National Library of Energy BETA

Sample records for ground water flow

  1. Random field models for hydraulic conductivity in ground water flow

    E-Print Network [OSTI]

    Meerschaert, Mark M.

    Random field models for hydraulic conductivity in ground water flow Special Session on Random random fields to interpolate sparse data on hydraulic conductivity. The result- ing random field is used and Probability, Michigan State U Hans-Peter Scheffler, Mathematics, Uni Siegen, Germany Remke Van Dam, Institute

  2. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    SciTech Connect (OSTI)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  3. Ground-water flow and ground- and surface-water interaction at the Weldon Spring quarry, St. Charles County, Missouri

    SciTech Connect (OSTI)

    Imes, J.L.; Kleeschulte, M.J.

    1997-12-31

    Ground-water-level measurements to support remedial actions were made in 37 piezometers and 19 monitoring wells during a 19-month period to assess the potential for ground-water flow from an abandoned quarry to the nearby St. Charles County well field, which withdraws water from the base of the alluvial aquifer. From 1957 to 1966, low-level radioactive waste products from the Weldon Spring chemical plant were placed in the quarry a few hundred feet north of the Missouri River alluvial plain. Uranium-based contaminants subsequently were detected in alluvial ground water south of the quarry. During all but flood conditions, lateral ground-water flow in the bedrock from the quarry, as interpreted from water-table maps, generally is southwest toward Little Femme Osage Creek or south into the alluvial aquifer. After entering the alluvial aquifer, the ground water flows southeast to east toward a ground-water depression presumably produced by pumping at the St. Charles County well field. The depression position varies depending on the Missouri River stage and probably the number and location of active wells in the St. Charles County well field.

  4. Pattern of shallow ground water flow at Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    Pattern of shallow ground water flow at Mount Princeton Hot Springs, Colorado, using geoelectrical methods Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  5. Ground Water Ground Sky Sky Water Vegetation Ground Vegetation Water

    E-Print Network [OSTI]

    Chen, Tsuhan

    Bear Snow Vegetation RhinoWater Vegetation Ground Water Ground Sky Sky Rhino Water Vegetation Ground Vegetation Water Rhino Water Vegetation Ground Rhino Water Rhino Water Ground Ground Vegetation Water Rhino Vegetation Rhino Vegetation Ground Rhino Vegetation Ground Sky Rhino Vegetation Ground Sky

  6. A Multiscale Investigation of Ground Water Flow at Clear Lake, Iowa

    E-Print Network [OSTI]

    Simpkins, William W.

    ground water flow in a 700-km2 region using 31 hydraulic head and base flow measurements as calibration outflow. A wave-induced Bernoulli effect probably compromised both inflow and outflow measurements. Darcy coliform and E. coli counts as high as 8500 colony-forming units per 100 milliliters (Mason City Globe

  7. Update to the Ground-Water Withdrawals Database for the Death Valley REgional Ground-Water Flow System, Nevada and California, 1913-2003

    SciTech Connect (OSTI)

    Michael T. Moreo; and Leigh Justet

    2008-07-02

    Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913–1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

  8. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

    1997-12-31

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35{degrees}N., long 115{degrees}W and lat 38{degrees}N., long 118{degrees}W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system.

  9. Ground water and energy

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  10. Shallow ground-water flow, water levels, and quality of water, 1980-84, Cowles Unit, Indiana Dunes National Lakeshore

    SciTech Connect (OSTI)

    Cohen, D.A.; Shedlock, R.J.

    1986-01-01

    The Cowles Unit of Indiana Dunes National Lakeshore in Porter County, northwest Indiana, contains a broad dune-beach complex along the southern shoreline of Lake Michigan and a large wetland, called the Great Marsh, that occupies the lowland between the shoreline dunes and an older dune-beach complex farther inland. Water levels and water quality in the surficial aquifer were monitored from 1977 to 1984 near settling ponds on adjacent industrial property at the western end of the Cowles Unit. Since 1980, when the settling pond bottoms were sealed, these intradunal lowlands contained standing water only during periods of high snowmelt or rainfall. Water level declines following the cessation of seepage ranged from 6 feet at the eastern-most settling pond to nearly 14 feet at the western-most pond. No general pattern of water table decline was observed in the Great Marsh or in the shoreline dune complex at distances > 3,000 ft east or north of the settling ponds. Since the settling ponds were sealed, the concentration of boron has decreased while concentrations of cadmium, arsenic, zinc, and molybdenum in shallow ground-water downgradient of the ponds show no definite trends in time. Arsenic, boron and molybdenum have remained at concentrations above those of shallow groundwater in areas unaffected by settling pond seepage. 11 refs., 10 figs., 1 tab.

  11. Ground-water flow and recharge in the Mahomet Bedrock Valley Aquifer, east-central Illinois: A conceptual model based on hydrochemistry

    SciTech Connect (OSTI)

    Panno, S.V.; Hackley, K.C.; Cartwright, K.; Liu, C.L. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-04-01

    Major-ion and isotopic analyses of ground water have been used to develop a conceptual model of flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA). The MVA is composed of clean, permeable sands and gravels and forms a basal'' fill up to 60 m thick in a buried, west-trending bedrock valley. A thick succession of glacial tills, some containing interbedded lenses of sand and gravel, covers the MVA. Three regions within the MVA have hydrochemically distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west.

  12. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; Belcher, W.R.; San Juan, Carma

    2002-11-22

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this ''second-generation'' regional model was to enhance the knowledge and understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-stat e representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration.

  13. Ground water provides drinking water, irrigation for

    E-Print Network [OSTI]

    Saldin, Dilano

    they join tributaries to the Mississippi River. · The deep ground water divide is the underground boundary Deep ground water divide Racine Kenosha Walworth Waukesha Washington Ozaukee Milwaukee LAKE MICHIGANGround water provides drinking water, irrigation for crops and water for indus- tries. It is also

  14. Colorado Ground Water Commission | Open Energy Information

    Open Energy Info (EERE)

    Colorado Ground Water Commission Jump to: navigation, search Name: Colorado Ground Water Commission Place: Colorado Website: water.state.co.usgroundwater References: Colorado...

  15. Tritium Ground Water Issues | Department of Energy

    Office of Environmental Management (EM)

    Ground Water Issues Tritium Ground Water Issues Presentation from the 35th Tritium Focus Group Meeting held in Princeton, New Jersey on May 05-07, 2015. Tritium Ground Water Issues...

  16. Hanford Site ground-water monitoring for 1994

    SciTech Connect (OSTI)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  17. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    SciTech Connect (OSTI)

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M.

    1996-12-31

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data.

  18. Hanford Site ground-water monitoring for 1993

    SciTech Connect (OSTI)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  19. Procedures for ground-water investigations

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  20. Enhancing Drinking Water Supply by Better Understanding Surface Water Ground Water Interaction

    E-Print Network [OSTI]

    Rhode Island, University of

    Enhancing Drinking Water Supply by Better Understanding Surface Water ­ Ground Water Interaction Primary Investigators Thomas Boving Anne Veeger Patricia Logan #12;Enhancing Drinking Water Supply by Better Understanding Surface Water ­ Ground Water Interaction Thomas Boving, Anne Veeger & Patricia Logan

  1. Ground water protection management program plan

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    U.S. Department of Energy (DOE) Order 5400.1 requires the establishment of a ground water protection management program to ensure compliance with DOE requirements and applicable federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office was prepared this Ground Water Protection Management Program Plan (ground water protection plan) whose scope and detail reflect the program`s significance and address the seven activities required in DOE Order 5400.1, Chapter III, for special program planning. This ground water protection plan highlights the methods designed to preserve, protect, and monitor ground water resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies technical guidance documents and site-specific documents for the UMTRA Project ground water protection management program. In addition, the plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA Project sites.

  2. EPA - Ground Water Discharges (EPA's Underground Injection Control...

    Open Energy Info (EERE)

    EPA - Ground Water Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water...

  3. An Updated Site Scale Saturated Zone Ground Water Transport Model...

    Office of Scientific and Technical Information (OSTI)

    An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca Mountain. Citation Details In-Document Search Title: An Updated Site Scale Saturated Zone Ground Water...

  4. Montana Ground Water Pollution Control System Permit Application...

    Open Energy Info (EERE)

    Montana Ground Water Pollution Control System Permit Application Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water...

  5. Hanford Site ground-water monitoring for 1992

    SciTech Connect (OSTI)

    Dresel, P.E.; Newcomer, D.R.; Evans, J.C.; Webber, W.D.; Spane, F.A. Jr.; Raymond, R.G.; Opitz, B.E.

    1993-06-01

    Monitoring activities were conducted to determine the distribution of radionuclides and hazardous chemicals present in ground water as a result of Hanford Site operations and, whenever possible, relate the distribution of these constituents to Site operations. A total of 720 wells were sampled during 1992 by all Hanford ground-water monitoring activities. The Ground-Water Surveillance Project prepared water-table maps of DOE`s Hanford Site for June 1992 from water-level elevations measured in 287 wells across the Hanford Site and outlying areas. These maps are used to infer ground-water flow directions and gradients for the interpretation of contaminant transport. Water levels beneath the 200 Areas decreased as much as 0.75 m (2.5 ft) between December 1991 and December 1992. Water levels in the Cold Creek Valley decreased approximately 0.5 m in that same period. The water table adjacent to the Columbia River along the Hanford Reach continues to respond significantly to fluctuations in river stage. These responses were observed in the 100 and 300 areas. The elevation of the ground-water mound beneath B Pond did not change significantly between December 1991 and December 1992. However, water levels from one well located at the center of the mound indicate a water-level rise of approximately 0.3 m (1 ft) during the last quarter of 1992. Water levels measured from unconfined aquifer wells north and east of the Columbia River in 1992 indicate that the primary source of recharge is from irrigation practices.

  6. Uranium isotopes in ground water as a prospecting technique

    SciTech Connect (OSTI)

    Cowart, J.B.; Osmond, J.K.

    1980-02-01

    The isotopic concentrations of dissolved uranium were determined for 300 ground water samples near eight known uranium accumulations to see if new approaches to prospecting could be developed. It is concluded that a plot of /sup 234/U//sup 238/U activity ratio (A.R.) versus uranium concentration (C) can be used to identify redox fronts, to locate uranium accumulations, and to determine whether such accumulations are being augmented or depleted by contemporary aquifer/ground water conditions. In aquifers exhibiting flow-through hydrologic systems, up-dip ground water samples are characterized by high uranium concentration values (> 1 to 4 ppB) and down-dip samples by low uranium concentration values (less than 1 ppB). The boundary between these two regimes can usually be identified as a redox front on the basis of regional water chemistry and known uranium accumulations. Close proximity to uranium accumulations is usually indicated either by very high uranium concentrations in the ground water or by a combination of high concentration and high activity ratio values. Ground waters down-dip from such accumulations often exhibit low uranium concentration values but retain their high A.R. values. This serves as a regional indicator of possible uranium accumulations where conditions favor the continued augmentation of the deposit by precipitation from ground water. Where the accumulation is being dispersed and depleted by the ground water system, low A.R. values are observed. Results from the Gulf Coast District of Texas and the Wyoming districts are presented.

  7. Field-scale estimation of volumetric water content using ground-penetrating radar ground wave techniques

    E-Print Network [OSTI]

    Hubbard, Susan

    Field-scale estimation of volumetric water content using ground- penetrating radar ground wave] Ground-penetrating radar (GPR) ground wave techniques were applied to estimate soil water content travel time measurements using 900 and 450 MHz antennas and analyzed these data to estimate water content

  8. Selenium in Oklahoma ground water and soil

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  9. DEVELOPMENTS IN GROUND WATER HYDROLOGY : AN OVERVIEW C. P. Kumar

    E-Print Network [OSTI]

    Kumar, C.P.

    of the ground water and the energy requirement for its withdrawal impose restriction on exploitation of ground of ground water is conspicuous during period of drought. 2.0 GROUND WATER SITUATION IN INDIA1 India Central and Southern India is occupied by a variety of hard rocks with hard sediments (including carbonate

  10. Characterization of Climax granite ground water

    SciTech Connect (OSTI)

    Isherwood, D.; Harrar, J.; Raber, E.

    1982-08-01

    The Climax ground water fails to match the commonly held views regarding the nature of deep granitic ground waters. It is neither dilute nor in equilibrium with the granite. Ground-water samples were taken for chemical analysis from five sites in the fractured Climax granite at the Nevada Test Site. The waters are high in total dissolved solids (1200 to 2160 mg/L) and rich in sodium (56 to 250 mg/L), calcium (114 to 283 mg/L) and sulfate (325 to 1060 mg/L). Two of the samples contained relatively high amounts of uranium (1.8 and 18.5 mg/L), whereas the other three contained uranium below the level of detection (< 0.1 mg/L). The pH is in the neutral range (7.3 to 8.2). The differences in composition between samples (as seen in the wide range of values for the major constituents and total dissolved solids) suggest the samples came from different, independent fracture systems. However, the apparent trend of increasing sodium with depth at the expense of calcium and magnesium suggests a common evolutionary chemical process, if not an interconnected system. The waters appear to be less oxidizing with depth (+ 410 mV at 420 m below the surface vs + 86 mV at 565 m). However, with Eh measurements on only two samples, this correlation is questionable. Isotopic analyses show that the waters are of meteoric origin and that the source of the sulfate is probably the pyrite in the fracture-fill material. Analysis of the measured water characteristics using the chemical equilibrium computer program EQ3 indicates that the waters are not in equilibrium with the local mineral assemblage. The solutions appear to be supersaturated with respect to the mineral calcite, quartz, kaolinite, muscovite, k-feldspar, and many others.

  11. Basic Ground-Water Hydrology By RALPH C. HEATH

    E-Print Network [OSTI]

    Sohoni, Milind

    #12;Basic Ground-Water Hydrology By RALPH C. HEATH Prepared in cooperation with the North Carolina., 1983, Basic ground-water hydrology: U .S. Geological Survey Water-Supply Paper 2220, 86 p. Library of Congress Cataloging-in-Publications Data Heath, Ralph C . Basic ground-water hydrology (Geological Survey

  12. Procedures for ground-water investigations

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual.

  13. Predicting Ground Water Nitrate Concentration from Land Use

    E-Print Network [OSTI]

    Vogel, Richard M.

    to assess the effects of land use on ground water quality. Exploratory data analysis was applied to historic-foot radius of a well are reliable predictors of nitrate concentration in ground water. Similarly with highly permeable materials to evaluate potential effects of development on ground water quality

  14. Ground-water sapping processes, Western Desert, Egypt

    SciTech Connect (OSTI)

    Luo, W.; Arvidson, R.E.; Sultan, M.; Becker, R.; Crombie, M.K. [Washington Univ., St. Louis, MO (United States)] [Washington Univ., St. Louis, MO (United States); Sturchio, N. [Argonne National Lab., IL (United States)] [Argonne National Lab., IL (United States); Alfy, Z.E. [Egyptian Geological Survey and Mining Authority, Cairo (Egypt)] [Egyptian Geological Survey and Mining Authority, Cairo (Egypt)

    1997-01-01

    Depressions of the Western Desert of Egypt (specifically, Kharga, Farafra, and Kurkur regions) are mainly occupied by shales that are impermeable, but easily erodible by rainfall and runoff, whereas the surrounding plateaus are composed of limestones that are permeable and more resistant to fluvial erosion under semiarid to arid conditions. A computer simulation model was developed to quantify the ground-water sapping processes, using a cellular automata algorithm with coupled surface runoff and ground-water flow for a permeable, resistant layer over an impermeable, friable unit. Erosion, deposition, slumping, and generation of spring-derived tufas were parametrically modeled. Simulations using geologically reasonable parameters demonstrate that relatively rapid erosion of the shales by surface runoff, ground-water sapping, and slumping of the limestones, and detailed control by hydraulic conductivity inhomogeneities associated with structures explain the depressions, escarpments, and associated landforms and deposits. Using episodic wet pulses, keyed by {delta}{sup 18}O deep-sea core record, the model produced tufa ages that are statistically consistent with the observed U/Th tufa ages. This result supports the hypothesis that northeastern African wet periods occurred during interglacial maxima. This {delta}{sup 18}O-forced model also replicates the decrease in fluvial and sapping activity over the past million years. 65 refs., 21 figs., 2 tabs.

  15. Hanford Site ground-water monitoring for July through December 1987

    SciTech Connect (OSTI)

    Evans, J.C.; Dennison, D.I.; Bryce, R.W.; Mitchell, P.J.; Sherwood, D.R.; Krupka, K.M.; Hinman, N.W.; Jacobson, E.A.; Freshley, M.D.

    1988-12-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between July and December 1987 included monitoring ground-water elevations across the Site, monitoring hazardous chemicals and radionuclides in ground water, geochemical evaluations of unconfined ground-water data, and calibration of ground-water flow and transport models. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Central Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. The MINTEQ geochemical code was used to identify chemical reactions that may be affecting the concentrations of dissolved hazardous chemicals in the unconfined ground water. Results indicate that many cations are present mainly as dissolved carbonate complexes and that a majority of the ground-water samples are in near equilibrium with carbonate minerals (e.g., calcite, dolomite, otavite).

  16. Field-scale estimation of volumetric water content using ground-penetrating radar ground wave techniques

    E-Print Network [OSTI]

    Hubbard, Susan

    Field-scale estimation of volumetric water content using ground- penetrating radar ground wave that the GPR estimates had a root mean square error of volumetric water content of the order of 0 agriculture Citation: Grote, K., S. Hubbard, and Y. Rubin, Field-scale estimation of volumetric water content

  17. ESTIMATION OF GROUND WATER RECHARGE USING SOIL MOISTURE BALANCE APPROACH

    E-Print Network [OSTI]

    Kumar, C.P.

    ESTIMATION OF GROUND WATER RECHARGE USING SOIL MOISTURE BALANCE APPROACH C. P. Kumar* ABSTRACT The amount of water that may be extracted from an aquifer without causing depletion is primarily dependent upon the ground water recharge. Thus, a quantitative evaluation of spatial and temporal distribution

  18. DOE/EA-1313: Environmental Assessment of Ground Water Compliance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U0069700 This Page Intentionally Blank DOE Office of Legacy Management EA of Ground Water Compliance at the Monument Valley Site March 2005 Final Page iii Contents Page...

  19. Ground-water monitoring at the Hanford Site, January-December 1984

    SciTech Connect (OSTI)

    Cline, C.S.; Rieger, J.T.; Raymond, J.R.

    1985-09-01

    This program is designed to evaluate existing and potential pathways of exposure to radioactivity and hazardous chemicals from site operations. This document contains an evaluation of data collected during CY 1984. During 1984, 339 monitoring wells were sampled at various times for radioactive and nonradioactive constituents. Two of these constituents, specifically, tritium and nitrate, have been selected for detailed discussion in this report. Tritium and nitrate in the primary plumes originating from the 200 Areas continue to move generally eastward toward the Columbia River in the direction of ground-water flow. The movement within these plumes is indicated by changes in trends within the analytical data from the monitoring wells. No discernible impact on ground water has yet been observed from the start-up of the PUREX plant in December 1983. The shape of the present tritium plume is similar to those described in previous ground-water monitoring reports, although slight changes on the outer edges have been noted. Radiological impacts from two potential pathways for radionuclide transport in ground water to the environment are discussed in this report. The pathways are: (1) human consumption of ground water from onsite wells, and (2) seepage of ground water into the Columbia River. Concentrations of tritium in spring samples that were collected and analyzed in 1983, and in wells sampled adjacent to the Columbia River in 1984 confirmed that constituents in the ground water are entering the river via springs and subsurface flow. The primary areas where radionuclides enter the Columbia River via ground-water flow are the 100-N and 300 Areas and the shoreline adjacent to the Hanford Townsite. 44 refs., 25 figs., 11 tabs.

  20. Procedures for ground-water investigations. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  1. DC WRRC REPORT NO. 136 GROUND WATER RESOURCE ASSESSMENT STUDY

    E-Print Network [OSTI]

    District of Columbia, University of the

    in drinking water. Nonpoint source pollution seriously impacts District waters. Creating a cohesive nonpoint source program is a high priority for the District's water pollution control program. EPA designated DCRADC WRRC REPORT NO. 136 GROUND WATER RESOURCE ASSESSMENT STUDY FOR THE DISTRICT OF COLUMBIA SAMPLING

  2. Effect of faulting on ground-water movement in the Death Valley region, Nevada and California

    SciTech Connect (OSTI)

    Faunt, C.C.

    1997-12-31

    This study characterizes the hydrogeologic system of the Death Valley region, an area covering approximately 100,000 square kilometers. The study also characterizes the effects of faults on ground-water movement in the Death Valley region by synthesizing crustal stress, fracture mechanics,a nd structural geologic data. The geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. Faulting and associated fracturing is pervasive and greatly affects ground-water flow patterns. Faults may become preferred conduits or barriers to flow depending on whether they are in relative tension, compression, or shear and other factors such as the degree of dislocations of geologic units caused by faulting, the rock types involved, the fault zone materials, and the depth below the surface. The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional ground-water flow regime. Numerous examples of fault-controlled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths. 97 refs., 20 figs., 5 tabs.

  3. Ground-water contribution to dose from past Hanford Operations

    SciTech Connect (OSTI)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  4. GROUND-WATER CONTRIBUTION TO DOSE FROM PAST HANFORD OPERATIONS

    SciTech Connect (OSTI)

    Freshley, M. D.; Thorne, P. D.

    1992-01-01

    The Hanford Environmental Dose Reconstruction (HEOR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides originating in ground water on the Hanford Site could have reached the public have been identified: 1) through contaminated ground water migrating to the Columbia River; 2) through wells on or adjacent to the Hanford Site; 3) through wells that draw some or all of their water from the Columbia River (riparian wells); and 4) through atmospheric deposition resulting in the contamination of a small watershed that, in turn, results in contamination of a shallow well or spring. These four pathways make up the "ground-water pathway ," which is the subject of this study. The objective of the study was to assess the extent to which the groundwater pathway contributed to radiation doses that populations or individuals may have received from past operations at Hanford. The assessment presented in this report was performed by 1) reviewing the extensive ?literature on ground water and ground-water monitoring at Hanford and 2) performing simple calculations to estimate radionuclide concentrations in ground water and the Columbia River resulting from ground-water discharge. Radiation doses that would result from exposure to this ground water and surface water were calculated. The study conclusion is that the ground-water pathways did not contribute significantly to dose. Compared with background radiation in the TriCities {300 mrem/yr), estimated doses are small: 0.02 mrem/yr effective dose equivalent from discharge of contaminated ground water to the Columbia River; 1 mrem/yr effective dose equivalent from Hanford Site wells; 11 mrem/yr effective dose equivalent from riparian wells; and 1 mrem/yr effective dose equivalent from the watershed. Because the estimated doses are so small, the recommendation is that further work on the ground-water pathway be limited to tracking ongoing ground-water studies at the Hanford Site.

  5. Oil and Gas CDT Coupled flow of water and gas

    E-Print Network [OSTI]

    Henderson, Gideon

    , and experimental `toolbox' grounded in fluid mechanics and geomechanics, and specializing in multiphase flow

  6. ASSESSMENT OF GROUND WATER POTENTIAL C. P. Kumar

    E-Print Network [OSTI]

    Kumar, C.P.

    ASSESSMENT OF GROUND WATER POTENTIAL C. P. Kumar Scientist National Institute of Hydrology Roorkee ­ 247667 (Uttaranchal) ABSTRACT Water balance techniques have been extensively used to make quantitative estimates of water resources and the impact of man's activities on the hydrologic cycle. On the basis

  7. Final Environmental Assessment of Ground Water Compliance at...

    Office of Environmental Management (EM)

    Remedial Action (Project) UMTRCA Uranium Mill Tailings Radiation Control Act USFWS U.S. Fish and Wildlife Service EA of Ground Water Compliance at the Slick Rock Sites DOE Grand...

  8. EPA Final Ground Water Rule Available Online, 3/07

    Broader source: Energy.gov [DOE]

    On November 8, 2006, the U.S. Environmental Protection Agency (EPA) published a final Ground Water Rule (GWR) to promote increased protection against microbial pathogens that may be present in...

  9. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION Robert Pitt, Shirley Clark, and Richard Field1

    E-Print Network [OSTI]

    Clark, Shirley E.

    GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION Robert Pitt, Shirley Clark and addresses potential ground water problems associated with stormwater infiltration. Several categories stormwater contaminants as to their potential to contaminant ground water and to provide guidance

  10. Estimating flow parameters using ground-penetrating radar and hydrological data during transient flow in the vadose zone

    SciTech Connect (OSTI)

    Kowalsky, Michael; Finsterle, Stefan; Rubin, Yoram

    2003-05-12

    Methods for determining the parameters necessary for modeling fluid flow and contaminant transport in the shallow subsurface are in great demand. Soil properties such as permeability, porosity, and water retention are typically estimated through the inversion of hydrological data (e.g., measurements of capillary pressure and water saturation). However, ill-posedness and non-uniqueness commonly arise in such inverse problems making their solutions elusive. Incorporating additional types of data, such as from geophysical methods, may greatly improve the success of inverse modeling. In particular, ground-penetrating radar (GPR) has proven sensitive to subsurface fluid flow processes. In the present work, an inverse technique is presented in which permeability distributions are generated conditional to time-lapsed GPR measurements and hydrological data collected during a transient flow experiment. Specifically, a modified pilot point framework has been implemented in iTOUGH2 allowing for the generation of permeability distributions that preserve point measurements and spatial correlation patterns while reproducing geophysical and hydrological measurements. Through a numerical example, we examine the performance of this method and the benefit of including synthetic GPR data while inverting for fluid flow parameters in the vadose zone. Our hypothesis is that within the inversion framework that we describe, our ability to predict flow across control planes greatly improves with the use of both transient hydrological measurements and geophysical measurements (GPR-derived estimates of water saturation, in particular).

  11. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    In April 1990 Wright-Patterson Air Force Base (WPAFB) initiated an investigation to evaluate a potential CERCLA removal action to prevent, to the extent practicable, the migration of ground-water contamination in the Mad River Valley Aquifer within and across WPAFB boundaries. The action will be based on a Focused Feasibility Study with an Action Memorandum serving as a decision document that is subject to approval by the Ohio Environmental Protection Agency. The first phase (Phase 1) of this effort involves an investigation of ground-water contamination migrating across the southwest boundary of Area C and across Springfield Pike adjacent to Area B. Task 4 of Phase 1 is a field investigation to collect sufficient additional information to evaluate removal alternatives. The field investigation will provide information in the following specific areas of study: water-level data which will be used to permit calibration of the ground-water flow model to a unique time in history; and ground-water quality data which will be used to characterize the current chemical conditions of ground water.

  12. Predicted impacts of future water level decline on monitoring wells using a ground-water model of the Hanford Site

    SciTech Connect (OSTI)

    Wurstner, S.K.; Freshley, M.D.

    1994-12-01

    A ground-water flow model was used to predict water level decline in selected wells in the operating areas (100, 200, 300, and 400 Areas) and the 600 Area. To predict future water levels, the unconfined aquifer system was stimulated with the two-dimensional version of a ground-water model of the Hanford Site, which is based on the Coupled Fluid, Energy, and Solute Transport (CFEST) Code in conjunction with the Geographic Information Systems (GIS) software package. The model was developed using the assumption that artificial recharge to the unconfined aquifer system from Site operations was much greater than any natural recharge from precipitation or from the basalt aquifers below. However, artificial recharge is presently decreasing and projected to decrease even more in the future. Wells currently used for monitoring at the Hanford Site are beginning to go dry or are difficult to sample, and as the water table declines over the next 5 to 10 years, a larger number of wells is expected to be impacted. The water levels predicted by the ground-water model were compared with monitoring well completion intervals to determine which wells will become dry in the future. Predictions of wells that will go dry within the next 5 years have less uncertainty than predictions for wells that will become dry within 5 to 10 years. Each prediction is an estimate based on assumed future Hanford Site operating conditions and model assumptions.

  13. Uranium in US surface, ground, and domestic waters. Volume 2

    SciTech Connect (OSTI)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  14. Uranium in US surface, ground, and domestic waters

    SciTech Connect (OSTI)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium concentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  15. A cost-effective, environmentally-responsive ground-water monitoring procedure 

    E-Print Network [OSTI]

    Doucette, Richard Charles

    1994-01-01

    Ground-water monitoring is the primary method used to protect our ground-water resources. The primary objectives of monitoring programs are to detect, to attribute, and to mitigate any changes in-water quality or quantity. Previous monitoring...

  16. Bordering on Water Management: Ground and Wastewater in the United States - Mexico Transboundary Santa Cruz Basin

    E-Print Network [OSTI]

    Milman, Anita Dale

    2009-01-01

    change and global water resources. Global Environmentalin Managing International Water Resources (No. WPS 1303):Darcy Lecture Tour. Ground Water, 45(4), 390-391. Sadoff,

  17. Factors influencing methane distribution in Texas ground water

    SciTech Connect (OSTI)

    Zhang, C.; Grossman, E.L.; Ammerman, J.W. [Texas A and M Univ., College Station, TX (United States)

    1998-01-01

    To determine the factors that influence the distribution of methane in Texas ground water, water samples were collected from 40 wells in east-central and central Texas aquifers. Among the chemical parameters examined, sulfate is most important in controlling methane distribution. Methane occurs in high concentration in east-central Texas only where sulfate concentration is low, supporting the hypothesis that abundant microbial methane production does not begin until sulfate is depleted. Because water samples from central Texas are high in either oxygen or sulfate, methane concentrations are low in these waters. A positive correlation between methane and sulfate in these waters indicates a different, perhaps thermogenic, origin for the trace methane. The {sup 13}C/{sup 12}C ratios of dissolved methane ranged from {minus}80{per_thousand} to {minus}21{per_thousand} in east-central Texas and {minus}41.2{per_thousand} to {minus}8.5{per_thousand} in central Texas. Low values of < {minus}50{per_thousand} in the east-central Texas ground water indicate a microbial origin for methane and are consistent with the observed sulfate-methane relationship; high {sup 13}C/{sup 12}C ratios of > {minus}31{per_thousand} likely result from bacterial methane oxidation. Similarly, methane with high {sup 13}C/{sup 12}C ratios in central Texas may reflect partial oxidation of the methane pool. Overall, water samples from both regions show a positive correlation between sulfate concentration and the {sup 13}C/{sup 12}C ratio of methane, suggesting that methane oxidation may be associated with sulfate reduction in Texas ground water.

  18. Ground-water maps of the Hanford Site Separations Area, December 1987

    SciTech Connect (OSTI)

    Schatz, A.L.; Ammerman, J.J.

    1988-03-01

    The ground-water maps of the Separations Area are prepared by the Environmental Technology Section of the Defense Waste Management Division of Westinghouse Hanford Company. The Separations Area consists of the 200 East and 200 West Areas, where chemical processing activities are carried out. This set of ground-water maps consists of a water-table map of the unconfined aquifer, a depth-to-water map of the unconfined aquifer, and a potentiometric map of the uppermost confined aquifer (the Rattlesnake Ridge sedimentary interbed) in the area where West Lake, the deactivated Gable Mountain Pond, and the B Pond system are located. The Separations Area water-table map is prepared from water-level measurements made in June and December. For the December 1987 map approximately 200 wells were used for contouring the water table. The water-table mound beneath the deactivated U Pond has decreased in size since the June 1987 measurements were taken, reflecting the impact of shutting off flow to the pond in the fall of 1984. This mound has declined approximately 8 ft. since 1984. The water-table map also shows the locations of wells where the December 1987 measurements were made, and the data for these measurements are listed.

  19. Environmental Flows in Water Availability Modeling 

    E-Print Network [OSTI]

    Wurbs, R.; Hoffpauir, R.

    2013-07-18

    Report No. 440 Texas Water Resources Institute The Texas A&M University System College Station, Texas 77843-2118 May 2013 TABLE OF CONTENTS Chapter 1 Introduction..., and alternative variations thereof. The Brazos WAM is large and complex, providing opportunities to explore a number of issues involved in integrating environmental flow, water supply, flood control, hydropower, multiple-reservoir system operations, and other...

  20. UMTRA Ground Water Project management action process document

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards.

