low seasonal river stage. Two flow sensors located approximately 50 feet from the river recorded flow directions which correlated very well with river stage, both on seasonal and diurnal time scales. During time intervals characterized by falling river stage, the flow sensors recorded flow toward the river while flow away from the river was recorded during times of rising river stage. The flow sensor near the river in the Hanford Formation recorded a component of flow oriented vertically downward, probably reflecting the details of the hydrostratigraphy in close proximity to the probe. The flow sensor near the river in the Ringold Formation recorded an upward component of flow which dominated the horizontal components most of the time. The upward flow in the Ringold probably reflects regional groundwater flow into the river. The magnitudes of the flow velocities recorded by the flow sensors were lower than expected, probably as a result of drilling induced disturbance of the hydraulic properties of the sediments around the probes. The probes were installed with resonant sonic drilling which may have compacted the sediments immediately surrounding the probes, thereby reducing the hydraulic conductivity adjacent to the probes and diverting the groundwater flow away from the sensors.

  16. Energy Recovery Inc | Open Energy Information

    Open Energy Info (EERE)

    global developer and manufacturer of energy recovery devices utilized in the water desalination industry. References: Energy Recovery Inc1 This article is a stub. You can help...

  17. Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel via Electrolytic Reduction and Electrorefining

    SciTech Connect (OSTI)

    S. D. Herrmann; S. X. Li

    2010-09-01

    A series of bench-scale experiments was performed in a hot cell at Idaho National Laboratory to demonstrate the separation and recovery of uranium metal from spent light water reactor (LWR) oxide fuel. The experiments involved crushing spent LWR fuel to particulate and separating it from its cladding. Oxide fuel particulate was then converted to metal in a series of six electrolytic reduction runs that were performed in succession with a single salt loading of molten LiCl 1 wt% Li2O at 650 C. Analysis of salt samples following the series of electrolytic reduction runs identified the diffusion of select fission products from the spent fuel to the molten salt electrolyte. The extents of metal oxide conversion in the post-test fuel were also quantified, including a nominal 99.7% conversion of uranium oxide to metal. Uranium metal was then separated from the reduced LWR fuel in a series of six electrorefining runs that were performed in succession with a single salt loading of molten LiCl-KCl-UCl3 at 500 C. Analysis of salt samples following the series of electrorefining runs identified additional partitioning of fission products into the molten salt electrolyte. Analyses of the separated uranium metal were performed, and its decontamination factors were determined.

  18. UMTRA Ground Water Project

    Office of Legacy Management (LM)

    Verification Monitoring Report for the Gunnison, Colorado, Processing Site September 2013 LMS/GUP/S10620 This page intentionally left blank LMS/GUP/S10620 2013 Verification Monitoring Report for the Gunnison, Colorado, Processing Site September 2013 This page intentionally left blank U.S. Department of Energy 2013 Verification Monitoring Report-Gunnison, Colorado, Processing Site September 2013 Doc. No. S10620 Page i Contents Abbreviations

  19. UMTRA Ground Water Project

    Office of Legacy Management (LM)

    Gunnison, Colorado, Processing Site September 2014 LMS/GUP/S12142 This page intentionally left blank LMS/GUP/S12142 2014 Verification Monitoring Report for the Gunnison, Colorado, Processing Site September 2014 This page intentionally left blank U.S. Department of Energy 2014 Verification Monitoring Report-Gunnison, Colorado, Processing Site September 2014 Doc. No. S12142 Page i Contents Abbreviations

  20. On the ground state calculation of a many-body system using a self-consistent basis and quasi-Monte Carlo: An application to water hexamer

    SciTech Connect (OSTI)

    Georgescu, Ionu? Mandelshtam, Vladimir A.; Jitomirskaya, Svetlana

    2013-11-28

    Given a quantum many-body system, the Self-Consistent Phonons (SCP) method provides an optimal harmonic approximation by minimizing the free energy. In particular, the SCP estimate for the vibrational ground state (zero temperature) appears to be surprisingly accurate. We explore the possibility of going beyond the SCP approximation by considering the system Hamiltonian evaluated in the harmonic eigenbasis of the SCP Hamiltonian. It appears that the SCP ground state is already uncoupled to all singly- and doubly-excited basis functions. So, in order to improve the SCP result at least triply-excited states must be included, which then reduces the error in the ground state estimate substantially. For a multidimensional system two numerical challenges arise, namely, evaluation of the potential energy matrix elements in the harmonic basis, and handling and diagonalizing the resulting Hamiltonian matrix, whose size grows rapidly with the dimensionality of the system. Using the example of water hexamer we demonstrate that such calculation is feasible, i.e., constructing and diagonalizing the Hamiltonian matrix in a triply-excited SCP basis, without any additional assumptions or approximations. Our results indicate particularly that the ground state energy differences between different isomers (e.g., cage and prism) of water hexamer are already quite accurate within the SCP approximation.

  1. Jeff Grounds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jeff Grounds Jeff Grounds jeffgrounds-sm.jpg Jeff Grounds Facilities Manager JTGrounds@lbl.gov Phone: (510) 486-7197 Mobile: (510) 207-2273 Last edited: 2016-02-01 08:07:03

  2. NREL: Technology Deployment - Disaster Resiliency and Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    disaster recovery and rebuilding opportunities to: Incorporate energy efficiency, water and fuel conservation, sustainability, and renewable energy measures into disaster...

  3. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 3, Sampling and analysis plan (SAP): Phase 1, Task 4, Field Investigation: Draft

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

  4. Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2012-01-01

    In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

  5. Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site

    SciTech Connect (OSTI)

    Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

    1995-03-01

    In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site.

  6. Air Handler Condensate Recovery at the Environmental Protection Agencys Science and Ecosystem Support Division: Best Management Practice Case Study #14: Alternate Water Sources, Federal Energy Management Program (FEMP) (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Severe drought in the southeastern United States caused the U.S. Environmental Protection Agency (EPA) to address the need for water conservation and develop a water management plan for their Science and Ecosystem Support Division (SESD). The water management plan aimed to reduce SESD's potable water usage (more than 2.4 million gallons in fiscal year 2008) through an air handler condensate recovery project. The EPA SESD encompasses 12 acres in Athens, Georgia. A single laboratory building was

  7. Resource Conservation and Recovery Act (RCRA) facility assessment guidance

    SciTech Connect (OSTI)

    Rastatter, C.; Fagan, D.; Foss, D.

    1986-10-01

    Facilities that manage hazardous wastes are required to obtain permits under the Resource Conservation and Recovery Act (RCRA) of 1976. This guidance document informs RCRA permit writers and enforcement officials of procedures to be used in conducting RCRA Facility Assessments. The RCRA corrective-action program was established to investigate and require clean up of releases of hazardous wastes or constituents to the environment at facilities subject to RCRA permits. Releases to ground water, surface water, air, soil, and subsurface strata may be addressed.

  8. emergency recovery

    National Nuclear Security Administration (NNSA)

    basis.

    Recovery includes the evaluation of the incident to identify lessons learned and development of initiatives to mitigate the effects of future...

  9. Application of Pulsed Electrical Fields for Advanced Cooling and Water Recovery in Coal-Fired Power Plant

    SciTech Connect (OSTI)

    Young Cho; Alexander Fridman

    2009-04-02

    The overall objective of the present work was to develop technologies to reduce freshwater consumption in a cooling tower of coal-based power plant so that one could significantly reduce the need of make-up water. The specific goal was to develop a scale prevention technology based an integrated system of physical water treatment (PWT) and a novel filtration method so that one could reduce the need for the water blowdown, which accounts approximately 30% of water loss in a cooling tower. The present study investigated if a pulsed spark discharge in water could be used to remove deposits from the filter membrane. The test setup included a circulating water loop and a pulsed power system. The present experiments used artificially hardened water with hardness of 1,000 mg/L of CaCO{sub 3} made from a mixture of calcium chloride (CaCl{sub 2}) and sodium carbonate (Na{sub 2}CO{sub 3}) in order to produce calcium carbonate deposits on the filter membrane. Spark discharge in water was found to produce strong shockwaves in water, and the efficiency of the spark discharge in cleaning filter surface was evaluated by measuring the pressure drop across the filter over time. Results showed that the pressure drop could be reduced to the value corresponding to the initial clean state and after that the filter could be maintained at the initial state almost indefinitely, confirming the validity of the present concept of pulsed spark discharge in water to clean dirty filter. The present study also investigated the effect of a plasma-assisted self-cleaning filter on the performance of physical water treatment (PWT) solenoid coil for the mitigation of mineral fouling in a concentric counterflow heat exchanger. The self-cleaning filter utilized shockwaves produced by pulse-spark discharges in water to continuously remove scale deposits from the surface of the filter, thus keeping the pressure drop across the filter at a relatively low value. Artificial hard water was used in the present fouling experiments for three different cases: no treatment, PWT coil only, and PWT coil plus self-cleaning filter. Fouling resistances decreased by 59-72% for the combined case of PWT coil plus filter compared with the values for no-treatment cases. SEM photographs showed much smaller particle sizes for the combined case of PWT coil plus filter as larger particles were continuously removed from circulating water by the filter. The x-ray diffraction data showed calcite crystal structures for all three cases.

  10. Effects of uranium-mining releases on ground-water quality in the Puerco River Basin, Arizona and New Mexico

    SciTech Connect (OSTI)

    Van Metre, P.C.; Wirt, L.; Lopes, T.J.; Ferguson, S.A.

    1997-12-31

    The purpose of this report is to describe: (1) the water quality of the Puerco River alluvial aquifer, (2) the movement of water between the Puerco River and underlying alluvial aquifer, and (3) changes in the water quality of the alluvial and bedrock aquifers related to releases of contaminants by uranium-mining activities. This report focuses on the alluvial aquifer near the reach of the Puerco River that was subjected to continuous flow containing mine-dewatering effluents and to flow containing mine-dewatering effluents and to flow from the tailings-pond spill.

  11. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  12. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  13. Enhanced Control of PWR Primary Coolant Water Chemistry Using Selective Separation Systems for Recovery and Recycle of Enriched Boric Acid

    SciTech Connect (OSTI)

    Ken Czerwinski; Charels Yeamans; Don Olander; Kenneth Raymond; Norman Schroeder; Thomas Robison; Bryan Carlson; Barbara Smit; Pat Robinson

    2006-02-28

    The objective of this project is to develop systems that will allow for increased nuclear energy production through the use of enriched fuels. The developed systems will allow for the efficient and selective recover of selected isotopes that are additives to power water reactors' primary coolant chemistry for suppression of corrosion attack on reactor materials.

  14. Lab completes Recovery Act-funded demolition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tug from a piece of heavy equipment, the last bit of the 24th building crashed to the ground. The final building demolished under the Recovery Act program at Los Alamos...

  15. Recovery of Rare Earths, Precious Metals and Other Critical Materials from Geothermal Waters with Advanced Sorbent Structures

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Pamela M. Kinsey

    2015-09-30

    The work evaluates, develops and demonstrates flexible, scalable mineral extraction technology for geothermal brines based upon solid phase sorbent materials with a specific focus upon rare earth elements (REEs). The selected organic and inorganic sorbent materials demonstrated high performance for collection of trace REEs, precious and valuable metals. The nanostructured materials typically performed better than commercially available sorbents. Data contains organic and inorganic sorbent removal efficiency, Sharkey Hot Springs (Idaho) water chemsitry analysis, and rare earth removal efficiency from select sorbents.

  16. Twenty-Plus Years of Environmental Change and Ecological Recovery of East Fork Poplar Creek: Background and Trends in Water Quality

    SciTech Connect (OSTI)

    Smith, John G; Stewart, Arthur J; Loar, James M

    2011-01-01

    In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy's Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated once-through cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water discharged from the Y-12 Complex declined. This reduction in discharge was of ecological concern and led to implementation of a flow management program for EFPC. Implementing flow management, in turn, led to substantial changes in chemical and physical conditions of the stream: stream discharge nearly doubled and stream temperatures decreased, becoming more similar to those in reference streams. While water quality clearly improved, meeting water quality standards alone does not guarantee protection of a waterbody's biological integrity. Results from studies on the ecological changes stemming from pollution-reduction actions, such as those presented in this series, also are needed to understand how best to restore or protect biological integrity and enhance ecological recovery in stream ecosystems. With a better knowledge of the ecological consequences of their decisions, environmental managers can better evaluate alternative actions and more accurately predict their effects.

