Sample records for ground water extraction

  1. Ground Water Ground Sky Sky Water Vegetation Ground Vegetation Water

    E-Print Network [OSTI]

    Chen, Tsuhan

    Bear Snow Vegetation RhinoWater Vegetation Ground Water Ground Sky Sky Rhino Water Vegetation Ground Vegetation Water Rhino Water Vegetation Ground Rhino Water Rhino Water Ground Ground Vegetation Water Rhino Vegetation Rhino Vegetation Ground Rhino Vegetation Ground Sky Rhino Vegetation Ground Sky

  2. Ground Water Management Act (Virginia)

    Broader source: Energy.gov [DOE]

    Under the Ground Water Management Act of 1992, Virginia manages ground water through a program regulating the withdrawals in certain areas called Ground Water Management Areas (GWMA). Currently,...

  3. GROUND WATER CONTAMINATION

    SciTech Connect (OSTI)

    Unknown

    1999-09-01T23:59:59.000Z

    As required by the terms of the above referenced grant, the following summary serves as the Final Report for that grant. The grant relates to work performed at two separate sites, the Hoe Creek Underground Coal Gasification Site south of Gillette, Wyoming, and the Rock Springs In-Situ Oil Shale Retort Site near Rock Springs, Wyoming. The primary concern to the State of Wyoming at each site is ground water contamination (the primary contaminants of concern are benzene and related compounds), and the purpose of the grant has been to provide tiding for a Geohydrologist at the appropriate State agency, specifically the Land Quality Division (LQD) of the Wyoming Department of Environmental Quality. The LQD Geohydrologist has been responsible for providing technical and regulatory support to DOE for ground water remediation and subsequent surface reclamation. Substantial progress has been made toward remediation of the sites, and continuation of LQD involvement in the remediation and reclamation efforts is addressed.

  4. Ground water provides drinking water, irrigation for

    E-Print Network [OSTI]

    Saldin, Dilano

    Ground water provides drinking water, irrigation for crops and water for indus- tries. It is also connected to surface waters, and maintains the flow of rivers and streams and the level of wetlands- tion of those along Lake Michigan, most communi- ties, farms and industries still rely on ground water

  5. Ground Water Management Regulations (Louisiana)

    Broader source: Energy.gov [DOE]

    The rules and regulations apply to the management of the state's ground water resources. In addition, the Commissioner of Conservation has recommended that oil and gas operators with an interest...

  6. Case Study/ Ground Water Sustainability: Methodology and

    E-Print Network [OSTI]

    Zheng, Chunmiao

    , or the lack thereof, of ground water flow systems driven by similar hydrogeologic and economic conditionsCase Study/ Ground Water Sustainability: Methodology and Application to the North China Plain of a ground water flow system in the North China Plain (NCP) subject to severe overexploitation and rapid

  7. Montana Ground Water Assessment Act (Montana)

    Broader source: Energy.gov [DOE]

    This statute establishes a program to systematically assess and monitor the state's ground water and to disseminate the information to interested persons in order to improve the quality of ground...

  8. Natural restoration of ground water in UCG

    SciTech Connect (OSTI)

    Humenick, M.J.; Britton, L.N.; Mattox, C.F.

    1982-01-01T23:59:59.000Z

    Ground water contamination from underground coal gasification (UCG) has been documented at several field tests in Texas and Wyoming. However, monitoring data following the termination of gasification operations has shown that contaminant concentrations decrease with time, apparently because of natural processes. This research evaluates the probable natural mechanisms for the reduction of organic contaminant concentrations in ground water. Results indicated that biological degradation and adsorption could be a significant mechanism for removal of organics from ground waters. 12 refs.

  9. SOLVENT EXTRACTION OF PHENOLS FROM WATER

    E-Print Network [OSTI]

    Greminger, Douglas C.

    2012-01-01T23:59:59.000Z

    Waste Water Treatment by Solvent Extraction," Canadian J.A.F. Preuss, "Extraction of Phenol from Water with a Liquid1980 SOLVENT EXTRACTION OF PHENOLS FROM WATER LP,WRENCE BERv

  10. Special Section on Ground Water Research in China Featured in This Issue of Ground Water

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    of Ground Water by Xun Zhou1, Jiu J. Jiao2, and Mary P. Anderson3 Contained in this issue of Ground Water, Groundwater Resources and the Related Environ- Hydrogeologic Problems in China, Beijing: Seismological Press

  11. Hanford site ground water protection management plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities.

  12. Hot water bitumen extraction process

    SciTech Connect (OSTI)

    Rendall, J.S.