  1. Document Number Q0029500 Ground Water Model 3.0 Ground Water Model

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O M P R E H E N S I V E944039Ground

  2. SIMULATION AND VALIDATION OF HYBRID GROUND SOURCE AND WATER-LOOP HEAT PUMP

    E-Print Network [OSTI]

    SIMULATION AND VALIDATION OF HYBRID GROUND SOURCE AND WATER-LOOP HEAT PUMP SYSTEMS By JASON EARL AND VALIDATION OF HYBRID GROUND SOURCE AND WATER-LOOP HEAT PUMP SYSTEMS Thesis Approved: Dr. Jeffrey D. Spitler

  3. EVALUATING TRADEOFFS BETWEEN ENVIRONMENTAL FLOW PROTECTIONS AND AGRICULTURAL WATER SECURITY

    E-Print Network [OSTI]

    Merenlender, Adina

    environmental policy associated with the greatest impacts to water users. Surprisingly, the moderate environmental flow policy had larger impacts to bypass flows than the unregulated management scenarioEVALUATING TRADEOFFS BETWEEN ENVIRONMENTAL FLOW PROTECTIONS AND AGRICULTURAL WATER SECURITY T. E

  4. ASSESSMENT OF NATURAL GROUND WATER RECHARGE IN UPPER GANGA CANAL COMMAND AREA

    E-Print Network [OSTI]

    Kumar, C.P.

    ASSESSMENT OF NATURAL GROUND WATER RECHARGE IN UPPER GANGA CANAL COMMAND AREA C. P. Kumar* and P. V. Seethapathi** SYNOPSIS Quantification of the rate of natural ground water recharge is a pre-requisite for efficient ground water resource management. It is particularly important in regions with large demands

  5. Improved estimates of the total correlation energy in the ground state of the water molecule

    E-Print Network [OSTI]

    Anderson, James B.

    Improved estimates of the total correlation energy in the ground state of the water molecule Arne calculations of the electronic energy of the ground state of the water molecule yield energies lower than those for the electronic energy of the ground state of the water molecule. The energy given by a fixed-node quantum Monte

  6. Ground and Water Source Heat Pump Performance and Design for Southern Climates 

    E-Print Network [OSTI]

    Kavanaugh, S.

    1988-01-01

    Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical...

  7. RCRA ground-water monitoring: Draft technical guidance

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    The manual was prepared to provide guidance for implementing the ground-water monitoring regulations for regulated units contained in 40 CFR Part 264 Subpart F and the permitting standards of 40 CFR Part 270. The manual also provides guidance to owners and operators of treatment, storage, and disposal facilities (TSDFs) that are required to comply with the requirements of 40 CFR Part 264 Subparts J (Tank Systems), K (Surface Impoundments), L (Waste Piles), N (Landfills), and X (Miscellaneous Units). This document updates technical information contained in other sources of U.S. EPA guidance, such as chapter eleven of SW-846 (Revision O, September 1986) and the Technical Enforcement Guidance Document (TEGD).

  8. HANFORD SITE ENVIRONMENTAL DATA FOR CALENDAR YEAR 1989 - GROUND WATER

    SciTech Connect (OSTI)

    Bryce, R. W.; Gorst, W. R.

    1990-12-01

    In a continuing effort for the U.S. Department of Energy, Pacific Northwest Laboratory (PNL) is conducting ground-water monitoring at the Hanford Site, near Richland, Washington. This document contains the data listing of monitoring results obtained by PNL and Westinghouse Hanford Company during the period January through December 1989. Samples taken during 1989 were analyzed and reported by United States Testing Company, Inc., Richland, Washington. The data listing contains all chemical results (above contractual reporting limits) and radiochemical results (for which the result is larger than two times the total error).

  9. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January 2000-December 2002

    SciTech Connect (OSTI)

    Locke, Glenn L. [US Geological Survey, Carson City, NV (United States); La Camera, Richard J. [US Geological Survey, Carson City, NV (United States)

    2003-12-31

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January 2000 through December 2002. Historical data on water levels, discharges, and withdrawals are graphically presented to indicate variations through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented for 1992–2002 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to selected baseline periods. Baseline periods varied for 1985–93. At six of the seven wells in Jackass Flats, the median water levels for 2002 were slightly higher (0.3–2.4 feet) than for their respective baseline periods. At the remaining well, data for 2002 was not summarized statistically but median water-level altitude in 2001 was 0.7 foot higher than that in its baseline period.

  10. Quasi-three dimensional ground-water modeling of the hydrologic influence of paleozoic rocks on the ground-water table at Yucca Mountain, Nevada 

    E-Print Network [OSTI]

    Lee, Si-Yong

    1994-01-01

    The proposed high-level radioactive waste repository site at Yucca Mountain, Nevada, has created a need to understand the, ground-water system at the site. One of the important hydrologic characteristics is a steep gradient on the ground-water table...

  11. OPTIMUM UTILIZATION OF GROUND WATER IN KOBO VALLEY, EASTERN AMHARA, ETHIOPIA

    E-Print Network [OSTI]

    the overall water table depth due to pumping. Water table depth will not be depleted if irrigation follows and the yield of cereals in the rainy periods. Irrigation from ground water could enable farmers to cultivate more than once a year. Since pumping has an effect on the ground water resources availability

  12. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect (OSTI)

    P. Tucci

    2001-12-20

    This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M&O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment.

  13. Water and Solute Flow in a Highly-Structured Soil 

    E-Print Network [OSTI]

    Hallmark, C. Tom; Wilding, Larry P.; McInnes, Kevin J.; Heuvelman, Willem J.

    1993-01-01

    to groundwater may be related to the degree of flow path channelization (convergence or divergence of water flow paths). This project was designed to test the feasibility of measuring the degree of channelization as water percolates through structured soils. A...

  14. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01

    tool for geothermal water loop heat pump systems, 9thInternational IEA Heat Pump Conference, Zürich, Switzerland,of ground source heat pump system in a near-zero energy

  15. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01

    tool for geothermal water loop heat pump systems, 9thInternational IEA Heat Pump Conference, Zürich, Switzerland,Performance of ground source heat pump system in a near-zero

  16. High-Resolution Estimation of Near-Subsurface Water Content using Surface GPR Ground Wave Information

    E-Print Network [OSTI]

    Rubin, Yoram

    1 High-Resolution Estimation of Near-Subsurface Water Content using Surface GPR Ground Wave, UC Berkeley, Berkeley, CA 94720 1. Introduction Information about near surface soil water content the applicability of a surface geophysical method, ground penetrating radar (GPR), for use as a water content

  17. Non-Lawyers' Guide to Hearings before the Colorado Ground Water...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Non-Lawyers' Guide to Hearings before the Colorado Ground Water...

  18. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-05-01

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

  19. Ground validation of an intermittent flow visualization system 

    E-Print Network [OSTI]

    Myatt, James Harold

    1991-01-01

    ? CL FG FT FsG Hp Hrt Inlet area Exit area Angle of attack Valve flow capacity Ideal gas heat capacity Blowing momentum coefficient Lift coefficient Specific total energy Specific kinetic energy Specific potential energy System total... transducer end of transducer stand-off. . . . . . . 40 Fig. 17 Camera 1 view of a typical smoke puff. a) t = 0 sec. b) t = 0. 01 sec. c) t = 0. 02 sec. d) t = 0. 03 sec. e) EV video and centroid files. . . . . . . . . . . . . 42 Fig. 18 Camera 2 view of a...

  20. Arsenic cycling within the water column of a small lake receiving contaminated ground-water discharge

    SciTech Connect (OSTI)

    Ford, Robert G.; Wilkin, Richard T.; Hernandez, Gina (EPA); (ECO)

    2008-09-18

    The fate of arsenic discharged from contaminated ground water to a small, shallow lake at a hazardous waste site was examined to understand the role of iron (hydr)oxide precipitation-dissolution processes within the water column. Field and laboratory observations indicate that arsenic solubility was controlled, in part, by the extent of ferrous iron oxidation-precipitation and arsenic sorption occurring near the lake chemocline. Laboratory experiments were conducted using site-derived water to assess the impact of these coupled processes on the removal of dissolved arsenic from the water column. The measured concentration of organic carbon from epilimnetic and hypolimnetic water sampled from the lake was approximately 1.3 mM and 17.0 mM, respectively. Experiments conducted with these samples along with synthetic controls containing no organic carbon demonstrated that observed rates of formation and crystallinity of the precipitated iron (hydr)oxide were dependent on the concentration of organic carbon in the lake water. Increasing dissolved organic matter concentration did not significantly interfere with ferrous iron oxidation, but inhibited iron (hydr)oxide precipitation and subsequent sorption of arsenic. For experiments using water sampled from the lake hypolimnion there was a strong relationship between the fraction of precipitated iron and the fraction of sorbed arsenic. Laboratory- and field-derived iron (hydr)oxide precipitates were characterized to evaluate mineralogy and arsenic distribution. In-situ suspended solids and precipitates formed in laboratory experiments using hypolimnetic water were identified as poorly crystalline 2-line ferrihydrite. These solids were readily dissolved in the presence of dithionite indicating that elevated dissolved iron and arsenic observed in the hypolimnion resulted, in part, from in-situ reductive dissolution of settling 2-line ferrihydrite near the sediment-water interface. These observations support the contention that the levels of dissolved arsenic observed in the shallow lake can be attributed to ground-water discharge and internal recycling of arsenic within the water column. The efficiency of the process resulting in iron (hydr)oxide precipitation and arsenic sorption limits the downgradient export of arsenic derived from ground-water discharge.

  1. Evaluation of the US Geological Survey ground-water data-collection program in Hawaii, 1992. Water-resources investigations

    SciTech Connect (OSTI)

    Anthony, S.S.

    1997-12-31

    This report describes an evaluation of the 1992 USGS ground-water data-collection program in Hawaii. The occurrence of ground water in the Hawaiian islands is briefly described. Objectives for the data-collection program are identified followed by a description of well networks needed to prepare maps of water levels and chloride concentrations. For the islands of Oahu, Kauai, Maui, Molokai, and Hawaii, the wells in the 1992 ground-water data-collection program are described followed by maps showing the distribution and magnitude of pumpage, and the distribution of proposed pumped wells. Wells in the 1992 USGS ground-water data-collection program that provide useful data for mapping water levels and chloride concentrations are identified followed by locations where additional wells are needed for water-level and chloride-concentration data. In addition, a procedure to store and review data is described.

  2. Ground-water data for 1990--91 and ground-water withdrawals for 1951--91, Nevada Test Site and vicinity, Nye County, Nevada

    SciTech Connect (OSTI)

    Wood, D.B.; Reiner, S.R.

    1996-12-31

    This report presents selected ground-water data collected from wells and test holes at and in the vicinity of the Nevada Test Site. Depth-to-water measurements were made at 74 sites at and in the vicinity of the Nevada Test Site during water years 1990--91. Measured depths to water ranged from 301 to 2,215 feet below land surface and measured altitudes of the ground-water surface at the Nevada Test Site ranged from 2,091 to 6,083 feet above sea level. Depth-to-water measurements were obtained by a combination of wire-line, electric-tape, iron-horse, and steel-tape methods. Available historic withdrawal and depth-to-water data for ground-water supply wells have been included to show changes through time. Water samples were collected and analyzed for tritium concentrations at 15 sites during water years 1990--91. Tritium concentrations in bailed water samples ranged from below detection limits to 5,550,000 picocuries per liter. Tritium concentrations in samples from three wells exceeded drinking water standards established by the US Environmental Protection Agency. All three wells are separate piezometers contained within a single test hole near an area of extensive underground nuclear testing.

  3. Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow

    E-Print Network [OSTI]

    Marchese, Francis

    Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow

  4. THEMIS observations of a hot flow anomaly: Solar wind, magnetosheath, and ground-based measurements

    E-Print Network [OSTI]

    Mende, Stephen B.

    solar wind, and it has been suggested that they have a significant impact on the mag- netosphere [eTHEMIS observations of a hot flow anomaly: Solar wind, magnetosheath, and ground-based measurements and the subsequent downstream response. THEMIS-A, in the solar wind, observed classic HFA signatures. Isotropic

  5. Water Modeling of Steel Flow, Air Entrainment and Filtration

    E-Print Network [OSTI]

    Beckermann, Christoph

    Water Modeling of Steel Flow, Air Entrainment and Filtration Christoph Beckermann Associate Beckermann, C., "Water Modeling of Steel Flow, Air Entrainment and Filtration," in Proceedings of the 46th, 1992. #12;Abstract This paper presents an analysis of water modeling of steel pouring to study (1) air

  6. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    SciTech Connect (OSTI)

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  7. Ground-water contribution to dose from past Hanford Operations. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ``ground-water pathway,`` which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  8. Water and Mercury Pipe Flow Simulation in FLUENTSimulation in FLUENT

    E-Print Network [OSTI]

    McDonald, Kirk

    Water and Mercury Pipe Flow Simulation in FLUENTSimulation in FLUENT Yan Zhan, Foluso Ladeinde;Straight Pipe flow Ph i l bl-- Physical problem Isothermal mercury/ water flow through a 60D straight pipe* Mercury 1500 41.844 m 4.04 m/s 18.5 bar 15.67 bar Water 1500 331.404 m 4.04 m/s 18.5 bar 18.291bar *uave

  9. Groundwater and Terrestrial Water Storage, 

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01

    T. E. Reilly, 2002: Flow and storage in groundwater systems.Estimating ground water storage changes in the Mississippistorage..

  10. Exchange flow between open water and floating vegetation

    E-Print Network [OSTI]

    Zhang, Xueyan

    This study describes the exchange flow between a region with open water and a region with a partial-depth porous obstruction, which represents the thermally-driven exchange that occurs between open water and floating ...

  11. NGWA.org Ground Water Monitoring & Remediation 31, no. 3/ Summer 2011/pages 111118 111 2011, The Author(s)

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    are commonly used to mitigate the risk of hydrocarbon-contaminated aquifers. Recent research on the effectsNGWA.org Ground Water Monitoring & Remediation 31, no. 3/ Summer 2011/pages 111­118 111 © 2011, The Author(s) Ground Water Monitoring & Remediation © 2011, National Ground Water Association. doi: 10.1111/j

  12. NGWA.org Ground Water Monitoring & Remediation 00, no. 0/ xxxx 0000/pages 0000 1 2012, The Author(s)

    E-Print Network [OSTI]

    Clement, Prabhakar

    NGWA.org Ground Water Monitoring & Remediation 00, no. 0/ xxxx 0000/pages 00­00 1 © 2012, The Author(s) Ground Water Monitoring & Remediation © 2012, National Ground Water Association. doi: 10.1111/j1745­6592.2012.01392.x Modeling Dehalococcoides sp. Augmented Bioremediation in a Single Fracture

  13. Ground-water surveillance at the Hanford Site for CY 1983

    SciTech Connect (OSTI)

    Prater, L.S.; Rieger, J.T.; Cline, C.S.; Jensen, E.J.; Liikala, T.L.; Oster, K.R.

    1984-07-01

    Operations at the Hanford Site have resulted in the discharge of large volumes of process cooling water and other waste waters to the ground. These effluents contain low level of radioactive and chemical substances. During 1983, 328 monitoring wells were sampled at various times for radioactive and chemical constituents. Three of these constituents, specifically tritium, nitrate, and gross beta activity, were selected for detailed discussion in this report because they are more readily transported in the ground water than some of the other constituents. Transport of these constituents in the ground water has resulted in the formation of plumes that can be mapped by contouring the analytical data obtained from the monitoring wells. This report describes recent changes in the configuration of the tritium, nitrate and gross beta plumes. Changes or trends in contaminant levels in wells located within both the main plumes (originating from the 200 Areas) and the smaller plumes are discussed in this report. Two potential pathways for radionuclide transport from the ground water to the environmental are discussed in this report, and the radiological impacts are examined. In addition to describing the present status of the ground water beneath the Hanford Site, this report contains the results of studies conducted in support of the ground-water surveillance effort during CY 1983. 21 references, 26 figures, 5 tables.

  14. Ground penetrating radar characterization of wood piles and the water table in Back Bay, Boston

    E-Print Network [OSTI]

    LeFrançois, Suzanne O'Neil, 1980-

    2003-01-01

    Ground penetrating radar (GPR) surveys are performed to determine the depth to the water table and the tops of wood piles beneath a residential structure at 122 Beacon Street in Back Bay, Boston. The area of Boston known ...

  15. Prediction of postmine ground-water quality at a Texas surface lignite mine 

    E-Print Network [OSTI]

    Wise, Clifton Farrell

    1995-01-01

    The prediction Of postmine ground-water quality is encumbered with many complications resulting from the complex hydrologic system found in mine spoils. Current analytical methods such as acid/base accounting have only had limited success...

  16. DOE Moab Site Cost-Effectively Eliminates 200 Million Gallons of Contaminated Ground Water

    Broader source: Energy.gov [DOE]

    Grand Junction, CO ? The Department of Energy (DOE) announced today that it has extracted 200 million gallons of contaminated ground water from the Moab site in Utah as part of the Moab Uranium Mill Tailings Remedial Action Project.

  17. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Household Wastewater Treatment 

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29

    Household wastewater treatment systems (septic systems) can contaminate ground water unless they are properly designed, constructed and maintained. This publication describes various kinds of systems and guides the homeowner in assessing...

  18. EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill...

  19. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water.

  20. Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill

    SciTech Connect (OSTI)

    Fruland, R.M.

    1986-10-01

    Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

  1. Record of Decision for Ground Water | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget ||DepartmentReadoutReviewRecord of Decision for Ground

  2. WATER FLOW THROUGH TEMPERATE GLACIERS Andrew G. Fountain1

    E-Print Network [OSTI]

    Fountain, Andrew G.

    WATER FLOW THROUGH TEMPERATE GLACIERS Andrew G. Fountain1 Department of Geology Portland State, Washington Abstract. Understanding water movement through a glacier is fundamental to several critical issues glacierized drainage basins. To this end we have synthesized a conceptual model of water movement through

  3. UpStream: Motivating Water Conservation with Low-Cost Water Flow Sensing and Persuasive Displays

    E-Print Network [OSTI]

    Paulos, Eric

    - another byproduct of excessive water use, which leads to pollution. While reduced water usage in the USUpStream: Motivating Water Conservation with Low-Cost Water Flow Sensing and Persuasive Displays, Pittsburgh, PA, USA {stace, paulos}@cs.cmu.edu ABSTRACT Water is our most precious and most rapidly declining

  4. Water Quality Surface and Ground | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power ForumWaterWater

  5. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 2, Work plan: Phase 1, Task 4, Field Investigation: Draft

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    In April 1990 Wright-Patterson Air Force Base (WPAFB) initiated an investigation to evaluate a potential CERCLA removal action to prevent, to the extent practicable, the migration of ground-water contamination in the Mad River Valley Aquifer within and across WPAFB boundaries. The action will be based on a Focused Feasibility Study with an Action Memorandum serving as a decision document that is subject to approval by the Ohio Environmental Protection Agency. The first phase (Phase 1) of this effort involves an investigation of ground-water contamination migrating across the southwest boundary of Area C and across Springfield Pike adjacent to Area B. Task 4 of Phase 1 is a field investigation to collect sufficient additional information to evaluate removal alternatives. The field investigation will provide information in the following specific areas of study: water-level data which will be used to permit calibration of the ground-water flow model to a unique time in history; and ground-water quality data which will be used to characterize the current chemical conditions of ground water.

  6. Radiological conditions at Bikini Atoll: Radionuclide concentrations in vegetation, soil, animals, cistern water, and ground water

    SciTech Connect (OSTI)

    Robison, W.L.; Conrado, C.L.; Stuart, M.L.

    1988-05-31

    This report is intended as a resource document for the eventual cleanup of Bikini Atoll and contains a summary of the data for the concentrations of /sup 137/Cs, /sup 90/Sr, /sup 239 +240/Pu, and /sup 241/Am in vegetation through 1987 and in soil through 1985 for 14 islands at Bikini Atoll. The data for the main residence island, Bikini, and the most important island, Eneu, are extensive; these islands have been the subject of a continuing research and monitoring program since 1974. Data for radionuclide concentrations in ground water, cistern water, fish and other marine species, and pigs from Bikini and Eneu Islands are presented. Also included are general summaries of our resuspension and rainfall data from Bikini and Eneu Islands. The data for the other 12 islands are much more limited because samples were collected as part of a screening survey and the islands have not been part of a continuing research and monitoring program. Cesium-137 is the radionuclide that produces most of the estimated dose for returning residents, mostly through uptake by terrestrial foods and secondly by direct external gamma exposure. Remedial measures for reducing the /sup 137/Cs uptake in vegetation are discussed. 40 refs., 32 figs., 131 tabs.

  7. Temperatures, heat flow, and water chemistry from drill holes...

    Open Energy Info (EERE)

    Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

  8. A study of boiling water flow regimes at low pressures

    E-Print Network [OSTI]

    Fiori, Mario P.

    1966-01-01

    "A comprehensive experimental program to examine flow regimes at pressures below 100 psia for boiling of water in tubes was carried out. An electrical probe, which measures the resistance of the fluid between the centerline ...

  9. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Well-Head Management and Conditions 

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29

    The condition of a water well and its proximity to contamination sources determine the risk it poses to ground water. Topics covered include well location, well construction, well age and type, well depth, well maintenance, water testing...

  10. Results of ground-water monitoring for radionuclides in the Separations Area, 1987

    SciTech Connect (OSTI)

    Serkowski, J.A.; Law, A.G.; Ammerman, J.J.; Schatz, A.L.

    1988-04-01

    The purpose of this report is to present a summary of the results for calendar year 1987 of the Westinghouse Hanford Company (Westinghouse Hanford) ground-water monitoring program for radiological constituents in the Separations Area of the Hanford Site. This monitoring program is implemented to partially fulfill the US Department of Energy (DOE) requirement that radioactivity in the environment be monitored. The program is also used to monitor operating disposal facilities for compliance with DOE requirements. The Separations Area radionuclide ground-water monitoring program is coordinated with other ground-water monitoring activities on the Hanford Site conducted by Westinghouse Hanford and Pacific Northwest Laboratory (PNL). The PNL program includes sampling for both radioactive and nonradioactive chemicals throughout the Site (including 100 and 300 Areas) and is responsible for estimating and evaluating the impact on ground water to the general public from all operations at the Hanford Site. Ground water characterization and monitoring for compliance with Resource Conservation and Recovery Act (RCRA) is also being conducted at facilities on the Hanford Site.

  11. Ground-water solutes and eolian processes: An example from the High Plains of Texas

    SciTech Connect (OSTI)

    Wood, W.W.; Sanford, W.E. (Geological Survey, Reston, VA (United States))

    1992-01-01

    Eolian dunes associated with saline-lake basins are important geologic features in arid and semiarid areas. The authors propose that eolian processes may also be important in controlling solute concentration and composition of ground water in these environments. A study of Double Lakes on the Southern High Plains of Texas suggests that approximately 200 megagrams of chloride enters this topographically closed basin from the surrounding water table aquifer, direct precipitation and surface runoff. Solute-transport simulation suggest that approximately 70 of the 200 megagrams of the chloride annually leaves the basin by diffusion and ground-water advection through a 30 meter-thick shale underlying the lake. The remaining 130 megagrams is hypothesized to be removed by eolian processes. Closed water-table contours around the lake and a hydrologic analysis suggest that it is improbable that solutes will reach the surrounding water-table aquifer by ground-water transport from this lake system. The conceptual eolian-transport model is further supported by observed chloride profiles in the unsaturated zone. When analyzed with estimates of recharge fluxes, these profiles suggest that approximately 150 megagrams of chloride enter the unsaturated zone downwind of the lake annually. Thus two independent methods suggest that 130 to 150 megagrams of chloride enter the unsaturated zone downwind of the lake annually. Thus two independent methods suggest that 130 to 150 megagrams of chloride are removed from the basin annually by eolian process and redeposited downwind of the lake. Eolian input to the ground water is consistent with the observed plume shape as well as with the solute and isotopic composition of ground water in the water-table aquifer downwind of the lake basin.

  12. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01

    Performance of ground source heat pump system in a near-zerosimulation tool for ground- source heat pump system designflow systems and ground source heat pump systems Abstract

  13. WaterSense: Water Flow Disaggregation Using Motion Sensors Vijay Srinivasan

    E-Print Network [OSTI]

    Whitehouse, Kamin

    WaterSense: Water Flow Disaggregation Using Motion Sensors Vijay Srinivasan Department of Computer of Computer Science University of Virginia, Charlottesville whitehouse@cs.virginia.edu Abstract Smart water meters will soon provide real-time access to instantaneous water usage in many homes, and disaggrega

  14. Hanford Site ground-water monitoring for January through June 1988

    SciTech Connect (OSTI)

    Evans, J.C.; Bryce, R.W.; Sherwood, D.R.

    1989-05-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between January and June 1988 included monitoring ground-water elevations across the Site, and monitoring hazardous chemicals and radionuclides in ground water. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Solid Waste Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. In addition, several new analytical initiatives were undertaken during this period. These include cyanide speciation in the BY Cribs plume, inductively coupled argon plasma/mass spectrometry (ICP/MS) measurements on a broad selection of samples from the 100, 200, 300, and 600 Areas, and high sensitivity gas chromatography measurements performed at the Solid Waste Landfill-Nonradioactive Dangerous Waste Landfill. 23 figs., 25 tabs.

  15. 40 CFR 265 interim-status ground-water monitoring plan for the 2101-M pond

    SciTech Connect (OSTI)

    Chamness, M.A.; Luttrell, S.P.; Dudziak, S.

    1989-03-01

    This report outlines a ground-water monitoring plan for the 2101-M pond, located in the southwestern part of the 200-East Area on the Hanford Site in south-central Washington State. It has been determined that hazardous materials may have been discharged to the pond. Installation of an interim-status ground-water monitoring system is required under the Resource Conservation and Recovery Act to determine if hazardous chemicals are moving out of the pond. This plan describes the location of new wells for the monitoring system, how the wells are to be completed, the data to be collected, and how those data can be used to determine the source and extent of any ground-water contamination from the 2101-M pond. Four new wells are planned, one upgradient and three downgradient. 35 refs., 12 figs., 9 tabs.

  16. Hanford Site ground-water monitoring for April through June 1987

    SciTech Connect (OSTI)

    Evans, J.C.; Mitchell, P.J.; Dennison, D.I.

    1988-01-01

    Pacific Northwest Laboratory (PNL) is conducting ground-water monitoring at the Hanford Site. Results for monitoring by PNL and Westinghouse Hanford Company (WHC) during April-June 1987 show that certain regulated hazardous materials and radionuclides exist in Hanford Site ground waters. The presence of regulated constituents in the ground water derives both from site operations and from natural sources. The major contamination problems defined by recent monitoring activities are carbon tetrachloride in the 200 West Area; cyanide in and north of the 200 East Area; hexavalent chromium contamination in the 100B, 100D, 100K, and 100H areas; chlorinated hydrocarbons in the vicinity of the Central Landfill; uranium at the 216-U-1 and 216-U-2 cribs in the 200 West Area; tritium across the site; and nitrate across the site. The distribution of hazardous materials related to site operations is more limited than the distribution of tritium and nitrate. 8 refs., 22 figs., 5 tabs.

  17. Ground Water Management District Rules | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar JumpInformation Crump's Hot Springs Area1978)Water

  18. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    SciTech Connect (OSTI)

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  19. The recovery of crude oil spilled on a ground water aquifer 

    E-Print Network [OSTI]

    Malter, Paul Lawrence

    1983-01-01

    THE RECOVERY OF CRUDE OIL SPILLED ON A GROUND WATER AQUIFER A Thesis by PAUL LAWRENCE MALTER Approved as to style and content by: oy W, ann, J (Ch irman of Committee) / Dona McDona (Head of Department) as (Me ) 0 s Le a . ~e e (Member...) May 1983 ABSTRACT The Recovery of Crude Oil Spilled on a Ground Water Aquifer. (Nay 1983) Paul Lawrence Malter, B. S. , Texas A6K University Chairman of Advisory Committee: Roy W. Bann, Jr. Case histories of previous petroleum spill cleanups...

  20. A detection-level hazardous waste ground-water monitoring compliance plan for the 200 areas low-level burial grounds and retrievable storage units

    SciTech Connect (OSTI)

    Not Available

    1987-02-01

    This plan defines the actions needed to achieve detection-level monitoring compliance at the Hanford Site 200 Areas Low-Level Burial Grounds (LLBG) in accordance with the Resource Conservation and Recovery Act (RCRA). Compliance will be achieved through characterization of the hydrogeology and monitoring of the ground water beneath the LLBG located in the Hanford Site 200 Areas. 13 refs., 20 figs.

  1. Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    None

    2003-04-23

    This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as Attachment 1.

  2. Particle trajectories in linearized irrotational shallow water flows

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2011-06-20

    We investigate the particle trajectories in an irrotational shallow water flow over a flat bed as periodic waves propagate on the water's free surface. Within the linear water wave theory, we show that there are no closed orbits for the water particles beneath the irrotational shallow water waves. Depending on the strength of underlying uniform current, we obtain that some particle trajectories are undulating path to the right or to the left, some are looping curves with a drift to the right and others are parabolic curves or curves which have only one loop.

  3. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    This baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota, evaluates the potential impacts to public health or the environment from contaminated ground water at this site. This contamination is a result of the uraniferous lignite ashing process, when coal containing uranium was burned to produce uranium. Potential risk is quantified only for constituents introduced by the processing activities and not for the constituents naturally occurring in background ground water in the site vicinity. Background ground water, separate from any site-related contamination, imposes a percentage of the overall risk from ground water ingestion in the Bowman site vicinity. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to address soil and ground water contamination at the site. The UMTRA Surface Project involves the determination of the extent of soil contamination and design of an engineered disposal cell for long-term storage of contaminated materials. The UMTRA Ground Water Project evaluates ground water contamination. Based on results from future site monitoring activities as defined in the site observational work plan and results from this risk assessment, the DOE will propose an approach for managing contaminated ground water at the Bowman site.

  4. Pacific Northwest National Laboratory Grounds Maintenance: Best Management Practice Case Studies #4 and #5 - Water Efficient Landscape and Irrigation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-08-01

    FEMP Water Efficiency Best Management Practices #4 and #5 Case Study: Overview of the Pacific Northwest National Laboratory grounds maintenance program and results.

  5. Field evaluation of ground water sampling devices for volatile organic compounds

    SciTech Connect (OSTI)

    Muska, C F; Colven, W P; Jones, V D; Scogin, J T; Looney, B B; Price, V Jr

    1986-01-01

    Previous studies conducted under laboratory conditions demonstrated that the type of device used to sample ground water contaminated with volatile organic compounds can significantly influence and analytical results. The purpose of this study was to evaluate, under field conditions, both commercial and developmental ground water sampling devices as part of an ongoing ground water contamination investigation and remediation program at the Savannah River Plant (SRP). Ground water samples were collected using six types of sampling devices in monitoring wells of different depths and concentrations of volatile organic contaminants (primarily trichloroethylene and tetrachloroethylene). The study matrix was designed to statistically compare the reuslts of each sampling device under the test conditions. Quantitative and qualitative evaluation criteria were used to determine the relative performance of each device. Two categories of sampling devices were evaluated in this field study, positive displacement pumps and grab samplers. The positive displacement pumps consisted of a centrifugal (mechanical) pump and a bladder pump. The grab samples tested were a syringe sampler, a dual-check valve bailer, a surface bomb sampler, and a pressurized bailer. Preliminary studies were conducted to establish the analytical and sampling variability associated with each device. All six devices were then used to collect ground water samples in water table (unconfined), semi-confined aquifer, and confined aquifer monitoring wells. Results were evaluated against a set of criteria that included intrasampling device variability (precision), volatile organic concentration (accuracy), sampling and analytical logistics, and cost. The study showed that, by using careful and reproducible procedures, overall sampling variability is low regardless of sampling device.