  17. Ground control for highwall mining

    SciTech Connect (OSTI)

    Zipf, R.K.; Mark, C.

    2007-09-15

    Perhaps the greatest risk to both equipment and personnel associated with highwall mining is from ground control. The two most significant ground control hazards are rock falls from highwall and equipment entrapment underground. In the central Appalachians, where the majority of highwall mining occurs in the USA, hillseams (or mountain cracks) are the most prominent structure that affects highwall stability. The article discusses measures to minimise the risk of failure associated with hillstreams. A 'stuck' or trapped highwall miner, and the ensuring retrieval or recovery operation, can be extremely disruptive to the highwall mining process. Most entrapment, are due to roof falls in the hole. The options for recovery are surface retrieval, surface excavation or underground recovery. Proper pillar design is essential to maintain highwall stability and prevent entrapments. NIOSH has developed the Analysis of Retreat Mining Pillar stability-Highwall Mining (ARMPS-HWM) computer program to help mine planners with this process. 10 figs.

  18. Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 1, Text

    SciTech Connect (OSTI)

    Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

    1989-01-01

    This report presents information derived from the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. This volume contains the main text. Volume 2 contains the appendixes, including data and supporting information that verify content and results found in the main text. This report documents information collected by the Pacific Northwest Laboratory at the request of Westinghouse Hanford Company. Presented in this report are the preliminary interpretations of the hydrogeologic environment of six low-level burial grounds, which comprise four waste management areas (WMAs) located in the 200 Areas of the Hanford Site. This information and its accompanying interpretations were derived from sampling and testing activities associated with the construction of 35 ground-water monitoring wells as well as a multitude of previously existing boreholes. The new monitoring wells were installed as part of a ground-water monitoring program initiated in 1986. This ground-water monitoring program is based on requirements for interim status facilities in compliance with the Resource Conservation and Recovery Act (1976).

  19. Ball State University Completes Nation's Largest Ground-Source Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System with Support from Recovery Act | Department of Energy Ball State University Completes Nation's Largest Ground-Source Geothermal System with Support from Recovery Act Ball State University Completes Nation's Largest Ground-Source Geothermal System with Support from Recovery Act March 20, 2012 - 3:31pm Addthis As part of the Obama Administration's all-of-the-above approach to American energy, the Energy Department today congratulated Ball State University for its campus-wide

  20. ARM - Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govAboutRecovery Act Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send ARM and the Recovery Act Through the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy's Office of

  1. Enhanced Oil Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary

  2. ARM - Recovery Act Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ActRecovery Act Instruments Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Recovery Act Instruments These pages provide a breakdown of the new instruments planned for installation among the

  3. Hidden values in bauxite residue (red mud): Recovery of metals

    SciTech Connect (OSTI)

    Liu, Yanju; Naidu, Ravi

    2014-12-15

    Highlights: Current iron recovery techniques using red mud are depicted. Advantages and disadvantages exist in different recovering processes. Economic and environmental friendly integrated usage of red mud is promising. - Abstract: Bauxite residue (red mud) is a hazardous waste generated from alumina refining industries. Unless managed properly, red mud poses significant risks to the local environment due to its extreme alkalinity and its potential impacts on surface and ground water quality. The ever-increasing generation of red mud poses significant challenges to the aluminium industries from management perspectives given the low proportion that are currently being utilized beneficially. Red mud, in most cases, contains elevated concentrations of iron in addition to aluminium, titanium, sodium and valuable rare earth elements. Given the scarcity of iron supply globally, the iron content of red mud has attracted increasing research interest. This paper presents a critical overview of the current techniques employed for iron recovery from red mud. Information on the recovery of other valuable metals is also reviewed to provide an insight into the full potential usage of red mud as an economic resource rather than a waste. Traditional hydrometallurgy and pyrometallurgy are being investigated continuously. However, in this review several new techniques are introduced that consider the process of iron recovery from red mud. An integrated process which can achieve multiple additional values from red mud is much preferred over the single process methods. The information provided here should help to improve the future management and utilization of red mud.

  4. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-09-01

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  5. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, James W.

    1992-01-01

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  6. Pacific Northwest National Laboratory Grounds Maintenance

    SciTech Connect (OSTI)

    2009-08-05

    FEMP Water Efficiency Best Management Practice #4 and #5: Case study overview of the grounds maintenance program for Pacific Northwest National Laboratory.

  7. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Menlo Park, CA); Eggeman, Timothy J. (Lakewood, CO)

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  8. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Golden, CO); Eggeman, Timothy J. (Lakewood, CO)

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  9. Recovery Act Creates Jobs, Accelerates Cleanup at DOE's Paducah Site |

    Office of Environmental Management (EM)

    Department of Energy Recovery Act Creates Jobs, Accelerates Cleanup at DOE's Paducah Site Recovery Act Creates Jobs, Accelerates Cleanup at DOE's Paducah Site October 26, 2011 - 8:14am Addthis Brandon Henderson checks a pump in the water treatment facility at the Paducah Gaseous Diffusion Plant. The former Recovery Act engineer now works for the U.S. Enrichment Corp. Brandon Henderson checks a pump in the water treatment facility at the Paducah Gaseous Diffusion Plant. The former Recovery

  10. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act More Documents & Publications Overview of Recovery Act FAR Clauses Map Data: Recovery Act Funding DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage...

  11. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  12. Recovery Act-Funded Geothermal Heat Pump projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) was allocated funding from the American Recovery and Reinvestment Act to conduct research into ground source heat pump technologies and applications. Projects...

  13. Energy recovery system

    DOE Patents [OSTI]

    Moore, Albert S. (Morgantown, WV); Verhoff, Francis H. (Morgantown, WV)

    1980-01-01

    The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

  14. Advanced Membrane Separation Technologies for Energy Recovery

    SciTech Connect (OSTI)

    2009-05-01

    This factsheet describes a research project whose goal is to develop novel materials for use in membrane separation technologies for the recovery of waste energy and water from industrial process streams.

  15. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    2015-04-13

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  16. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  17. Air Handler Condensate Recovery at the Environmental Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The plan aimed to reduce potable water usage through an air handler condensate recovery project. PDF icon epa-scesdwatercs.pdf More Documents & Publications Air Handler Condensate ...

  18. List of Heat recovery Incentives | Open Energy Information

    Open Energy Info (EERE)

    Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Energy Storage Nuclear Wind Heat recovery Fuel Cells using Renewable Fuels No Agricultural Energy Efficiency...

  19. Analysis of Ground-Water Levels and Associated Trends in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1951-2003

    SciTech Connect (OSTI)

    J.M. Fenelon

    2005-10-05

    Almost 4,000 water-level measurements in 216 wells in the Yucca Flat area from 1951 to 2003 were quality assured and analyzed. An interpretative database was developed that describes water-level conditions for each water level measured in Yucca Flat. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes narratives that discuss the water-level history of each well. Water levels in 34 wells were analyzed for variability and for statistically significant trends. An attempt was made to identify the cause of many of the water-level fluctuations or trends. Potential causes include equilibration following well construction or development, pumping in the monitoring well, withdrawals from a nearby supply well, recharge from precipitation, earthquakes, underground nuclear tests, land subsidence, barometric pressure, and Earth tides. Some of the naturally occurring fluctuations in water levels may result from variations in recharge. The magnitude of the overall water-level change for these fluctuations generally is less than 2 feet. Long-term steady-state hydrographs for most of the wells open to carbonate rock have a very similar pattern. Carbonate-rock wells without the characteristic pattern are directly west of the Yucca and Topgallant faults in the southwestern part of Yucca Flat. Long-term steady-state hydrographs from wells open to volcanic tuffs or the Eleana confining unit have a distinctly different pattern from the general water-level pattern of the carbonate-rock aquifers. Anthropogenic water-level fluctuations were caused primarily by water withdrawals and nuclear testing. Nuclear tests affected water levels in many wells. Trends in these wells are attributed to test-cavity infilling or the effects of depressurization following nuclear testing. The magnitude of the overall water-level change for wells with anthropogenic trends can be large, ranging from several feet to hundreds of feet. Vertical water-level differences at 27 sites in Yucca Flat with multiple open intervals were compared. Large vertical differences were noted in volcanic rocks and in boreholes where water levels were affected by nuclear tests. Small vertical differences were noted within the carbonate-rock and valley-fill aquifers. Vertical hydraulic gradients generally are downward in volcanic rocks and from pre-Tertiary clastic rocks toward volcanic- or carbonate-rock units.

  20. Bonneville Power Administration Program Specific Recovery Plan | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Bonneville Power Administration Program Specific Recovery Plan Bonneville Power Administration Program Specific Recovery Plan PDF icon Microsoft Word - PSRP May 15 2009 _BPA_ Final.docx More Documents & Publications Microsoft Word - PSRP Updates 6-25-10_v2 Before the House Natural Resources Subcommittee on Water and Power Western Area Power Administration Borrowing Authority, Recovery Act

  1. Sulfur recovery process

    SciTech Connect (OSTI)

    Hise, R.E.; Cook, W.J.

    1991-06-04

    This paper describes a method for recovering sulfur from a process feed stream mixture of gases comprising sulfur-containing compounds including hydrogen sulfide using the Claus reaction to convert sulfur-containing compounds to elemental sulfur and crystallization to separate sulfur-containing compounds from a tail gas of the Claus reaction for further processing as a recycle stream. It comprises: providing a Claus feed stream containing a stoichiometric excess of hydrogen sulfide, the Claus feed stream including the process feed stream and the recycles stream; introducing the Claus feed stream and an oxidizing agent into a sulfur recovery unit for converting sulfur-containing compounds in the Claus feed stream to elemental sulfur; withdrawing the tail gas from the sulfur recovery unit; separating water from the tail gas to producing a dehydrated tail gas; separating sulfur-containing compounds including carbonyl sulfide from the dehydrated tail gas as an excluded material by crystallization and withdrawing an excluded material-enriched output from the crystallization to produce the recycle stream; and combining the recycle stream with the process feed stream to produce the Claus feed stream.

  2. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 281 Solar Hot Water Application Assessment for U.S. Army IMCOM-Southeast Region

    SciTech Connect (OSTI)

    Russo, Bryan J.; Chvala, William D.

    2010-09-30

    The Energy Independence and Security Act of 2007 requires installations (EISA) to install solar systems of sufficient capacity to provide 30% of service hot water in new construction and renovations where cost-effective. However, installations are struggling with how to implement solar hot water, and while several installations are installing solar hot water on a limited basis, paybacks remain long. Pacific Northwest National Laboratory (PNNL) was tasked to address this issue to help determine how best to implement solar hot water projects. This documents discusses the results of that project.

  3. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    SciTech Connect (OSTI)

    Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

    2012-04-30

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

  4. Recovery Act Milestones

    ScienceCinema (OSTI)

    Rogers, Matt

    2013-05-29

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  5. Caustic Recovery Technology

    Office of Environmental Management (EM)

    366, REVISON 0 Key Words: Waste Treatment Plant Sodium Recovery Electrochemical Retention: ... (E. Stevens, Manager, Solid Waste and Special Programs) ...

  6. WIPP Recovery Information

    Broader source: Energy.gov [DOE]

    At the March 26, 2014 Board meeting J. R. Stroble CBFO, Provided Information on Locations to Access WIPP Recovery Information.

  7. Waste Heat Recovery

    Broader source: Energy.gov (indexed) [DOE]

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1. Introduction to Waste Heat Recovery .......................................................................................... 2 5 1.2. Challenges and Barriers for Waste Heat Recovery ..................................................................... 13 6 1.3.

  8. Thermally-enhanced oil recovery method and apparatus

    DOE Patents [OSTI]

    Stahl, Charles R. (Scotia, NY); Gibson, Michael A. (Houston, TX); Knudsen, Christian W. (Houston, TX)

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  9. Recovery Act State Summaries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Summaries Recovery Act State Summaries Alabama Recovery Act State Memo Alaska Recovery Act State Memo American Samoa Recovery Act State Memo Arizona Recovery Act State Memo Arkansas Recovery Act State Memo California Recovery Act State Memo Colorado Recovery Act State Memo Connecticut Recovery Act State Memo Delaware Recovery Act State Memo District of Columbia Recovery Act State Memo Florida Recovery Act State Memo Georgia Recovery Act State Memo Guam Recovery Act State Memo

  10. Ground difference compensating system

    DOE Patents [OSTI]

    Johnson, Kris W.; Akasam, Sivaprasad

    2005-10-25

    A method of ground level compensation includes measuring a voltage of at least one signal with respect to a primary ground potential and measuring, with respect to the primary ground potential, a voltage level associated with a secondary ground potential. A difference between the voltage level associated with the secondary ground potential and an expected value is calculated. The measured voltage of the at least one signal is adjusted by an amount corresponding to the calculated difference.

