Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Water Quality Surface and Ground | Open Energy Information  

Open Energy Info (EERE)

Quality Surface and Ground Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaterQualitySurfaceandGround&oldid612197...

2

GRR/Section 14-UT-e - Ground Water Quality Protection Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-UT-e - Ground Water Quality Protection Permit GRR/Section 14-UT-e - Ground Water Quality Protection Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-UT-e - Ground Water Quality Protection Permit 14UTEGroundWaterQualityProtectionPermit.pdf Click to View Fullscreen Contact Agencies Utah Department of Environmental Quality Regulations & Policies UAC R317-6 Triggers None specified Click "Edit With Form" above to add content 14UTEGroundWaterQualityProtectionPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Utah Department of Environmental Quality (DEQ) regulates discharges

3

Ground Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Nature Bulletin No. 408-A February 27, 1971 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation GROUND WATER We take...

4

Water Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

5

Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2003-2004 Annual Report.  

DOE Green Energy (OSTI)

This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA Natural Resources Conservation Service, assist landowners in developing Resource Management Systems (RMS) that address resource concerns in a specified land unit. These RMS plans are developed using a nine step planning process that acts to balance natural resource issues with economic and social needs. Soil, Water, Air, Plants, Animals, and Human resource concerns are the core focus in developing a framework for improving the efficiency and effectiveness of conservation activities in a given planning unit, while working within the guidelines set forth by the National Environmental Policy Act (NEPA), Clean Water Act (CWA), Endangered Species Act (ESA), Magnuson-Stevens Act (MSA), National Historic Preservation Act (NHPA), and other federal, state, and local laws. Implementation of this project has provided technical and implementation assistance for numerous on the ground projects, including over 50 WASCBs, several thousand feet of terraces, numerous spring developments, fencing, 7 implemented CREP contracts, and the development of 8 additional CREP projects slated for enrollment at the beginning of FY '05. Within the past contract year in Sherman County, 589.4 acres of CREP have been enrolled protecting 30.8 miles of riparian habitat. In addition to the increase in on the ground projects, coordination and outreach to solicit conservation projects in Sherman County has increased due to the additional staffing provided by BPA funds. As a result there is an abundance of potential conservation projects for water quality and riparian management improvement. With the sustained availability of coordination and technical assistance provided through this grant, BPA personnel funds will translate to a much higher dollar figure applied on the ground. This project has been very successful in keeping up with the demand for conservation projects within Sherman County.

Faucera, Jason (Sherman County Soil and Water Conservation District, Sherman County, OR)

2004-05-01T23:59:59.000Z

6

Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon : Coordination and Technical Assistance, 2004-2005 Annual Report.  

Science Conference Proceedings (OSTI)

This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA Natural Resources Conservation Service, assist landowners in developing Resource Management Systems (RMS) that address resource concerns in a specified land unit. These RMS plans are developed using a nine step planning process that acts to balance natural resource issues with economic and social needs. Soil, Water, Air, Plants, Animals, and Human resource concerns are the core focus in developing a framework for improving the efficiency and effectiveness of conservation activities in a given planning unit, while working within the guidelines set forth by the National Environmental Policy Act (NEPA), Clean Water Act (CWA), Endangered Species Act (ESA), Magnuson-Stevens Act (MSA), National Historic Preservation Act (NHPA), and other federal, state, and local laws. Implementation of this project has provided technical and implementation assistance for numerous on the ground projects, including over 50 WASCBs, several thousand feet of terraces, numerous spring developments, fencing, 5 implemented CREP contracts, and the development of 12 additional CREP projects slated for enrollment at the beginning of FY06. Within the past contract year in Sherman County, 355.4 acres of CREP have been enrolled protecting 19.3 miles of riparian habitat. In addition to the increase in on the ground projects, coordination and outreach to solicit conservation projects in Sherman County has increased due to the additional staffing provided by BPA funds. As a result there is an abundance of potential conservation projects for water quality and riparian management improvement. With the sustained availability of coordination and technical assistance provided through this grant, BPA personnel funds will translate to a much higher dollar figure applied on the ground. This project has been very successful in keeping up with the demand for conservation projects within Sherman County.

Faucera, Jason (Sherman County Soil and Water Conservation District, Sherman County, OR)

2005-06-01T23:59:59.000Z

7

Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2002-2003 Annual Report.  

Science Conference Proceedings (OSTI)

This project was designed to provide project coordination and technical assistance to producers in Sherman County for on the ground water quality enhancement and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Enhancement Reserve Program (CREP) and other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Three of those four streams and one other major Sherman County stream are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Temperature in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA Natural Resources Conservation Service, assist landowners in developing Resource Management Systems (RMS) that address resource concerns in a specified land unit. These RMS plans are developed using a nine step planning process that acts to balance natural resource issues with economic and social needs. Soil, Water, Air, Plants, Animals, and Human resource concerns are the core focus in developing a framework for improving the efficiency and effectiveness of conservation activities in a given planning unit, while working within the guidelines set forth by the National Environmental Policy Act (NEPA), Clean Water Act (CWA), Endangered Species Act (ESA), Magnuson-Stevens Act (MSA), National Historic Preservation Act (NHPA), and other federal, state, and local laws. Implementation of this project has resulted in providing technical and implementation assistance for numerous on the ground projects, including over 50 WASCBs, several thousand feet of terraces, two implemented CREP contracts, and the development of 3 additional CREP projects slated for enrollment at the beginning of FY '04. In addition to the increase in on the ground projects, coordination and outreach to solicit conservation projects in Sherman County has increased due to the additional staffing provided by BPA funds. As a result there is an abundance of potential conservation projects for water quality and riparian management improvement. With the sustained availability of coordination and technical assistance provided through this grant, BPA personnel funds will translate to a much higher dollar figure applied on the ground. This project has been very successful in reducing the backlog of conservation projects within Sherman County, while adhering to the objectives set forth for this grant.

Faucera, Jason (Sherman County Soil and Water Conservation District, Sherman County, OR)

2003-06-23T23:59:59.000Z

8

Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2005-2006 Annual Report.  

Science Conference Proceedings (OSTI)

This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA Natural Resources Conservation Service, assist landowners in developing Resource Management Systems (RMS) that address resource concerns in a specified land unit. These RMS plans are developed using a nine step planning process that acts to balance natural resource issues with economic and social needs. Soil, Water, Air, Plants, Animals, and Human resource concerns are the core focus in developing a framework for improving the efficiency and effectiveness of conservation activities in a given planning unit, while working within the guidelines set forth by the National Environmental Policy Act (NEPA), Clean Water Act (CWA), Endangered Species Act (ESA), Magnuson-Stevens Act (MSA), National Historic Preservation Act (NHPA), and other federal, state, and local laws. Implementation of this project has provided technical and implementation assistance for numerous on the ground projects, including 119 WASCBs, 74,591 feet of terraces, 3 spring developments, 24,839 feet of riparian or pasture cross fencing, 1,072 acres of direct seed trials, 14 landowners implementing 34 CREP contracts, and the development of 5 additional CREP contracts slated for enrollment at the beginning of FY07. Within the past contract year in Sherman County, 1898.3 acres of CREP have been enrolled protecting approximately 52 miles of riparian or intermittent stream channel habitat. In addition to the increase in on the ground projects, coordination and outreach to solicit conservation projects in Sherman County has increased due to the additional staffing provided by BPA funds. As a result there is an abundance of potential conservation projects for water quality and riparian management improvement. With the sustained availability of coordination and technical assistance provided through this grant, BPA personnel funds will translate to a much higher dollar figure applied on the ground. This project has been very successful in keeping up with the demand for conservation projects within Sherman County.

Faucera, Jason (Sherman County Soil and Water Conservation District, Sherman County, OR)

2006-06-01T23:59:59.000Z

9

Determining an optimal sampling frequency for measuring bulk temporal changes in ground-water quality  

Science Conference Proceedings (OSTI)

In the Data Quality Objectives (DQO) process, statistical methods are used to determine an optimal sampling and analysis plan. When the DQO decision rule for instituting remedial actions is based on a critical change in water quality, the monitoring program design must ensure that this change can be detected and measured with a specified confidence. Usually the focus is on the change at a single monitoring location and the process is limited to addressing the uncertainty inherent in the analytical methods and the variability at that location. However, new strategies that permit ranking the waste sites and prioritizing remedial activities require the means for assessing overall changes for small regions over time, where both spatial and temporal variability exist and where the uncertainty associated with these variations far exceeds measurement error. Two new methods for assessing these overall changes have been developed and are demonstrated by application to a waste disposal site in Oak Ridge, Tennessee. These methods incorporate historical data where available and allow the user to either test the statistical significance of a linear trend or of an annual change compared to a baseline year for a group of water quality wells.

Moline, G.R.; Beauchamp, J.J.; Wright, T. [Oak Ridge National Lab., TN (United States)

1996-07-01T23:59:59.000Z

10

Raft River monitor well potentiometric head responses and water quality as related to the conceptual ground-water flow system  

DOE Green Energy (OSTI)

Ground-water monitoring near the Raft River site was initiated in 1974 by the IDWR. This effort consisted of semiannual chemical sampling of 22 irrigation wells near the Raft River geothermal development area. This program yielded useful baseline chemical data; however, several problems were inherent. For example, access to water pumped from the wells is limited to the irrigation season (April through September). All the wells are not continuously pumped; thus, some wells that are sampled one season cannot be sampled the next. In addition, information on well construction, completion, and production is often unreliable or not available. These data are to be supplemented by establishing a series of monitor wells in the proposed geothermal withdrawal and injection area. These wells were to be located and designed to provide data necessary for evaluating and predicting the impact of geothermal development on the Shallow Aquifer system.

Allman, D.W.; Tullis, J.A.; Dolenc, M.R.; Thurow, T.L.; Skiba, P.A.

1982-09-01T23:59:59.000Z

11

Automated Quality Control Procedure for the "Water Equivalent of Snow on the Ground" Measurement  

Science Conference Proceedings (OSTI)

Snow water equivalent (SWE) has been measured daily by the United States National Weather Service since 1952, whenever snow depth is 2 in. (5 cm) or greater. These data are used to develop design snow loads for buildings, for hydrological ...

Thomas W. Schmidlin; Daniel S. Wilks; Megan McKay; Richard P. Cember

1995-01-01T23:59:59.000Z

12

EPA Final Ground Water Rule  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Safety and Environment Office of Nuclear Safety and Environment Nuclear Safety and Environment Information Brief HS-20-IB-2007-02 (March 2007) EPA Final Ground Water Rule Safe Drinking Water Act: National Primary Drinking Water Regulations Ground Water Rule - 40 CFR Parts 9, 141 and 142 Final Rule: 71 FR 65574 Effective Date: January 8, 2007 1 RULE SYNOPSIS On November 8, 2006, the U.S. Environmental Protection Agency (EPA) published a final Ground Water Rule (GWR) to promote increased protection against microbial pathogens that may be present in public water systems (PWSs) that use ground water sources for their supply (these systems are known as ground water systems). This Rule establishes a risk-targeted approach

13

Ground Water Management Regulations (Louisiana) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water Management Regulations (Louisiana) Ground Water Management Regulations (Louisiana) Eligibility Agricultural Construction Developer Fuel Distributor Industrial...

14

Colorado Ground Water Commission | Open Energy Information  

Open Energy Info (EERE)

Water Commission Jump to: navigation, search Name Colorado Ground Water Commission Place Colorado Website http:water.state.co.usgroun References Colorado Ground Water Commission...

15

Ground water hydrology report: Revision 1, Attachment 3. Final  

SciTech Connect

This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards.

NONE

1996-12-01T23:59:59.000Z

16

Ground Water Management Act (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water Management Act (Virginia) Ground Water Management Act (Virginia) Ground Water Management Act (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Virginia Program Type Environmental Regulations Siting and Permitting Provider Virginia Department of Environmental Quality Under the Ground Water Management Act of 1992, Virginia manages ground water through a program regulating the withdrawals in certain areas called

17

Hanford Site ground-water monitoring for 1994  

SciTech Connect

This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

1995-08-01T23:59:59.000Z

18

GRR/Section 19-TX-b - New Water Right Process For Surface Water and Ground  

Open Energy Info (EERE)

TX-b - New Water Right Process For Surface Water and Ground TX-b - New Water Right Process For Surface Water and Ground Water < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-b - New Water Right Process For Surface Water and Ground Water 19TXBNewWaterRightProcessForSurfaceWaterAndGroundWater.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Texas Water Development Board Regulations & Policies Tex. Water Code § 11 Triggers None specified Click "Edit With Form" above to add content 19TXBNewWaterRightProcessForSurfaceWaterAndGroundWater.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

19

Hanford Site ground-water monitoring for 1993  

Science Conference Proceedings (OSTI)

This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

1994-09-01T23:59:59.000Z

20

Ground Water Protection (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water Protection (North Dakota) Ground Water Protection (North Dakota) Ground Water Protection (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting North Dakota has a degradation prevention program for groundwater protection, with standards established by the Department of Health. This section addresses groundwater standards, quality monitoring, notification

Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ground water protection management program plan  

SciTech Connect

U.S. Department of Energy (DOE) Order 5400.1 requires the establishment of a ground water protection management program to ensure compliance with DOE requirements and applicable federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office was prepared this Ground Water Protection Management Program Plan (ground water protection plan) whose scope and detail reflect the program`s significance and address the seven activities required in DOE Order 5400.1, Chapter III, for special program planning. This ground water protection plan highlights the methods designed to preserve, protect, and monitor ground water resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies technical guidance documents and site-specific documents for the UMTRA Project ground water protection management program. In addition, the plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA Project sites.

Not Available

1994-02-01T23:59:59.000Z

22

Appendix B Ground Water Management Policy  

Office of Legacy Management (LM)

Ground Water Management Policy Ground Water Management Policy for the Monticello Mill Tailings Site and Adjacent Areas This page intentionally left blank Docun~ent Number Q0029500 Appendix B State of Utah DEPARTblENT OF NATURAL RESOURCES DIVISION OF WATER RIGHTS Ground-Water Management Policy for the Mot~ticello Mill Tailings Site and Adjacent Areas The Monticello Mill Tailings Site is on the southeast portion of the tovm of Monticello in Sectton 36, T33S, K23E and Section 31, i33S. R24E, SLB&M. The mill site was used from 1942 to 1960 in the processing of uranium and vanadium. The U.S. Department of Energy (DOE) is currently cleaning up the site. The site is in the small canyon that forms the drainage for South Creek. The general direction of water flow, of both surface streams and the shallow

23

Montana Ground Water Assessment Act (Montana) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water Assessment Act (Montana) Montana Ground Water Assessment Act (Montana) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State...

24

Designated Ground Water Basin Map | Open Energy Information  

Open Energy Info (EERE)

Designated Ground Water Basin Map Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Designated Ground Water Basin Map Details Activities (0) Areas...

25

EA-1406: Ground Water Compliance at the New Rifle, Colorado,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Ground Water Compliance at the New Rifle, Colorado, UMTRA Project Site, Rifle, Colorado EA-1406: Ground Water Compliance at the New Rifle, Colorado, UMTRA Project Site, Rifle,...

26

Vertical Distribution of Contamination in Ground Water at the...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site...

27

GRR/Section 14-CO-e - Ground Water Discharge Permit | Open Energy  

Open Energy Info (EERE)

CO-e - Ground Water Discharge Permit CO-e - Ground Water Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CO-e - Ground Water Discharge Permit 14COEGroundWaterDischargePermit.pdf Click to View Fullscreen Contact Agencies Colorado Department of Public Health and Environment Regulations & Policies Colorado Water Quality Control Act 5 CCR 1002-61 Colorado Discharge Permit System 5 CCR 1002-41 Basic Standards for Ground Water 5 CCR 1002-42 Site Specific Water Quality Standards for Ground Water Triggers None specified Click "Edit With Form" above to add content 14COEGroundWaterDischargePermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

28

Local Water Quality Districts (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Water Quality Districts (Montana) Local Water Quality Districts (Montana) Local Water Quality Districts (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Institutional Multi-Family Residential Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Environmental Quality This statute provides for the creation of local water quality districts to prevent and mitigate ground and surface water contamination. Each local

29

Regulations Establishing Water Quality Standards for Surface...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Establishing Water Quality Standards for Surface Water of the State of Arkansas (Arkansas) Regulations Establishing Water Quality Standards for Surface Water of the State of...

30

Water budget for SRP burial ground area  

SciTech Connect

Radionuclide migration from the SRP burial ground for solid low-level waste has been studied extensively. Most of the buried radionuclides are fixed on the soil and show negligible movement. The major exception is tritium, which when leached from the waste by percolating rainfall, forms tritiated water and moves with the groundwater. The presence of tritium has been useful in tracing groundwater flow paths to outcrop. A subsurface tritium plume moving from the southwest corner of the burial ground toward an outcrop near Four Mile Creek has been defined. Groundwater movement is so slow that much of the tritium decays before reaching the outcrop. The burial ground tritium plume defined to date is virtually all in the uppermost sediment layer, the Barnwell Formation. The purpose of the study reported in this memorandum was to investigate the hypothesis that deeper flow paths, capable of carrying substantial amounts of tritium, may exist in the vicinity of the burial ground. As a first step in seeking deeper flow paths, a water budget was constructed for the burial ground site. The water budget, a materials balance used by hydrologists, is expressed in annual area inches of rainfall. Components of the water budget for the burial ground area were analyzed to determine whether significant flow paths may exist below the tan clay. Mean annual precipitation was estimated as 47 inches, with evapotranspiration, run-off, and groundwater recharge estimated as 30, 2, and 15 inches, respectively. These estimates, when combined with groundwater discharge data, suggest that 5 inches of the groundwater recharge flow above the tan clay and that 10 inches flow below the tan clay. Therefore, two-thirds of the groundwater recharge appears to follow flow paths that are deeper than those previously found. 13 references, 10 figures, 5 tables.

Hubbard, J.E.; Emslie, R.H.

1984-03-19T23:59:59.000Z

31

Ground water work breakdown structure dictionary  

SciTech Connect

This report contains the activities that are necessary to assess in ground water remediation as specified in the UMTRA Project. These activities include the following: site characterization; remedial action compliance and design documentation; environment, health, and safety program; technology assessment; property access and acquisition activities; site remedial actions; long term surveillance and licensing; and technical and management support.

NONE

1995-04-01T23:59:59.000Z

32

Selenium in Oklahoma ground water and soil  

SciTech Connect

Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

Atalay, A.; Vir Maggon, D.

1991-03-30T23:59:59.000Z

33

Appendix D Surface Water and Ground Water Time-Concentration Plots,  

Office of Legacy Management (LM)

Surface Water and Ground Water Time-Concentration Plots, Surface Water and Ground Water Time-Concentration Plots, Stream Discharge Measurements, Ground Water Level Data, and Ground Water Well Hydrographs This page intentionally left blank Contents Section .................................................................................. Surface Water Time-Concentration Plots D1.O ............................................................................................... Stream Discharge Measurements D2.0 ............................................................. Ground Water Time-Concentration Plots for Uranium D3.0 .......................................................................................................... Ground Water Level Data D4.0 ..............................................................................................

34

Ground and Surface Water Protection (New Mexico) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Surface Water Protection (New Mexico) and Surface Water Protection (New Mexico) Ground and Surface Water Protection (New Mexico) < Back Eligibility Agricultural Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Program Info State New Mexico Program Type Environmental Regulations Fees Provider New Mexico Environment Department This regulation implements the New Mexico Water Quality Act. Any person intending to make a new water contaminant discharge or to alter the character or location of an existing water contaminant discharge, unless the discharge is being made or will be made into a community sewer system

35

Water Rights: Ground Water (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water (Indiana) Ground Water (Indiana) Water Rights: Ground Water (Indiana) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Natural Resources It is the policy of the state to provide for the conservation of groundwater resources and limit groundwater waste. The Indiana Department of Natural Resources may designate restricted use areas and limit groundwater withdrawals by existing users in those areas, thus making groundwater use greater than 100,000 gallons per day subject to permitting

36

Brookhaven's Drinking-Water Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Quality Water Quality The Lab's finished drinking water is produced with pride by the staff of BNL's Water Treatment Facility Home Groundwater Consumer Confidence Reports Water Treatment Process Resources Tap Water Recommendations Water Cooler Cleaning Additional Resources Brookhaven Lab Drinking Water Brookhaven produces its own drinking water for all employees, facility-users, guests, residents, and visitors on site at its Water Treatment Facility (WTF). BNL's drinking water is pumped from groundwater by five active wells and processed at the WTF which can handle up to 6 million gallons per day. The "finished" water is sent to the Lab's two storage towers and then distributed around the site via 45 miles of pipeline. To ensure that Brookhaven's water meets all applicable local, state, and

37

U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan  

Office of Legacy Management (LM)

GWMON 1.12-1 GWMON 1.12-1 U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan for the Land Farm Pilot Test Monument Valley, Arizona August 2000 Prepared by U.S. Department of Energy Grand Junction Ofice Grand Junction, Colorado Project Number UGW-5 1 1-001 5-21-000 Document Number U0106701 This page intentionally left blank Document Number U0106701 Contents Contents 1.0 Introduction ....................................................................................................................... 1 2.0 Purpose and Scope ........................................................................................................... 1 3.0 Pilot-Test Extraction Wellfield 2 4.0 Water Elevation Measurements and Monitoring ............... 4

38

Diffusion Multilayer Sampling of Ground Water in Five Wells at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona,...

39

Analysis of Contaminant Rebound in Ground Water in Extraction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City,...

40

Appendix E Supporting Information for Ground Water Modeling  

Office of Legacy Management (LM)

Supporting Information for Ground Water Modeling Supporting Information for Ground Water Modeling This page intentionally left blank Contents Section Geologic Map of Site Area ........................................................................................................ E1.O Stream Flow Measurements ...................................................................................................... E2.0 Estimates of Ground Water Flow .............................................................................................. E3.0 .......................................... MODFLOW Flow Budget Analysis for OU 1 1 1 Model Subregions E4.0 ............................................................................ Burro Canyon Aquifer Ground Water Model E5.0 This page intentionally left blank

Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Introduction Application of numerical models of ground water flow  

E-Print Network (OSTI)

Introduction Application of numerical models of ground water flow almost always involves some sort (Yeh 1986; Poeter and Hill 1997; Hill et al. 1998). Other data beside hydraulic head have been used in calibration of ground water models, including rates of ground water exchange with streams and other surface

Saiers, James

42

Water quality in vicinity of Fenton Hill Site, 1974  

DOE Green Energy (OSTI)

The water quality at nine surface water stations, eight ground water stations, and the drilling operations at the Fenton Hill Site have been studied as a measure of the environmental impact of the Los Alamos Scientific Laboratory geothermal experimental studies in the Jemez Mountains. Surface water quality in the Jemez River drainage area is affected by the quality of the inflow from thermal and mineral springs. Ground water discharges from the Cenozoic Volcanics are similar in chemical quality. Water in the main zone of saturation penetrated by test hole GT-2 is highly mineralized, whereas water in the lower section of the hole, which is in granite, contains a higher concentration of uranium. (auth)

Purtymun, W.D.; Adams, W.H.; Owens, J.W.

1975-09-01T23:59:59.000Z

43

Influence of Water Quality  

Science Conference Proceedings (OSTI)

...BP. Boffardi, Corrosion Inhibitors in the Water Treatment Industry, Corrosion: Fundamentals, Testing, and Protection, Vol 13A, ASM Handbook, ASM International, 2003, p 891??906...

44

Inefficient remediation of ground-water pollution  

SciTech Connect

The problem of trying to remove ground-water pollution by pumping and treating are pointed out. Various Superfund sites are discussed briefly. It is pointed out that many chemicals have been discarded in an undocumented manner, and their place in the groundwater is not known. Results of a remedial program to remove perchloroethylene at a concentration of 6132 parts per billion from groundwater in a site in New Jersey showed that with an average extraction rate of 300 gallons per minute from 1978 to 1984 contamination level was lowered below 100 parts per billion. However, after shutdown of pumping the level rose to 12,588 parts per billion in 1988. These results lead the author to propose that the practical solutions for water supplies may be treatment at the time it enters the system for use.

Abelson, P.H.

1990-11-09T23:59:59.000Z

45

Water Quality (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quality (Louisiana) Water Quality (Louisiana) Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General PublicConsumer Industrial Installer...

46

Water Quality Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Quality Act (Montana) Water Quality Act (Montana) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial...

47

Water quality in vicinity of Fenton Hill Site, 1975  

DOE Green Energy (OSTI)

Water quality at 9 surface water stations, 14 ground water stations, and drilling and testing operations at the Fenton Hill Site has been studied as a measure of the environmental impact on the Los Alamos Scientific Laboratory's geothermal site in the Jemez Mountains. Slight variations in the chemical quality of the water at individual stations were observed during the year. Predominant ions and total dissolved solids in the surface and ground water declined slightly in comparison to previous data. These variations in quality are not considered significant considering seasonal and annual stream flow variations. Surface water discharge records from three U.S. Geological Survey gaging stations on the Rio Guadalupe and Jemez River were analyzed to provide background data for the impact study. Direct correlations were determined between mean annual discharge at each of two stations in the upper reach of the drainage and at the station in the lower reach.

Purtymun, W.D.; Adams, W.H.; Stoker, A.K.; West, F.G.

1976-09-01T23:59:59.000Z

48

A Total Energy & Water Quality Management System  

Science Conference Proceedings (OSTI)

This report develops a generic model for an energy and water quality management system for the water community, and defines standard specifications for software applications required to minimize energy costs within the constraints of water quality and operation goals.

1999-09-30T23:59:59.000Z

49

Baseline risk assessment of ground water contamination at the inactive uriniferous lignite ashing site near Belfield, North Dakota  

SciTech Connect

This Baseline Risk Assessment of Ground Water Contamination at the Inactive Uraniferous Lignite Ashing Site Near Belfield, North Dakota, evaluates potential impacts to public health or the environment resulting from ground water contamination at the site where coal containing uranium was burned to produce uranium. The US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project is evaluating plans to remedy soil and ground water contamination at the site. Phase I of the UMTRA Project consists of determining the extent of soil contamination. Phase II of the UMTRA Project consists of evaluating ground water contamination. Under Phase II, results of this risk assessment will help determine what remedial actions may be necessary for contaminated ground water at the site. This risk assessment evaluates the potential risks to human health and the environment resulting from exposure to contaminated ground water as it relates to historic processing activities at the site. Potential risk is quantified for constituents introduced from the processing activities, and not for those constituents naturally occurring in water quality in the site vicinity. Background ground water quality has the potential to cause adverse health effects from exposure through drinking. Any risks associated with contaminants attributable to site activities are incremental to these risks from background ground water quality. This incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition.

1994-08-01T23:59:59.000Z

50

Southern Region Water Quality Coordination Project  

E-Print Network (OSTI)

Integrated Water Quality Program Impact Report was produced and distributed at the National Integrated Water Management, Irrigation Management, and Water Quality Education for Agricultural Producers. Programs under Management on Livestock and Poultry Farms. · The Water Quality Education for Agricultural Producers Program

51

Water Quality (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Oklahoma) Water Quality (Oklahoma) Eligibility Agricultural Commercial Construction Fuel Distributor General PublicConsumer Industrial InstallerContractor Institutional...

52

Water Quality Standards Implementation (Oklahoma) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Implementation (Oklahoma) Water Quality Standards Implementation (Oklahoma) Eligibility Agricultural Construction Fuel Distributor Industrial InstallerContractor Investor-Owned...

53

Remote Sensing for Water Quality Applications  

E-Print Network (OSTI)

Remote Sensing for Water Quality Applications #12;Objective Give a brief update on GEO Inland and Nearshore Coastal Water Quality Remote Sensing Workshop (GEO Work Task WA-06-01)) Held in Geneva and Nearshore Coastal Water Quality Remote Sensing Workshop (GEO Work Task WA-06-01)) Organizing committee

54

Ground Water Protection Act (New Mexico) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Protection Act (New Mexico) Water Protection Act (New Mexico) Ground Water Protection Act (New Mexico) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Mexico Program Type Environmental Regulations Provider New Mexico Environment Department The purpose of the Ground Water Protection Act is to provide substantive

55

General Water Quality (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Water Quality (Oklahoma) General Water Quality (Oklahoma) General Water Quality (Oklahoma) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Oklahoma Program Type Environmental Regulations Provider Environmental Quality The purpose of this water quality rule is to protect, maintain and improve

56

DOE/EA-1268: Environmental Assessment of Ground Water Compliance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Rev. 0 Environmental Assessment of Ground Water Compliance at the Tuba City Uranium Mill Tailings Site December 1998 Prepared by U.S. Department of Energy Grand Junction Office...

57

Radiological status of the ground water beneath the Hanford Site, January-December 1981  

Science Conference Proceedings (OSTI)

During 1981, 299 monitoring wells were sampled at various times for radionuclide chemical contaminants. This report is one of a series prepared annually to document and evaluate the status of ground water at the Hanford Site. Two substances, tritium and nonradioactive nitrate, are easily transported in ground water; therefore, these substances are used as primary tracers to monitor the movement of contaminated ground water. Data collected during 1981 describe the movement of tritium and the nonradioactive nitrate plumes as well as their response to the influences of ground-water flow, ionic dispersion, and radioactive decay. The gross beta (/sup 106/Ru) levels have become so low that it will no longer be considered a major radionuclide contaminant. The tritium plume continues to show increasing concentrations near the Columbia River. While it is mapped as having reached the Columbia River, its contribution to the river has not been distinguished from other sources at this time. This plume shows much the same configuration as in 1977, 1978, 1979, and 1980. The size of the nitrate plume appears stable. Concentrations of nitrate in the vicinity of the 100-H Area continue to be high as a result of past leaks from the evaporation facility. The overall quality of the ground water at the Hanford Site is generally comparable to that of other ground waters in eastern Washington. Any exceptions to this statement will be noted in this report.

Eddy, P.A.; Cline, C.S.; Prater, L.S.

1982-04-01T23:59:59.000Z

58

Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii  

DOE Green Energy (OSTI)

This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

Sorey, M.L.; Colvard, E.M.

1994-07-01T23:59:59.000Z

59

EA-1155: Ground-water Compliance Activities at the Uranium Mill...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook,...

60

Effects of uranium mining of ground water in Ambrosia Lake area, New Mexico  

SciTech Connect

The principal ore-bearing zone in the Ambrosia Lake area of the Grants uranium district is the Westwater Canyon Member of the Morrison Formation (Jurassic). This unit is also one of the major artesian aquifers in the region. Significant declines in the potentiometric lead within the aquifer have been recorded, although cones of depression do not appear to have spread laterally more than a few miles. Loss of potentiometric head in the Westwater Canyon Member has resulted in the interformational migration of ground water along fault zones from overlying aquifers of Cretaceous age. This migration has produced local deterioration in chemical quality of the ground water.

Kelly, T.E.; Link, R.L.; Schipper, M.R.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Probability Models for Annual Extreme Water-Equivalent Ground Snow  

Science Conference Proceedings (OSTI)

A statistical analysis of annual extreme water-equivalents of ground snow (reported as inches of water) measured up through the winter of 197980 at 76 weather stations in the northeast quadrant of the United States is presented. The analysis ...

Bruce Ellingwood; Robert K. Redfield

1984-06-01T23:59:59.000Z

62

Regulations Establishing Water Quality Standards for Surface Water of the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Establishing Water Quality Standards for Surface Water Establishing Water Quality Standards for Surface Water of the State of Arkansas (Arkansas) Regulations Establishing Water Quality Standards for Surface Water of the State of Arkansas (Arkansas) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting

63

Water Quality Criteria Development for Iron  

Science Conference Proceedings (OSTI)

The current national water quality criterion for iron a criterion continuous concentration of 1 mg Fe/L was derived 25 years ago. Such ambient water quality criteria are typically derived from toxicity tests in which the reagent grade chemical is dissolved in clean laboratory water. However, due to the complexity of iron speciation in freshwater, adverse effects of iron precipitates on habitat quality, and access of organisms to food, standard toxicity assays may not adequately assess the...

2004-12-27T23:59:59.000Z

64

Water Quality Standards (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa) Water Quality Standards (Iowa) Eligibility Agricultural Commercial Construction Fuel Distributor Industrial InstallerContractor Institutional Investor-Owned Utility Local...

65

Water Quality Control (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Control (Texas) Water Quality Control (Texas) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction...

66

www.mdpi.com/journal/ijerph Bottled Water: United States Consumers and Their Perceptions of Water Quality  

E-Print Network (OSTI)

Abstract: Consumption of bottled water is increasing worldwide. Prior research shows many consumers believe bottled water is convenient and has better taste than tap water, despite reports of a number of water quality incidents with bottled water. The authors explore the demographic and social factors associated with bottled water users in the U.S. and the relationship between bottled water use and perceptions of the quality of local water supply. They find that U.S. consumers are more likely to report bottled water as their primary drinking water source when they perceive that drinking water is not safe. Furthermore, those who give lower ratings to the quality of their ground water are more likely to regularly purchase bottle water for drinking and use bottle water as their primary drinking water source.

Zhihua Hu; Lois Wright Morton; Robert L. Mahler

2011-01-01T23:59:59.000Z

67

State Water Quality (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quality (Virginia) Quality (Virginia) State Water Quality (Virginia) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Virginia Program Type Environmental Regulations Siting and Permitting Provider Virginia Department of Environmental Quality It is the policy of the Commonwealth of Virginia to: (1) protect existing high quality state waters and restore the quality of all other state waters to permit all reasonable public uses and support the propagation and growth of all aquatic life which might reasonably be expected to inhabit them; (2) safeguard the clean waters of the Commonwealth from pollution; (3) prevent

68

Water Quality Standards (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards (Ohio) Standards (Ohio) Water Quality Standards (Ohio) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Institutional Fuel Distributor Nonprofit Transportation Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law that establishes the Ohio Environmental Protection Agency outlines the minimum water quality requirements for all surface waters of the state. Water quality standards contain two distinct elements: designated uses; and

69

Raft River monitor well potentiometric head responses and water quality as  

Open Energy Info (EERE)

monitor well potentiometric head responses and water quality as monitor well potentiometric head responses and water quality as related to the conceptual ground-water flow system Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Raft River monitor well potentiometric head responses and water quality as related to the conceptual ground-water flow system Details Activities (1) Areas (1) Regions (0) Abstract: Ground-water monitoring near the Raft River site was initiated in 1974 by the IDWR. This effort consisted of semiannual chemical sampling of 22 irrigation wells near the Raft River geothermal development area. This program yielded useful baseline chemical data; however, several problems were inherent. For example, access to water pumped from the wells is limited to the irrigation season (April through September). All the wells

70

Hanford Site ground-water monitoring for January through June 1988  

Science Conference Proceedings (OSTI)

The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between January and June 1988 included monitoring ground-water elevations across the Site, and monitoring hazardous chemicals and radionuclides in ground water. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Solid Waste Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. In addition, several new analytical initiatives were undertaken during this period. These include cyanide speciation in the BY Cribs plume, inductively coupled argon plasma/mass spectrometry (ICP/MS) measurements on a broad selection of samples from the 100, 200, 300, and 600 Areas, and high sensitivity gas chromatography measurements performed at the Solid Waste Landfill-Nonradioactive Dangerous Waste Landfill. 23 figs., 25 tabs.

Evans, J.C.; Bryce, R.W.; Sherwood, D.R.

1989-05-01T23:59:59.000Z

71

north central texas water quality Through the Water Quality Education and Planning for  

E-Print Network (OSTI)

north central texas water quality Through the Water Quality Education and Planning for North Central Texas project, the Texas Water Resources Institute and Texas AgriLife Extension Service are collabo- rating with Tarrant Regional Water District (TRWD), Texas A&M Spatial Sciences Laboratory

Wilkins, Neal

72

Uranium in US surface, ground, and domestic waters. Volume 2  

Science Conference Proceedings (OSTI)

The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

1981-04-01T23:59:59.000Z

73

Water Quality Criteria for Intrastate, Interstate, and Coastal Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quality Criteria for Intrastate, Interstate, and Coastal Quality Criteria for Intrastate, Interstate, and Coastal Water (Mississippi) Water Quality Criteria for Intrastate, Interstate, and Coastal Water (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type Environmental Regulations

74

Hydrogeology and geochemistry of acid mine drainage in ground water in the vicinity of Penn Mine and Camanche Reservoir, Calaveras County, California. Summary report, 1993--1995  

Science Conference Proceedings (OSTI)

The report presents results from the ground-water investigation at the Penn Mine by the US Geological Survey from October 1991 to April 1995. The specific objectives of the investigation were to evaluate (1) the quantity and quality of ground water flowing toward Camanche Reservoir from the Penn Mine area; (2) the ground-water transport of metals, sulfate, and acidity between Mine Run and Camanche Reservoirs; and (3) the hydrologic interactions between the flooded mine workings and other ground water and surface water in the vicinity.

Alpers, C.N.; Hamlin, S.N.; Hunerlach, M.P.