  6. Selenium in Oklahoma ground water and soil. Quarterly report No. 6

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  7. Virus removal by soil passage at field scale and ground-water protection of sandy aquifers

    E-Print Network [OSTI]

    Hassanizadeh, S. Majid

    Virus removal by soil passage at field scale and ground- water protection of sandy aquifers J; The Netherlands (E-mail: Majid@ct.tudelft.nl) Abstract Virus removal from groundwater by soil passage often for attachment than thereafter. A model is presented which interprets virus removal as a function of collision

  8. Precision Ground Water Sampling in Coastal Aquifers Using a Direct-Push, Shielded-Screen

    E-Print Network [OSTI]

    -Point System by Matthew A. Charette and Matt C. Allen Abstract Conventional ground water sampling methods the installation of monitoring wells through hand auguring, jetting, and drilling, are not only expensive but also well-point systems aim to solve the problems of conventional methods. To increase the depth of penetra

  9. Relation of soil-, surface-, and ground-water distributions of inorganic nitrogen with

    E-Print Network [OSTI]

    Macdonald, Ellen

    Relation of soil-, surface-, and ground-water distributions of inorganic nitrogen with topographic position in harvested and unharvested portions of an aspen-dominated catchment in the Boreal Plain M.L. Macrae, K.J. Devito, I.F. Creed, and S.E. Macdonald Abstract: Spatial distributions of soil extractable

  10. A new technique to monitor ground-water quality at municipal solid waste landfills 

    E-Print Network [OSTI]

    Hart, Steven Charles

    1989-01-01

    31 37 37 37 40' 41 SITE CHARACTERIZATION Test Site , Geology . Hydrogeology Soil Characteristics Climate . . . , . . . . . . Baseline Geophysical Investigation Site Investigation Methodology Results and Discussion Geology Rainfall... Hydrogeology . . . . . . . . . . . . . , . Ground-water quality TEST OF RESISTIVITY MONITORING TECHNIOUE Methods Results and Discussion Station 3+00 Station 11+00 Station 33+00 Summary CONCLUSIONS RECOMMENDATIONS REFERENCES APPENDIX A CORE...

  11. ReproducedfromJournalofEnvironmentalQuality.PublishedbyASA,CSSA,andSSSA.Allcopyrightsreserved. Ground Water Quality

    E-Print Network [OSTI]

    Simpkins, William W.

    for an unfractured till (Freeze als that preclude vertical and horizontal transport of and Cherry, 1979; JournalofEnvironmentalQuality.PublishedbyASA,CSSA,andSSSA.Allcopyrightsreserved. Ground Water Quality Fracture-Controlled Nitrate and Atrazine Transport in Four Iowa Till Units Martin F-quantify the influence of fractures on solute fate and transport using three conservative and two nonconservative tracers

  12. Demonstration of a plasma mirror based on a laminar flow water film

    E-Print Network [OSTI]

    Panasenko, Dmitriy

    2012-01-01

    Benjamin, “Wave Formation in Laminar Flow down an Inclineda plasma mirror based on a laminar flow water film. DmitriyA plasma mirror based on a laminar water film with low flow

  13. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    SciTech Connect (OSTI)

    Hong, Tainzhen; Liu, Xaiobing

    2009-11-01

    With the current movement toward net zero energy buildings, many technologies are promoted with emphasis on their superior energy efficiency. The variable refrigerant flow (VRF) and ground source heat pump (GSHP) systems are probably the most competitive technologies among these. However, there are few studies reporting the energy efficiency of VRF systems compared with GSHP systems. In this article, a preliminary comparison of energy efficiency between the air-source VRF and GSHP systems is presented. The computer simulation results show that GSHP system is more energy efficient than the air-source VRF system for conditioning a small office building in two selected US climates. In general, GSHP system is more energy efficient than the air-source VRV system, especially when the building has significant heating loads. For buildings with less heating loads, the GSHP system could still perform better than the air-source VRF system in terms of energy efficiency, but the resulting energy savings may be marginal.

  14. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Livestock Holding Pen Management 

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29

    Open lots or holding pens for feeding or holding livestock can be sources of ground water contamination. The safety of such operations depends on their separation from water wells, characteristics of the site, and proper management. This publication...

  15. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  16. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    SciTech Connect (OSTI)

    1995-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  17. Revised ground-water monitoring compliance plan for the 300 area process trenches

    SciTech Connect (OSTI)

    Schalla, R.; Aaberg, R.L.; Bates, D.J.; Carlile, J.V.M.; Freshley, M.D.; Liikala, T.L.; Mitchell, P.J.; Olsen, K.B.; Rieger, J.T.

    1988-09-01

    This document contains ground-water monitoring plans for process-water disposal trenches located on the Hanford Site. These trenches, designated the 300 Area Process Trenches, have been used since 1973 for disposal of water that contains small quantities of both chemicals and radionuclides. The ground-water monitoring plans contained herein represent revision and expansion of an effort initiated in June 1985. At that time, a facility-specific monitoring program was implemented at the 300 Area Process Trenches as part of a regulatory compliance effort for hazardous chemicals being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interim-status facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The applicable monitoring requirements are described in the Resource Conservation and Recovery Act (RCRA), 40 CFR 265.90 of the federal regulations, and in WAC 173-303-400 of Washington State's regulations (Washington State Department of Ecology 1986). The program implemented for the process trenches was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. The plans for the program, contained in a document prepared by the US Department of Energy (USDOE) in 1985, called for monthly sampling of 14 of the 37 existing monitoring wells at the 300 Area plus the installation and sampling of 2 new wells. 27 refs., 25 figs., 15 tabs.

  18. Ground Water Surveillance Monitoring Implementation Guide for Use with DOE O 450.1, Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-06-24

    This Guide assists DOE sites in establishing and maintaining surveillance monitoring programs to detect future impacts on ground water resources from site operations, to track existing ground water contamination, and to assess the potential for exposing the general public to site releases. Canceled by DOE N 251.82.

  19. Ground Water and Surface Water Stable Isotope Data for East Maui, Hawaii Supplement to Scholl et al., 2002, Journal of Hydrology, The influence of microclimates and fog

    E-Print Network [OSTI]

    Ground Water and Surface Water Stable Isotope Data for East Maui, Hawaii Supplement to Scholl et al in interpretation of regional hydrology: East Maui, Hawaii Sample Field ID Date Field Field Location Number USGS

  20. Reduced heat flow in light water (H2O) due to heavy water (D2O)

    E-Print Network [OSTI]

    William R. Gorman; James D. Brownridge

    2008-09-04

    The flow of heat, from top to bottom, in a column of light water can be decreased by over 1000% with the addition of heavy water. A column of light water cools from 25 C to 0 C in 11 hours, however, with the addition of heavy water it takes more than 100 hours. There is a concentration dependence where the cooling time increases as the concentration of added (D2O) increases, with a near maximum being reached with as little as 2% of (D2O) added. This phenomenon will not occur if the water is mixed after the heavy water is added.

  1. Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data

    E-Print Network [OSTI]

    Lo, Min-Hui; Famiglietti, James S; Yeh, P. J.-F.; Syed, T. H

    2010-01-01

    variations of river water storage from a multiple satellite2007), Estimating ground water storage changes in theAnalysis of terrestrial water storage changes from GRACE and

  2. U.S. Department of Energy Uranium Mill Tailings Remedial Action Ground Water Project: Project plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA Project processing sites. The compliance strategy for the processing sites must satisfy the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1987). This scope of work will entail the following activities on a site-specific basis: Develop a compliance strategy based on modification of the UMTRA Surface Project RAPs or develop Ground Water Project RAPs with NRC concurrence on the RAP and full participation of the affected states and tribes. Implement the RAP to include institutional controls, where appropriate, as an interim measure until compliance with the standards is achieved. Institute long-term verification monitoring for transfer to a separate long-term surveillance program on or before the Project end date. Prepare certification or confirmation reports and modify the long-term surveillance plan (LTSP), where needed, on those sites completed prior to the Project end date.

  3. Guide to ground water remediation at CERCLA response action and RCRA corrective action sites

    SciTech Connect (OSTI)

    1995-10-01

    This Guide contains the regulatory and policy requirements governing remediation of ground water contaminated with hazardous waste [including radioactive mixed waste (RMW)], hazardous substances, or pollutants/contaminants that present (or may present) an imminent and substantial danger. It was prepared by the Office of Environmental Policy and Assistance, RCRA/CERCLA Division (EH-413), to assist Environmental Program Managers (ERPMs) who often encounter contaminated ground water during the performance of either response actions under CERCLA or corrective actions under Subtitle C of RCRA. The Guide begins with coverage of the regulatory and technical issues that are encountered by ERPM`s after a CERCLA Preliminary Assessment/Site Investigation (PA/SI) or the RCRA Facility Assessment (RFA) have been completed and releases into the environment have been confirmed. It is based on the assumption that ground water contamination is present at the site, operable unit, solid waste management unit, or facility. The Guide`s scope concludes with completion of the final RAs/corrective measures and a determination by the appropriate regulatory agencies that no further response action is necessary.

  4. Use of Mini-Sprinklers to Strip Trichloroethylene and Tetrachloroethylene from Contaminated Ground Water.

    SciTech Connect (OSTI)

    Brerisford, Yvette, C.; Bush, Parshall, B.; Blake, John, I.; Bayer, Cassandra L.

    2003-01-01

    Berisford, Y.C., P.B. Bush, J.I. Blake, and C.L. Bayer. 2003. Use of mini-sprinklers to strip trichloroethylene and tetrachloroethylene from contaminated ground water. J. Env. Qual. 32:801-815. Three low-volume mini-sprinklers were tested for their efficacy to strip trichloroethylene (TCE) and tetrachloroethylene (PCE) from water. Deionized water spiked with TCE and PCE was pumped through a mini-sprinkler supported on top of a 1.8-m-tall. Water was collected in collection vessels at 0.61 and 1.22 m above the ground on support columns that were spaced at 0.61-m intervals from the riser base, and samples were composited per height and distance from the riser. Overall, air-stripping reduced dissolved concentrations of TCE and PCE by 99.1 to 100 and 96.9 to 100%, respectively. Mini-sprinklers offer the advantages of (i) easy setup in series that can be used on practically any terrain; (ii) operation over a long period of time that does not threaten aquifer depletion; (iii) use in small or confined aquifers in which the capacity is too low to support large irrigation or pumping systems; and (iv) use in forests in which the small, low-impact droplets of the mini-sprinklers do not damage bark and in which trees can help manage (via evapotransporation) excess waste water.

  5. Interannual Changes in Seasonal Ground Freezing and Near-surface Heat Flow Beneath Bottom-fast Ice in the Near-shore Zone, Mackenzie Delta, NWT, Canada

    E-Print Network [OSTI]

    Moorman, Brian

    Interannual Changes in Seasonal Ground Freezing and Near-surface Heat Flow Beneath Bottom-fast Ice Resources Canada, Dartmouth, Nova Scotia, Canada ABSTRACT Interannual changes in seasonal ground freezing. KEY WORDS: seasonal ground freezing; permafrost; bottom-fast ice; Mackenzie Delta INTRODUCTION Arctic

  6. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-02-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

  7. 1 INTRODUCTION The modular finitedifference groundwater flow

    E-Print Network [OSTI]

    Russell, Thomas F.

    1 INTRODUCTION The modular finite­difference ground­water flow model (MODFLOW) developed by the U­dimensional ground­water systems (McDonald & Harbaugh, 1988, Harbaugh & McDonald, 1996). MOC3D is a solute is optimal for advection­ dominated systems, which are typical of many field problems involving ground­water

  8. Numerical Investigation of turbulent coupling boundary layer of air-water interaction flow

    E-Print Network [OSTI]

    Liu, Song, S.M. Massachusetts Institute of Technology

    2005-01-01

    Air-water interaction flow between two parallel flat plates, known as Couette flow, is simulated by direct numerical simulation. The two flowing fluids are coupled through continuity of velocity and shear stress condition ...

  9. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Pesticide Storage and Handling 

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29

    Proper pesticide management is important to preventing ground water contamination. This publication contains helpful information about pesticide storage facilities, mixing and loading practices, and spill cleanup. A chart lists pesticides according...

  10. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Livestock Manure Storage and Treatment Facilities 

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29

    Improperly managed manure can contaminate both ground and surface water. Storing manure allows producers to spread it when crops can best use the nutrients. This publication explains safe methods of manure storage, as well as specifics about safe...

  11. Ground Water Protection Programs Implementation Guide for Use with DOE O 450.1, Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-05-05

    This Guide provides a description of the elements of an integrated site-wide ground water protection program that can be adapted to unique physical conditions and programmatic needs at each DOE site. Canceled by DOE N 251.82.

  12. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Milking Center Wastewater Treatment 

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29

    Storing wastewater from the milking center and applying it to crops is the best method of preventing ground water contamination. This publication discusses proper methods of storing and applying such waste, with illustrations of a detention pond...

  13. Hydroecological factors governing surface water flow on a low-gradient floodplain

    E-Print Network [OSTI]

    to flow reductions associated with flood control. We measured flow velocity, water depth, and wind with the square of water surface slope and the fourth power of stem diameter, decreases in direct proportionHydroecological factors governing surface water flow on a low-gradient floodplain Judson W. Harvey

  14. The prediction of the effectiveness of interceptor trenches in the remediation of ground-water contamination by petroleum hydrocarbons 

    E-Print Network [OSTI]

    Mast, Mary Katherine

    1991-01-01

    THE PREDICTION OF THE EFFECTIVENESS OF INTERCEPTOR TRENCHES IN THE REMEDIATION OF GROUND-WATER CONTAMINATION BY PETROLEUM HYDROCARBONS A Thesis by MARY KATHERINE MAST Submitted to the Office of Graduate Studies Texas A@M University... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1991 Major Subject: Geology THE PREDICTION OF THE EFFECTIVENESS OF INTERCEPTOR TRENCHES IN THE REMEDIATION OF GROUND-WATER CONTAMINATION BY PETROLEUM HYDROCARBONS A...

  15. Environmentally related water trading, transfers and environmental flows: welfare, water demand and flows 

    E-Print Network [OSTI]

    Han, Man Seung

    2008-10-10

    long run water management strategies. This is especially needed since state law requires agencies to weigh the 50 year impacts of any suggested IBT. 2.2. Analytical Framework This research will depict water availability and use in 21 Texas river...-Guadalupe, San Antonio-Nueces, Nueces. The Nueces-Rio Grande and Rio Grande river basins are excluded as of now. The optimal set of IBT projects is determined on the basis of maximizing the annualized expected net benefit of using agricultural, municipal...

  16. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

  17. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01

    type air-source VRF system and a GSHP system that uses single-stage scroll compressors and vertical ground loop heat exchanger (

  18. U.A.C. R317-6: Ground Water Quality Protection | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: Energy ResourcesLake,FallonHazardous5:6: Ground Water

  19. Appendix D Surface Water and Ground Water Time-Concentration Plots,

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the WeldonB10081278MaywoodWayne AnalyticalSurface Water

  20. Reactive chemical transport in ground-water hydrology: Challenges to mathematical modeling

    SciTech Connect (OSTI)

    Narasimhan, T.N.; Apps, J.A.

    1990-07-01

    For a long time, earth scientists have qualitatively recognized that mineral assemblages in soils and rocks conform to established principles of chemistry. In the early 1960's geochemists began systematizing this knowledge by developing quantitative thermodynamic models based on equilibrium considerations. These models have since been coupled with advective-dispersive-diffusive transport models, already developed by ground-water hydrologists. Spurred by a need for handling difficult environmental issues related to ground-water contamination, these models are being improved, refined and applied to realistic problems of interest. There is little doubt that these models will play an important role in solving important problems of engineering as well as science over the coming years. Even as these models are being used practically, there is scope for their improvement and many challenges lie ahead. In addition to improving the conceptual basis of the governing equations, much remains to be done to incorporate kinetic processes and biological mediation into extant chemical equilibrium models. Much also remains to be learned about the limits to which model predictability can be reasonably taken. The purpose of this paper is to broadly assess the current status of knowledge in modeling reactive chemical transport and to identify the challenges that lie ahead.

  1. 40 CFR 265 interim status indicator-evaluation ground-water monitoring plan for the 216-B-63 trench

    SciTech Connect (OSTI)

    Bjornstad, B.N.; Dudziak, S.

    1989-03-01

    This document outlines a ground-water monitoring plan for the 216-B-63 trench located in the northeast corner of the 200-East Area on the Hanford Site in southeastern Washington State. It has been determined that hazardous materials (corrosives) were disposed of to the trench during past operations. Installation of an interim-status ground-water monitoring system is required to determine whether hazardous chemicals are leaching to the ground water from beneath the trench. This document summarizes the existing data that are available from near the 216-B-63 trench and presents a plan to determine the extent of ground-water contamination, if any, derived from the trench. The plan calls for the installation of four new monitoring wells located near the west end of the trench. These wells will be used to monitor ground-water levels and water quality immediately adjacent to the trench. Two existing RCRA monitoring wells, which are located near the trench and hydraulically upgradient of it, will be used as background wells. 46 refs., 15 figs., 12 tabs.

  2. Ground-based near-infrared observations of water vapour in the Venus troposphere

    E-Print Network [OSTI]

    Chamberlain, S; Crisp, D; Meadows, V S; 10.1016/j.icarus.2012.11.014

    2012-01-01

    We present a study of water vapour in the Venus troposphere obtained by modelling specific water vapour absorption bands within the 1.18 \\mu m window. We compare the results with the normal technique of obtaining the abundance by matching the peak of the 1.18 \\mu m window. Ground-based infrared imaging spectroscopy of the night side of Venus was obtained with the Anglo-Australian Telescope and IRIS2 instrument with a spectral resolving power of R ~ 2400. The spectra have been fitted with modelled spectra simulated using the radiative transfer model VSTAR. We find a best fit abundance of 31 ppmv (-6 + 9 ppmv), which is in agreement with recent results by B\\'ezard et al. 2011 using VEX/SPICAV (R ~ 1700) and contrary to prior results by B\\'ezard et al. 2009 of 44 ppmv (+/-9 ppmv) using VEX/VIRTIS-M (R ~ 200) data analyses. Comparison studies are made between water vapour abundances determined from the peak of the 1.18 \\mu m window and abundances determined from different water vapour absorption features within t...

  3. Identifying Potential Land Use-derived Solute Sources to Stream Baseflow Using Ground Water Models and GIS

    E-Print Network [OSTI]

    to assess the impact of different baseflow solute contributions to surface water chemistry. Numerous field systems, locations of oil brine fields and high- density human populations) likely exist. Impacts of otherBoutt 1 Identifying Potential Land Use-derived Solute Sources to Stream Baseflow Using Ground Water

  4. Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data

    E-Print Network [OSTI]

    Lo, Min-Hui; Famiglietti, James S; Yeh, P. J.-F.; Syed, T. H

    2010-01-01

    model using GRACE water storage and estimated base flow data,model using GRACE water storage and estimated base flow datawith esti- mated base flow data in the model calibration.

  5. A Model of Electrodiffusion and Osmotic Water Flow and its Energetic Structure

    E-Print Network [OSTI]

    Ciocan-Fontanine, Ionut

    A Model of Electrodiffusion and Osmotic Water Flow and its Energetic Structure Yoichiro Moria 60612, U.S.A. Abstract We introduce a model for ionic electrodiffusion and osmotic water flow through are dissipated through viscous, electrodiffusive and osmotic flows. We discuss limiting models when certain

  6. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I

    SciTech Connect (OSTI)

    None

    1996-10-01

    This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings " ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings." Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are in accordance with the final standards. The EPA reserves the right to modify the ground water standards, if necessary, based on changes in EPA drinking water standards. Appendix A contains a copy of the 1983 EPA ground water compliance standards, the 1987 proposed changes to the standards, and the 1995 final rule. Under UMTRA, DOE is responsible for bringing the designated processing sites into compliance with the EPA ground water standards and complying with all other applicable standards and requirements. The U.S. Nuclear Regulatory Commission (NRC) must concur with DOE's actions. States are full participants in the process. The DOE also must consult with any affected Indian tribes and the Bureau of Indian Affairs. Uranium processing activities at most of the inactive mill sites resulted in the contamination of ground water beneath and, in some cases, downgradient of the sites. This contaminated ground water often has elevated levels of constituents such as but not limited to uranium and nitrates. The purpose of the UMTRA Ground Water Project is to eliminate or reduce to acceptable levels the potential health and environmental consequences of milling activities by meeting the EPA ground water standards.

  7. US Department of Energy Uranium Mill Tailings Remedial Action ground water Project. Revision 1, Version 1: Final project plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-21

    The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA processing sites. The compliance strategy for the processing sites must satisfy requirements of the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1988). This scope of work will entail the following activities, on a site-specific basis: Development of a compliance strategy based upon modification of the UMTRA Surface Project remedial action plans (RAP) or development of Ground Water Project RAPs with NRC and state or tribal concurrence on the RAP; implementation of the RAP to include establishment of institutional controls, where appropriate; institution of long-term verification monitoring for transfer to a separate DOE program on or before the Project end date; and preparation of completion reports and final licensing on those sites that will be completed prior to the Project end date.

  8. Sculpting of an erodible body by flowing water Leif Ristropha,1

    E-Print Network [OSTI]

    in the context of erodible bodies molded from clay and immersed in a fast, unidirec- tional water flow. Although that persist as the solid shrinks. We explain these observations using flow visualization and a fluid

  9. A penalization method for calculating the flow beneath travelling water waves of large amplitude

    E-Print Network [OSTI]

    Adrian Constantin; Konstantinos Kalimeris; Otmar Scherzer

    2014-08-08

    A penalization method for a suitable reformulation of the governing equations as a constrained optimization problem provides accurate numerical simulations for large-amplitude travelling water waves in irrotational flows and in flows with constant vorticity.

  10. Scaling of hydrologic flows in polygonal ground within an Arctic ecosystem Gautam Bisht

    E-Print Network [OSTI]

    to the atmosphere as CO2 and CH4 as high-latitude temperatures warm. Polygonal ground, with a characteristic length Moderate Old D Low center High Moderately wet High Young BOUNDARY CONDITIONS & SOIL PROPERTIES Boundary structures, with high or low centers, dominate the local hydrologic environment, thereby impacting the energy

  11. Measuring Soil Water Content with Ground Penetrating Radar: A Review J. A. Huisman,* S. S. Hubbard, J. D. Redman, and A. P. Annan

    E-Print Network [OSTI]

    Hubbard, Susan

    Measuring Soil Water Content with Ground Penetrating Radar: A Review J. A. Huisman,* S. S. Hubbard: soil water content determined from reflected climate anomalies, such as continental droughts andwave velocity, soil water content determined from ground wave veloc- large-scale precipitation events (Entekhabi

  12. Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating

    E-Print Network [OSTI]

    Li, Xian-Xiang

    Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification ...

  13. Ground-penetrating radar imaging of fluid flow through a discrete fracture

    E-Print Network [OSTI]

    Baker, Matthew Peter

    2014-12-31

    Predicting groundwater flow and transport of contaminants in fractured rock is challenging due to the heterogeneity of hydraulic properties that are difficult to characterize using conventional hydraulic testing methods. Heterogeneity is often...

  14. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    E-Print Network [OSTI]

    Warner, J.L.

    2009-01-01

    A Semianalytical Solution for Heat-Pipe Effects Near High-the pipe in one (axial) dimension and the flow of heatheat flow from an idealized cylindrical source of infinite length, which could be taken to represent a hot water pipe.

  15. Flow performance of ground biomass in a commercial auger Zewei Miao, Tony E. Grift , Alan C. Hansen, K.C. Ting

    E-Print Network [OSTI]

    , gasification and combustion require a form of biomass that is flowable, to enable handling using provenFlow performance of ground biomass in a commercial auger Zewei Miao, Tony E. Grift , Alan C. Hansen friction The flow performance of preprocessed biomass plays an important role in biomass transportation

  16. Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media?

    SciTech Connect (OSTI)

    Thorsten Knappenberger; Markus Flury; Earl D. Mattson; James B. Harsh

    2014-03-01

    Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (? – ?r)/(?s – ?r)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.

  17. Spatial association between the locations of roots and water flow paths in highly structured soil 

    E-Print Network [OSTI]

    Gardiner, Nathan Thomas

    2005-02-17

    relative to the location of water flow paths is important in understanding how plants obtain nutrients and water for growth, and it would also be of considerable importance in phytoremediation research and research into the prevention of groundwater...

  18. 16/05/12 3:57 PMWATER: Floating robots use GPS-enabled smartphones to track water flow, help water management Page 1 of 4http://www.lakeconews.com/index.php?option=com_content&view=article...o-track-water-flow-help-water-management&catid=1:latest&Itemid=1

    E-Print Network [OSTI]

    management Page 1 of 4http://www.lakeconews.com/index.php?option=com_content&view=article...o-track-water-flow-help-water=com_content&view=article...o-track-water-flow-help-water-management&catid=1:latest&Itemid=19716/05/12 3:57 PMWATER: Floating robots use GPS-enabled smartphones to track water flow, help water

  19. The influence of geology and land use on arsenic in stream sediments and ground waters in New England, USA

    E-Print Network [OSTI]

    The influence of geology and land use on arsenic in stream sediments and ground waters in New England, USA Gilpin R. Robinson Jr. a,*, Joseph D. Ayotte b a US Geological Survey, 954 National Center, Reston, VA 20192, United States b US Geological Survey, 361 Commerce Way, Pembroke, NH 03275-3719, United

  20. High-resolution temporal record of Holocene ground-water chemistry: Tracing links between climate and hydrology

    E-Print Network [OSTI]

    Banner, Jay L.

    growth layers in Holocene spe- leothems from Barbados, West Indies, reveals high-resolution temporal. carbonate mineral reactions, as reflected in 87 Sr/86 Sr values of modern Barbados ground waters variations in rainfall on Barbados that are predicted by this hydrologic model. INTRODUCTION In spite

  1. Concentrations of 23 trace elements in ground water and surface water at and near the Idaho National Engineering Laboratory, Idaho, 1988--91

    SciTech Connect (OSTI)

    Liszewski, M.J.; Mann, L.J.

    1993-12-31

    Analytical data for 23 trace elements are reported for ground- and surface-water samples collected at and near the Idaho National Engineering Laboratory during 1988--91. Water samples were collected from 148 wells completed in the Snake River Plain aquifer, 18 wells completed in discontinuous deep perched-water zones, and 1 well completed in an alluvial aquifer. Surface-water samples also were collected from three streams, two springs, two ponds, and one lake. Data are categorized by concentrations of total recoverable of dissolved trace elements. Concentrations of total recoverable trace elements are reported for unfiltered water samples and include results for one or more of the following: aluminum, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, selenium, silver, and zinc. Concentrations of dissolved trace elements are reported for water samples filtered through a nominal 0.45-micron filter and may also include bromide, fluoride, lithium, molybdenum, strontium, thallium, and vanadium. Concentrations of dissolved hexavalent chromium also are reported for many samples. The water samples were analyzed at the US Geological Survey`s National Water Quality Laboratory in Arvada, Colorado. Methods used to collect the water samples and quality assurance instituted for the sampling program are described. Concentrations of chromium equaled or exceeded the maximum contaminant level at 12 ground-water quality monitoring wells. Other trace elements did not exceed their respective maximum contaminant levels.

  2. Deep-Sea Research II 52 (2005) 495512 Variability of Antarctic bottom water flow into

    E-Print Network [OSTI]

    Cenedese, Claudia

    2005-01-01

    Deep-Sea Research II 52 (2005) 495­512 Variability of Antarctic bottom water flow into the North a 500-m-deep layer of bottom water. The deep Antarctic bottom water current into the North Atlantic as earlier at revisited locations. The long-term drift of the deep Antarctic bottom water temperature

  3. Griswold Tempered Water Flow Regulator Valves Used as Anti Siphon Valves

    SciTech Connect (OSTI)

    MISKA, C.

    2000-09-03

    FCV-1*22 and 1*23 are Griswold constant flow regulators used as anti-siphon valves in the tempered water system, they fail closed but valve cartridge orifice allows minimum flow to prevent loss of water from the MCO/CASK annulus.

  4. Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel

    E-Print Network [OSTI]

    Victoria, University of

    Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller Bachelors of Engineering, University in a polymer electrolyte fuel cell is a critical issue in ensuring high cell performance. The water production

  5. The design of water markets when instream flows have value James J. Murphy

    E-Print Network [OSTI]

    Murphy, James J.

    The design of water markets when instream flows have value James J. Murphy (corresponding author markets when instream flows have value Abstract The main objective of this paper is to design and test. This article uses laboratory experiments to test three different water market institutions designed

  6. Numerical simulation of air/water multiphase flows for ceramic sanitary ware design by multiple GPUs

    E-Print Network [OSTI]

    8 Numerical simulation of air/water multiphase flows for ceramic sanitary ware design by multiple and manufacturing of plumbing products such as ceramic sanitary wares. In order to re-produce the complex/water multiphase flows for ceramic sanitary ware design by multiple GPUs Being a world-wide leading company, TOTO

  7. Low rank coal upgrading in a flow of hot water

    SciTech Connect (OSTI)

    Masato Morimoto; Hiroyuki Nakagawa; Kouichi Miura

    2009-09-15

    Simultaneous hydrothermal degradation and extraction at around 350{sup o}C using flowing solvent as a reaction/extraction medium were proposed for upgrading brown coal, more specifically, for converting brown coal into several fractions having different molecular weight and chemical structure under mild conditions. When an Australian brown coal, Loy Yang coal, was treated by water at 350{sup o}C under 18 MPa, the coal was separated into four fractions: gaseous product by 8% yield, water-soluble extract at room temperature (soluble) by 23% yield, extract precipitates as solid at room temperature (deposit) by 23% yield, and residual coal (upgraded coal) by 46% yield on daf basis. The separation was found to be realized by in situ extraction of low-molecular-weight substances released from coal macromolecular structure and/or those generated by hydrothermal decomposition reactions at 350{sup o}C. The solid products obtained, deposit and upgraded coal, were characterized in detail to examine the possibility of their effective utilization as solid fuel and chemical feed stock. The upgraded coal showed higher heating value and higher gasification reactivity than the parent coal, indicating that the upgraded coal can be a better solid fuel than the parent coal. The solid extract, deposit, was found to show thermoplasticity at less than 200{sup o}C, suggesting the possibility of utilizing the deposit as a raw material of high performance carbon materials. Several variables affecting the performance of the proposed method are also examined in detail in this paper. 12 refs., 8 figs., 3 tabs.

  8. Acoustically enhanced remediation of contaminated soils and ground water. Volume 1

    SciTech Connect (OSTI)

    1995-10-01

    The Phase 1 laboratory bench-scale investigation results have shown that acoustically enhanced remediation (AER) technology can significantly accelerate the ground water remediation of non-aqueous phase liquids (NAPLs) in unconsolidated soils. The testing also determined some of the acoustic parameters which maximize fluid and contaminant extraction rates. A technology merit and trade analysis identified the conditions under which AER could be successfully deployed in the field, and an analysis of existing acoustical sources and varying methods for their deployment found that AER technology can be successfully deployed in-situ. Current estimates of deployability indicate that a NAPL plume 150 ft in diameter can be readily remediated. This program focused on unconsolidated soils because of the large number of remediation sites located in this type of hydrogeologic setting throughout the nation. It also focused on NAPLs and low permeability soil because of the inherent difficult in the remediation of NAPLs and the significant time and cost impact caused by contaminated low permeability soils. This overall program is recommended for Phase 2 which will address the technology scaling requirements for a field scale test.

  9. The Coordinated Control of a Central Air Conditioning System Based on Variable Chilled Water Temperature and Variable Chilled Water Flow 

    E-Print Network [OSTI]

    Liu, J.; Mai, Y.; Liu, X.

    2006-01-01

    At present, regulation of water flow by means of pump frequency conversion is one of the major methods for power-saving in central air conditioning systems. In this article, optimization regulation for central air conditioning system on the basis...

  10. Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow

    SciTech Connect (OSTI)

    Wu, Hao; Dong, Feng

    2014-04-11

    Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.

  11. Unsaturated properties for non-Darcian water flow in clay

    E-Print Network [OSTI]

    Liu, H.H.

    2014-01-01

    Physical chemistry of clay-water interaction, Advance inporous media. Advances in Water Resources 2, 351-362. Zou,Newtonian fluids Figure 2. A water element in a capillary

  12. Bordering on Water Management: Ground and Wastewater in the United States - Mexico Transboundary Santa Cruz Basin

    E-Print Network [OSTI]

    Milman, Anita Dale

    2009-01-01

    primary water management activities being considered relate to treatment of wastewater andprimary water concerns of the region: treatment of wastewater,

  13. Does Water Content or Flow Rate Control Colloid Transport in...

    Office of Scientific and Technical Information (OSTI)

    was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are...

  14. MEASURE-EENT OF WATER CONTENT I N POROUS MEDIA UNDER GEOTHERMAL FLUID FLOW CONDITIONS

    E-Print Network [OSTI]

    Stanford University

    MEASURE-EENT OF WATER CONTENT I N POROUS MEDIA UNDER GEOTHERMAL FLUID FLOW CONDITIONS for t h e i n - s i t u measurement of water content i n porous media, expressed as a volume f r a c t i o n of t h e pore space; ( 2 ) t o measure water content i n t h e two-phase geothermal f l u i d flow

  15. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    SciTech Connect (OSTI)

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables.