  11. Battleground Energy Recovery Project

    SciTech Connect (OSTI)

    Daniel Bullock

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ? Create a Showcase Waste Heat Recovery Demonstration Project.

  12. Brushing up on oil recovery

    SciTech Connect (OSTI)

    Mackey, J.

    1995-12-01

    To be prepared for a range of oil spills, emergency response organizations must have an arsenal of powerful and adaptable equipment. Around the coastal United States, a network of oil spill cooperatives and emergency response organizations stand ready with the technology and the know-how to respond to the first sign of an oil spill. When the telephone rings, they may be required to mop up 200 gallons of oil that leaked off the deck of a ship or to contain and skim 2,000 gallons of oil from a broken hose at a loading terminal. In a few cases each year, they may find themselves responding to a major pollution incident, one that involves hundreds of people and tons of equipment. To clean an oil spill at a New Jersey marine terminal, the local cooperative used the Lundin Oil Recovery Inc. (LORI) skimming system to separate the oil and water and the lift the oil out of the river. The LORI skimming technology is based on sound principles of fluid management - using the natural movement of water instead of trying to fight against it. A natural feeding mechanism delivers oily water through the separation process, and a simple mechanical separation and recovery device - a brush conveyor - removes the pollutants from the water.

  13. Neutral beamline with improved ion energy recovery

    DOE Patents [OSTI]

    Dagenhart, William K.; Haselton, Halsey H.; Stirling, William L.; Whealton, John H.

    1984-01-01

    A neutral beamline generator with unneutralized ion energy recovery is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell of the beamline. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beamline in the cell exit region. The ions, which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage, are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be closely coupled. As a result, the fractional energy ions exiting the cell with the full energy ions are reflected back into the gas cell. Thus, the fractional energy ions do not detract from the energy recovery efficiency of full energy ions exiting the cell which can reach the ground potential interior surfaces of the beamline housing.

  14. Summary - Caustic Recovery Technology

    Office of Environmental Management (EM)

    Caustic Recovery Technology ETR Report Date: July 2007 ETR-7 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Caustic Recovery Technology Why DOE-EM Did This Review The Department of Energy (DOE) Environmental Management Office (EM-21) has been developing caustic recovery technology for application to the Hanford Waste Treatment Plant (WTP) to reduce the amount of Low Activity Waste (LAW) vitrified. Recycle of sodium hydroxide with an

  15. GPG Green Proving Ground Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GSA Green Proving Ground Program Technology Overview of Federal Technology Demonstration Programs Eleni Reed GSA Public Buildings Service August 11, 2015 GPG Program Overview FEDERAL MANDATES SET THE PACE Efficiency results from innovation and policy Executive Order 13693, 2015 2.5% annual reduction in EUI through 2025, over 2015 levels Net zero energy (water/waste where feasible) * New construction designs starting 2020 & percentage of existing buildings Energy Independence and Security

  16. Recovery Act Open House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light snacks for those attending. DOE ID Manager Rick Provencher discusses the non-cleanup work that was accomplished with Recovery Act funding. Editorial Date November 15, 2010...

  17. EM Recovery Act Performance

    Broader source: Energy.gov [DOE]

    The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40...

  18. Ground-water geochemistry and radionuclide activity in the Cambrian-Ordovician aquifer of Dodge and Fond du Lac counties, Wisconsin. Technical report

    SciTech Connect (OSTI)

    Weaver, T.R.; Bahr, J.M.; Anderson, M.P.

    1990-01-01

    Analyses of groundwater from wells in the Cambrian-Ordovician aquifer of eastern Wisconsin indicate that regions of the aquifer contain elevated concentrations of dissolved solids, chloride and sulfate. Groundwater from several wells in the area also approach or exceed the current drinking water standard for combined radium activity. Significant changes in groundwater chemistry occur where the aquifer becomes confined by the Maquoketa shale. Concentrations of Cl(-), SO4(2-) and Na(+) increase in the confined region, and the highest combined radium activities are typically observed in the area. Geochemical modeling implies that the observed changes in major ion groundwater chemistry occur in response to the presence of the confining unit which may act as a source of SO4(2-), through gypsum dissolution, and Na(+), through cation exchange. A finite difference groundwater flow model was linked to a particle tracking routine to determine groundwater flow paths and residence times in the aquifer near the boundary between unconfined and confined conditions. Results suggest that the presence of the confining unit produces a vertically stratified flow regime in the confined region.

  19. Recovery Act: State Assistance for Recovery Act Related Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policies | Department of Energy Information Center » Recovery Act » Recovery Act: State Assistance for Recovery Act Related Electricity Policies Recovery Act: State Assistance for Recovery Act Related Electricity Policies $44 Million for State Public Utility Commissions State public utility commissions (PUCs), which regulate and oversee electricity projects in their states, will be receiving more than $44.2 million in Recovery Act funding to hire new staff and retrain existing employees to

  20. Successful Sequestration and Enhanced Oil Recovery Project Could Mean More

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil and Less CO2 Emissions | Department of Energy Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions November 15, 2005 - 2:45pm Addthis "Weyburn Project" Breaks New Ground in Enhanced Oil Recovery Efforts WASHINGTON, DC - Secretary Samuel W. Bodman today announced that the Department of Energy (DOE)-funded "Weyburn

  1. Recovery Act Weekly Video: 200 West Drilling

    SciTech Connect (OSTI)

    2010-01-01

    President of Cascade Drilling, Bruce, talks about his contract with the Department of Energy and what his team is doing to improve water treatment and environmental cleanup. The small business owner hits on how the Recovery Act saved him from downsizing and helped him stay competitive and safe on site.

  2. Recovery Act Weekly Video: 200 West Drilling

    ScienceCinema (OSTI)

    None

    2012-06-14

    President of Cascade Drilling, Bruce, talks about his contract with the Department of Energy and what his team is doing to improve water treatment and environmental cleanup. The small business owner hits on how the Recovery Act saved him from downsizing and helped him stay competitive and safe on site.

  3. American Recovery and Reinvestment Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act LANL was able to accelerate demolition and cleanup thanks to a 212 million award from the American...

  4. Neutral beamline with improved ion energy recovery

    DOE Patents [OSTI]

    Kim, Jinchoon

    1984-01-01

    A neutral beamline employing direct energy recovery of unneutralized residual ions is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell, and thus improves the overall neutral beamline efficiency. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beam direction in the neutral izer exit region. The ions which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be loosely coupled. As a result, the fractional energy ions exiting the cell are reflected onto and collected at an interior wall of the neutralizer formed by the modified end geometry, and thus do not detract from the energy recovery efficiency of full energy ions exiting the cell. Electrons within the neutralizer are prevented from exiting the neutralizer end opening by the action of crossed fields drift (ExB) and are terminated to a collector collar around the downstream opening of the neutralizer. The correct combination of the extended neutralizer end structure and the magnet region is designed so as to maximize the exit of full energy ions and to contain the fractional energy ions.

  5. Doppler-resolved kinetics of saturation recovery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Forthomme, Damien; Hause, Michael L.; Yu, Hua -Gen; Dagdigian, Paul J.; Sears, Trevor J.; Hall, Gregory E.

    2015-04-08

    Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Totalmore » recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. As a result, quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.« less

  6. Doppler-resolved kinetics of saturation recovery

    SciTech Connect (OSTI)

    Forthomme, Damien; Hause, Michael L.; Yu, Hua -Gen; Dagdigian, Paul J.; Sears, Trevor J.; Hall, Gregory E.

    2015-04-08

    Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Total recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. As a result, quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.

  7. Recovery Act Milestones

    Broader source: Energy.gov [DOE]

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to...

  8. Z-Bed Recovery Water Disposal

    Broader source: Energy.gov [DOE]

    Presentation from the 33rd Tritium Focus Group Meeting held in Aiken, South Carolina on April 22-24, 2014.

  9. Ground_Water_Compliance_Action_Plan.pdf

    Office of Legacy Management (LM)

  10. Recovery Act State Memos Montana

    Broader source: Energy.gov (indexed) [DOE]

    ......... 5 RECOVERY ACT SUCCESS STORIES - ENERGY EMPOWERS * Green power transmission line given new life ...... 6 * ...

  11. Air Handler Condensate Recovery at the Environmental Protection Agency's

    Energy Savers [EERE]

    Science and Ecosystem Support Division | Department of Energy Handler Condensate Recovery at the Environmental Protection Agency's Science and Ecosystem Support Division Air Handler Condensate Recovery at the Environmental Protection Agency's Science and Ecosystem Support Division Case study details EPA's decision to address water conservation and management for its Science and Ecosystem Support Division due to a severe drought. The plan aimed to reduce potable water usage through an air

  12. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act Center Map PERFORMANCE The Department estimates the $6 billion Recovery Act investment will allow us to complete work now that would cost approximately $13 billion in future years, saving $7 billion. As Recovery Act work is completed through the cleanup of contaminated sites, facilities, and material disposition, these areas will becoming available for potential reuse by other entities. Recovery Act funding is helping the Department reach our cleanup goals faster.

  13. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act Total Federal Payments to OE Recovery Act Recipients by Month, through August 31, 2015 Total Federal Payments to OE Recovery Act Recipients by Month, through August 31, 2015 American Recovery and Reinvestment Act Overview PROGRAMS TOTAL OBLIGATIONS AWARD RECIPIENTS Smart Grid Investment Grant $3,482,831,000 99 Smart Grid Regional and Energy Storage Demonstration Projects $684,829,000 32 Workforce Development Program $100,000,000 52 Interconnection Transmission Planning

  14. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act Recovery Act With the passage of the American Recovery and Reinvestment Act of 2009 (Recovery Act), the Department of Energy (Department) will have new responsibilities and receive approximately $40 billion to foster various energy, environmental, and science programs and initiatives. As a result, the Office of Inspector General's oversight responsibilities will increase dramatically. As is the case with all Office of Inspector General work, its overarching goal is to

  15. Solvent recovery targeting

    SciTech Connect (OSTI)

    Ahmad, B.S.; Barton, P.I.

    1999-02-01

    One of the environmental challenges faced by the pharmaceutical and specialty chemical industries is the widespread use of organic solvents. With a solvent-based chemistry, the solvent necessarily has to be separated from the product. Chemical species in waste-solvent streams typically form multicomponent azeotropic mixtures, and this often complicates separation and, hence, recovery of solvents. A design approach is presented whereby process modifications proposed by the engineer to reduce the formation of waste-solvent streams can be evaluated systematically. This approach, called solvent recovery targeting, exploits a recently developed algorithm for elucidating the separation alternatives achievable when applying batch distillation to homogeneous multicomponent mixtures. The approach places the composition of the waste-solvent mixture correctly in the relevant residue curve map and computes the maximum amount of pure material that can be recovered via batch distillation. Solvent recovery targeting is applied to two case studies derived from real industrial processes.

  16. Ground potential rise monitor

    DOE Patents [OSTI]

    Allen, Zachery Warren; Zevenbergen, Gary Allen

    2012-07-17

    A device and method for detecting ground potential rise (GPR) comprising a first electrode, a second electrode, and a voltage attenuator. The first electrode and the second electrode are both electrically connected to the voltage attenuator. A means for determining the presence of a dangerous ground potential is connected to the voltage attenuator. The device and method further comprises a means for enabling one or more alarms upon the detection of the dangerous ground potential. Preferably, a first transmitter/receiver is connected to the means for enabling one or more alarms. Preferably, a second transmitter/receiver, comprising a button, is electromagnetically connected to the first transmitter/receiver. Preferably, the means for determining the presence of a dangerous ground potential comprises a means for determining the true RMS voltage at the output of the voltage attenuator, a transient detector connected to the output of the voltage attenuator, or a combination thereof.

  17. Aqueous flooding methods for tertiary oil recovery

    DOE Patents [OSTI]

    Peru, Deborah A. (Bartlesville, OK)

    1989-01-01

    A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

  18. DOE Recovery Act Field Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Field Projects DOE Recovery Act Field Projects DOE Recovery Act Field Projects

  19. New York Recovery Act Snapshot

    Broader source: Energy.gov [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New York are supporting a...