1999-06-01T23:59:59.000Z

75

GRR/Section 19-CO-c - Designated Ground Water Basin Well Permitting Process  

Open Energy Info (EERE)

GRR/Section 19-CO-c - Designated Ground Water Basin Well Permitting Process GRR/Section 19-CO-c - Designated Ground Water Basin Well Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-c - Designated Ground Water Basin Well Permitting Process 19COCDesignatedGroundWaterBasinWellPermit.pdf Click to View Fullscreen Contact Agencies Colorado Division of Water Resources Colorado Ground Water Commission Regulations & Policies CRS 37-90-107 CRS 37-90-108 Ground Water Management District Rules 2 CCR 410-1 - Rules and Regulations for the Management and Control of Designated Ground Water Basins Triggers None specified Click "Edit With Form" above to add content 19COCDesignatedGroundWaterBasinWellPermit.pdf 19COCDesignatedGroundWaterBasinWellPermit.pdf

76

EPA Final Ground Water Rule Available Online, 3/07 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Final Ground Water Rule Available Online, 3/07 EPA Final Ground Water Rule Available Online, 3/07 EPA Final Ground Water Rule Available Online, 3/07 On November 8, 2006, the U.S. Environmental Protection Agency (EPA) published a final Ground Water Rule (GWR) to promote increased protection against microbial pathogens that may be present in public water systems (PWSs) that use ground water sources for their supply (these systems are known as ground water systems). This Rule establishes a risk-targeted approach to focus on ground water systems that are susceptible to fecal contamination, and requires ground water systems that are at risk of fecal contamination to take corrective action. A minor correction to the final Rule was published on November 21, 2006 (71 FR 67427). The GWR applies to all PWSs2 that use ground water

77

A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California  

SciTech Connect

This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

2006-05-16T23:59:59.000Z

78

Bordering on Water Management: Ground and Wastewater in the United States - Mexico Transboundary Santa Cruz Basin  

E-Print Network (OSTI)

change and global water resources. Global Environmentalin Managing International Water Resources (No. WPS 1303):Darcy Lecture Tour. Ground Water, 45(4), 390-391. Sadoff,

Milman, Anita Dale

2009-01-01T23:59:59.000Z

79

Relationship of regional water quality to aquifer thermal energy storage  

DOE Green Energy (OSTI)

Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

Allen, R.D.

1983-11-01T23:59:59.000Z

80

Surface Water Quality Standards (Kansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quality Standards (Kansas) Surface Water Quality Standards (Kansas) Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General PublicConsumer...

Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Urea for SCR-based NOx Control Systems and Potential Impacts to Ground Water Resources  

DOE Green Energy (OSTI)

One of the key challenges facing manufacturers of diesel engines for light- and heavy-duty vehicles is the development of technologies for controlling emissions of nitrogen oxides, In this regard, selective catalytic reduction (SCR) systems represent control technology that can potentially achieve the NOx removal efficiencies required to meet new U.S. EPA standards. SCR systems rely on a bleed stream of urea solution into exhaust gases prior to catalytic reduction. While urea's role in this emission control technology is beneficial, in that it supports reduced NOx emissions, it can also be an environmental threat to ground water quality. This would occur if it is accidentally released to soils because once in that environmental medium, urea is subsequently converted to nitrate--which is regulated under the U.S. EPA's primary drinking water standards. Unfortunately, nitrate contamination of ground waters is already a significant problem across the U.S. Historically, the primary sources of nitrate in ground waters have been septic tanks and fertilizer applications. The basic concern over nitrate contamination is the potential health effects associated with drinking water containing elevated levels of nitrate. Specifically, consumption of nitrate-contaminated water can cause a blood disorder in infants known as methemoglobinemia.

Layton, D.

2002-01-03T23:59:59.000Z

82

Ground water control for an in situ oil shale retort  

SciTech Connect

An in situ oil shale retort is formed in a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of particles containing oil shale. An open base of operation is excavated in the formation above the retort site, and an access drift is excavated to the bottom of the retort site. Formation is explosively expanded to form the fragmented mass between the access drift and an elevation spaced below the bottom of the base of operation, leaving a horizontal sill pillar of unfragmented formation between the top of the fragmented mass and the bottom of the base of operation. The sill pillar provides a safe base of operation above the fragmented mass from which to control retorting operations. A plurality of blasting holes used in explosively expanding the formation extend from the base of operation, through the sill pillar, and open into the top of the fragmented mass. Trenches are formed in the base of operation for collecting ground water which enters the base of operation prior to and during retorting operations, and collected ground water is withdrawn from the base of operation. Casings can be placed in the blasting holes and adapted for controlling gas flow through the fragmented mass during retorting operations. The casings extend above the floor of the base of operation to inhibit flow of ground water through the blasting holes into the fragmented mass, and other blasting holes not having such casings are sealed. After retorting is completed, the floor of the base of operation can be covered with a layer of concrete and/or the blasting holes can be sealed with concrete to inhibit leakage of ground water into treated oil shale particles in the fragmented mass.

Ridley, R.D.

1979-05-08T23:59:59.000Z

83

UMTRA Ground Water Project management action process document  

Science Conference Proceedings (OSTI)

A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards.

NONE

1996-03-01T23:59:59.000Z

84

Colorado Water Quality Control Act | Open Energy Information  

Open Energy Info (EERE)

Water Quality Control Act Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Colorado Water Quality Control Act edit Details Activities (0) Areas...

85

Document Number Q0029500 Ground Water Model 3.0 Ground Water...  

Office of Legacy Management (LM)

and are not required by MODPATH or MT3D. 3.6.4 Flow Model Calibration The IRA Work Plan states that the model would be calibrated using October 2002 water levels. However,...

86

The Validation of AIRS Retrievals of Integrated Precipitable Water Vapor Using Measurements from a Network of Ground-Based GPS Receivers over the Contiguous United States  

Science Conference Proceedings (OSTI)

A robust and easily implemented verification procedure based on the column-integrated precipitable water (IPW) vapor estimates derived from a network of ground-based global positioning system (GPS) receivers has been used to assess the quality of ...

M. K. Rama Varma Raja; Seth I. Gutman; James G. Yoe; Larry M. McMillin; Jiang Zhao

2008-03-01T23:59:59.000Z

87

File:04NVBTemporaryUseOfGroundWaterForExploration.pdf | Open...  

Open Energy Info (EERE)

ryUseOfGroundWaterForExploration.pdf Jump to: navigation, search File File history File usage File:04NVBTemporaryUseOfGroundWaterForExploration.pdf Size of this preview: 463 599...

88

Water quality in the vicinity of Fenton Hill, 1987 and 1988. [Fenton Hill site  

DOE Green Energy (OSTI)

Water-quality data have been collected since 1974 from established surface- and ground-water stations at, and in the vicinity of, Fenton Hill (site of the Laboratory's Hot Dry Rock Geothermal Project). The site is located on the southwest edge of the Valles Caldera in the Jemez Mountains. To determine the chemical quality of water, data were collected in 1987 and 1988 from 13 surface-water stations and 19 ground-water stations. The classification of the water quality is made on the basis of predominated ions and total dissolved solids. There are four classifications of surface water (sodium and chloride, calcium and bicarbonate, calcium and sulfate, and sodium and bicarbonate) and three classifications of ground water (sodium and chloride, calcium and bicarbonate, and sodium and bicarbonate). Variations in the chemical quality of the surface and ground water in 1987 and 1988 are apparent when data are compared with each other and with previous analyses. These variations are not considered significant, as they are in the range of normal seasonal changes. Cumulative production since 1976 from the supply well at Fenton Hill has been about 63 {times} 10{sup 6} gal, with a decline in the water level of the well of about 14 ft, or about 1.4 ft/yr. The aquifer penetrated by the well is still capable of reliable supply to the site for a number of years, based on past production. The quality of water from the well has deteriorated slightly; however, the water quality is in compliance with drinking water standards. The effects of discharge from the storage ponds into an adjacent canyon have been monitored by trace metal analyses of vegetation and soil. The study indicates minimal effects, which will be undetectable in a few years if there are no further releases of effluents into the canyon. 19 refs., 6 figs., 3 tabs.

Purtymun, W.D.; Ferenbaugh, R.W.; Maes, M.N.; Williams, M.C.

1991-03-01T23:59:59.000Z

89

Observations on a Montana water quality proposal.  

Science Conference Proceedings (OSTI)

In May 2005, a group of petitioners led by the Northern Plains Resource Council (NPRC) submitted a petition to revise water quality requirements to the Montana Board of Environmental Review (BER). Under Montana law, the BER had to consider the petition and either reject it or propose it as a new regulation. In September 2005, the BER announced proposed changes to the Montana water quality regulations. The proposal, which included almost the exact language found in the petition, was directed toward discharges of water from coal bed natural gas (CBNG) production. The key elements of the proposal included: (1) No discharges of CBNG water are allowed to Montana surface waters unless operators can demonstrate that injection to aquifers with the potential for later recovery of the water is not feasible. (2) When operators can demonstrate the injection is not feasible, the CBNG water to be discharged must meet very strict technology-based limits for multiple parameters. (3) The Montana water quality standards for the sodium adsorption ratio (SAR) and electrical conductivity (EC) would be evaluated using the 7Q10 flow (lowest 7-consecutive-day flow in a 10-year period) rather than a monthly flow that is currently used. (4) SAR and EC would be reclassified as ''harmful parameters'', thereby greatly restricting the ability for CBNG discharges to be allowed under Montana's nondegradation regulations. The proposed regulations, if adopted in their current form, are likely to substantially reduce the amount of CBNG production in Montana. The impact also extends to Wyoming CBNG production through much greater restrictions on water quality that must be met at the interstate border.

Veil, J. A.; Puder, M. G.

2006-01-12T23:59:59.000Z

90

Impacts of Water Quality on Residential Water Heating Equipment  

SciTech Connect

Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

Widder, Sarah H.; Baechler, Michael C.

2013-11-01T23:59:59.000Z

91

GROUND WATER PROTECTION ISSUES WITH GEOTHERMAL HEAT PUMPS  

DOE Green Energy (OSTI)

Closed loop vertical boreholes used with geothermal heat pumps are grouted to facilitate heat transfer and prevent ground water contamination. The grout must exhibit suitable thermal conductivity as well as adequate hydraulic sealing characteristics. Permeability and infiltration tests were performed to assess the ability of cementitious grout to control vertical seepage in boreholes. It was determined that a superplasticized cement-sand grout is a more effective borehole sealant than neat cement over a range of likely operational temperatures. The feasibility of using non-destructive methods to verify bonding in heat exchangers is reviewed.

ALLAN,M.L.; PHILIPPACOPOULOS,A.J.

1999-10-01T23:59:59.000Z

92

A cost-effective, environmentally-responsive ground-water monitoring procedure  

E-Print Network (OSTI)

Ground-water monitoring is the primary method used to protect our ground-water resources. The primary objectives of monitoring programs are to detect, to attribute, and to mitigate any changes in-water quality or quantity. Previous monitoring programs have had numerous problems including the failure to produce usable information and the failure to balance the competing factors of cost-effectiveness and environmental protection. A cost-effective, environmentally-responsive ground-water procedure was designed which consists of eight steps and two feedback loops. The reason for monitoring must first be determined before clear monitoring goals can be set. Characterization of the site allows proper design of the monitoring network. Data is then collected and analyzed creating usable information. Applying this new information to the information expansion loop permits a better understanding of the initial site characterization. Finally evaluating the entire routine to determine the effectiveness of the program allows the optimization loop to modify the system for greater efficiency. The value of this procedure was tested at selected sites in the Gibbons Creek Lignite Mine in Grimes County, Texas. The mine, which is currently in compliance with state regulations, is not operating an efficient monitoring program. The problems included over-monitoring of metals in and around reclaimed mine blocks, over-monitoring by monitoring wells in the same aquifer, and the failure to attribute changes in a monitoring well near a dewatering well. The feedback loops helped to optimize the entire program by recognizing problems in the stratigraphic column and modifying the monitoring program to lower monitoring costs. Three major benefits are gained by using this procedure: the ground-water monitoring routine can be made more cost-effective, environmental protection will be increased, and environmental liability will be decreased.

Doucette, Richard Charles

1994-01-01T23:59:59.000Z

93

Factors influencing biological treatment of MTBE contaminated ground water  

DOE Green Energy (OSTI)

Methyl tert-butyl ether (MTBE) contamination has complicated the remediation of gasoline contaminated sites. Many sites are using biological processes for ground water treatment and would like to apply the same technology to MTBE. However, the efficiency and reliability of MTBE biological treatment is not well documented. The objective of this study was to examine the operational and environmental variables influencing MTBE biotreatment. A fluidized bed reactor was installed at a fuel transfer station and used to treat ground water contaminated with MTBE and gasoline hydrocarbons. A complete set of chemical and operational data was collected during this study and a statistical approach was used to determine what variables were influencing MTBE treatment efficiency. It was found that MTBE treatment was more sensitive to up-set than gasoline hydrocarbon treatment. Events, such as excess iron accumulation, inhibited MTBE treatment, but not hydrocarbon treatment. Multiple regression analysis identified biomass accumulation and temperature as the most important variables controlling the efficiency of MTBE treatment. The influent concentration and loading of hydrocarbons, but not MTBE, also impacted MTBE treatment efficiency. The results of this study suggest guidelines for improving MTBE treatment. Long cell retention times in the reactor are necessary for maintaining MTBE treatment. The onset of nitrification only occurs when long cell retention times have been reached and can be used as an indicator in fixed film reactors that conditions favorable to MTBE treatment exist. Conversely, if the reactor can not nitrify, it is unlikely to have stable MTBE treatment.

Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

2001-09-14T23:59:59.000Z

94

Real-Time Water Quality Management in the Grassland Water District  

SciTech Connect

The purpose of the research project was to advance the concept of real-time water quality management in the San Joaquin Basin by developing an application to drainage of seasonal wetlands in the Grassland Water District. Real-time water quality management is defined as the coordination of reservoir releases, return flows and river diversions to improve water quality conditions in the San Joaquin River and ensure compliance with State water quality objectives. Real-time water quality management is achieved through information exchange and cooperation between shakeholders who contribute or withdraw flow and salt load to or from the San Joaquin River. This project complements a larger scale project that was undertaken by members of the Water Quality Subcommittee of the San Joaquin River Management Program (SJRMP) and which produced forecasts of flow, salt load and San Joaquin River assimilative capacity between 1999 and 2003. These forecasts can help those entities exporting salt load to the River to develop salt load targets as a mechanism for improving compliance with salinity objectives. The mass balance model developed by this project is the decision support tool that helps to establish these salt load targets. A second important outcome of this project was the development and application of a methodology for assessing potential impacts of real-time wetland salinity management. Drawdown schedules are typically tied to weather conditions and are optimized in traditional practices to maximize food sources for over-wintering wildfowl as well as providing a biological control (through germination temperature) of undesirable weeds that compete with the more proteinaceous moist soil plants such as swamp timothy, watergrass and smartweed. This methodology combines high resolution remote sensing, ground-truthing vegetation surveys using established survey protocols and soil salinity mapping using rapid, automated electromagnetic sensor technology. This survey methodology could be complemented with biological surveys of bird use and invertebrates to produce a robust long-term monitoring strategy for habitat health and sustainability.

Quinn, Nigel W.T.; Hanna, W. Mark; Hanlon, Jeremy S.; Burns, Josphine R.; Taylor, Christophe M.; Marciochi, Don; Lower, Scott; Woodruff, Veronica; Wright, Diane; Poole, Tim

2004-12-10T23:59:59.000Z

95

Design and installation of continuous flow and water quality monitoring stations to improve water quality forecasting in the lower San Joaquin River  

E-Print Network (OSTI)

improve water quality forecasting in the lower San Joaquinimprove water quality forecasting in the lower San Joaquinan important real-time forecasting station for water quality

Quinn, Nigel W.T.

2007-01-01T23:59:59.000Z

96

Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada  

DOE Green Energy (OSTI)

The study area occupies about 14,500 square miles in southwestern Idaho and north-central Nevada. Thermal ground water occurs under artesian conditions, in discontinuous or compartmented zones, in igneous or sedimentary rocks of Tertiary age. Ground-water movement is generally northward. Temperatures of the ground water range from about 30/sup 0/ to more than 80/sup 0/C. Chemical analyses of water from 12 wells and 9 springs indicate that nonthermal waters are a calcium bicarbonate type; thermal waters are a sodium bicarbonate type. Chemical geothermometers indicate probable maximum reservoir temperatures are near 100/sup 0/C. Concentration of tritium in the thermal water water is near zero.

Young, H.W.; Lewis, R.E.

1980-12-01T23:59:59.000Z

97

Microsoft Word - S05072_WaterQualityComplStrategy.doc  

Office of Legacy Management (LM)

Mill Tailings Site Operable Unit III Analysis of Uranium Trends in Ground Water, August 2007. Several possible causes were cited for the discrepancy between expected and...

98

Georgia Water Quality Control Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Water Quality Control Act (Georgia) Georgia Water Quality Control Act (Georgia) Georgia Water Quality Control Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Water Quality Control Act (WQCA) is a set of environmental regulations and permitting requirements that comply with the federal Clean Water Act. The Georgia Water Quality Control Act is enforced by the Georgia

99

Update to the Ground-Water Withdrawals Database for the Death Valley REgional Ground-Water Flow System, Nevada and California, 1913-2003  

SciTech Connect

Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 19131998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

Michael T. Moreo; and Leigh Justet

2008-07-02T23:59:59.000Z

100

GRR/Section 4-NV-b - Temporary Use of Ground Water for Exploration | Open  

Open Energy Info (EERE)

b - Temporary Use of Ground Water for Exploration b - Temporary Use of Ground Water for Exploration < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-NV-b - Temporary Use of Ground Water for Exploration 04NVBTemporaryUseOfGroundWaterForExploration.pdf Click to View Fullscreen Contact Agencies Nevada Division of Water Resources Regulations & Policies NAC 534.444 Waiver to use water to explore for oil, gas or geothermal resources Triggers None specified Click "Edit With Form" above to add content 04NVBTemporaryUseOfGroundWaterForExploration.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Division of Water Resources (NDWR) may grant a waiver of the

Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Ground-water Compliance Activities at the Uranium Mill 5: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming SUMMARY This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill Tailings Site by using the selected alternative stated in the Final Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 1, 1997 EA-1155: Final Environmental Assessment Ground-water Compliance Activities at the Uranium Mill Tailings Site,

102

State water-quality standards summary: South Dakota. Final report  

SciTech Connect

This report contains a summary of water-quality standards for South Dakota. Included is information on use classification, water bodies, and other pertinent data.

1988-01-01T23:59:59.000Z

103

Washington 401 Water Quality Certification JARPA Process | Open...  

Open Energy Info (EERE)

Washington 401 Water Quality Certification JARPA Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Washington 401 Water Quality...

104

Water Quality Regulations (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulations (Rhode Island) Water Quality Regulations (Rhode Island) Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public...

105

GRR/Section 19-CO-c - Designated Ground Water Basin Well Permitting...  

Open Energy Info (EERE)

GRRSection 19-CO-c - Designated Ground Water Basin Well Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help...

106

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado  

Science Conference Proceedings (OSTI)

The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

NONE

1995-05-01T23:59:59.000Z

107

GRR/Section 19-CO-i - Determination of Nontributary Ground Water Status |  

Open Energy Info (EERE)

19-CO-i - Determination of Nontributary Ground Water Status 19-CO-i - Determination of Nontributary Ground Water Status < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-i - Determination of Nontributary Ground Water Status 19COIDeterminationOfNontributaryGroundWaterStatus.pdf Click to View Fullscreen Contact Agencies Colorado Division of Water Resources Regulations & Policies Colorado Division of Water Resources Policy 2010-4 CRS 37-90-137 Permits to Construct Wells Outside of Designated Basins CRS 37-90-103 Underground Water Definitions CRS 37-82-101 Waters of Natural Surface Streams Subject to Appropriation CRS 37-92-102 Legislative Declaration - Basic Tenets of Colorado Water Law Triggers None specified Click "Edit With Form" above to add content

108

Water quality in the vicinity of Fenton Hill. Progress report 1981 and 1982  

DOE Green Energy (OSTI)

As part of a continuing program of environmental studies, water quality data have been collected from established surface and ground water stations and from ponds and pond discharges at Fenton Hill Site located in the Jemez Mountains. Most of these stations were established in 1973, and water quality data have been collected since that time. There have been slight variations in the chemical quality of water from the surface and ground water locations; however, these variations are within normal seasonal fluctuations. The discharge from ponds at Fenton Hill infiltrates into canyon alluvium within 400 m of the site. Monitoring surface and spring discharge downgradient from the ponds failed to detect any effects resulting from water released from the ponds. Total dissolved solids and calcium have increased in water from well FH-1, which furnishes the water supply for the site. This increase is caused by the decreasing water level in the well resulting in yield from beds with a slightly different quality than has been found in previous years.

Purtymun, W.D.; Ferenbaugh, R.W.; Becker, N.M.; Adams, W.H.; Maes, M.N.

1983-09-01T23:59:59.000Z

109

Locating Ground-Water Discharge in the Hanford Reach of the Columbia River  

Science Conference Proceedings (OSTI)

A bottom-contacting probe for measuring electrical conductivity at the sediment-water interface was used to scan the bed of the Columbia River adjacent to the Hanford Site in southeast Washington State during a 10-day investigation. Four river-sections, each about a kilometer in length, were scanned for variations in electrical conductivity. The probe was towed along the riverbed at a speed of 1 m/s and is position was recorded using a Global Positioning System. The bottom tows revealed several areas of elevated electrical conductivity. Where these anomalies were relatively easy to access, piezometers were driven into the riverbed and porewater electrical conductivity ranged from 111 to 150 uS/cm. The piezometers, placed in electrical conductivity hotspots, yielded chemical or isotopic data consistent with previous analyses of water taken from monitoring wells and visible shoreline seeps. Tritium, nitrate, and chromium exceeded water quality standards in some porewaters. The highest tritium and nitrate levels were found near the Old Hanford Townsite at 120,000 pCi/L (+ 5,880 pCi/L total propagated analytical uncertainty) and ug/L (+ 5,880 ug/L), respectively. The maximum chromium (total and hexavalent) levels were found near 100-H reactor area where unfiltered porewater total chromium was 1,900 ug/L (+ 798 ug/L) and hexavalent chromium was 20 ug/L. The electrical conductivity probe provided rapid, cost-effective reconnaissance for ground-water discharge areas when used in combination with conventional piezometers. It may be possible to obtain quantitative estimates of both natural and contaminated ground-water discharge in the Hanford Reach with more extensive surveys of river bottom.

Lee, D.R.; Geist, D.R.; Saldi, K.; Hartwig, D.; Cooper, T.

1997-03-01T23:59:59.000Z

110

Construction Summary and As-Built Report for Ground Water Treatment System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Summary and As-Built Report for Ground Water Treatment Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site More Documents & Publications Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008 Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah Performance Assessment and Recommendations for Rejuvenation of a Permeable

111

Ground-Water Table and Chemical Changes in an Alluvial Aquifer During  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground-Water Table and Chemical Changes in an Alluvial Aquifer Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells More Documents & Publications Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

112

Ground-Water Table and Chemical Changes in an Alluvial Aquifer During  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground-Water Table and Chemical Changes in an Alluvial Aquifer Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells More Documents & Publications Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

113

Water Quality Trading Program (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trading Program (Ohio) Trading Program (Ohio) Water Quality Trading Program (Ohio) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Rural Electric Cooperative Retail Supplier Fuel Distributor Nonprofit Transportation Savings Category Buying & Making Electricity Water Home Weatherization Program Info State Ohio Program Type Corporate Tax Incentive Environmental Regulations Provider Ohio Environmental Protection Agency Water quality trading is a tool for achieving water quality improvements. Under the right circumstances, trading has the potential to yield both environmental and economic benefits, while promoting increased interaction among watershed stakeholders. The water quality trading program is a voluntary program that allows a National Pollutant Discharge Elimination System (NPDES) permit holder

114

Requirements Governing Water Quality Standards (West Virginia) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requirements Governing Water Quality Standards (West Virginia) Requirements Governing Water Quality Standards (West Virginia) Requirements Governing Water Quality Standards (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting This rule establishes the requirements governing the discharge or deposit of sewage, industrial wastes and other wastes into waters and establishes water quality standards.

115

Desalination of brackish ground waters and produced waters using in-situ precipitation.  

Science Conference Proceedings (OSTI)

The need for fresh water has increased exponentially during the last several decades due to the continuous growth of human population and industrial and agricultural activities. Yet existing resources are limited often because of their high salinity. This unfavorable situation requires the development of new, long-term strategies and alternative technologies for desalination of saline waters presently not being used to supply the population growth occurring in arid regions. We have developed a novel environmentally friendly method for desalinating inland brackish waters. This process can be applied to either brackish ground water or produced waters (i.e., coal-bed methane or oil and gas produced waters). Using a set of ion exchange and sorption materials, our process effectively removes anions and cations in separate steps. The ion exchange materials were chosen because of their specific selectivity for ions of interest, and for their ability to work in the temperature and pH regions necessary for cost and energy effectiveness. For anion exchange, we have focused on hydrotalcite (HTC), a layered hydroxide similar to clay in structure. For cation exchange, we have developed an amorphous silica material that has enhanced cation (in particular Na{sup +}) selectivity. In the case of produced waters with high concentrations of Ca{sup 2+}, a lime softening step is included.

Krumhansl, James Lee; Pless, Jason; Nenoff, Tina Maria; Voigt, James A.; Phillips, Mark L. F.; Axness, Marlene; Moore, Diana Lynn; Sattler, Allan Richard

2004-08-01T23:59:59.000Z

116

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado  

SciTech Connect

The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site is under way and is scheduled for completion in 1996. The tailings are being stabilized in-place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the environment. Currently, no points of exposure (e.g. a drinking water well); and no receptors of contaminated ground water have been identified at the Maybell site. Therefore, there are no current human health and ecological risks associated with exposure to contaminated ground water. Furthermore, if current site conditions and land- and water-use patterns do not change, it is unlikely that contaminated ground water would reach people or the ecological communities in the future.

NONE

1995-09-01T23:59:59.000Z

117

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

NONE

1995-08-01T23:59:59.000Z

118

An empirical study on sea water quality prediction  

Science Conference Proceedings (OSTI)

This paper studies the problem of predicting future values for a number of water quality variables, based on measurements from under-water sensors. It performs both exploratory and automatic analysis of the collected data with a variety of linear and ... Keywords: Prediction, Regression, Sensor network, Time series, Water quality

Evaggelos V. Hatzikos; Grigorios Tsoumakas; George Tzanis; Nick Bassiliades; Ioannis Vlahavas

2008-08-01T23:59:59.000Z

119

Current and Long-Term Effects of Delta Water Quality on Drinking Water Treatment Costs from Disinfection Byproduct Formation  

E-Print Network (OSTI)

current Delta water Plant and Intake Location System Size (future water quality conditions at different Delta intakesusing the intake with the better water quality between Old

Chen, Wei-Hsiang; Haunschild, Kristine; Lund, Jay R.; Fleenor, William E.

2010-01-01T23:59:59.000Z

120

Chapter 10 Water Quality Standards (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE))

This administrative regulation establishes procedures to protect the surface waters of the Commonwealth, and thus protect water resources. It states the designated uses of surface water and...

Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Multiprobe Water Quality Data from the Tracy Fish Collection...  

NLE Websites -- All DOE Office Websites (Extended Search)

Format txt(csv) License Spatial data were collected with a multi-parameter water quality sonde installed in a perforated pipe located behind the trash rack and...

122

2012 BNL Water Quality Consumer Confidence Report  

E-Print Network (OSTI)

because it comes from one of the two drinking- water wells that produces water naturally low in iron water is produced with pride by the staff of BNL's Water Treatment Facility (WTF) of the Energy & Utilities Division. Producing BNL's finished water are five water- treatment engineers, each having NYSDOH

Ohta, Shigemi

123

Quasi-three dimensional ground-water modeling of the hydrologic influence of paleozoic rocks on the ground-water table at Yucca Mountain, Nevada  

E-Print Network (OSTI)

The proposed high-level radioactive waste repository site at Yucca Mountain, Nevada, has created a need to understand the, ground-water system at the site. One of the important hydrologic characteristics is a steep gradient on the ground-water table north of the repository site. This study investigates the cause of the steep gradient, based on the possible influence by Paleozoic rocks under the Yucca Mountain area. A quasi-three dimensional, steady-state, finite-difference model of the groundwater flow system of the Yucca Mountain Site and vicinity, was developed using a manual trial-and-error calibration technique to model the ground-water table. The ground-water system in the model was divided into a two layers, which consist of Cenozoic volcanic rocks and Paleozoic carbonate rocks. The carbonate rocks were defined to be a confined aquifer. The model simulates vertical flow from the volcanic rocks to the underlying carbonate rocks in an area where the Eleana Formation, a Paleozoic clastic aquitard, is absent. The model requires a vertical hydrologic connection in a particular region and a large difference in hydraulic heads between the volcanic rocks and the carbonates to create the steep gradient north of the repository site. The regions of different hydraulic gradient on the water-table surface could be simulated by spatial variations of the horizontal hydraulic conductivity in the volcanic rocks.

Lee, Si-Yong

1994-01-01T23:59:59.000Z

124

Water Quality Control Act (Tennessee) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Water Quality Control Act (Tennessee) Water Quality Control Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Water Quality Control Act (WQCA) establishes the water pollution

125

publication 426-042 Urban Water-Quality Management  

E-Print Network (OSTI)

of water plants. www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Lifepublication 426-042 Urban Water-Quality Management Winterizing the Water Garden Lynnette Swanson Traci Gilland, Extension Agent, Portsmouth Water gardens require maintenance throughout the year

Liskiewicz, Maciej

126

Ground-Based FSSP and PVM Measurements of Liquid Water Content  

Science Conference Proceedings (OSTI)

Recently published ground-based measurements of liquid water content (LWC) measured in fogs by two microphysical instruments, the FSSP-100 and PVM-100, are evaluated. These publications had suggested that the PVM-100 underestimated LWC ...

H. Gerber; Glendon Frick; Alfred R. Rodi

1999-08-01T23:59:59.000Z

127

Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water Vapor Radiometer Pazmany, Andrew ProSensing Inc. Category: Instruments ProSensing Inc. has developed a G-band (183 GHz, 1.5 mm wavelength) water vapor radiometer (GVR) for the measurement of low concentrations of atmospheric water vapor and liquid water. The instrument's precipitable water vapor measurement precision is approximately 0.01 mm in dry (<2 mm vapor column) conditions. The ground-based version of the instrument was first deployed at ProSensing's facility in Amherst, MA in February 2005, then at the North Slope of Alaska DOE ARM site in Barrow AK in April 2005, where it has been continuously operating since. An airborne version, designed to operate from a standard PMS 2-D probe canister, is now being

128

GRR/Section 14-TX-e - Ground Water Discharge Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-TX-e - Ground Water Discharge Permit GRR/Section 14-TX-e - Ground Water Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-e - Ground Water Discharge Permit 14TXEGroundWaterDischargePermit (1).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas United States Environmental Protection Agency Regulations & Policies 16 TAC 3.8 (Rule 8) Triggers None specified Click "Edit With Form" above to add content 14TXEGroundWaterDischargePermit (1).pdf 14TXEGroundWaterDischargePermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Pits are used in drilling operations to contain drilling related fluids and

129

Solving Water Quality Problems in the Home  

E-Print Network (OSTI)

If your drinking water comes from a private water well, there are certain procedures you can follow to make sure the water is safe. This publication explains how to get your water tested and, if treatment is necessary, to select the correct treatment equipment. Tables display common water problems and the equipment used to treat them.

Dozier, Monty; McFarland, Mark L.

2004-02-20T23:59:59.000Z

130

Final Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

58 58 Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Sites Final February 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-02GJ79491 DOE Grand Junction Office EA of Ground Water Compliance at the Slick Rock Sites February 2003 Final Page iii Contents Page Acronyms and Abbreviations...........................................................................................................v Executive Summary...................................................................................................................... vii 1.0 Introduction.............................................................................................................................1

131

Clustering analysis of water quality for canals in bangkok, thailand  

Science Conference Proceedings (OSTI)

Two clustering techniques of water quality for canals in Bangkok were compared: K-means and Fuzzy c-means. The result illustrated that K-means has a better performance. As a result, K-means cluster was used to classify 24 canals of 344 records of surface ... Keywords: K-means clustering, surface water quality, watershed management

Sirilak Areerachakul; Siripun Sanguansintukul

2010-03-01T23:59:59.000Z

132

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado  

SciTech Connect

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site began in 1995 and is scheduled for completion in 1996. The tailings are being stabilized in place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results presented in this document and other evaluations will determine whether any action is needed to protect human health or the environment.

NONE

1996-03-01T23:59:59.000Z

133

Water quality and business aspects of sachet-vended water in Tamale, Ghana  

E-Print Network (OSTI)

Microbial water quality analyses were conducted on 15 samples of factory-produced sachet water and 15 samples of hand-tied sachet water, sold in Tamale, Ghana. The tests included the membrane filtration (MF) test using ...

Okioga, Teshamulwa (Teshamulwa Irene)

2007-01-01T23:59:59.000Z

134

Water quality and business aspects of sachet-vended water in Tamale, Ghana.  

E-Print Network (OSTI)

??Microbial water quality analyses were conducted on 15 samples of factory-produced sachet water and 15 samples of hand-tied sachet water, sold in Tamale, Ghana. The (more)

Okioga, Teshamulwa (Teshamulwa Irene)

2007-01-01T23:59:59.000Z

135

Recreational Lake and Water Quality Districts (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recreational Lake and Water Quality Districts (Iowa) Recreational Lake and Water Quality Districts (Iowa) Recreational Lake and Water Quality Districts (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Territory contiguous to a recreational lake may be incorporated into a

136

Chapter 10 Water Quality Standards (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Water Quality Standards (Kentucky) 10 Water Quality Standards (Kentucky) Chapter 10 Water Quality Standards (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Environmental Regulations Provider Department for Environmental Protection This administrative regulation establishes procedures to protect the

137

Ground and Water Source Heat Pump Performance and Design for Southern Climates  

E-Print Network (OSTI)

Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical or horizontal ground-coupling, an open groundwater loop, or a surface water loop. This paper discusses system performance characteristics, component selection procedures presently being used, improvements currently being considered and future possibilities for improved efficiency and reliability. Optimum designs require proper matching of the heat pump unit to the water circulation system, the building space heating/cooling load and water heating requirements. General trends resulting from system and component choices will be discussed. Water heating methods with these heat pumps will be considered.

Kavanaugh, S.

1988-01-01T23:59:59.000Z

138

Infiltration/ground water linkage in the southwest: Response of shallow ground water to interannual variations of precipitation, Jemez Mountains, New Mexico  

DOE Green Energy (OSTI)

Hydraulic gradients, residence times and the hydrochemistry of shallow ground water are linked to the episodic precipitation and recharge events characteristic of the arid southwest. In this region, the amount of precipitation, and corresponding biomass, is dependant upon altitude with greater frequency and duration in the montane highlands and less in the desert lowlands. Results from a four-year study at the Rio Calaveras research site in the Jemez Mountains of northern New Mexico show a strong correlation between the physical and hydrochemical properties of shallow ground water and variations of seasonal precipitation and infiltration. For example, the water table shows a dramatic response to snowmelt infiltration during years of abundant snow pack (El Nifio) and diminished response during years of reduced snow pack (La Niiia). The chemical structure of shallow ground water is also affected by the precipitation regime, primarily by variations in the flux of reductants (organic carbon) and oxidants (dissolved oxygen) from the vadose zone to the water table. Generally, oxic conditions persist during spring snowmelt infiltration shifting to anoxic conditions as biotic and abiotic processes transform dissolved oxygen. Other redox-sensitive constituents (ferrous iron, manganese, sulfate, nitrate, and nitrite) show increasing and decreasing concentrations as redox fluctuates seasonally and year-to-year. The cycling of these redox sensitive solutes in the subsurface depends upon the character of the aquifer materials, the biomass at the surface, moisture and temperature regime of the vadose zone, and frequency of infiltration events.

Groffman, A. R. (Armand R.)

2002-01-01T23:59:59.000Z

139

Surface Water Quality Standards (New Jersey) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Water Quality Standards (New Jersey) Surface Water Quality Standards (New Jersey) Surface Water Quality Standards (New Jersey) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Jersey Program Type Siting and Permitting Provider Bureau of Water Quality Standards and Assessment These standards establish the designated uses and antidegradation

140

Chesapeake Bay Program Water Quality Database | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Chesapeake Bay Program Water Quality Database Chesapeake Bay Program Water Quality Database Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov » Communities » Ocean » Data Chesapeake Bay Program Water Quality Database Dataset Summary Description The Chesapeake Information Management System (CIMS), designed in 1996, is an integrated, accessible information management system for the Chesapeake Bay Region. CIMS is an organized, distributed library of information and software tools designed to increase basin-wide public access to Chesapeake Bay information. The information delivered by CIMS includes technical and public information, educational material, environmental indicators, policy documents, and scientific data. Through the use of relational databases, web-based programming, and web-based GIS a large number of Internet resources have been established. These resources include multiple distributed on-line databases, on-demand graphing and mapping of environmental data, and geographic searching tools for environmental information. Baseline monitoring data, summarized data and environmental indicators that document ecosystem status and trends, confirm linkages between water quality, habitat quality and abundance, and the distribution and integrity of biological populations are also available. One of the major features of the CIMS network is the Chesapeake Bay Program's Data Hub, providing users access to a suite of long- term water quality and living resources databases. Chesapeake Bay mainstem and tidal tributary water quality, benthic macroinvertebrates, toxics, plankton, and fluorescence data can be obtained for a network of over 800 monitoring stations.

Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Final Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact Impact Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Sites AGENCY: U.S. DEP.4RTMENT OF ENERGY ACTIOK: FL&-DING OF NO SIGNIFICANT IMP-ACT (FONSI) SU$IM$RY: The U.S. Department of Energy (DOE) plans to implement ground lvater compliance strategies for two Uranium Mill Tailings Remedial Action (UMTR.4) Project sites near Slick Rock. Colorado. The purpose of the strategies is to comply with U.S. En\.ironmental Protection .Qency (EP.Aj ground n'ater standards defined in Title 40 Codr ~fF~d~w/ iieplutio?r.s (CFR) Part 192. and in so doing. protect human health and the en\.ironment. Ground water at the Slick Rock sites is contaminated with residual radioactive materials from hisTorica acti\,ities, associated with the processin of uranium ore, The planned action (~formeri>,.

142

Water Quality Program, Volume 1 (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program, Volume 1 (Alabama) Program, Volume 1 (Alabama) Water Quality Program, Volume 1 (Alabama) < Back Eligibility Commercial Construction Developer Industrial Municipal/Public Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations This volume of the water quality program mainly deals with the National Pollutant Discharge Elimination System. National Pollutant Discharge Elimination System" or "(NPDES)" means the national program for issuing, modifying, revoking and reissuing, terminating, monitoring and enforcing permits for the discharge of pollutants into waters of the state. An industrial user, whether or not the user is subject to other categorical

143

Utah Division of Water Quality | Open Energy Information  

Open Energy Info (EERE)

Water Quality Water Quality Jump to: navigation, search Logo: Utah Division of Water Quality Name Utah Division of Water Quality Address 195 North 1950 West Place Salt Lake City, Utah Phone number 801.536.4400 Website http://www.waterquality.utah.g Coordinates 40.7733661°, -111.9472798° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7733661,"lon":-111.9472798,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Resource Conservation and Recovery Act ground-water monitoring projects for Hanford Facilities: Progress report for the period July 1 to September 30, 1989 - Volume 1 - Text  

Science Conference Proceedings (OSTI)

This is Volume 1 of a two-volume document that describes the progress of 14 Hanford Site ground-water monitoring projects for the period July 1 to September 30, 1989. This volume discusses the projects; Volume 2 provides as-built diagrams, completion/inspection reports, drilling logs, and geophysical logs for wells drilled, completed, or logged during this period. Volume 2 can be found on microfiche in the back pocket of Volume 1. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality.

Smith, R.M.; Bates, D.J.; Lundgren, R.E.

1989-12-01T23:59:59.000Z

145

CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA PROJECT SITE |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA PROJECT SITE CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA PROJECT SITE August 2, 2010 - 12:00pm Addthis A sheep’s foot roller compacts the tailings in the disposal cell. A sheep's foot roller compacts the tailings in the disposal cell. Moab, UT MILL TAILINGS REMOVAL Sixteen million tons of uranium mill tailings 80 feet high stood on the banks of the Colorado River near Moab in southeast Utah, as a legacy to the former ore-processing site that operated for nearly three decades beginning in the mid-1950s. That is until April 2009, when the U.S. Department of Energy began moving the tailings by rail to an engineered disposal cell constructed 30 miles north near Crescent Junction, Utah. The mill tailings,

146

Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site  

Office of Legacy Management (LM)

GJO-2000-177-TAR GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site December 2001 Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy Approved for public release; distribution is unlimited. GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site December 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Project Number UGW-511-0017-12-000 Document Number U0066302 Work Performed under DOE Contract No. DE-AC13-96GJ87335 Document Number U0066302 Contents DOE/Grand Junction Office Ground Water Compliance Action Plan for Old Rifle, Colorado

147

Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,  

Open Energy Info (EERE)

Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Details Activities (2) Areas (1) Regions (0) Abstract: In geothermal fields, open faults and fractures often act as high permeability pathways bringing hydrothermal fluids to the surface from deep reservoirs. The Mount Princeton area, in south-central Colorado, is an area that has an active geothermal system related to faulting and is therefore a suitable natural laboratory to test geophysical methods. The Sawatch range-front normal fault bordering the half-graben of the Upper Arkansas

148

25September 2011 Water Quality Education for Hood County, Texas  

E-Print Network (OSTI)

25September 2011 2010 Water Quality Education for Hood County, Texas Federal Initiative Accomplishments Lead Agency Texas AgriLife Extension Service Partners Texas AgriLife Research; U.S. Environmental Protection Agency; Brazos River Authority; Texas Commission on Environmental Quality Federal Funding USDA

149

Safe river water: A ubiquitous and collaborative water quality monitoring solution  

Science Conference Proceedings (OSTI)

Water quality is vital to human life and economy. However, one sixth of the world's population suffers from lack of safe drinking and domestic water. Aiming to improve the capability of predicting and responding to river pollution disasters, this project ...

Bin Hu; Bo Hu; JiZheng Wan; Huilan Nie; Chongzhi Zhai

2009-10-01T23:59:59.000Z

150

Water Quality Modeling in Kranji Catchment  

E-Print Network (OSTI)

This thesis describes the process and results of applying the Soil and Water Assessment Tool (SWAT) to characterize bacterial fate and transport in the Kranji Catchment of Singapore. The goal of this process is to predict ...

Granger, Erika C

2010-01-01T23:59:59.000Z

151

Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill  

SciTech Connect

Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

1989-07-01T23:59:59.000Z

152

Surface Water Quality Standards (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska) Nebraska) Surface Water Quality Standards (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Nebraska Program Type Siting and Permitting Provider Environmental Quality These regulations, promulgated by the Department of Environmental Quality,

153

Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site  

Science Conference Proceedings (OSTI)

This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as Attachment 1.

N /A

2003-04-23T23:59:59.000Z

154

USGS Study: Water Quality A Potential Concern in Private Wells  

E-Print Network (OSTI)

USGS Study: Water Quality A Potential Concern in Private Wells More than 20 percent of private domestic wells sampled nationwide contain at least one contaminant at levels of potential health concern's population, use private wells, which are not regulated by the Federal Safe Drinking Water Act. USGS

Nebraska-Lincoln, University of

155

Water Quality Program, Volume 2 (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quality Program, Volume 2 (Alabama) Quality Program, Volume 2 (Alabama) Water Quality Program, Volume 2 (Alabama) < Back Eligibility Commercial Construction Developer Industrial Municipal/Public Utility Savings Category Buying & Making Electricity Water Home Weatherization Program Info State Alabama Program Type Environmental Regulations This volume of the water quality program mainly deals with Technical Standards, Corrective Action Requirements and Financial Responsibility for Owners and Operators of Underground Storage Tanks. This chapter is promulgated to establish construction, installation, performance, and operating standards for underground storage tanks. Any owner or operator of an underground storage tank system for which a notification has not been provided to the Department as of April 5, 1989, must within 30 days of that

156

Water Quality Act (New Mexico) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act (New Mexico) Act (New Mexico) Water Quality Act (New Mexico) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Mexico Program Type Environmental Regulations Provider New Mexico Environment Department This act establishes the Water Quality Control Commission and states the

157

Pacific Northwest National Laboratory Grounds Maintenance: Best Management Practice Case Studies #4 and #5 - Water Efficient Landscape and Irrigation (Brochure)  

SciTech Connect

FEMP Water Efficiency Best Management Practices #4 and #5 Case Study: Overview of the Pacific Northwest National Laboratory grounds maintenance program and results.

Not Available

2009-08-01T23:59:59.000Z

158

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

NONE

1995-09-01T23:59:59.000Z

159

Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota  

SciTech Connect

This baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota, evaluates the potential impacts to public health or the environment from contaminated ground water at this site. This contamination is a result of the uraniferous lignite ashing process, when coal containing uranium was burned to produce uranium. Potential risk is quantified only for constituents introduced by the processing activities and not for the constituents naturally occurring in background ground water in the site vicinity. Background ground water, separate from any site-related contamination, imposes a percentage of the overall risk from ground water ingestion in the Bowman site vicinity. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to address soil and ground water contamination at the site. The UMTRA Surface Project involves the determination of the extent of soil contamination and design of an engineered disposal cell for long-term storage of contaminated materials. The UMTRA Ground Water Project evaluates ground water contamination. Based on results from future site monitoring activities as defined in the site observational work plan and results from this risk assessment, the DOE will propose an approach for managing contaminated ground water at the Bowman site.

1994-11-01T23:59:59.000Z

160

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Hazardous Waste Management  

E-Print Network (OSTI)

Products such as paints, solvents, adhesives, oils, cleaners, batteries, pesticides and wood preservatives are commonly used in households and on farms, but they can be hazardous to ground water if handled improperly. This publication explains proper methods of using, storing and disposing of hazardous materials.

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

1997-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Selenium in Oklahoma ground water and soil. Quarterly report No. 6  

SciTech Connect

Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

Atalay, A.; Vir Maggon, D.

1991-03-30T23:59:59.000Z

162

Thermal ground water flow systems in the thrust zone in southeastern Idaho  

DOE Green Energy (OSTI)

The results of a regional study of thermal and non-thermal ground water flow systems in the thrust zone of southern Idaho and western Wyoming are presented. The study involved hydrogeologic and hydrochemical data collection and interpretation. Particular emphasis was placed on analyzing the role that thrust zones play in controlling the movement of thermal and non-thermal fluids.

Ralston, D.R.

1983-05-01T23:59:59.000Z

163

High Resolution River Hydraulic and Water Quality Characterization Using Rapidly Deployable Networked Infomechanical Systems (NIMS RD)  

E-Print Network (OSTI)

High Resolution River Hydraulic and Water Quality1594. High Resolution River Hydraulic and Water Qualityobserving spatiotemporal hydraulic and chemical properties

Thomas C. Harmon; Richard F. Ambrose; Robert M. Gilbert; Jason C. Fisher; Michael Stealey; William J. Kaiser

2006-01-01T23:59:59.000Z

164

Laboratory Investigation into the Contribution of Contaminants to Ground Water from Equipment Materials Used in Sampling  

SciTech Connect

Benzene contamination was detected in well water samples from the Ogallala Aquifer beneath and adjacent to the Department of Energy's Pantex Plant near Amarillo, Texas. This study assessed whether or not the materials used in multilevel sampling equipment at this site could have contributed to the contaminants found in well water samples. As part of this investigation, laboratory testing of the sample equipment material was conducted. Results from the laboratory test indicated three different materials from two types of multilevel samplers did, in fact, contribute volatile and semivolatile organic compounds to the ground water samples from static leach tests that were conducted during an eight week period. The nylon-11 tubing contributed trace concentrations of benzene (1.37 ?g/L) and relatively high concentrations of the plasticizer N-butylbenzenesulfonamide (NBSA) (764 mg/L) to the water; a urethane-coated nylon well liner contributed relatively high concentrations of toluene (278 ?g/L) and trace amounts of NBSA; and a sampling port spacer material made of nylon/polypropylene/polyester-composite contributed trace amounts of toluene and NBSA. While the concentrations of benzene and toluene measured in the laboratory tests were below the concentrations measured in actual ground water samples, the concentrations of organics from these equipment materials were sufficient to render the results reported for the ground water samples suspect.

Gilmore, Tyler J.; Mitroshkov, Alexandre V.; Dresel, P Evan; Sklarew, Debbie S.

2004-08-30T23:59:59.000Z

165

Water quality in the vicinity of Fenton Hill, 1985 and 1986: Progress report  

DOE Green Energy (OSTI)

Water quality data have been collected since 1974 from established surface and groundwater stations at and in the vicinity of Fenton Hill (Hot Dry Rock Geothermal Demonstration Site) located in the Jemez Mountains. This is part of a continuing program of environmental studies. Data on chemical quality of water were determined for samples collected from 13 surface water and 19 groundwater stations in 1985 and 1986. There were slight variations in the chemical quality of the ground and surface water in 1985 and 1986 as compared with previous analyses; however, these variations are within normal seasonal fluctuations. Chemical uptake in soil, roots, and foliage is monitored in the canyon, which receives intermittent effluent release of water from tests in the geothermal circulation loop and occasional fluids from drilling operations. The chemical concentrations found in soil, roots, and vegetation as the result of effluent release have shown a decrease in concentration down-canyon and also have decreased in concentration with time since the larger releases that took place in the late 1970s and early 1980s. 18 refs., 7 figs., 9 tabs.

Purtymun, W.D.; Ferenbaugh, R.W.; Williams, M.C.; Maes, M.N.

1988-03-01T23:59:59.000Z

166

Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

NONE

1996-03-01T23:59:59.000Z

167

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1  

SciTech Connect

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

NONE

1995-11-01T23:59:59.000Z

168

SD-GIS-based temporal-spatial simulation of water quality in sudden water pollution accidents  

Science Conference Proceedings (OSTI)

System dynamics (SD) is well suited for studying dynamic nonlinear complex systems. In this paper, SD is applied to a rapid-onset water pollution accident using a 1-D water quality model and a conceptual GIS-SD framework is constructed to simulate the ... Keywords: System dynamics, Temporal-spatial simulation, Water pollution accidents

Bo Zhang; Yu Qin; Mingxiang Huang; Qiang Sun; Shun Li; Liqiang Wang; Chaohui Yu

2011-07-01T23:59:59.000Z

169

NM WAIDS: A PRODUCED WATER QUALITY AND INFRASTRUCTURE GIS DATABASE FOR NEW MEXICO OIL PRODUCERS  

SciTech Connect

The New Mexico Water and Infrastructure Data System (NM WAIDS) seeks to alleviate a number of produced water-related issues in southeast New Mexico. The project calls for the design and implementation of a Geographical Information System (GIS) and integral tools that will provide operators and regulators with necessary data and useful information to help them make management and regulatory decisions. The major components of this system are: (1) Databases on produced water quality, cultural and groundwater data, oil pipeline and infrastructure data, and corrosion information. (2) A web site capable of displaying produced water and infrastructure data in a GIS or accessing some of the data by text-based queries. (3) A fuzzy logic-based, site risk assessment tool that can be used to assess the seriousness of a spill of produced water. (4) A corrosion management toolkit that will provide operators with data and information on produced waters that will aid them in deciding how to address corrosion issues. The various parts of NM WAIDS will be integrated into a website with a user-friendly interface that will provide access to previously difficult-to-obtain data and information. Primary attention during the first six months of this project was focused on creating the water quality databases for produced water and surface water, along with collecting of corrosion information and building parts of the corrosion toolkit. Work on the project to date includes: (1) Creation of a water quality database for produced water analyses. The database was compiled from a variety of sources and currently has over 7000 entries for New Mexico. (2) Creation of a web-based data entry system for the water quality database. This system allows a user to view, enter, or edit data from a web page rather than having to directly access the database. (3) Creation of a semi-automated data capturing system for use with standard water quality analysis forms. This system improves the accuracy and speed of water quality data entry. (4) Acquisition of ground water data from the New Mexico State Engineer's office, including chloride content and TDS (Total Dissolved Solids) for over 30,000 data points in southeast New Mexico. (5) Creation of a web-based scale prediction tool, again with a web-based interface, that uses two common scaling indices to predict the likelihood of scaling. This prediction tool can either run from user input data, or the user can select samples from the water analysis database. (6) Creation of depth-to-groundwater maps for the study area. (7) Analysis of water quality data by formation. (8) Continuation of efforts to collect produced water quality information from operators in the southeast New Mexico area. (9) Qualitative assessment of produced water from various formations regarding corrosivity. (10) Efforts at corrosion education in the region through operator visits. Future work on this project will include: (1) Development of an integrated web and GIS interface for all the information collected in this effort. (2) Continued development of a fuzzy logic spill risk assessment tool that was initially developed prior to this project. Improvements will include addition of parameters found to be significant in determining the impact of a brine spill at a specific site. (3) Compilation of both hard copy and online corrosion toolkit material.

Martha Cather; Robert Lee; Ibrahim Gundiler; Andrew Sung

2003-09-24T23:59:59.000Z

170

Review of Wildfire Effects on Chemical Water Quality  

SciTech Connect

The Cerro Grande Fire of May 2000 burned almost 43,000 acres of forested land within the Pajarito Plateau watershed in northern New Mexico. Runoff events after the fire were monitored and sampled by Los Alamos National Laboratory. Changes in the composition of runoff water were noted when compared to runoff water composition of the previous 20 years. In order to understand the chemical water quality changes noted in runoff water after the Cerro Grande Fire, a summary of the reported effects of fire on runoff water chemistry and on soils that contribute to runoff water chemistry was compiled. The focus of this report is chemical water quality, so it does not address changes in sediment transport or water quantity associated with fires. Within the general inorganic parameters, increases of dissolved calcium, magnesium, nitrogen, phosphorus, and potassium and pH in runoff water have been observed as a result of fire. However, the dissolved sodium, carbon, and sulfate have been observed to increase and decrease as a result of fire. Metals have been much less studied, but manganese, copper, zinc, and cesium-137 have been observed to increase as a result of fire.

Kelly Bitner; Bruce Gallaher; Ken Mullen

2001-05-01T23:59:59.000Z

171

Assessment of MTI Water Temperature Thermal Discharge Retrievals with Ground Truth  

Science Conference Proceedings (OSTI)

Surface water temperatures calculated from Multispectral Thermal Imager (MTI) brightness temperatures and the robust retrieval algorithm, developed by the Los Alamos National Laboratory (LANL), are compared with ground truth measurements at a mid-latitude cold-water site along the Atlantic coast near Plymouth, MA. In contrast to the relative uniformity of the sea-surface temperature in the open ocean the water temperature near Pilgrim exhibits strong spatial gradients and temporal variability. This made it critical that all images be accurately registered in order to extract temperature values at the six buoy locations. Sixteen images during a one-year period from August 2000 to July 2001 were selected for the study. The RMS error of Pilgrim water temperature is about 3.5 C for the 4 buoys located in open water. The RMS error of the combined temperatures from 3 of the open-water buoys is 2.8 C. The RMS error includes errors in the ground truth. The magnitude of this error is estimated to range between 0.8 and 2.3 C. The two main components of this error are warm-layer effect and spatial variability. The actual error in the MTI retrievals for Pilgrim daytime conditions is estimated to be between 2.7 and 3.4 C for individual buoys and between 1.7 and 2.7 C for the combined open-water buoys.

Kurzeja, R.J.

2002-12-06T23:59:59.000Z

172

Real-Time Water Quality Monitoring and Habitat Assessment in the San Luis National Wildlife Refuge  

E-Print Network (OSTI)

interests is implemented, water quality compliance withfor computing crop water requirements. FAO Irrigation andof SEBAL for western US water rights regulation and

2005-01-01T23:59:59.000Z

173

Superfund Record of Decision (EPA region 8): Libby Ground Water Contamination Site, Libby, Montana, September 1986. Final report  

SciTech Connect

Abandoned wood-treating operations on the mill property are the source of ground-water contamination at the Libby Ground Water Contamination site in the northwest corner of Montana. In 1979, shortly after installation of private wells, some homeowners detected the presence of a creosote odor, and EPA monitoring in 1981 confirmed ground-water contamination. Based on 1984 well sample results, Champion International Corporation implemented the Buy Water Plan. Under this program, individuals with contaminated ground water wells agree to cease using their wells and use water from the public water system operated by the City of Libby. The program, indefinite in term, would be terminated upon the elimination of the threat of contamination, if the well owner provides a written termination notice, or if other alternatives become available. The primary contaminants of concern include: VOCs, PAHs, PCP, organics, inorganics, heavy metals, and creosote. Selected remedies are proposed and included in the report.

Not Available

1986-09-26T23:59:59.000Z

174

Geysers-Calistoga KGRA geothermal environmental overview: water quality  

DOE Green Energy (OSTI)

Important water-related issues of concern are identified and the available information regarding potential impacts on the quantity and quality of water in an area is assessed. The results of a study and a two-day workshop that included representatives of developers and of concerned local, state, and federal agencies are presented. An inventory of existing data is included in an appendix. (MHR)

Moore, S.F.; Pimentel, K.D.; Krone, R.B.

1978-02-01T23:59:59.000Z

175

An update on the SRP burial ground area water balance and hydrology  

SciTech Connect

A water budget for the burial ground area prepared by Hubbard and Emslie concluded that about 15 inches, almost one-third of the average annual precipitation, normally infiltrates the land surface and recharges the groundwater. Also, evapotranspiration was estimated to average 30 inches annually, and runoff from the land surface was estimated as 1 to 3 inches. More information has become available recently from lysimeter studies, climatic stations, groundwater studies, and stream discharge measurements. These additional data generally support the conclusions above with some modifications. The type of vegetation cover on the land surface affects the site hydrology and water budget components of evapotranspiration and groundwater recharge. The lysimeter studies indicate that about 12 inches more water is lost annually to the atmosphere by evapotranspiration with deep-rooted pine trees present than in areas where bare soil or shallow-rooted grass cover occur. Therefore, recharge in the burial ground area may differ from that with similar soils in forested areas of the Savannah River Plant. Study of the hydrologic properties of soils in the burial ground area indicates that infiltration rates for the soils generally are relatively high, exceeding one inch per hour. Runoff as overland flow tends to occur only with intense rainfall events of 1 inch or more. The soil-water characteristic curves are representative of relatively coarse-textured soils.

Wells, D.G. [Westinghouse Savannah River Company, Aiken, SC (United States). Savannah River Site; Cook, J.W.

1986-01-09T23:59:59.000Z

176

Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district  

E-Print Network (OSTI)

Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district heating system ­ and makes a proposal for a technical and economic improvement. Monitoring of water quality in district heating systems is necessary

177

TO: US Environmental Protection Agency (EPA) Office of Ground Water and Drinking Water  

E-Print Network (OSTI)

2001, which works to improve public water supply and sanitation. Thank you for the opportunity to submit a comment on the viability of bottled water as an alternative compliance option for chronic water contaminants for non-transient noncommunity water systems (NTNCWS), which are regulated under the Safe Water Drinking Act (SDWA) and 40 CFR s.141.101. Currently, bottled water may not be used by public water systems to achieve compliance with a Maximum Contaminant Level (MCL). This has been the policy over the past eight years. However, bottled water may be used on a temporary basis to avoid unreasonable risk to health. NTNCWS are public water systems. To put matters into perspective: According to the Public Drinking Water Systems: Facts and Figures page on the EPA web site, last updated on February 28, 2006, almost 284 million people in the US are served by public water systems. Of these, only 6.9 million, or just under 2.5%, are served by NTNCWS. There are a total of 20,559 NTNCWS in the US. Type of Water Source: ? 821 of these systems rely on surface water, and serve 932,000 people.

Non-transient Non-community; Water Systems; Comment Arthur Cohen; Mph Convenor Of Saniplan

2006-01-01T23:59:59.000Z

178

The Impact of Water Quality on Southern California Beach Recreation: A Finite Mixture Model Approach  

E-Print Network (OSTI)

estimate the e?ect of coastal water quality on beach choiceDemand Studies, 1968-1988; Water Resources Research, March,Measuring the bene?ts of water quality improvements in a

Hilger, James; Hanemann, W. Michael

2008-01-01T23:59:59.000Z

179

Guide to ground water remediation at CERCLA response action and RCRA corrective action sites  

SciTech Connect

This Guide contains the regulatory and policy requirements governing remediation of ground water contaminated with hazardous waste [including radioactive mixed waste (RMW)], hazardous substances, or pollutants/contaminants that present (or may present) an imminent and substantial danger. It was prepared by the Office of Environmental Policy and Assistance, RCRA/CERCLA Division (EH-413), to assist Environmental Program Managers (ERPMs) who often encounter contaminated ground water during the performance of either response actions under CERCLA or corrective actions under Subtitle C of RCRA. The Guide begins with coverage of the regulatory and technical issues that are encountered by ERPM`s after a CERCLA Preliminary Assessment/Site Investigation (PA/SI) or the RCRA Facility Assessment (RFA) have been completed and releases into the environment have been confirmed. It is based on the assumption that ground water contamination is present at the site, operable unit, solid waste management unit, or facility. The Guide`s scope concludes with completion of the final RAs/corrective measures and a determination by the appropriate regulatory agencies that no further response action is necessary.

NONE

1995-10-01T23:59:59.000Z

180

U.S. Department of Energy Uranium Mill Tailings Remedial Action Ground Water Project: Project plan  

SciTech Connect

The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA Project processing sites. The compliance strategy for the processing sites must satisfy the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1987). This scope of work will entail the following activities on a site-specific basis: Develop a compliance strategy based on modification of the UMTRA Surface Project RAPs or develop Ground Water Project RAPs with NRC concurrence on the RAP and full participation of the affected states and tribes. Implement the RAP to include institutional controls, where appropriate, as an interim measure until compliance with the standards is achieved. Institute long-term verification monitoring for transfer to a separate long-term surveillance program on or before the Project end date. Prepare certification or confirmation reports and modify the long-term surveillance plan (LTSP), where needed, on those sites completed prior to the Project end date.

Not Available

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado  

SciTech Connect

This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

Not Available

1994-06-01T23:59:59.000Z

182

GRR/Section 14-UT-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-UT-d - Section 401 Water Quality Certification GRR/Section 14-UT-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-UT-d - Section 401 Water Quality Certification 14-UT-d - Section 401 Water Quality Certification.pdf Click to View Fullscreen Triggers None specified Section 401 of the Clean Water Act (CWA) requires a Water Quality Certification for any federal license or permit that is issued to construct or operate a facility, which may result in any fill or discharge into the navigable waters of the United States. The Utah Division of Water Quality oversees the 401 Water Quality Certification process in the state of Utah. The director of the Utah Division of Water Quality ("director") handles

183

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

NONE

1996-02-01T23:59:59.000Z

184

Ground water and oil field waste sites: a study in Vermilion Parish  

Science Conference Proceedings (OSTI)

Water samples were obtained from 128 private water wells surrounding eight oil field waste sites in Vermilion Parish. The specimens were analyzed for five heavy metals: barium, arsenic, chromium, lead, and cadmium. Half of the specimens were then analyzed for 16 volatile organic compounds. A blood sample was obtained from healthy adults drinking water from the wells tested for volatile organic compounds and this blood sample was also analyzed for volatile organic compounds. None of the water samples had levels of heavy metals or volatile organic compounds that exceeded the National Primary Drinking Water Standards. Barium levels in excess of 250 parts per billion suggested that styrene, toluene, and chloroform might be present. Blood levels of volatile organic compounds were significantly higher than could be accounted for by water consumption with levels in smokers significantly higher than in nonsmokers. These data suggest that as yet there is no contamination of ground water supplies around these sites. Volatile organic accumulation in humans probably occurs from a respiratory rather than from an oral route.

Rainey, J.M.; Groves, F.D.; DeLeon, I.R.; Joubert, P.E. (LSU School of Medicine, New Orleans, LA (USA))

1990-06-01T23:59:59.000Z

185

Water Quality Program, Volume 2 (Alabama) | Open Energy Information  

Open Energy Info (EERE)

Program, Volume 2 (Alabama) Program, Volume 2 (Alabama) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Alabama Applies to States or Provinces Alabama Name Water Quality Program, Volume 2 (Alabama) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies Biomass/Biogas, Coal with CCS, Energy Storage, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Tidal Energy Active Policy Yes Implementing Sector State/Province Program Administrator Alabama Department of Environmental Management Primary Website http://www.adem.state.al.us/alEnviroRegLaws/files/Division6Vol2.pdf Summary This volume of the water quality program mainly deals with Technical

186

Approaches to verification of two-dimensional water quality models  

DOE Green Energy (OSTI)

The verification of a water quality model is the one procedure most needed by decision making evaluating a model predictions, but is often not adequate or done at all. The results of a properly conducted verification provide the decision makers with an estimate of the uncertainty associated with model predictions. Several statistical tests are available for quantifying of the performance of a model. Six methods of verification were evaluated using an application of the BETTER two-dimensional water quality model for Chickamauga reservoir. Model predictions for ten state variables were compared to observed conditions from 1989. Spatial distributions of the verification measures showed the model predictions were generally adequate, except at a few specific locations in the reservoir. The most useful statistics were the mean standard error of the residuals. Quantifiable measures of model performance should be calculated during calibration and verification of future applications of the BETTER model. 25 refs., 5 figs., 7 tabs.

Butkus, S.R. (Tennessee Valley Authority, Chattanooga, TN (USA). Water Quality Dept.)

1990-11-01T23:59:59.000Z

187

Impervious Areas: Examining the Undermining Effects on Surface Water Quality  

E-Print Network (OSTI)

This study explored the relationship between increased proportions of imperviousness in a watershed on surface water quality and examined the effectiveness of using remote sensing to systematically and accurately determine impervious surfaces. A supervised maximum likelihood algorithm was used to classify the 2008 high resolution National Agriculture Imagery Program (NAIP) imagery into six classifications. A stratified random sampling scheme was conducted to complete an accuracy assessment of the classification. The overall accuracy was 85%, and the kappa coefficient was 0.80. Additionally, field sampling and chemical analysis techniques were used to examine the relationship between impervious surfaces and water quality in a rainfall simulation parking lot study. Results indicated that day since last rain event had the most significant effect on surface water quality. Furthermore, concrete produced higher dissolved organic carbon (DOC), dissolved organic nitrogen (DON), potassium and calcium in runoff concentrations than did asphalt. Finally, a pollutant loading application model was used to estimate pollutant loadings for three watersheds using two scenarios. Results indicated that national data may overestimate annual pollutant loads by approximately 700%. This study employed original techniques and methodology to combine the extraction of impervious surfaces, utilization of local rainfall runoff data and hydrological modeling to increase planners' and scientists' awareness of using local data and remote sensing data to employ predictive hydrological modeling.

Young, De'Etra Jenra

2010-12-01T23:59:59.000Z

188

Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems  

Science Conference Proceedings (OSTI)

Recent trends in the management of water supply have increased the need for modelling techniques that can provide reliable, efficient, and accurate representation of the complex, non-linear dynamics of water quality within water distribution systems. ... Keywords: Artificial neural networks, Chlorine disinfection, Chlorine residual forecasting, Input variable selection, Partial mutual information, Water quality modelling

Robert J. May; Graeme C. Dandy; Holger R. Maier; John B. Nixon

2008-10-01T23:59:59.000Z

189

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1  

SciTech Connect

This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.

Not Available

1994-09-01T23:59:59.000Z

190

Ground-water protection standards for inactive uranium tailings sites (40 CFR 192): Background information for final rule. Final report  

Science Conference Proceedings (OSTI)

The Final Background Information Document summarizes the information and data considered by the Agency in developing the ground-water protection standards. The report presents a brief description of the Title II ground water standard and how it can be used to develop the Title I rulemaking. A description of the 24 designated uranium-tailings sites and their current status in the DOE remedial-action program is included as well as a detailed analysis of the available data on the ground water in the vicinity of 14 of the 24 sites. It also describes different methods that can be used for the restoration of ground water and the costs of using these restoration methods.

Not Available

1989-03-01T23:59:59.000Z

191

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Pesticide Storage and Handling  

E-Print Network (OSTI)

Proper pesticide management is important to preventing ground water contamination. This publication contains helpful information about pesticide storage facilities, mixing and loading practices, and spill cleanup. A chart lists pesticides according to their "leachability.

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

1997-08-29T23:59:59.000Z

192

Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah  

Science Conference Proceedings (OSTI)

This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

Not Available

1994-09-01T23:59:59.000Z

193

Paraho environmental data. Part I. Process characterization. Par II. Air quality. Part III. Water quality  

SciTech Connect

From 1973 to 1978, Development Engineering, Inc. (DEI), a subsidiary of Paraho Development Corporation, demostrated the Paraho technology for surface oil shale retorting at Anvil Points, Colorado. A considerable amount of environmentally-related research was also conducted. This body of data represents the most comprehensive environmental data base relating to surface retorting that is currently available. In order to make this information available, the DOE Office of Environment has undertaken to compile, assemble, and publish this environmental data. The compilation has been prepared by DEI. This report includes the process characterization, air quality, and water quality categories.

Heistand, R.N.; Atwood, R.A.; Richardson, K.L.

1980-06-01T23:59:59.000Z

194

Optimal Operation of Large Agricultural Watersheds with Water Quality Restraints  

E-Print Network (OSTI)

Improved technology is needed for use in properly managing large agricultural watersheds. Proper watershed management means selecting land uses that are appropriate for each subarea, using erosion control measures where necessary, and applying fertilizers at rates that maximize agricultural production without polluting the environment. Watershed runoff and industrial and municipal effluents pollute streams and reservoirs. Point source pollution (industries and municipalities) can be monitored. Nonpoint-source pollution (watersheds) is widely dispersed and not easily measured. Mathematical models are needed to predict nonpoint-source pollution as affected by watershed characteristics, land use, conservation practices, chemical fertilizers, and climatic variables. Routing models are needed to determine the quality of water as it flows from nonpoint sources through streams and valleys to rivers and large reservoirs. Models are also needed to determine optimal strategies for planning land use, conservation practices, and fertilizer application to maximize agricultural production subject to water quality constraints. Three of the most important agricultural pollutants are suspended sediment, phosphorus, and nitrogen. Robinson [1971] pointed out that sediment is the greatest pollutant of water in terms of volume. Sediment also transports other pollutants, like phosphorus and nitrogen. These two elements are principally involved in lake eutrophication. Frequently algae blooms develop in nutrient-laden water and cause it to have an off-taste and an unpleasant odor. The odor of decaying plants becomes offensive; fish are killed because of reduced dissolved oxygen in the water, and recreation is deterred. The objective of this research was to develop models for use in managing large agricultural watersheds to obtain maximum agricultural production and to maintain water quality standards. The models were designed to: 1. Simulate daily runoff, and sediment, phosphorus, and nitrogen yields from small watersheds (areas land owners and operators) for planning land use, fertilizer application, and conservation practices on subwatersheds. 4. Determine the optimal strategy for each subwatershed to maximize agricultural production for the entire watershed subject to water quality constraints. Generally, water-quality models are developed by adding chemical modeling components to existing runoff and sediment models because runoff and sediment provide transportation for chemicals. Several conceptual models for predicting chemical yields from small watersheds have been presented [Crawford and Donigian, 1973; Donigian and Crawford, 1976; Frere, et al., 1975; Hagin and Amberger, 1974; Kling, 1974; Johnson and Straub, 1971]. However, these models are not applicable to large watersheds because they have no routing mechanism. For this reason, runoff, sediment, and nutrient models were refined and developed here for application to large watersheds. Probably, the most widely used and accepted model for predicting runoff volume is the Soil Conservation Service (SCS) curve number system [U.S. Soil Conservation Service, 1972]. The SCS model was modified by adding a soil-moisture-index accounting procedure [Williams and Laseur, 1976]. The modified water yield model is considerably more accurate than the original SCS model. On a watershed near Riesel, Texas, the modified model explained 95% of the variation in monthly runoff as compared with 65% for the original model. The water-yield model was refined here by replacing the climatic index (lake evaporation) with daily consumptive water use for individual crops.

Williams, J. R.; Hann, R. W.

1978-04-01T23:59:59.000Z

195

DOE/EA-1388: Environmental Assessment of Ground Water Compliance at the Shiprock Uranium Mill Tailings Site (September 2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

388 388 Environmental Assessment of Ground Water Compliance at the Shiprock Uranium Mill Tailings Site Final September 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 This Page Intentionally Blank DOE Grand Junction Office EA of Ground Water Compliance at the Shiprock Site September 2001 Final Page iii Contents Page Acronyms and Abbreviations ........................................................................................................ vii Executive Summary ....................................................................................................................... ix 1.0 Introduction .............................................................................................................................1

196

(Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio)  

SciTech Connect

This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

Not Available

1991-10-01T23:59:59.000Z

197

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Falls City, Texas: Revision 1  

Science Conference Proceedings (OSTI)

This baseline risk assessment of ground water contamination of the uranium mill tailings site near Falls City, Texas, evaluates potential impact to public health and the environment resulting from ground water contamination at the former Susquehanna Western, Inc. (SWI), uranium mill processing site. This document fulfills the following objectives: determine if the site presents immediate or potential future health risks, determine the need for interim institutional controls, serve as a key input to project planning and prioritization, and recommend future data collection efforts to more fully characterize risk. The Uranium Mill Tailings Remedial Action (UMTRA) Project has begun its evaluation of ground water contamination at the Falls City site. This risk assessment is one of the first documents specific to this site for the Ground Water Project. The first step is to evaluate ground water data collected from monitor wells at or near the site. Evaluation of these data show the main contaminants in the Dilworth ground water are cadmium, cobalt, fluoride, iron, nickel, sulfate, and uranium. The data also show high levels of arsenic and manganese occur naturally in some areas.