  16. THEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY

    E-Print Network [OSTI]

    THEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY D. MARCHESIN is the key to this improvement. 1. Introduction In secondary oil recovery, water or gas is injected in three-phase ow in a porous medium, we consider the idealized ow of water, oil, and gas

  17. 16/05/12 3:54 PMFloating, smartphone-equipped robots track water flow | SmartPlanet Page 1 of 4http://www.smartplanet.com/blog/smart-takes/floating-smartphone-equipped-robots-track-water-flow/26331

    E-Print Network [OSTI]

    ://www.smartplanet.com/blog/smart-takes/floating-smartphone-equipped-robots-track-water-flow/26331http://www.smartplanet.com/blog/smart-takes/floating-smartphone-equipped-robots-track-water-flow/26331-equipped robots track water flow | SmartPlanet Page 3 of 4http://www.smartplanet.com/blog

  18. Measured water heating performance of a vertical-bore water-to-water ground source heat pump (WW-GSHP) for domestic water heating over twelve months under simulated occupancy loads

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

    2014-01-01

    This paper presents monthly performance metrics of a 5.275 kW (1.5 ton) WW-GSHP providing 227 L day-1 domestic hot water at 49 C. Daily water use is simulated as stipulated in the Building America Research Benchmark Definition capturing the living habits of the average U.S household. The 94.5m vertical-bore ground loop is shared with a separate GSHP for space conditioning the 251m2 residential home. Data on entering water temperatures, energy extracted from the ground, delivered energy, compressor electricity use, COP, WW-GSHP run times, and the impact of fan and pump energy consumption on efficiency are presented for each month. Factors influencing performance metrics are highlighted.

  19. Development and chemical quality of a ground-water system in cast overburden as the Gibbons Creek Lignite Mine 

    E-Print Network [OSTI]

    Borbely, Evelyn Susanna

    1988-01-01

    Hydrogeochemistry of Reclaimed Spoil RESEARCH METHODOLOGY Field Methods Monitoring Well Locations Drilling and Spoil Sampling Installation and Development of Monitoring Wells Ground-Water Sampling Hydraulic Conductivity Testing Page V1 1X X111 14 21 22... . . . . . . . . . . . . . . 4 Locations of research stations in reclaimed portions of the A and B surface mining pits Distribution of Texas near-surface lignite (Kaiser et al. , 1974) Fayette fluvial-delta system and dip profile, Jackson Group, central and East Texas...

  20. Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application

    SciTech Connect (OSTI)

    Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2014-01-01

    In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

  1. Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal Reservoir

    Broader source: Energy.gov [DOE]

    Project objectives: Joint inversion of geophysical data for ground water flow imaging; Reduced the cost in geothermal exploration and monitoring; & Combined passive and active geophysical methods.

  2. Water Availability and Subsidence in California's Central Valley

    E-Print Network [OSTI]

    Faunt, Claudia C.; Sneed, Michelle

    2015-01-01

    DE, Swain LA. 1989. Ground-water flow in the Central Valley,California Department of Water Resources. 2015. CaliforniaCalifornia Department of Water Resources. [cited 2015 Sep

  3. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: One-dimensional soil thaw

    E-Print Network [OSTI]

    McKenzie, Jeffrey M.

    Analytical solutions for benchmarking cold regions subsurface water flow and energy transport Freezing and thawing a b s t r a c t Numerous cold regions water flow and energy transport models have of powerful simulators of cold regions subsurface water flow and energy transport have emerged in recent years

  4. Vulnerability assessment of water supply systems for insufficient fire flows 

    E-Print Network [OSTI]

    Kanta, Lufthansa Rahman

    2009-05-15

    Water supply systems’ vulnerability towards physical, chemical, biological, and cyber threats was recognized and was under study long before September 11, 2001. But greater attention toward security measures for water ...

  5. Impact of Climate Change on Irrigation Water Availability, Crop Water Requirements and Soil Salinity in the SJV, CA

    E-Print Network [OSTI]

    Hopmans, Jan W; Maurer, Edwin P

    2008-01-01

    to the Environmental and Water Resources Institute of thesimulation of ground-water flow in the central part of theU.S. Geological Survey water-supply paper ; 2396.

  6. Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve

    SciTech Connect (OSTI)

    Song, Li; Wang, Gang; Brambley, Michael R.

    2013-04-28

    A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

  7. Optimization of Chilled Water Flow and Its Distribution in Central Cooling System 

    E-Print Network [OSTI]

    Maheshwari, G. P.; Hajiah, A. E.; ElSherbini, A. I.

    2007-01-01

    This paper analyzes the impact of chilled water flow and its distribution on energy efficiency and comfort quality, using the results of a field study conducted for a central cooling production system during 2006 in Kuwait. The paper identifies...

  8. A MONTE CARLO SIMULATION OF WATER FLOW IN VARIABLY ...

    E-Print Network [OSTI]

    1910-10-30

    Se utiliza un m?etodo de simulaci?on Monte Carlo para estudiar el flujo de aguas ... A Monte Carlo simulation method is employed to study groundwater flow in ...

  9. Feasibility Study of Developing a Virtual Chilled Water Flow Meter at Air Handling Unit Level 

    E-Print Network [OSTI]

    Song, L.; Swamy, A.; Shim, G.

    2011-01-01

    In this paper, a virtual Air handling unit (AHU) level water flow meter is explored by using a control valve as a measurement device. The flow through the valve is indirectly calculated using differential pressure over both the valve and its...

  10. INTRODUCTION Fish that live in moving water must contend with complex flows

    E-Print Network [OSTI]

    Liao, James C.

    3442 INTRODUCTION Fish that live in moving water must contend with complex flows arising from current moving past objects. Understanding how fish swim in unsteady flows has attracted attention from many disciplines, ranging from stream ecologists investigating how fish relate to habitat, to engineers

  11. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    E-Print Network [OSTI]

    Warner, J.L.

    2009-01-01

    Length Design for Ground Source Heat Pumps. ” InternationalClosed-Loop/Ground-Source Heat Pump Systems Installationon Closed-Loop Ground-Source Heat Pump Systems. ” ASHRAE

  12. RELATIONSHIPS FOR MODELLING WATER FLOW IN GEOTECHNICAL CENTRIFUGE MODELS [abstract

    E-Print Network [OSTI]

    Goodings, Deborah

    1984-01-01

    relationships between centrifuge model and prototype waterADVANCES IN GEOTECHNICAL CENTRIFUGE MODELING A symposium onAdvances in Geotechnical Centrifuge Modeling was held on

  13. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect (OSTI)

    K. Rehfeldt

    2004-10-08

    This report is an updated analysis of water-level data performed to provide the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]) (referred to as the saturated zone (SZ) site-scale flow model or site-scale SZ flow model in this report) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for calibration of groundwater flow models. This report also contains an expanded discussion of uncertainty in the potentiometric-surface map. The analysis of the potentiometric data presented in Revision 00 of this report (USGS 2001 [DIRS 154625]) provides the configuration of the potentiometric surface, target heads, and hydraulic gradients for the calibration of the SZ site-scale flow model (BSC 2004 [DIRS 170037]). Revision 01 of this report (USGS 2004 [DIRS 168473]) used updated water-level data for selected wells through the year 2000 as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain based on an alternative interpretation of perched water conditions. That revision developed computer files containing: Water-level data within the model area (DTN: GS010908312332.002); A table of known vertical head differences (DTN: GS010908312332.003); and A potentiometric-surface map (DTN: GS010608312332.001) using an alternative concept from that presented by USGS (2001 [DIRS 154625]) for the area north of Yucca Mountain. The updated water-level data presented in USGS (2004 [DIRS 168473]) include data obtained from the Nye County Early Warning Drilling Program (EWDP) Phases I and II and data from Borehole USW WT-24. This document is based on Revision 01 (USGS 2004 [DIRS 168473]) and expands the discussion of uncertainty in the potentiometric-surface map. This uncertainty assessment includes an analysis of the impact of more recent water-level data and the impact of adding data from the EWDP Phases III and IV wells. In addition to being utilized by the SZ site-scale flow model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for groundwater management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model and provides information useful to estimation of the magnitude and direction of lateral groundwater flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment (TSPA).

  14. Chlorofluorocarbons, Sulfur Hexafluoride, and Dissolved Permanent Gases in Ground Water from Selected Sites In and Near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994 - 1997

    SciTech Connect (OSTI)

    Busenberg, E.; Plummer, L.N.; Bartholomay, R.C.; Wayland, J.E.

    1998-08-01

    From July 1994 through May 1997, the U.S. Geological Survey, in cooperations with the Department of Energy, sampled 86 wells completed in the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory (INEEL). The wells were sampled for a variety of constituents including one- and two-carbon halocarbons. Concentrations of dichlorodifluoromethane (CFC-12), trichlorofluoromethane (CFC-11), and trichlorotrifluororoethane (CFC-113) were determined. The data will be used to evaluate the ages of ground waters at INEEL. The ages of the ground water will be used to determine recharge rates, residence time, and travel time of water in the Snake River Plain aquifer in and near INEEL. The chromatograms of 139 ground waters are presented showing a large number of halomethanes, haloethanes, and haloethenes present in the ground waters underlying the INEEL. The chromatograms can be used to qualitatively evaluate a large number of contaminants at parts per trillion to parts per billion concentrations. The data can be used to study temporal and spatial distribution of contaminants in the Snake River Plain aquifer. Representative compressed chromatograms for all ground waters sampled in this study are available on two 3.5-inch high density computer disks. The data and the program required to decompress the data can be obtained from the U.S. Geological Survey office at Idaho Falls, Idaho. Sulfur hexafluoride (SF6) concentrations were measured in selected wells to determine the feasibility of using this environmental tracer as an age dating tool of ground water. Concentrations of dissolved nitrogen, argon, carbon dioxide, oxygen, and methane were measured in 79 ground waters. Concentrations of dissolved permanent gases are tabulated and will be used to evaluate the temperature of recharge of ground water in and near the INEEL.

  15. DC WRRC Report No. 127 GROUND WATER RESOURCE ASSESSMENT STUDY FOR

    E-Print Network [OSTI]

    District of Columbia, University of the

    project: James Collier - DCRA Water Resources Management Division Mohsin Siddique - DCRA Water Quality DRILLING AND FIELD OPERATIONS REPORT FOR THE GROUP B WELLS D.C. WATER RESOURCES RESEARCH CENTER University: Well Drilling and Field Operations Report - Group B Wells DATE: July 1993 AUTHOR(S): Jutta Schneider

  16. 1 Save | me O | God : for the waters are | come in even | unto my | soul. 2 I stick fast in the deep | mire where no | ground is : I am come into deep | waters so that the

    E-Print Network [OSTI]

    Flynn, E. Victor

    fast in the deep | mire · where no | ground is : I am come into deep | waters · so that the | floods | waters. 16 Let not the water-flood drown me neither let the deep | swallow · me | up : and | letPsalm 69 1 Save | me O | God : for the waters are | come in · even | unto · my | soul. 2 I stick

  17. Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    and Geothermal Research. () . Related Geothermal Exploration Activities Activities (1) Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area (Richards, Et Al.,...

  18. Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program |View NewParatekPassaic County, NewRenewables LLCColorado,

  19. Pattern of shallow ground water flow at Mount Princeton Hot Springs,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program |View NewParatekPassaic County, NewRenewables

  20. Rev. 02/15/10 Construction: Any construction project regardless of size that disturbs soil, ground cover, or uses water (including pressure washing) that

    E-Print Network [OSTI]

    Rev. 02/15/10 Construction: Any construction project regardless of size that disturbs soil, ground/proposed construction project: EHS Office Use Only Recommendations: ______________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ ___________________________________________ _____________________ Approval Date Storm Water Management Program The University of Texas at Austin Notification of Construction

  1. Level Set Based Simulations of Two-Phase Oil-Water Flows in Pipes

    E-Print Network [OSTI]

    Soatto, Stefano

    the assumption that the densities of the two uids are di#11;erent and that the viscosity of the oil core is veryLevel Set Based Simulations of Two-Phase Oil-Water Flows in Pipes Hyeseon Shim July 31, 2000 Abstract We simulate the axisymmetric pipeline transportation of oil and water numerically under

  2. Shallow Water Simulation of Overland Flows in Idealised Catchments

    E-Print Network [OSTI]

    Liang, Dongfang; Özgen, Ilhan; Hinkelmann, Reinhard; Xiao, Yang; Chen, Jack M.

    2015-01-01

    This paper investigates the relationship between the rainfall and runoff in idealised catchments, either with or without obstacle arrays, using an extensively-validated fullydynamic shallow water model. This two-dimensional hydrodynamic model allows...

  3. Demonstration of a plasma mirror based on a laminar flow water film

    SciTech Connect (OSTI)

    Panasenko, Dmitriy; Shu, Anthony; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Toth, Csaba; Leemans, Wim

    2011-07-22

    A plasma mirror based on a laminar water film with low flow speed 0.5-2 cm/s has been developed and characterized, for use as an ultrahigh intensity optical reflector. The use of flowing water as atarget surface automatically results in each laser pulse seeing a new interaction surface and avoids the need for mechanical scanning of the target surface. In addition, the breakdown of water does notproduce contaminating debris that can be deleterious to vacuum chamber conditions and optics, such as is the case when using conventional solid targets. The mirror exhibits 70percent reflectivity, whilemaintaining high-quality of the reflected spot.

  4. Demonstration of a plasma mirror based on a laminar flow water film

    SciTech Connect (OSTI)

    Panasenko, Dmitriy; Shu, Anthony J.; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas H.; Toth, Csaba; Leemans, Wim P. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    2010-08-15

    A plasma mirror based on a laminar water film with low flow speed (0.5-2 cm/s) has been developed and characterized, for use as an ultrahigh intensity optical reflector. The use of flowing water as a target surface automatically results in each laser pulse seeing a new interaction surface and avoids the need for mechanical scanning of the target surface. In addition, the breakdown of water does not produce contaminating debris that can be deleterious to vacuum chamber conditions and optics, such as is the case when using conventional solid targets. The mirror exhibits 70% reflectivity, while maintaining high-quality of the reflected spot.

  5. Electrosorption on carbon aerogel electrodes as a means of treating low-level radioactive wastes and remediating contaminated ground water

    SciTech Connect (OSTI)

    Tran, Tri Duc; Farmer, Joseph C.; DePruneda, Jean H.; Richardson, Jeffery H.

    1997-07-01

    A novel separation process based upon carbon aerogel electrodes has been recently developed for the efficient removal of ionic impurities from aqueous streams. This process can be used as an electrical y- regenerated alternative to ion exchange, thereby reducing-the need for large quantities of chemical regenerants. Once spent (contaminated), these regenerants contribute to the waste that must be disposed of in landfills. The elimination of such wastes is especially beneficial in situations involving radioactive contaminants, and pump and treat processing of massive volumes of ground water. A review and analysis of potential applications will be presented.

  6. Ground water of Yucca Mountain: How high can it rise?; Final report

    SciTech Connect (OSTI)

    1992-12-31

    This report describes the geology, hydrology, and possible rise of the water tables at Yucca Mountain. The possibilities of rainfall and earthquakes causing flooding is discussed.

  7. Results and prospects of deep under-ground, under-water and under-ice experiments

    E-Print Network [OSTI]

    Zornoza, J D

    2014-01-01

    Astroparticle experiments have provided a long list of achievements both for particle physics and astrophysics. Many of these experiments require to be protected from the background produced by cosmic rays in the atmosphere. The main options for such protection are to build detectors deep under ground (mines, tunnels) or in the deep sea or antarctic ice. In this proceeding we review the main results shown in the RICAP 2013 conference related with these kind of experiments and the prospects for the future.

  8. Water gate array for current flow or tidal movement pneumatic harnessing system

    DOE Patents [OSTI]

    Gorlov, Alexander M. (Brookline, MA)

    1991-01-01

    The invention, which provides a system for harnessing power from current flow or tidal movement in a body of water, comprises first and second hydro-pneumatic chambers each having ingress and egress below the water surface near the river or ocean floor and water gates operative to open or seal the ports to the passage of water. In an exemplary embodiment, the gates are sychronized by shafts so that the ingress ports of each chamber are connected to the egress ports of each other chamber. Thus, one set of gates is closed, while the other is open, thereby allowing water to flow into one chamber and build air pressure therein and allowing water to flow out of the other chamber and create a partial vacuum therein. A pipe connects the chambers, and an air turbine harnesses the air movement within the pipe. When water levels are equilibrated, the open set of gates is closed by a counterweight, and the other set is allowed to open by natural force of the water differential. The water gates may be comprised of a plurality of louvers which are ganged for simultaneous opening and closing. The system is designed to operate with air turbines or other pneumatic devices. Its design minimizes construction cost and environmental impact, yet provides a clean renewable energy source.

  9. 16/05/12 3:58 PMFloating robots use GPS-enabled smartphones to track water flow Page 1 of 5http://www.spacedaily.com/reports/Floating_robots_use_GPS_enabled_smartphones_to_track_water_flow_999.html

    E-Print Network [OSTI]

    's field test gave researchers a picture of how water moves through a junction in the river16/05/12 3:58 PMFloating robots use GPS-enabled smartphones to track water flow Page 1 of 5http://www.spacedaily.com/reports/Floating_robots_use_GPS_enabled_smartphones_to_track_water_flow_999.html

  10. Heat transfer to air-water two-phase flow in slug/churn region

    SciTech Connect (OSTI)

    Wadekar, V.V. [AEA Technology, Harwell (United Kingdom). Heat Transfer and Fluid Flow Service; Tuzla, K.; Chen, J.C. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Chemical Engineering

    1996-12-31

    Measured heat transfer data for air-water two-phase flow in the slug/churn flow region are reported. The measurements were obtained from a 1.3 m tall, 15.7 mm diameter vertical tube test-section. It is observed that the data exhibit different heat transfer characteristics to those predicted by the standard correlations for the convective component of flow boiling heat transfer. Comparison with the predictions of a slug flow model for evaporation shows a significant overprediction of the data. The reason for the overprediction is attributed to the sensible heating requirement of the gas phase. The slug flow model is therefore suitably modified for non-evaporating two-phase flow. This specially adapted model is found to give reasonably good predictions of the measured data.

  11. User`s Guide: Database of literature pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Hall, L.F.

    1993-05-01

    Since its beginnings in 1949, hydrogeologic investigations at the Idaho National Engineering Laboratory (INEL) have resulted in an extensive collection of technical publications providing information concerning ground water hydraulics and contaminant transport within the unsaturated zone. Funding has been provided by the Department of Energy through the Department of Energy Idaho Field Office in a grant to compile an INEL-wide summary of unsaturated zone studies based on a literature search. University of Idaho researchers are conducting a review of technical documents produced at or pertaining to the INEL, which present or discuss processes in the unsaturated zone and surface water-ground water interactions. Results of this review are being compiled as an electronic database. Fields are available in this database for document title and associated identification number, author, source, abstract, and summary of information (including types of data and parameters). AskSam{reg_sign}, a text-based database system, was chosen. WordPerfect 5.1{copyright} is being used as a text-editor to input data records into askSam.

  12. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 10: Minor Structures for Ground and Surface Water () March 23, 2010 1 / 31 #12;Classification by Purpose We may classify the velocity of water-flow (ii) increasing the infiltration coefficient (iii) explicit groundwater recharge

  13. Fresh Water Increased temperature means higher proportion of water

    E-Print Network [OSTI]

    Houston, Paul L.

    Fresh Water Increased temperature means higher proportion of water falling on surface higher evaporation higher rainfall greater intensity of floods and droughts. Water use has grown four on How much storage compared to average flow Demand as percentage of supply How much ground water is used

  14. Numerical simulation of water flow around a rigid fishing net

    E-Print Network [OSTI]

    Roger Lewandowski; Géraldine Pichot

    2006-12-20

    This paper is devoted to the simulation of the flow around and inside a rigid axisymmetric net. We describe first how experimental data have been obtained. We show in detail the modelization. The model is based on a Reynolds Averaged Navier-Stokes turbulence model penalized by a term based on the Brinkman law. At the out-boundary of the computational box, we have used a "ghost" boundary condition. We show that the corresponding variational problem has a solution. Then the numerical scheme is given and the paper finishes with numerical simulations compared with the experimental data.

  15. NMAC 20.6.2 Ground and Surface Water Protection | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver,Minnesota:EnergyNARI| Open Energy26.2 Ground and

  16. VARIATIONS IN RADON-222 IN SOIL AND GROUND WATER AT THE NEVADA TEST SITE

    E-Print Network [OSTI]

    Wollenberg, H.

    2010-01-01

    1962, Final Report, on-site radon studies in surface soils,110. King, Chi-Yu, 1975, Radon emanation along an act- ive1975, In- vestigation of Radon-222 in subsurface waters as

  17. Hydraulic Transport Across Hydrophilic and Hydrophobic Nanopores: Flow Experiments with Water and n-Hexane

    E-Print Network [OSTI]

    Gruener, Simon; Greulich, Stefanie; Busch, Mark; Huber, Patrick

    2015-01-01

    We experimentally explore pressure-driven flow of water and n-hexane across nanoporous silica (Vycor glass monoliths with 7 or 10 nm pore diameters, respectively) as a function of temperature and surface functionalization (native and silanized glass surfaces). Hydraulic flow rates are measured by applying hydrostatic pressures via inert gases (argon and helium, pressurized up to 70 bar) on the upstream side in a capacitor-based membrane permeability setup. For the native, hydrophilic silica walls, the measured hydraulic permeabilities can be quantitatively accounted for by bulk fluidity provided we assume a sticking boundary layer, i.e. a negative velocity slip length of molecular dimensions. The thickness of this boundary layer is discussed with regard to previous capillarity-driven flow experiments (spontaneous imbibition) and with regard to velocity slippage at the pore walls resulting from dissolved gas. Water flow across the silanized, hydrophobic nanopores is blocked up to a hydrostatic pressure of at l...

  18. The polluted surface water exerts an influence on underground water and its environmental effect

    SciTech Connect (OSTI)

    Weng, H.

    1995-12-31

    The relationship between the polluted surface water flowing through urban areas and adjacent ground water resources in the southeast of China was systematically studied. The polluted surface water contained elevated concentrations of heavy metals in the sediment. When this water was directly used in irrigation or as fertilizer, the harmful components and heavy metals were transported from water to soil and were adsorbed by soil and plants. The health of local people who drank the ground water was threatened.

  19. A Model of Electrodiffusion and Osmotic Water Flow and its Energetic Structure

    E-Print Network [OSTI]

    Mori, Yoichiro; Eisenberg, Robert S

    2011-01-01

    We introduce a model for ionic electrodiffusion and osmotic water flow through cells and tissues. The model consists of a system of partial differential equations for ionic concentration and fluid flow with interface conditions at deforming membrane boundaries. The model satisfies a natural energy equality, in which the sum of the entropic, elastic and electrostatic free energies are dissipated through viscous, electrodiffusive and osmotic flows. We discuss limiting models when certain dimensionless parameters are small. Finally, we develop a numerical scheme for the one-dimensional case and present some simple applications of our model to cell volume control.

  20. A Model of Electrodiffusion and Osmotic Water Flow and its Energetic Structure

    E-Print Network [OSTI]

    Yoichiro Mori; Chun Liu; Robert S. Eisenberg

    2011-01-27

    We introduce a model for ionic electrodiffusion and osmotic water flow through cells and tissues. The model consists of a system of partial differential equations for ionic concentration and fluid flow with interface conditions at deforming membrane boundaries. The model satisfies a natural energy equality, in which the sum of the entropic, elastic and electrostatic free energies are dissipated through viscous, electrodiffusive and osmotic flows. We discuss limiting models when certain dimensionless parameters are small. Finally, we develop a numerical scheme for the one-dimensional case and present some simple applications of our model to cell volume control.

  1. Installation of River and Drain Instrumentation Stations to Monitor Flow and Water Quality and Internet Data Sharing 

    E-Print Network [OSTI]

    Sheng, Z.; Brown, C.; Creel, B.; Srinivasan, R.; Michelsen, A.; Fahy, M. P.

    2008-01-01

    IMS, data sharing and transfer, user needs assessment, Rio Grande, Rio Grande Project, gage station, surface water flow, groundwater, downloadable Microsoft Access database....

  2. Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells

    E-Print Network [OSTI]

    Wood, D. L.; Yi, Y. S.; Van Nguyen, Trung

    1998-01-01

    Proper water management is vital to ensuring successful performance of proton exchange membrane fuel cells. The effectiveness of the direct liquid water injection scheme and the interdigitated flow field design towards providing adequate gas...

  3. Raft River monitor well potentiometric head responses and water...

    Open Energy Info (EERE)

    head responses and water quality as related to the conceptual ground-water flow system Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Raft...

  4. Flow pattern, void fraction and pressure drop of two-phase air-water flow in a horizontal circular micro-channel

    SciTech Connect (OSTI)

    Saisorn, Sira [Energy Division, The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand); Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

    2008-01-15

    Adiabatic two-phase air-water flow characteristics, including the two-phase flow pattern as well as the void fraction and two-phase frictional pressure drop, in a circular micro-channel are experimentally studied. A fused silica channel, 320 mm long, with an inside diameter of 0.53 mm is used as the test section. The test runs are done at superficial velocity of gas and liquid ranging between 0.37-16 and 0.005-3.04 m/s, respectively. The flow pattern map is developed from the observed flow patterns i.e. slug flow, throat-annular flow, churn flow and annular-rivulet flow. The flow pattern map is compared with those of other researchers obtained from different working fluids. The present single-phase experiments also show that there are no significant differences in the data from the use of air or nitrogen gas, and water or de-ionized water. The void fraction data obtained by image analysis tends to correspond with the homogeneous flow model. The two-phase pressure drops are also used to calculate the frictional multiplier. The multiplier data show a dependence on flow pattern as well as mass flux. A new correlation of two-phase frictional multiplier is also proposed for practical application. (author)

  5. Mapping steam and water flow in petroleum reservoirs

    SciTech Connect (OSTI)

    Wilt, M.; Schenkel, C. [Lawrence Livermore National Lab., CA (United States); Daley, T.; Peterson, J.; Majer, E. [Lawrence Berkeley National Lab., CA (United States); Murer, A.S. [Mobil Exploration and Producing US (United States); Johnston, R.M. [SPE, CalResources LLC (United States); Klonsky, L. [Chevron USA Production Co. (United States)

    1996-11-01

    Over the past 5 years, we have applied high-resolution geophysical methods (crosswell seismic and electromagnetics (EM), and passive seismic) to map and characterize petroleum reservoirs in the San Joaquin Valley and to monitor changes during secondary recovery operations. The two techniques provide complementary information. Seismic data reveal the reservoir structure, whereas EM measurements are more sensitive to the pore fluid distribution. Seismic surveys at the south Belridge field were used to map fracture generation and monitor formation changes due to the onset of steam flooding. Early results show possible sensitivity to changes in gas saturation caused by the steam flooding. Crosswell EM surveys were applied at a shallow pilot at Lost Hills for reservoir characterization and steamflood monitoring. Images made from baselines data clearly show the distribution of the target oil sands; repeated surveys during the steam flood allowed us to identify the boundaries of the steam chest and to accurately predict breakthrough. Applications of the EM techniques in steel-cased wells are at an early stage, but preliminary results at Lost Hills show sensitivity to formation resistivity in a water-flood pilot. Finally, passive seismic surveys during hydrofracture operations measured events corelatable in frequency content and magnitude with the size and orientation of induced fractures.

  6. The Role of Water Vapour in Earth's Energy Flows Richard P. Allan

    E-Print Network [OSTI]

    Allan, Richard P.

    energy flows in Earth's climate system through transfer of latent heat by evaporation and condensation on (1) the powerful thermodynamic constraint of the Clausius Cla- peyron equation, (2) dynamical for changes in the atmospheric hydrological cycle. Keywords Water vapour Á Hydrological cycle Á Radiative

  7. JUSTIFICATION OF THE SHALLOW WATER LIMIT FOR A RIGID LID FLOW WITH BOTTOM TOPOGRAPHY

    E-Print Network [OSTI]

    Oliver, Marcel

    JUSTIFICATION OF THE SHALLOW WATER LIMIT FOR A RIGID LID FLOW WITH BOTTOM TOPOGRAPHY MARCEL OLIVER with bottom topography. We prove an a priori estimate in the Sobolev space H m for m #21; 3 which shows and the magnitude of the initial data in H m , the gradient of the bottom topography in H m+1 , and the aspect ratio

  8. Exact solution describing a shallow water flow in an extending stripe

    E-Print Network [OSTI]

    Sergey V. Golovin

    2008-02-28

    Partially invariant solution to (2+1)D shallow water equation is constructed and investigated. The solution describes an extension of a stripe, bounded by linear source and drain of fluid. Realizations of smooth flow and of hydraulic jump are possible. Particle trajectories and sonic characteristics on the obtained solution are calculated.

  9. Data, exergy, and energy analysis of a vertical-bore, ground-source heat pump to for domestic water heating under simulated occupancy conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D; Gehl, Anthony C

    2015-01-01

    Evidence is provided to support the view that greater than two-thirds of energy required to produce domestic hot water may be extracted from the ground which serves as renewable energy resource. The case refers to a 345 m2 research house located in Oak Ridge, Tennessee, 36.01 N 84.26 W in a mixed-humid climate with HDD of 2218 C-days (3993 F-days) and CDD of 723 C-days (1301 F-days). The house is operated under simulated occupancy conditions in which the hot water use protocol is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which captures the water consumption lifestyles of the average family in the United States. The 5.275 (1.5-ton) water-to-water ground source heat pump (WW-GSHP) shared the same vertical bore with a 7.56 KW water-to-air ground source heat pump for space conditioning the same house. Energy and exergy analysis of data collected continuously over a twelve month period provide performance metrics and sources of inherent systemic inefficiencies. Data and analyses are vital to better understand how WW-GSHPs may be further improved to enable the ground to be used as a renewable energy resource.

  10. ''A ground water resources study of a Pacific Ocean atoll - Tarawa, Gilbert Islands,'' by J. W. Lloyd, J. C. Miles, G. R. Chessmand, and S. F. Bugg

    SciTech Connect (OSTI)

    Wheatcraft, S.W.; Buddemeier, R.W.

    1981-10-01

    Several inherent problems in the methodology employed in the ground water resource study of Tarawa Atoll (Lloyd, et al., 1981) are described. Studies of Enewetak Atoll have provided data that require a significantly different conceptual model of the atoll hydrogeology system. Comparison of well, lagoon, and ocean tidal observations with a mathematical model that assumes horizontal tidal propagation indicates that the observed results are more consistent with a system that is controlled by vertical coupling between the unconsolidated surface aquifer and an underlying aquifer of more permeable limestone. This indicates that most fresh water recharged to the aquifer migrates downward and mixes with the sea water in a deeper aquifer providing easy exchange with the ocean. Lloyd, et al., do not take tidal mixing or vertical transport into account and it therefore seems likely that fresh water inventories are significantly overestimated. Failure to include these significant loss terms in the island water budget may also account for calculated heads above ground level. (JMT)

  11. SPH Study of the Evolution of Water-Water Interfaces in Dam Break Flows

    E-Print Network [OSTI]

    Jian, Wei; Liang, Dongfang; Shao, Songdong; Chen, Ridong; Liu, Xingnian

    2015-04-08

    but also tides and tsunamis. 465 466 467 20 5.1 Model setup and computational parameters 468 469 The numerical setup of this hypothetical dam-break problem consists of a 2000 m long 470 horizontal water tank. Water is initially...

  12. Second law analysis of water flow through smooth microtubes under adiabatic conditions

    SciTech Connect (OSTI)

    Parlak, Nezaket; Guer, Mesut; Ari, Vedat; Kuecuek, Hasan; Engin, Tahsin [The University of Sakarya, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, 54187 Sakarya (Turkey)

    2011-01-15

    In the study, a second law analysis for a steady-laminar flow of water in adiabatic microtubes has been conducted. Smooth microtubes with the diameters between 50 and 150 {mu}m made of fused silica were used in the experiments. Considerable temperature rises due to viscous dissipation and relatively high pressure losses of flow were observed in experiments. To identify irreversibility of flow, rate of entropy generation from the experiments have been determined in the laminar flow range of Re = 20-2200. The second law of thermodynamics was applied to predict the entropy generation. The results of model taken from the literature, proposed to predict the temperature rise caused by viscous heating, correspond well with the experimental data. The second law analysis results showed that the flow characteristics in the smooth microtubes distinguish substantially from the conventional theory for flow in the larger tubes with respect to viscous heating/dissipation (temperature rise of flow) total entropy generation rate and lost work. (author)

  13. Ground water and snow sensor based on directional detection of cosmogenic neutrons.

    SciTech Connect (OSTI)

    Cooper, Robert Lee; Marleau, Peter; Griffin, Patrick J.