  20. RECOVERY OF TETRAVALENT CATIONS FROM AQUEOUS SOLUTIONS

    DOE Patents [OSTI]

    Moore, R.L.

    1958-05-01

    The recovery of plutonium, zirconium, and tetravalent cerium values from aqueous solutions is described. It consists of adding an alkyl phosphate to a nnineral acid aqueous solution containing the metal to be recovered, whereby a precipitate forms with the tetravalent values, and separating the precipitate from the solution. All alkyl phosphates, if water-soluble, are suitable for the process; however, monobutyl phosphate has been found best.

  1. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  2. American Recovery and Reinvestment Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act LANL was able to accelerate demolition and cleanup thanks to a $212 million award from the American Recovery and Reinvestment Act. August 1, 2013 Excavation trench and enclosure at TA-21. To protect air quality, MDA B is excavated under a dome. By September 2011, all projects were complete. In 2010 and 2011, LANL received $212 million in funding from the American Recovery and Reinvestment Act to complete three

  3. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act The American Recovery and Reinvestment Act of 2009 -- commonly called the "stimulus" -- was designed to spur economic growth while creating new jobs and saving existing ones. Through the Recovery Act, the Energy Department invested more than $31 billion to support a wide range of clean energy projects across the nation -- from investing in the smart grid and developing alternative fuel vehicles to helping homeowners and businesses reduce their energy costs

  4. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  5. Process for LPG recovery

    SciTech Connect (OSTI)

    Khan, Sh. A.; Haliburton, J.

    1985-03-26

    An improved process is described for the separation and recovery of substantially all the propane and heavier hydrocarbon components in a hydrocarbon gaseous feedstream. In this process, the vapor stream from a deethanizer is cooled to liquefaction and contacted with a vapor phase from the hydrocarbon gaseous feedstream. The contact takes place within a direct heat exchanger, and the resulting vapor fraction, which is essentially ethane and methane, is the gaseous product of the process.

  6. The American Recovery

    Energy Savers [EERE]

    American Recovery and Reinvestment Act Smart Grid Highlights Jumpstarting a Modern Grid October 2014 2 The Office of Electricity Delivery and Energy Reliability (OE) provides national leadership to ensure that the nation's energy delivery system is secure, resilient, and reliable. OE works to develop new technologies to improve the infrastructure that brings electricity into our homes, offices, and factories in partnership with industry, other federal agencies, and state and local governments.

  7. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration

    SciTech Connect (OSTI)

    Zuo, Lin; Benson, Sally M.

    2013-01-01

    A novel EOR method using carbonated water injection followed by depressurization is introduced. Results from micromodel experiments are presented to demonstrate the fundamental principles of this oil recovery method. A depressurization process (1 MPa/hr) was applied to a micromodel following carbonated water injection (Ca ? 10-5). The exsolved CO2 in water-filled pores blocked water flow in swiped portions and displaced water into oil-filled pores. Trapped oil after the carbonated water injection was mobilized by sequentially invading water. This method's self-distributed mobility control and local clogging was tested in a sandstone sample under reservoir conditions. A 10% incremental oil recovery was achieved by lowering the pressure 2 MPa below the CO2 liberation pressure. Additionally, exsolved CO2 resides in the pores of a reservoir as an immobile phase with a high residual saturation after oil production, exhibiting a potential synergy opportunity between CO2 EOR and CO2 sequestration

  8. Tennessee: Ground-Source Heat Pump Receives Innovation Award...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The new Trilogy 40 Q-Mode(tm) series, a highly efficient ground-source heat pump that has the capability of providing all the space heating, cooling, and water heating requirements ...

  9. ARM - ARM Recovery Act Project FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ActARM Recovery Act Project FAQs Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send ARM Recovery Act Project FAQs Why is ARM buying new instruments and equipment? The ARM Climate Research Facility (ARM)

  10. Autotherm® Energy Recovery System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Autotherm® Energy Recovery System Autotherm® Energy Recovery System Innovative Technology Reduces Idling, Fuel Costs, and Emissions on Large Vehicles Historically, cab interiors are kept warm when a vehicle is stationary in the winter by either installing an expensive fuel-fired heater or idling the vehicle engine to keep hot water circulating to the cab heater. According to Argonne National Laboratory, larger vehicles can consume one gallon per hour of fuel simply to operate the heater. In

  11. Federal Energy Management Program Recovery Act Technical Assistance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects | Department of Energy Technical Assistance Projects Federal Energy Management Program Recovery Act Technical Assistance Projects Federal Energy Management Program Recovery Act Technical Assistance Projects The Federal Energy Management Program (FEMP) issued a Call for Technical Services in May 2010 to help federal agencies identify and prioritize energy efficiency, water efficiency, and renewable energy projects. Read information about the Call for Technical Services (including

  12. Final Scientific/Technical Report [Recovery Act: Districtwide Geothermal Heating Conversion

    SciTech Connect (OSTI)

    Chatterton, Mike

    2014-02-12

    The Recovery Act: Districtwide Geothermal Heating Conversion project performed by the Blaine County School District was part of a larger effort by the District to reduce operating costs, address deferred maintenance items, and to improve the learning environment of the students. This project evaluated three options for the ground source which were Open-Loop Extraction/Re-injection wells, Closed-Loop Vertical Boreholes, and Closed-Loop Horizontal Slinky approaches. In the end the Closed-Loop Horizontal Slinky approach had the lowest total cost of ownership but the majority of the sites associated with this project did not have enough available ground area to install the system so the second lowest option was used (Open-Loop). In addition to the ground source, this project looked at ways to retrofit existing HVAC systems with new high efficiency systems. The end result was the installation of distributed waterto- air heat pumps with water-to-water heat pumps installed to act as boilers/chillers for areas with a high ventilation demand such as they gymnasiums. A number of options were evaluated and the lowest total cost of ownership approach was implemented in the majority of the facilities. The facilities where the lowest total cost of ownership approaches was not selected were done to maintain consistency of the systems from facility to facility. This project had a number of other benefits to the Blaine County public. The project utilizes guaranteed energy savings to justify the levy funds expended. The project also developed an educational dashboard that can be used in the classrooms and to educate the community on the project and its performance. In addition, the majority of the installation work was performed by contractors local to Blaine County which acted as an economic stimulus to the area during a period of recession.

  13. Funding Opportunity Announcement: Recovery Act ? Energy Efficiency...

    Office of Environmental Management (EM)

    Funding Opportunity Announcement: Recovery Act Energy Efficiency and Conversation Block Grants Formula Grants Funding Opportunity Announcement: Recovery Act Energy...

  14. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  15. Wastewater heat recovery method and apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-01-01

    This invention is comprised of a heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  16. Magnesium fluoride recovery method

    DOE Patents [OSTI]

    Gay, Richard L.; McKenzie, Donald E.

    1989-01-01

    A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is contacted with an acid under certain prescribed conditions to produce a liquid product and a particulate solid product. The particulate solid product is separated from the liquid and treated at least two more times with acid to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 pCi/gm. In accordance with a particularly preferred embodiment of the invention a catalyst and an oxidizing agent are used during the acid treatment and preferably the acid is sulfuric acid having a strength of about 1.0 Normal.

  17. Alkali metal recovery from carbonaceous material conversion process

    DOE Patents [OSTI]

    Sharp, David W. (Seabrook, TX); Clavenna, LeRoy R. (Baytown, TX); Gorbaty, Martin L. (Fanwood, NJ); Tsou, Joe M. (Galveston, TX)

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  18. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  19. Inherently safe in situ uranium recovery.

    SciTech Connect (OSTI)

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-05-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  20. Burbank Water and Power Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    Water and Power Smart Grid Project Jump to: navigation, search Project Lead Burbank Water and Power Country United States Headquarters Location Burbank, California Recovery Act...

  1. Treatment of Difficult Waters: Arsenic Removal Silica Control...

    Office of Scientific and Technical Information (OSTI)

    of Difficult Waters: Arsenic Removal Silica Control Carbon Capture and Enhanced Oil Recovery. Citation Details In-Document Search Title: Treatment of Difficult Waters:...

  2. Recovery Act State Memos Tennessee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tennessee For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  3. Recovery Act State Memos Alabama

    Broader source: Energy.gov (indexed) [DOE]

    Alabama For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  4. Recovery Act State Memos Arizona

    Broader source: Energy.gov (indexed) [DOE]

    Arizona For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  5. Recovery Act State Memos Arkansas

    Broader source: Energy.gov (indexed) [DOE]

    Arkansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  6. Recovery Act State Memos Delaware

    Broader source: Energy.gov (indexed) [DOE]

    Delaware For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  7. Recovery Act State Memos Florida

    Broader source: Energy.gov (indexed) [DOE]

    Florida For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  8. Recovery Act State Memos Georgia

    Broader source: Energy.gov (indexed) [DOE]

    Georgia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  9. Recovery Act State Memos Guam

    Broader source: Energy.gov (indexed) [DOE]

    Guam For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  10. Recovery Act State Memos Hawaii

    Broader source: Energy.gov (indexed) [DOE]

    Hawaii For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  11. Recovery Act State Memos Illinois

    Broader source: Energy.gov (indexed) [DOE]

    Illinois For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  12. Recovery Act State Memos Indiana

    Broader source: Energy.gov (indexed) [DOE]

    Indiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  13. Recovery Act State Memos Iowa

    Broader source: Energy.gov (indexed) [DOE]

    Iowa For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Recovery Act State Memos Kansas

    Broader source: Energy.gov (indexed) [DOE]

    Kansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. Recovery Act State Memos Kentucky

    Broader source: Energy.gov (indexed) [DOE]

    Kentucky For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  16. Recovery Act State Memos Louisiana

    Broader source: Energy.gov (indexed) [DOE]

    Louisiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  17. Recovery Act State Memos Maine

    Broader source: Energy.gov (indexed) [DOE]

    Maine For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  18. Recovery Act State Memos Maryland

    Broader source: Energy.gov (indexed) [DOE]

    Maryland For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  19. Recovery Act State Memos Massachusetts

    Broader source: Energy.gov (indexed) [DOE]

    Massachusetts For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  20. Recovery Act State Memos Michigan

    Broader source: Energy.gov (indexed) [DOE]

    Michigan For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  1. Recovery Act State Memos Mississippi

    Broader source: Energy.gov (indexed) [DOE]

    Mississippi For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  2. Recovery Act State Memos Nebraska

    Broader source: Energy.gov (indexed) [DOE]

    Nebraska For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  3. Recovery Act State Memos Ohio

    Broader source: Energy.gov (indexed) [DOE]

    Ohio For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  4. Recovery Act State Memos Oklahoma

    Broader source: Energy.gov (indexed) [DOE]

    Oklahoma For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  5. Recovery Act State Memos Oregon

    Broader source: Energy.gov (indexed) [DOE]

    Oregon For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  6. Recovery Act State Memos Pennsylvania

    Broader source: Energy.gov (indexed) [DOE]

    Pennsylvania For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  7. Recovery Act State Memos Texas

    Broader source: Energy.gov (indexed) [DOE]

    Texas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  8. Recovery Act State Memos Vermont

    Broader source: Energy.gov (indexed) [DOE]

    Vermont For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  9. Recovery Act State Memos Wisconsin

    Broader source: Energy.gov (indexed) [DOE]

    Wisconsin For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  10. Recovery Act State Memos Wyoming

    Broader source: Energy.gov (indexed) [DOE]

    Wyoming For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  11. Recovery Act State Memos California

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  12. Recovery Act State Memos Nevada

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  13. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to increase our supply of clean, renewable energy. July 11, 2013 Demand Response: Lessons Learned with an Eye to the Future Under the Recovery Act, the Energy Department...

  14. Recovery Newsletters | Department of Energy

    Energy Savers [EERE]

    Newsletters Recovery Newsletters RSS October 1, 2011 2011 ARRA Newsletters December 1, 2010 2010 ARRA Newsletters November 1, 2009 2009 ARRA Newsletters

  15. Register file soft error recovery

    DOE Patents [OSTI]

    Fleischer, Bruce M.; Fox, Thomas W.; Wait, Charles D.; Muff, Adam J.; Watson, III, Alfred T.

    2013-10-15

    Register file soft error recovery including a system that includes a first register file and a second register file that mirrors the first register file. The system also includes an arithmetic pipeline for receiving data read from the first register file, and error detection circuitry to detect whether the data read from the first register file includes corrupted data. The system further includes error recovery circuitry to insert an error recovery instruction into the arithmetic pipeline in response to detecting the corrupted data. The inserted error recovery instruction replaces the corrupted data in the first register file with a copy of the data from the second register file.