Not Available

1994-09-01T23:59:59.000Z

198

Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

NONE

1995-08-01T23:59:59.000Z

199

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Salt Lake City, Utah. Revision 1  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the first is the Surface Project, and the second is the Ground Water Project. For the UMTRA Project site known as the Vitro site, near Salt Lake City, Utah, Surface Project cleanup occurred from 1985 to 1987. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. A risk assessment is the process of describing a source of contamination and showing how that contamination may reach people and the environment. The amount of contamination people or the environment may be exposed to is calculated and used to characterize the possible health or environmental effects that may result from this exposure. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Vitro site. The results of this report and further site characterization of the Vitro site will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

NONE

1995-09-01T23:59:59.000Z

200

Understanding the role of trading in water quality management : based on U.S. experience  

E-Print Network (OSTI)

This research demonstrates an overview of the performance of water quality trading programs currently implemented within the U.S. The role of trading in water quality management is identified through systematical comparisons ...

Pharino, Chanathip

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California  

SciTech Connect

Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

Warner, J.L.; Lutz, J.D.

2006-01-01T23:59:59.000Z

202

Integrated modelling of risk and uncertainty underlying the cost and effectiveness of water quality measures  

Science Conference Proceedings (OSTI)

In this paper we present an overview of the most important sources of uncertainty when analysing the least cost way to improve water quality. The estimation of the cost-effectiveness of water quality measures is surrounded by environmental, economic ... Keywords: Cost-effectiveness, Integrated modelling, Risk, Uncertainty, Water quality

Roy Brouwer; Chris De Blois

2008-07-01T23:59:59.000Z

203

(Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)  

Science Conference Proceedings (OSTI)

In April 1990, Wright-Patterson Air Force Base (WPAFB) initiated an effort for the evaluation of potential removal of ground water contamination at the Base. This report presents a current assessment of the nature and extent of the contamination believed to be migrating across the southwestern boundary of Area C and the northern boundary of Area B based upon analysis of existing environmental data obtained from several sources. The existing data base indicates widespread, low-level contamination moving across Base boundaries at levels that pose no immediate threat to the Mad River Valley well fields. An investigation by the City of Dayton in May and June 1990, however, implies that a more identifiable plume of PCE and TCE may be crossing the southwestern boundary of Area C immediately downgradient of Landfill 5. More data is needed to delineate ground water contamination and to design and implement a suitable control system. This report concludes that although an extensive study of the boundaries in question would be the preferred approach, a limited, focused investigation and subsequent feasibility study can be accomplished with a reasonable certainty of achieving the desired outcome of this project.

Not Available

1991-10-01T23:59:59.000Z

204

Ground-state ammonia and water in absorption towards Sgr B2  

E-Print Network (OSTI)

We have used the Odin submillimetre-wave satellite telescope to observe the ground state transitions of ortho-ammonia and ortho-water, including their 15N, 18O, and 17O isotopologues, towards Sgr B2. The extensive simultaneous velocity coverage of the observations, >500 km/s, ensures that we can probe the conditions of both the warm, dense gas of the molecular cloud Sgr B2 near the Galactic centre, and the more diffuse gas in the Galactic disk clouds along the line-of-sight. We present ground-state NH3 absorption in seven distinct velocity features along the line-of-sight towards Sgr B2. We find a nearly linear correlation between the column densities of NH3 and CS, and a square-root relation to N2H+. The ammonia abundance in these diffuse Galactic disk clouds is estimated to be about (0.5-1)e-8, similar to that observed for diffuse clouds in the outer Galaxy. On the basis of the detection of H218O absorption in the 3 kpc arm, and the absence of such a feature in the H217O spectrum, we conclude that the water...

Wirstrm, E S; Black, J H; Hjalmarson, ; Larsson, B; Olofsson, A O H; Encrenaz, P J; Falgarone, E; Frisk, U; Olberg, M; Sandqvist, Aa

2010-01-01T23:59:59.000Z

205

Impact of alfalfa on soil and water quality  

DOE Green Energy (OSTI)

Dominance of row crop agriculture in rolling landscapes of western and Southwestern Minnesota is identified as a primary, non-point source of sediments and associated pollutants reaching the Minnesota River. Currently as a biomass energy project, alfalfa is being promoted in western Minnesota to harvest the leaves for animal feed and stems to generate electricity. As a perennial, leguminous crop grown with minimum inputs, introduction of alfalfa in row cropped lands has potential to improve both in-situ soil productivity and downstream water quality. A field study was initiated in 1996 to compare the volume of runoff and pollutants coming from alfalfa an com-soybean fields in western Minnesota. Two pair of alfalfa and corn-soybean watersheds were instrumented at Morris in the Fall of 1996 to measure rainfall, runoff, and sample water for sediment load, phosphorus, nitrogen, biochemical oxygen demand, and chemical oxygen demand. Simulated rainfall-runoff experiments were conducted on an existing crop rotation - input management study plots at Lamberton to evaluate soil quality effects of the inclusion of alfalfa in a corn-soybean rotation under manure and fertilization management schemes. Alfalfa soil water use as a function of frequency of harvest was also monitored at Morris to evaluate the effect of cutting schedule on soil water use. During the growing season of 1997, alfalfa under a two-cut management scheme used about 25-mm (an inch) more soil water than under a three-cut schedule. The mean differences between the treatments were not significant. The conclusions drawn in this report come from analysis of data collected during one winter-summer hydrologic and crop management cycle. Continued observations through a period of at least 3-5 years is recommended to improve the instrumentation robustness and discern the variability due to climate, soil, and crop management factors.

Sharma, P.; Moncrief, J.; Gupta, S.

1997-10-30T23:59:59.000Z

206

GRR/Section 14-CO-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

4-CO-d - Section 401 Water Quality Certification 4-CO-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CO-d - Section 401 Water Quality Certification 14CODSection401WaterQualityCertification.pdf Click to View Fullscreen Contact Agencies Colorado Department of Public Health and Environment Regulations & Policies 5 CCR 1002-82 Colorado Water Quality Control Act Triggers None specified Click "Edit With Form" above to add content 14CODSection401WaterQualityCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Section 401 of the Clean Water Act (CWA) requires a Water Quality

207

GRR/Section 14-TX-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

4-TX-d - Section 401 Water Quality Certification 4-TX-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-d - Section 401 Water Quality Certification 14TXDSection401WaterQualityCertification (2).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Regulations & Policies 16 TAC 3.93 - RRC Water Quality Certification 16 TAC 3.30 - MOU between the RRC and the TCEQ Triggers None specified Click "Edit With Form" above to add content 14TXDSection401WaterQualityCertification (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Section 401 of the Clean Water Act (CWA) requires a Water Quality

208

Computer simulation models relevant to ground water contamination from EOR or other fluids - state-of-the-art  

SciTech Connect

Ground water contamination is a serious national problem. The use of computers to simulate the behavior of fluids in the subsurface has proliferated extensively over the last decade. Numerical models are being used to solve water supply problems, various kinds of enertgy production problems, and ground water contamination problems. Modeling techniques have progressed to the point that their accuracy is only limited by the modeller's ability to describe the reservoir in question and the heterogeneities therein. Pursuant to the Task and Milestone Update of Project BE3A, this report summarizes the state of the art of computer simulation models relevant to contamination of ground water by enhanced oil recovery (EOR) chemicals and/or waste fluids. 150 refs., 6 tabs.

Kayser, M.B.; Collins, A.G.

1986-03-01T23:59:59.000Z

209

Quality and Membrane Treatability of the Lake Houston Water Supply  

E-Print Network (OSTI)

Currently, sections of Harris and Montgomery counties located North and Northeast of Houston use groundwater almost exclusively. These areas have witnessed substantial population growth and associated increases in water demand. In 1999 approximately 60% of potable water in Houston and its adjoining communities was produced from surface water. The remaining approximately 40% was derived from groundwater. However, the "Subsidence District" which is the authority responsible for granting groundwater permits has mandated that groundwater use needs to be decreased to 20% within the next few years so as to limit subsidence. Pipelines are not available to distribute purified water from the existing surface water treatment plants located in the South and East of Houston to the Northern areas that actually require additional water. Because Lake Houston is located in the geographical area of interest and is a surface water source, the City of Houston is interested in developing it for its future water needs. Additionally, a favorable hydraulic gradient exists from the Lake to the proposed service areas in Harris and Montgomery counties. Federal regulations such as the Stage II of the Disinfectant/Disinfection By-Products Rule (1) and the Enhanced Surface Water Treatment Rule (2) are expected to be promulgated in the near future. These rules are anticipated to introduce more stringent maximum contaminant levels (MCLs) for total trihalomethanes (THMs) and haloacetic acids (HAAs), possibly introduce new MCLs for individual species of THMs and HAAs, reduce turbidity levels, and enhance inactivation/removal requirements for Cryptosporidium. (Cryptosporidium was the causative protozoan for the more than 400,000 cases of acute gastrointestinal disease in Milwaukee, WI in March 1993.) The treatment processes in the City of Houston's existing water purification plants are not expected to be sufficient in meeting these anticipated regulations. Therefore, both regulatory requirements and engineering considerations point towards Lake Houston as an attractive surface water source for the next water purification plant to supply potable water to the City and its adjoining communities. However, water quality in Lake Houston can be characterized as being poor with high concentrations of turbidity, color, total organic carbon (TOC), nutrients such as phosphorus and nitrogen, etc. (3). Pressure-driven membrane processes can be employed as effective barriers against a wide range of contaminants including particles, turbidity, protozoan cysts and oocysts, bacteria, viruses, color, organic carbon, disinfection by-product (DBP) precursors, and dissolved metals. Additionally, microfiltration (MF) and ultrafiltration (UF) pretreatment may be necessary to reduce fouling rates and increase chemical cleaning intervals during surface water nanofiltration (NF) (4). Therefore, an integrated membrane system employing MF or UF pretreatment to NF is expected to be an important treatment candidate for Lake Houston water. Nanofiltration (NF) membranes typically operate at pressures less than 100 psi and are capable of high rejections of natural organic matter (NOM) and precursors to disinfection by-products (DBP) including trihalomethanes (THMs) and haloacetic acids (HAAs) (5-8), many of which are suspected carcinogens, mutagens, or teratogens.

Chellam, Shankar; Sharma, Ramesh; Shetty, Grishma; Wei, Ying

2001-10-01T23:59:59.000Z

210

GRR/Section 14-AK-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-AK-d - Section 401 Water Quality Certification GRR/Section 14-AK-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-AK-d - Section 401 Water Quality Certification 14AKDSection401WaterQualityCertification.pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation United States Environmental Protection Agency U S Army Corps of Engineers Regulations & Policies Alaska Water Quality Standards Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 14AKDSection401WaterQualityCertification.pdf 14AKDSection401WaterQualityCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

211

Biofuels and water quality: challenges and opportunities for simulation modeling  

SciTech Connect

Quantification of the various impacts of biofuel feedstock production on hydrology and water quality is complex. Mathematical models can be used to efficiently evaluate various what if scenarios related to biofeedstock production and their impacts on hydrology and water quality at various spatial and temporal scales. Currently available models, although having the potential to serve such purposes, have many limitations. In this paper, we review the strengths and weaknesses of such models in light of short- and long term biofeedstock production scenarios. The representation of processes in the currently available models and how these processes need to be modified to fully evaluate various complex biofeedstock production scenarios are discussed. Similarly, issues related to availability of data that are needed to parameterize and evaluate these models are presented. We have presented a vision for the development of decision support tools and ecosystem services that can be used to make watershed management decisions to minimize any potentially adverse environmental impacts while meeting biofeedstock demands. We also discuss a case study of biofeedstock impact simulation in relation to watershed management policy implications for various state and federal agencies in the USA.

Engel, Bernard A. [Purdue University; Chaubey, Indrajeet [Purdue University; Thomas, Mark [Purdue University; Saraswat, Dharmendra [University of Arkansas; Murphy, Patrick [Purdue University; Bhaduri, Budhendra L [ORNL

2010-01-01T23:59:59.000Z

212

West Village Community: Quality Management Processes and Preliminary Heat Pump Water Heater Performance  

Science Conference Proceedings (OSTI)

West Village, a multi-use project underway at the University of California Davis, represents a ground-breaking sustainable community incorporating energy efficiency measures and on-site renewable generation to achieve community-level Zero Net Energy (ZNE) goals. The project when complete will provide housing for students, faculty, and staff with a vision to minimize the community's impact on energy use by reducing building energy use, providing on-site generation, and encouraging alternative forms of transportation. This focus of this research is on the 192 student apartments that were completed in 2011 under Phase I of the West Village multi-year project. The numerous aggressive energy efficiency measures implemented result in estimated source energy savings of 37% over the B10 Benchmark. There are two primary objectives of this research. The first is to evaluate performance and efficiency of the central heat pump water heaters as a strategy to provide efficient electric water heating for net-zero all-electric buildings and where natural gas is not available on site. In addition, effectiveness of the quality assurance and quality control processes implemented to ensure proper system commissioning and to meet program participation requirements is evaluated. Recommendations for improvements that could improve successful implementation for large-scale, high performance communities are identified.

Dakin, B.; Backman, C.; Hoeschele, M.; German, A.

2012-11-01T23:59:59.000Z

213

Exergy and Energy analysis of a ground-source heat pump for domestic water heating under simulated occupancy conditions  

SciTech Connect

This paper presents detailed analysis of a water to water ground source heat pump (WW-GSHP) to provide all the hot water needs in a 345 m2 house located in DOE climate zone 4 (mixed-humid). The protocol for hot water use is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which aims to capture the living habits of the average American household and its impact on energy consumption. The entire house was operated under simulated occupancy conditions. Detailed energy and exergy analysis provides a complete set of information on system efficiency and sources of irreversibility, the main cause of wasted energy. The WW-GSHP was sized at 5.275 kW (1.5-ton) for this house and supplied hot water to a 303 L (80 gal) water storage tank. The WW-GSHP shared the same ground loop with a 7.56 kW (2.1-ton) water to air ground source heat pump (WA-GSHP) which provided space conditioning needs to the entire house. Data, analyses, and measures of performance for the WW-GSHP in this paper complements the results of the WA-GSHP published in this journal (Ally, Munk et al. 2012). Understanding the performance of GSHPs is vital if the ground is to be used as a viable renewable energy resource.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

214

GRR/Section 14-CA-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-CA-d - Section 401 Water Quality Certification GRR/Section 14-CA-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CA-d - Section 401 Water Quality Certification 14CADSection401WaterQualityCertification (1).pdf Click to View Fullscreen Contact Agencies California State Water Resources Control Board Regulations & Policies Section 401 Clean Water Act (33 U.S.C. 1251 et seq.) Porter-Cologne Water Quality Control Act Code of Regulations Title 23, Section 3855 et. seq. Triggers None specified Click "Edit With Form" above to add content 14CADSection401WaterQualityCertification (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

215

Ground-Based Microwave Radiometric Observations of Precipitable Water Vapor: A Comparison with Ground Truth from Two Radiosonde Observing Systems  

Science Conference Proceedings (OSTI)

Dual-channel microwave radiometric measurements of precipitable water vapor are compared with values determined from two types of radiosondes. The first type is used in conventional soundings taken by the National Weather Service. The second is ...

Ed R. Westwater; Michael J. Falls; Ingrid A. Popa Fotino

1989-08-01T23:59:59.000Z

216

BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT THE URAN~UM MILL TAILINGS  

Office of Legacy Management (LM)

I~:-:ii*.i: i,<;.;.-;_r- --:-:ir-- I~:-:ii*.i: i,<;.;.-;_r- --:-:ir-- - . . - -. . - . . - , -, . , , , - - - - . BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT THE URAN~UM MILL TAILINGS SITE NEAR RIVERTON, WYOMING I i I I I Prepared by the U.S. Department of Energy Albuquerque, New Mexico September 1995 INTENDED FOR PUBLIC RELEASE This report has been reproduced from the best available copy. Avai and microfiche Number of pages in this report: 166 DOE and DOE contractors can obtain copies of this report from: Office of Scientific and Technical information P.O. Box 62 Oak Ridge, TN 37831 (61 5) 576-8401 This report is publicly available from: National Technical information Service Department of Commerce 5285 Port Royal Road Springfield, VA 22161 (703) 487-4650 DOEIAL162350-65

217

GRR/Section 14-OR-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-OR-d - Section 401 Water Quality Certification GRR/Section 14-OR-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-OR-d - Section 401 Water Quality Certification 14ORDSection410WaterQualityCertification.pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality U S Army Corps of Engineers Regulations & Policies OAR 340-048: Certification of Compliance with Water Quality Requirements Triggers None specified Click "Edit With Form" above to add content 14ORDSection410WaterQualityCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

218

GRR/Section 14-ID-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-ID-d - Section 401 Water Quality Certification GRR/Section 14-ID-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-ID-d - Section 401 Water Quality Certification 14IDDSection401WaterQualityCertificationProcess.pdf Click to View Fullscreen Contact Agencies Idaho Department of Environmental Quality United States Environmental Protection Agency U S Army Corps of Engineers Regulations & Policies Idaho Environmental Protection and Health Act Idaho Administrative Procedure Act Triggers None specified Click "Edit With Form" above to add content 14IDDSection401WaterQualityCertificationProcess.pdf 14IDDSection401WaterQualityCertificationProcess.pdf Error creating thumbnail: Page number not in range.

219

US Department of Energy Uranium Mill Tailings Remedial Action ground water Project. Revision 1, Version 1: Final project plan  

Science Conference Proceedings (OSTI)

The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA processing sites. The compliance strategy for the processing sites must satisfy requirements of the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1988). This scope of work will entail the following activities, on a site-specific basis: Development of a compliance strategy based upon modification of the UMTRA Surface Project remedial action plans (RAP) or development of Ground Water Project RAPs with NRC and state or tribal concurrence on the RAP; implementation of the RAP to include establishment of institutional controls, where appropriate; institution of long-term verification monitoring for transfer to a separate DOE program on or before the Project end date; and preparation of completion reports and final licensing on those sites that will be completed prior to the Project end date.

Not Available

1993-12-21T23:59:59.000Z

220

Stable isotopes of hydrogen and oxygen in surface water and ground water at selected sites on or near the Idaho National Engineering Laboratory, Idaho  

DOE Green Energy (OSTI)

Relative stable isotopic ratios for hydrogen and oxygen compared to standard mean ocean water are presented for water from 4 surface-water sites and 38 ground-water sites on or near the Idaho National Engineering Laboratory (INEL). The surface-water samples were collected monthly from March 1991 through April 1992 and after a storm event on June 18, 1992. The ground-water samples either were collected during 1991 or 1992. These data were collected as part of the US Geological Survey`s continuing hydrogeological investigations at the INEL. The relative isotopic ratios of hydrogen and oxygen are reported as delta {sup 2}H ({delta}{sup 2}H) and as delta {sup 18}O ({delta}{sup 18}O), respectively. The values of {delta}{sup 2}H and {delta}{sup 18}O in water from the four surface-water sites ranged from -143.0 to -122 and from -18.75 to -15.55, respectively. The values of {delta}{sup 2}H and {delta}{sup 18}O in water from the 38 ground-water sites ranged from -141.0 to -120.0 and from -18.55 to -14.95, respectively.

Ott, D.S.; Cecil, L.D.; Knobel, L.L.

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Comprehensive Assessment of Water Quality Eutrophication in Scenic Water Bodies by the Combination of Fuzzy Cluster and Grey Cluster  

Science Conference Proceedings (OSTI)

Water quality eutrophication has become a worldwide environmental problem in recent years, and assessment and classification of scenic water bodies will help for prevention and remediation of water eutrophication. The study presents the application of ... Keywords: Comprehensive assessment, Scenic water bodies, Fuzzy Ccuster, Grey cluster

Qi Wang; Guangming Li; Jingcheng Xu

2008-12-01T23:59:59.000Z

222

GRR/Section 14-MT-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-MT-d - Section 401 Water Quality Certification GRR/Section 14-MT-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-d - Section 401 Water Quality Certification 14MTD401WaterQualityCertification (2).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Federal Clean Water Act (33 USC § 1251 et seq.) Montana Codes Annotated 75-5-401 Aministrative Rules of Montana Chapter 30 Administrative Rules of Montana 17.30.101 through 109 Triggers None specified Click "Edit With Form" above to add content 14MTD401WaterQualityCertification (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

223

Considerations in the Design of Treatment Best Management Practices (BMPs) to Improve Water Quality  

E-Print Network (OSTI)

This document has been reviewed in accordance with the U.S. Environmental Protection Agency=s peer and administrative review policies and approved for publiction. Mention of trade names, commercial products, or design procedures does not constitute endorsement or recommendation for use. ii Foreword The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the Nations land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, EPAs research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future. The National Risk Management Research Laboratory (NRMRL) is the Agencys center for investigation of technological and management approaches for preventing and reducing risks from pollution that threaten human health and the environment. The focus of the Laboratorys research program is on methods and their cost-effectiveness for prevention and control of pollution to air, land, water, and subsurface resources; protection of water quality in public water systems; remediation of contaminated sites, sediments and ground water; prevention and control of indoor air pollution; and restoration of ecosystems. NRMRL collaborates with both public and private sector partners to foster technologies that reduce the cost of compliance and to anticipate emerging problems. NRMRLs research provides solutions to environmental problems by: developing and promoting technologies that protect and improve the environment; advancing

unknown authors

2002-01-01T23:59:59.000Z

224

GRR/Section 14-NV-d - 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-NV-d - 401 Water Quality Certification GRR/Section 14-NV-d - 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-NV-d - 401 Water Quality Certification 14NVDSection401WaterQualityCertification.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Regulations & Policies Section 401 of the Clean Water Act (33 U.S.C. 1341) Triggers None specified Click "Edit With Form" above to add content 14NVDSection401WaterQualityCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Section 401 of the Clean Water Act (33 U.S.C. 1341) requires activities in

225

GRR/Section 14-NV-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-NV-d - Section 401 Water Quality Certification GRR/Section 14-NV-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-NV-d - Section 401 Water Quality Certification 14NVDSection401WaterQualityCertification.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Regulations & Policies Section 401 of the Clean Water Act (33 U.S.C. 1341) Triggers None specified Click "Edit With Form" above to add content 14NVDSection401WaterQualityCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Section 401 of the Clean Water Act (33 U.S.C. 1341) requires activities in

226

GRR/Section 14-HI-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

HI-d - Section 401 Water Quality Certification HI-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-HI-d - Section 401 Water Quality Certification 14HID - Section401WaterQualityCertification (1).pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Clean Water Branch United States Environmental Protection Agency Regulations & Policies Clean Water Act (33 U.S.C. 1251) Section 401 Hawaii Administrative Rules Title 11, Chapter 54 Triggers None specified Click "Edit With Form" above to add content 14HID - Section401WaterQualityCertification (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

227

Water Quality Changes Related to CUB Bulk Placement at the Rostraver...  

NLE Websites -- All DOE Office Websites (Extended Search)

Drive, Homestead, PA 15120-5005 KEYWORDS: Coal Utilization By-products, Scatterscores, water quality ABSTRACT A structural fill at the Rostraver Airport was constructed of Low...

228

A Critique of the Climatic Record of Water Equivalent of Snow on the Ground in the United States  

Science Conference Proceedings (OSTI)

The water equivalent of snow on the ground (SWE) has been measured daily since 1952 at National Weather Service first-order stations whenever snow depth exceeded 5 cm (2 in). These data are used in snowmelt analyses, snow climatology, and snow ...

Thomas W. Schmidlin

1990-11-01T23:59:59.000Z

229

Water Quality Hydrology of Lands Receiving Farm Animal Wastes  

E-Print Network (OSTI)

A significant pollution potential from cattle manure has developed as a result of the cattle feeding industry progressing to large, high density feeding operations. Two major potential sources of pollution from beef feedlots is storm runoff and solid waste (manure). The objectives of this research were to determine the characteristics of storm runoff from a beef feedlot, to determine the nitrogen transformations and ammonia volatilization from soils receiving large manure applications, to determine the chemical quality of surface runoff and groundwater from plots receiving large manure applications, to evaluate techniques of deep plowing large amounts of manure into the soil, and to determine the crop quality and yields on field plots receiving large manure application rates. Feedlot runoff was found to carry large amounts of chemical elements. The concentrations of chemical elements did not vary with size and intensity of rainstorm as much as by differences in topography of the watersheds. More ammonia was volatilized from limed soil columns than unlimed but an unexplained decrease in total nitrogen of 10 to 20 percent occurred in the unlimed and limed soil columns, respectively. A 30-in. moldboard plowing 30 to 36-in. deep can safely turn under up to 900 tons/acre of manure and not create a major surface water pollution problem. An increase of chemical elements in the groundwater occurred during the first year and then were reduced to initial values during the second year. No N03 pollution of groundwater occurred. Crops can be effectively grown on land receiving up to 900 tons/acre of manure. Peak yields will not be obtained the first year after plowing the 900 tons under, but yields will increase the second and third years.

Reddell, R. D.; Wise, G. G.; Peters, R. E.; Lyerly, P. J.

1973-06-01T23:59:59.000Z

230

GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318  

Open Energy Info (EERE)

GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318 GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318 Authorization) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318 Authorization) 06MTFShortTermWaterQualityStandardForTurbidity318Authorization.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Environmental Quality Montana Fish, Wildlife & Parks Regulations & Policies MCA 75-5-318 Triggers None specified Click "Edit With Form" above to add content 06MTFShortTermWaterQualityStandardForTurbidity318Authorization.pdf Error creating thumbnail: Page number not in range.

231

Acoustically enhanced remediation of contaminated soils and ground water. Volume 1  

SciTech Connect

The Phase 1 laboratory bench-scale investigation results have shown that acoustically enhanced remediation (AER) technology can significantly accelerate the ground water remediation of non-aqueous phase liquids (NAPLs) in unconsolidated soils. The testing also determined some of the acoustic parameters which maximize fluid and contaminant extraction rates. A technology merit and trade analysis identified the conditions under which AER could be successfully deployed in the field, and an analysis of existing acoustical sources and varying methods for their deployment found that AER technology can be successfully deployed in-situ. Current estimates of deployability indicate that a NAPL plume 150 ft in diameter can be readily remediated. This program focused on unconsolidated soils because of the large number of remediation sites located in this type of hydrogeologic setting throughout the nation. It also focused on NAPLs and low permeability soil because of the inherent difficult in the remediation of NAPLs and the significant time and cost impact caused by contaminated low permeability soils. This overall program is recommended for Phase 2 which will address the technology scaling requirements for a field scale test.

NONE

1995-10-01T23:59:59.000Z

232

Ceramic Coatings for Corrosion Resistant Nuclear Waste Container Evaluated in Simulated Ground Water at 90?C  

SciTech Connect

Ceramic materials have been considered as corrosion resistant coatings for nuclear waste containers. Their suitability can be derived from the fully oxidized state for selected metal oxides. Several types of ceramic coatings applied to plain carbon steel substrates by thermal spray techniques have been exposed to 90 C simulated ground water for nearly 6 years. In some cases no apparent macroscopic damage such as coating spallation was observed in coatings. Thermal spray processes examined in this work included plasma spray, High Velocity Oxy Fuel (HVOF), and Detonation Gun. Some thermal spray coatings have demonstrated superior corrosion protection for the plain carbon steel substrate. In particular the HVOF and Detonation Gun thermal spray processes produced coatings with low connected porosity, which limited the growth rate of corrosion products. It was also demonstrated that these coatings resisted spallation of the coating even when an intentional flaw (which allowed for corrosion of the carbon steel substrate underneath the ceramic coating) was placed in the coating. A model for prediction of the corrosion protection provided by ceramic coatings is presented. The model includes the effect of the morphology and amount of the porosity within the thermal spray coating and provides a prediction of the exposure time needed to produce a crack in the ceramic coating.

Haslam, J J; Farmer, J C

2004-03-31T23:59:59.000Z

233

On Managing Texas Rural Water Supply Systems: A Socioeconomic Analysis and Quality Evaluation  

E-Print Network (OSTI)

Research Objectives The study reported here is aimed at evaluating the effectiveness of nonprofit, rural water supply corporations or water systems (hereafter referred to as RWSs) in Texas from a sociological perspective. Specifically, the study has attempted to: 1. Provide an overview of the organizational structure and functioning of RWSs, identifying their existing as well as emerging needs, problems, and suggested solutions. It explores socioeconomic characteristics and patterns of RWSs in Texas. It outlines a history of state and federal regulations and practices through which these systems are structured and actually function. 2. Evaluate the quality and effectiveness of the management of selected RWSs located in different geographical regions of Texas. The evaluation of effectiveness of systems is accomplished through a systematic set of procedures and techniques. These procedures are tested for reliability and validity through empirical data. In addition, the differential levels of program effectiveness of RWSs are elaborated upon by correlating them with relevant socioeconomic variables. 3. Indicate policy and research implications of data for dealing with the future of rural water systems. Expected Contributions The rural populations in the U.S. started experiencing steady increases during the 1970s and early 1980s (Goodwin et al., 1984). Although the rural population growth at the national level showed a few differential trends during mid to late 1980s (Figures 3 and 4 in Appendix A), the state of Texas registered a population influx in many nonmetropolitan areas during the last decade (U.S.D.A., 1990: 11). Overall, a significant portion of Texas' population still resides in rural areas (Texas Department of Water Resources, 1984: 7). However, it appears that a larger number of studies have focused on water-management related problems and issues for urban areas than those for rural communities in Texas (e.g., Knudson, 1986; Meier and Thorton, 1973; Murdock et al., 1988; Texas Department of Water Resources, 1985; Texas Water Development Board, 1990;1 and U.S. Army Corps of Engineers, 1989). While rural water problems have been examined carefully in several parts of the country, we could not find a single study in Texas systematically examining water-related needs and issues confronting rural communities. The need to study rural water supply has become even more important now because of the challenge faced by small community systems in complying with the provisions of the 1986 Safe Drinking Water Act (SDWA). These small systems, with their limited customer and revenue bases, will face formidable expense in installing new water treatment methods (Jensen, 1990; Long and Stukenberg, 1987: 38; Texas Water Development Board, 1990: 14). The present study is a timely probe into the phenomena of rural water supply. The study is aimed at developing and using a methodology to evaluate the program effectiveness of RWSs. In recent years, interest has mounted for employing the research techniques of social sciences in efforts to assess the effectiveness of public programs. The 1970s and 1980s, decades of rapid-paced growth of RWSs in Texas and elsewhere, were marked by the proliferation of public expenditures. The study uses a set of indicators to identify effectiveness and efficiency of rural water projects. Such measures for analysis and appraisal of these projects may contribute to more informed and intelligent planning for the future. The study is also expected to provide a critical probe and insight into an evaluation methodology that may be used in future studies investigating public programs. To this end, the research reported here is exploratory in nature and may set grounds for more critical studies in the area. The study, for example, develops a baseline against which to measure future changes and trend in rural water supplies in Texas as well as in other parts of the country. Organization of the Report The remaining three-section organ

Singh, R.N.

1991-05-01T23:59:59.000Z

234

Residential Ground Source Heat Pumps with Integrated Domestic Hot Water Generation: Performance Results from Long-Term Monitoring  

SciTech Connect

Ground source heat pumps (GSHPs) show promise for reducing house energy consumption, and a desuperheater can potentially further reduce energy consumption where the heat pump from the space conditioning system creates hot water. Two unoccupied houses were instrumented to document the installed operational space conditioning and water heating efficiency of their GSHP systems. This paper discusses instrumentation methods and field operation characteristics of the GSHPs, compares manufacturers' values of the coefficients of performance calculated from field measured data for the two GSHPs, and compares the measured efficiency of the desuperheater system to other domestic hot water systems.

Stecher, D.; Allison, K.

2012-11-01T23:59:59.000Z

235

DC WRRC Report No. 103 Background Study of the Ground Water in  

E-Print Network (OSTI)

Flow at outlet from tower: Water Spray Guns: Water quantity for conditioning: Water quantity by controlling the amount of water returned from the atomizing nozzles. The water, when sprayed into the tower around the outside of the tower, and connected to the spray headers by means of flexible hoses. Water

District of Columbia, University of the

236

GRR/Section 14-WA-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-WA-d - Section 401 Water Quality Certification GRR/Section 14-WA-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-WA-d - Section 401 Water Quality Certification 14-WA-d - 401 Water Quality Certification.pdf Click to View Fullscreen Contact Agencies U S Army Corps of Engineers Washington State Department of Ecology Regulations & Policies Revised Statute of Washington Chapter 90.48 Washington Administrative Code Chapter 173-201A Washington Administrative Code 173-225-030 Triggers None specified Developers requiring a Section 404 Dredge and Fill Permit from the U S Army Corps of Engineers (Corps) are required to obtain a Section 401 Water Quality Certification from the state of Washington. The Washington State

237

Mapping of a reactor coolant effluent ground disposal test using an infrared imaging system and ground water potential and temperature measurements  

SciTech Connect

The concept of reactor effluent disposal to ground in infiltration trenches was proposed by Nelson and Alkire in 1963. At that time the available data indicated that radionuclide infiltration rates were probably adequate for trench disposal and that decontamination factors of 10 to 100 should be obtainable. Field tests at 100-F Area 1965 and 100-D Area 1967 have indicated that the infiltration rates are adequate and DF`s of from 2.5 for {sup 51}Cr to 7276 for {sup 65}Zn were obtained during the 100-D test. The purpose of this report is to present the results and interpretations of data from studies conducted over a reactor coolant effluent disposal test site. Data presented in this report were collected over the 100-C Area test in which a significant percentage of the reactor coolant effluent was disposed to an existing trench for a five-month period. Results of infrared thermal surveys and ground water temperature and potential measurements collected during this test are presented.

Eliason, J.R.

1969-04-10T23:59:59.000Z

238

CONSTRUCTED WETLAND TREATMENT SYSTEMS FOR WATER QUALITY IMPROVEMENT  

SciTech Connect

The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m{sup 3} per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volume and be able to handle 83,280 m{sup 3} of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m{sup 3} per day, and be able to handle 9,690 m{sup 3} of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation during the first season of growth of each system. Sediment samples after the first and third years of operation indicated that copper was being bound in the sediments very rapidly after entering the treatment system. The design of the system encourages low redox and sulfide production in the sediments. The objective is to stabilize metals, including mercury, as sulfide compounds in the sediments. Costs for maintenance and operation of the systems are minimal, consisting primarily of ensuring that the pipes are not clogged and that water is flowing through the system. The treatment cost per thousand gallons is many times less than conventional wastewater treatment facilities. Life expectancy and function of the biological system is based on the life of the engineering aspects and not the wetland ecology.

Nelson, E.

2010-07-19T23:59:59.000Z

239

Improved Ground Hydrology Calculations for Global Climate Models (GCMs): Soil Water Movement and Evapotranspiration  

Science Conference Proceedings (OSTI)

A physically based ground hydrology model is developed to improve the land-surface sensible and latent heat calculations in global climate models (GCMs). The processes of transpiration, evaporation from intercepted precipitation and dew, ...

F. Abramopoulos; C. Rosenzweig; B. Choudhury

1988-09-01T23:59:59.000Z

240

GRR/Section 14-ID-f - 401 NPDES Water Quality Certification | Open Energy  

Open Energy Info (EERE)

ID-f - 401 NPDES Water Quality Certification ID-f - 401 NPDES Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-ID-f - 401 NPDES Water Quality Certification 14IDFSection401NPDESWaterQualityCertification.pdf Click to View Fullscreen Contact Agencies Idaho Department of Environmental Quality United States Environmental Protection Agency U S Army Corps of Engineers Regulations & Policies Idaho Environmental Protection and Health Act Idaho Administrative Procedure Act Triggers None specified Click "Edit With Form" above to add content 14IDFSection401NPDESWaterQualityCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania  

E-Print Network (OSTI)

Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania Nathaniel R compositions of the effluents reflect the composition of Marcellus Shale produced waters. The discharge to concentrations in Marcellus Shale produced waters. Nonetheless, 226 Ra levels in stream sediments (544-8759 Bq

Jackson, Robert B.

242

Remote sensing of the water quality of shallow lakes: A mixture modelling approach to quantifying phytoplankton in water characterized  

E-Print Network (OSTI)

Remote sensing of the water quality of shallow lakes: A mixture modelling approach to quantifying Research Institute of the Hungarian Academy of Sciences, Tihany, POB 35, H-8237, Hungary Remote sensing has significantly over recent years, the application of satellite remote sensing to lake water is constrained

Tyler, Andrew N.

243

A Microbial and Chemical Water Quality Study of Sixteen Individual Wells in Rural Southern Cochise County, Arizona .  