    2011-06-01

    A fast neutron detector is being developed to measure the cosmic ray neutron flux in order to measure soil moisture. Soil that is saturated with water has an enhanced ability to moderate fast neutrons, removing them from the backscatter spectrum. The detector is a two-element, liquid scintillator detector. The choice of liquid scintillator allows rejection of gamma background contamination from the desired neutron signal. This enhances the ability to reconstruct the energy and direction of a coincident neutron event. The ability to image on an event-by-event basis allows the detector to selectively scan the neutron flux as a function of distance from the detector. Calibrations, simulations, and optimization have been completed to understand the detector response to neutron sources at variable distances and directions. This has been applied to laboratory background measurements in preparation for outdoor field tests.

  14. Dispersion equation for water waves with vorticity and Stokes waves on flows with counter-currents

    E-Print Network [OSTI]

    Vladimir Kozlov; Nikolay Kuznetsov

    2014-06-05

    The two-dimensional free-boundary problem of steady periodic waves with vorticity is considered for water of finite depth. We investigate how flows with small-amplitude Stokes waves on the free surface bifurcate from a horizontal parallel shear flow in which counter-currents may be present. Two bifurcation mechanisms are described: for waves with fixed Bernoulli's constant and fixed wavelength. In both cases the corresponding dispersion equations serve for defining wavelengths from which Stokes waves bifurcate. Sufficient conditions guaranteeing the existence of roots of these equations are obtained. Two particular vorticity distributions are considered in order to illustrate general results.

  15. Autonomous Grounding of the Optical Flow Detectors in a Simulated Visuomotor System of the fly using Behaviorally Meaningful Actions 

    E-Print Network [OSTI]

    Parulkar, Amey

    2015-08-12

    and translation, by pooling information from elementary motion detectors (EMDs) in the lower level. In this sense, neuronal responses (spikes) from these optical flow detectors in the fly carry highly encoded signals. In this thesis, I investigate how such highly...

  16. The Effects of Heterogeneity in Magma Water Concentration on the Development of Flow Banding and Spherulites in Rhyolitic Lava

    SciTech Connect (OSTI)

    Seaman, S.; Dyar, D; Marinkovic, N

    2009-01-01

    This study focuses on the origin of flow-banded rhyolites that consist of compositionally similar darker and lighter flow bands of contrasting texture and color. Infrared radiation was used to obtain Fourier transform infrared (FTIR) spectra from which water concentrations were calculated, and to map variations in water concentrations across zones of spherulites and glass from the 23 million year old Sycamore Canyon lava flow of southern Arizona. Lighter-colored, thicker flow bands consist of gray glass, fine-grained quartz, and large (1.0 to 1.5 mm) spherulites. Darker-colored, thinner flow bands consist of orange glass and smaller (0.1 to 0.2 mm) spherulites. The centers of both large and small spherulites are occupied by either (1) a quartz or sanidine crystal, (2) a granophyric intergrowth, or (3) a vesicle. Mapping of water concentration (dominantly OH- in glass and OH- and H2O in sanidine crystals) illustrates fluctuating water availability during quenching of the host melt. Textures of large spherulites in the lighter (gray) bands in some cases indicate complex quenching histories that suggest that local water concentration controlled the generation of glass versus crystals. Small spherulites in darker (orange) bands have only one generation of radiating crystal growth. Both the glass surrounding spherulites, and the crystals in the spherulites contain more water in the gray flow bands than in the orange flow bands. Flow banding in the Sycamore Canyon lava flow may have originated by the stretching of a magma that contained pre-existing zones (vesicles or proto-vesicles) of contrasting water concentration, as the magma flowed in the conduit and on the surface. Variation in the original water concentration in the alternating layers is interpreted to have resulted in differences in undercooling textures in spherulites in the lighter compared to the darker flow bands.

  17. An ecological study examining the correlation of end-stage renal disease and ground water heavy metal content in Texas counties 

    E-Print Network [OSTI]

    Bishop, Scott Alan

    1999-01-01

    An ecological study was conducted to examine the correlation of end-stage renal disease (ESRD) and the ground water heavy metal level of lead, arsenic, cadmium, mercury and the cumulative level of all four metals in Texas counties. The heavy meal...

  18. Particle trajectories beneath small amplitude shallow water waves in constant vorticity flows

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2011-06-20

    We investigate the particle trajectories in a constant vorticity shallow water flow over a flat bed as periodic waves propagate on the water's free surface. Within the framework of small amplitude waves, we find the solutions of the nonlinear differential equations system which describes the particle motion in the considered case, and we describe the possible particle trajectories. Depending on the relation between the initial data and the constant vorticity, some particle trajectories are undulating curves to the right, or to the left, others are loops with forward drift, or with backward drift, others can follow some peculiar shapes.

  19. The Properties of Confined Water and Fluid Flow at the Nanoscale

    SciTech Connect (OSTI)

    Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G

    2009-03-09

    This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.

  20. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect (OSTI)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  1. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    SciTech Connect (OSTI)

    Cummings, James; Withers, Charles; Martin, Eric; Moyer, Neil

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  2. Flow at Low Water Contents: A Simple Approach for Inverse Estimation of van Genuchten-Mualem Soil Hydraulic Parameters

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Flow at Low Water Contents: A Simple Approach for Inverse Estimation of van Genuchten-Mualem Soil and civil engineering. Because of the strong dependency of these properties on water content. For gravimetric water contents greater than 0.04, numeral results agreed well with experimental data, while some

  3. An SF6 Tracer Study of the Flow Dynamics in the Stockton Deep Water Ship Channel: Implications

    E-Print Network [OSTI]

    Ho, David

    An SF6 Tracer Study of the Flow Dynamics in the Stockton Deep Water Ship Channel: Implications6) tracer release experi- ment was conducted in the Stockton Deep Water Ship Channel (DWSC. Keywords Dissolved oxygen . Sacramento­San Joaquin delta . Stockton deep water ship channel . SF6 . Tracer

  4. Design and installation of continuous flow and water qualitymonitoring stations to improve water quality forecasting in the lower SanJoaquin River

    SciTech Connect (OSTI)

    Quinn, Nigel W.T.

    2007-01-20

    This project deliverable describes a number ofstate-of-the-art, telemetered, flow and water quality monitoring stationsthat were designed, instrumented and installed in cooperation with localirrigation water districts to improve water quality simulation models ofthe lower San Joaquin River, California. This work supports amulti-disciplinary, multi-agency research endeavor to develop ascience-based Total Maximum Daily Load for dissolved oxygen in the SanJoaquin River and Stockton Deep Water Ship Channel.

  5. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    E-Print Network [OSTI]

    Warner, J.L.

    2009-01-01

    of Alternative Residential Hot Water Distribution Systems. ”Unsaturated Zone. ” Advances in Water Resources 15: 153–166.to modeling of under-slab hot water distribution piping. x

  6. A significant number of Iowa water treatment systems are dependent upon well-based water sources. Because of this, CIRAS efforts have been focused on the "Ground Water Levels" as reported by Iowa DNR. Currently, DNR officials are indicating that restricti

    E-Print Network [OSTI]

    Lin, Zhiqun

    A significant number of Iowa water treatment systems are dependent upon well-based water sources. Because of this, CIRAS efforts have been focused on the "Ground Water Levels" as reported by Iowa DNR. Currently, DNR officials are indicating that restrictions or loss of the water supply is not likely

  7. Ground Water Cooling System 

    E-Print Network [OSTI]

    Greaves, K.; Chave, G. H.

    1984-01-01

    has a total shop area of 128,000 square feet and the majority of the machine tools are equipped with computerized numerical controls. The cooling system was designed around five (5) floor mounted, 50,000 CFM, air handling units which had been...

  8. UMTRA Ground Water Project

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O M1VERIFICATIOH4100

  9. UMTRA Ground Water Project

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O M1VERIFICATIOH4100Gunnison,

  10. Subsurface water flow simulated for hill slopes with spatially dependent soil hydraulic characteristics

    SciTech Connect (OSTI)

    Sharma, M.L.; Luxmoore, R.J.; DeAngelis, R.; Ward, R.C.; Yeh, G.T.

    1987-08-01

    Water flow through hill slopes consisting of five soil layers, with varying spatial dependence in hydraulic characteristics in the lateral plane was simulated by solving Richards' equation in three dimensions under varying rainfall intensities and for two complexities of terrain. By concepts of similar media the variability in soil hydraulic characteristics was expressed by a single dimensionless parameter, the scaling factor ..cap alpha... The moments of log normally distributed ..cap alpha.. were set as: Mean = 1.0 and standard deviation = 1.0. Four cases of spatial dependence of ..cap alpha.. in the lateral plane were selected for simulation, using exponential variogram functions ranging in spatial structure from random (no spatial dependence) to large dependence (large correlation lengths). The simulations showed that the rates of subsurface flow from the 30/sup 0/ hillslope, during and following rainfall, were significantly enhanced with an increase in spatial dependence. Subsurface drainage was also increased with increases in rainfall intensity and slop complexity. For hill slopes the relative effects of spatial dependence in soil hydraulic characteristics was smaller with 30/sup 0/ horizontal pitching than without pitching. Hill slopes with a random distribution of hydraulic characteristics provided greater opportunity for soil units with differing water capacities to interact than in cases with spatially correlated distributions. This greater interaction is associated with a greater lag in subsurface flow generation. These studies illustrate some of the expected effects of spatial dependence of soil hydraulic characteristics of the integrated hydrologic response of land areas.

  11. No steady water waves of small amplitude are supported by a shear flow with still free surface

    E-Print Network [OSTI]

    Vladimir Kozlov; Nikolay Kuznetsov

    2012-09-17

    The two-dimensional free-boundary problem describing steady gravity waves with vorticity on water of finite depth is considered. It is proved that no small-amplitude waves are supported by a horizontal shear flow whose free surface is still in a coordinate frame such that the flow is time-independent in it. The class of vorticity distributions for which such flows exist includes all positive constant distributions, as well as linear and quadric ones with arbitrary positive coefficients.

  12. USDA Forest Service Gen. Tech. Rep. PSW-GTR-168. 1998. 35 The Summer Flow and Water Yield Response

    E-Print Network [OSTI]

    USDA Forest Service Gen. Tech. Rep. PSW-GTR-168. 1998. 35 The Summer Flow and Water Yield Response to Timber Harvest1 Elizabeth T. Keppeler2 Abstract:Abstract:Abstract:Abstract:Abstract: Continuous harvest methods (selection and clearcut) on summer flows and annual yield. Although all Caspar Creek

  13. Measuring the CO2 flux at the air/water interface in lakes using flow injection analysis

    E-Print Network [OSTI]

    Jardim, Wilson de Figueiredo

    measurements. The use of flow analysis for the determination of dissolved carbon dioxide by membrane separation a hydrophobic membrane into a flow of deionized water, generating a gradient of conductivity proportional the processes related to the carbon cycle within the aquatic environment. The direction of CO2 gas exchange

  14. UNSAT-H Version 2. 0: Unsaturated soil water and heat flow model

    SciTech Connect (OSTI)

    Fayer, M.J.; Jones, T.L.

    1990-04-01

    This report documents UNSAT-H Version 2.0, a model for calculating water and heat flow in unsaturated media. The documentation includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plant transpiration, and the code listing. Waste management practices at the Hanford Site have included disposal of low-level wastes by near-surface burial. Predicting the future long-term performance of any such burial site in terms of migration of contaminants requires a model capable of simulating water flow in the unsaturated soils above the buried waste. The model currently used to meet this need is UNSAT-H. This model was developed at Pacific Northwest Laboratory to assess water dynamics of near-surface, waste-disposal sites at the Hanford Site. The code is primarily used to predict deep drainage as a function of such environmental conditions as climate, soil type, and vegetation. UNSAT-H is also used to simulate the effects of various practices to enhance isolation of wastes. 66 refs., 29 figs., 7 tabs.

  15. Wall pressure measurements of flooding in vertical countercurrent annular air–water flow

    SciTech Connect (OSTI)

    Choutapalli, I., Vierow, K.

    2010-01-01

    An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4?/?; ? is the liquid mass flow rate per unit perimeter; ? is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet and is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.

  16. Steam-water two-phase flow in large diameter vertical piping at high pressures and temperatures

    SciTech Connect (OSTI)

    Hasanein, H.A.; Kawaji, Masahiro [Univ. of Toronto, Ontario (Canada); Chan, A.M.C. [Ontario Hydro Technologies, Toronto, Ontario (Canada); Yoshioka, Yuzuru [Japan Atomic Power Co., Tokyo (Japan)

    1996-08-01

    No information on steam/water two-phase flow behavior in large diameter pipes (10 inch or larger) at elevated pressures is available in the open literature. However, there are many applications, in the nuclear, chemical and petroleum industries among others where two-phase flows in large diameter pipes at elevated pressures and temperatures are encountered routinely or under accident scenarios. Experimental data on steam-water two-phase flow in a large diameter (20 inch, 50.08 cm I.D.) vertical pipe at elevated pressures and temperatures (2.8 MPa/230 C--6.4 MPa/280 C) have been obtained. Void fraction, two-phase mass flux, phase and velocity distributions as well as pressure drop along the test pipe have been measured using the Ontario Hydro Technologies (OHT) Pump Test Loop. The void fraction distributions were found to be axially symmetric and nearly flat over a wide range of two-phase flow conditions. The two-phase flow regime could be inferred from the dynamic void fluctuations data. For the 280 C tests, the flow was found to be relatively stable with bubbly flow at low average void fractions and churn turbulent or wispy-annular flow at higher void fractions. At 230 C, the flow became rather oscillatory and slugging was suspected at relatively low voids. It has also been found that the average void fractions in the test section can be determined reasonably accurately using the axial pressure drop data.

  17. Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2012-01-01

    In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

  18. Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site

    SciTech Connect (OSTI)

    Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

    1995-03-01

    In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site.

  19. Effect of flow rate on clogging processes in small diameter aquifer storage and recovery injection wells

    E-Print Network [OSTI]

    Thompson, Angela R.

    2014-12-31

    (KGS) investigates a low-cost, slow flow alternative to traditional ASR recharge systems. The project utilizes gravity-induced recharge and small diameter wells installed with direct-push technology to recharge and store ground water. The KGS ASR...

  20. X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand

    SciTech Connect (OSTI)

    Seol, Yongkoo; Kneafsey, Timothy J.

    2009-06-01

    We used X-ray computed tomography (CT) to image and quantify the effect of a heterogeneous sand grain-size distribution on the formation and dissociation of methane hydrate, as well as the effect on water flow through the heterogeneous hydrate-bearing sand. A 28 cm long sand column was packed with several segments having vertical and horizontal layers with sands of different grain-size distributions. During the hydrate formation, water redistribution occurred. Observations of water flow through the hydrate-bearing sands showed that water was imbibed more readily into the fine sand, and that higher hydrate saturation increased water imbibition in the coarse sand due to increased capillary strength. Hydrate dissociation induced by depressurization resulted in different flow patterns with the different grain sizes and hydrate saturations, but the relationships between dissociation rates and the grain sizes could not be identified using the CT images. The formation, presence, and dissociation of hydrate in the pore space dramatically impact water saturation and flow in the system.

  1. The Development of a Coordinated Database for Water Resources and Flow Model in the Paso Del Norte Watershed (Phase III) Part II Availability of Flow and Water Quality Data for the Rio Grande Project Area 

    E-Print Network [OSTI]

    Tillery, Sue; Sheng, Zhuping; King, J. Phillip; Creel, Bobby; Brown, Christopher; Michelsen, Ari; Srinivasan, Raghavan; Granados, Alfredo

    2009-01-01

    of the Rio Grande flow between Elephant Butte Dam and American Dam by using data collected in the first development phase of the PdNWC/Corps Coor dinated Water Resources Database and to enhance the data portal capabilities of the PdNWC Coordinated... monitoring sites from associated canals, drains, and dams along the Rio Grande. Flow data for the years from 1908 through 2002 and water quality data for the years 1938 to 2005 collected periodically by different agencies include historic chemical...

  2. Development of a Water Based, Critical Flow, Non-Vapor Compression cooling Cycle

    SciTech Connect (OSTI)

    Hosni, Mohammad H.

    2014-03-30

    Expansion of a high-pressure liquid refrigerant through the use of a thermostatic expansion valve or other device is commonplace in vapor-compression cycles to regulate the quality and flow rate of the refrigerant entering the evaporator. In vapor-compression systems, as the condensed refrigerant undergoes this expansion, its pressure and temperature drop, and part of the liquid evaporates. We (researchers at Kansas State University) are developing a cooling cycle that instead pumps a high-pressure refrigerant through a supersonic converging-diverging nozzle. As the liquid refrigerant passes through the nozzle, its velocity reaches supersonic (or critical-flow) conditions, substantially decreasing the refrigerant’s pressure. This sharp pressure change vaporizes some of the refrigerant and absorbs heat from the surrounding conditions during this phase change. Due to the design of the nozzle, a shockwave trips the supersonic two-phase refrigerant back to the starting conditions, condensing the remaining vapor. The critical-flow refrigeration cycle would provide space cooling, similar to a chiller, by running a secondary fluid such as water or glycol over one or more nozzles. Rather than utilizing a compressor to raise the pressure of the refrigerant, as in a vapor-cycle system, the critical-flow cycle utilizes a high-pressure pump to drive refrigerant liquid through the cooling cycle. Additionally, the design of the nozzle can be tailored for a given refrigerant, such that environmentally benign substances can act as the working fluid. This refrigeration cycle is still in early-stage development with prototype development several years away. The complex multi-phase flow at supersonic conditions presents numerous challenges to fully understanding and modeling the cycle. With the support of DOE and venture-capital investors, initial research was conducted at PAX Streamline, and later, at Caitin. We (researchers at Kansas State University) have continued development of the cycle and have gained an in-depth understanding of the governing fundamental knowledge, based on the laws of physics and thermodynamics and verified with our testing results. Through this research, we are identifying optimal working fluid and operating conditions to eventually demonstrate the core technology for space cooling or other applications.

  3. Oscillation and collective conveyor of water-in-oil droplets by microfluidic bolus flow

    E-Print Network [OSTI]

    Ohmura, Takuya; Kamei, Ken-ichiro; Maeda, Yusuke T

    2015-01-01

    Microfluidic techniques have been extensively developed to realize micro-total analysis systems in a small chip. For microanalysis, the trapping or arranging of objects in a line is a critical step. Physical effects such as inertial lift force have been utilized so far, however, hydrodynamic interaction in a many body system is yet to be explored despite its relevance to pattern formation. Here, we report water-in-oil (W/O) droplets can be transported with sequential order in the grid of one-dimensional array of another large W/O droplets. As each droplet comes close to an interspace of the large droplet array, while exhibiting persistent back-and-forth motion, it is conveyed at a velocity equal to the droplet array. The droplet also makes asymmetric orbit to and from the large droplet behind, suggesting vortex like stream was involved. We confirm the appearance of closed streamlines, which called bolus flow, in numerical simulation based on lattice Boltzmann method. The existence region of bolus flow account...

  4. Piyahu Nadu - Land of Flowing Waters: The Water Transfer from Owens Valley to Los Angeles 1913-1939

    E-Print Network [OSTI]

    Walker, Chantal

    2014-01-01

    Exchanging of Certain Land and Water Rights in California. ”of the West’s First Great Water Transfer. Stanford: StanfordThe Euro-Americans monopolized water for their cattle while

  5. A study on the characteristics of upward air-water two-phase flow in a large diameter pipe

    SciTech Connect (OSTI)

    Shen, Xiuzhong; Saito, Yasushi; Mishima, Kaichiro [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Nakamura, Hideo [Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai-mura, Ibaraki 319-1195 (Japan)

    2006-10-15

    An adiabatic upward co-current air-water two-phase flow in a vertical large diameter pipe (inner diameter, D: 0.2m, ratio of pipe length to diameter, L/D: 60.5) was experimentally investigated under various inlet conditions. Flow regimes were visually observed, carefully analyzed and classified into five, i.e. undisturbed bubbly, agitated bubbly, churn bubbly, churn slug and churn froth. Void fraction, bubble frequency, Sauter mean diameter, interfacial area concentration (IAC) and interfacial direction were measured with four-sensor optical probes. Both the measured void fraction and the measured IAC demonstrated radial core-peak distributions in most of the flow regimes and radial wall peak in the undisturbed bubbly flow only. The bubble frequency also showed a wall-peak radial distribution only when the bubbles were small in diameter and the flow was in the undisturbed bubbly flow. The Sauter mean diameter of bubbles did not change much in the radial direction in undisturbed bubbly, agitated bubbly and churn bubbly flows and showed a core-peak radial distribution in the churn slug flow due to the existence of certain amount of large and deformed bubbles in this flow regime. The measurements of interfacial direction showed that the main and the secondary bubbly flow could be displayed by the main flow peak and the secondary flow peak, respectively, in the probability density function (PDF) of the interfacial directional angle between the interfacial direction and the z-axis, {eta}{sub zi}. The local average {eta}{sub zi }at the bubble front or rear hemisphere ({eta}{sub zi}{sup F} and {eta}{sub zi}{sup R}) reflected the local bubble movement and was in direct connection with the flow regimes. Based on the analysis, the authors classified the flow regimes in the vertical large diameter pipe quantitatively by the cross-sectional area-averaged {eta}{sub zi }at bubbly front hemisphere ({eta}{sub zi}{sup F}-bar). Bubbles in the undisturbed bubbly flow moved in a vertical way with some swerving motions and those in other flow regimes moved along the lateral secondary flow with an averaging net upward velocity. (author)

  6. 16/05/12 4:04 PMSmartphones used on floating robots to track water flow | Ubergizmo Page 1 of 4http://www.ubergizmo.com/2012/05/smartphones-used-on-floating-robots-to-track-water-flow/

    E-Print Network [OSTI]

    .1 Review Home > CellPhones > Smartphones used on floating robots to track water flow Network: Ubergizmo the floating robots to become an invaluable tool for the future. Related articles: Personal Power Generator Prototype Powered By Organic Viruses Android now covers 51 percent of all smartphones in the U.S. One

  7. Bubble Size Control to Improve Oxygen-Based Bleaching: Characterization of Flow Regimes in Pulp-Water-Gas Three-Phase Flows

    SciTech Connect (OSTI)

    S.M. Ghiaasiaan and Seppo Karrila

    2006-03-20

    Flow characteristics of fibrous paper pulp-water-air slurries were investigated in a vertical circular column 1.8 m long, with 5.08 cm diameter. Flow structures, gas holdup (void fraction), and the geometric and population characteristics of gas bubbles were experimentally investigated, using visual observation, Gamma-ray densitometry, and flash X-ray photography. Five distinct flow regimes could be visually identified: dispersed bubbly, layered bubbly, plug, churn-turbulent, and slug. Flow regime maps were constructed, and the regime transition lines were found to be sensitive to consistency. The feasibility of using artificial neural networks (ANNs) for the identification of the flow regimes, using the statistical characteristics of pressure fluctuations measured by a single pressure sensor, was demonstrated. Local pressure fluctuations at a station were recorded with a minimally-intrusive transducer. Three-layer, feed-forward ANNs were designed that could identify the four major flow patterns (bubbly, plug, churn, and slug) well. The feasibility of a transportable artificial neural network (ANN) - based technique for the classification of flow regimes was also examined. Local pressures were recorded at three different locations using three independent but similar transducers. An ANN was designed, trained and successfully tested for the classification of the flow regimes using one of the normalized pressure signals (from Sensor 1). The ANN trained and tested for Sensor 1 predicted the flow regimes reasonably well when applied directly to the other two sensors, indicating a good deal of transportability. An ANN-based method was also developed, whereby the power spectrum density characteristics of other sensors were adjusted before they were used as input to the ANN that was based on Sensor 1 alone. The method improved the predictions. The gas-liquid interfacial surface area concentration was also measured in the study. The gas absorption technique was applied, using CO2 as the transferred species and sodium hydroxide as the alkaline agent in water. Statistical analysis was performed to identify the parametric dependencies. The experimental data were empirically correlated.

  8. Decision support tool seeks to aid stream-flow recovery and enhance water security

    E-Print Network [OSTI]

    Merenlender, Adina; Deitch, Matthew J; Feirer, Shane

    2008-01-01

    Watershed. SWRCB Division of Water Rights. Sacramento, CA.2007 draft. Division of Water Rights. Sacramento, CA.of streamflow. Vol 1. Water Supply Paper 2175. US Geo-

  9. Transverse slope of bed and turbid-clear water interface of channelized turbidity currents flowing around bends

    E-Print Network [OSTI]

    Parker, Gary

    1 Transverse slope of bed and turbid-clear water interface of channelized turbidity currents Production Research Company Houston, Texas USA ABSTRACT Turbidity currents are sediment-laden bottom flows in lakes and the ocean that derive their momentum from the force of gravity acting on the sediment held

  10. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: One-dimensional soil thaw

    E-Print Network [OSTI]

    Freezing and thawing a b s t r a c t Numerous cold regions water flow and energy transport models have. Simulated and/or observed climate change impacts in cryogenic soils include permafrost degradation, active that include the dynamic freeze­thaw process have been tested against analytical solutions, such as the Neumann

  11. A low diffusive Lagrange-Remap scheme for the simulation of violent air-water free-surface flows.

    E-Print Network [OSTI]

    using a five-equation model. In this paper, we explore a simplified variant approach for gas-liquid petroleum, the sizing of Liquified Natural Gas (LNG) carriers, processes of phase separation, waste water of the flows and the process optimization in the industrial case. For gas-liquid applications involving fast

  12. Investigation of Temperature-Driven Water Transport in Polymer Electrolyte Fuel Cell: Phase-Change-Induced Flow

    E-Print Network [OSTI]

    Mench, Matthew M.

    Investigation of Temperature-Driven Water Transport in Polymer Electrolyte Fuel Cell: Phase and durability for polymer electrolyte fuel cells PEFCs . The most commonly used polymer electrolyte membranes-Change-Induced Flow Soowhan Kim* and M. M. Mench**,z Fuel Cell Dynamics and Diagnostics Laboratory, Department

  13. Thin power law film flow down an inclined plane: consistent shallow water models and stability under large scale perturbations

    E-Print Network [OSTI]

    Noble, Pascal

    2012-01-01

    In this paper we derive consistent shallow water equations for thin films of power law fluids down an incline. These models account for the streamwise diffusion of momentum which is important to describe accurately the full dynamic of the thin film flows when instabilities like roll-waves arise. These models are validated through a comparison with Orr Sommerfeld equations for large scale perturbations. We only consider laminar flow for which the boundary layer issued from the interaction of the flow with the bottom surface has an influence all over the transverse direction to the flow. In this case the concept itself of thin film and its relation with long wave asymptotic leads naturally to flow conditions around a uniform free surface Poiseuille flow. The apparent viscosity diverges at the free surface which, in turn, introduces a singularity in the formulation of the Orr-Sommerfeld equations and in the derivation of shallow water models. We remove this singularity by introducing a weaker formulation of Cauc...

  14. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    SciTech Connect (OSTI)

    Xiaodong Sun; Seungjin Kim; Ling Cheng; Mamoru Ishii [Purdue University, West Lafayette, IN 47907 (United States); Beus, Stephen G. [Bechtel Bettis, Inc., Bettis Atomic Power Laboratory, Post Office Box 79, West Mifflin, PA 15122-0079 (United States)

    2002-07-01

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 200-mm in width and 10-mm in gap. Miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions. (authors)

  15. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    SciTech Connect (OSTI)

    X. Sun; S. Kim; L. Cheng; M. Ishii; S.G. Beus

    2001-10-31

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in a cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 20-cm in width and 1-cm in gap. The miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions.

  16. Liquid water quantification in the cathode side gas channels of a proton exchange membrane fuel cell through two-phase flow

    E-Print Network [OSTI]

    Kandlikar, Satish

    t s Liquid water in the cathode side channels of PEM fuel cell is quantified. Algorithm developed in MATLABÒ electrolyte membrane fuel cell Two-phase flow visualization Gas channels Area coverage ratio Water quantification a b s t r a c t Water management is crucial to the performance of PEM fuel cells. Water

  17. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Fertilizer Storage and Handling 

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

    1997-08-29

    . Locate the pad adjacent to the storage area. Make sure that water moves away from the well. At sites where runoff could reach the well, construct a diversion to direct runoff to another area. The size of the pad depends on the equip- ment you use. Provide... into the water. Other potential sources of nitrate are septic systems, livestock yards, livestock waste stor- age facilities, and silage storage. This bulletin covers the following topics: 1) Building a new storage facility 2) Modifying an existing facility 3...

  18. Experimental Investigation of Sphere Slamming to Quiescent Water Surface-Pressure Distribution and Jetting Flow Field 

    E-Print Network [OSTI]

    Wei, Wan-Yi

    2014-11-26

    Sphere slamming pressures and corresponding jetting flow fields were studied in an experimental approach. Correlations between sphere impacting forces and jetting flow occurrences were explored. Pressure sensor was used to investigate the slamming...

  19. Sanders, J. E.; and Merguerian, Charles, 1995b, New York City region: Unique testing ground for flow models of Quaternary continental glaciers.

    E-Print Network [OSTI]

    Merguerian, Charles

    Sanders, J. E.; and Merguerian, Charles, 1995b, New York City region: Unique testing ground This Abstract: Sanders, J. E.; and Merguerian, Charles, 1995b, New York City region: Unique testing ground City came from the NNE (from the "Labrador center"). When ice blocked the N end of Hudson Bay and Lake

  20. Seepage flow-stability analysis of the riverbank of Saigon river due to river water level fluctuation

    E-Print Network [OSTI]

    Oya, A; Hiraoka, N; Fujimoto, M; Fukagawa, R

    2015-01-01

    The Saigon River, which flows through the center of Ho Chi Minh City, is of critical importance for the development of the city as forms as the main water supply and drainage channel for the city. In recent years, riverbank erosion and failures have become more frequent along the Saigon River, causing flooding and damage to infrastructures near the river. A field investigation and numerical study has been undertaken by our research group to identify factors affecting the riverbank failure. In this paper, field investigation results obtained from multiple investigation points on the Saigon River are presented, followed by a comprehensive coupled finite element analysis of riverbank stability when subjected to river water level fluctuations. The river water level fluctuation has been identified as one of the main factors affecting the riverbank failure, i.e. removal of the balancing hydraulic forces acting on the riverbank during water drawdown.

  1. Evidence for Gropun-Water Stratification Near Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    K. Futa; B.D. Marshall; Z.E. Peterman

    2006-03-24

    Major- and trace-element concentrations and strontium isotope ratios (strontium-87/strontium-86) in samples of ground water potentially can be useful in delineating flow paths in the complex ground-water system in the vicinity of Yucca Mountain, Nevada. Water samples were collected from boreholes to characterize the lateral and vertical variability in the composition of water in the saturated zone. Discrete sampling of water-producing intervals in the saturated zone includes isolating borehole sections with packers and extracting pore water from core obtained by sonic drilling. Chemical and isotopic stratification was identified in the saturated zone beneath southern Fortymile Wash.

  2. UNSAT-H, an unsaturated soil water flow code for use at the Hanford site: code documentation

    SciTech Connect (OSTI)

    Fayer, M.J.; Gee, G.W.

    1985-10-01

    The unsaturated soil moisture flow code, UNSAT-H, which was developed at Pacific Northwest Laboratory for assessing water movement at waste sites on the Hanford site, is documented in this report. This code is used in simulating the water dynamics of arid sites under consideration for waste disposal. The results of an example simulation of constant infiltration show excellent agreement with an analytical solution and another numerical solution, thus providing some verification of the UNSAT-H code. Areas of the code are identified for future work and include runoff, snowmelt, long-term climate and plant models, and parameter measurement. 29 refs., 7 figs., 2 tabs.

  3. Do constructed flow through wetlands improve water quality in the San Joaquin River?

    E-Print Network [OSTI]

    O'Geen, Anthony T

    2006-01-01

    disposal of agricultural tailwaters and total maximum daily load (TMDL) efforts related water quality

  4. Dealing with big circulation flow, small temperature difference based on verified dynamic model simulations of a hot water district heating system 

    E-Print Network [OSTI]

    Zhong, L.