  16. Speech recovery device

    DOE Patents [OSTI]

    Frankle, Christen M.

    2004-04-20

    There is provided an apparatus and method for assisting speech recovery in people with inability to speak due to aphasia, apraxia or another condition with similar effect. A hollow, rigid, thin-walled tube with semi-circular or semi-elliptical cut out shapes at each open end is positioned such that one end mates with the throat/voice box area of the neck of the assistor and the other end mates with the throat/voice box area of the assisted. The speaking person (assistor) makes sounds that produce standing wave vibrations at the same frequency in the vocal cords of the assisted person. Driving the assisted person's vocal cords with the assisted person being able to hear the correct tone enables the assisted person to speak by simply amplifying the vibration of membranes in their throat.

  17. Enhanced oil recovery system

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX)

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  18. Enhanced Oil Recovery: Aqueous Flow Tracer Measurement

    SciTech Connect (OSTI)

    Joseph Rovani; John Schabron

    2009-02-01

    A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

  19. Microsoft PowerPoint - Recovery_Fact_Sheet rev11.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery and Reinvestment Act Funding at the Hanford Site FACTS AT A GLANCE Environmental Management Note: Projects listed are those selected for American Recovery and Reinvestment Act funding and were activities conducted in addition to work supported by annual funding at Hanford. Richland Operations Office: $1.635 billion Columbia River Corridor Cleanup ► Demolished facilities and remediated waste sites near the K Reactors. ► Remediated trenches at the 618-10 Burial Grounds and remediated

  20. Biomass Program Recovery Act Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    The Biomass Program has awarded about $718 million in American Recovery and Reinvestment Act (Recovery Act) funds. The projects the Program is supporting are intended to: Accelerate advanced biofuels research, development, and demonstration; Speed the deployment and commercialization of advanced biofuels and bioproducts; Further the U.S. bioindustry through market transformation and creating or saving a range of jobs.

  1. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1991-01-01

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  2. Heavy Water Test Reactor Dome Removal

    SciTech Connect (OSTI)

    2011-01-01

    A high speed look at the removal of the Heavy Water Test Reactor Dome Removal. A project sponsored by the Recovery Act on the Savannah River Site.

  3. Grounded Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Grounded Renewable Energy Jump to: navigation, search Name: Grounded Renewable Energy Place: Carbondale, Colorado Zip: 81623 Sector: Renewable Energy, Solar Product: Grounded...

  4. Category:Ground Magnetics | Open Energy Information

    Open Energy Info (EERE)

    Ground Magnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Ground Magnetics page? For detailed information on Ground...

  5. Ground potential rise monitor

    DOE Patents [OSTI]

    Allen, Zachery W. (Mandan, ND); Zevenbergen, Gary A. (Arvada, CO)

    2012-04-03

    A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.

  6. Ultramizer®: Waste Heat Recovery System for Commercial and Industrial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boilers | Department of Energy Ultramizer®: Waste Heat Recovery System for Commercial and Industrial Boilers Ultramizer®: Waste Heat Recovery System for Commercial and Industrial Boilers Heat Recovery System Reduces Steam Production Costs and Energy Consumption The majority of combustible fuels consumed in U.S. industry are for process heating. For natural gas combustion, 18% of the waste stream is water vapor, which contributes to a 10% loss of the energy input. Over 35% of all the energy

  7. Refrigerant recovery system

    SciTech Connect (OSTI)

    Abraham, A.W.

    1991-08-20

    This patent describes improvement in a refrigerant recovery apparatus of the type having inlet means for connecting to a refrigerant air system to withdraw refrigerant from the system, expansion means for converting refrigerant received from the system in liquid phase to a gaseous refrigerant, a compressor having a suction chamber with a suction inlet for receiving and pressurizing the gaseous refrigerant, the compressor having a housing containing oil for lubricating the compressor, a condenser for receiving the pressurized gaseous refrigerant and condensing it to liquid refrigerant, and a storage chamber for storing the liquid refrigerant. The improvement comprises in combination: oil separator means mounted exterior of the housing to one end of an inlet line, which has another end connected to the suction inlet of the compressor for receiving the flow of refrigerant from the refrigerated air system for separating out oil mixed with the refrigerant being received from the refrigerated air system prior to the refrigerant entering the suction inlet of the compressor; and the oil separator means being mounted at a lower elevation than the suction inlet of the compressor, the inlet line being unrestricted for allowing refrigerant flow to the compressor and oil from the compressor for draining oil in the housing of the compressor above the suction inlet back through the inlet line into the oil separator means when the compressor is not operating.

  8. Energy recovery ventilator

    DOE Patents [OSTI]

    Benoit, Jeffrey T.; Dobbs, Gregory M.; Lemcoff, Norberto O.

    2015-06-23

    An energy recovery heat exchanger (100) includes a housing (102). The housing has a first flowpath (144) from a first inlet (104) to a first outlet (106). The housing has a second flowpath (146) from a second inlet (108) to a second outlet (110). Either of two cores may be in an operative position in the housing. Each core has a number of first passageways having open first and second ends and closed first and second sides. Each core has a number of second such passageways interspersed with the first passageways. The ends of the second passageways are aligned with the sides of the first passageways and vice versa. A number of heat transfer member sections separate adjacent ones of the first and second passageways. An actuator is coupled to the carrier to shift the cores between first and second conditions. In the first condition, the first core (20) is in the operative position and the second core (220) is not. In the second condition, the second core is in the operative position and the first core is not. When a core is in the operative position, its first passageways are along the first flowpath and the second passageways are along the second flowpath.

  9. DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage |

    Office of Environmental Management (EM)

    Department of Energy Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage U.S. Department of Energy ("DOE") policy regarding use of the Recovery Act logo by Recovery Act recipients and subgrantees. PDF icon DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage More Documents & Publications Better Buildings Neighborhood Program Grant Recipient Management Handbook EV

  10. Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final

    SciTech Connect (OSTI)

    1995-09-01

    The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC {section}7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management.

  11. Recovery Act Recipient Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recipient Data Recovery Act Recipient Data A listing of all Recovery Act recipients and their allocations. Updated weekly. Office spreadsheet icon recoveryactfunding.xls More Documents & Publications Recovery Act Awardees June 25, 2010 Reovery Act Awardees July 22, 2011 Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) Smart Grid Investment Grant Program

  12. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Past Opportunities » Recovery Act Recovery Act Pie chart diagram shows the breakdown of how cost-sharing funds relatedto the American Recovery and Reinvestment Act from industry participants,totaling $54 million (for a grand total of $96 million), are allocatedwithin the Fuel Cell Technologies Office, updated September 2010. Thediagram shows that $18.5 million is allocated to backup power, $9.7million is allocated to lift truck, $7.6 million is allocated to portablepower, $3.4 million is

  13. Ground Magnetics | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Magnetics Details Activities (25) Areas (19) Regions (0) NEPA(1) Exploration...

  14. Energy Recovery Potential from Wastewater Utilities through Innovation

    Broader source: Energy.gov [DOE]

    Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Energy Recovery Potential from Wastewater Utilities through Innovation Lauren Fillmore, Senior Program Director, Water Environment Research Foundation

  15. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  16. EM American Recovery and Reinvestment Act Update

    Office of Environmental Management (EM)

    Recovery Act Program www.em.doe.gov 1 Thomas Johnson, Jr. Recovery Act Program Director PRESENTED TO: Environmental Management Advisory Board (EMAB) December 5, 2011 EM's Mission...

  17. Gas Recovery Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Jump to: navigation, search Name: Gas Recovery Systems Place: California Zip: 94550 Product: Turnkey landfill gas (LFG) energy extraction systems. References: Gas Recovery...

  18. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  19. American Recovery and Reinvestment Act, Financial Assistance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Recovery and Reinvestment Act, Financial Assistance Award: 212 Degrees Consulting, LLC American Recovery and Reinvestment Act, Financial Assistance Award: 212 Degrees...

  20. Breaking Ground in Miami-Dade

    Broader source: Energy.gov [DOE]

    Officials from Miami-Dade County and the U.S. Department of Energy were on hand Wednesday, October 13th to formally break ground on an innovative project that will help improve the energy efficiency of one of the county’s major water treatment facilities.   The project will upgrade and expand the existing power generation system at the water plant which generates electricity from digester gas produced at the plant.  Landfill gas, which is produced from the Solid Waste Department’s South Dade Landfill, will be collected and piped across a canal to the water plant where it will be mixed with digester gases.  By combining landfill and digester gases, the county will increase the amount of self-generated electricity, and reduce the county's consumption of electricity generated from fossil fuels.  

  1. Recovery and purification of ethylene

    DOE Patents [OSTI]

    Reyneke, Rian (Katy, TX); Foral, Michael J. (Aurora, IL); Lee, Guang-Chung (Houston, TX); Eng, Wayne W. Y. (League City, TX); Sinclair, Iain (Warrington, GB); Lodgson, Jeffery S. (Naperville, IL)

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  2. Olefin recovery via chemical absorption

    SciTech Connect (OSTI)

    Barchas, R.

    1998-06-01

    The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

  3. Recovery Act Funding Opportunities Webcast

    Broader source: Energy.gov [DOE]

    As a result of the 2009 American Reinvestment and Recovery Act, the Geothermal Technologies Office (GTO) has four open Funding Opportunity Announcements (FOAs) totaling $484 million for cost-shared...

  4. One Woman's Road to Recovery

    Broader source: Energy.gov [DOE]

    Rebecca Bivens applied at Argonne and was hired in April 2009, four months after she lost her second job. She now works in safety and procurement. Her job is funded by the American Recovery and Reinvestment Act.

  5. Resource Conservation and Recovery Act

    Broader source: Energy.gov [DOE]

    DOE Headquarters provides technical assistance and guidance on newly promulgated regulations, and coordinates the review and advocates Departmental interests regarding proposed Resource Conservation and Recovery Act (RCRA) regulatory initiatives applicable to DOE operations.

  6. Monitoring EERE's Recovery Act Portfolio

    SciTech Connect (OSTI)

    2011-01-01

    Performance monitoring of Recovery Act projects within EERE has been an ongoing effort. Project recipients have been reporting technical and financial progress to project officers on a quarterly basis.

  7. LANL exceeds Early Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exceeds Early Recovery Act recycling goals March 8, 2010 More than 136 tons of metal saved from demolished buildings LOS ALAMOS, New Mexico, March 9, 2009-Los Alamos National Laboratory announced today that Lab demolition projects under the American Recovery and Reinvestment Act have recovered more than 136 tons of recyclable metal since work began last year, largely due to the skill of heavy equipment operators and efforts to gut the buildings before they come down. Some 106 tons of metal came

  8. Coal recovery process

    DOE Patents [OSTI]

    Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

    1992-01-01

    A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

  9. Ball State Completes Largest U.S. Ground-Source Geothermal System |

    Office of Environmental Management (EM)

    Department of Energy Ball State Completes Largest U.S. Ground-Source Geothermal System Ball State Completes Largest U.S. Ground-Source Geothermal System April 4, 2012 - 3:19pm Addthis Ball State University has completed its campus-wide ground-source geothermal system, the nation's largest geothermal heating and cooling system, DOE announced on March 20. DOE played a part in the project by providing a $5 million grant through the American Recovery and Reinvestment Act. The Indiana-based

  10. Regional analysis of ground and above-ground climate

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  11. Recovery Act's HWCTR Project Empty of Equipment, Ready for Grouting |

    Office of Environmental Management (EM)

    Department of Energy Act's HWCTR Project Empty of Equipment, Ready for Grouting Recovery Act's HWCTR Project Empty of Equipment, Ready for Grouting February 23, 2011 - 12:00pm Addthis Media Contacts Jim Giusti, DOE (803) 952-7697 james-r.giusti@srs.gov Paivi Nettamo, SRNS (803) 646-6075 paivi.nettamo@srs.gov AIKEN, S.C. - Thanks to investments from the American Recovery and Reinvestment Act, the next phase has begun on decommissioning the Heavy Water Components Test Reactor (HWCTR) at the

  12. Caustic Recovery Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caustic Recovery Technology Caustic Recovery Technology Full Document and Summary Versions are available for download PDF icon Caustic Recovery Technology PDF icon Summary - Caustic Recovery Technology More Documents & Publications A Ceramic membrane to Recycle Caustic Waste Processing Annual Technology Development Report 2007 System Planning for Low-Activity Waste at Hanford

  13. Recovery Act Helps GE in-source Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Helps GE in-source Manufacturing Recovery Act Helps GE in-source Manufacturing September 30, 2010 - 2:21pm Addthis The Geospring Hybrid Water Heater will be produced at GE's Appliance Park in Louisville. | Photo courtesy of GE The Geospring Hybrid Water Heater will be produced at GE's Appliance Park in Louisville. | Photo courtesy of GE Lindsay Gsell GE has a long history in Louisville, Ky. The company's appliance and lighting facility in Louisville has been manufacturing appliances

  14. Recovery Act Helps GE in-source Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Helps GE in-source Manufacturing Recovery Act Helps GE in-source Manufacturing September 30, 2010 - 2:21pm Addthis The Geospring Hybrid Water Heater will be produced at GE's Appliance Park in Louisville. | Photo courtesy of GE The Geospring Hybrid Water Heater will be produced at GE's Appliance Park in Louisville. | Photo courtesy of GE Lindsay Gsell GE has a long history in Louisville, Ky. The company's appliance and lighting facility in Louisville has been manufacturing appliances

  15. Polymer filtration: A new technology for selective metals recovery

    SciTech Connect (OSTI)

    Smith, B.F.; Robison, T.W.; Cournoyer, M.E.; Wilson, K.V.; Sauer, N.N.; Mullen, K.I.; Lu, M.T.; Jarvinen, J.J.