    1989-10-24T23:59:59.000Z

    This patent describes a method of extracting bitumen oils from tar-sands ore. It includes an initial conditioning step comprising crushing tar-sands ore to yield solid particles of a maximum size required by a log washer conditioner in a second conditioning step; a bitumen extraction step; a bitumen separation step; a solvent recovery step; a sand washing and water clarification step; and a sand solvent recovery step.

  13. Proceedings of the National Groundwater National Ground Water Association Southwest focused ground water conference: Discussing the issue of MTBE and perchlorate in the ground water, Anaheim, CA, June 3-4, pp:87-90.

    E-Print Network [OSTI]

    ground water conference: Discussing the issue of MTBE and perchlorate in the ground water, Anaheim, CA

  14. Ground water protection management program plan

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 5400.1 requires the establishment of a ground water protection management program to ensure compliance with DOE requirements and applicable federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office was prepared this Ground Water Protection Management Program Plan (ground water protection plan) whose scope and detail reflect the program`s significance and address the seven activities required in DOE Order 5400.1, Chapter III, for special program planning. This ground water protection plan highlights the methods designed to preserve, protect, and monitor ground water resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies technical guidance documents and site-specific documents for the UMTRA Project ground water protection management program. In addition, the plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA Project sites.

  15. Ground Water Protection Act (New Mexico)

    Broader source: Energy.gov [DOE]

    The purpose of the Ground Water Protection Act is to provide substantive provisions and funding mechanisms to the extent that funds are available to enable the state to take corrective action at...

  16. International Borders, Ground Water Flow, and Hydroschizophrenia

    E-Print Network [OSTI]

    Wolf, Aaron

    International Borders, Ground Water Flow, and Hydroschizophrenia by Todd Jarvis1,2, Mark Giordano3 of Geosciences, 104 Wilkinson Hall, Corvallis, OR 97331 2Corresponding author: todd.jarvis@oregonstate.edu 3

  17. Integrated Water Management Options in the Nebraska Ground Water Management &

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    ag chemical best management practices 7. soil testing 8. voluntary or mandatory educational programs regulate ground water development (well spacing regulations, well drilling prohibitions) and ground water by implementing the above GMA regulations, well drilling may be halted or conditioned. NRD permits are required

  18. Selenium in Oklahoma ground water and soil

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30T23:59:59.000Z

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  19. Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada

    E-Print Network [OSTI]

    Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada Ralph L. Seiler sources. Tungsten concentrations in 100 ground water samples from all aquifers used as drinking water indicates that W exhibits Tungsten con- centrations are strongly and positively correlated

  20. african ground water: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has Rossi, Vivien 10 Integrated Water Management Options in the Nebraska Ground Water Management & Environmental Sciences and Ecology Websites Summary: Integrated Water...

  1. DEVELOPMENTS IN GROUND WATER HYDROLOGY : AN OVERVIEW C. P. Kumar

    E-Print Network [OSTI]

    Kumar, C.P.

    . Surface water storage and ground water withdrawal are traditional engineering approaches which of storage and circulation as ground water. The large alluvial tract extending over 2000 km in length from which allows ground water storage in the weathered residium and its circulation in the underlying

  2. Basic Ground-Water Hydrology By RALPH C. HEATH

    E-Print Network [OSTI]

    Sohoni, Milind

    #12;Basic Ground-Water Hydrology By RALPH C. HEATH Prepared in cooperation with the North Carolina., 1983, Basic ground-water hydrology: U .S. Geological Survey Water-Supply Paper 2220, 86 p. Library of Congress Cataloging-in-Publications Data Heath, Ralph C . Basic ground-water hydrology (Geological Survey

  3. Regional Estimation of Total Recharge to Ground Water in Nebraska

    E-Print Network [OSTI]

    Szilagyi, Jozsef

    )over long periods of time when the potential change in ground water storage becomes negligible compared storage other than discharge to streams. One such loss term is evapotranspiration (ET) from ground waterRegional Estimation of Total Recharge to Ground Water in Nebraska by Jozsef Szilagyi1m2,F. Edwin

  4. Hanford Site ground-water surveillance for 1989

    SciTech Connect (OSTI)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.; Kemner, M.L.

    1990-06-01T23:59:59.000Z

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs.