    2014-01-01

    d design en enclosure ex exchanger f fuel h heater int internal n number of HES o outside r return s supply sp set point sols solar radiation from south side v verify w, w2i water, water in secondary system for each HES z zone ESL... temperatures, solar radiation and wind speed; the heat balance has been regulated based on the average water temperature in the secondary system by adjusting the water mass flow rate (u1) of each HES in the primary system; and the water mass flow rate...

  5. Ground-water geochemistry and radionuclide activity in the Cambrian-Ordovician aquifer of Dodge and Fond du Lac counties, Wisconsin. Technical report

    SciTech Connect (OSTI)

    Weaver, T.R.; Bahr, J.M.; Anderson, M.P.

    1990-01-01

    Analyses of groundwater from wells in the Cambrian-Ordovician aquifer of eastern Wisconsin indicate that regions of the aquifer contain elevated concentrations of dissolved solids, chloride and sulfate. Groundwater from several wells in the area also approach or exceed the current drinking water standard for combined radium activity. Significant changes in groundwater chemistry occur where the aquifer becomes confined by the Maquoketa shale. Concentrations of Cl(-), SO4(2-) and Na(+) increase in the confined region, and the highest combined radium activities are typically observed in the area. Geochemical modeling implies that the observed changes in major ion groundwater chemistry occur in response to the presence of the confining unit which may act as a source of SO4(2-), through gypsum dissolution, and Na(+), through cation exchange. A finite difference groundwater flow model was linked to a particle tracking routine to determine groundwater flow paths and residence times in the aquifer near the boundary between unconfined and confined conditions. Results suggest that the presence of the confining unit produces a vertically stratified flow regime in the confined region.

  6. UNSAT-H Version 3.0: Unsaturated Soil Water and Heat Flow Model Theory, User Manual, and Examples

    SciTech Connect (OSTI)

    MJ Fayer

    2000-06-12

    The UNSAT-H model was developed at Pacific Northwest National Laboratory (PNNL) to assess the water dynamics of arid sites and, in particular, estimate recharge fluxes for scenarios pertinent to waste disposal facilities. During the last 4 years, the UNSAT-H model received support from the Immobilized Waste Program (IWP) of the Hanford Site's River Protection Project. This program is designing and assessing the performance of on-site disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site (LMHC 1999). The IWP is interested in estimates of recharge rates for current conditions and long-term scenarios involving the vadose zone disposal of tank wastes. Simulation modeling with UNSAT-H is one of the methods being used to provide those estimates (e.g., Rockhold et al. 1995; Fayer et al. 1999). To achieve the above goals for assessing water dynamics and estimating recharge rates, the UNSAT-H model addresses soil water infiltration, redistribution, evaporation, plant transpiration, deep drainage, and soil heat flow as one-dimensional processes. The UNSAT-H model simulates liquid water flow using Richards' equation (Richards 1931), water vapor diffusion using Fick's law, and sensible heat flow using the Fourier equation. This report documents UNSAT-H .Version 3.0. The report includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plants, and the code manual. Version 3.0 is an, enhanced-capability update of UNSAT-H Version 2.0 (Fayer and Jones 1990). New features include hysteresis, an iterative solution of head and temperature, an energy balance check, the modified Picard solution technique, additional hydraulic functions, multiple-year simulation capability, and general enhancements.

  7. Heavy Flags Undergo Spontaneous Oscillations in Flowing Water Michael Shelley,1

    E-Print Network [OSTI]

    Shelley, Michael

    bending modulus, is the density of the fluid, d is the height of the fluid layer interacting with a flowing fluid. Flapping dynamics occurs also in industrial processes like paper or thin-film processing [1 couple potential flow theory with the mechanics of a flag with inertia and bending rigidity, and extend

  8. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect (OSTI)

    Yu, W.; France, D. M.; Routbort, J. L.

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  9. Incorporating and Evaluating Environmental Instream Flows in a Priority Order Based Surface Water Allocation Model 

    E-Print Network [OSTI]

    Pauls, Mark

    2014-03-18

    -step versions of the authorized use scenario water availability models using existing and recently added features of the Water Rights Analysis Package (WRAP). Various metrics are developed by this research to characterize the degree to which the environmental...

  10. Coupled effects of flow field geometry and diffusion media material structure on evaporative water removal from

    E-Print Network [OSTI]

    Mench, Matthew M.

    (PEFC) is responsible for many degradation and durability issues [1e4]. To remove water from the stack

  11. Entrained-flow dry-bottom gasification of high-ash coals in coal-water slurries

    SciTech Connect (OSTI)

    E.G. Gorlov; V.G. Andrienko; K.B. Nefedov; S.V. Lutsenko; B.K. Nefedov

    2009-04-15

    It was shown that the effective use of dry ash removal during entrained-flow gasification of coal-water slurries consists in simplification of the ash storage system and utilization of coal ash, a decrease in the coal demand, a reduction in the atmospheric emissions of noxious substances and particulate matter, and abandonment of the discharge of water used for ash slurry. According to the results of gasification of coal-water slurries (5-10 {mu}m) in a pilot oxygen-blow unit at a carbon conversion of >91%, synthesis gas containing 28.5% CO, 32.5% H{sub 2}, 8.2% CO{sub 2}, 1.5% CH{sub 4}, the rest being nitrogen, was obtained. The fly ash in its chemical composition, particle size, and density meets the requirements of the European standard EN 450 as a cement additive for concrete manufacture.

  12. Propeller Flow Meter 

    E-Print Network [OSTI]

    Enciso, Juan; Santistevan, Dean; Hla, Aung K.

    2007-10-01

    Propeller flow meters are commonly used to measure water flow rate. They can also be used to estimate irrigation water use. This publication explains how to select, install, read and maintain propeller flow meters....

  13. Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data

    E-Print Network [OSTI]

    Lo, Min-Hui; Famiglietti, James S; Yeh, P. J.-F.; Syed, T. H

    2010-01-01

    Calibration Using GRACE Data and Base Flow Estimates [ 17 ]ESTIMATION USING GRACE DATA base flow data. In this casemeasured GRACE data and estimated base flow simultaneously

  14. The effect of cross flow in a stratified reservoir during a water flood 

    E-Print Network [OSTI]

    Sommers, Gordon Edmund

    1970-01-01

    of the displacement of oil by water in a porous medium. In most conventional engineer- ing methods used to predict the reservoir performance of a water- flood, crossflow between beds of different permeability is neglected, This study was concerned... in a water flood. Conventional engineering methods assuming no crossflow and the numerical model solution were in agreement when the effects of vertical communication were neglected. However, when vertical communication was considered, model...

  15. Ground Loops for Heat Pumps and Refrigeration 

    E-Print Network [OSTI]

    Braud, H. J.

    1986-01-01

    Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water...

  16. Shallow water flow is a serious drilling hazard encoun-tered across several areas of the Gulf of Mexico (GoM).

    E-Print Network [OSTI]

    Texas at Austin, University of

    , marine environmental impact, and drilling costs across the GoM, with a time-delay factor usu- ally of Mexico (GoM). Numerous incidents have occurred in which intense shallow water flows have disrupted question: "How does fresh- water come to be near the seafloor in deepwater areas of the Gulf of Mexico

  17. 1 Flow in Porous Media Oil companies often pump water into the cavities of the earth where the oil is situated to drive

    E-Print Network [OSTI]

    Gander, Martin J.

    1 Flow in Porous Media Oil companies often pump water into the cavities of the earth where the oil is situated to drive out the oil. In a simplified situation, as given in figure 1 we have a rectangular block of porous material filled with oil. Water is pumped in from the left, creating a presure difference between

  18. A pore-scale model of two-phase flow in water-wet rock

    SciTech Connect (OSTI)

    Silin, Dmitriy; Patzek, Tad

    2009-02-01

    A finite-difference discretization of Stokes equations is used to simulate flow in the pore space of natural rocks. Numerical solutions are obtained using the method of artificial compressibility. In conjunction with Maximal Inscribed Spheres method, these computations produce relative permeability curves. The results of computations are in agreement with laboratory measurements.

  19. Dynamic pressure response of water flow between closely spaced roughened flat plates 

    E-Print Network [OSTI]

    Hess, John Charles

    1993-01-01

    . The friction factors were found to differ significantly from the Moody diagram in that at small clearances, laminar flow appears to not always conform to the [] line predicted by theory. In addition, it is seen that increasing the gap between the plates from...

  20. Critical controls in transcritical shallow-water flow over obstacles Roger H.J. Grimshaw1

    E-Print Network [OSTI]

    upstream and a depression chock propagating downstream. Classical shock closure conditions are used the obstacle, which has an upstream elevation and a downstream depression, each terminated by upstream. The upstream flow can be characterised as subcritical, supercritical, and transcritical respectively. We review

  1. Under consideration for publication in J. Fluid Mech. 1 Transcritical shallow-water flow past

    E-Print Network [OSTI]

    wave amplitudes for the upstream and downstream undular bores, the speeds of the undular bores edges is with the upstream and downstream waves that may be generated for flow over a one-dimensional localized obstacle lee waves are found downstream, together with transients propagating both upstream and downstream

  2. Static and flowing regions in granular collapses down channels: Insights from a sedimenting shallow water model

    E-Print Network [OSTI]

    Huppert, Herbert

    Static and flowing regions in granular collapses down channels: Insights from a sedimenting shallow extend the model of Larrieu 2006 to include an estimation for the interface between the static, 043301 2007 . An empirical sedimentation term Ls and the instantaneous removal of a static deposit wedge

  3. Quantitative imaging of the air-water flow fields formed by unsteady breaking waves

    E-Print Network [OSTI]

    Belden, Jesse (Jesse Levi)

    2009-01-01

    An experimental method for simultaneously measuring the velocity fields on the air and water side of unsteady breaking waves is presented. The method is applied to breaking waves to investigate the physics of the air and ...

  4. Mechanics of exchange flow between open water and an aquatic canopy

    E-Print Network [OSTI]

    Zhang, Xueyan, Ph. D. Massachusetts Institute of Technology

    2010-01-01

    The presence of aquatic vegetation is a common feature in shallow water systems. It alters the dynamics of the system by producing additional drag and by generating differential heating between regions of vegetation and ...

  5. Air and water flows in a large sand box with a two-layer aquifer system

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    the initial water table, the larger the vacuum, and the longer the time to reach the maximum vacuum table is close to the interface of the two layers. Keywords Sand box . Groundwater hydraulics

  6. Unsaturated subsurface flow with surface water and nonlinear in-and outflow conditions

    E-Print Network [OSTI]

    , the permeability k depends only on the saturation s. In the Richards model, the air pressure in the pore space, 1] and the water pressure p : � [0, T] R nts - div k(s)µ-1 ( p + e) = f in � [0, T]. (1) Here n is assumed to be constant. We consider it normalized to pgas = 0 and replace the water pressure in (1

  7. Pacific Northwest National Laboratory Grounds Maintenance

    SciTech Connect (OSTI)

    2009-08-05

    FEMP Water Efficiency Best Management Practice #4 and #5: Case study overview of the grounds maintenance program for Pacific Northwest National Laboratory.

  8. The Sacramento Area Water Forum: A Case Study

    E-Print Network [OSTI]

    Connick, Sarah

    2006-01-01

    quality, reservoir operations, ground water, water reclamation, water needs of jurisdictions outside the Sacramento area, and water management

  9. Ground-Coupled Heat Pump Applications and Case Studies 

    E-Print Network [OSTI]

    Braud, H. J.

    1989-01-01

    The paper presents an overview of ground loops for space-conditioning heat pumps, hot water, ice machines, and water-cooled refrigeration in residential and commercial applications. In Louisiana, a chain of hamburger drive-ins uses total ground...

  10. Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data

    E-Print Network [OSTI]

    Lo, Min-Hui; Famiglietti, James S; Yeh, P. J.-F.; Syed, T. H

    2010-01-01

    spatially variable water and energy balance processes, Waterdistributed land surface water and energy balance model, J.

  11. A Parallel Implementation of the TOUGH2 Software Package for Large Scale Multiphase Fluid and Heat Flow Simulations

    E-Print Network [OSTI]

    Elmroth, Erik

    of Energy's civilian nuclear waste management for the evaluation of the Yucca Mountain site as a repository groundwater flow related problems such as nuclear waste isolation, environmental remediation, and geothermal 6 blocks in a Yucca Mountain nuclear waste site study. Keywords. Ground water flow, grid

  12. A Parallel Implementation of the TOUGH2 Software Package for Large Scale Multiphase Fluid and Heat Flow Simulations

    E-Print Network [OSTI]

    Elmroth, Erik

    with ¢¡¤£¦¥§ ¨¡© blocks in a Yucca Mountain nuclear waste site study. Keywords. Ground water flow, grid partitioning management for the evaluation of the Yucca Mountain site as a repository for nuclear wastes. In this context of developing a 3D flow model of the Yucca Mountain site, involving computational grids of to blocks

  13. Modelling water flow and transport of contaminants from mine wastes stored in open pits

    E-Print Network [OSTI]

    Aubertin, Michel

    conditions. The effects of material hydraulic properties (i.e. the water retention curve and hydraulic conductivity function), fracture network characteristics, variable recharge rates and saturated hydraulic and petroleum energy resources. In addition, the search for safe storage of hazardous wastes, where the primary

  14. Reduction of water evaporation in polymerase chain reaction microfluidic devices based on oscillating-flow

    E-Print Network [OSTI]

    devices, realized by glass microchannels for avoiding water dif- fusion toward the elastomer used for chip-temperature microfluidic biochemical reactors. © 2010 American Insti- tute of Physics. doi:10.1063/1.3481776 I, compact alternative to conventional equipments and technologies, offering advantages in terms of reduced

  15. Quadratic Programming based data assimilation with passive drifting sensors for shallow water flows

    E-Print Network [OSTI]

    , transportation, hydroelectric power, and waste disposal; the growing world population, and societal shifts variational methods [14], Kalman filtering and its extensions [6], optimal statistical interpolation [13: · A linearization of the Shallow Water Equations (SWE) that can be used for formulating the optimization prob- lem

  16. Precipitation induced stream flow: An event based chemical andisotopic study of a small stream in the Great Plains region of theUSA

    SciTech Connect (OSTI)

    Machavaram, Madhav V.; Whittemore, Donald O.; Conrad, Mark E.; Miller, Norman L.

    2005-03-22

    A small stream in the Great Plains of USA was sampled tounderstand the streamflow components following intense precipitation andthe influence of water storage structures in the drainage basin.Precipitation, stream, ponds, ground-water and soil moisture were sampledfor determination of isotopic (D, 18O) and chemical (Cl, SO4) compositionbefore and after two intense rain events. Following the first stormevent, flow at the downstream locations was generated primarily throughshallow subsurface flow and runoff whereas in the headwaters region --where a pond is located in the stream channel -- shallow ground-water andpond outflow contributed to the flow. The distinct isotopic signatures ofprecipitation and the evaporated pond water allowed separation of theevent water from the other sources that contributed to the flow.Similarly, variations in the Cl and SO4 concentrations helped identifythe relative contributions of ground-water and soil moisture to thestream flow. The relationship between deuterium excess and Cl or SO4content reveals that the early contributions from a rain event tostreamflow depend upon the antecedent climatic conditions and theposition along the stream channel within the watershed. The design ofthis study, in which data from several locations within a watershed werecollected, shows that in small streams changes in relative contributionsfrom ground water and soil moisture complicate hydrograph separation,with surface-water bodies providing additional complexity. It alsodemonstrates the usefulness of combined chemical and isotopic methods inhydrologic investigations, especially the utility of the deuterium excessparameter in quantifying the relative contributions of various sourcecomponents to the stream flow.

  17. Some Specific CASL Requirements for Advanced Multiphase Flow Simulation of Light Water Reactors

    SciTech Connect (OSTI)

    R. A. Berry

    2010-11-01

    Because of the diversity of physical phenomena occuring in boiling, flashing, and bubble collapse, and of the length and time scales of LWR systems, it is imperative that the models have the following features: • Both vapor and liquid phases (and noncondensible phases, if present) must be treated as compressible. • Models must be mathematically and numerically well-posed. • The models methodology must be multi-scale. A fundamental derivation of the multiphase governing equation system, that should be used as a basis for advanced multiphase modeling in LWR coolant systems, is given in the Appendix using the ensemble averaging method. The remainder of this work focuses specifically on the compressible, well-posed, and multi-scale requirements of advanced simulation methods for these LWR coolant systems, because without these are the most fundamental aspects, without which widespread advancement cannot be claimed. Because of the expense of developing multiple special-purpose codes and the inherent inability to couple information from the multiple, separate length- and time-scales, efforts within CASL should be focused toward development of a multi-scale approaches to solve those multiphase flow problems relevant to LWR design and safety analysis. Efforts should be aimed at developing well-designed unified physical/mathematical and high-resolution numerical models for compressible, all-speed multiphase flows spanning: (1) Well-posed general mixture level (true multiphase) models for fast transient situations and safety analysis, (2) DNS (Direct Numerical Simulation)-like models to resolve interface level phenmena like flashing and boiling flows, and critical heat flux determination (necessarily including conjugate heat transfer), and (3) Multi-scale methods to resolve both (1) and (2) automatically, depending upon specified mesh resolution, and to couple different flow models (single-phase, multiphase with several velocities and pressures, multiphase with single velocity and pressure, etc.) A unified, multi-scale approach is advocated to extend the necessary foundations and build the capability to simultaneously solve the fluid dynamic interface problems (interface resolution) as well as multiphase mixtures (homogenization).

  18. European Conference on the Mathematics of Oil Recovery --Freiberg, Germany, 3 -6 September 2002 We consider a model for immiscible three-phase (e.g., water, oil, and gas) flow in a porous

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    2002 Abstract We consider a model for immiscible three-phase (e.g., water, oil, and gas) flow of three-phase (water-oil-gas) flow in a core sample of porous rock, taking into account hysteresis effects the effects of hysteresis on the Water-Alternating-Gas (WAG) oil-recovery process. In outline, the remainder

  19. Effect of transpiration rate on internal plant resistance to water flow 

    E-Print Network [OSTI]

    Hailey, James Lester

    1971-01-01

    transpiration rate, and the other plants were used for leaf water potential measurements ~ 15 G I 0 3 0 OOOOPOG 0 O0 0 I I Jl & I 4I I I r I I i 01 I IJI I C D ~E o D LI 1 ~ 0 m A. Plant compartment 6 ~ Root compartment CD Cooling coil... transpiration causes a cooling effect on the plant leaves ~ The stem diameter remained relatively...

  20. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    2015-04-13

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  1. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  2. Predicted macroinvertebrate response to water diversion from a montane stream using two-dimensional hydrodynamic models and zero flow approximation

    E-Print Network [OSTI]

    Holmquist, Jeffrey G; Waddle, Terry J

    2013-01-01

    rivers with differing water extraction. Fundamental andecological effects of water extraction in small, unregulated

  3. A Simple and Quick Chilled Water Loop Balancing for Variable Flow System 

    E-Print Network [OSTI]

    Zhu, Y.; Batten, T.; Turner, W. D.; Claridge, D. E.; Liu, M.

    2000-01-01

    of the AHUs are double duct units. The HVAC systems are controlled by a modem EMCS. Chilled Water Risers The entire complex includes five major buildings and a research building. Ther~ arc a total of 14 risers for the cnmplex. Each riser has two... their gratitude to the Johnson Controls at BAMC and BAMC Facility Management for the building commissioning project. A special thanks for the support fiom Ms Lydia Decker of Johnson Controls at BAMC, Mr. Scott Smith and Mr. Ruben Garcia of BAMC Facility...

  4. Flow cytometer

    DOE Patents [OSTI]

    Van den Engh, G.

    1995-11-07

    A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

  5. Regional analysis of ground and above-ground climate

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  6. Water's Way at Sleepers River watershed - revisiting flow generation in a post-glacial landscape, Vermont USA

    E-Print Network [OSTI]

    Shanley, JB; Sebestyen, SD; Mcdonnell, JJ; Mcdonnell, JJ; Mcglynn, BL; Dunne, T

    2015-01-01

    production in permeable soils. Water Resources Research 6:New England watershed. Water Resources Research 6: 1296–processes during snowmelt. Water Resources Research 7: 1160–

  7. Design and installation of continuous flow and water quality monitoring stations to improve water quality forecasting in the lower San Joaquin River

    E-Print Network [OSTI]

    Quinn, Nigel W.T.

    2007-01-01

    Flow and EC data at each site are collected using battery-battery Design Analysis datalogger YSI 600XL temperature compensated EC probe Flowbattery Design Analysis datalogger YSI 600XL temperature compensated EC probe Flow

  8. UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1)

    E-Print Network [OSTI]

    Henderson, Gideon

    UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1) Host institution: University of Oxford Cartwright Project description: Recovery of natural gas from mudstone (shale) formations has triggered

  9. Measurement of flow maldistribution in parallel channels and its application to ex-situ and in-situ experiments in PEMFC water management studies

    E-Print Network [OSTI]

    Kandlikar, Satish

    -situ experiments in PEMFC water management studies S.G. Kandlikar *, Z. Lu, W.E. Domigan, A.D. White, M.W. Benedict in the effective operation of a proton exchange membrane fuel cell (PEMFC). Presently there are a few theoretically fuel cell stacks in PEMFCs, but little or no experimental data has been published on the actual flow

  10. Analysis of Ground-Water Levels and Associated Trends in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1951-2003

    SciTech Connect (OSTI)

    J.M. Fenelon

    2005-10-05

    Almost 4,000 water-level measurements in 216 wells in the Yucca Flat area from 1951 to 2003 were quality assured and analyzed. An interpretative database was developed that describes water-level conditions for each water level measured in Yucca Flat. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes narratives that discuss the water-level history of each well. Water levels in 34 wells were analyzed for variability and for statistically significant trends. An attempt was made to identify the cause of many of the water-level fluctuations or trends. Potential causes include equilibration following well construction or development, pumping in the monitoring well, withdrawals from a nearby supply well, recharge from precipitation, earthquakes, underground nuclear tests, land subsidence, barometric pressure, and Earth tides. Some of the naturally occurring fluctuations in water levels may result from variations in recharge. The magnitude of the overall water-level change for these fluctuations generally is less than 2 feet. Long-term steady-state hydrographs for most of the wells open to carbonate rock have a very similar pattern. Carbonate-rock wells without the characteristic pattern are directly west of the Yucca and Topgallant faults in the southwestern part of Yucca Flat. Long-term steady-state hydrographs from wells open to volcanic tuffs or the Eleana confining unit have a distinctly different pattern from the general water-level pattern of the carbonate-rock aquifers. Anthropogenic water-level fluctuations were caused primarily by water withdrawals and nuclear testing. Nuclear tests affected water levels in many wells. Trends in these wells are attributed to test-cavity infilling or the effects of depressurization following nuclear testing. The magnitude of the overall water-level change for wells with anthropogenic trends can be large, ranging from several feet to hundreds of feet. Vertical water-level differences at 27 sites in Yucca Flat with multiple open intervals were compared. Large vertical differences were noted in volcanic rocks and in boreholes where water levels were affected by nuclear tests. Small vertical differences were noted within the carbonate-rock and valley-fill aquifers. Vertical hydraulic gradients generally are downward in volcanic rocks and from pre-Tertiary clastic rocks toward volcanic- or carbonate-rock units.

  11. Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic Fracturing in Shale Gas Systems and Electromagnetic Geophysical Monitoring of Fluid Migration

    SciTech Connect (OSTI)

    Kim, Jihoon; Um, Evan; Moridis, George

    2014-12-01

    We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostly filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow-geomechanical simulator and are transformed via a rock-physics model into electrical conductivity models. It is shown that anomalous conductivity distribution in the resulting models is closely related to injected water saturation, but not closely related to newly created unsaturated fractures. Our numerical modeling experiments demonstrate that the crosswell EM method can be highly sensitive to conductivity changes that directly indicate the migration pathways of the injected fluid. Accordingly, the EM method can serve as an effective monitoring tool for distribution of injected fluids (i.e., migration pathways) during hydraulic fracturing operations

  12. Field and Laboratory Study of a Ground-Coupled Water Source Heat Pump with an Integral Enthalpy Exchange System for Classrooms 

    E-Print Network [OSTI]

    Domitrovic, R.; Hayzen, G. J.; Johnson, W. S.; Chen, F. C.

    2002-01-01

    water-source heat pump, coupled with a geothermal water loop and incorporating a forced fresh-air enthalpy exchange system was installed in a typical middle school classroom in Oak Ridge, Tennessee. This project is a joint effort among Oak Ridge School...

  13. Design and installation of continuous flow and water quality monitoring stations to improve water quality forecasting in the lower San Joaquin River

    E-Print Network [OSTI]

    Quinn, Nigel W.T.

    2007-01-01

    CONTINUOUS FLOW, EC AND TEMPERATURE MONITORING STATIONS FORMonitoring Group Name Your Name Date Parameter Temperature onutrients, temperature) 4. Existing monitoring stations

  14. Induced-charge electro-osmosis around metal and Janus spheres in water: Patterns of flow and breaking symmetries

    E-Print Network [OSTI]

    Chenhui Peng; Israel Lazo; Sergij V. Shiyanovskii; Oleg D. Lavrentovich

    2014-11-06

    We establish experimentally the flow patterns of induced-charge electro-osmosis (ICEO) around immobilized metallic spheres in aqueous electrolyte. The AC field modifies local electrolyte concentration and causes quadrupolar flows with inward velocities being smaller than the outward ones. At high fields, the flow becomes irregular, with vortices smaller than the size of the sphere. Janus metallo-dielectric spheres create dipolar flows and pump the fluid from the dielectric toward the metallic part. The experimentally determined far-field flows decay with the distance as r-3.

  15. Grains, Water Introduction

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Grains, Water & Wet Sand Onno Bokhove Introduction Dry Granular Chute Flows: Cantilever Water Waves: Bores Near the Shore Surf Induced Sand Dynamics Discussion Dry Granular Flows, Water Waves & Surf, Water & Wet Sand Onno Bokhove Introduction Dry Granular Chute Flows: Cantilever Water Waves: Bores Near

  16. A PV Dynamics for Rotating Shallow Water on the Sphere search for a theory of balanced flow on the full sphere

    E-Print Network [OSTI]

    Muraki, David J.

    A PV Dynamics for Rotating Shallow Water on the Sphere search for a theory of balanced flow -1.5 -1 -0.5 0 0.5 1 1.5 longitude latitude pv (sPV = color & contour) -0.3 -0.2 -0.1 0 0.1 0.2 0 Quasigeostrophy (QG) balanced dynamics: NO fast waves, PV dynamics, 0 asymptotic limit restrict to short

  17. Design and installation of continuous flow and water quality monitoring stations to improve water quality forecasting in the lower San Joaquin River

    E-Print Network [OSTI]

    Quinn, Nigel W.T.

    2007-01-01

    Velocity (ft/s) Discharge (cfs) Data Source Temp_F LBC-T-ulmthe flow and EC readings in cfs and uS/cm respectively, tois in cubic feet per second [cfs], EC is in miro Siemens per

  18. Stream flows for salmon and society: managing water for human and ecosystem needs in Mediterranean-climate California

    E-Print Network [OSTI]

    Grantham, Theodore Evan William

    2010-01-01

    Hydraulic assessment of environmental flow regimes to facilitate fish passage through natural riffles: Shoalhaven River below Tallowa Dam,hydraulic models have to evaluate habitat- discharge relationships have focused on relatively large rivers regulated by upstream dams (hydraulic modeling for salmon passage flow assessments in northern California streams A BSTRACT The fragmentation of river networks from dams

  19. The Expanding Dairy Industry: Impact on Ground Water Quality and Quantity with Emphasis on Waste Management System Evaluation for Open Lot Dairies 

    E-Print Network [OSTI]

    Sweeten, John M.; Wolfe, Mary Leigh

    1993-01-01

    manner that is similar to practices in the desert Southwest. Typical animal spacings in open lots are 56 m2 (600 square feet) pa cow. Large amounts of water are used for manure removal and milk sanitation, resulting in significant volumes of process...

  20. PII S0016-7037(00)00369-0 Ra isotopes and Rn in brines and ground waters of the Jordan-Dead Sea Rift Valley

    E-Print Network [OSTI]

    Yehoshua, Kolodny

    , yet enrichment in water sources is most often not associated with anomalously high uranium or thorium Rift Valley: Enrichment, retardation, and mixing TAMAR MOISE, ABRAHAM STARINSKY, AMITAI KATZ surrounding rocks into the brine end member. 228 Ra/226 Ra ratios are exceptionally low 0.07 to 0.9, mostly

  1. Water management studies in PEM fuel cells, Part II: Ex situ investigation of flow maldistribution, pressure drop

    E-Print Network [OSTI]

    Kandlikar, Satish

    the proton conductivity of the polymer electrolyte membrane; however, excess water must be removed from the cell to avoid flooding. Flooding is a phenomenon in which liquid water accumulation inside

  2. Design and installation of continuous flow and water quality monitoring stations to improve water quality forecasting in the lower San Joaquin River

    E-Print Network [OSTI]

    Quinn, Nigel W.T.

    2007-01-01

    district telemetry and/or SCADA systems. Water Districtsintegrated with the current District SCADA systems (TID andMID use different SCADA systems, requiring different system

  3. 86 Water Resources and the Urban Environment Review of Analytical Studies of Tidal Groundwater Flow in Coastal

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    . For example, Carr (1969) investigated the tide-related salt-water intrusion in Prince Edward Island; Lanyon et

  4. WATER RESOURCES RESEARCH, VOL. , NO. , PAGES 110, The Impact of Wettability Alteration on Two-Phase Flow

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    WATER RESOURCES RESEARCH, VOL. , NO. , PAGES 1­10, The Impact of Wettability Alteration on Two (NAPLs) and gases that co-exist with water in soils and rocks, is of fundamental interest to subsurface water management. Any prediction of temporal and spatial distributions of these fluids is sensitive

  5. Corrosion fatigue crack growth in clad low-alloy steel. Part 2, Water flow rate effects in high sulfur plate steel

    SciTech Connect (OSTI)

    James, L.A; Lee, H.B.; Wire, G.L.; Novak, S.R.; Cullen, W.H.

    1996-04-01

    Corrosion fatigue crack propagation tests were conducted on a high- sulfur ASTM A302-B plate steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 22.8--27.3 mm, and depths of 10.5--14.1 mm. The experiments were initiated in a quasi-stagnant low-oxygen (O{sub 2} < 10 ppb) aqueous environment at 243{degrees}C, under loading conditions ({Delta}K, R, cyclic frequency) conducive to environmentally-assisted cracking (EAC) under quasi-stagnant conditions. Following fatigue testing under quasi-stagnant conditions where EAC was observed, the specimens were then fatigue tested under conditions where active water flow of either 1.7 m/sec. or 4.7 m/sec. was applied parallel to the crack. Earlier experiments on unclad surface-cracked specimens of the same steel exhibited EAC under quasi- stagnant conditions, but water flow rates at 1.7 m/sec. and 5.0 m/sec. parallel to the crack mitigated EAC. In the present experiments on clad specimens, water flow at approximately the same as the lower of these velocities did not mitigate EAC, and a free stream velocity approximately the same as the higher of these velocities resulted in sluggish mitigation of EAC. The lack of robust EAC mitigation was attributed to the greater crack surface roughness in the cladding interfering with flow induced within the crack cavity. An analysis employing the computational fluid dynamics code, FIDAP, confirmed that frictional forces associated with the cladding crack surface roughness reduced the interaction between the free stream and the crack cavity.

  6. Analysis of ground-water contaminant transport with three-dimensional scaled models. Technical completion report, 1 May 88-30 Apr 89

    SciTech Connect (OSTI)

    Sill, B.L.

    1991-04-01

    A three dimensional scale model was designed and built to simulate the transport of a solute in the groundwater at a known location. The study was undertaken to further validate a new method of groundwater transport modeling which has been under development at Clemson University, using mixtures of cement, sand and water to simulate the subsurface matrix. By comparing field measurements with laboratory simulations, it was judged that transport times and concentrations were modeled satisfactorily.

  7. Schwarz, T. and Wells, S. (1999) "Storm Water Particle Removal using Cross-Flow Filtration and Sedimentation," in Advances in Filtration and Separation Technology, Volume 12, ed. by W. Leung, American Filtrations and Separations Society, pp.219-226.

    E-Print Network [OSTI]

    Wells, Scott A.