    1995-04-01

    Polymer Filtration (PF) was evaluated for the recovery of electroplating metal ions (zinc and nickel) from rinse waters. Polymer Filtration combines the use of water-soluble metal-binding polymers and ultrafiltration to concentrate metal ions from dilute rinse water solutions. The metal ions are retained by the polymers; the smaller, unbound species freely pass through the ultrafiltration membrane. By using this process the ultrafiltered permeate more than meets EPA discharge limits. The metal ions are recovered from the concentrated polymer solution by pH adjustment using diafiltration and can be recycled to the original electroplating baths with no deleterious effects on the test panels. Metal-ion recovery is accomplished without producing sludge.

  16. Cummins Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Cummins Waste Heat Recovery Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_nelson.pdf More Documents & Publications Exhaust Energy Recovery Exhaust Energy Recovery Exhaust Energy Recovery

  17. Ground-source Heat Pumps Applied to Commercial Buildings

    SciTech Connect (OSTI)

    Parker, Steven A.; Hadley, Donald L.

    2009-07-14

    Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

  18. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    2015-03-06

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  19. ARM and the Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updates/Announcements Thu, 01 Sep 2011 00:00:00 +0000 http://www.arm.gov en September 2011 Thu, 01 Sep 2011 00:00:00 +0000 aa3f1e269969d96bd7b30dd7a408d745 &#60;/p&#62; &#60;p&#62;&#60;strong&#62;Final Recovery Act Milestone Complete! &#60;/strong&#62; This month, ARM celebrates the delivery of the last few instruments for its Recovery Act investment and reports its final FY11 milestone - &#34;Infrastructure Enhancements Complete.&#34; This closes out the

  20. Road to Recovery: Bringing Recovery to Small Town America

    ScienceCinema (OSTI)

    Nettamo, Paivi

    2012-06-14

    The Recovery Act hits the road to reach out to surrounding towns of the Savannah River Site that are struggling with soaring unemployment rates. This project helps recruit thousands of people to new jobs in environmental cleanup at the Savannah River Site.

  1. Promising Technology: Energy Recovery Ventilation

    Broader source: Energy.gov [DOE]

    Energy recovery ventilation (ERV) systems exchange heat between outgoing exhaust air and the incoming outdoor air. Using exhaust air to pre-condition supply air can reduce the capacity of the heating and cooling system and save heating and cooling energy consumption.

  2. Biosurfactant and enhanced oil recovery

    DOE Patents [OSTI]

    McInerney, Michael J. (Norman, OK); Jenneman, Gary E. (Norman, OK); Knapp, Roy M. (Norman, OK); Menzie, Donald E. (Norman, OK)

    1985-06-11

    A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

  3. EECBG Success Story: Breaking Ground in Miami-Dade

    Broader source: Energy.gov [DOE]

    Officials from Miami-Dade County and the U.S. Department of Energy were on hand Wednesday, October 13th to formally break ground on an innovative project that will help improve the energy efficiency of one of the county’s major water treatment facilities. Learn more.

  4. Oil Recovery Increases by Low-Salinity Flooding: Minnelusa and Green River Formations

    SciTech Connect (OSTI)

    Eric P. Robertson

    2010-09-01

    Waterflooding is by far the most widely used method in the world to increase oil recovery. Historically, little consideration has been given in reservoir engineering practice to the effect of injection brine composition on waterflood displacement efficiency or to the possibility of increased oil recovery through manipulation of the composition of the injected water. However, recent work has shown that oil recovery can be significantly increased by modifying the injection brine chemistry or by injecting diluted or low salinity brine. This paper reports on laboratory work done to increase the understanding of improved oil recovery by waterflooding with low salinity injection water. Porous media used in the studies included outcrop Berea sandstone (Ohio, U.S.A.) and reservoir cores from the Green River formation of the Uinta basin (Utah, U.S.A.). Crude oils used in the experimental protocols were taken from the Minnelusa formation of the Powder River basin (Wyoming, U.S.A.) and from the Green River formation, Monument Butte field in the Uinta basin. Laboratory corefloods using Berea sandstone, Minnelusa crude oil, and simulated Minnelusa formation water found a significant relationship between the temperature at which the oil- and water-saturated cores were aged and the oil recovery resulting from low salinity waterflooding. Lower aging temperatures resulted in very little to no additional oil recovery, while cores aged at higher temperatures resulted in significantly higher recoveries from dilute-water floods. Waterflood studies using reservoir cores and fluids from the Green River formation of the Monument Butte field also showed significantly higher oil recoveries from low salinity waterfloods with cores flooded with fresher water recovering 12.4% more oil on average than those flooded with undiluted formation brine.

  5. Ground Source Solutions | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: NG22 9GW Sector: Buildings Product: UK-based installer of ground source energy systems to domestic and commercial buildings. References: Ground Source...

  6. Thermal acidization and recovery process for recovering viscous petroleum

    DOE Patents [OSTI]

    Poston, Robert S. (Winter Park, FL)

    1984-01-01

    A thermal acidization and recovery process for increasing production of heavy viscous petroleum crude oil and synthetic fuels from subterranean hydrocarbon formations containing clay particles creating adverse permeability effects is described. The method comprises injecting a thermal vapor stream through a well bore penetrating such formations to clean the formation face of hydrocarbonaceous materials which restrict the flow of fluids into the petroleum-bearing formation. Vaporized hydrogen chloride is then injected simultaneously to react with calcium and magnesium salts in the formation surrounding the bore hole to form water soluble chloride salts. Vaporized hydrogen fluoride is then injected simultaneously with its thermal vapor to dissolve water-sensitive clay particles thus increasing permeability. Thereafter, the thermal vapors are injected until the formation is sufficiently heated to permit increased recovery rates of the petroleum.

  7. Treatment of Difficult Waters: Arsenic Removal Silica Control...

    Office of Scientific and Technical Information (OSTI)

    of Difficult Waters: Arsenic Removal Silica Control Carbon Capture and Enhanced Oil Recovery. Brady, Patrick Vane Abstract not provided. Sandia National Laboratories...

  8. Afghan Sees Opportunity in Nation's Recovery from War - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Afghan Sees Opportunity in Nation's Recovery from War Reconstruction Can Allow Country to Develop Sustainable Practices, Deputy Minister Will Tell World Renewable Energy Congress June 28, 2004 Golden, Colo. - The rebuilding of Afghanistan should be an opportunity to develop sustainable standards and practices in construction and energy production and use, Dr. Pir Mohammed Azizi, deputy minister of Irrigation, Water Resources and Environment, is expected to tell participants in the

  9. Energy Recovery Potential from Wastewater Utilities through Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Potential from Wastewater Utilities through Innovation Conversion Technologies III: Energy from Our Waste-Will we Be Rich in Fuel or Knee Deep in Trash by 2025? July 30, 2014 Who WERF is * Manage peer- reviewed research lifecycle to deliver timely, actionable results. * 35-40 reports published annually that are housed in a online, searchable database. * Serve as a research hub for the water quality community; utilities, policy makers, consultants, universities and industry. WERF

  10. Management of Spent Dessicant from Vapour Recovery Dryers

    Office of Environmental Management (EM)

    Management of Spent Desiccant from Vapour Recovery Dryers Armando Antoniazzi Tritium Focus Group Meeting April 2014 www.kinectrics.com http://blog.kinectrics.com Life Cycle Management Solutions for the Electricity Industry *Request information from members of the tritium handling community *Specifically, practices associated with handling and disposal of tritiated molecular sieves *Use of molecular sieves to trap tritiated water is a familiar technology in the tritium handling community

  11. Penobscot Energy Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Recovery Biomass Facility Jump to: navigation, search Name Penobscot Energy Recovery Biomass Facility Facility Penobscot Energy Recovery Sector Biomass Facility Type...

  12. Department of Energy Recovery Act Investment in Biomass Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Recovery Act Investment in Biomass Technologies Department of Energy Recovery Act Investment in Biomass Technologies The American Recovery and Reinvestment Act...

  13. Puente Hills Energy Recovery Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Puente Hills Energy Recovery Biomass Facility Jump to: navigation, search Name Puente Hills Energy Recovery Biomass Facility Facility Puente Hills Energy Recovery Sector Biomass...

  14. CSL Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CSL Gas Recovery Biomass Facility Jump to: navigation, search Name CSL Gas Recovery Biomass Facility Facility CSL Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  15. BJ Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    BJ Gas Recovery Biomass Facility Jump to: navigation, search Name BJ Gas Recovery Biomass Facility Facility BJ Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  16. Southeast Resource Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Resource Recovery Biomass Facility Jump to: navigation, search Name Southeast Resource Recovery Biomass Facility Facility Southeast Resource Recovery Sector Biomass Facility Type...

  17. Settlers Hill Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Settlers Hill Gas Recovery Biomass Facility Jump to: navigation, search Name Settlers Hill Gas Recovery Biomass Facility Facility Settlers Hill Gas Recovery Sector Biomass Facility...

  18. DFW Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    DFW Gas Recovery Biomass Facility Jump to: navigation, search Name DFW Gas Recovery Biomass Facility Facility DFW Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  19. Lake Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  20. Prairie View Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    View Gas Recovery Biomass Facility Jump to: navigation, search Name Prairie View Gas Recovery Biomass Facility Facility Prairie View Gas Recovery Sector Biomass Facility Type...

  1. Woodland Landfill Gas Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass...

  2. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type...

  3. CID Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  4. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant...

  5. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  6. Microsoft Word - Attachment 3 Recovery Act notification | Department...

    Energy Savers [EERE]

    Microsoft Word - Attachment 3 Recovery Act notification Microsoft Word - Attachment 3 Recovery Act notification More Documents & Publications Microsoft Word - Attachment 3 Recovery...

  7. Recovery Act Investment Moves EM Past Milestone of 100 Project...

    Office of Environmental Management (EM)

    in place quickly to accomplish the Recovery Act Program goals." Recovery Act Investment Moves EM Past Milestone of 100 Project Completions Below: Recovery Act workers...

  8. American Recovery and Reinvestment Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    President Obama signed the American Recovery and Reinvestment Act of 2009 (Recovery Act) into law on February 17, 2009. The Recovery Act provided DOE several billion dollars in ...

  9. WIPP Update and Status of Recovery | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    WIPP Update and Status of Recovery More Documents & Publications WIPP Recovery Information Waste Isolation Pilot Plant Update and Status of Recovery Waste Isolation Pilot Plant...

  10. EM Recovery Act Top Line Messages | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top Line Messages EM Recovery Act Top Line Messages The lastest Recovery Act performance related information and metrics. PDF icon EM Recovery Act Top Line Messages - April, 2013...

  11. American Recovery and Reinvestment Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act Here is one compliance agreement for EM's American Recovery and Reinvestment Act Program on...