  5. Nanomaterials for Extracting Hydrogen from Water

    E-Print Network [OSTI]

    Nanomaterials for Extracting Hydrogen from Water P R O J E C T L E A D E R : Veronika Szalai (NIST to catalyze water oxidation. K E Y A C C O M P L I S H M E N T S Produced highly active iron oxide (hematite water. R E F E R E N C E Effect of tin doping on -Fe2 O3 photoanodes for water splitting, C. D. Bohn, A

  6. DC WRRC Report No. 126 GROUND WATER RESOURCE ASSESSMENT STUDY

    E-Print Network [OSTI]

    District of Columbia, University of the

    DRILLING AND FIELD OPERATIONS REPORT FOR THE GROUP A WELLS D.C. WATER RESOURCES RESEARCH CENTER University No. 126 GROUND WATER RESOURCE ASSESSMENT STUDY FOR THE DISTRICT OF COLUMBIA WELL DRILLING AND FIELDDC WRRC Report No. 126 GROUND WATER RESOURCE ASSESSMENT STUDY FOR THE DISTRICT OF COLUMBIA WELL

  7. Montana Ground Water Pollution Control System Permit Application...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution Control System Permit Application Forms Webpage Abstract Provides a list of permit...

  8. EPA - Ground Water Discharges (EPA's Underground Injection Control...

    Open Energy Info (EERE)

    Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water Discharges (EPA's...

  9. alkaline ground waters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydraulic Rhode Island, University of 28 Factors influencing biological treatment of MTBE contaminated ground water University of California eScholarship Repository Summary:...

  10. Hanford Site ground-water monitoring for 1994

    SciTech Connect (OSTI)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01T23:59:59.000Z

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  11. Ground-based measurements of soil water storage in Texas

    E-Print Network [OSTI]

    Yang, Zong-Liang

    Ground-based measurements of soil water storage in Texas Todd Caldwell Bridget Scanlon Di Long Michael Young Texas drought and beyond 22-23 October 2012 #12;Ground-based soil moisture Why do we need-limited TRANSPIRATION Water-limited Carbon storage ECOHYDROLOGY Stress, mortality, fire Oxygen limitations MICROBIAL

  12. Relation of soil-, surface-, and ground-water distributions of inorganic nitrogen with

    E-Print Network [OSTI]

    Macdonald, Ellen

    Relation of soil-, surface-, and ground-water distributions of inorganic nitrogen with topographic position in harvested and unharvested portions of an aspen-dominated catchment in the Boreal Plain M.L. Macrae, K.J. Devito, I.F. Creed, and S.E. Macdonald Abstract: Spatial distributions of soil extractable

  13. Ground-water effects of the UCG experiments at the Hoe Creek site in northeastern Wyoming

    SciTech Connect (OSTI)

    Mead, S.W.; Wang, F.T.; Stuermer, D.H.

    1981-06-01T23:59:59.000Z

    Ground-water changes and subsidence effects associated with three underground coal gasification (UCG) experiments have been monitored at the Hoe Creek site in northeastern Wyoming. Ground-water quality measurements have extended over a period of four years and have been supplemented by laboratory studies of contaminant sorption by coal. It was found that a broad range of residual gasification products are introduced into the ground-water system. These contaminants may be of environmental significance if they find their way, in sufficient concentrations, into surface waters, or into aquifers from which water is extracted for drinking or agricultural purposes. Fortunately, the concentrations of these contaminants are substantially reduced by sorption on the surrounding coal. However, recent field measurements indicate that there may be significant limitations on this natural cleansing process. The contaminants of potential concern, and the mechanisms that affect their deposition and persistence have been identified.

  14. Simplifying Ground Water Transfers in Integrated Management Plans

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    -714 need new high-capacity wells in FA basins for e.g. ethanol plants so ethanol plant buys water and/or ground water rights from local irrigators buying water: use on-site former irrigation well for ethanol plant or else pipe water from existing from irrigation well to ethanol plant buying rights: cap

  15. Ground-water contribution to dose from past Hanford Operations

    SciTech Connect (OSTI)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01T23:59:59.000Z

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  16. Appendixes 159 160 Simulation of Ground-Water/Surface-Water Flow in the Santa ClaraCalleguas Ground-Water Basin, Ventura County, California

    E-Print Network [OSTI]

    ­Calleguas Ground-Water Basin, Ventura County, California APPENDIX 1: DOCUMENTATION AND DESCRIPTION OF THE DIGITAL-Water/Surface-Water Flow in the Santa Clara­Calleguas Ground-Water Basin, Ventura County, California Figure A.1.2. Location-Water Basin, Ventura County, California Figure A1.4. Location of USGS_GWMODEL coverage. PacificOcean VENTURACO

  17. GROUND-WATER CONTRIBUTION TO DOSE FROM PAST HANFORD OPERATIONS

    SciTech Connect (OSTI)

    Freshley, M. D.; Thorne, P. D.