E-Print Network (OSTI)

??This paper is part of a larger water quality study for Arizona (Marrero-Ortiz et al., 2009) and looks more closely at 22 water samples from (more)

Wright, Debra Lee

2010-01-01T23:59:59.000Z

244

Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California  

E-Print Network (OSTI)

Length Design for Ground Source Heat Pumps. InternationalClosed-Loop/Ground-Source Heat Pump Systems Installationon Closed-Loop Ground-Source Heat Pump Systems. ASHRAE

Warner, J.L.

2009-01-01T23:59:59.000Z

245

South Asia Water Resources Workshop: An effort to promote water quality data sharing in South Asia  

SciTech Connect

To promote cooperation in South Asia on environmental research, an international working group comprised of participants from Bangladesh, India, Nepal, Pakistan, Sri Lanka, and the US convened at the Soaltee Hotel in Kathmandu, Nepal, September 12 to 14, 1999. The workshop was sponsored in part by the Cooperative Monitoring Center (CMC) at Sandia National Laboratories in Albuquerque, New Mexico, through funding provided by the Department of Energy (DOE) Office of Nonproliferation and National Security. The CMC promotes collaborations among scientists and researchers in regions throughout the world as a means of achieving common regional security objectives. In the long term, the workshop organizers and participants are interested in the significance of regional information sharing as a means to build confidence and reduce conflict. The intermediate interests of the group focus on activities that might eventually foster regional management of some aspects of water resources utilization. The immediate purpose of the workshop was to begin the implementation phase of a project to collect and share water quality information at a number of river and coastal estuary locations throughout the region. The workshop participants achieved four objectives: (1) gaining a better understanding of the partner organizations involved; (2) garnering the support of existing regional organizations promoting environmental cooperation in South Asia; (3) identifying sites within the region at which data is to be collected; and (4) instituting a data and information collection and sharing process.

RAJEN,GAURAV; BIRINGER,KENT L.; BETSILL,J. DAVID

2000-04-01T23:59:59.000Z

246

Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL). [Contaminant transport computer codes  

SciTech Connect

This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code.

Bandy, P.J.; Hall, L.F.

1993-03-01T23:59:59.000Z

247

Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL). Version 1.0  

SciTech Connect

This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG&G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code.

Bandy, P.J.; Hall, L.F.

1993-03-01T23:59:59.000Z

248

GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity...  

Open Energy Info (EERE)

GRRSection 6-MT-f - Short-term Water Quality Standard for Turbidity (318 Authorization) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home...

249

GRR/Section 14-MT-d - 401 Water Quality Certification | Open...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon GRRSection 14-MT-d - 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY...

250

GRR/Section 14-ID-d - Section 401 Water Quality Certification...  

Open Energy Info (EERE)

GRRSection 14-ID-d - Section 401 Water Quality Certification Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of...

251

News and Update: Sensors Continually Monitor Water and Air Quality  

Science Conference Proceedings (OSTI)

An Initial Microstructural Analysis of A36 Steel from WTC Building 7 by J.R. Barnett, R.R. ... a system of sensors developed by the U.S. Department of Energy's Sandia ... The system is designed to continually monitor water or air, in- situ, so sample ... to develop a program to train water utilities to assess system vulnerabilities.

252

Results of Year-Round Remotely Sensed Integrated Water Vapor by Ground-Based Microwave Radiometry  

Science Conference Proceedings (OSTI)

Based on two years of measurements with a time resolution of 1 min, some climatological findings on precipitable water vapor (PWV) and cloud liquid water (CLW) in central Europe are given. A weak diurnal cycle is apparent. The mean overall ...

J. Gldner; D. Spnkuch

1999-07-01T23:59:59.000Z

253

Use of Models to Reduce Uncertainty and Improve Ecological Effectiveness of Water Quality Trading Programs  

Science Conference Proceedings (OSTI)

Through a United States Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS) Conservation Innovation Grant, collaborators working on the development of the interstate Ohio River Basin Water Quality Trading Program (www.epri.com/ohiorivertrading) have conducted a robust analysis to evaluate possible approaches for using water quality models for crediting nutrient load reductions from agricultural best management practices (BMPs). A credit estimation method that ensures reliable and...

2011-08-30T23:59:59.000Z

254

Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, November 1993--October 1994  

SciTech Connect

The Ecological Studies Team (EST) of ESH-20 at Los Alamos National Laboratory (LANL) has collected samples from the stream within Sandia Canyon since the summer of 1990. These field studies gather water quality measurements and collect aquatic macroinvertebrates from permanent sampling sites. Reports by Bennett (1994) and Cross (1994) discuss previous EST aquatic studies in Sandia Canyon. This report updates and expands those findings. EST collected water quality data and aquatic macroinvertebrates at five permanent stations within the canyon from November 1993 through October 1994. The two upstream stations are located below outfalls that discharge industrial and sanitary waste effluent into the stream, thereby maintaining year-round flow. Some water quality parameters are different at the first three stations from those expected of natural streams in the area, indicating degraded water quality due to effluent discharges. The aquatic habitat at the upper stations has also been degraded by sedimentation and channelization. The macroinvertebrate communities at these stations are characterized by low diversities and unstable communities. In contrast, the two downstream stations appear to be in a zone of recovery, where water quality parameters more closely resemble those found in natural streams of the area. The two lower stations have increased macroinvertebrate diversity and stable communities, further indications of downstream water quality improvement.

Cross, S.

1995-08-01T23:59:59.000Z

255

Experimental Determination of Water Vapor Profiles from Ground-Based Radiometer Measurements at 21.0 and 31.4 GHz.  

Science Conference Proceedings (OSTI)

Water vapor profiles have been obtained from radiometer measurements at 21.0 and 31.4 GHz and ground values of humidity, temperature and pressure. The inversion technique was based on minimum variance estimation, including constraints derived ...

B. G. Skoog; J. I. H. Askne; G. Elgered

1982-03-01T23:59:59.000Z

256

5 Development of the Water Quality Index (WQI) to Assess  

E-Print Network (OSTI)

. For instance, sites designated by the IJC within Areas of Concern (AOC) (International Joint Commission 2003 though most of the Georgian Bay wetlands were very good quality, AOC sites (Collingwood (CO Georgian Bay wetlands in the good categories (solid bars), the index was able to identify the AOCs

McMaster University

257

Porter-Cologne Water Quality Control Act | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

258

Surface Water Quality Standards (New Jersey) | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

259

Chapter 10 Water Quality Standards (Kentucky) | Open Energy Informatio...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

260

Arsenic Geochemistry in Source Waters of the Los Angeles Aqueduct  

E-Print Network (OSTI)

has focused on arsenic geochemistry in natural waters. ThisG402 XU2-7 ARSENIC GEOCHEMISTRY IN SOURCE WATERS OF T H EOrganism Interactions, Geochemistry, Ground Water Quality,

Hering, Janet G; Wilkie, Jennifer A; Chiu, Van Q

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Water Vapor Flux Measurements from Ground-Based Vertically Pointed Water Vapor Differential Absorption and Doppler Lidars  

Science Conference Proceedings (OSTI)

For the first time, two lidar systems were used to measure the vertical water vapor flux in a convective boundary layer by means of eddy correlation. This was achieved by combining a water vapor differential absorption lidar and a heterodyne wind ...

Andreas Giez; Gerhard Ehret; Ronald L. Schwiesow; Kenneth J. Davis; Donald H. Lenschow

1999-02-01T23:59:59.000Z

262

Ground water of Yucca Mountain: How high can it rise?; Final report  

SciTech Connect

This report describes the geology, hydrology, and possible rise of the water tables at Yucca Mountain. The possibilities of rainfall and earthquakes causing flooding is discussed.

NONE

1992-12-31T23:59:59.000Z

263

Fuzzy expert system for the detection of episodes of poor water quality through continuous measurement  

Science Conference Proceedings (OSTI)

In order to prevent and reduce water pollution, promote a sustainable use, protect the environment and enhance the status of aquatic ecosystems, this article deals with the application of advanced mathematical techniques designed to aid in the management ... Keywords: Automated measurement networks, Fuzzy inference system, Fuzzy logic, Guadiana river, Water quality system

Cecilio Angulo; Joan Cabestany; Pablo Rodrguez; Montserrat Batlle; Antonio Gonzlez; Sergio de Campos

2012-01-01T23:59:59.000Z

264

Engineering quality control of solar-powered intelligent water-saving irrigation  

Science Conference Proceedings (OSTI)

The development tendency of the agricultural irrigation technology is Automatic water-saving irrigation, powered by solar energy and achieved control purposes by moisture content monitoring techniques and the variable irrigation technology. In this paper, ... Keywords: intelligent, quality control, solar power, water-saving irrigation

Liu Xiaochu; Wu Hualong; Ling Jingpeng; Tao Jianhua; Yao Li

2010-03-01T23:59:59.000Z

265

Scoping Document: Water Quality Control Policy on the  

E-Print Network (OSTI)

1 INTRODUCTION Background Annually, thermal electric power plants take in billions of gallons 8 One measure of the plant thermal efficiency used by the power industry is the Net Plant Heat Rate for Power Plant Cooling. March 2008 ii LIST OF PREPARERS The following staff of the State Water Resources

266

University of Rhode Island 2011 Water Quality Report  

E-Print Network (OSTI)

chlorination and adjust pH. The wells and associated pump stations pump treated water into the distribution or domestic wastewater discharges, oil and gas production, mining, or farming. PESTICIDES & HERBICIDES - which, and septic systems. RADIOACTIVE - which can be nat- urally occurring or the result of oil and gas production

Rhode Island, University of

267

CE479D WATER QUALITY LABORATORY SPRING 2009  

E-Print Network (OSTI)

for a number of specified parameters. The first eight laboratory exercises are designed to train students: The ANGEL course management system will be used to communicate with students, to post lecture material for the different water sources tested. A complete analysis of all the data is required to fully evaluate

Burgos, William

268

DOEs Response to Energy Water Availability & Quality Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Re-circ (Wet Tower) 1.2 1.1 Once- Through 46.2 0.1 Re-circ (Wet Tower) 1.5 1.5 Nuclear Fossil Consumption represents evaporation through heat loss Source: EPRI Water &...

269

Program on Technology Innovation: Ohio River Water Quality Trading Pilot Program  

Science Conference Proceedings (OSTI)

Nitrogen discharges to surface waters from power plants are increasing as technologies such as selective catalytic reduction units, electrostatic precipitators, and flue gas desulfurization systems are installed to comply with more stringent air emission requirements. The nitrogen generated by these processes is being transferred to surface water discharges. Concurrently, water quality impairments by nitrogen, new instream nutrient criteria, and anticipated effluent limitations on total nitrogen discharg...

2010-10-15T23:59:59.000Z

270

User`s Guide: Database of literature pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory  

SciTech Connect

Since its beginnings in 1949, hydrogeologic investigations at the Idaho National Engineering Laboratory (INEL) have resulted in an extensive collection of technical publications providing information concerning ground water hydraulics and contaminant transport within the unsaturated zone. Funding has been provided by the Department of Energy through the Department of Energy Idaho Field Office in a grant to compile an INEL-wide summary of unsaturated zone studies based on a literature search. University of Idaho researchers are conducting a review of technical documents produced at or pertaining to the INEL, which present or discuss processes in the unsaturated zone and surface water-ground water interactions. Results of this review are being compiled as an electronic database. Fields are available in this database for document title and associated identification number, author, source, abstract, and summary of information (including types of data and parameters). AskSam{reg_sign}, a text-based database system, was chosen. WordPerfect 5.1{copyright} is being used as a text-editor to input data records into askSam.

Hall, L.F.

1993-05-01T23:59:59.000Z

271

[Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 1, Site assessment report  

SciTech Connect

In April 1990, Wright-Patterson Air Force Base (WPAFB) initiated an effort for the evaluation of potential removal of ground water contamination at the Base. This report presents a current assessment of the nature and extent of the contamination believed to be migrating across the southwestern boundary of Area C and the northern boundary of Area B based upon analysis of existing environmental data obtained from several sources. The existing data base indicates widespread, low-level contamination moving across Base boundaries at levels that pose no immediate threat to the Mad River Valley well fields. An investigation by the City of Dayton in May and June 1990, however, implies that a more identifiable plume of PCE and TCE may be crossing the southwestern boundary of Area C immediately downgradient of Landfill 5. More data is needed to delineate ground water contamination and to design and implement a suitable control system. This report concludes that although an extensive study of the boundaries in question would be the preferred approach, a limited, focused investigation and subsequent feasibility study can be accomplished with a reasonable certainty of achieving the desired outcome of this project.

Not Available

1991-10-01T23:59:59.000Z

272

Continuous Water Vapor Profiles from Operational GroundBased Active and Passive Remote Sensors  

Science Conference Proceedings (OSTI)

The Atmospheric Radiation Measurement program's Southern Great Plains Cloud and Radiation Testbed site central facility near Lamont, Oklahoma, offers unique operational water vapor profiling capabilities, including active and passive remote ...

D. D. Turner; W. F. Feltz; R. A. Ferrare

2000-06-01T23:59:59.000Z

273

Program on Technology Innovation: Water Quality Trading Program for Nitrogen  

Science Conference Proceedings (OSTI)

Anthropogenic releases of nitrogen have greatly increased environmental fluxes of biologically available nitrogen and contributed to serious ecological problems, such as algal blooms that cause waters to become severely depleted of oxygen. Power plant sources of nitrogen include NOx air emissions, the ammonia required for the Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) systems that are used for NOx reduction, and the ammonia used for SOx control and ash pond condition...

2007-05-15T23:59:59.000Z

274

Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress report for the period July 1 to September 30, 1988: Volume 1, Text  

Science Conference Proceedings (OSTI)

This report describes the progress of 12 Hanford ground-water monitoring projects for the period July 1 to September 30, 1988. During this quarter, field activities at the 300 Area process trenches, the Nonradioactive Dangerous Waste Landfill, the 183-H Solar Evaporation Basins, the 1324-N/NA Surface Impoundment and Percolation Ponds, the 1301-N and 1325-N Liquid Waste Disposal Facilities, and the 216-A-36B Crib consisted of ground-water sampling and analyses, and water-level monitoring. The 200 Area Low-Level Burial Grounds section includes well development data, sediment analysis, and water-level measurements. Ground-water sampling was begun at this site, and results will be included in next quarter's report. Twelve new wells were installed during the quarter, two at the 216-A-29 Ditch, size at the 216-A-10 Crib, and four at the 216-B-3 Pond. Preliminary characterization data for these new wells are included in this report. Driller's logs and other drilling and site characterization data will be provided in the next quarterly report. At the 2101-M Pond, construction was completed on four wells, and initial ground-water samples were taken. The drilling logs, geophysical logging data, and as-built diagrams are included in this report in Volume 2. 19 refs., 24 figs., 39 tabs.

Fruland, R.M.; Bates, D.J.; Lundgren, R.E.

1989-02-01T23:59:59.000Z

275

A Transient Numerical Simulation of Perched Ground-Water Flow at the Test Reactor Area, Idaho National Engineering and Environmental Laboratory, Idaho, 1952-94  

SciTech Connect

Studies of flow through the unsaturated zone and perched ground-water zones above the Snake River Plain aquifer are part of the overall assessment of ground-water flow and determination of the fate and transport of contaminants in the subsurface at the Idaho National Engineering and Environmental Laboratory (INEEL). These studies include definition of the hydrologic controls on the formation of perched ground-water zones and description of the transport and fate of wastewater constituents as they moved through the unsaturated zone. The definition of hydrologic controls requires stratigraphic correlation of basalt flows and sedimentary interbeds within the saturated zone, analysis of hydraulic properties of unsaturated-zone rocks, numerical modeling of the formation of perched ground-water zones, and batch and column experiments to determine rock-water geochemical processes. This report describes the development of a transient numerical simulation that was used to evaluate a conceptual model of flow through perched ground-water zones beneath wastewater infiltration ponds at the Test Reactor Area (TRA).

B. R. Orr (USGS)

1999-11-01T23:59:59.000Z

276

Review: The impact of agricultural activities on water quality: A case for collaborative catchment-scale management using integrated wireless sensor networks  

Science Conference Proceedings (OSTI)

The challenge of improving water quality is a growing global concern, typified by the European Commission Water Framework Directive and the United States Clean Water Act. The main drivers of poor water quality are economics, poor water management, agricultural ... Keywords: Agricultural activities, Catchment, Collaborative, Water quality monitoring and management, Wireless sensor networks

Huma Zia, Nick R. Harris, Geoff V. Merrett, Mark Rivers, Neil Coles

2013-08-01T23:59:59.000Z

277

Measurement of Low Amounts of Precipitable Water Vapor Using Ground-Based Millimeterwave Radiometry  

Science Conference Proceedings (OSTI)

Extremely dry conditions characterized by amounts of precipitable water vapor (PWV) as low as 12 mm commonly occur in high-latitude regions during the winter months. While such dry atmospheres carry only a few percent of the latent heat energy ...

Paul E. Racette; Ed R. Westwater; Yong Han; Albin J. Gasiewski; Marian Klein; Domenico Cimini; David C. Jones; Will Manning; Edward J. Kim; James R. Wang; Vladimir Leuski; Peter Kiedron

2005-04-01T23:59:59.000Z

278

Heating and cooling of municipal buildings with waste heat from ground water  

DOE Green Energy (OSTI)

The feasibility of using waste heat from municipal water wells to replace natural gas for heating of the City Hall, Fire Station, and Community Hall in Wilmer, Texas was studied. At present, the 120/sup 0/F well water is cooled by dissipating the excess heat through evaporative cooling towers before entering the distribution system. The objective of the study was to determine the pumping cycle of the well and determine the amount of available heat from the water for a specified period. This data were correlated with the heating and cooling demand of the City's buildings, and a conceptual heat recovery system will be prepared. The system will use part or all of the excess heat from the water to heat the buildings, thereby eliminating the use of natural gas. The proposed geothermal retrofit of the existing natural gas heating system is not economical because the savings in natural gas does not offset the capital cost of the new equipment and the annual operating and maintenance costs. The fuel savings and power costs are a virtual trade-off over the 25-year period. The installation and operation of the system was estimated to cost $105,000 for 25 years which is an unamortized expense. In conclusion, retrofitting the City of Wilmer's municipal buildings is not feasible based on the economic analysis and fiscal projections as presented.

Morgan, D.S.; Hochgraf, J.

1980-10-01T23:59:59.000Z

279

Effects of the Water Quality Maintained by Ozonation Enhanced Ecosystem in the Landscape of Reclaimed Water  

Science Conference Proceedings (OSTI)

the landscape of reclaimed water always broke out water bloom because of containing high concentrations of nitrogen and phosphorus. The TP and TN of the landscape decreased to 0.04mg/L and 2.27mg/L respectively with recycling ozonation at the end of ... Keywords: ozonation, algae, nutrient removal, ecosystem, landscape of reclaimed water

Yu Demiao; Ma Jun; Bai Yu; Gan Yiping

2009-10-01T23:59:59.000Z

280

Evaluating the Quality of Ground-Based Microwave Radiometer Measurements and Retrievals Using Detrended Fluctuation and Spectral Analysis Methods  

Science Conference Proceedings (OSTI)

Time series both of microwave radiometer brightness temperature measurements at 23.8 and 31.4 GHz and of retrievals of water vapor and liquid water path from these brightness temperatures are evaluated using the detrended fluctuation analysis ...

K. Ivanova; E. E. Clothiaux; H. N. Shirer; T. P. Ackerman; J. C. Liljegren; M. Ausloos

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Water quality in the vicinity of Fenton Hill: Progress report, 1983 and 1984  

DOE Green Energy (OSTI)

Water quality data have been collected since 1974 from established surface and groundwater stations at and in the vicinity of Fenton Hill (Hot Dry Rock Geothermal Demonstration Site) located in the Jemez Mountains. This is part of a continued program of environmental studies. There has been a slight variation in chemical quality of water from the surface and groundwater stations; however, these variations are within normal seasonal fluctuations. Water supply at the site is pumped from the aquifer in the Abiquiu Tuff. Cumulative production from 1976 through 1984 has been 41.5 x 10/sup 6/ gal. The water level in the supply well declined from 365 ft in 1976 to 379 ft in 1984.

Purtymun, W.D.; Ferenbaugh, R.W.; Becker, N.M.; Williams, M.C.; Maes, M.

1987-01-01T23:59:59.000Z

282

Ground-water characterization field activities for 1995--1996 Laboratory for Energy-Related Health Research, University of California, Davis  

SciTech Connect

This report documents ground-water characterization field activities completed from August to December 1995 and in January 1996 at the Laboratory for Energy-Related Health Research (LEHR) in Davis, California. The ground water at LEHR is one of several operable units under investigation by Pacific Northwest National Laboratory for the US Department of Energy. The purpose of this work was to further characterize the hydrogeology beneath the LEHR site, with the primary focus on ground water. The objectives were to estimate hydraulic properties for the two uppermost saturated hydrogeologic units (i.e., HSU-1 and HSU-2), and to determine distributions of contaminants of concern in these units. Activities undertaken to accomplish these objectives include well installation, geophysical logging, well development, ground-water sampling, slug testing, Westbay ground-water monitoring system installation, continuous water-level monitoring, Hydropunch installation, and surveying. Ground-water samples were collected from 61 Hydropunch locations. Analytical results from these locations and the wells indicate high chloroform concentrations trending from west/southwest to east/northeast in the lower portion of HSU-1 and in the upper and middle portions of HSU-2. The chloroform appears to originate near Landfill 2. Tritium was not found above the MCL in any of the well or Hydropunch samples. Hexavalent chromium was found at four locations with concentrations above the MCL in HSU-1 and at one location in HSU-2. One well in HSU-1 had a total chromium concentration above the MCL. Nitrate-nitrogen above the MCL was found at several Hydropunch locations in both HSU-1 and HSU-2.

Liikala, T.L.; Lanigan, D.C.; Last, G.V. [and others

1996-05-01T23:59:59.000Z

283

Study of the Reactions Controlling the Mobility of Uranium in Ground and Surface Water Systems in Contact with Apatite  

SciTech Connect

The objective of this project was to define the mechanisms, equilibria, kinetics, and extent of sorption of aqueous uranium onto hydroxyapatite (Ca{sub 5}(PO{sub 4}){sub 3}(OH)) for a range of pH, ionic strength, aqueous uranium concentration, dissolved carbon/air CO{sub 2}, and mineral surface area. We conducted chemical modeling, batch and flow-through experiments, chemical analysis, x-ray absorption and diffraction measurement, and electron microscopy. Our motivation was the need to immobilize U in water and soil to prevent it's entry into water supplies and ultimately, biological systems. Applying hydroxyapatite to in-situ treatment of uranium-bearing ground water could be an effective, low cost technology. We found that hydroxyapatite quickly, effectively, and reversibly sorbed uranium at a high capacity by inner-sphere complexation over a wide range of conditions. Our results indicate that at aqueous uranium concentrations below 10-20 ppb: (1) equilibrium sorption of uranium to hydroxyapatite occurs in hours, regardless of pH; (2) in ambient and CO{sub 2}-free atmospheres, over 98% of initial uranium is sorbed to hydroxyapatite, (3) in waters in equilibrium with higher air CO{sub 2} concentrations, sorption removed over 97% of aqueous uranium, except above pH 9, where aqueous uranium concentrations were reduced by less than 40%, and (4) at near-neutral pH, bicarbonate alkalinities in excess of 500 slightly retarded sorption of uranium to hydroxyapatite, relative to lower alkalinities. Uranium sorption and precipitation are reversible and are not appreciably affected by ionic strength. The reversibility of these reactions requires that in situ treatment be carefully monitored to avoid breakthrough and de-sorption of uranium unto ground water. At typical surface conditions, sorption is the only mode of uranium sequestration below 20-50 ppb U - above this range, precipitation of uranium phosphate minerals begins to dominate sequestration processes. We verified that one m{sup 2} of hydroxyapatite can sorb over 7.53 X 10{sup -6} moles or 1.8 mg of uranium in agreement with calculations based on phosphate and calcium oxide sites on the unit cell. Our work is significant because small masses of hydroxyapatite can sorb appreciable masses of uranium quickly over a wide range of chemistries. Preliminary work with ground water containing 260 ppb of uranium and cow bone char indicates that its sorptive capacity is appreciable less than pure hydroxyapatite. Pure crystalline hydroxyapatite sequestered 2.9 mg of uranium per m{sup 2} as opposed to 0.083 mg of uranium sequestered per m{sup 2} of cow bone char, or 27% versus 3.5% by surface area, respectively. Extended x-ray adsorption fine structure (EXAFS) spectroscopy defined mono- and bidentate sorption of uranium to phosphate and calcium oxide groups on the hydroxyapatite surface. The EXAFS data indicate that up to several thousand parts U per million parts hydroxyapatite, surface complexation, and not precipitation, is the predominant process. Above this uranium: hydroxyapatite mass ratio, precipitation of meta-autunite (H{sub 2}(UO{sub 2})2(PO{sub 4}){sub 2} x 10H{sub 2}0) dominates the sequestration process.

Taffet, M

2004-04-22T23:59:59.000Z

284

Guidance for Implementing U.S. Environmental Protection Agencys 2001 Methylmercury Water Quality Criterion  

Science Conference Proceedings (OSTI)

Adoption of the U.S. Environmental Protection Agency (EPA) Methylmercury Water Quality Criterion in 2001 raised many issues for permitting agencies and for individual discharges. Among the issues was how to translate from a tissue-based criterion to a water-column-based criteria for methylmercury. Adoption of a methylmercury standard requires translation to other forms of mercury if, for instance, permits continue to be written in terms of total recoverable mercury. This report covers a number of issues ...

2010-11-16T23:59:59.000Z

285

Soil and water quality implications of production of herbaceous and woody energy crops  

DOE Green Energy (OSTI)

Field-scale studies in three physiographic regions of the Tennessee Valley in the Southeastern US are being used to address the environmental effects of producing biomass energy crops on former agricultural lands. Comparison of erosion, surface water quality and quantity, and subsurface movement of water and nutrients from woody crops, switchgrass and agricultural crops began with crop establishment in 1994. Nutrient cycling, soil physical changes, and productivity of the different crops are also being monitored at the three sites.

Tolbert, V.R. [Oak Ridge National Lab., TN (United States); Lindberg, J.E. [Oak Ridge Inst. of Science and Education, TN (United States); Green, T.H. [Alabama A and M Univ., Normal, AL (United States). Dept. of Plant and Soil Science] [and others

1997-10-01T23:59:59.000Z

286

Hydrologic and Water-Quality Conditions During Restoration of the Wood River Wetland,  

E-Print Network (OSTI)

.S. Geological Survey #12;Front Cover: Aerial view of the lower Wood River Valley showing the Wood River Wetland.S. Geological Survey, January 2003. #12;Hydrologic and Water-Quality Conditions During Restoration of the Wood­5004 U.S. Department of the Interior U.S. Geological Survey #12;U.S. Department of the Interior KEN

287

The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling  

E-Print Network (OSTI)

The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling Methane, including shale gas drilling. Monitoring techniques exist for detecting methane and, in some cases detail within the context of shale gas drilling activities in New York, as well as their uses

Wang, Z. Jane

288

Water Quality: 2007 Data, BPA-51; Preliminary Report, January 26, 2009.  

DOE Green Energy (OSTI)

Print Out No.1 presents a listing of the initial data. The variables included were: SITE, REP, NH4, NO2{_}3, SRP, TDP, TN, TP, and JULIAN , representing site code, replication number, ammonia nitrogen, nitrate and nitrite nitrogen, soluble reactive phosphorus, total dissolved phosphorus, total nitrogen, total phosphorus, and Julian date, respectively. All values for nitrogen, phosphorus, and carbon variables are recorded as {micro}g/L. The 2007 water quality data received by SCS required considerable manipulation and data management prior to analysis. If it is anticipated that water quality data received by SCS in the future will be of the same format, the time to carry out the necessary reformatting of the data should be taken into consideration. The levels of SRP from water quality data of previous years were often below detection limits. The data from 2007 showed elevated levels for this and other responses. This pattern was seemingly unrelated to nutrient addition treatments, however, as they appeared consistently across the study area. The river fertilization program was begun in 2005. Because the procedures for detection of nutrients and metals are quite sensitive, SCS recommends that any future water quality samples taken on, or close to, the dates of fertilizer application be carried out with the utmost care to avoid contamination issues. Doing so will ensure consistency and reliability in the resulting data.

Holderman, Charles

2009-02-10T23:59:59.000Z

289

DOE/EA-1312: Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) (September 1999)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Rev. 0 Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) Final September 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy EA of Ground Water Compliance at the Grand Junction UMTRA Project Site DOE Grand Junction Office Page ii Final September 1999 Contents Executive Summary.........................................................................................................................v 1.0 Introduction...............................................................................................................................1 1.1 Grand Junction UMTRA Project Site Location and Description.........................................1

290

DOE/EA-1313: Environmental Assessment of Ground Water Compliance at the Monument Valley, Arizona, Uranium Mill Tailings Site (03/22/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EA-1313 DOE/EA-1313 Rev. 0 Environmental Assessment of Ground Water Compliance at the Monument Valley, Arizona, Uranium Mill Tailings Site Final March 2005 Prepared by U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Document Number U0069700 This Page Intentionally Blank DOE Office of Legacy Management EA of Ground Water Compliance at the Monument Valley Site March 2005 Final Page iii Contents Page Acronyms and Abbreviations ....................................................................................................... vii Executive Summary.......................................................................................................................

291

Pesticides in ground water database: A compilation of monitoring studies, 1971-1991. Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming). Final report  

SciTech Connect

The report presents summary results on pesticide monitoring of ground water from 1971 to 1991. It is compiled from ground water monitoring projects performed primarily by federal agencies, state agencies and research institutions. The data is well and sample specific. The report is broken into a National Summary and 10 US EPA regional volumes. The information is presented as text, maps, graphs and tables on a national, EPA regional and state/county level. The Region 8 volume is comprised of data from Colorado, Montana, North Dakota, South Dakota and Wyoming.

Hoheisel, C.; Karrier, J.; Lees, S.; Davies-Hilliard, L.; Hannon, P.

1992-08-01T23:59:59.000Z

292

Geothermal assessment of the lower Bear River drainage and northern East Shore ground-water areas, Box Elder County, Utah  

DOE Green Energy (OSTI)

The Utah Geological and Mineral Survey (UGMS) has been researching the low-temperature geothermal resource potential in Utah. This report, part of an area-wide geothermal research program along the Wasatch Front, concerns the study conducted in the lower Bear River drainage and northern East Shore ground-water areas in Box Elder County, Utah. The primary purpose of the study is to identify new areas of geothermal resource potential. There are seven known low-temperature geothermal areas in this part of Box Elder County. Geothermal reconnaissance techniques used in the study include a temperature survey, chemical analysis of well and spring waters, and temperature-depth measurements in accessible wells. The geothermal reconnaissance techniques identified three areas which need further evaluation of their low-temperature geothermal resource potential. Area 1 is located in the area surrounding Little Mountain, area 2 is west and southwest of Plymouth, and area 3 is west and south of the Cutler Dam. 5 figures, 4 tables.

Klauk, R.H.; Budding, K.E.

1984-07-01T23:59:59.000Z

293

Evaporative Concentration of 100x J13 Ground Water at 60% Relative Humidity and 90C  

Science Conference Proceedings (OSTI)

In these experiments we studied the behavior of a synthetic concentrated J13 solution as it comes in contact with a Ni-Cr-Mo-alloy selected for waste canisters in the designated high-level nuclear-waste repository at Yucca Mountain, Nevada. Concentrated synthetic J13 solution was allowed to drip slowly onto heated test specimens (90 C, 60% relative humidity) where the water moved down the surface of the specimens, evaporated and minerals precipitated. Mineral separation or zoning along the evaporation path was not observed. We infer from solid analyses and geochemical modeling, that the most corrosive components (Ca, Mg, and F) are limited by mineral precipitation. Minerals identified by x-ray diffraction include thermonatrite, natrite, and trona, all sodium carbonate minerals, as well as kogarkoite (Na{sub 3}SO{sub 4}F), halite (NaCl), and niter (KNO{sub 3}). Calcite and a magnesium silicate precipitation are based on chemical analyses of the solids and geochemical modeling. The most significant finding of this study is that sulfate and fluoride concentrations are controlled by the solubility of kogarkoite. Kogarkoite thermodynamic data are needed in the Yucca Mountain Project database to predict the corrosiveness of carbonate brines and to establish the extent to which fluoride is removed from the brines as a solid.

Staggs, K; Maureen Alai,; Hailey, P; Carroll, S A; Sutton, M; Nguyen, Q A

2003-12-04T23:59:59.000Z

294

Drinking water quality standards and standard tests: Worldwide. (Latest citations from Food Science & Technology Abstracts (FSTA)). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning the laws, regulations, standards, and testing methods for drinking water from domestic and international sources. Citations discuss quality standardization and control. Topics include safety codes for drinking water systems and installations, contaminated water and toxicity analyses, biological and chemical standards, diseases derived from drinking water, plastic materials for water packaging, and natural mineral drinking water. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-10-01T23:59:59.000Z

295

Use of compost filter bermsfor sediment trapping: primary focus on water quality and structural stability  

E-Print Network (OSTI)

Runoff from road construction and maintenance sites is responsible for erosion and deposition of sediments in the receiving water bodies. In addition to soil particles from erosion, runoff also transports other pollutants such as rubber, toxic metals, automobile fluids, car exhausts (which settle with the rain), pesticides, fertilizers, and other debris. Compost has been used effectively as a valuable soil amendment to aid plant growth. Berms (mounds) of compost placed at the top or bottom of steep slopes can be used to slow the velocity of water and provide additional protection for receiving waters. However, a downside of the application of composted organic material is the potential degradation of runoff water quality. Overloading with nitrogen and phosphorus causes eutrophication, which reduces the suitability of waterways for beneficial uses. A field testing of the berms coupled with a laboratory analysis of the testing water will provide a basis for the impact of the compost berms on the runoff water quality. The study of the impact of compost on the runoff water quality was investigated. The objective of this study was to evaluate the performance of berms made from various materials such as dairy manure compost, yard waste compost and composted bio-solids mixed with wood chips in a ratio of 50:50 on the runoff water quality, as well as, the sediment removal efficiencies. Field tests were performed on the berms to simulate conventional rainfall runoff and the tested water was collected as time-weighted samples and analyzed in the laboratory. Several variables were investigated during this study. Results of this investigation demonstrated that the effectiveness of this application was hampered by the structural instability of the berm. A 100% failure rate was observed in the berms tested. Optimum performance was observed in yard waste compost berms, which introduced the least amount of contaminants into the water. However, some masking effect could be present due to berm failures. In fact, the actual sediment removal by the berms could not be determined. The study of compost filter berms showed some evidence of the existence of first flush effect.

Raut Desai, Aditya Babu

2004-08-01T23:59:59.000Z

296

Remedial investigation sampling and analysis plan for J-Field, Aberdeen Proving Ground, Maryland: Volume 2, Quality Assurance Project Plan  

SciTech Connect

J-Field encompasses about 460 acres at the southern end of the Gunpowder Neck Peninsula in the Edgewood Area of APG (Figure 2.1). Since World War II, the Edgewood Area of APG has been used to develop, manufacture, test, and destroy chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). For the purposes of this project, J-Field has been divided into eight geographic areas or facilities that are designated as areas of concern (AOCs): the Toxic Burning Pits (TBP), the White Phosphorus Burning Pits (WPP), the Riot Control Burning Pit (RCP), the Robins Point Demolition Ground (RPDG), the Robins Point Tower Site (RPTS), the South Beach Demolition Ground (SBDG), the South Beach Trench (SBT), and the Prototype Building (PB). The scope of this project is to conduct a remedial investigation/feasibility study (RI/FS) and ecological risk assessment to evaluate the impacts of past disposal activities at the J-Field site. Sampling for the RI will be carried out in three stages (I, II, and III) as detailed in the FSP. A phased approach will be used for the J-Field ecological risk assessment (ERA).

Prasad, S.; Martino, L.; Patton, T.