  12. EM Recovery Act Performance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Performance EM Recovery Act Performance Footprint Reduction The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40 percent. EM has reduced its pre-Recovery Act footprint of 931 square miles, established in 2009, by 690 square miles. Reducing its contaminated footprint to 241 square miles has proven to be a monumental task, and a challenge the EM

  13. Recovery Act Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act » Recovery Act Reports Recovery Act Reports The following is a list of the oversight results by the Office of Inspector General regarding The Department's programs, grants, and projects funded under the Recovery Act. June 17, 2014 Audit Report: OAS-RA-14-04 Selected Activities of the Office of Energy Efficiency and Renewable Energy's Advanced Manufacturing Office April 14, 2014 Special Report: OAS-RA-L-14-01 Allegations Regarding the Department of Energy's State Energy Program

  14. Exhaust Energy Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust energy recovery proposed to achieve 10% fuel efficiency improvement and reduce or eliminate the need for increased heat rejectioncapacity for future heavy duty engines in Class 8 Tractors PDF icon deer09_nelson_1.pdf More Documents & Publications Exhaust Energy Recovery Exhaust Energy Recovery Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency

  15. Waste Heat Recovery Opportunities for Thermoelectric Generators |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Thermoelectrics have unique advantages for integration into selected waste heat recovery applications. PDF icon fleurial.pdf More Documents & Publications High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications

  16. RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Anthony R. Kovscek; William E. Brigham

    1999-06-01

    The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

  17. Counterpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, Emanuel M.

    1986-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  18. Overpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, Emanuel M.

    1989-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  19. Anelastic Strain Recovery Analysis Code

    Energy Science and Technology Software Center (OSTI)

    1995-04-05

    ASR4 is a nonlinear least-squares regression of Anelastic Strain Recovery (ASR) data for the purpose of determining in situ stress orientations and magnitudes. ASR4 fits the viscoelastic model of Warpinski and Teufel to measure ASR data, calculates the stress orientations directly, and stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and it calculates stress magnitudes using Blanton''s approach, assuming sufficient input data are available.

  20. State Agency Recovery Act Funding

    Energy Savers [EERE]

    Agency Recovery Act Funding .Alabama Alabama Public Service Commission $868,824 .Alaska Regulatory Commission of Alaska $767,493 .Arizona Arizona Corporation Commission $915,679 .Arkansas Arkansas Public Service Commission $822,779 .California California Public Utilities Commission $1,686,869 .Colorado The Public Utilities Commission of the State of Colorado $875,899 .Connecticut Connecticut Department of Public Utility Control $839,241 .Delaware Delaware Public Service Commission $772,254

  1. Contained recovery of oily waste

    DOE Patents [OSTI]

    Johnson, Jr., Lyle A. (Laramie, WY); Sudduth, Bruce C. (Laramie, WY)

    1989-01-01

    A method is provided for recovering oily waste from oily waste accumulations underground comprising sweeping the oily waste accumulation with hot water to recover said oily waste, wherein said area treated is isolated from surrounding groundwater hydraulically. The hot water may be reinjected after the hot-water displacement or may be treated to conform to any discharge requirements.

  2. Recovery Act SGDP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Center » Recovery Act » Recovery Act SGDP Recovery Act SGDP View a Map Showing Energy Storage Projects by State View a Map Showing Energy Storage Projects by State Read more View a Map Showing Smart Grid Energy Demo Projects by State View a Map Showing Smart Grid Energy Demo Projects by State Read more View a map which combines the above two maps View the full list of selected projects The American Recovery and Reinvestment Act of 2009 (Recovery Act) - which President Obama signed

  3. DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage

    Broader source: Energy.gov (indexed) [DOE]

    INTERIM GUIDANCE May 12, 2010 TO: Program Office Leadership FROM: [Matt Rogers] SUBJECT: DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage This memorandum clarifies the U.S. Department of Energy ("DOE") policy regarding use of the Recovery Act logo by Recovery Act recipients and subgrantees. The appropriate use of the logo will serve to highlight the Recovery Act's positive impact while preventing potential misrepresentations. Signs and websites are a useful

  4. Methane Recovery from Hydrate-bearing Sediments

    SciTech Connect (OSTI)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.

  5. Weatherization Formula Grants - American Recovery and Reinvestment Act

    Broader source: Energy.gov (indexed) [DOE]

    (ARRA) | Department of Energy recovery_act

  6. Dual Loop Parallel/Series Waste Heat Recovery System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dual Loop Parallel/Series Waste Heat Recovery System Dual Loop Parallel/Series Waste Heat Recovery System This system captures all the jacket water, intercooler, and exhaust heat from the engine by utilizing a single condenser to reject leftover heat to the atmosphere. PDF icon p-04_cook.pdf More Documents & Publications Light weight and economical exhaust heat exchanger for waste heat recovery using mixed radiant and convective heat transfer CNG-Hybrid: A Practical Path to "Net Zero

  7. Method for magnesium sulfate recovery

    DOE Patents [OSTI]

    Gay, Richard L.; Grantham, LeRoy F.

    1987-01-01

    A method of obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.

  8. Method for magnesium sulfate recovery

    DOE Patents [OSTI]

    Gay, R.L.; Grantham, L.F.

    1987-08-25

    A method is described for obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7,000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1,000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.

  9. Counterpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  10. Overpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  11. The Hanford Story: Recovery Act

    Broader source: Energy.gov [DOE]

    This is the third chapter of The Hanford Story. This chapter is a tribute to the thousands of workers and representatives of regulatory agencies, neighboring states, Tribes, stakeholders, and surrounding communities who came together to put stimulus funding to work at Hanford. The video describes how the Department of Energy and its contractors turned a nearly $2 billion investment of American Recovery and Reinvestment Act funding in 2009 into nearly $4 billion worth of environmental cleanup work over the past two years. At the same time, Hanford workers have reduced the cleanup footprint of the Hanford Site by more than half (586 square miles to 241 sq. mi. through August -- 59 percent).

  12. In-Ground Radiation Detection

    SciTech Connect (OSTI)

    McCormick, Kathleen R.; Stromswold, David C.; Woodring, Mitchell L.; Ely, James H.; Siciliano, Edward R.; Caggiano, Joseph A.; Hensley, Walter K.

    2006-10-29

    Vertically oriented radiation detectors may not provide sufficient screening in rail or aviation applications. Railcars can be heavily shielded on the sides, reducing the sensitivity of vertically mounted monitors. For aviation, the distance required for wingspan clearance reduces a vertical detectors coverage of the fuselage. To surmount these, and other, challenging operational and sensitivity issues, we have investigated the use of in-ground radiation detectors. (PIET-43741-TM-605).

  13. Inverter Ground Fault Overvoltage Testing

    SciTech Connect (OSTI)

    Hoke, Andy; Nelson, Austin; Chakraborty, Sudipta; Chebahtah, Justin; Wang, Trudie; McCarty, Michael

    2015-08-12

    This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.

  14. Inverter Ground Fault Overvoltage Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inverter Ground Fault Overvoltage Testing Andy Hoke, Austin Nelson, and Sudipta Chakraborty National Renewable Energy Laboratory Justin Chebahtah, Trudie Wang, and Michael McCarty SolarCity Corporation Technical Report NREL/TP-5D00-64173 August 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory

  15. NAC 445A Water Controls | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445A Water ControlsLegal Abstract Regulations for ground water controls and water...

  16. Recovery from chemical, biological, and radiological incidents :

    SciTech Connect (OSTI)

    Franco, David Oliver; Yang, Lynn I.; Hammer, Ann E.

    2012-06-01

    To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

  17. Geology: Ground water in Animas Valley, Hidalgo County, New Mexico...

    Open Energy Info (EERE)

    Report 11. Related Geothermal Exploration Activities Activities (1) Geothermal Literature Review At Lightning Dock Geothermal Area (Spiegel, 1957) Areas (1) Lightning Dock...

  18. Monitoring and evaluating ground-source heat pump. Final report

    SciTech Connect (OSTI)

    Stoltz, S.V.; Cade, D.; Mason, G.

    1996-05-01

    This report presents the measured performance of four advanced residential ground-source heat pump (GSHP) systems. The GSHP systems were developed by WaterFurnace International to minimize the need for electric resistance backup heating and featured multiple speed compressors, supplemental water heating, and at most sites, multiple-speed fans. Detailed data collected for a complete year starting in June 1994 shows that the advanced design is capable of maintaining comfort without the use of electric resistance backup heating. In comparison with a conventional air-source heat pump, the advanced-design GSHP reduced peak heating demand by more than 12 kilowatts (kW) per residence and provided energy savings. The report describes the cooling and heating season operation of the systems, including estimated seasonal efficiency, hours of operation, and load profiles for average days and peak days. The electrical energy input, cooling output, and efficiency are presented as a function of return air temperature and ground loop temperature.

  19. GUAM RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Guam are supporting a broad range of clean energy projects, from solar power and wind. Through these investments, Guam's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Guam to play an important role in the new energy economy of the future. PDF icon GUAM RECOVERY ACT

  20. CBFO selects Senior WIPP Recovery Manager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2014 CBFO selects Senior WIPP Recovery Manager Sean Dunagan, Research and Development Manager with Sandia National Laboratories, has been appointed as the Carlsbad Field Office (CBFO) Senior WIPP Recovery Manager, effective Dec. 8, 2014. He replaces Tom Teynor, who returned to Hanford to be the Federal Project Manager of the Plutonium Finishing Plant project. Directly leading and representing the Waste Isolation Pilot Plant (WIPP) Recovery Project, Mr. Dunagan will report to CBFO Manager Joe

  1. Hanford Story: Recovery Act - Questions - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Act - Questions The Hanford Story Hanford Story: Recovery Act - Questions Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size What did the Department of Energy and its contractors do with nearly $2 billion in stimulus funding? Why was the Department able to put the funding to use quickly? How many jobs were created by stimulus funding received at the Hanford Site? How much of the cleanup footprint of Hanford is left after projects funded by the Recovery Act

  2. Recovery Act State Memos American Samoa

    Broader source: Energy.gov (indexed) [DOE]

    American Samoa For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  3. Recovery Act State Memos Mariana Islands

    Broader source: Energy.gov (indexed) [DOE]

    Mariana Islands For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  4. Recovery Act State Memos New Hampshire

    Broader source: Energy.gov (indexed) [DOE]

    Hampshire For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  5. Recovery Act State Memos New Jersey

    Broader source: Energy.gov (indexed) [DOE]

    Jersey For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  6. Recovery Act State Memos New Mexico

    Broader source: Energy.gov (indexed) [DOE]

    Mexico For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  7. Recovery Act State Memos North Carolina

    Broader source: Energy.gov (indexed) [DOE]

    Carolina For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  8. Recovery Act State Memos North Dakota

    Broader source: Energy.gov (indexed) [DOE]

    Dakota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  9. Recovery Act State Memos Puerto Rico

    Broader source: Energy.gov (indexed) [DOE]

    Puerto Rico For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  10. Recovery Act State Memos Rhode Island

    Broader source: Energy.gov (indexed) [DOE]

    Rhode Island For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  11. Recovery Act State Memos South Carolina

    Broader source: Energy.gov (indexed) [DOE]

    Carolina For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  12. Recovery Act State Memos South Dakota

    Broader source: Energy.gov (indexed) [DOE]

    Dakota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  13. Recovery Act State Memos Virgin Islands

    Broader source: Energy.gov (indexed) [DOE]

    Virgin Islands For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Recovery Act State Memos Washington, DC

    Broader source: Energy.gov (indexed) [DOE]

    Washington, DC For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. Recovery Act State Memos West Virginia

    Broader source: Energy.gov (indexed) [DOE]

    West Virginia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  16. LANL exceeds Early Recovery Act recycling goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have recovered more than 136 tons of recyclable metal since work began last year. March 8, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  17. LANL sponsors Recovery Act Job Fair

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Act Job Fair LANL sponsors Recovery Act Job Fair The fair was aimed at filling current and future positions with subcontractors working on environmental cleanup under the American Recovery and Reinvestment Act. October 30, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

  18. Los Alamos plants willows for flood recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plants willows Los Alamos plants willows for flood recovery The Laboratory's Corrective Actions Program (CAP) planted nearly 10,000 willows to help preserve the Pueblo Canyon wetland after damage from September 2013 floods. June 18, 2014 In a flood recovery effort designed to stop further erosion in Pueblo Canyon, in April, Los Alamos planted nearly 10,000 willows along the stream banks surrounding the wetland. In a flood recovery effort designed to stop further erosion in Pueblo Canyon, Los

  19. Ohio Celebrates Recovery Act Weatherization Program Performance |

    Energy Savers [EERE]

    Department of Energy Ohio Celebrates Recovery Act Weatherization Program Performance Ohio Celebrates Recovery Act Weatherization Program Performance June 10, 2010 - 12:41pm Addthis Ohio Celebrates Recovery Act Weatherization Program Performance Joshua DeLung What are the key facts? More than 10,000 Ohio homes have been weatherized, making the state one of the national leaders in helping income-eligible families become more energy-efficient. Ohio has reached a milestone in the clean energy

  20. Enhanced Oil Recovery | Department of Energy

    Office of Environmental Management (EM)

    Enhanced Oil Recovery Enhanced Oil Recovery Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory over the past 30 years, the United States is a world leader in the number of EOR projects and volume of oil production from this method. PDF icon Fossil Energy Research Benefits - Enhanced Oil Recovery More Documents & Publications Oil Study Guide - High School Fossil Energy Today - Fourth Quarter, 2011 Fossil Energy Today - First Quarter,

  1. Waste Isolation Pilot Plant Recovery Plan

    Broader source: Energy.gov (indexed) [DOE]

    Waste Isolation Pilot Plant Recovery Plan Revision 0 September 30, 2014 [This page left blank.] EXECUTIVE SUMMARY Overview This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nation's defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Department's approach to

  2. Ground Source Heat Pumps | Open Energy Information

    Open Energy Info (EERE)

    heating andor cooling system that takes advantage of the relatively constant year-round ground temperature to pump heat to or from the ground. Other definitions:Wikipedia Reegle...