    1999-01-01

    on the water surface by the incoming flow. This keeps the solids in the chamber from blocking the screen (Hopke et al. 1980). With the prohibition of lead based petroleum products in many parts of North America

  8. Earthquake prediction: Gas emission and ground-water changes. (lLtest citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    The bibliography contains citations concerning the forecasting and prediction of earthquakes by observation and measurement of changes in groundwater and gaseous emissions prior to the seismic event. The citations discuss detection and measurement of changes in radon and other gas emissions from fault lines, groundwater, and well holes in earthquake-prone areas. Groundwater chemistry level changes of subsurface waters, and changes in conductive properties of groundwater are presented. Studies on other precursors to large seismic events are discussed in a separate bibliography. (Contains a minimum of 94 citations and includes a subject term index and title list.)

  9. Time-resolved fast-neutron radiography of air-water two-phase flows in a rectangular channel by an improved detection system

    E-Print Network [OSTI]

    Zboray, Robert; Mor, Ilan; Bromberger, Benjamin; Tittelmeier, Kai

    2015-01-01

    In a previous work we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been e...

  10. Solute transport in a filled single fracture under non-Darcian flow J.Z. Qian a

    E-Print Network [OSTI]

    Zhan, Hongbin

    for the transport of both dissolved contaminants and hydrocarbons. Elder [3] reported a detailed field geology and intake of contaminant particles in dead or disconnected pore spaces can retard the transport. The choice and to a depth of tens to hundreds of meters below ground surface. A few related studies on water flow and solute

  11. HOME GROUNDS & ANIMALS 2014 Table of Contents 3

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    HOME GROUNDS & ANIMALS 2014 Table of Contents 3 1 Regulations and Basic Information How to Use of Water ..................................................................... 1-26 Table 1.6 - Equivalent Quantities of Liquid Materials (Emulsifiable Concentrates, etc.) for Various Quantities of Water

  12. Removal of nutrients from combined sewer overflows and lake water in a vertical-flow constructed wetland system

    E-Print Network [OSTI]

    Brix, Hans

    and human activities in the catch- ment of the lakes, the water quality is often poor and reduces. Combined sewer overflows occur during rain events when large amounts of rainwater are added to the normal

  13. Subcooled flow boiling heat transfer and critical heat flux in water-based nanofluids at low pressure

    E-Print Network [OSTI]

    Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology

    2009-01-01

    A nanofluid is a colloidal suspension of nano-scale particles in water, or other base fluids. Previous pool boiling studies have shown that nanofluids can improve the critical heat flux (CHF) by as much as 200%. In this ...

  14. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Building Numerical Models () August of surface flow of water and infiltration which may include time to flow, movement of solids etc. () August

  15. The Economics of Water Project Capacities under Optimal Water Inventory Management

    E-Print Network [OSTI]

    Xie, Yang; Zilberman, David

    2014-01-01

    an application to ground water. Man- agement Science 11: 80–allocation of groundwater. Water Resources Research 3: 45–institutional restrictions. Water Re- sources Research 6:

  16. Variations of self-potential and unsaturated water flow with time in sandy loam and clay loam soils

    E-Print Network [OSTI]

    Sailhac, Pascal

    the current hydraulic measurements. The aim of this study is to experimentally investigate the existence Claude Doussana,*, Laurence Jouniauxb , Jean-Louis Thonyc a INRA, Unite´ Climat, Sol & Environnement, agronomical or hydrological applications. Field estimations of soil­water fluxes by `classical' hydraulic

  17. Ultra-high current density water management in polymer electrolyte fuel cell with porous metallic flow field

    E-Print Network [OSTI]

    Mench, Matthew M.

    Ultra-high current density water management in polymer electrolyte fuel cell with porous metallic with the open metallic element architecture and high current density. Flooding is not limiting at high current. Stable operation was demonstrated at 90 C using a polymer electrolyte membrane. Real time NWD

  18. Hydraulic pump with in-ground filtration and monitoring capability

    DOE Patents [OSTI]

    Hopkins, C.D.; Livingston, R.R.; Toole, W.R. Jr.

    1996-10-29

    A hydraulically operated pump is described for in-ground filtering and monitoring of waters or other fluid sources, includes a hollow cylindrical pump housing with an inlet and an outlet, filtering devices positioned in the inlet and the outlet, a piston that fits slidably within the pump housing, and an optical cell in fluid communication with the pump housing. A conduit within the piston allows fluid communication between the exterior and one end of the piston. A pair of o-rings form a seal between the inside of the pump housing and the exterior of the piston. A flow valve positioned within the piston inside the conduit allows fluid to flow in a single direction. In operation, fluid enters the pump housing through the inlet, flows through the conduit and towards an end of the pump housing. The piston then makes a downward stroke closing the valve, thus forcing the fluid out from the pump housing into the optical cell, which then takes spectrophotometric measurements of the fluid. A spring helps return the piston back to its starting position, so that a new supply of fluid may enter the pump housing and the downward stroke can begin again. The pump may be used independently of the optical cell, as a sample pump to transport a sample fluid from a source to a container for later analysis. 5 figs.

  19. Cooking with Ground Pork 

    E-Print Network [OSTI]

    Anding, Jenna

    2008-12-09

    This fact sheet describes the nutritional value and safe storage of ground pork, a commodity food. It also offers food preparation ideas.

  20. Cooking with Ground Beef 

    E-Print Network [OSTI]

    Anding, Jenna

    2008-12-09

    This fact sheet describes the nutritional value and safe storage of ground beef, a commodity food. It also offers food preparation ideas.

  1. A saturated zone site-scale flow model for Yucca mountain

    SciTech Connect (OSTI)

    Eddebbarh, Al Aziz

    2008-01-01

    A saturated zone site-scale flow model (YMSZFM) was developed for licensing requirements for the Yucca Mountain nuclear waste repository to incorporate recent data and analyses including recent stratigraphic and water-level data from Nye County wells, single-and multiple-well hydraulic testing data, and recent hydrochemistry data. Analyses include use of data from the 2004 transient Death Valley Regional (ground-water) Flow System (DVRFS) model, the 2003 unsaturated zone flow model, and the latest hydrogeologic framework model (HFM). This model includes: (1) the latest understanding of SZ flow, (2) enhanced model validation and uncertainty analyses, (3) improved locations and definitions of fault zones, (4) refined grid resolution (500-to 250-m grid spacing), and (5) use of new data. The flow model was completed using the three-dimensional, Finite-Element Heat and Mass Transfer computer code (FEHM). The SZ site-scale flow model was calibrated with the commercial parameter estimation code, PEST to achieve a minimum difference between observed water levels and predicted water levels, and also between volumetric/mass flow rates along specific boundary segments as supplied by the DVRFS. A total of 161 water level and head measurements with varied weights were used for calibration. A comparison between measured water-level data and the potentiometric surface yielded an RMSE of 20.7 m (weighted RMSE of 8.8 m). The calibrated model was used to generate flow paths and specific discharge predictions. Model confidence was built by comparing: (l) calculated to observed hydraulic heads, and (2) calibrated to measured permeabilities (and therefore specific discharge). In addition, flowpaths emanating from below the repository footprint are consistent with those inferred both from gradients of measured head and from independent water-chemistry data. Uncertainties in the SZ site-scale flow model were quantified because all uncertainty contributes to inaccuracy in system representation and response. Null space and solution space uncertainties were determined.

  2. A conductivity relationship for steady-state unsaturated flow processes under optimal flow conditions

    E-Print Network [OSTI]

    Liu, Hui-Hai

    2011-01-01

    gradient because water flux, energy gradient, and K areis equal to the energy carried by the water flowing into thevolume minus the energy carried by the water flowing out of

  3. UMTRA project water sampling and analysis plan, Naturita, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    Surface remedial action is scheduled to begin at the Naturita UMTRA Project processing site in the spring of 1994. No water sampling was performed during 1993 at either the Naturita processing site (NAT-01) or the Dry Flats disposal site (NAT-12). Results of previous water sampling at the Naturita processing site indicate that ground water in the alluvium is contaminated as a result of uranium processing activities. Baseline ground water conditions have been established in the uppermost aquifer at the Dry Flats disposal site. Water sampling activities scheduled for April 1994 include preconstruction sampling of selected monitor wells at the processing site, surface water sampling of the San Miguel River, sampling of several springs/seeps in the vicinity of the disposal site, and sampling of two monitor wells in Coke Oven Valley. The monitor well locations provide sampling points to characterize ground water quality and flow conditions in the vicinity of the sites. The list of analytes has been updated to reflect constituents related to uranium processing activities and the parameters needed for geochemical evaluation. Water sampling will be conducted annually at minimum during the period of construction activities.

  4. Water balance report for the Oak Ridge Y-12 Plant

    SciTech Connect (OSTI)

    NONE

    1994-07-01

    The Y-12 Plant, which occupies approximately 800 acres, was built by the Army Corps of Engineers in 1943 as part of the Manhattan Project in Oak Ridge, Tennessee. Recently, Martin Marietta Energy Systems, who manages the Y-12 Plant, has been concerned with the effects of water consumption and losses at the plant facility, and the ability of ground water beneath the site to act as a source of water seepage into East Fork Poplar Creek or as a source of water infiltration into subsurface strata. This has prompted the need to perform a water balance study on the facility. Data regarding all uses of municipal water and sources of discharge from the plant were recorded and then water balance calculations were performed using a computer model developed in a multi-dimensional electronic spreadsheet. This report describes the results of this research and includes the flow data collected during the study.

  5. A thermodynamic hypothesis regarding optimality principles for flow processes in geosystems

    E-Print Network [OSTI]

    Liu, Hui-Hai

    2015-01-01

    basin has larger energy than the downstream water. Thus, thea way that the energy expenditure rate for water flow shouldhypothesis. The energy expenditure rate, EE, for water flow

  6. Remediation of Uranium-Contaminated Ground Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners *Reindustrialization ReindustrializationEnergy The First Lady

  7. Appendix B Ground Water Management Policy

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the WeldonB10081278MaywoodWayne Site83WOMPOC:07MARGround

  8. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 2: Water cycle, stocks and flows () July 28, 2013 1 / 30 #12;The basic movement of water source: USGS. () July 28, 2013 2 / 30 #12, humidity and air flow. Formation of liquid-water in the Atmosphere-Cloud-Formation Coming Down Rain

  9. MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE

    E-Print Network [OSTI]

    exchanger model is crucial for analysis of hybrid ground source heat pump systems. Ground source heat pumps in a hybrid ground source heat pump application under different climate conditions. An actual office buildingMODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE HEAT PUMP SYSTEMS By CENK

  10. An ECT/ERT dual-modality sensor for oil-water two-phase flow measurement

    SciTech Connect (OSTI)

    Wang, Pitao; Wang, Huaxiang; Sun, Benyuan; Cui, Ziqiang; Huang, Wenrui

    2014-04-11

    This paper presents a new sensor for ECT/ERT dual-modality system which can simultaneously obtain the permittivity and conductivity of the materials in the pipeline. Quasi-static electromagnetic fields are produced by the inner electrodes array sensor of electrical capacitance tomography (ECT) system. The results of simulation show that the data of permittivity and conductivity can be simultaneously obtained from the same measurement electrode and the fusion of two kinds of data may improve the quality of the reconstructed images. For uniform oil-water mixtures, the performance of designed dual-modality sensor for measuring the various oil fractions has been tested on representative data and the results of experiments show that the designed sensor broadens the measurement range compared to single modality.

  11. Prognostics for Ground Support Systems: Case Study on Pneumatic Valves

    E-Print Network [OSTI]

    Daigle, Matthew

    are used to control the flow of propellant, so failures may have a significant impact on launch to control the flow of propellant, failures may have a significant impact on launch availability. HencePrognostics for Ground Support Systems: Case Study on Pneumatic Valves Matthew Daigle University

  12. Energy and Water Use in Irrigated Agriculture During Drought Conditions

    E-Print Network [OSTI]

    Ritschard, R.L.

    2011-01-01

    DROUGHT CONDITIONS OF 1977. Increased Use of Ground Water.Increased Efficiency of Water Application.Reduce Water Application . . . . Cropping Pattern Changes in

  13. Computeer-based decision support tools for evaluation of actions affecting flow and water quality in the San Joaquin Basin

    SciTech Connect (OSTI)

    Quinn, N.W.T.

    1993-01-01

    This document is a preliminary effort to draw together some of the important simulation models that are available to Reclamation or that have been developed by Reclamation since 1987. This document has also attempted to lay out a framework by which these models might be used both for the purposes for which they were originally intended and to support the analysis of other issues that relate to the hydrology and to salt and water quality management within the San Joaquin Valley. To be successful as components of a larger Decision Support System the models should to be linked together using custom designed interfaces that permit data sharing between models and that are easy to use. Several initiatives are currently underway within Reclamation to develop GIS - based and graphics - based decision support systems to improve the general level of understanding of the models currently in use, to standardize the methodology used in making planning and operations studies and to permit improved data analysis, interpretation and display. The decision support systems should allow greater participation in the planning process, allow the analysis of innovative actions that are currently difficult to study with present models and should lead to better integrated and more comprehensive plans and policy decisions in future years.

  14. Ground potential rise monitor

    DOE Patents [OSTI]

    Allen, Zachery Warren; Zevenbergen, Gary Allen

    2012-07-17

    A device and method for detecting ground potential rise (GPR) comprising a first electrode, a second electrode, and a voltage attenuator. The first electrode and the second electrode are both electrically connected to the voltage attenuator. A means for determining the presence of a dangerous ground potential is connected to the voltage attenuator. The device and method further comprises a means for enabling one or more alarms upon the detection of the dangerous ground potential. Preferably, a first transmitter/receiver is connected to the means for enabling one or more alarms. Preferably, a second transmitter/receiver, comprising a button, is electromagnetically connected to the first transmitter/receiver. Preferably, the means for determining the presence of a dangerous ground potential comprises a means for determining the true RMS voltage at the output of the voltage attenuator, a transient detector connected to the output of the voltage attenuator, or a combination thereof.

  15. Plugging Abandoned Water Wells 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2002-02-28

    is abandoned without proper plugging, upward flow of salty water from the deeper aquifer may cause contamination of the shallow, fresh water aquifer. Also, any pollu- tants that occur in one zone can migrate to another zone through a well. Unplugged abandoned... wells may deplete pres- sure within an aquifer. Pressure in artesian aquifers decreases as water discharges at land surface or to less pressurized aquifers. Eventually a drop in pres- sure causes flowing wells to stop flowing and the water level...

  16. Cavitation on a modern ship propeller.This photograph was taken by Mark Duttweiler (PhD '01) in Caltech's Mechanical Engineering, Low Turbulence Water Tunnel. The flow is from right to left. Enter the second issue of ENGenious.

    E-Print Network [OSTI]

    Haile, Sossina M.

    ) in Caltech's Mechanical Engineering, Low Turbulence Water Tunnel. The flow is from right to left. #12;4 5 of Engineering and Applied Science itself is ever evolving--a collection of exceptional people doing exceptional of Engineering and Applied Science. Finally, before you read on, I would like to take this opportunity to thank

  17. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 8: Wells () August 28, 2012 project, utilizing enhanced ground-water. Water lifted from storage, to accumulate overnight from aquifer. Water from shallow aquifer, of about 7-8m thickness. accounts for about 30% of irrigation Unique

  18. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 5: Aquifer () August 16 above and below the ground, which affect the water balance. surface features affect infiltration parameters related to water: Porosity, specific yield n, Sy : the maximum volume fraction of water

  19. Hydrology of the Melton Valley radioactive-waste burial grounds at Oak Ridge National Laboratory, Tennessee

    SciTech Connect (OSTI)

    Webster, D.A.; Bradley, M.W.

    1988-12-31

    Burial grounds 4, 5, and 6 were used sequentially from 1951 to the present for the disposal of solid, low-level radioactive waste by burial in shallow trenches and auger holes. Abundant rainfall, a generally thin unsaturated zone, geologic media of inherently low permeability, and the operational practices employed have contributed to partial saturation of the buried waste, leaching of radionuclides, and transport of dissolved matter from the burial areas. Two primary methods of transport from these sites are by dissolution in circulating ground water, and the overflow of fluids in trenches and subsequent flow across land surface. The waste-disposal areas are underlain by the Conasauga Group (Cambrian age), a complex sequence of mudstone, siltstone, and limestone interbeds grading from one lithotype to the other, both laterally and vertically. Compressional forces that caused regional thrust faulting also caused much internal deformation of the beds. Folds, bedding-plane faults, and joints are widespread. Small solution openings have developed in some areas where the structurally-related openings have provided ingress to ground water.

  20. Institute of Water Research Annual Technical Report

    E-Print Network [OSTI]

    on research, and extended education programs on watershed management and surface and ground water protection, microcomputer, nitrogen, nonpoint source pollution, pesticides, pollutants, pollution control, ponds, research transfer, urban water systems, water quality, water quality management, watershed management, wetlands

  1. Department of Mathematics and Statistics Colloquium Modeling Geophysical Fluid Flows

    E-Print Network [OSTI]

    Arnold, Elizabeth A.

    , caves, sinkholes, fissures, etc. Because of this, water can flow through conduits or pipes in addition

  2. Water Heating | Department of Energy

    Energy Savers [EERE]

    Water Heating Water Heating September 2, 2015 - 11:07am Addthis Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo...

  3. Productivity & Energy Flow

    E-Print Network [OSTI]

    Mitchell, Randall J.

    1 Productivity & Energy Flow Ecosystem approach, focuses: on flow of energy, water, and nutrients (capture) of energy by autotrophs Gross (total) Net (total ­ costs) Secondary productivity- capture of energy by herbivores http://sciencebitz.com/?page_id=204 What Controls the Primary Productivity

  4. Computerized Waters 

    E-Print Network [OSTI]

    Wythe, Kathy

    2006-01-01

    supply diversions, several hydroelectric plants and numerous environ- mental instream flow requirements. Each of these active permits is included in the datasets. Besides the commission using the WAM/WRAP modeling system in water rights permiting... actions be consistent with relevant regional plans. River authorities, water districts and other water management organizations are beginning to use the WRAP model in operational planning studies to optimize operations of their facilities...

  5. Predaceous Ground Beetles 

    E-Print Network [OSTI]

    Sansone, Chris; Minzenmayer, Rick

    2003-06-30

    an odor. Ground beetles are part of the order Coleoptera. This is the largest order of insects with over a quarter of a million species described throughout the world ? about 30,000 species in the United States. Most beetles have two pairs of wings... on other insects in both the larval and adult stages. A few species feed on seeds and organic litter, but only rarely does the feeding produce eco- nomic damage. The different common names refer to the fam- ily?s habits. Because ground beetles are effec...

  6. Sources of Water Surface water and groundwater are present throughout

    E-Print Network [OSTI]

    MacAdam, Keith

    Sources of Water Surface water and groundwater are present throughout Kentucky's 39,486 square miles. Surface water occurs as rivers, streams, ponds, lakes, and wetlands. Ground- water occurs underlain by soluble carbonate rocks (for example, limestone). Water Supply · Approximately 49 inches

  7. Anisotropic flow

    E-Print Network [OSTI]

    S. A. Voloshin

    2002-11-20

    Recent experimental results on directed and elliptic flow, theoretical developments, and new techniques for anisotropic flow analysis are reviewed.

  8. Multifunctional Riverscapes: Stream restoration, Capability Brown’s water features, and artificial whitewater

    E-Print Network [OSTI]

    Podolak, Kristen

    2012-01-01

    courses all have filters and water treatment since they arebed habitats, and filter the water flowing into the lakeeffective filter, which would reduce the flow of water into

  9. Multifunctional Riverscapes: Stream restoration, Capability Brown's water features, and artificial whitewater

    E-Print Network [OSTI]

    Podolak, Kristen

    2012-01-01

    courses all have filters and water treatment since they arebed habitats, and filter the water flowing into the lakeeffective filter, which would reduce the flow of water into

  10. Analytical Investigation by Using the Two-fluid-model to Study the Interfacial Behavior of Air-water Horizontal Stratified Flow

    E-Print Network [OSTI]

    Kuntoro, Hadiyan Yusuf; Indarto,

    2015-01-01

    In the chemical, petroleum and nuclear industries, pipelines are often used to transport fluids from one process site to another one. The understanding of the fluids behavior inside the pipelines is the most important consideration for the engineers and scientists. From the previous studies, there are several two-phase flow patterns in horizontal pipe. One of them is stratified flow pattern, which is characterized by the liquid flowing along the bottom of the pipe and the gas moving above it cocurrently. Another flow patterns are slug and plug flow patterns. This kind of flow triggers the damage in pipelines, such as corrosion, abrasion, and blasting pipe. Therefore, slug and plug flow patterns are undesirable in pipelines, and the flow is maintained at the stratified flow condition for safety reason. In this paper, the analytical-based study on the experiment of the stratified flow pattern in a 26 mm i.d. horizontal pipe is presented. The experiment is performed to develop a high quality database of the stra...

  11. The citation for this paper is: Spitler, J.D., X. Liu, S.J. Rees, C. Yavuzturk. 2005. Simulation and Optimization of Ground Source Heat

    E-Print Network [OSTI]

    of the ground source heat pump (GSHP) system are presented - vertical ground loop heat exchanger, water source systems. Second, application of the simula- tion for design of vertical ground loop heat exchangers (GLHE will be discussed. Key words: ground source heat pump systems, geothermal, ground-coupled 1 INTRODUCTION Using

  12. Experimental studies on heat transfer and friction factor characteristics of Al{sub 2}O{sub 3}/water nanofluid in a circular pipe under laminar flow with wire coil inserts

    SciTech Connect (OSTI)

    Chandrasekar, M.; Suresh, S. [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015 (India); Chandra Bose, A. [Nanomaterials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli 620015 (India)

    2010-02-15

    In this paper, fully developed laminar flow convective heat transfer and friction factor characteristics of Al{sub 2}O{sub 3}/water nanofluid flowing through a uniformly heated horizontal tube with and without wire coil inserts is presented. For this purpose, Al{sub 2}O{sub 3} nanoparticles of 43 nm size were synthesized, characterized and dispersed in distilled water to form stable suspension containing 0.1% volume concentration of nanoparticles. The Nusselt number in the fully developed region were measured and found to increase by 12.24% at Re = 2275 for plain tube with nanofluid compared to distilled water. Two wire coil inserts made of stainless steel with pitch ratios 2 and 3 were used which increased the Nusselt numbers by 15.91% and 21.53% respectively at Re = 2275 with nanofluid compared to distilled water. The better heat transfer performance of nanofluid with wire coil insert is attributed to the effects of dispersion or back-mixing which flattens the temperature distribution and make the temperature gradient between the fluid and wall steeper. The measured pressure loss with the use of nanofluids is almost equal to that of the distilled water. The empirical correlations developed for Nusselt number and friction factor in terms of Reynolds/Peclet number, pitch ratio and volume concentration fits with the experimental data within {+-}15%. (author)

  13. U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the WeldonB100 Ambrosia'1(DOE) isaSpook,GWMON 1.12-1

  14. MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE

    E-Print Network [OSTI]

    MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE HEAT PUMP SYSTEMS By CENK SOURCE HEAT PUMP SYSTEMS Thesis Approved: ___________________________________________ Thesis Adviser pump systems. For detailed analysis and accurate simulation of the transient heat transfer in vertical

  15. Paper No. RBCSR RESPONSE OF A BURIED CONCRETE PIPELINE TO GROUND

    E-Print Network [OSTI]

    Michalowski, Radoslaw L.

    Paper No. RBCSR RESPONSE OF A BURIED CONCRETE PIPELINE TO GROUND RUPTURE: A FULL-SCALE EXPERIMENT A typical water distribution system includes a network of steel and concrete pipelines. Concrete segmental pipelines are particularly vulnerable to damage by ground rupture. Ground displacements may produce

  16. Vadose zone water fluxmeter

    DOE Patents [OSTI]

    Faybishenko, Boris A.

    2005-10-25

    A Vadose Zone Water Fluxmeter (WFM) or Direct Measurement WFM provides direct measurement of unsaturated water flow in the vadose zone. The fluxmeter is a cylindrical device that fits in a borehole or can be installed near the surface, or in pits, or in pile structures. The fluxmeter is primarily a combination of tensiometers and a porous element or plate in a water cell that is used for water injection or extraction under field conditions. The same water pressure measured outside and inside of the soil sheltered by the lower cylinder of the fluxmeter indicates that the water flux through the lower cylinder is similar to the water flux in the surrounding soil. The fluxmeter provides direct measurement of the water flow rate in the unsaturated soils and then determines the water flux, i.e. the water flow rate per unit area.

  17. Effective Thermoviscoelasticity of a Saturated Porous Ground

    E-Print Network [OSTI]

    fields of mechanics because of many reasons: for example [4, 15], the enhanced recovery of gas, oil and geothermally heated water depends upon flow in porous strata; underwater acoustics involves propa- gation are distinguished in analysis, i.e., description of the thermomechanical system is fulfilled using microscale

  18. On the Ground Geysers Recharge Project

    E-Print Network [OSTI]

    will increase the annual average daily flow from 11 mgd to 15 mgd over the next 30 years. The Geysers water for much of Sonoma County. Meanwhile, 40 miles north of Santa Rosa, Calpine Geothermal, natural steam that is produced when groundwater comes into contact with geothermally heated rocks

  19. Grounded Cognition Lawrence W. Barsalou

    E-Print Network [OSTI]

    Barsalou, Lawrence W.

    Simulation Theories. . . . 622 Social Simulation Theories . . . . . . . 623 EMPIRICAL EVIDENCE. Theories of grounded cognition are also reviewed, as are origins of the area and common misperceptions to affect the growth and impact of grounded cognition. 617 Annu.Rev.Psychol.2008

  20. Influence of Atmospheric Pressure and Water Table Fluctuations on Gas Phase Flow and Transport of Volatile Organic Compounds (VOCs) in Unsaturated Zones 

    E-Print Network [OSTI]

    You, Kehua

    2013-04-19

    solution in a three-layered unsaturated zone in response to field atmospheric pressure fluctuations at the Hanford site in Richland, Washington... ................................................................................................. 92 4.3 Comparison of gas flow rate calculated by the ML solution with measured flow rates in a three-layered unsaturated zone in response to field atmospheric pressure variations at the Hanford site in Richland...

  1. 8/9/12 Global water sustainability flows through natural and human challenges 1/2www.sciencedaily.com/releases/2012/08/120809141621.htm

    E-Print Network [OSTI]

    . Authorized service center. www.ipepumps.com Water Quality Instruments -- Crude oil, Optical DO, pH, cond Us! EasyWater.com/NoSaltConditioner CR Series Vertical Pumps -- Large stock of pumps and parts

  2. T2Well/ECO2N Version 1.0: Multiphase and Non-Isothermal Model for Coupled Wellbore-Reservoir Flow of Carbon Dioxide and Variable Salinity Water

    SciTech Connect (OSTI)

    Pan, L.; Oldenburg, C.M.; Wu, Y.-S.; Pruess, K.

    2011-02-14

    At its most basic level, the injection of CO{sub 2} into geologic CO{sub 2} storage sites involves a system comprising the wellbore and the target reservoir. The wellbore is the only conduit available to emplace CO{sub 2} into reservoirs for long-term storage. At the same time, wellbores in general have been identified as the most likely conduit for CO{sub 2} and brine leakage from geologic carbon sequestration (GCS) sites, especially those in sedimentary basins with historical hydrocarbon production. We have developed a coupled wellbore and reservoir model for simulating the dynamics of CO{sub 2} injection and leakage through wellbores. The model describes the following processes: (1) upward or downward wellbore flow of CO{sub 2} and variable salinity water with transition from supercritical to gaseous CO{sub 2} including Joule-Thomson cooling, (2) exsolution of CO{sub 2} from the aqueous phase as pressure drops, and (3) cross flow into or interaction with layers of surrounding rock (reservoirs). We use the Drift-Flux Model and related conservation equations for describing transient two-phase non-isothermal wellbore flow of CO{sub 2}-water mixtures under different flow regimes and interacting with surrounding rock. The mass and thermal energy balance equations are solved numerically by a finite difference scheme with wellbore heat transmission to the surrounding rock handled either semi-analytically or numerically. The momentum balance equation for the flow in the wellbore is solved numerically with a semi-explicit scheme. This manual provides instructions for compilation and use of the new model, and presents some example problems to demonstrate its use.

  3. Two-phase flow studies

    SciTech Connect (OSTI)

    Hanold, R.J.

    1983-12-01

    The two-phase flow program is directed at understanding the hydrodynamics of two-phase flows. The two-phase flow regime is characterized by a series of flow patterns that are designated as bubble, slug, churn, and annular flow. Churn flow has received very little scientific attention. This lack of attention cannot be justified because calculations predict that the churn flow pattern will exist over a substantial portion of the two-phase flow zone in producing geothermal wells. The University of Houston is experimentally investigating the dynamics of churn flow and is measuring the holdup over the full range of flow space for which churn flow exists. These experiments are being conducted in an air/water vertical two-phase flow loop. Brown University has constructed and is operating a unique two-phase flow research facility specifically designed to address flow problems of relevance to the geothermal industry. An important feature of the facility is that it is dedicated to two-phase flow of a single substance (including evaporation and condensation) as opposed to the case of a two-component two-phase flow. This facility can be operated with horizontal or vertical test sections of constant diameter or with step changes in diameter to simulate a geothermal well profile.

  4. Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final

    SciTech Connect (OSTI)

    NONE

    1995-09-01

    The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC {section}7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management.

  5. Real-Time Water Quality Management in the Grassland Water District

    SciTech Connect (OSTI)

    Quinn, Nigel W.T.; Hanna, W. Mark; Hanlon, Jeremy S.; Burns, Josphine R.; Taylor, Christophe M.; Marciochi, Don; Lower, Scott; Woodruff, Veronica; Wright, Diane; Poole, Tim

    2004-12-10

    The purpose of the research project was to advance the concept of real-time water quality management in the San Joaquin Basin by developing an application to drainage of seasonal wetlands in the Grassland Water District. Real-time water quality management is defined as the coordination of reservoir releases, return flows and river diversions to improve water quality conditions in the San Joaquin River and ensure compliance with State water quality objectives. Real-time water quality management is achieved through information exchange and cooperation between shakeholders who contribute or withdraw flow and salt load to or from the San Joaquin River. This project complements a larger scale project that was undertaken by members of the Water Quality Subcommittee of the San Joaquin River Management Program (SJRMP) and which produced forecasts of flow, salt load and San Joaquin River assimilative capacity between 1999 and 2003. These forecasts can help those entities exporting salt load to the River to develop salt load targets as a mechanism for improving compliance with salinity objectives. The mass balance model developed by this project is the decision support tool that helps to establish these salt load targets. A second important outcome of this project was the development and application of a methodology for assessing potential impacts of real-time wetland salinity management. Drawdown schedules are typically tied to weather conditions and are optimized in traditional practices to maximize food sources for over-wintering wildfowl as well as providing a biological control (through germination temperature) of undesirable weeds that compete with the more proteinaceous moist soil plants such as swamp timothy, watergrass and smartweed. This methodology combines high resolution remote sensing, ground-truthing vegetation surveys using established survey protocols and soil salinity mapping using rapid, automated electromagnetic sensor technology. This survey methodology could be complemented with biological surveys of bird use and invertebrates to produce a robust long-term monitoring strategy for habitat health and sustainability.

  6. Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

    SciTech Connect (OSTI)

    Duffin, Andrew M.; Saykally, Richard J.

    2007-05-31

    We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

  7. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J. (Knoxville, TN)

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  8. Quantitative supersonic flow visualization by hydraulic analogy 

    E-Print Network [OSTI]

    Rani, Sarma Laxminarasimha

    1998-01-01

    The hydraulic analogy, which forms the basis for the phics. current investigation, can be used to study supersonic gas flows with great ease by means of a water table. As a result of the analogy, water heights in free surface water flow correspond...

  9. Ground potential rise monitor

    DOE Patents [OSTI]

    Allen, Zachery W. (Mandan, ND); Zevenbergen, Gary A. (Arvada, CO)

    2012-04-03

    A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.

  10. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    distribution system, ground-source heat pump and ground heatdistribution systems, ground-source heat pumps and ground

  11. Electromagnetically Induced Flows Michiel de Reus

    E-Print Network [OSTI]

    Vuik, Kees

    Electromagnetically Induced Flows in Water Michiel de Reus 8 maart 2013 () Electromagnetically Conclusion and future research () Electromagnetically Induced Flows 2 / 56 #12;1 Introduction 2 Maxwell Navier Stokes equations 5 Simulations 6 Conclusion and future research () Electromagnetically Induced

  12. Water supply analysis for restoring the Colorado River Delta, Mexico

    E-Print Network [OSTI]

    Medellin-Azuara, Josue; Lund, Jay R.; Howitt, Richard E.