    1992-01-01T23:59:59.000Z

    The Hanford Environmental Dose Reconstruction (HEOR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides originating in ground water on the Hanford Site could have reached the public have been identified: 1) through contaminated ground water migrating to the Columbia River; 2) through wells on or adjacent to the Hanford Site; 3) through wells that draw some or all of their water from the Columbia River (riparian wells); and 4) through atmospheric deposition resulting in the contamination of a small watershed that, in turn, results in contamination of a shallow well or spring. These four pathways make up the "ground-water pathway ," which is the subject of this study. The objective of the study was to assess the extent to which the groundwater pathway contributed to radiation doses that populations or individuals may have received from past operations at Hanford. The assessment presented in this report was performed by 1) reviewing the extensive ?literature on ground water and ground-water monitoring at Hanford and 2) performing simple calculations to estimate radionuclide concentrations in ground water and the Columbia River resulting from ground-water discharge. Radiation doses that would result from exposure to this ground water and surface water were calculated. The study conclusion is that the ground-water pathways did not contribute significantly to dose. Compared with background radiation in the TriCities {300 mrem/yr), estimated doses are small: 0.02 mrem/yr effective dose equivalent from discharge of contaminated ground water to the Columbia River; 1 mrem/yr effective dose equivalent from Hanford Site wells; 11 mrem/yr effective dose equivalent from riparian wells; and 1 mrem/yr effective dose equivalent from the watershed. Because the estimated doses are so small, the recommendation is that further work on the ground-water pathway be limited to tracking ongoing ground-water studies at the Hanford Site.

  18. Hanford Site ground-water monitoring for 1993

    SciTech Connect (OSTI)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01T23:59:59.000Z

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  19. Ground and Surface Water Protection (New Mexico)

    Broader source: Energy.gov [DOE]

    This regulation implements the New Mexico Water Quality Act. Any person intending to make a new water contaminant discharge or to alter the character or location of an existing water contaminant...

  20. EPA Final Ground Water Rule Available Online, 3/07

    Broader source: Energy.gov [DOE]

    On November 8, 2006, the U.S. Environmental Protection Agency (EPA) published a final Ground Water Rule (GWR) to promote increased protection against microbial pathogens that may be present in...

  1. Hanford Site ground-water monitoring for 1992

    SciTech Connect (OSTI)

    Dresel, P.E.; Newcomer, D.R.; Evans, J.C.; Webber, W.D.; Spane, F.A. Jr.; Raymond, R.G.; Opitz, B.E.

    1993-06-01T23:59:59.000Z

    Monitoring activities were conducted to determine the distribution of radionuclides and hazardous chemicals present in ground water as a result of Hanford Site operations and, whenever possible, relate the distribution of these constituents to Site operations. A total of 720 wells were sampled during 1992 by all Hanford ground-water monitoring activities. The Ground-Water Surveillance Project prepared water-table maps of DOE`s Hanford Site for June 1992 from water-level elevations measured in 287 wells across the Hanford Site and outlying areas. These maps are used to infer ground-water flow directions and gradients for the interpretation of contaminant transport. Water levels beneath the 200 Areas decreased as much as 0.75 m (2.5 ft) between December 1991 and December 1992. Water levels in the Cold Creek Valley decreased approximately 0.5 m in that same period. The water table adjacent to the Columbia River along the Hanford Reach continues to respond significantly to fluctuations in river stage. These responses were observed in the 100 and 300 areas. The elevation of the ground-water mound beneath B Pond did not change significantly between December 1991 and December 1992. However, water levels from one well located at the center of the mound indicate a water-level rise of approximately 0.3 m (1 ft) during the last quarter of 1992. Water levels measured from unconfined aquifer wells north and east of the Columbia River in 1992 indicate that the primary source of recharge is from irrigation practices.