  3. American Recovery & Reinvestment Act Newsletter - Issue 26

    Office of Environmental Management (EM)

    on 41 Recovery Act projects to accelerate closure of 49 underground liquid waste storage tanks and high-level nuclear waste processing. Key among SRR achievements was the...

  4. Faces of the Recovery Act: Sun Catalytix

    Broader source: Energy.gov [DOE]

    At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act.

  5. Feed Resource Recovery | Open Energy Information

    Open Energy Info (EERE)

    search Name: Feed Resource Recovery Place: Wellesley, Massachusetts Product: Start-up planning to convert waste to fertilizer and biomethane gas. Coordinates: 42.29776,...

  6. Energy Recovery Associates | Open Energy Information

    Open Energy Info (EERE)

    - NY NJ CT PA Area Sector: Biofuels Product: Landfill Gas, Digester Gas, mixed methane and Greenhouse gases recovery and utilization equipment and projects. Number of...

  7. American Recovery & Reinvestment Act Newsletter - Issue 12

    Office of Environmental Management (EM)

    Idaho site. James -Tony Thompson hopes the work there will last a long time. Eric King appreciates the stability his job there provides. Thanks to Recovery Act funding,...

  8. IDAHO RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on ...

  9. GEORGIA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Georgia has substantial natural resources, including biomass and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the ...

  10. ARIZONA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment ...

  11. ARKANSAS RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down ...

  12. Cost Recovery | OpenEI Community

    Open Energy Info (EERE)

    Cost Recovery Home Kyoung's picture Submitted by Kyoung(150) Contributor 9 July, 2013 - 20:57 GRR 3rd Quarter - Stakeholder Update Meeting Alaska analysis appropriations...

  13. American Recovery & Reinvestment Act Newsletter - Issue 4

    Office of Environmental Management (EM)

    ... Cleanup Project's capability of handling future stimulus projects, but also creates an opportunity to fill the pipeline to WIPP, which helps their Recovery Act planning," said ...

  14. Recovery Act Progress Update: Reactor Closure Feature

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  15. Faces of the Recovery Act: 1366 Technologies

    Broader source: Energy.gov [DOE]

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production.

  16. Supercritical Recovery Systems LLC | Open Energy Information

    Open Energy Info (EERE)

    Recovery Systems LLC Place: Clayton, Missouri Zip: 63105 Product: Holder of various biofuel processing technologies. Deeveloping an ethanol plant in Lacassine, Louisiana....

  17. Modified Accelerated Cost-Recovery System (MACRS)

    Broader source: Energy.gov [DOE]

    Under the federal Modified Accelerated Cost-Recovery System (MACRS), businesses may recover investments in certain property through depreciation deductions. The MACRS establishes a set of class...

  18. Incorporating Energy Efficiency into Disaster Recovery Efforts

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Incorporating Energy Efficiency into Disaster Recovery Efforts, Call Slides and Discussion Summary, October 9, 2014.

  19. The Pace of Recovery Act Spending

    Broader source: Energy.gov [DOE]

    The Energy Department has allocated more than 90 percent of our $32 billion in Recovery Act funds to clean energy projects around the country.

  20. OE Recovery Act News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OE Recovery Act News RSS March 23, 2015 Conference ... (DOE's) Office of Electricity Delivery and Energy ... and to exchange information about future challenges ...

  1. Award Selections for Industrial Technologies Program Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A chart detailling Award Selections for Industrial Technologies Program Recovery Act Funding Energy Efficient Information and Communication Technology (ICT) PDF icon Award ...

  2. American Recovery and Reinvestment Act, Financial Assistance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Citations for journal articles produced under the award ... and specific danger to public health or safety related to the ... A000 12 under the American Recovery and ...

  3. Hillsborough County Resource Recovery Biomass Facility | Open...

    Open Energy Info (EERE)

    Facility Hillsborough County Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  4. North Village Ground Source Heat Pumps

    Broader source: Energy.gov [DOE]

    Overview: Installation of Ground Source Heat Pumps. Replacement of Aging Heat Pumps. Alignment with Furmans Sustainability Goals.

  5. Ground Magnetics (Nannini, 1986) | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics (Nannini, 1986) Exploration Activity Details Location Unspecified Exploration...

  6. Method for enhanced oil recovery

    DOE Patents [OSTI]

    Comberiati, Joseph R.; Locke, Charles D.; Kamath, Krishna I.

    1980-01-01

    The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

  7. Resource recovery from coal residues

    SciTech Connect (OSTI)

    Jones, G. Jr.; Canon, R.M.

    1980-01-01

    Several processes are being developed to recover metals from coal combustion and conversion residues. Methods to obtain substantial amounts of aluminum, iron, and titanium from these wastes are presented. The primary purpose of our investigation is to find a process that is economically sound or one that at least will partially defray the costs of waste processing. A cursory look at the content of fly ash enables one to see the merits of recovery of these huge quantities of valuable resources. The major constituents of fly ash of most interest are aluminum (14.8%), iron (7.5%), and titanium (1.0%). If these major elements could be recovered from the fly ash produced in the United States (60 million tons/year), bauxite would not have to be imported, iron ore production could be increased, and titanium production could be doubled.

  8. High efficiency shale oil recovery

    SciTech Connect (OSTI)

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  9. Polymer filtration: An emerging technology for selective metals recovery

    SciTech Connect (OSTI)

    Smith, B.F.; Robison, T.W.; Cournoyer, M.E.

    1995-12-31

    A new technology is under development to selectively recover regulated metal ions from electroplating rinse waters. The electroplating metal ions are recovered in a concentrated form with the appropriate counter ions ready for return to the original electroplating bath. The technology is based on the use of specially designed water-soluble polymers that selectively bind with the metal ions in the rinse bath. The polymers have such a large molecular weight that they can be physically separated using available ultrafiltration technology. The advantages of this technology are high metal selectivity with no sludge formation, rapid processing, low energy, low capital costs, and small size. We have tested and demonstrated the recovery of zinc and nickel (a new alloy electroplating bath designed to replace cadmium) from rinse waters. The metal-ion concentrate was returned to the original electroplating bath. Applications of this technology include waste treatment for textile, paint and dye production, chemical manufacturing, and nuclear reactor and reprocessing operations.

  10. Water Vapor Experiment Concludes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Water Vapor Experiment Concludes The AIRS (atmospheric infrared sounder) Water Vapor Experiment - Ground (AWEX-G) intensive operations period (IOP) at the SGP central facility began on October 27 and ended on November 16, 2003. Researchers David Whiteman and Francis Schmidlin of the National Aeronautics and Space Administration (NASA), Holger Voemel of the National Oceanic and Atmospheric Administration (NOAA), Larry Miloshevich of the National Center for Atmospheric Research, and Barry Lesht

  11. Faces of the Recovery Act: Sun Catalytix

    ScienceCinema (OSTI)

    Nocera, Dave

    2013-05-29

    BOSTON- At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act. To learn about more ARPA-E projects through the Recovery Act: http://arpa-e.energy.gov/FundedProjects.aspx

  12. Exhaust Energy Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace041_nelson_2010_o.pdf More Documents & Publications Exhaust Energy Recovery Exhaust Energy Recovery Cummins Waste Heat

  13. Exhaust Energy Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_41_nelson.pdf More Documents & Publications Exhaust Energy Recovery Exhaust Energy Recovery SuperTruck Program: Engine Project Review

  14. WIPP Recovery Progress | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Topic: J. R. Stroble CBFO, Provided Information on the Status of the Recovery Effort at the WIPP Site. PDF icon WIPP Update - March 25, 2015 More Documents & Publications Waste Isolation Pilot Plant Recovery Update Resuming Operations at WIPP Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan

  15. Passive recovery of DNAPL from clayey soil via vertical collection wells

    SciTech Connect (OSTI)

    Tease, B.; Gagnon, D.

    1995-12-01

    A release of dense non-aqueous phase liquids (DNAPL) from two underground storage tanks (USTs), created a contaminant plume that extended approximately 30 feet into lacustrine sediments comprised mainly of varved clay. Subsurfaces investigations indicated that the release was comprised primarily of the chlorinated solvent Trichloroethene which had migrated horizontally approximately 250 feet cross-gradient to groundwater flow. A relatively narrow zone of free phase product extended from the UST area approximately 150-200 feet along the plume of migration at a depth of 20-30 feet below the ground surface. Since clay varves interconnected by vertical fractures is believed to have facilitated the DNAPL migration, 4{close_quotes} diameter stainless steel collection recovery of 10-20 quarts of DNAPL per each collection event, over a 4 month period supported what is believed to be preferential DNAPL migration. DNAPL recovery continued for a total of 6 months before the point of diminimus return (1-2 quarts/month) resulted in adopting a quarterly recovery schedule. To date, 201 quarts of free phase DNAPL have been recovered. DNAPL mobility, delineation, well installation and collection techniques are discussed. Compared to conventional remediation alternatives, this passive recovery system provides an innovative approach to a difficult and costly problem; recovery of DNAPL isolated within clay.

  16. Low-Salinity Waterflooding to Improve Oil Recovery - Historical Field Evidence

    SciTech Connect (OSTI)

    Eric P. Robertson

    2007-11-01

    Waterflooding is by far the most widely applied method of improved oil recovery. Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of wa-terfloods. Laboratory water-flood tests and single-well tracer tests have shown that injection of dilute brine can increase oil recovery, but work designed to test the method on a field scale has not yet been undertaken. Historical waterflood records could unintentionally provide some evidence of improved recovery from waterflooding with lower salinity brine. Nu-merous fields in the Powder River basin of Wyoming have been waterflooded using low salinity brine (about 500 ppm) obtained from the Madison limestone or Fox Hills sandstone. Three Minnelusa formation fields in the basin were identified as potential candidates for waterflood comparisons based on the salinity of the connate and injection water. Historical pro-duction and injection data for these fields were obtained from the public record. Field waterflood data were manipulated to be displayed in the same format as laboratory coreflood re-sults. Recovery from fields using lower salinity injection wa-ter was greater than that using higher salinity injection wa-termatching recovery trends for laboratory and single-well tests.

  17. Hydrothermal alkali metal recovery process

    DOE Patents [OSTI]

    Wolfs, Denise Y. (Houston, TX); Clavenna, Le Roy R. (Baytown, TX); Eakman, James M. (Houston, TX); Kalina, Theodore (Morris Plains, NJ)

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  18. List of Solar Water Heat Incentives | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Solar Water Heat Ground Source Heat Pumps Yes City and County of Denver - Solar Panel Permitting (Colorado) SolarWind Permitting Standards Colorado Commercial...

  19. Boiler Upgrades and Decentralizing Steam Systems Save Water and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NAS Oceana decided to decentralize the heating and cooling system based on the calculated potential energy and water savings of the localized boilers and ground source heat pumps. ...

  20. Utah Division of Water Quality | Open Energy Information

    Open Energy Info (EERE)

    Ground Water Quality Protection Permitting Contact 2 Contacts.png Woody Campbell http:www.waterquality.utah.gov Retrieved from "http:en.openei.orgw...