    2007-01-01

    to Pay for Additional Transboundary Water Flows from the US.2001). "Improving California Water Management: Optimizingloss functions to value urban water scarcity in California."

  13. Pesticide Properties that Affect Water Quality 

    E-Print Network [OSTI]

    Stevenson, Douglas; Baumann, Paul A.; Jackman, John A.

    1997-06-30

    . over the land before running into rivers, aquifers and lakes. It also seeps into underground aquifers. Irrigation and drinking water come from both surface and ground water. Eventually, all of the chemicals we use can pollute our water supplies (see Fig... or disposal of pesticides can lead to water pollution. There is reason for optimism, however. Without being oppressive, the regulation of pesticides is reducing pesticide pollution of surface and ground water. Understanding Pesticides Pesticides are poisons...

  14. Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    Flow Sensor for potable water applications, Series VTY 10Metering Residential Hot Water by End-Use Development ofin a Typical Household Water System," Oak Ridge National

  15. A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Saveings of Water and Related Energy

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01

    flow data for municipal waste water treatment facilities inBulletin 68-73: Inventory of Waste Water Productionand Waste Water Reclamation in California, 1973. Sacramento,

  16. Radial flow pulse jet mixer

    DOE Patents [OSTI]

    VanOsdol, John G.

    2013-06-25

    The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

  17. A STUDY OF ATES THERMAL BEHAVIOR USING A STEADY FLOW MODEL

    E-Print Network [OSTI]

    Doughty, Christine

    2013-01-01

    Buoyancy flow and thermal stratification problems."a reference. to thermal stratification and water chemistry.

  18. On the relationship between water-flux and hydraulic gradient for unsaturated and saturated clay

    E-Print Network [OSTI]

    Liu, H.H.

    2014-01-01

    Threshold gradient for water flow in clay systems. Soil.Darcy’s law for the flow of water in soils. Soil Science 93:1970. Saturated flow of water through clay loam subsoil

  19. Delta Flow Factors Influencing Stray Rate of Escaping Adult San Joaquin River Fall-Run Chinook Salmon (Oncorhynchus tshawytscha)

    E-Print Network [OSTI]

    2012-01-01

    due to insufficient instream flow releases. Report preparedhead of Old River barrier on flow and water quality in theeffects of San Joaquin River flows and Delta export rates

  20. ABSTRACT: A network of 32 drought sensitive tree-ring chronolo-gies is used to reconstruct mean water year flow on the Columbia

    E-Print Network [OSTI]

    Gedalof, Ze'ev

    - ing hydroelectric production, agricultural irrigation, navigation, fish stocks (including endangered vulnerable to low flow years (Cohen et al., 2000; Miles et al., 2000). The storage potential of the Columbia contingency plans for extreme events by providing a longer con- text for drought assessment (Stockton, 1990

  1. DIFFERENTIAL EQUATIONS FOR FLOW IN RESERVOIRS By ...

    E-Print Network [OSTI]

    2008-08-23

    phases (water, oil, and gas) flow simultaneously, while mass transfer may take place ..... netic field theory and in hydrodynamics of incompressible fluids.

  2. Longitudinal dispersion in vegetated flow

    E-Print Network [OSTI]

    Murphy, Enda

    2006-01-01

    Vegetation is ubiquitous in rivers, estuaries and wetlands, strongly influencing both water conveyance and mass transport. The plant canopy affects both mean and turbulent flow structure, and thus both advection and ...

  3. Flow assurance and multiphase pumping 

    E-Print Network [OSTI]

    Nikhar, Hemant G.

    2009-05-15

    ????????????????????????????????????????. xvii NOMENCLATURE???????????????????????????????????????. xviii 1. INTRODUCTION??????????????????????????????????????? 1 2. LITERATURE REVIEW???????????????????????????????????.. 5 Deepwater Oilfields???????????????????????????????????.. 7 Flow...????????????????????????????????.. 71 Limited Energy Reservoirs and Deep Waters???????????????????? 71 5. SOLIDS FORMATION AND DEPOSITION??????????????????????????. 72 Gas Hydrates??????????????????????????????????????? 72 Field Problems??????????????????????????????????????. 74...

  4. Deep-Water Flow over the Lomonosov Ridge in the Arctic Ocean M.-L. TIMMERMANS, P. WINSOR, AND J. A. WHITEHEAD

    E-Print Network [OSTI]

    Winsor, Peter

    the geothermal heat flux or diffusive fluxes at the deep-water boundaries. 1. Introduction The two main basins horizontal or vertical gradients in 14 C in the Canadian Basin (Makarov and Canada Ba- sins) below 2250 m

  5. Estimating the Annual Water and Energy Savings in Texas A & M University Cafeterias using Low Flow Pre-Rinse Spray Valves 

    E-Print Network [OSTI]

    Rebello, Harsh Varun

    2011-08-08

    Improving the efficiency of a Pre- Rinse Spray Valve (PRSV) is one of the most cost effective water conservation methods in the Food Services Industry. A significant contributor to this cost efficiency is the reduction ...

  6. Insertable fluid flow passage bridgepiece and method

    DOE Patents [OSTI]

    Jones, Daniel O. (Glenville, NV)

    2000-01-01

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  7. Ground-source Heat Pumps Applied to Commercial Buildings

    SciTech Connect (OSTI)

    Parker, Steven A.; Hadley, Donald L.

    2009-07-14

    Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

  8. 3 IRROTATIONAL FLOWS, aka POTENTIAL FLOWS Irrotational flows are also known as `potential flows' because the velocity field can be taken to be the

    E-Print Network [OSTI]

    Cambridge, University of

    a lifting aerofoil (bottom of p. 17, details in §3.8 below). Kelvin's circulation theorem suggests · Flow of water toward a small drainage hole in the bottom of a large tank containing water previously

  9. Arkansas Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    quality of surface water and groundwater, especially non-point source pollution and sensitive ecosystems wastewater disposal systems, ground water modeling and land use mapping, erosion and pollution, water qualityArkansas Water Resources Center Annual Technical Report FY 2012 Arkansas Water Resources Center

  10. Laser Sheet Light Flow Visualization For Evaluating Room Air Flows From

    E-Print Network [OSTI]

    LBNL-56483 Laser Sheet Light Flow Visualization For Evaluating Room Air Flows From Registers Iain S using a Planar Laser-Induced Fluorescence (PLIF) measurement technique. Water marked with fluorescent

  11. Gas–Liquid Flow and Mass Transfer in an Advanced-Flow Reactor

    E-Print Network [OSTI]

    Kulkarni, Amol A.

    Hydrodynamics and mass transfer of gas–liquid flow are explored under ambient conditions in an Advanced-Flow Reactor (AFR), an emerging commercial system designed for continuous manufacture. Carbon dioxide/water is the ...

  12. Kauai Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume IV – Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.

  13. Multi-dimensional Mixing Behavior of Steam-Water Flow in a Downcomer Annulus during LBLOCA Reflood Phase with a DVI Injection Mode

    SciTech Connect (OSTI)

    Kwon, T.S.; Yun, B.J.; Euh, D.J.; Chu, I.C.; Song, C.H. [Korea Atomic Energy Research Institute (KAERI), Yusung P.O. Box 105, Daejeon 305-600 (Korea, Republic of)

    2002-07-01

    Multi-dimensional thermal-hydraulic behavior in the downcomer annulus of a pressurized water reactor vessel with a Direct Vessel Injection (DVI) mode is presented based on the experimental observation in the MIDAS (Multi-dimensional Investigation in Downcomer Annulus Simulation) steam-water test facility. From the steady-state test results to simulate the late reflood phase of a Large Break Loss-of-Coolant Accidents(LBLOCA), isothermal lines show the multidimensional phenomena of a phasic interaction between steam and water in the downcomer annulus very well. MIDAS is a steam-water separate effect test facility, which is 1/4.93 linearly scaled-down of 1400 MWe PWR type of a nuclear reactor, focused on understanding multi-dimensional thermalhydraulic phenomena in downcomer annulus with various types of safety injection during the refill or reflood phase of a LBLOCA. The initial and the boundary conditions are scaled from the pre-test analysis based on the preliminary calculation using the TRAC code. The superheated steam with a superheating degree of 80 K at a given downcomer pressure of 180 kPa is injected equally through three intact cold legs into the downcomer. (authors)

  14. Multidimensional Mixing Behavior of Steam-Water Flow in a Downcomer Annulus During LBLOCA Reflood Phase with a Direct Vessel Injection Mode

    SciTech Connect (OSTI)

    Kwon, Tae-Soon; Yun, Byong-Jo; Euh, Dong-Jin; Chu, In-Cheol; Song, Chul-Hwa [Korea Atomic Energy Research Institute (Korea, Republic of)

    2003-07-15

    Multidimensional thermal-hydraulic behavior in the downcomer annulus of a pressurized water reactor (PWR) vessel with a direct vessel injection mode is presented based on the experimental observation in the MIDAS (multidimensional investigation in downcomer annulus simulation) steam-water test facility. From the steady-state test results to simulate the late reflood phase of a large-break loss-of-coolant accident (LBLOCA), isothermal lines show the multidimensional phenomena of a phasic interaction between steam and water in the downcomer annulus very well. MIDAS is a steam-water separate effect test facility, which is 1/4.93 linearly scaled down to a 1400-MW(electric) PWR type of a nuclear reactor, focused on understanding multidimensional thermal-hydraulic phenomena in a downcomer annulus with various types of safety injection during the refill or reflood phase of an LBLOCA. The initial and the boundary conditions are scaled from the pretest analysis based on the preliminary calculation using the TRAC code. The superheated steam with a superheating degree of 80 K at a given downcomer pressure of 180 kPa is injected equally through three intact cold legs into the downcomer.

  15. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    2015-03-06

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  16. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  17. MODELING, SIMULATION AND OPTIMIZATION OF GROUND SOURCE

    E-Print Network [OSTI]

    MODELING, SIMULATION AND OPTIMIZATION OF GROUND SOURCE HEAT PUMP SYSTEMS By MUHAMMAD HAIDER KHAN AND OPTIMIZATION OF GROUND SOURCE HEAT PUMP SYSTEMS Thesis Approved..................................................................................................................... 1 1.1 Overview of Ground Source Heat Pump Systems.............................................. 1 1

  18. Investigation of Groundwater Flow in Foothill and Mountain regions using Heat Flow measurements

    E-Print Network [OSTI]

    Fogg, Graham E.; Trask, James C

    2009-01-01

    1965) Rates of Vertical Groundwater Movement Estimated fromCrystalline Rocks. Groundwater, Vol. 2, pp. 6-12. Dettinger,horizontal and vertical groundwater flow components. Water

  19. Water Resource Uses and Issues in Texas. 

    E-Print Network [OSTI]

    McNeely, John G.; Lacewell, Ronald D.

    1978-01-01

    . Increasing costs of ground-water supply are not shared equitably by all the ground-water users in the area. Choices must still be made as to the extent and purpose of future use and the appropriate federal, state, and local responsibilities. In 1975...

  20. Flow chamber

    DOE Patents [OSTI]

    Morozov, Victor (Manassas, VA)

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  1. Amphiphilic mediated sample preparation for micro-flow cytometry

    DOE Patents [OSTI]

    Clague, David S. (Livermore, CA); Wheeler, Elizabeth K. (Livermore, CA); Lee, Abraham P. (Irvine, CA)

    2009-03-17

    A flow cytometer includes a flow cell for detecting the sample, an oil phase in the flow cell, a water phase in the flow cell, an oil-water interface between the oil phase and the water phase, a detector for detecting the sample at the oil-water interface, and a hydrophobic unit operatively connected to the sample. The hydrophobic unit is attached to the sample. The sample and the hydrophobic unit are placed in an oil and water combination. The sample is detected at the interface between the oil phase and the water phase.

  2. Amphiphilic mediated sample preparation for micro-flow cytometry

    DOE Patents [OSTI]

    Clague, David S. (Livermore, CA); Wheeler, Elizabeth K. (Livermore, CA); Lee, Abraham P. (Irvine, CA)

    2006-07-25

    A flow cytometer includes a flow cell for detecting the sample, an oil phase in the flow cell, a water phase in the flow cell, an oil-water interface between the oil phase and the water phase, a detector for detecting the sample at the oil-water interface, and a hydrophobic unit operatively connected to the sample. The hydrophobic unit is attached to the sample. The sample and the hydrophobic unit are placed in an oil and water combination. The sample is detected at the interface between the oil phase and the water phase.

  3. Efficiency, Economic and Environmental Assessment of Ground-Source Heat Pumps in

    E-Print Network [OSTI]

    Blumsack, Seth

    1 Efficiency, Economic and Environmental Assessment of Ground-Source Heat Pumps in Central pump (GSP) for heating, cooling and hot water in a Central Pennsylvania residence (namely, the author, the efficiency gain for the ground-source heat pump compared to electricity is 43% for cooling and 81

  4. Short communication Optimization of hybrid ground coupled and air source heat pump systems

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Short communication Optimization of hybrid ­ ground coupled and air source ­ heat pump systems 2008 Accepted 14 January 2010 Available online 28 January 2010 Keywords: Ground coupled heat pump Air to water heat pump Thermal storage device Hybrid HVAC system Energy efficiency Numerical simulation a b

  5. Development of one-dimensional computational fluid dynamics code 'GFLOW' for groundwater flow and contaminant transport analysis

    SciTech Connect (OSTI)

    Rahatgaonkar, P. S.; Datta, D.; Malhotra, P. K.; Ghadge, S. G. [Nuclear Power Corporation of India Ltd., R-2, Ent. Block, Nabhikiya Urja Bhavan, Anushakti Nagar, Mumbai - 400 094 (India)

    2012-07-01

    Prediction of groundwater movement and contaminant transport in soil is an important problem in many branches of science and engineering. This includes groundwater hydrology, environmental engineering, soil science, agricultural engineering and also nuclear engineering. Specifically, in nuclear engineering it is applicable in the design of spent fuel storage pools and waste management sites in the nuclear power plants. Ground water modeling involves the simulation of flow and contaminant transport by groundwater flow. In the context of contaminated soil and groundwater system, numerical simulations are typically used to demonstrate compliance with regulatory standard. A one-dimensional Computational Fluid Dynamics code GFLOW had been developed based on the Finite Difference Method for simulating groundwater flow and contaminant transport through saturated and unsaturated soil. The code is validated with the analytical model and the benchmarking cases available in the literature. (authors)

  6. Geological flows

    E-Print Network [OSTI]

    Yu. N. Bratkov

    2008-11-19

    In this paper geology and planetology are considered using new conceptual basis of high-speed flow dynamics. Recent photo technics allow to see all details of a flow, 'cause the flow is static during very short time interval. On the other hand, maps and images of many planets are accessible. Identity of geological flows and high-speed gas dynamics is demonstrated. There is another time scale, and no more. All results, as far as the concept, are new and belong to the author. No formulae, pictures only.

  7. Flow regimes

    SciTech Connect (OSTI)

    Liles, D.R.

    1982-01-01

    Internal boundaries in multiphase flow greatly complicate fluid-dynamic and heat-transfer descriptions. Different flow regimes or topological configurations can have radically dissimilar interfacial and wall mass, momentum, and energy exchanges. To model the flow dynamics properly requires estimates of these rates. In this paper the common flow regimes for gas-liquid systems are defined and the techniques used to estimate the extent of a particular regime are described. Also, the current computer-code procedures are delineated and introduce a potentially better method is introduced.

  8. A Simplified Procedure for Sizing Vertical Ground Coupled Heat Pump Heat Exchangers for Residences in Texas 

    E-Print Network [OSTI]

    O'Neal, D. L.; Gonzalez, J. A.; Aldred, W.

    1994-01-01

    the simplified method were compared to two available heat exchanger sizing methods: the National Water Well Association (NWWA) and the International Ground Source Heat Pump Association (IGSHPA). The simplified method predicted shorter lengths than those from...

  9. Field Performance of a Ground-Coupled Heat Pump in Abilene, Texas 

    E-Print Network [OSTI]

    Dobson, M.; O'Neal, D. L.; Aldred, W.; Margo, R.

    1994-01-01

    (COP), and ground-coil heat rejection. Data for operation in the cooling and heating mode are discussed here. Based on the experimental data, it was discovered that the water temperature entering the condenser (EWT) exhibited a prolonged minimum after...

  10. A rapid method for measuring local groundwater-surface water interactions and identifying potential non-point source pollution inputs to rivers

    E-Print Network [OSTI]

    Butler, Christopher Aaron

    2009-01-01

    Anderson, M.P. , 2005. Heat as a Ground Water Tracer.Ground Water, 43(6): 951-968-951-968. Bencala, K.E. , 1993.the Earth's thermal profile. Water resources research, 1(2):

  11. The Current Drought Exposes—Not Creates—Long-Standing Water Problems: Can Policy-makers and Scientists Learn From This?

    E-Print Network [OSTI]

    Isenberg, Phil

    2014-01-01

    California Department of Water Resources. 1978. The 1976-California Department of Water Resources. 1993. California’sJH, Banks HO. 1962. Ground water basin management. 50 Cal.

  12. Nutrient composition and sensory properties of prepared ground beef 

    E-Print Network [OSTI]

    Bravo-Gutierrez, Maria Leticia

    1992-01-01

    -fried without draining (SF). The other four methods used the fat ground beef with 25% fat; (1) stir-fried and drained (SD), (2) stir-fried and rinsed (SR), (3) oil-extracted with no broth added (ON), and (4) oil-extracted with broth added (OA). There were... layer of cheesecloth, rinsed with boiling water, and drained as described before for SR. The drained, cooked ground beef was kept in a plastic container (with the lid on) and refrigerated at 4'C for 80 minutes. This refrigeration time was incorporated...

  13. An analytical solution for transient gas flow in a multi-well system

    E-Print Network [OSTI]

    Shan, Chao

    2006-01-01

    wells in vapor extraction systems, Water Resour. Res. , 30(to a soil vapor extraction well, Water Resour. Res. , 28(4):and extraction from horizontal wells, Ground Water , 33(2):

  14. Performance of a hybrid ground-coupled heat pump system

    SciTech Connect (OSTI)

    Phetteplace, G.; Sullivan, W.

    1998-10-01

    In climates dominated by air conditioning, a few so-called hybrid ground-coupled heat pump (GCHP) systems have been built. The hybrid system uses both a ground-coupled heat exchanger and a cooling tower, thereby reducing the amount of ground-coupling heat exchanger necessary. Although this concept has been shown to be feasible, the performance of such a system has not been measured in detail. Since it may be possible to achieve significant performance improvements in such systems by modifying the design and operational practices, detailed performance monitoring of such systems is needed. This paper describes a project that has been undertaken to collect performance data from a hybrid GCHP system at Fort Polk, LA. This paper presents performance data for a period of about 22 months, including data from portions of two heating and cooling seasons. The energy input to the GCHPs themselves will be presented, as well as the energy rejected to the ground in the cooling mode and that extracted from the ground in the heating mode. Energy flows in the cooling tower also will be addressed, along with the power consumption of the circulating pumps and the cooling tower.

  15. Turbid water Clear water

    E-Print Network [OSTI]

    Jaffe, Jules

    Turbid water Clear water pixel position cameraresponsecameraresponse pixel position ABSTRACT: A new underwater laser scanning system, providing microbathymetric information in coastal waters is described the backscatter component resulting in enhanced performance in turbid waters. The system is expected to provide

  16. Ground-penetrating-radar response to fracture-fluid salinity: Why lower frequencies are favorable for resolving salinity changes

    E-Print Network [OSTI]

    Tsoflias, Georgios P.; Becker, Matthew W.

    2008-08-26

    Time-lapse ground-penetrating-radar (GPR) surveys exploit signal-amplitude changes to monitor saline tracers in fractures and to identify groundwater flow paths. However, the relationships between GPR signal amplitude, phase, and frequency...

  17. A Hydro-Economic Approach to Representing Water Resources Impacts in Integrated Assessment Models

    SciTech Connect (OSTI)

    Kirshen, Paul H.; Strzepek, Kenneth, M.

    2004-01-14

    Grant Number DE-FG02-98ER62665 Office of Energy Research of the U.S. Department of Energy Abstract Many Integrated Assessment Models (IAM) divide the world into a small number of highly aggregated regions. Non-OECD countries are aggregated geographically into continental and multiple-continental regions or economically by development level. Current research suggests that these large scale aggregations cannot accurately represent potential water resources-related climate change impacts. In addition, IAMs do not explicitly model the flow regulation impacts of reservoir and ground water systems, the economics of water supply, or the demand for water in economic activities. Using the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) model of the International Food Policy Research Institute (IFPRI) as a case study, this research implemented a set of methodologies to provide accurate representation of water resource climate change impacts in Integrated Assessment Models. There were also detailed examinations of key issues related to aggregated modeling including: modeling water consumption versus water withdrawals; ground and surface water interactions; development of reservoir cost curves; modeling of surface areas of aggregated reservoirs for estimating evaporation losses; and evaluating the importance of spatial scale in river basin modeling. The major findings include: - Continental or national or even large scale river basin aggregation of water supplies and demands do not accurately capture the impacts of climate change in the water and agricultural sector in IAMs. - Fortunately, there now exist gridden approaches (0.5 X 0.5 degrees) to model streamflows in a global analysis. The gridded approach to hydrologic modeling allows flexibility in aligning basin boundaries with national boundaries. This combined with GIS tools, high speed computers, and the growing availability of socio-economic gridded data bases allows assignment of demands to river basins to create hydro-economic zones that respect as much as possible both political and hydrologic integrity in different models. - To minimize pre-processing of data and add increased flexibility to modeling water resources and uses, it is recommended that water withdrawal demands be modeled, not consumptive requirements even though this makes the IAM more complex. - IAMs must consider changes in water availability for irrigation under climate change; ignoring them is more inaccurate than ignoring yield changes in crops under climate change. - Determining water availability and cost in river basins must include modeling streamflows, reservoirs and their operations, and ground water and its interaction with surface water. - Scale issues are important. The results from condensing demands and supplies in a large complex river basin to one node can be misleading for all uses under low flow conditions and instream flow uses under all conditions. Monthly is generally the most accurate scale for modeling river flows and demands. Challenges remain in integrating hydrologic units with political boundaries but the gridded approach to hydrologic modeling allows flexibility in aligning basin boundaries with political boundaries. - Using minimal reservoir cost data, it is possible to use basin topography to estimate reservoir storage costs. - Reservoir evaporation must be considered when assessing the usable water in a watershed. Several methods are available to estimate the relationship between aggregated storage surface area and storage volume. - For existing or future IAMs that can not use the appropriate aggregation for water, a water preprocessor may be required due the finer scale of hydrologic impacts.

  18. Arkansas Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    Center (AWRC) has a statewide mission to plan and conduct water resource research. AWRC cooperates water modeling, non-point source pollution, quality of ground water and surface water, efficient septic tank design and ecosystem assessment. These projects have been funded by a variety of federal, state

  19. Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    -Situ Bioremediation of MTBE Contaminated Ground Water Using Biobarriers, Marc Deshusses & Mark Matsumoto, UC RiversideWater Resources Center Annual Technical Report FY 1999 Introduction This year has seen changes for the Center for Water Resources (previously, the Center for Water and Wildland Resources). It has relocated

  20. Simulated effects of changes in the infiltration rate and the hydraulic conductivity structure on the location and configuration of the water table at Yucca Mountain, Nevada 

    E-Print Network [OSTI]

    Jasek, Noreen Ann

    1991-01-01

    dh/dl is the hydraulic gradient where h is the hydraulic head and 1 is the length of the flow path over which the head change is measured. Because both h and 1 have units of length, dh/dl itself is unitless. The deterministic flow equation used... of the steep gradients causing the step- like configuration have been related to two mechanisms: ground water barriers or gradual permeability variations. This study was designed to determine if either or both of the mechanisms could produce the observed...

  1. Virgin Islands Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    water harvesting are the principal sources of fresh water. Ground water supplies are very limited. WaterVirgin Islands Water Resources Research Institute Annual Technical Report FY 2008 Virgin Islands Water Resources Research Institute Annual Technical Report FY 2008 1 #12;Introduction The Virgin Islands

  2. Shaft Excavation in Frozen Ground at Point 5

    E-Print Network [OSTI]

    Osborne, J

    2000-01-01

    Construction work on the 112 MCHF civil engineering contract started at Point 5 in August 1998. The new surface buildings and underground structures are necessary to accommodate the CMS detector for the LHC Project. The principal underground works consist of two new shafts, two parallel caverns separated by a supporting pillar, and a number of small connection tunnels and service galleries. The two shafts are to be sunk through approximately 50 m of water-bearing moraine to the underlying molasse rock. From a number of possible construction methods, ground freezing of the moraine was considered to be most appropriate. The ground freezing is used to control the groundwater and to support temporarily the moraine during excavation and lining of the shafts. The aim of this paper is to present the ground-freezing technique and to discuss the advantages and disadvantages of the system in the light of its first few months of running on the Point 5 site.

  3. Development of a Residential Ground-Source Integrated Heat Pump

    SciTech Connect (OSTI)

    Rice, C Keith [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Hern, Shawn [ClimateMaster, Inc.] [ClimateMaster, Inc.; McDowell, Tim [Thermal Energy System Specialists, LLC] [Thermal Energy System Specialists, LLC; Munk, Jeffrey D [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

    2013-01-01

    A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internal control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.

  4. Cerro Grande Fire Impact to Water Quality and Stream Flow near Los Alamos National Laboratory: Results of Four Years of Monitoring

    SciTech Connect (OSTI)

    B.M. Gallaher; R.J. Koch

    2004-09-15

    In May 2000, the Cerro Grande fire burned about 7400 acres of mixed conifer forest on the Los Alamos National Laboratory (LANL), and much of the 10,000 acres of mountainside draining onto LANL was severely burned. The resulting burned landscapes raised concerns of increased storm runoff and transport of contaminants by runoff in the canyons traversing LANL. The first storms after the fire produced runoff peaks that were more than 200 times greater than prefire levels. Total runoff volume for the year 2000 increased 50% over prefire years, despite a decline in total precipitation of 13% below normal and a general decrease in the number of monsoonal thunderstorms. The majority of runoff in 2000 occurred in the canyons at LANL south of Pueblo Canyon (70%), where the highest runoff volume occurred in Water Canyon and the peak discharge occurred in Pajarito Canyon. This report describes the observed effects of the Cerro Grande fire and related environmental impacts to watersheds at and near Los Alamos National Laboratory (LANL) for the first four runoff seasons after the fire, from 2000 through 2003. Spatial and temporal trends in radiological and chemical constituents that were identified as being associated with the Cerro Grande fire and those that were identified as being associated with historic LANL discharges are evaluated with regard to impacts to the Rio Grande and area reservoirs downstream of LANL. The results of environmental sampling performed by LANL, the New Mexico Environment Department (NMED), and U.S. Geological Survey (USGS) after the Cerro Grande fire are included in the evaluation. Effects are described for storm runoff, baseflow, stream sediments, and area regional reservoir sediment.

  5. Monitoring probe for groundwater flow

    DOE Patents [OSTI]

    Looney, Brian B. (Aiken, SC); Ballard, Sanford (Albuquerque, NM)

    1994-01-01

    A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

  6. Monitoring probe for groundwater flow

    DOE Patents [OSTI]

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  7. Reduce Hot Water Use for Energy Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Low-flow fixtures and showerheads can achieve water savings of 25%60%. | Photo courtesy of iStockphotoDaveBolton. Low-flow fixtures and showerheads can achieve water...

  8. Liquid-Liquid Two-Phase Flow Systems Neima Brauner

    E-Print Network [OSTI]

    Brauner, Neima

    prediction of oil-water flow charac- teristics, such as flow pattern, water holdup and pressure gradient in the petroleum industry, where mixtures of oil and water are transported in pipes over long distances. Accurate particular extreme of two-fluid systems characterized by low-density ratio and low viscosity ratio. In liquid

  9. Section 8.5 1. A worker on a roof 50 ft above the ground needs to lift a 300 lb bucket of cement from the ground

    E-Print Network [OSTI]

    Lin, Kevin K.

    Section 8.5 1. A worker on a roof 50 ft above the ground needs to lift a 300 lb bucket of cement the top of the tank. Note: 1 cubic foot water weighs 62.4 lb. 4. A gas station stores its gasoline;5. A gas station stores its gasoline in a tank under the ground. The tank is a cylinder standing in upright

  10. Water Resources Water Quality and Water Treatment

    E-Print Network [OSTI]

    Sohoni, Milind

    Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

  11. Improving Heating System Operations Using Water Re-Circulation 

    E-Print Network [OSTI]

    Li, F.; Han, J.

    2006-01-01

    indicates that consumer- regulated indoor temperature is the primary factor that affects the flow rate and temperature of return water....

  12. Article accepted for publication in: Land and Water Magazine

    E-Print Network [OSTI]

    that flow to a waste water treatment plant. During large storm events, when the capacity of the treatment

  13. Ground control for highwall mining

    SciTech Connect (OSTI)

    Zipf, R.K.; Mark, C.

    2007-09-15

    Perhaps the greatest risk to both equipment and personnel associated with highwall mining is from ground control. The two most significant ground control hazards are rock falls from highwall and equipment entrapment underground. In the central Appalachians, where the majority of highwall mining occurs in the USA, hillseams (or mountain cracks) are the most prominent structure that affects highwall stability. The article discusses measures to minimise the risk of failure associated with hillstreams. A 'stuck' or trapped highwall miner, and the ensuring retrieval or recovery operation, can be extremely disruptive to the highwall mining process. Most entrapment, are due to roof falls in the hole. The options for recovery are surface retrieval, surface excavation or underground recovery. Proper pillar design is essential to maintain highwall stability and prevent entrapments. NIOSH has developed the Analysis of Retreat Mining Pillar stability-Highwall Mining (ARMPS-HWM) computer program to help mine planners with this process. 10 figs.

  14. Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Joseph M. Fenelon; Randell J. Laczniak; and Keith J. Halford

    2008-06-24

    Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types—volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in water-level altitudes within any single continuous aquifer range from a few hundred feet in a lower carbonate aquifer to just more than 1,100 feet in a volcanic aquifer. Flow directions throughout the study area are dominantly southward with minor eastward or westward deviations. Primary exceptions are westward flow in the northern part of the volcanic aquifer and eastward flow in the eastern part of the lower carbonate aquifer. Northward flow in the upper and lower carbonate aquifers in the northern part of the study area is possible but cannot be substantiated because data are lacking. Interflow between continuous aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form the regional ground-water flow system. The implications of these tributary flow paths in controlling transport away from the underground test areas at Rainier Mesa and Shoshone Mountain are discussed. The obvious data gaps contributing to uncertainties in the delineation of aquifers and development of water-level contours are identified and evaluated.

  15. Technical assistance contractor management plan: Surface and ground water

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This report presents the general management structure of the Technical Assistance Contractor (TAC) for the Uranium Mill Tailings Remedial Action (UMTRA) Project. This team is a partnership of four major private subcontractors, which teamed together, are striving to be the leader in environmental restoration of uranium mining and milling operations. It will provide a pool of experts in various aspects of the technologies necessary to accomplish this goal, available to DOE to deal with mission concerns. The report expands on goals from TAC`s mission statement, which include management concerns, environment, safety, and health, quality, technical support, communications, and personnel.

  16. Introduction Fresh or brackish ground water in submarine environ-

    E-Print Network [OSTI]

    Krantz, David

    the blowout of the Deepwater Horizon (DH) drilling platform was one of the largest in history discharging more expression in the salt marsh minnow Fundulus grandis, which is local to the northern coast of the Gulf In April of 2010, the explosion of the Deepwater Hori- zon oil drilling platform initiated the largest deep

  17. Introduction Fresh or brackish ground water has been shown to

    E-Print Network [OSTI]

    Krantz, David

    gradients occur within a few meters of the sediment surface in most locations stud- ied. The zone4 1U.S. Geological Survey, 384 Woods Hole Rd., Woods Hole, MA 02543; (508) 457­2254; fax (508) 457

  18. Montana Ground Water Pollution Control System Information Webpage | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec(Pritchett, 2004)Michigan:MontanaInformation|Energy

  19. Montana Ground Water Pollution Control System Permit Application Forms

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec(Pritchett,

  20. Appendix E Supporting Information for Ground Water Modeling

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the WeldonB10081278MaywoodWayne AnalyticalSurface