  2. Extracting Fish and Water Velocity from Doppler Profiler Data

    E-Print Network [OSTI]

    deYoung, Brad

    Extracting Fish and Water Velocity from Doppler Profiler Data ĺ Ð 1 ¸ Ö Ò ×¹ Ò ÝÖ¹Ê Ò 2 1 processing algo- rithms normally used to extract water velocity. We present an alternative method for velocity homogeneity precludes the extraction of fish velocities. Water velocities can sometimes still

  3. Tritium Ground Water Issues | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon theTedRegion | Department of Energy TribesNorthernGround

  4. Geochemical Modeling of ILAW Lysimeter Water Extracts

    SciTech Connect (OSTI)

    Cantrell, Kirk J.

    2014-12-22T23:59:59.000Z

    Geochemical modeling results of water extracts from simulated immobilized low-activity waste (ILAW) glasses, placed in lysimeters for eight years suggest that the secondary phase reaction network developed using product consistency test (PCT) results at 90°C may need to be modified for field conditions. For sediment samples that had been collected from near the glass samples, the impact of glass corrosion could be readily observed based upon the pH of their water extracts. For unimpacted sediments the pH ranged from 7.88 to 8.11 with an average of 8.04. Sediments that had observable impacts from glass corrosion exhibited elevated pH values (as high as 9.97). For lysimeter sediment samples that appear to have been impacted by glass corrosion to the greatest extent, saturation indices determined for analcime, calcite, and chalcedony in the 1:1 water extracts were near equilibrium and were consistent with the secondary phase reaction network developed using PCT results at 90°C. Fe(OH)3(s) also appears to be essentially at equilibrium in extracts impacted by glass corrosion, but with a solubility product (log Ksp) that is approximately 2.13 units lower than that used in the secondary phase reaction network developed using PCT results at 90°C. The solubilities of TiO2(am) and ZrO2(am) also appear to be much lower than that assumed in the secondary phase reaction network developed using PCT results at 90°C. The extent that the solubility of TiO2(am) and ZrO2(am) were reduced relative to that assumed in the secondary phase reaction network developed using PCT results at 90°C could not be quantified because the concentrations of Ti and Zr in the extracts were below the estimated quantification limit. Gibbsite was consistently highly oversaturated in the extract while dawsonite was at or near equilibrium. This suggests that dawsonite might be a more suitable phase for the secondary phase reaction network than gibbsite under field conditions. This may be due to the availability of carbonate that exists in the Hanford sediments as calcite. A significant source of carbonate was not available in the PCTs and this may account for why this phase did not appear in the PCTs. Sepiolite was consistently highly undersaturated, suggesting that another phase controls the solubility of magnesium. For samples that were most impacted by the effects of glass corrosion, magnesite appears to control glass corrosion. For samples that show less impacts from glass corrosion, clinochlore-7A or saponite-Mg appears to control the magnesium concentrations. For zinc, it appears that zincite is a better candidate than Zn(OH)2-? for controlling zinc concentrations in the extracts; however, in some samples all zinc phases considered were highly oversaturated. As a result the phase that controls zinc concentrations in the lysimeter extracts remains uncertain.

  5. Supercritical extraction of organic mixtures from soil-water slurries

    E-Print Network [OSTI]

    Green, Lynda Ann

    1994-01-01T23:59:59.000Z

    Supercritical C02was used to extract orgamc rruxtures from soil-water slurries. The extent of extraction and the equilibrium distribution of the mixture and of the individual components were determined. A single stage batch vessel was used...

  6. GROUND WATER RESOURCE ASSESSMENT STUDY FOR THE DISTRICT OF COLUMBIA

    E-Print Network [OSTI]

    District of Columbia, University of the

    , leaking underground storage tanks, and chemical application to golf courses, gardens and landscapes report presents the findings of the background and field investigations as a comprehensive ground water of the project: Dr. Kobina Atobrah of Geomatrix, Inc., Mr. Michael Arbaugh of the Gascoyne Laboratories Field

  7. Uranium in US surface, ground, and domestic waters. Volume 2

    SciTech Connect (OSTI)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01T23:59:59.000Z

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  8. Bordering on Water Management: Ground and Wastewater in the United States - Mexico Transboundary Santa Cruz Basin

    E-Print Network [OSTI]

    Milman, Anita Dale

    2009-01-01T23:59:59.000Z

    change and global water resources. Global Environmentalin Managing International Water Resources (No. WPS 1303):Darcy Lecture Tour. Ground Water, 45(4), 390-391. Sadoff,