1995-03-01T23:59:59.000Z

297

Education Program for Improved Water Quality in Copano Bay Final Report  

E-Print Network (OSTI)

The Copano Bay watershed covers approximately 1.4 million acres encompassing portions of Karnes, Bee, Goliad, Refugio, San Patricio and Aransas counties. Copano Bay and its main tributaries, the Mission and Aransas rivers, were placed on the Texas Commission on Environmental Quality (TCEQ) 303(d) list in 1998 due to levels of bacteria that exceed water quality standards established to protect oyster waters use. A Total Maximum Daily Load (TMDL) program was initiated in September 2003 to identify and assess sources of these bacteria. The Center for Research in Water Resources at the University of Texas at Austin (UT CRWR) was funded by TCEQ to conduct computer-based modeling to determine the bacterial loading and reductions necessary to attain water quality standards. Subsequently Texas A&M University-Corpus Christi (TAMU-CC) conducted bacterial source tracking (BST) with funding from Texas General Land Office (TGLO) and the Coastal Bend Bays and Estuaries Program (CBBEP) to determine actual sources of bacteria. Due to the findings of the initial efforts of the TMDL and concerns voiced by stakeholders in the watershed, Texas AgriLife Extension Service was awarded a Clean Water Act 319(h) Nonpoint Source Grant from the Texas State Soil and Water Conservation Board (TSSWCB) and the U.S. Environmental Protection Agency. The overall goal of this project was to improve water quality in Copano Bay and its tributaries by increasing awareness of water quality issues throughout the watershed. This increased awareness was to be accomplished by providing education and demonstrations for land and livestock owners in the watershed on best management practices (BMPs) to decrease or prevent bacteria from entering waterways. Through creation of a project website, 52 educational programs, and nine one-on-one consultations over the span of the project, we have reached 5,408 residents in and around the Copano Bay watershed. Additionally, through this project all data collected for the initial TMDL efforts was re-evaluated and findings were presented in the Task 2 Report. Project members developed a curriculum for horse owners, A Guide to Good Horsekeeping that addressed BMPs specific to horse operations. Land and livestock owners who had already implemented BMPs or were interested in implementing BMPs were given a participation certificate.

Berthold, A.; Moench, E.; Wagner, K.; Paschal, J.

2012-05-17T23:59:59.000Z

298

Water Quality Trends in the Entiat River Subbasin: Final 2008 Annual Report.  

DOE Green Energy (OSTI)

The ISEMP program monitors the status and trend of water quality elements that may affect restoration project effectiveness in the Entiat subbasin. As part of this effort, the PNW Research Station (PNW) measures, analyzes and interprets temporal trends in natural stream water pH, dissolved oxygen, specific conductivity and temperature. The Entiat River is currently on the Clean Water Act 303(d) list for pH exceedence, and there is insufficient information to determine the spatial and temporal extent or potential causes of this exceedence. In the spring 2008, PNW redeployed data-logging, multiparameter probes at four locations in the Entiat subbasin to measure water quality parameters, focusing on pH. This resumed previous data collection that was interrupted by river ice in early December 2007. Instruments were again removed from the river in early December 2008. This annual report covers the period from December 2007 through December 2008. The highest pH values occurred during the low-flow period from midsummer through the following midspring then dropped sharply during the annual snowmelt runoff period from late spring through early summer. Water temperature began rapidly increasing during the receding limb of the annual snowmelt hydrograph. Highest mean monthly temperatures occurred in July and August, while instantaneous maxima occurred during the period July-September. Dissolved oxygen reached its lowest levels during the period of highest water temperature in July-September. Specific conductivity remained very low at all sites throughout the year.

Woodsmith, Richard; Bookter, Andy [PNW Research Station, USDA Forest Service, Wenatchee, WA

2009-03-30T23:59:59.000Z

299

Analysis of the impact of energy crops on water quality. Final report  

Science Conference Proceedings (OSTI)

This report consists of two separate papers. The first, ``The potential use of agricultural simulation models in predicting the fate of nitrogen and pesticides applied to switchgrass and poplars,`` describes three models (CREAMS, GLEAMS, and EPIC) for the evaluation of the relationships which determine water quality in the agroecosystem. Case studies are presented which demonstrate the utility of these models in evaluating the potential impact of alternative crop management practices. The second paper, ``Energy crops as part of a sustainable landscape,`` discusses concepts of landscape management and the linkage among agricultural practices and environmental quality.

Hatfield, J.L.; Gale, W.J.

1993-04-16T23:59:59.000Z

300

Intercomparison of Water Vapor Data Measured with Lidar during IHOP_2002. Part I: Airborne to Ground-Based Lidar Systems and Comparisons with Chilled-Mirror Hygrometer Radiosondes  

Science Conference Proceedings (OSTI)

The water vapor data measured with airborne and ground-based lidar systems during the International H2O Project (IHOP_2002), which took place in the Southern Great Plains during 13 May25 June 2002 were investigated. So far, the data collected ...

Andreas Behrendt; Volker Wulfmeyer; Hans-Stefan Bauer; Thorsten Schaberl; Paolo Di Girolamo; Donato Summa; Christoph Kiemle; Gerhard Ehret; David N. Whiteman; Belay B. Demoz; Edward V. Browell; Syed Ismail; Richard Ferrare; Susan Kooi; Junhong Wang

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Health assessment for Ossineke ground water (Ossineke Residential Wells), Ossineke, Michigan, Region 5. CERCLIS No. MID980794440. Preliminary report  

SciTech Connect

Ossineke Residential Wells are listed on the National Priorities List. The site is located in Alpena County, Michigan. In 1977, several residential wells were determined to be contaminated with components of gasoline, benzene, toluene, xylene, phenol, and tetrachloroethylene. Possible contamination sources include leaking underground gas storage tanks, a lagoon used for waste disposal by a commercial laundromat, or an auto rustproofing operation. Ground water samples showed maximum concentrations detected in parts per billion (ppb): benzene, 21,000; toluene, 53,000; xylene, 11,000; and PCE, 7 ppb. Sampling of the residential wells in 1988 showed the following maximum concentrations in ppb: benzene, 6,590; toluene, 726; xylene, 2,500; tetrachloroethylene, 16; and phenol, 26. The site is of potential public-health concern because of the risk to human health that could result from possible exposure to hazardous substances at levels that may result in adverse health effects over time. Human exposure to benzene, tetrachloroethylene, toluene, xylene, and phenol may occur via the exposure pathways of ingestion, inhalation, and dermal contact.

Not Available

1989-03-10T23:59:59.000Z

302

Barriers and Solutions for Farmer Participation in the Ohio River Basin Water Quality Trading Program  

Science Conference Proceedings (OSTI)

As part of a multiyear collaborative effort, American Farmland Trust (AFT) convened six listening sessions with approximately 150 agricultural producers (farmers) in the Ohio River Basin (ORB) to determine their readiness to sell nutrient credits in a regional water quality trading (WQT) market. In a WQT market, municipal wastewater treatment plants, industrial manufacturing plants, and electric power companies can purchase nutrient credits to meet their regulatory requirements. They pay farmers to imple...

2011-09-01T23:59:59.000Z

303

Impact of Key Electric Power Industry Regulatory Issues on Opportunities in Water Quality Trading  

Science Conference Proceedings (OSTI)

Based on EPRI water quality trading (WQT) research on nutrients (i.e., nitrogen and phosphorus), this technical update explores potential application of WQT for other electric power generation waste streams and pollutants in addition to considering the potential impact of existing regulatory issues on the trading for nutrient credits. For each of the opportunities identified, a discussion of potential issues associated with that application is discussed. This document also identifies ...

2012-12-31T23:59:59.000Z

304

File:06MTFShortTermWaterQualityStandardForTurbidity318Authorization.pdf |  

Open Energy Info (EERE)

MTFShortTermWaterQualityStandardForTurbidity318Authorization.pdf MTFShortTermWaterQualityStandardForTurbidity318Authorization.pdf Jump to: navigation, search File File history File usage File:06MTFShortTermWaterQualityStandardForTurbidity318Authorization.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 25 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:14, 1 October 2012 Thumbnail for version as of 12:14, 1 October 2012 1,275 × 1,650 (25 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following page links to this file:

305

File:Colorado Water Quality Control Act.pdf | Open Energy Information  

Open Energy Info (EERE)

Water Quality Control Act.pdf Water Quality Control Act.pdf Jump to: navigation, search File File history File usage Metadata File:Colorado Water Quality Control Act.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 413 KB, MIME type: application/pdf, 69 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:23, 14 March 2013 Thumbnail for version as of 14:23, 14 March 2013 1,275 × 1,650, 69 pages (413 KB) Alevine (Talk | contribs)

306

Quality control of chemical and isotopic analyses of geothermal water samples  

DOE Green Energy (OSTI)

Chemical and isotopic analyses of geothermal water samples must meet certain levels of accuracy and reliability to be useful for identifying geochemical processes in hydrothermal systems. Quality control is largely a concern for the analytical laboratory, but the geochemist or reservoir engineer using the chemical data must also be concerned with analytical quality. To test accuracy and reliability of analyses available from laboratories, splits of seven water samples were sent to four stable-isotope laboratories, and splits of five water samples were sent to four chemical laboratories. The analyses of each sample were compared among laboratories, and the differences in analyses were evaluated using criteria developed for this comparison. Isotopic compositions were considered reliable if they deviated from mean values by less than 2{per_thousand}, for hydrogen and by less than 0.15{per_thousand}, for oxygen. Concentrations of each chemical component were considered reliable if they differed from mean values by less than 10%. Chemical analyses were examined for internal consistency by calculating the error in ionic charge balance and the error between ionic charge and electrical conductivity. To be considered internally consistent, chemical analyses must have less than 5% error in charge balance and less than 10% error in conductivity balance. Three isotope laboratories gave consistent compositions of all samples. No chemical laboratory gave consistent analyses of all samples. Recommendations are made that provide the user of isotopic and chemical data with the ability to better evaluate the quality of analyses.

Reed, Marshall J.; Mariner, Robert H.

1991-01-01T23:59:59.000Z

307

UMTRA Ground Water Project  

Office of Legacy Management (LM)

... 7 Figure 3. Uranium Distribution from April 2013 Sampling at the Gunnison, Colorado, Processing Site...

308

UMTRA project water sampling and analysis plan, Grand Junction, Colorado  

Science Conference Proceedings (OSTI)

Surface remedial action will be completed at the Grand Junction processing site during the summer of 1994. Results of 1993 water sampling indicate that ground water flow conditions and ground water quality at the processing site have remained relatively constant with time. Uranium concentrations in ground water continue to exceed the maximum concentration limits, providing the best indication of the extent of contaminated ground water. Evaluation of surface water quality of the Colorado River indicate no impact from uranium processing activities. No compliance monitoring at the Cheney disposal site has been proposed because ground water in the Dakota Sandstone (uppermost aquifer) is classified as limited-use (Class 111) and because the disposal cell is hydrogeologically isolated from the uppermost aquifer. The following water sampling and water level monitoring activities are planned for calendar year 1994: (i) Semiannual (early summer and late fall) sampling of six existing monitor wells at the former Grand Junction processing site. Analytical results from this sampling will be used to continue characterizing hydrogeochemical trends in background ground water quality and in the contaminated ground water area resulting from source term (tailings) removal. (ii) Water level monitoring of approximately three proposed monitor wells projected to be installed in the alluvium at the processing site in September 1994. Data loggers will be installed in these wells, and water levels will be electronically monitored six times a day. These long-term, continuous ground water level data will be collected to better understand the relationship between surface and ground water at the site. Water level and water quality data eventually will be used in future ground water modeling to establish boundary conditions in the vicinity of the Grand Junction processing site. Modeling results will be used to help demonstrate and document the potential remedial alternative of natural flushing.

Not Available

1994-07-01T23:59:59.000Z

309

Okanogan Subbasin Water Quality and Quantity Report for Anadromous Fish in 2006.  

DOE Green Energy (OSTI)

Fish need water of sufficient quality and quantity in order to survive and reproduce. The list of primary water quality indicators appropriate for monitoring of anadromous fish, as identified by the Upper Columbia Monitoring Strategy, includes: discharge, temperature, dissolved oxygen, pH, turbidity, conductivity, nitrogen, phosphorus and ammonia. The Colville Tribes Fish and Wildlife Department began evaluating these water quality indicators in 2005 and this report represents data collected from October 1, 2005 through September 30, 2006. We collected empirical status and trend data from various sources to evaluate each water quality indicator along the main stem Okanogan and Similkameen Rivers along with several tributary streams. Each water quality indicator was evaluated based upon potential impacts to salmonid survival or productivity. Specific conductance levels and all nutrient indicators remained at levels acceptable for growth, survival, and reproduction of salmon and steelhead. These indicators were also considered of marginal value for monitoring environmental conditions related to salmonids within the Okanogan subbasin. However, discharge, temperature, turbidity, dissolved oxygen and pH in that order represent the water quality indicators that are most useful for monitoring watershed health and habitat changes and will help to evaluate threats or changes related to salmon and steelhead restoration and recovery. On the Okanogan River minimum flows have decreased over the last 12 years at a rate of -28.3CFS/year as measured near the town of Malott, WA. This trend is not beneficial for salmonid production and efforts to reverse this trend should be strongly encouraged. Turbidity levels in Bonaparte and Omak Creek were a concern because they had the highest monthly average readings. Major upland disturbance in the Bonaparte Creek watershed has occurred for decades and agricultural practices within the riparian areas along this creek have lead to major channel incision and bank instability. High sediment loads continue to threaten Omak and Bonaparte sub-watersheds. Major rehabilitation efforts are needed within these sub-watersheds to improve salmonid habitats. We found that for the past 12 years dissolved oxygen levels have been on a slightly downward trend during summer/fall Chinook egg incubation. Dissolved oxygen readings in early October, for summer/fall Chinook and from June through early July for summer steelhead can occasionally drop to the range from 8 to 10 mg/L and therefore warrant continued monitoring. Levels of pH represent an indicator that has little monitoring value throughout most of the subbasin. The Similkameen River drainage showed dramatic annual changes in the mean pH values and a declining trend for pH thus warranting continued monitoring. Average daily temperatures, in 2006, exceeded 25 C for eight days in July in the Okanogan River at Malott. Due to increased warm water temperatures, delays in migration have increased at a rate of 1.82 days per year over the last 10 years. Increases in water temperature can be linked to many anthropogenic activities. Increasing water temperatures within the Okanogan River watershed represent the single most limiting factor facing salmonids in main-stem habitats.

Colville Tribes, Department of Fish & Wildlife

2007-12-01T23:59:59.000Z

310

Silvicultural Activities in Relation to Water Quality in Texas: An Assesment of Potential Problems and Solutions  

E-Print Network (OSTI)

Southern forests are expected to supply a large portion of the Nation's future timber requirement. Projected demands on southern forests continue to exceed allowable cut. As an outgrowth of this demand, intensive management of pine forests enabled the South to produce 45 percent of the Nation's timber harvest in 1970 (USDA, Forest Service, 1973). The Southern Forest Resource Analysis Committee (1969) stated that, if projected timber needs of the year 2000 are to be met, at least ten million acres of bare or poorly stocked land must be planted with pine by 1985 and another twenty million acres converted from low-grade hardwoods to pine. The challenge facing forestry in the South is how to meet this increased demand and maintain an acceptable forest environment in the face of increased taxes, rising labor and equipment costs and predicted petroleum shortages. Undisturbed forests are generally recognized as primary sources of high quality water. Although the Federal Water Pollution Control Act Amendments of 1972 (Public Law No. 92-500) make pollution from forest practices increasingly more important, the effects of these practices on water quality are not known for East Texas. The quality of streamflow from forested watersheds fluctuates constantly in response to natural stress, and can be influenced greatly by man's activities. Forest management practices can potentially influence the following water quality parameters: (1) sediment, (2) nutrients, (3) temperature, (4) dissolved oxygen/organic matter, and (5) introduced chemicals. It must be realized from the onset that sediment due to geologic erosion is a natural component of fresh water streams and that high concentrations may have occurred naturally for short periods due to perturbations in the ecosystem such as wildfires. Sediment is not necessarily a pollutant and only becomes one when it can be demonstrated that it is exceeding natural levels and is interfering with the beneficial use of water. A certain amount of sediment and nutrients are needed in Gulf Bays and Estuaries to maintain their productivity (Mathewson and Minter, 1976; Diener, 1964; Ketchum, 1967). Texas does not have a stream water quality standard for sediment and due to the complexities involved will probably not develop one. Thus, sediment as used in this report, becomes important: (1) as a carrier of plant nutrients and forest chemicals, and (2) in that practices which reduce sediment loss will usually reduce nutrient, organic matter and introduced chemical losses and prevent water temperature increases, as well. This report is the result of an interagency contract between Texas Department of Water Resources, Texas Agricultural Experiment Station and Texas Water Resources Institute to: (1) develop an overview of commercial forests and forestry operations in Texas, (2) identify, describe and characterize control strategies for nonpoint sources of pollution from silvicultural activities, and (3) develop and demonstrate a methodology for selecting control strategies in given problem situations. The following topics are covered: (1) an overview of forestry in East Texas, (2) silvicultural practices and nonpoint sources of pollution, (3) control strategies, (4) methodology for the selection of control strategies, (5) institutional aspects of controlling silvicultural nonpoint source pollution, (6) ongoing research and research needs, and (7) hydrology of East Texas. It is important to recognize that this report does not specify that nonpoint pollution from forestlands in East Texas is a problem. Likewise, the report does not set pollution control goals or criteria that should be met by a control plan, since this is the responsibility of the State. In areas where a potential nonpoint pollution problem exists; the suggested control strategies should be useful in selecting control measures that are appropriate to the special conditions imposed by differences in climate, soil, topography, and forest practice.

Blackburn, W. H.; Hickman, C. A.; deSteiguer, J. E.; Jackson, B. D.; Blume, T. A.; DeHaven, M. G.

1978-02-01T23:59:59.000Z

311

Engineering design and testing of a ground water remediation system using electrolytically generated hydrogen with a palladium catalyst for dehalogenation of chlorinated hydrogen  

DOE Green Energy (OSTI)

Recent studies have shown that dissolved hydrogen causes rapid dehalogenation of chlorinated hydrocarbons in the presence of a palladium catalyst. The speed and completeness of these reactions offer advantages in designing remediation technologies for certain ground water contamination problems. However, a practical design challenge arises in the need to saturate the aqueous phase with hydrogen in an expeditious manner. To address this issue, a two-stage treatment reactor has been developed. The first stage consists of an electrolytic cell that generates hydrogen by applying a voltage potential across the influent water stream. The second stage consists of a catalyst column of palladium metal supported on alumina beads. A bench-scale reactor has been used to test this design for treating ground water contaminated with trichloroethene and other chlorinated hydrocarbons. In influent streams containing contaminant concentrations up to 4 ppm, initial results confirm that destruction efficiencies greater than 95% may be achieved with residence times short enough to allow practical implementation in specially designed flow-through treatment wells. Results from the bench-scale tests are being used to design a pilot ground water treatment system.

Ruiz, R.

1997-12-01T23:59:59.000Z

312

Monitored natural attenuation of manufactured gas plant tar mono- and polycyclic aromatic hydrocarbons in ground water: a 14-year field study  

Science Conference Proceedings (OSTI)

Site 24 was the subject of a 14-year (5110-day) study of a ground water plume created by the disposal of manufactured gas plant (MGP) tar into a shallow sandy aquifer approximately 25 years prior to the study. The ground water plume in 1988 extended from a well-defined source area to a distance of approximately 400 m down gradient. A system of monitoring wells was installed along six transects that ran perpendicular to the longitudinal axis of the plume centerline. The MGP tar source was removed from the site in 1991 and a 14-year ground water monitored natural attenuation (MNA) study commenced. The program measured the dissolved mono- and polycyclic aromatic hydrocarbons (MAHs and PAHs) periodically over time, which decreased significantly over the 14-year period. Naphthalene decreased to less than 99% of the original dissolved mass, with mass degradation rates of 0.30 per year (half-life 2.3 years). Bulk attenuation rate constants for plume centerline concentrations over time ranged from 0.33 {+-} 0.09 per year (half-life 2.3 {+-} 0.8 years) for toluene and 0.45 {+-} 0.06 per year (half-life 1.6 {+-} 0.2 years) for naphthalene. The hydrogeologic setting at Site 24, having a sandy aquifer, shallow water table, clay confining layer, and aerobic conditions, was ideal for demonstrating MNA. However, these results demonstrate that MNA is a viable remedial strategy for ground water at sites impacted by MAHs and PAHs after the original source is removed, stabilized, or contained.

Neuhauser, E.F.; Ripp, J.A.; Azzolina, N.A.; Madsen, E.L.; Mauro, D.M.; Taylor, T. [Foth Infrastructure & Environment LLC, Green Bay, WI (United States)

2009-07-01T23:59:59.000Z

313

Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, 1995  

Science Conference Proceedings (OSTI)

The Biology Team of ESH-20 (the Ecology Group) at Los Alamos National Laboratory (LANL) has collected samples from the stream within Sandia Canyon since the summer of 1990. These field studies measure water quality parameters and collect aquatic macroinvertebrates from sampling sites within the upper canyon stream. Reports by Bennett and Cross discuss previous aquatic studies in Sandia Canyon. This report updates and expands the previous findings. The Biology Team collected water quality data and aquatic macroinvertebrates monthly at three sampling stations within Sandia Canyon in 1995. The two upstream stations occur near a cattail (Typha latifolia) dominated marsh downstream from outfalls that discharge industrial and sanitary waste effluent into the stream, thereby maintaining year-round flow. The third station is approximately 1.5 miles downstream from the outfalls within a mixed conifer forest. All water chemistry parameters measured in Sandia Canyon during 1995 fell within acceptable State limits and scored in the {open_quotes}good{close_quotes} or {open_quotes}excellent{close_quotes} ranges when compared to an Environmental Quality Index. However, aquatic macroinvertebrates habitats have been degraded by widespread erosion, channelization, loss of wetlands due to deposition and stream lowering, scour, limited acceptable substrates, LANL releases and spills, and other stressors. Macroinvertebrate communities at all the stations had low diversities, low densities, and erratic numbers of individuals. These results indicate that although the stream possesses acceptable water chemistry, it has reduced biotic potential. The best developed aquatic community occurs at the sampling station with the best habitat and whose downstream location partially mitigates the effects of upstream impairments.

Cross, S.; Nottelman, H.

1997-01-01T23:59:59.000Z

314

The Development and Optimization of Techniques for Monitoring Water Quality on-Board Spacecraft Using Colorimetric Solid-Phase Extraction (C-SPE)  

Science Conference Proceedings (OSTI)

The main focus of this dissertation is the design, development, and ground and microgravity validation of methods for monitoring drinking water quality on-board NASA spacecraft using clorimetric-solid phase extraction (C-SPE). The Introduction will overview the need for in-flight water quality analysis and will detail some of the challenges associated with operations in the absence of gravity. The ability of C-SPE methods to meet these challenges will then be discussed, followed by a literature review on existing applications of C-SPE and similar techniques. Finally, a brief discussion of diffuse reflectance spectroscopy theory, which provides a means for analyte identification and quantification in C-SPE analyses, is presented. Following the Introduction, four research chapters are presented as separate manuscripts. Chapter 1 reports the results from microgravity testing of existing C-SPE methods and procedures aboard NASA's C-9 microgravity simulator. Chapter 2 discusses the development of a C-SPE method for determining the total concentration of biocidal silver (i.e., in both dissolved and colloidal forms) in water samples. Chapter 3 presents the first application of the C-SPE technique to the determination of an organic analyte (i.e., formaldehyde). Chapter 4, which is a departure from the main focus of the thesis, details the results of an investigation into the effect of substrate rotation on the kinetics involved in the antigen and labeling steps in sandwich immunoassays. These research chapters are followed by general conclusions and a prospectus section.

April Hill

2007-12-01T23:59:59.000Z

315

Depth and temporal variations in water quality of the Snake River Plain aquifer in well USGS-59 near the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory  

SciTech Connect

In-situ measurements of the specific conductance and temperature of ground water in the Snake River Plain aquifer were collected in observation well USGS-59 near the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. These parameters were monitored at various depths in the aquifer from October 1994 to August 1995. The specific conductance of ground water in well USGS-59, as measured in the borehole, ranged from about 450 to 900 {micro}S/cm at standard temperature (25 C). The pumping cycle of the production wells at the Idaho Chemical Processing Plant causes changes in borehole circulation patterns, and as a result the specific conductance of ground water at some depths in the well varies by up to 50% over a period of about 14 hours. However, these variations were not observed at all depths, or during each pumping cycle. The temperature of ground water in the well was typically between 12.8 and 13.8 C. The results of this study indicate that temporal variations in specific conductance of the ground water at this location are caused by an external stress on the aquifer--pumping of a production well approximately 4,000 feet away. These variations are believed to result from vertical stratification of water quality in the aquifer and a subsequent change in intrawell flow related to pumping. When sampling techniques that do not induce a stress on the aquifer (i.e., thief sampling) are used, knowledge of external stresses on the system at the time of sampling may aid in the interpretation of geochemical data.

Frederick, D.B. [Idaho INEL Oversight Program, Boise, ID (United States); Johnson, G.S. [Univ. of Idaho, Moscow, ID (United States). Dept. of Geology and Geological Engineering

1997-03-01T23:59:59.000Z

316

Water Quality Sampling Locations Along the Shoreline of the Columbia River, Hanford Site, Washington  

Science Conference Proceedings (OSTI)

As environmental monitoring evolved on the Hanford Site, several different conventions were used to name or describe location information for various sampling sites along the Hanford Reach of the Columbia River. These methods range from handwritten descriptions in field notebooks to the use of modern electronic surveying equipment, such as Global Positioning System receivers. These diverse methods resulted in inconsistent archiving of analytical results in various electronic databases and published reports because of multiple names being used for the same site and inaccurate position data. This document provides listings of sampling sites that are associated with groundwater and river water sampling. The report identifies names and locations for sites associated with sampling: (a) near-river groundwater using aquifer sampling tubes; (b) riverbank springs and springs areas; (c) pore water collected from riverbed sediment; and (d) Columbia River water. Included in the listings are historical names used for a particular site and the best available geographic coordinates for the site, as of 2009. In an effort to create more consistency in the descriptive names used for water quality sampling sites, a naming convention is proposed in this document. The convention assumes that a unique identifier is assigned to each site that is monitored and that this identifier serves electronic database management requirements. The descriptive name is assigned for the convenience of the subsequent data user. As the historical database is used more intensively, this document may be revised as a consequence of discovering potential errors and also because of a need to gain consensus on the proposed naming convention for some water quality monitoring sites.

Peterson, Robert E.; Patton, Gregory W.

2009-12-14T23:59:59.000Z

317

Meteorological Applications of Temperature and Water Vapor Retrievals from the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI)  

Science Conference Proceedings (OSTI)

The Atmospheric Emitted Radiance Interferometer (AERI) is a well-calibrated ground-based instrument that measures high-resolution atmospheric emitted radiances from the atmosphere. The spectral resolution of the instrument is better than one ...

Wayne F. Feltz; William L. Smith; Robert O. Knuteson; Henry E. Revercomb; Harold M. Woolf; H. Ben Howell

1998-09-01T23:59:59.000Z

318

Analysis of a flow metering device for low-quality steam-water flows. Final report  

DOE Green Energy (OSTI)

The goal of this project is to investigate the potential of the meter configuration consisting of a sharp-edged contraction section followed by an extended length of constant area duct and finally a diffuser section for pressure recovery. This and two other configurations were tested. These configurations and the reasons underlying their selection are described and discussed. It is concluded that Murdock's correlation for steam/water flow through orifices and sudden contraction sections at low qualities is invalid and the metering scheme based on it is inoperative. (MHR)

Crowe, C.T.

1979-06-26T23:59:59.000Z

319

MEASUREMENTS OF THE 2001 APRIL 15 AND 2005 JANUARY 20 GROUND-LEVEL ENHANCEMENTS BY THE MILAGRO WATER CERENKOV  

E-Print Network (OSTI)

WATER CERENKOV DETECTOR BY Trevor Morgan B.S., University of New Hampshire (2004) DISSERTATION Submitted

California at Santa Cruz, University of

320

A framework for estimating pollutant export coefficients from long-term in-stream water quality monitoring data  

Science Conference Proceedings (OSTI)

Modeling techniques for estimating pollutant loadings to water bodies range from simple export coefficient and regression models to more complex mechanistic models. All export coefficient models and many complex mechanistic models rely on pollutant export ... Keywords: BOD, CODMn, NO3-N, PO4-P, Point and non-point source pollutant loadings, Pollutant export coefficients, Water quality

S. Shrestha; F. Kazama; L. T. H. Newham

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions  

Science Conference Proceedings (OSTI)

In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

322

Analysis of Ground-Water Levels and Associated Trends in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1951-2003  

Science Conference Proceedings (OSTI)

Almost 4,000 water-level measurements in 216 wells in the Yucca Flat area from 1951 to 2003 were quality assured and analyzed. An interpretative database was developed that describes water-level conditions for each water level measured in Yucca Flat. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes narratives that discuss the water-level history of each well. Water levels in 34 wells were analyzed for variability and for statistically significant trends. An attempt was made to identify the cause of many of the water-level fluctuations or trends. Potential causes include equilibration following well construction or development, pumping in the monitoring well, withdrawals from a nearby supply well, recharge from precipitation, earthquakes, underground nuclear tests, land subsidence, barometric pressure, and Earth tides. Some of the naturally occurring fluctuations in water levels may result from variations in recharge. The magnitude of the overall water-level change for these fluctuations generally is less than 2 feet. Long-term steady-state hydrographs for most of the wells open to carbonate rock have a very similar pattern. Carbonate-rock wells without the characteristic pattern are directly west of the Yucca and Topgallant faults in the southwestern part of Yucca Flat. Long-term steady-state hydrographs from wells open to volcanic tuffs or the Eleana confining unit have a distinctly different pattern from the general water-level pattern of the carbonate-rock aquifers. Anthropogenic water-level fluctuations were caused primarily by water withdrawals and nuclear testing. Nuclear tests affected water levels in many wells. Trends in these wells are attributed to test-cavity infilling or the effects of depressurization following nuclear testing. The magnitude of the overall water-level change for wells with anthropogenic trends can be large, ranging from several feet to hundreds of feet. Vertical water-level differences at 27 sites in Yucca Flat with multiple open intervals were compared. Large vertical differences were noted in volcanic rocks and in boreholes where water levels were affected by nuclear tests. Small vertical differences were noted within the carbonate-rock and valley-fill aquifers. Vertical hydraulic gradients generally are downward in volcanic rocks and from pre-Tertiary clastic rocks toward volcanic- or carbonate-rock units.

J.M. Fenelon

2005-10-05T23:59:59.000Z

323

Real-Time Water Quality Monitoring and Habitat Assessment in the San Luis National Wildlife Refuge  

E-Print Network (OSTI)

time period. Table 4.2 Distribution of ground truth points2005 Table 4.2 shows the distribution of ground truth pointstruth points were not included in the totals listed in Table

2005-01-01T23:59:59.000Z

324

Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site  

SciTech Connect

In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site.

Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

1995-03-01T23:59:59.000Z

325

Deployment and Evaluation of a System for Ground-Based Measurement of Cloud Liquid Water Turbulent Fluxes  

Science Conference Proceedings (OSTI)

Direct interception of windblown cloud water by forests has been dubbed occult deposition because it represents a hydrological input that is hidden from rain gauges. Eddy correlation studies of this phenomenon have estimated cloud water fluxes ...

Andrew S. Kowalski; Peter M. Anthoni; Richard J. Vong; Anthony C. Delany; Gordon D. Maclean

1997-06-01T23:59:59.000Z

326

Lake Whitney Comprehensive Water Quality Assessment, Phase 1B- Physical and Biological Assessment (USDOE)  

Science Conference Proceedings (OSTI)

Baylor University Center for Reservoir and Aquatic Systems Research (CRASR) has conducted a phased, comprehensive evaluation of Lake Whitney to determine its suitability for use as a regional water supply reservoir. The area along the Interstate 35 corridor between Dallas / Fort Worth Metroplex and the Waco / Temple Centroplex represents one of the fastest growth areas in the State of Texas and reliable water supplies are critical to sustainable growth. Lake Whitney is situated midway between these two metropolitan areas. Currently, the City of Whitney as well as all of Bosque and Hill counties obtain their potable water from the Trinity Sands aquifer. Additionally, parts of the adjoining McLennan and Burleson counties utilize the Trinity sands aquifer system as a supplement to their surface water supplies. Population growth coupled with increasing demands on this aquifer system in both the Metroplex and Centroplex have resulted in a rapid depletion of groundwater in these rural areas. The Lake Whitney reservoir represents both a potentially local and regional solution for an area experiencing high levels of growth. Because of the large scope of this project as well as the local, regional and national implications, we have designed a multifaceted approach that will lead to the solution of numerous issues related to the feasibility of using Lake Whitney as a water resource to the region. Phase IA (USEPA, QAPP Study Elements 1-4) of this research focused on the physical limnology of the reservoir (bathymetry and fine scale salinity determination) and develops hydrodynamic watershed and reservoir models to evaluate how salinity would be expected to change with varying hydrologic and climatic factors. To this end, we implemented a basic water quality modeling program in collaboration with the Texas Parks and Wildlife Department and the Texas Commission on Environmental Quality to add to the developing long-term database on Lake Whitney. Finally, we conducted an initial assessment of knowledge of watershed and water quality related issues by local residents and stakeholders of Lake Whitney and design an intervention educational program to address any deficiencies discovered. Phase IA was funded primarily from EPA Cooperative Agreement X7-9769 8901-0. Phase IC (USEPA, QAPP Study Element 5) of this research focused on the ambient toxicity of the reservoir with respect to periodic blooms of golden algae. Phase IC was funded primarily from Cooperative Agreement EM-96638001. Phase 1B (USDOE, Study Elements 6-11) complemented work being done via EPA funding on study elements 1-5 and added five new study elements: 6) Salinity Transport in the Brazos Watershed to Lake Whitney; 7) Bacterial Assessment; 8) Organic Contaminant Analysis on Lake Whitney; 9) Plankton Photosynthesis; 10) Lake Whitney Resident Knowledge Assessment; and 11) Engineering Scoping Perspective: Recommendations for Use.

Doyle, Robert D; Byars, Bruce W

2009-11-24T23:59:59.000Z

327

Relationships between {sup 222}Rn dissolved in ground water supplies and indoor {sup 222}Rn concentrations in some Colorado front range houses  

SciTech Connect

Indoor {sup 222}Rn concentrations were measured in 37 houses with alpha track detectors placed in water-use rooms near water sources (bathrooms, laundry rooms, and kitchens) and in non-water-use living rooms, dining rooms, and bedrooms away from water sources. Results show that relative contributions of {sup 222}Rn to indoor air from water use are insignificant when soil-gas concentrations are high but become increasingly important as the ratio of {sup 222}Rn-in-water:{sup 222}Rn-in-soil gas increases. High soil-gas {sup 222}Rn concentrations may mask {sup 222}Rn contributions from water even when waterborne {sup 222}Rn concentrations are as high as 750 kBq m{sup {minus}3}. Ground water in Precambrian Pikes Peak granite averages 340 kBq m{sup {minus}3} {sup 222}Rn, vs. 170 kBq m{sup {minus}3} in Precambrian migmatite, but average {sup 222}Rn concentrations in soil gas are also lower in migmatite. Because the ratio of {sup 222}Rn-in-water:{sup 222}Rn-in-soil gas may be consistently higher for houses in migmatite than in Pikes Peak granite, indoor air in houses built on migmatite have a greater relative contribution from water use even though average {sup 222}Rn concentrations in the water are lower. Continuous monitoring of {sup 222}Rn concentrations in air on 15-min intervals also indicates that additions to indoor concentrations from water use are significant and measurable only when soil-gas concentrations are low and concentrations in water are high. When soil-gas concentrations were mitigated to less than 150 Bq m{sup {minus}3} in one house, water contributed 20-40% of the annual indoor {sup 222}Rn concentration in the laundry room ({sup 222}Rn concentration in water of 670 kBq m{sup {minus}3}). Conversely, when the mitigation system is inactive, diurnal fluctuations and other variations in the soil-gas {sup 222}Rn contribution swamp the variability due to water use in the house. 9 refs., 8 figs., 8 tabs.

Folger, P.F. [Geological Survey, Denver, CO (United States)]|[Colorado School of Mines, Golden, CO (United States); Wanty, R.B. [Geological Survey, Denver, CO (United States); Poeter, E. [Colorado School of Mines, Golden, CO (United States); Nyberg, P. [Environmental Protection Agency, Denver, CO (United States)

1994-09-01T23:59:59.000Z

328

Influence of chemical characterization of oil shale solids on understanding water quality impacts  

SciTech Connect

Synfuels technologies will yield products and effluents that are a function of the raw material being processed and the process variables. Chemical and mineralogic characterization of solids generated in synfuels production provide valuable insight into health and environmental impacts associated with synfuels processing (coal liquefaction or gasification and shale oil extraction). This report deals with considerations relating to leachate generation from solid wastes, but the suggested research approach is applicable to understanding the nature and extent of all effluents from synfuels operations. Solid characterization studies of one raw shale core and two spent shale cores from Occidental Oil Shale, Inc.'s Logan Wash site are described. These data are used to determine the effect of processing on the shale solids and also to evaluate a variety of water quality issues associated with in situ processing. The importance of solid characterization studies in developing an understanding of effluent composition and behavior and subsequently defining environmental impacts is described.

Peterson, E.J.; Wagner, P.

1981-01-01T23:59:59.000Z

329

[Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio]. Volume 4, Health and Safety Plan (HSP); Phase 1, Task 4 Field Investigation report: Draft  

SciTech Connect

This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

Not Available

1991-10-01T23:59:59.000Z

330

The effects of an intermittent piped water network and storage practices on household water quality in Tamale, Ghana  

E-Print Network (OSTI)

The United Nations Millennium Development Goals include a target to halve the number of people without access to "improved" water sources, which include piped water supply. However, an "improved" source of water does not ...

Vacs Renwick, Deborah Alexandra

2013-01-01T23:59:59.000Z

331

Advanced, Environmentally Friendly Hydroelectric Turbines for the Restoration of Fish and Water Quality  

DOE Green Energy (OSTI)

Hydroelectric power contributes about 10 percent of the electrical energy generated in the United States, and nearly 20 percent of the world?s electrical energy. The contribution of hydroelectric generation has declined in recent years, often as a consequence of environmental concerns centering around (1) restriction of upstream and downstream fish passage by the dam, and (2) alteration of water quality and river flows by the impoundment. The Advanced Hydropower Turbine System (AHTS) Program of the U.S. Department of Energy is developing turbine technology which would help to maximize global hydropower resources while minimizing adverse environmental effects. Major technical goals for the Program are (1) the reduction of mortality among turbine-passed fish to 2 percent or less, compared to current levels ranging up to 30 percent or greater; and (2) development of aerating turbines that would ensure that water discharged from reservoirs has a dissolved oxygen concentration of at least 6 mg/L. These advanced, ?environmentally friendly? turbines would be suitable both for new hydropower installations and for retrofitting at existing dams. Several new turbine designs that have been he AHTS program are described.

Brookshier, P.A.; Cada, G.F.; Flynn, J.V.; Rinehart, B.N.; Sale, M.J.; Sommers, G.L.

1999-09-06T23:59:59.000Z

332

Effects of Biochar Recycling on Switchgrass Growth and Soil and Water Quality in Bioenergy Production Systems  

E-Print Network (OSTI)

Intensive biomass production in emerging bioenergy systems could increase nonpoint-source sediment and nutrient losses and impair surface and groundwater quality. Recycling biochar, a charcoal byproduct from pyrolysis of biomass, provides potential sources of mineral nutrients and organic carbon for sustaining biomass productivity and preserving soil and water. Yet, research is needed to verify that recycling of pyrolysis biochars will enhance crop growth and soil and environmental quality similar to black carbon or biochar derived from burning of biomass in tropical or Terra Preta soils. The experimental design of this study consisted of 3 replications and four biochar rates (0, 4, 16, and 64 Mg ha-1) incorporated in both a sandy loam and clay soil with and without fertilizer sources of N, P, and K. The sandy loam and clay soils were studied in separate experiments within a set of 24 box lysimeters seeded with switchgrass. Simulated rain was applied at 50 percent and 100 percent establishment of switchgrass for each soil type. Runoff and leachate were collected and analyzed for total and dissolved N, P, K and organic C. After the second rain event, each soil type and the accumulated switchgrass was sampled and analyzed. In the Boonville soil, biochar applied at 64 Mg ha-1 decreased switchgrass emergence from 42 percent to 14 percent when compared to soil alone. In the Burleson soil, 64 Mg ha-1 biochar had no effect (P > 0.05) on biomass production or leaf area index (LAI). Fertilizer N, P, and K had no effect (P > 0.05) on switchgrass emergence for either soil, but did increase (P biochar increased (P biochar receiving supplemental N, P, and K fertilizer also resulted in greater runoff concentrations of DRP. Emergence tests under increased heat showed electrical conductivities of soil-water solutions to be as high as 600 microS cm-1, even after biochar was washed with acetone and water to remove residual oils and tars and soluble salts. Increasing biochar rates decreased soil bulk density and increased pH and SOC in the 0- to 5-cm depth of soil. As a result of high nutrient recovery during pyrolysis (58 percent of total N, 86 percent of total P and 101 percent of total K), high rates of biochar applied at 64 Mg ha-1 increased mass losses of TN, TP, and TK from both soils. Yet, the mass balance of nutrients showed a surplus of N, P, and K at 64 Mg ha-1 biochar, which suggests some nutrient inputs are not plant available and remain in soil. Careful management of biochar, especially at high rates with these high nutrient contents, is critical when trying to improve soil fertility while protecting water quality.

Husmoen, Derek Howard

2011-05-01T23:59:59.000Z

333

Use of environmental sensors and sensor networks to develop water and salinity budgets for seasonal wetland real-time water quality management  

Science Conference Proceedings (OSTI)

Management of river salt loads in a complex and highly regulated river basin such as the San Joaquin River Basin of California presents significant challenges for current Information Technology. Computer-based numerical models are used as a means of ... Keywords: Environmental decision support, Forecasting, Salt management, Sensor networks, Sensors, Water quality

Nigel W. T. Quinn; Ricardo Ortega; Patrick J. A. Rahilly; Caleb W. Royer

2010-09-01T23:59:59.000Z

334

Water Quality Trends in the Entiat River Subbasin: Final Annual Report to BPA and NOAA Fisheries, 2008.  

DOE Green Energy (OSTI)

The Integrated Status and Effectiveness Monitoring Project (ISEMP) program monitors the status and trend of water quality elements that may affect restoration project effectiveness in the Entiat subbasin. As part of this effort, the PNW Research Station (PNW) measures, analyzes and interprets temporal trends in natural stream water pH, dissolved oxygen, specific conductance and temperature. The Entiat River is currently on the Clean Water Act 303(d) list for pH exceedence, and there is insufficient information to determine the spatial and temporal extent or potential causes of this exceedence. In the late spring 2007, PNW deployed data-logging, multiparameter probes at four locations in the Entiat subbasin to measure water quality parameters, focusing on pH. Data collection was seasonally interrupted by river ice in early December. Daily average pH did not exceed the water quality standard of 8.5 at any of the measurements sites. However, instantaneous values did exceed this standard near the mouth of the Entiat River during late summer-fall period. This suggested that in the lowest portion of the river peaks in pH may be occurring because of photosynthesis caused by high rates of periphyton productivity in response to increased sunlight, temperature, and possible nutrient enrichment. Conversely, dissolved oxygen reached annual low levels during this same late summer-fall period, in part because of increased water temperatures and increased biochemical oxygen demand.

Woodsmith, Richard; Bookter, Andy

2008-03-11T23:59:59.000Z

335

Improved Smart Ground Multimeter  

Science Conference Proceedings (OSTI)

The Smart Ground Multimeter (SGM) underwent three major redesigns since its original development in the early 1980s. This report describes the latest redesign and provides useful tips on the assessment of measured data quality and on resolving measurement problems in the field.

2006-12-18T23:59:59.000Z

336

Synthesis of gold nano-particles in a microfluidic platform for water quality monitoring applications  

E-Print Network (OSTI)

A microfluidic lab-on-a-chip (LOC) device for in-situ synthesis of gold nano-particles was developed. The long term goal is to develop a portable hand-held diagnostic platform for monitoring water quality (e.g., detecting metal ion pollutants). The LOC consists of micro-chambers housing different reagents and samples that feed to a common reaction chamber. The reaction products are delivered to several waste chambers in a pre-defined sequence to enable reagents/ samples to flow into and out of the reaction chamber. Passive flow actuation is obtained by capillary driven flow (wicking) and dissolvable microstructures called salt pillars. The LOC does not require any external power source for actuation and the passive microvalves enable flow actuation at predefined intervals. The LOC and the dissolvable microstructures are fabricated using a combination of photolithography and soft lithography techniques. Experiments were conducted to demonstrate the variation in the valve actuation time with respect to valve position and geometric parameters. Subsequently, analytical models were developed using one dimensional linear diffusion theory. The analytical models were in good agreement with the experimental data. The microvalves were developed using various salts: polyethylene glycol, sodium chloride and sodium acetate. Synthesized in-situ in our experiments, gold nano-particles exhibit specific colorimetric and optical properties due to the surface plasmon resonance effect. These stabilized mono-disperse gold nano-particles can be coated with bio-molecular recognition motifs on their surfaces. A colorimetric peptide assay was thus developed using the intrinsic property of noble metal nano-particles. The LOC device was further developed on a paper microfluidics platform. This platform was tested successfully for synthesis of gold nano-particles using a peptide assay and using passive salt-bridge microvalves. This study proves the feasibility of a LOC device that utilizes peptide assay for synthesis of gold nano-particles in-situ. It could be highly significant in a simple portable water quality monitoring platform.

Datta, Sayak

2008-12-01T23:59:59.000Z

337

Grounding intentionality  

E-Print Network (OSTI)

In this thesis, I argue that current attempts to ground intentionality face one of two challenges. Either the grounding feature of intentionality will be itself intentional or the grounding feature is disparate in nature from the representational capacity of an intentional mental state and therefore no connection between the two can be taken to exist. I examine two current accounts of intentionality and the features they utilize to ground it. I maintain that both views fall prey to one or both of the objections I raise. I conclude that any account of intentionality will need to meet both of these challenges in order to be counted successful.

Huizenga Steven R

2004-01-01T23:59:59.000Z

338

Health and water quality monitoring of Pure Home Water's ceramic filter dissemination in the northern region of Ghana  

E-Print Network (OSTI)

Pure Home Water (PHW) is a social enterprise that promotes and disseminates household drinking water technologies in the Northern Region of Ghana. Currently their main product is a pot-shaped Potters for Peace-type ceramic ...

Johnson, Sophie M. (Sophie Marie)

2007-01-01T23:59:59.000Z

339

Design and evaluation of a two-phase turbine for low quality steam--water mixtures  

DOE Green Energy (OSTI)

A new two-phase turbine was designed and built for testing in the laboratory, using a low quality steam-water mixture as a working fluid. The measured performance compares well with performance predictions of a numerical model of the expander. Details of the selection of the type of expander are given. The design of an experimental expander for use in a clean two-phase flow laboratory experiment and the development of a numerical model for performance analysis and extrapolations are described. Experiments including static cascade performance with two-phase fluid, disk friction and windage measurements, and two-phase performance measurements of the experimental expander are reported. Comparisons of the numerical model and experimental results, and the prediction of the performance of an advanced design, indicating how performance improvements can be achieved, are also included. An engine efficiency of 23 percent for a single-nozzle test was measured. Full admission performance, based upon the numerical model and achievable nozzle thrust coefficients indicate that an engine efficiency of between 38 and 48 percent can be realized with present technology. If maximum liquid removal loss is assumed, this performance range is predicted to be 38 to 41 percent. Droplet size reduction and the development and implementation of enhanced two-phase flow analysis techniques should make it possible to achieve the research goal of 70 percent engine efficiency.

Comfort, W.J. III

1977-05-16T23:59:59.000Z

340

An ecological study examining the correlation of end-stage renal disease and ground water heavy metal content in Texas counties  

E-Print Network (OSTI)

An ecological study was conducted to examine the correlation of end-stage renal disease (ESRD) and the ground water heavy metal level of lead, arsenic, cadmium, mercury and the cumulative level of all four metals in Texas counties. The heavy meal dab was collected from the United States Geologic Survey (USGS) measurement and covered the twenty-one year span 1970- 1990. The ESRD data was gathered from the Texas Department of Health Kidney Program ESRD Registry for the five-year span 1988-1992. This registry included more than 99% of incident ESRD cases over the same time period. The 1990 U.S. Census data was used to estimate county population by age, race and sex. Exposure was defined as residence in a county with ground water measurements that fell in the highest quartile for each metal (mercury 0.297ug/, arsenic 3.216ug/l, lead 4.685ug/l, cadmium 1.423ug/l, cumulative metal level 8.911ug/l). Outcome was defined as an incident case of ESRD between the years 1988-1992 and examined as five-year incidence of ESRD per 10,000 persons. Among 254 Texas counties, 52 had at least 7 years of metal measurements for lead and cadmium, 51 counties had at least 7 years of metal measurements for arsenic and mercury and 50 counties had 7 years of measurements for all four metals. Linear and logistic regression procedures were carried out to examine the relationship between heavy metal ground water levels and incidence of ESRD. None of the metals demonstrated a statistically significant positive relationship with five-year incidence of ESRD per 10,000 persons. Counties with high levels of heavy metals did not indicate an increased odds of having a five-year ESRD incidence per 10,000 persons above the 1988-1992 state average. The percentage of Black or Hispanic persons in a county was a positive predictor of increased five-year incidence of ESRD per 10,000 persons.

Bishop, Scott Alan

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Comment on Modeling Miscanthus in the Soil and Water Assessment Tool (SWAT) to Simulate Its Water Quality Effects As a Bioenergy Crop  

SciTech Connect

In this paper, the authors comment on several mistakes made in a journal paper "Modeling Miscanthus in the Soil and Water Assessment Tool (SWAT) to Simulate Its Water Quality Effects As a Bioenergy Crop" published on Environmental Scienece & Technology, based on field measurements from Great Lakes Bioenergy Research Center, Carbon Sequestration in Terrestrial Ecosystems, and published literature. Our comment has led to the development of another version of SWAT to include better process based description of radiation use efficiency and root-shoot growth.

Zhang, Xuesong; Izaurralde, Roberto C.; Arnold, J. G.; Sammons, N. B.; Manowitz, David H.; Thomson, Allison M.; Williams, J.R.

2011-07-01T23:59:59.000Z

342

Effects of in-situ oil-shale retorting on water quality near Rock Springs, Wyoming, Volume 1  

SciTech Connect

Experimental in-situ retorting techniques (methods of extracting shale oil without mining) were used from 1969 to 1979 by the Department of Energy's (DOE) Laramie Energy Technology Center (LETC) at a test area near Rock Springs in southwestern Wyoming. The retorting experiments at site 9 have produced elevated concentrations of some contaminants in the ground water. During 1988 and 1989, the US Geological Survey, in cooperation with the US Department of Energy, conducted a site characterization study to evaluate the chemical contamination of ground water at the site. Water samples from 34 wells were analyzed; more than 70 identifiable organic compounds were detected using a combination of gas chromatography and mass spectrometry analytical methods. This report provides information that can be used to evaluate possible remedial action for the site. Remediation techniques that may be applicable include those techniques based on removing the contaminants from the aquifer and those based on immobilizing the contaminants. Before a technique is selected, the risks associated with the remedial action (including the no-action alternative) need to be assessed, and the criteria to be used for decisions regarding aquifer restoration need to be defined. 31 refs., 23 figs., 9 tabs.

Lindner-Lunsford, J.B.; Eddy, C.A.; Plafcan, M.; Lowham, H.W.

1990-12-01T23:59:59.000Z

343

A water quality assessment of the import of turfgrass sod grown with composted dairy manure into a suburban watershed  

E-Print Network (OSTI)

Concentrated animal feeding operations (CAFOs) have caused water quality concerns in many rural watersheds, sometimes forcing the State of Texas to conduct Total Maximum Daily Load (TMDL) assessments of stream nutrients such as nitrogen (N) and phosphorus (P). One suggested Best Management Practice (BMP) is the export of phosphorus (P) through turfgrass sod produced with composted dairy manure from an impaired rural watershed to an urban watershed. The manure-grown sod releases P slowly and would not require additional P fertilizer for up to 20 years in the receiving watershed. This would eliminate P application to the sod and improve the water quality of urban streams. The Soil and Water Assessment Tool (SWAT) was used to model a typical suburban watershed that would receive the transplanted sod. The objective of the modeling was to determine the water quality changes due to the import of sod transplanted from turf fields and grown with composted dairy manure. The SWAT model was calibrated to simulate historical flow and sediment and nutrient loading to Mary's Creek. The total P stream loading to Mary's Creek was lower when manure-grown sod was imported instead of commercial sod grown with inorganic fertilizers. Yet, flow, sediment yield, and total N yield increased equally for both cases at the watershed outlet. The SWAT simulations indicate that a turfgrass BMP can be used effectively to import manure P into an urban watershed and reduce in-stream P levels when compared to sod grown with inorganic fertilizers.

Richards, Chad Edward

2004-12-01T23:59:59.000Z

344

Identification of tire leachate toxicants and a risk assessment of water quality effects using tire reefs in canals  

Science Conference Proceedings (OSTI)

Cover is important to aquatic habitat and fisheries often try to improve habitats by addition of natural and artificial material to improve cover diversity and complexity. Habitat-improvement programs range from submerging used Christmas trees to more complex programs. Used automobile tires have been employed in the large scale construction of reefs and fish attractors in marine environments and to a lesser extent in freshwater and have been recognized as a durable, inexpensive and long-lasting material benefiting fishery communities. Recent studies by the U.S. Bureau of Reclamation have quantified the importance of tire reefs to enhancing freshwater canal fisheries in the southwestern United States. These studies have demonstrated that fishes and aquatic macroinvertebrates are attracted to these structures, increasing species diversity, densities and biomass where reefs are placed in canals. However, the use of tire reefs in aquatic environments which have relatively small volumes compared to marine or reservoir environments has raised water quality concerns. Effects of tires on water quality have not typically been studied in the past because of the obvious presence of fishes and other aquatic organisms that make use of tire reefs; the implication being that tires are inert and non-toxic. Little information on effects of tires on water quality is in the literature. Stone demonstrated that tire exposure had no detrimental effects on two species of marine fish while results of Kellough's freshwater tests were inconclusive, but suggested that some factor in tire leachate was toxic to rainbow trout (Oncorhynchus mykiss). Nozaka et al. found no harmful substances leached from tire material soaked in fresh water. Because there are few data on toxicity associated with tires, this became the focus of our study. Toxicity Identification Evaluation (TIE) procedures developed by the EPA were used to evaluate water quality impacted by tires. 17 refs., 4 figs.

Nelson, S.M.; Mueller, G. (Bureau of Reclamation, Denver, CO (United States)); Hemphill, D.C. (Lower Colorado Regional Office, Boulder City, NV (United States))

1994-08-01T23:59:59.000Z

345

DOEs Response to Energy Water Availability & Quality Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 rd Annual West Virginia Water Conference Emerging Water Issues...Science and Solutions Roanoke, WV October 28-29, 2004 Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory 3 rd Annual WV Water Conference Global Water Availability Ocean 97% Fresh Water 2.5% 0 20 40 60 80 100 Ice Groundwater Lakes and Rivers 3 rd Annual WV Water Conference Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water 3 rd Annual WV Water Conference Freshwater Withdrawals and Consumption Mgal / Day Irrigation 81,300 Irrigation 81,300 Thermoelectric 3,310 Consumption Ref.: "Estimated Use of Water in the United States in 1995," USGS Circular 1200, 1998 "Estimated Use of Water in the United States in 2000," USGS Circular 1268, March 2004

346

Real-Time Water Quality Monitoring and Habitat Assessment in theSan Luis National Wildlife Refuge  

SciTech Connect

The project report describes a two year experiment to control wetland drainage to the San Joaquin River of California from the San Luis National Wildlife Refuge using a decision support system for real-time water quality management. This system required the installation and operation of one inlet and three drainage flow and water quality monitoring stations which allowed a simple mass balance model to be developed of the seasonally managed wetlands in the study area. Remote sensing methods were developed to document long-term trends in wetland moist soil vegetation and soil salinity in response to management options such as delaying the initiation of seasonal wetland drainage. These environmental management tools provide wetland managers with some of the tools necessary to improve salinity conditions in the San Joaquin River and improve compliance with State mandated salinity objectives without inflicting long-term harm on the wild fowl habitat resource.

Quinn, Nigel W.T.; Hanlon, Jeremy S.; Burns, Josephine R.; Stromayer, Karl A.K.; Jordan, Brandon M.; Ennis, Mike J.; Woolington,Dennis W.

2005-08-28T23:59:59.000Z

347

Assessment of Dissolved Oxygen Mitigation at Hydropower Dams Using an Integrated Hydrodynamic/Water Quality/Fish Growth Model  

DOE Green Energy (OSTI)

Dissolved oxygen (DO) in rivers is a common environmental problem associated with hydropower projects. Approximately 40% of all FERC-licensed projects have requirements to monitor and/or mitigate downstream DO conditions. Most forms of mitigation for increasing DO in dam tailwaters are fairly expensive. One area of research of the Department of Energy's Hydropower Program is the development of advanced turbines that improve downstream water quality and have other environmental benefits. There is great interest in being able to predict the benefits of these modifications prior to committing to the cost of new equipment. In the case of turbine replacement or modification, there is a need for methods that allow us to accurately extrapolate the benefits derived from one or two turbines with better design to the replacement or modification of all turbines at a site. The main objective of our study was to demonstrate a modeling approach that integrates the effects of flow and water quality dynamics with fish bioenergetics to predict DO mitigation effectiveness over long river segments downstream of hydropower dams. We were particularly interested in demonstrating the incremental value of including a fish growth model as a measure of biological response. The models applied are a suite of tools (RMS4 modeling system) originally developed by the Tennessee Valley Authority for simulating hydrodynamics (ADYN model), water quality (RQUAL model), and fish growth (FISH model) as influenced by DO, temperature, and available food base. We parameterized a model for a 26-mile reach of the Caney Fork River (Tennessee) below Center Hill Dam to assess how improvements in DO at the dam discharge would affect water quality and fish growth throughout the river. We simulated different types of mitigation (i.e., at the turbine and in the reservoir forebay) and different levels of improvement. The model application successfully demonstrates how a modeling approach like this one can be used to assess whether a prescribed mitigation is likely to meet intended objectives from both a water quality and a biological resource perspective. These techniques can be used to assess the tradeoffs between hydropower operations, power generation, and environmental quality.

Bevelhimer, Mark S [ORNL; Coutant, Charles C [ORNL

2006-07-01T23:59:59.000Z

348

Detection of water absorption in the dayside atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 microns  

E-Print Network (OSTI)

We report a 5 sigma detection of water absorption features in the dayside spectrum of the hot Jupiter HD 189733 b. We used high-resolution (R~100,000) spectra taken at 3.2 microns with CRIRES on the VLT to trace the radial velocity shift of the water features in the planet's dayside atmosphere during 5 hours of its 2.2 day orbit as it approached secondary eclipse. Despite considerable telluric contamination in this wavelength regime, we detect the signal within our uncertainties at the expected combination of systemic velocity (Vsys=-3 +5-6 km/s) and planet orbital velocity (Kp=154 +14-10 km/s), and determine a H2O line contrast ratio of (1.3+/-0.2)x10^-3 with respect to the stellar continuum. We find no evidence of significant absorption or emission from other carbon-bearing molecules, such as methane, although we do note a marginal increase in the significance of our detection with the inclusion of carbon dioxide in our template spectrum. This result demonstrates that ground-based, high-resolution spectrosc...

Birkby, J L; Brogi, M; de Mooij, E J W; Schwarz, H; Albrecht, S; Snellen, I A G

2013-01-01T23:59:59.000Z

349

A reaction-based river/stream water quality model Part I: Model development and numerical schemes  

SciTech Connect

This paper presents the conceptual and mathematical development of a numerical model of sediment and reactive chemical transport in river/streams. The distribution of mobile suspended sediments and immobile bed sediments is controlled by hydrologic transport as well as erosion and deposition processes. The fate and transport of water quality constituents involving a variety of chemical and physical processes is mathematically described by a system of reaction equations for immobile constituents and advective-dispersive-reactive transport equations for constituents. To circumvent stiffness associated with equilibrium reactions, matrix decomposition is performed via Gauss-Jordan column reduction. After matrix decomposition, the system of water quality constituent reactive transport equations is transformed into a set of thermodynamic equations representing equilibrium reactions and a set of transport equations involving no equilibrium reactions. The decoupling of equilibrium and kinetic reactions enables robust numerical integration of the partial differential equations for non-equilibrium-variables. Solving non-equilibrium-variable transport equations instead of individual water quality constituent transport equations also reduces the number of PDEs. A variety of numerical methods are investigated for solving the mixed differential and algebraic equations. Two verification examples are compared with analytical solutions to demonstrate the correctness of the code and to illustrate the importance of employing application-dependent numerical methods to solve specific problems.

Zhang, Fan [ORNL; Gour-Tsyh, Yeh [University of Central Florida, Orlando; Parker, Jack C. [University of Tennessee, Knoxville (UTK); Jardine, Philip M [ORNL

2008-01-01T23:59:59.000Z

350

DOEs Response to Energy Water Availability & Quality Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant Water Management Power Plant Water Management R&D Program - Responding to Emerging Issues 8 th Electric Utilities Environmental Conference Tucson, AZ January 24-26, 2005 Jeff Hoffmann, Tom Feeley and Barbara Carney US Department of Energy/National Energy Technology Laboratory EUEC 2005 Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water EUEC 2005 Water and Electricity Are Inextricably Linked * Each kilowatt-hour of electricity requires on average about 25 gallons of water to produce. * Therefore, we may use almost 3 times as much water turning on lights and running appliances as we do taking showers and watering lawns. 0 50 100 150 200 250 300 350 Home Electricity Use Home Water Use Residential Freshwater Use (Gallons/person/day)

351

Trading pollution for water quality : assessing the effects of market-based instruments in three basins  

E-Print Network (OSTI)

Since its passage in 1972, the majority of pollution reduction under the federal Clean Water Act has resulted from technology-based limits imposed on point source dischargers. However, most U.S. water bodies are unmonitored ...

Wallace, Katherine Hay

2007-01-01T23:59:59.000Z

352

Ceramic filter manufacturing in Northern Ghana : water storage and quality control  

E-Print Network (OSTI)

In 2009, Pure Home Water (PHW), a Ghana based non-profit organization working to provide affordable and safe drinking water to people in the Northern Region of Ghana, began the construction of a ceramic pot filter (CPF) ...

Kleiman, Shanti Lisa

2011-01-01T23:59:59.000Z

353

Availability of High-Quality TRMM Ground Validation Data from Kwajalein, RMI: A Practical Application of the Relative Calibration Adjustment Technique  

Science Conference Proceedings (OSTI)

Since the Tropical Rainfall Measuring Mission (TRMM) satellite launch in November 1997, the TRMM Satellite Validation Office (TSVO) at NASA Goddard Space Flight Center (GSFC) has been performing quality control and estimating rainfall from the ...

David A. Marks; David B. Wolff; David S. Silberstein; Ali Tokay; Jason L. Pippitt; Jianxin Wang

2009-03-01T23:59:59.000Z

354

Land Use and Water Quality on California's Central Coast: Nutrient Levels in Coastal Waterways  

E-Print Network (OSTI)

pollution originating from urban and agricul- tural landrefers to pollution that occurs when water runs over land or

Los Huertos, Marc; Gentry, Lowell; Shennan, Carol

2003-01-01T23:59:59.000Z

355

Understanding submarine groundwater discharge and its influence on coastal water quality along the California Coast  

E-Print Network (OSTI)

oral presentations made to Stinson Beach County Water District (SBCWD), audience of approximately 10 members of the public and board

Boehm, Alexandria B; Paytan, Adina

2010-01-01T23:59:59.000Z

356

Abstracts and parameter index database for reports pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory  

SciTech Connect

This report is a product generated by faculty at the University of Idaho in support of research and development projects on Unsaturated Zone Contamination and Transport Processes, and on Surface Water-Groundwater Interactions and Regional Groundwater Flow at the Idaho National Engineering Laboratory. These projects are managed by the State of Idaho`s INEL Oversight Program under a grant from the US Department of Energy. In particular, this report meets project objectives to produce a site-wide summary of hydrological information based on a literature search and review of field, laboratory and modeling studies at INEL, including a cross-referenced index to site-specific physical, chemical, mineralogic, geologic and hydrologic parameters determined from these studies. This report includes abstracts of 149 reports with hydrological information. For reports which focus on hydrological issues, the abstracts are taken directly from those reports; for reports dealing with a variety of issues beside hydrology, the abstracts were generated by the University of Idaho authors concentrating on hydrology-related issues. Each abstract is followed by a ``Data`` section which identifies types of technical information included in a given report, such as information on parameters or chemistry, mineralogy, stream flows, water levels. The ``Data`` section does not include actual values or data.

Bloomsburg, G.; Finnie, J.; Horn, D.; King, B.; Liou, J. [Idaho Univ., Moscow, ID (United States)

1993-05-01T23:59:59.000Z

357

WATER QUALITY CONTROL POLICY ON THE USE OF COASTAL AND ESTUARINE WATERS FOR POWER PLANT COOLING Draft Final Substitute Environmental Document State Water Resources Control Board  

E-Print Network (OSTI)

State Water Board also contributed to this documents preparation. The authors also wish to acknowledge previous contributions to this project by Ms. Sheila Vassey (State Water Board), Mr. Adam Laputz (currently

California Environmental; Protection Agency; Ms. Kim Ward; Mr. Michael Gjerde; Mr. Frank Roddy Of The

2010-01-01T23:59:59.000Z

358

The Impact of Motor Vehicle Operation on Water Quality: A Premilinary Assessment  

E-Print Network (OSTI)

that used oil is the main hydrocarbon source to runoff.quality. " Used oil can also be a point source pollutant.to nonpoint source pollution, such as used oil or waste

Nixon, Hillary; Saphores, Jean-Daniel

2003-01-01T23:59:59.000Z

359

The Impacts of Motor Vehicle Operation on Water Quality: A Preliminary Assessment  

E-Print Network (OSTI)

Concrete Diesel Oil Engine Wear Source: Local Ordinances: Athat used oil is the main hydrocarbon source to runoff.quality. Used oil can also be a point source pollutant.

Nixon, Hilary; Saphores, Jean-Daniel M

2003-01-01T23:59:59.000Z

360

The Impacts of Motor Vehicle Operation on Water Quality: A Preliminary Assessment  

E-Print Network (OSTI)

MTBE Phase-Out (02-32). Sacramento, CA. Caltrans, 2002. Quality Handbook. Sacramento, CA. http://www.dot.ca.gov/Storage Tank Statistics. Sacramento, CA. October 7. http://

Nixon, Hilary; Saphores, Jean-Daniel M

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Field and Laboratory Study of a Ground-Coupled Water Source Heat Pump with an Integral Enthalpy Exchange System for Classrooms  

E-Print Network (OSTI)

School classroom space-conditioning equipment in hot and humid climates is often excessively burdened by the requirement to dehumidify incoming air to maintain proper thermal comfort and air quality. To that end, application of new or modified technologies is needed to increase the dehumidification abilities of equipment without compromising energy efficiency or the need for fresh ventilation air. To study the effectiveness of integrated heat pump and enthalpy exchange equipment, a nominal 4-ton water-source heat pump, coupled with a geothermal water loop and incorporating a forced fresh-air enthalpy exchange system was installed in a typical middle school classroom in Oak Ridge, Tennessee. This project is a joint effort among Oak Ridge School District, Tennessee Valley Authority, Energy Office of the State of Tennessee, and Oak Ridge National Laboratory. The retrofit classroom, along with a similar baseline classroom (employing a water source heat pump supplied by a boiler/cooling tower loop), were instrumented with an Internet-based system to control and monitor performance, efficiency, and a variety of air states. Those include classroom air, outdoor air, semi-conditioned fresh air, and supply air. Particular attention was dedicated to the humidity content and the carbon dioxide content of conditioned space (classroom) air and to the intake rate of forced fresh air. This field study builds on a previous laboratory study of a water-source heat pump coupled to an enthalpy recovery system. The laboratory work showed good potential for reducing the moisture load from forced ventilation air. At simulated outdoor conditions of 90F (32.2C) and 90% RH, the enthalpy recovery wheel in the nominal 2-ton system was able to capture and exhaust 9.9 lb of moisture that would otherwise have to be handled solely by the cooling coil.

Domitrovic, R.; Hayzen, G. J.; Johnson, W. S.; Chen, F. C.

2002-01-01T23:59:59.000Z

362

Comparison of Effect of Filter Demineralizer and Deep Bed Demineralizer Condensate Polishing on Water Quality  

Science Conference Proceedings (OSTI)

There have been several boiling water reactor (BWR) fuel cladding corrosion failures; in almost all cases, water chemistry was identified as a contributing factor. All corrosion-related fuel failures occurred exclusively at BWRs with condensate filter demineralizers for condensate polishing. This report investigates the way in which plant-specific condensate polishing system configuration and operating differences can affect feedwater and reactor water chemistry and impact the corrosion resistance ...

2012-10-04T23:59:59.000Z

363

Impacts of motor vehicle operation on water quality - Clean-up Costs and Policies  

E-Print Network (OSTI)

preventing water pollution from motor vehicles would be muchgroundwater pollution; motor-vehicle transportation;the environmental costs of motor vehicle transportation in

Nixon, Hilary; Saphores, Jean-Daniel M

2007-01-01T23:59:59.000Z

364

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Internet-Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at Coal-Fired Power Plants Internet-Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at Coal-Fired Power Plants GIS Catalog Graphic Arthur Langhus Layne, LLC will create an internet-based, geographic information system (GIS) catalog of non-traditional sources of cooling water for coal-fired power plants. The project will develop data to identify the availability of oil and gas produced water, abandoned coal mine water, industrial waste water, and low-quality ground water. By pairing non-traditional water sources to power plant water needs, the research will allow power plants that are affected by water shortages to continue to operate at full-capacity without adversely affecting local communities or the environment. The nationwide catalog will identify the location, water withdrawal, and

365

Probability distributions of hydraulic conductivity for the hydrogeologic units of the Death Valley regional ground-water flow system, Nevada and California  

Science Conference Proceedings (OSTI)

The use of geologic information such as lithology and rock properties is important to constrain conceptual and numerical hydrogeologic models. This geologic information is difficult to apply explicitly to numerical modeling and analyses because it tends to be qualitative rather than quantitative. This study uses a compilation of hydraulic-conductivity measurements to derive estimates of the probability distributions for several hydrogeologic units within the Death Valley regional ground-water flow system, a geologically and hydrologicaly complex region underlain by basin-fill sediments, volcanic, intrusive, sedimentary, and metamorphic rocks. Probability distributions of hydraulic conductivity for general rock types have been studied previously; however, this study provides more detailed definition of hydrogeologic units based on lithostratigraphy, lithology, alteration, and fracturing and compares the probability distributions to the aquifer test data. Results suggest that these probability distributions can be used for studies involving, for example, numerical flow modeling, recharge, evapotranspiration, and rainfall runoff. These probability distributions can be used for such studies involving the hydrogeologic units in the region, as well as for similar rock types elsewhere. Within the study area, fracturing appears to have the greatest influence on the hydraulic conductivity of carbonate bedrock hydrogeologic units. Similar to earlier studies, we find that alteration and welding in the Tertiary volcanic rocks greatly influence conductivity. As alteration increases, hydraulic conductivity tends to decrease. Increasing degrees of welding appears to increase hydraulic conductivity because welding increases the brittleness of the volcanic rocks, thus increasing the amount of fracturing.

Belcher, W.R.; Sweetkind, D.S.; Elliott, P.E.

2002-11-19T23:59:59.000Z

366

Forward osmosis desalination of brackish groundwater: Meeting water quality requirements for fertigation by integrating nanofiltration  

E-Print Network (OSTI)

of Chemical and Environmental Engineering, PO Box 208286, Yale University, New Haven, CT 06520-8286, USA a r The increase in fresh water demand due to rapid population growth and the expanding economies are driving water estimated to reach 9 billion by 2050 [57], the food demand will also inevitably rise further driving

Elimelech, Menachem

367

Informa(on and Resources Water Quality and Mi/ga/on: Bifenthrin and Fipronil  

E-Print Network (OSTI)

strategy, Pesticides fluxes, Surface water, Vineyard Introduction The intensive use of pesticides for crop on the mobilisation of pesticides and total fluxes in surface water. Moreover, the effect of the sampling strategy ranged from 1.0 to 60 g. Effect of sampling strategy on the estimation of pesticides fluxes in the river

Hammock, Bruce D.

368

Commentary by Jerry S. Szymanski and C.B. Archambeau regarding ``Spring deposits and late pleistocene ground-water levels in southern Nevada``, by J. Quade. Special report number 16, Contract number 94/96.0003  

Science Conference Proceedings (OSTI)

This report is a critical analysis of a paper presented at the 5th Annual International Conference on High Level Radioactive Waste Management. The thrust of this paper was to determine the historic level of ground water in the vicinity of the proposed Yucca Mountain radioactive waste repository. This author reviews conclusions reached by the former author and analyzes reference materials used to obtain his assessment of paleo-ground water levels. This author disagrees with the conclusions and analytical methods used. This author presents information relative to water table fluctuations as a result of intrusion of geothermal fluids and makes claim that such intrusion would jeopardize the integrity of the repository by flooding.

Szymanski, J.S.; Archambeau, C.B.

1994-08-01T23:59:59.000Z

369

Synthesis of high-quality carbon nanotube arrays without the assistance of water  

Science Conference Proceedings (OSTI)

Long and high-quality carbon nanotube (CNT) arrays have been synthesized through a chemical vapor deposition process. The Fe/Al2O3 on silicon was used as the catalyst, ethylene as the carbon source, and a gasmixture of Ar and H2 ...

Yongfeng Luo, Xinjun Wang, Mengdong He, Xi Li, Hong Chen

2012-01-01T23:59:59.000Z

370

WATER QUALITY CHANGES AS A RESULT OF COALBED METHANE DEVELOPMENT IN A ROCKY MOUNTAIN WATERSHED1  

E-Print Network (OSTI)

discharge water in associated retention ponds moving from the south to the north. Further, Hulin (2003). LOWESS was used because it is usually superior to the parametric ordinary least squares regression sug

McClain, Michael

371

GRR/Section 14-OR-d - Section 410 Water Quality Certification...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

372

UMTRA Project water sampling and analysis plan, Falls City, Texas  

SciTech Connect

Surface remedial action will be completed at the Falls City, Texas, Uranium Mill Tailings Remedial Action Project site in the spring of 1994. Results of water sampling activity from 1989 to 1993 indicate that ground water contamination occurs primarily in the Deweesville/Conquista aquifer (the uppermost aquifer) and that the contamination migrates along four distinct contaminant plumes. Contaminated ground water from some wells in these regions has significantly elevated levels of aluminum, arsenic, cadmium, manganese, molybdenum, selenium, sulfate, and uranium. Contamination in the Dilworth aquifer was identified in monitor well 977 and in monitor well 833 at the southern edge of former tailings pile 4. There is no evidence that surface water quality in Tordilla and Scared Dog Creeks is impacted by tailings seepage. The following water sampling activities are planned for calendar year 1994: (1) Ground water sampling from 15 monitor wells to monitor the migration of the four major contaminant plumes within the Deweesville/Conquista aquifer. (2) Ground water sampling from five monitor wells to monitor contaminated and background ground water quality conditions in the Dilworth aquifer. Because of disposal cell construction activities, all plume monitor wells screened in the Dilworth aquifer were abandoned. No surface water locations are proposed for sampling. The monitor well locations provide a representative distribution of sampling points to characterize ground water quality and ground water flow conditions in the Deweesville/Conquista aquifer downgradient of the disposal cell. The list of analytes has been modified with time to reflect constituents currently related to uranium processing activities and natural uranium mineralization. Water sampling is normally conducted biannually in late summer and midwinter.

1994-02-01T23:59:59.000Z

373

Water Permits (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Water Permits Division authorizes permits administered under the Water Quality Regulations. Louisiana's Water Quality Regulations require permits for the discharge of pollutants from any point...

374

Ground Loops for Heat Pumps and Refrigeration  

E-Print Network (OSTI)

Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water easy. Since refrigeration equipment runs more than heat pumps, energy savings can be large for ground-coupled refrigeration. The paper presents a design procedure for ground loops for heat pumps, hot water, ice machines, and water-cooled refrigeration. It gives an overview of the commercial ground-coupled systems in Louisiana that have both refrigeration and heat pumps. Systems vary from small offices to a three-story office building with 187 tons. A chain of hamburger outlets uses total ground-coupling in all of its stores. A grocery store has ground-coupling for heat pumps and refrigeration. Desuperheaters provide 80 percent of the hot water for a coin laundry in the same building. A comparison of energy costs in a bank with a ground-coupled heat pump system to a similar bank with air-conditioning and gas for heat revealed a 31 percent reduction in utility costs for the ground-coupled building. Two buildings of the Mississippi Power and Light Co. have ground-coupled heat pumps in one, and high efficiency air source heat pumps in the other. Energy savings in nine months was 60,000 kWh (25 percent), and electric peak demand was reduced 42 kW (35 percent).

Braud, H. J.

1986-01-01T23:59:59.000Z

375

Water quality modelling for small river basins Stefano Marsili-Libelli*, Elisabetta Giusti  

E-Print Network (OSTI)

Optimal Experiments Design (OED) criteria (Fedorov, 1972; Atkinson and Donev, 1992) based on the Fisher and Donev, 1992; Versyck et al., 1998; Petersen, 2000; Insel et al., 2003; De Pauw, 2005; Checchi from continuous oxygen signals. Water Science and Technology 36, 43e51. Atkinson, A.C., Donev, A

376

A hybrid neural network and ARIMA model for water quality time series prediction  

Science Conference Proceedings (OSTI)

Accurate predictions of time series data have motivated the researchers to develop innovative models for water resources management. Time series data often contain both linear and nonlinear patterns. Therefore, neither ARIMA nor neural networks can be ... Keywords: ARIMA, Backpropagation, Hybrid model, Neural networks, Time series

Durdu mer Faruk

2010-06-01T23:59:59.000Z

377

The Quality of Fog Water Collected for Domestic and Agricultural Use in Chile  

Science Conference Proceedings (OSTI)

One exciting new application of meteorology is the prospect of using high-elevation fogs as an and land's water resource. This has now become reality in northern Chile where a pilot project has used 50 fog collectors to generate an average of ...

Robert S. Schemenauer; Pilar Cereceda

1992-03-01T23:59:59.000Z

378

Summary report on water quality, sediment and water chemistry data for water and sediment samples collected from source areas to Melton Hill and Watts Bar reservoirs  

Science Conference Proceedings (OSTI)

Contamination of surface water and sediments in the Clinch River and Watts Bar Reservoir (CR/WBR) system as a result of past and present activities by the US Department of Energy (DOE) on the Oak Ridge Reservation (ORR) and also activities by non-ORR facilities are being studied by the Clinch River Environmental Restoration Program (CR-ERP). Previous studies have documented the presence of heavy metals, organics, and radionuclides in the sediments of reservoirs in the vicinity. In support of the CR-ERP, during the summer of 1991, TVA collected and evaluated water and sediment samples from swimming areas and municipal water intakes on Watts Bar Reservoir, Melton Hill Reservoir (which is considered part of the Clinch River and Watts Bar Reservoir System), and Norris Reservoir, which was considered a source of less-contaminated reference or background data. Results of this study indicated that the levels of contamination in the samples from the Watts Bar and Melton Hill Reservoir sites did not pose a threat to human health. Despite the numerous studies, until the current work documented by this report, relatively few sediment or water samples had been collected by the CR-ERP in the immediate vicinity of contaminant point sources. This work focused on water and sediment samples taken from points immediately downstream from suspected effluent point sources both on and off the ORR. In August and September, 1994, TVA sampled surface water and sediment at twelve locations in Melton Hill and Watts Bar Reservoirs. Eleven of the sampling sites were selected based on existence of pollutant discharge permits, known locations of hazardous waste sites, and knowledge of past practices. The twelfth sample site was selected as a relatively less contaminated reference site for comparison purposes.

Tomaszewski, T.M.; Bruggink, D.J.; Nunn, D.L.

1995-08-01T23:59:59.000Z

379

A Survey of the Quality ofWater Drawn from Domestic Wells in Nine Midwest States Page 1 of 2 http://www.cdc.gov/nceh/programs/emergenc/WellWater/MidwestWell.htm 10/6/99  

E-Print Network (OSTI)

A Survey of the Quality ofWater Drawn from Domestic Wells in Nine Midwest States Page 1 of 2 http://www.cdc.gov/nceh/programs/emergenc/WellWater/MidwestWell.htm 10/6/99 Centers for Disease Control from Domestic Wells in Nine Midwest States Centers for Disease Control and Prevention National Center

380

Water quality impacts from mining in the Black Hills, South Dakota, USA  

Science Conference Proceedings (OSTI)

The focus of this research was to determine if abandoned mines constitute a major environmental hazard in the Black Hills. Many abandoned gold mines in the Black Hills contribute acid and heavy metals to streams. In some areas of sulfide mineralization local impacts are severe, but in most areas the impacts are small because most ore deposits consist of small quartz veins with few sulfides. Pegmatite mines appear to have negligible effects on water due to the insoluble nature of pegmatite minerals. Uranium mines in the southern Black Hills contribute some radioactivity to surface water, but he impact is limited because of the dry climate and lack of runoff in that area. 26 refs.

Rahn, P.H.; Davis, A.D.; Webb, C.J. [South Dakota School of Mines and Technology, Rapid City, SD (United States)] [South Dakota School of Mines and Technology, Rapid City, SD (United States); Nichols, A.D. [Versar, Inc., Eden Prairie, MN (United States)] [Versar, Inc., Eden Prairie, MN (United States)

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Utilization of the upper Houston Ship Channel by fish and macroinvertebrates with respect to water quality trends  

E-Print Network (OSTI)

Nektonic utilization of the upper Houston Ship Channel (HSC) was assessed through characterization of species composition, abundance and community structure of finfish and macroinvertebrate populations. Impact of basic water quality trends on utilization was evaluated. seine, gillnet and revolving screen collections from two deep-water and six shoreline sampling stations in upper HSC stream segments 1006 (downstream) and 1007 (upstream) during May 1988 through July 1989 yielded 33,042 nektonic organisms comprising 84 taxa. Spatial and temporal trends in catch statistics, species diversity, and hydrological variables were assessed for each sampling gear type. Seasonal composition by dominant taxa was determined and effect of temperature, salinity and dissolved oxygen on catch statistics examined. Mean surface (shoreline) water temperature and dissolved oxygen levels were similar between segments and followed expected seasonal trends. Mean bottom dissolved oxygen levels in segment 1007 during May through September were consistently 1 to 1.5 mg/l lower than segment 1006 and exhibited hypoxic conditions. Significantly greater catch and biomass were observed in segment 1007 as compared to those of segment 1006. Species diversity and number of taxa were comparable between segments. Distinct reductions in catch, number of taxa and species diversity characterized winter seine collections in segment 1006. Surface water temperatures appeared to exert the greatest hydrological influence on shoreline catch statistics. Revolving screen catches were greatest in Segment 1007 during November through March when bottom dissolved oxygen levels peaked and water temperatures ebbed. Significantly reduced catches in segment 1007 during May through October coincided with highest water temperatures and near-anoxic dissolved oxygen levels. By contrast, catch statistics from segment 1006 were highest during summer and early fall when mean bottom temperature and dissolved oxygen levels were highest and lowest, respectively. Cumulative number of taxa was highest in both segments during winter. HSC segment 1006 maintains healthy shoreline and bottom nekton communities year-round. Low dissolved oxygen in bottom waters restrict nekton utilization of segment 1007 during summer. Richness and abundance in segment 1007 during winter equaled or exceeded that of segment 1006.

Seiler, Richard Dale

1994-01-01T23:59:59.000Z

382

Control strategies for mitigation of oil-shale-related-water quality concerns  

SciTech Connect

A comprehensive study of in situ retorting at the Logan Wash has indicated the importance of developing baseline information including raw shale characterization, the elucidation of mineralogical and chemical controls on trace element mobilities from shales subjected to in situ processing, and the research necessary to identify strategies for control of recognized environmental impacts. It is impossible to assess the magnitude of trace element releases to be expected from a commercial in situ facility once banks of retorts or the entire facility is abandoned and dewatering of the area is concluded. However, laboratory-scale studies can indeed identify the relative environmental acceptability of spent shale materials generated by in situ processing. In this research, an attempt was made to relate mineralogy and leaching behavior of field-generated materials with leachate composition and solution chemical processes. The interaction of these factors will ultimately affect the impact of in situ processing on surface and groundwater quality.

Peterson, E.J.; Wagner, P.

1981-01-01T23:59:59.000Z

383

The Use of Advanced Hydroelectric Turbines to Improve Water Quality and Fish Populations  

DOE Green Energy (OSTI)

technology which would help to maximize global hydropower resources while minimizing adverse environmental effects. Major technical goals for the Program are (1) the reduction of mortality among turbine-passed fish to 2 percent or less, compared to current levels ranging up to 30 percent or greater; and (2) development of aerating turbines that would ensure that water discharged from reservoirs has a dissolved oxygen concentration of at least 6 mg/L. These advanced, ?environmentally friendly? turbines would be suitable both for new hydropower installations and for retrofitting at existing dams. Several new turbine designs that have been developed in the initial phases of the AHTS program are described.

Brookshier, P.A.; Cada, G.F.; Flynn, J.V.; Rinehart, B.N.; Sale, M.J.; Sommers, G.L.

1999-09-20T23:59:59.000Z

384

Performance Testing Residential Heat Pump Water Heaters under South- and Central-Florida Climate Conditions: Hot, Humid Climate and Warm Ground Water Pose Unusual Operating Environment for Heat Pump Water Heaters  

Science Conference Proceedings (OSTI)

Heat pump water heaters (HPWHs) are known to provide considerable energy savings compared with electric resistance devices in many applications. However, as their performance is climate-dependent, it is important to understand their operation in extreme climates. Southern and Central Florida presents an extreme climate for HPWHs, as the air temperature, humidity, and entering water temperatures are all high nearly year-round. This report examines HPWH performance in the Florida Power & Light ...

2013-09-30T23:59:59.000Z

385

EPA/NMED/LANL 1998 water quality results: Statistical analysis and comparison to regulatory standards  

SciTech Connect

Four governmental agencies conducted a round of groundwater, surface water, and spring water sampling at the Los Alamos National Laboratory during 1998. Samples were split among the four parties and sent to independent analytical laboratories. Results from three of the agencies were available for this study. Comparisons of analytical results that were paired by location and date were made between the various analytical laboratories. The results for over 50 split samples analyzed for inorganic chemicals, metals, and radionuclides were compared. Statistical analyses included non-parametric (sign test and signed-ranks test) and parametric (paired t-test and linear regression) methods. The data pairs were tested for statistically significant differences, defined by an observed significance level, or p-value, less than 0.05. The main conclusion is that the laboratories' performances are similar across most of the analytes that were measured. In some 95% of the laboratory measurements there was agreement on whether contaminant levels exceeded regulatory limits. The most significant differences in performance were noted for the radioactive suite, particularly for gross alpha particle activity and Sr-90.

B. Gallaher; T. Mercier; P. Black; K. Mullen

2000-02-01T23:59:59.000Z

386

Enhanced oil recovery water requirements  

SciTech Connect

Water requirements for enhanced oil recovery (EOR) are evaluated using publicly available information, data from actual field applications, and information provided by knowledgeable EOR technologists in 14 major oil companies. Water quantity and quality requirements are estimated for individual EOR processes (steam drive; in situ combustion; and CO/sub 2/, micellar-polymer, polymer, and caustic flooding) in those states and specific geographic locations where these processes will play major roles in future petroleum production by the year 2000. The estimated quantity requirements represent the total water needed from all sources. A reduction in these quantities can be achieved by reinjecting all of the produced water potentially available for recycle in the oil recovery method. For injection water quality requirements, it is noted that not all of the water used for EOR needs to be fresh. The use of treated produced water can reduce significantly the quantities of fresh water that would be sought from other sources. Although no major EOR project to date has been abandoned because of water supply problems, competing regional uses for water, drought situations, and scarcity of high quality surface water and ground water could be impediments to certain projects in the near future.

Royce, B.; Kaplan, E.; Garrell, M.; Geffen, T.M.

1983-03-01T23:59:59.000Z

387

Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Laws Envirosearch Institutional Controls NEPA Activities RCRA RQ*Calculator Water HSS Logo Water Laws Overview of water-related legislation affecting DOE sites Clean...

388

Environmental quality  

SciTech Connect

Major emphasis is placed on man environment interactions and environment management. Topics include: ecology and living resources; the global environment; water and air quality; toxic substances and environmental health; energy; natural resources; NEPA regulations; and land use.

1980-12-01T23:59:59.000Z

389

Ground Source Heat Pumps Ground source heat pumps (GSHPs) use the earth's  

E-Print Network (OSTI)

Ground Source Heat Pumps Fact Sheet Ground source heat pumps (GSHPs) use the earth's constant. Waste heat can be used to heat hot water. System Types There are two types of ground source heat pumps, closed loop and open loop systems. Closed loop heat pumps use the earth as the heat source and heat sink

Paulsson, Johan

390

Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

Warm or Steaming Ground Warm or Steaming Ground Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Warm or Steaming Ground Dictionary.png Warm or Steaming Ground: An area where geothermal heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Steam rising from the ground at Eldvorp, a 10 km row of craters, in Southwestern Iceland. http://www.visiticeland.com/SearchResults/Attraction/eldvorp Warm or steaming ground is often an indicator of a geothermal system beneath the surface. In some cases a geothermal system may not show any

391

Colorado Wind Resource at 50 Meters Above Ground Level  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource at 50 Meters Above Ground Level Metadata also available as Metadata: IdentificationInformation DataQualityInformation SpatialDataOrganizationInformation...

392

Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management  

SciTech Connect

Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by nitrification helped to reduce the corrosivity and biocide demand. Also, the lower pH and alkalinity resulting from nitrification reduced the scaling to an acceptable level, without the addition of anti-scalant chemicals. Additional GAC adsorption treatment, MWW_NFG, yielded no net benefit. Removal of organic matter resulted in pitting corrosion in copper and cupronickel alloys. Negligible improvement was observed in scaling control and biofouling control. For all of the tertiary treatments, biofouling control was achievable, and most effectively with pre-formed monochloramine (2-3 ppm) in comparison with NaOCl and ClO2. Life cycle cost (LCC) analyses were performed for the tertiary treatment systems studied experimentally and for several other treatment options. A public domain conceptual costing tool (LC3 model) was developed for this purpose. MWW_SF (lime softening and sand filtration) and MWW_NF were the most cost-effective treatment options among the tertiary treatment alternatives considered because of the higher effluent quality with moderate infrastructure costs and the relatively low doses of conditioning chemicals required. Life cycle inventory (LCI) analysis along with integration of external costs of emissions with direct costs was performed to evaluate relative emissions to the environment and external costs associated with construction and operation of tertiary treatment alternatives. Integrated LCI and LCC analysis indicated that three-tiered treatment alternatives such as MWW_NSF and MWW_NFG, with regular chemical addition for treatment and conditioning and/or regeneration, tend to increase the impact costs and in turn the overall costs of tertiary treatment. River water supply and MWW_F alternatives with a single step of tertiary treatment were associated with lower impact costs, but the contribution of impact costs to overall annual costs was higher than all other treatment alternatives. MWW_NF and MWW_SF alternatives exhibited moderate external impact costs with moderate infrastructure and chemical conditioner dosing, which makes them (especially

David Dzombak; Radisav Vidic; Amy Landis

2012-06-30T23:59:59.000Z

393

EXTENSION WATER SUMMIT PRIORITY: WATER CONSERVATION  

E-Print Network (OSTI)

EXTENSION WATER SUMMIT PRIORITY: WATER CONSERVATION Leadership Team Subcommittee: Joan Bradshaw Michael Dukes Pierce Jones Kati Migliaccio #12;Water Conservation - Situation · Florida water supplies;Water Conservation Initiative 2: Enhancing and protecting water quality, quantity, and supply Priority 1

Slatton, Clint

394

Safe Drinking Water Act | Open Energy Information  

Open Energy Info (EERE)

Act Act Jump to: navigation, search Statute Name Safe Drinking Water Act Year 1974 Url SDWA.jpg Description The Safe Drinking Water Act was established to protect the quality of drinking water in the U.S. References SDWA of 1974[1] Federal Oil and Gas[2] The Safe Drinking Water Act was established to protect the quality of drinking water in the U.S. This law focuses on all waters actually or potentially designated for drinking use, whether from above ground or underground sources. The Act authorized EPA to establish safe standards of purity and required all owners or operators of public water systems to comply with primary (health-related) standards. State governments, which assume this power from EPA, also encourage attainment of secondary standards (nuisance-related).

395

Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming  

SciTech Connect

U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operatio

James Bauder

2008-09-30T23:59:59.000Z

396

Computeer-based decision support tools for evaluation of actions affecting flow and water quality in the San Joaquin Basin  

SciTech Connect

This document is a preliminary effort to draw together some of the important simulation models that are available to Reclamation or that have been developed by Reclamation since 1987. This document has also attempted to lay out a framework by which these models might be used both for the purposes for which they were originally intended and to support the analysis of other issues that relate to the hydrology and to salt and water quality management within the San Joaquin Valley. To be successful as components of a larger Decision Support System the models should to be linked together using custom designed interfaces that permit data sharing between models and that are easy to use. Several initiatives are currently underway within Reclamation to develop GIS - based and graphics - based decision support systems to improve the general level of understanding of the models currently in use, to standardize the methodology used in making planning and operations studies and to permit improved data analysis, interpretation and display. The decision support systems should allow greater participation in the planning process, allow the analysis of innovative actions that are currently difficult to study with present models and should lead to better integrated and more comprehensive plans and policy decisions in future years.

Quinn, N.W.T.

1993-01-01T23:59:59.000Z

397

Amending constructed roadside and urban soils with large volume-based compost applications: effects on water quality  

E-Print Network (OSTI)

Mineral nutrients imported in composted dairy manure (CDM) and municipal biosolid (CMB) amendments for highway-rights-of-way and urban landscapes can pose a threat to surface water quality. Treatments were developed to evaluate recommendations for amending roadside and urban soils with compost at large volumebased rates. Texas Department of Transportation (TxDOT) recommendations were evaluated in 2002 and 2003. Municipal recommendations were evaluated in 2004. Treatments were imposed on 4 by 1.5-m field plots on a constructed soil with an 8.5% slope. Three TxDOT compost application methods were tested; incorporation at 25% by volume (CMT), topdressing over vegetation (GUC), and topdressing a 5-cm compost woodchip mix over bare soil (ECC). In 2003, a 12.5% CMT treatment was substituted for the GUC, and two contrasting composts were compared. In 2002, soil test phosphorus (STP) concentrations (mg kg-1) were 291, 360, 410, and 1921 mg kg-1 in the 0 to 5-cm layer of a course textured CMT, fine textured CMT, GUC, and ECC treatments, respectively using CDM. In 2003, STP concentrations were 264, 439, 496,623, 1115, and 2203 mg kg-1, in the 0 to 5-cm layer after incorporation of CDM and CMB at the 12.5 and 25% volume-based rates, and topdressing the 5-cm CDM- or CMB-woodchip mix over bare soil, respectively. In 2004, contrasting CMB products, relatively low or high in total phosphorus (TP) were incorporated into the soil at 12.5 and 25% by volume, or imported in transplanted sod at the 25% by volume rate. The STP concentrations were 87, 147, 180, 301, 322, and 544 mg kg-1, respective to the previously defined treatments. Runoff water from 14, 10, and 8 natural rain events was used to characterize nutrient and sediment transport in 2002, 2003, and 2004, respectively. Concentration of TDP in runoff water was highly variable for roadside treatments across rain events. Mass losses of TDP were similar after CDM or CMB were incorporated into the soil at 12.5 and 25% by volume. Compost incorporation was the most effective method for limiting TP loss in runoff. Roadway and urban soils are expected to contribute greater TP losses as P concentration increases in soils.

Hansen, Nels Edward

2005-12-01T23:59:59.000Z

398

Western oil-shale development: a technology assessment. Volume 6: oil-shale development in the Piceance Creek Basin and potential water-quality changes  

SciTech Connect

This report brackets the stream quality changes due to pre-mining pumping activites required to prepare oil shale lease Tracts C-a and C-b for modified in situ retorting. The fluxes in groundwater discharged to the surface were identified for Tract C-b in a modeling effort by another laboratory. Assumed fluxes were used for Tract C-a. The quality of the groundwater aquifers of the Piceance Basin is assumed to be that reported in the literature. The changes are bracketed in this study by assuming all premining pumping is discharged to the surface stream. In one case, the pumped water is assumed to be of a quality like that of the upper aquifer with a relatively high quality. In the second case, the pumped water is assumed to come from the lower aquifer. Complete mixing and conservation of pollutants was assumed at sample points at the White River and at Lees Ferry of the Colorado River. A discussion of possible secondary effects of oil shale and coal mining is presented. In addition, a discussion of the uncertainties associated with the assumptions used in this study and alternative uses for the water to prevent stream contamination by oil shale development is provided.

1982-01-01T23:59:59.000Z

399

Water and Sustainability (Volume 2): An Assessment of Water Demand, Supply, and Quality in the U.S. -- The Next Half Century  

Science Conference Proceedings (OSTI)

The fast growing demand for clean, fresh water -- coupled with the need to protect and enhance the environment -- has made many areas of the United States and the rest of the world vulnerable to water shortages for various human uses. As they interact with the electricity industry, these uses encompass agricultural irrigation, thermoelectric generation, municipal water/wastewater treatment and distribution, and industrial processes. The dependency of electricity supply and demand on water availability ca...

2002-03-01T23:59:59.000Z

400

Transmission Line Grounding  

Science Conference Proceedings (OSTI)

In 2008, the Electric Power Research Institute (EPRI) published a comprehensive grounding report. Published in two parts, the report covered the theoretical and practical aspects of transmission line grounding practices. To further improve the tools available for grounding analysis, an investigation into practical ways to calculate the fault current distribution and ground potential rise of the transmission line grounding system was conducted. Furthermore, a survey of utilities has documented industry pr...

2011-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "ground water quality" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques (Redirected from Ground Electromagnetic Methods) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

402

Willamette Oxygen Supplementation Studies : Scale Analyses, Dexter Water Quality Parameters, and Adult Recoveries: Annual Progress Report, September 30, 1998-September 29, 1999.  

DOE Green Energy (OSTI)

This report examines the relationship between scale characteristics of returning adults to determine the fork length at which they entered the ocean. These lengths are then related to the length frequencies of fish in the various experimental groups at the time they left the hatchery. This report summarizes the water quality parameters at Dexter Rearing Ponds and presents the complete returns for all experimental groups.

Ewing, R.D.

1999-09-01T23:59:59.000Z

403

Speciation and structural characterization of plutonium and actinide-organic complexes in surface and ground waters. Annual progress report, September 1996--September 1997  

SciTech Connect

'The authors proposed research is designed to study the association of actinides with dissolved organic complexes in subsurface waters. Actinide-humic matter associations in natural waters have been investigated previously, but the authors have postulated that much of the actinide binding activity may be supported by colloidal biopolymers. To investigate this, they are developing techniques to sample and identify organic constituents in groundwater, and to measure the Pu associated with different fractions of organic matter. Year 1 activities have focused on: (1) sampling techniques to minimize contamination and artifact formation, and to establish mass balances, (2) separation of Pu isotopes by oxidation state, and (3) analytical development of techniques for separation and identification of organic constituents from natural waters. The authors proposed research calls for field work at the Savannah River and Hanford Sites (SRS and HS, respectively). Towards this, they have been working on establishing protocols for ultra-clean (fg level) cross-flow filtration (CFF) techniques suitable for thermal ionization mass spectrometric (TIMS) analysis. A series of tests have been completed and the results have shown no Pu contamination from the CFF system was observable as long as the system is rigorously cleaned with acid, base and nano-pure water (Table 1). They have also collected a water sample from a pond near the laboratory in Woods Hole, MA to test blank conditions in the field, and to determine system mass balances. Blank levels were found to be satisfactory, and the mass balance is 100 \\261 10% for both {sup 239}Pu and {sup 240}Pu, the only two isotopes measurable in the sample. This is one of the major assurances for the success of the project because CFF will be the major sampling tool the authors will use to study natural Pu-organic complexes. Another important result from the field test is that > 80% of the dissolved Pu (based on the TIMS measurements) is in colloidal form.'

Buessler, K.O.; Repeta, D.J.

1997-01-01T23:59:59.000Z

404

Speciation and structural characterization of plutonium and actinide-organic complexes in surface and ground waters. Annual progress report, September 1996--September 1997  

SciTech Connect

'The authors proposed research is designed to study the association of actinides with dissolved organic complexes in subsurface waters. Actinide-humic matter associations in natural waters have been investigated previously, but they have postulated that much of the actinide binding activity may be supported by colloidal biopolymers. To investigate this, they are developing techniques to sample and identify organic constituents in groundwater, and to measure the Pu associated with different fractions of organic matter. Year 1 activities have focused on: (1) sampling techniques to minimize contamination and artifact formation, and to establish mass balances, (2) separation of Pu isotopes by oxidation state, and (3) analytical development of techniques for separation and identification of organic constituents from natural waters. Their proposed research calls for field work at the Savannah River and Hanford Sites (SRS and HS, respectively). Towards this, they have been working on establishing protocols for ultra-clean (fg level) cross-flow filtration (CFF) techniques suitable for thermal ionization mass spectrometric (TIMS) analysis. A series of tests have been completed and the results have shown no Pu contamination from the CFF system was observable as long as the system is rigorously cleaned with acid, base and nano-pure water. They have also collected a water sample from a pond near the laboratory in Woods Hole, MA to test blank conditions in the field, and to determine system mass balances. Blank levels were found to be satisfactory, and the mass balance is 100--210% for both {sup 239}Pu and {sup 240}Pu, the only two isotopes measurable in the sample. This is one of the major assurances for the success of the project because CFF will be the major sampling tool the authors will use to study natural Pu-organic complexes. Another important result from the field test is that > 80 % of the dissolved Pu (based on the TIMS measurements) is in colloidal form.'

Buessler, K.O.; Repeta, D.J.

1997-12-31T23:59:59.000Z

405

Monticello Mill Tailings, Operable Unit III Surface and Ground...  

Office of Legacy Management (LM)

Action activities included millsite dewatering and treatment, initiation of a ground water management policy to prevent use Monticello Mill Tailings Site, Operable Unit III...

406

Identification of water requirements for selected enhanced oil recovery methods  

SciTech Connect

Water requirements for enhanced oil recovery (EOR) are thoroughly evaluated by using publicly available information, data from actual field applications, and information provided by knowledgeable EOR technologists in fourteen major oil companies. The different uses of water in selected EOR methods, as well as current research trends, are discussed. Water quantity and quality requirements are estimated for individual EOR processes (steam drive; in situ combustion; and carbon dioxide, micellar-polymer, polymer, and caustic flooding) in those states and specific geographical locations where these processes will likely play major roles in future petroleum production by the year 2000. The estimated quantity requirements represent the total water needed from all sources (e.g., aquifers, lakes, produced water). A reduction in these quantities can be achieved by reinjecting all of the produced water potentially available for recycle (e.g., some is lost in oil and water separation and water treatment processes) in the oil recovery method. For injection water quality requirements, it is noted that not all of the water used for EOR needs to be fresh. The use of treated produced water can significantly reduce the quantities of fresh water that would be sought from other sources. Although no major EOR project to date has been abandoned because of water supply problems, competing regional uses for water, drought situations, and scarcity of high quality (e.g., low total dissolved solids) surface water and ground water could be impediments to certain projects in the near future. 4 figures, 14 tables.

Royce, B.; Kaplan, E.; Garrell, M.; Geffen, T.M.

1982-09-01T23:59:59.000Z

407

Contamination of ground and surface waters due to uranium mining and milling. Volume I: Biological processes for concentrating trace elements from uranium mine waters. Open file report 25 Jul 79-14 Sep 81  

Science Conference Proceedings (OSTI)

Wastewater from uranium mines in the Ambrosia Lake district near Grants, N. Mex., contains uranium, selenium, radium, and molybdenum. A novel treatment process for waters from two mines, sections 35 and 36, to reduce the concentrations of the trace contaminants was developed. Particulates are settled by ponding and the waters are passed through an ion exchange resin to remove uranium; barium chloride is added to precipitate sulfate and radium from the mine waters. The mine waters are subsequently passed through three consecutive algae ponds prior to discharge. Water, sediment, and biological samples were collected over a 4-year period and analyzed to assess the role of biological agents in removal of inorganic trace contaminants from the mine waters.

Brieley, C.L.; Brierley, J.A.

1981-11-01T23:59:59.000Z

408

Electrical Subsurface Grounding Analysis  

SciTech Connect

The purpose and objective of this analysis is to determine the present grounding requirements of the Exploratory Studies Facility (ESF) subsurface electrical system and to verify that the actual grounding system and devices satisfy the requirements.

J.M. Calle

2000-11-01T23:59:59.000Z

409

Wadter Resources Data Ohio: Water year 1994. Volume 2, St. Lawrence River Basin and Statewide Project Data  

Science Conference Proceedings (OSTI)

The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synaptic sites, and partial-record sites; and (4) water-level data for observation wells. Locations of lake- and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures ga through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two to three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

NONE

1994-12-31T23:59:59.000Z

410

Modeling the Impacts of Pulsed Riverine Inflows on Hydrodynamics and Water Quality in the Barataria Bay Estuary.  

E-Print Network (OSTI)

??Eutrophication and coastal wetland loss are the major environmental problems affecting estuaries around the world. In Louisiana, controlled diversions of the Mississippi River water back (more)

Das, Anindita

2010-01-01T23:59:59.000Z

411

Numerically Simulating the Hydrodynamic and Water Quality Environment for Migrating Salmon in the Lower Snake River, 2002-2003 Technical Report.  

DOE Green Energy (OSTI)

Summer temperatures in the Lower Snake River can be altered by releasing cold waters that originate from deep depths within Dworshak Reservoir. These cold releases are used to lower temperatures in the Clearwater and Lower Snake Rivers and to improve hydrodynamic and water quality conditions for migrating aquatic species. This project monitored the complex three-dimensional hydrodynamic and thermal conditions at the Clearwater and Snake River confluence and the processes that led to stratification of Lower Granite Reservoir (LGR) during the late spring, summer, and fall of 2002. Hydrodynamic, water quality, and meteorological conditions around the reservoir were monitored at frequent intervals, and this effort is continuing in 2003. Monitoring of the reservoir is a multi-year endeavor, and this report spans only the first year of data collection. In addition to monitoring the LGR environment, a three-dimensional hydrodynamic and water quality model has been applied. This model uses field data as boundary conditions and has been applied to the entire 2002 field season. Numerous data collection sites were within the model domain and serve as both calibration and validation locations for the numerical model. Errors between observed and simulated data varied in magnitude from location to location and from one time to another. Generally, errors were small and within expected ranges, although, as additional 2003 field data becomes available, model parameters may be improved to minimize differences between observed and simulated values. A two-dimensional, laterally-averaged hydrodynamic and water quality model was applied to the three reservoirs downstream of LGR (the pools behind Little Goose, Lower Monumental, and Ice Harbor Dams). A two-dimensional model is appropriate for these reservoirs because observed lateral thermal variations during summer and fall 2002 were almost negligible; however, vertical thermal variations were quite large (see USACE 2003). The numerical model was applied to each reservoir independently to simulate the time period between May 1 and October 1, 2002. Differences between observed and simulated data were small, although improvements to model coefficients may be performed as additional thermal data, collected in the reservoirs during 2003, becomes available.

Cook, C.; Richmond, M.; Coleman, A. (Pacific Northwest National Laboratory)

2003-06-01T23:59:59.000Z

412

Steam Quality  

E-Print Network (OSTI)

"STEAM QUALITY has been generally defined as the amount of moisture/vapor (or lack thereof) contained within steam produced from some form of boiler. It has long been used as the standard term for the measurement of ""wet or dry"" steam and as a means of measuring enthalpy. Totally dry steam is said to be ""saturated"" steam. It is sometimes defined as the ""dryness faction"". The term in its historical denotation refers to a physical attribute of the steam. That attribute being ""what is the percentage water vapor content of the steam"" as compared to the amount of steam. Dry saturated steam is steam which carries no water vapor with it and is defined as having a quality of 1.00 (100%). Since water vapor is always present at the interface between the water level and the steam in a boiler, some water vapor will always tend to pass through the system with the steam. Hence, a continuing problem. If steam does carry water vapor past the separators it will tend to coalesce as a liquid, and in doing so it also will carry boiler chemicals with it."

Johnston, W.

1989-09-01T23:59:59.000Z

413

Pacific Gas and Electric Companys Comments on the State Water Resources Control Boards Proposed Policy Water Quality Control Policy on the Use of  

E-Print Network (OSTI)

Pacific Gas and Electric Company (PG&E) supports the protection of Californias marine resources through development of a consistent statewide policy implementing Section 316(b) of the Clean Water Act. As we have previously stated, we support efforts to transition away from once through cooling and have clearly demonstrated that support through the

Estuarine Waters; Power Plant Cooling

2009-01-01T23:59:59.000Z

414

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

415

Twenty-Plus Years of Environmental Change and Ecological Recovery of East Fork Poplar Creek: Background and Trends in Water Quality  

SciTech Connect

In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy's Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated once-through cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water discharged from the Y-12 Complex declined. This reduction in discharge was of ecological concern and led to implementation of a flow management program for EFPC. Implementing flow management, in turn, led to substantial changes in chemical and physical conditions of the stream: stream discharge nearly doubled and stream temperatures decreased, becoming more similar to those in reference streams. While water quality clearly improved, meeting water quality standards alone does not guarantee protection of a waterbody's biological integrity. Results from studies on the ecological changes stemming from pollution-reduction actions, such as those presented in this series, also are needed to understand how best to restore or protect biological integrity and enhance ecological recovery in stream ecosystems. With a better knowledge of the ecological consequences of their decisions, environmental managers can better evaluate alternative actions and more accurately predict their effects.

Smith, John G [ORNL; Stewart, Arthur J [ORNL; Loar, James M [ORNL

2011-01-01T23:59:59.000Z

416

Water application related to oil shale listed  

SciTech Connect

A water right application filed by the Rio Blanco Oil Shale Company, Inc. is reported for surface waters and ground water in Rio Blanco County, Colorado.

1986-09-01T23:59:59.000Z

417

Electrical grounding prong socket  

SciTech Connect

The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket.

Leong, Robert (Dublin, CA)

1991-01-01T23:59:59.000Z

418