  9. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    SciTech Connect (OSTI)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16T23:59:59.000Z

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  10. Factors influencing methane distribution in Texas ground water

    SciTech Connect (OSTI)

    Zhang, C.; Grossman, E.L.; Ammerman, J.W. [Texas A and M Univ., College Station, TX (United States)

    1998-01-01T23:59:59.000Z

    To determine the factors that influence the distribution of methane in Texas ground water, water samples were collected from 40 wells in east-central and central Texas aquifers. Among the chemical parameters examined, sulfate is most important in controlling methane distribution. Methane occurs in high concentration in east-central Texas only where sulfate concentration is low, supporting the hypothesis that abundant microbial methane production does not begin until sulfate is depleted. Because water samples from central Texas are high in either oxygen or sulfate, methane concentrations are low in these waters. A positive correlation between methane and sulfate in these waters indicates a different, perhaps thermogenic, origin for the trace methane. The {sup 13}C/{sup 12}C ratios of dissolved methane ranged from {minus}80{per_thousand} to {minus}21{per_thousand} in east-central Texas and {minus}41.2{per_thousand} to {minus}8.5{per_thousand} in central Texas. Low values of < {minus}50{per_thousand} in the east-central Texas ground water indicate a microbial origin for methane and are consistent with the observed sulfate-methane relationship; high {sup 13}C/{sup 12}C ratios of > {minus}31{per_thousand} likely result from bacterial methane oxidation. Similarly, methane with high {sup 13}C/{sup 12}C ratios in central Texas may reflect partial oxidation of the methane pool. Overall, water samples from both regions show a positive correlation between sulfate concentration and the {sup 13}C/{sup 12}C ratio of methane, suggesting that methane oxidation may be associated with sulfate reduction in Texas ground water.

  11. PII S0016-7037(00)00369-0 Ra isotopes and Rn in brines and ground waters of the Jordan-Dead Sea Rift Valley

    E-Print Network [OSTI]

    Yehoshua, Kolodny

    PII S0016-7037(00)00369-0 Ra isotopes and Rn in brines and ground waters of the Jordan-Dead Sea Valley waters being mixtures of fresh water with saline brines. Ra is efficiently extracted from surrounding rocks into the brine end member. 228 Ra/226 Ra ratios are exceptionally low 0.07 to 0.9, mostly

  12. UMTRA Ground Water Project management action process document

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards.

  13. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site.

  14. Ground and Water Source Heat Pump Performance and Design for Southern Climates 

    E-Print Network [OSTI]

    Kavanaugh, S.

    1988-01-01T23:59:59.000Z

    Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical...

  15. Ground and Water Source Heat Pump Performance and Design for Southern Climates

    E-Print Network [OSTI]

    Kavanaugh, S.

    1988-01-01T23:59:59.000Z

    Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical...

  16. HANFORD SITE ENVIRONMENTAL DATA FOR CALENDAR YEAR 1989 - GROUND WATER

    SciTech Connect (OSTI)

    Bryce, R. W.; Gorst, W. R.

    1990-12-01T23:59:59.000Z

    In a continuing effort for the U.S. Department of Energy, Pacific Northwest Laboratory (PNL) is conducting ground-water monitoring at the Hanford Site, near Richland, Washington. This document contains the data listing of monitoring results obtained by PNL and Westinghouse Hanford Company during the period January through December 1989. Samples taken during 1989 were analyzed and reported by United States Testing Company, Inc., Richland, Washington. The data listing contains all chemical results (above contractual reporting limits) and radiochemical results (for which the result is larger than two times the total error).

  17. Water Quality Surface and Ground | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWater Power ForumGround Jump

  18. Selective extraction of copper, mercury, silver and palladium ions from water using hydrophobic ionic liquids.

    E-Print Network [OSTI]

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; Von Stosch, Moritz; Prausnitz, John M.

    2008-01-01T23:59:59.000Z

    for metal-ion extraction from water. All ionic liquids (useful for extraction of cations from water. 9-15 Previoussingle extraction of mercury in water with either [3MOPYR

  19. SOLVENT EXTRACTION OF PHENOLS FROM WATER

    E-Print Network [OSTI]

    Greminger, Douglas C.

    2012-01-01T23:59:59.000Z

    coking (Wurm, 1968) • Phenols are also the principal organic constituents in con- densate waters formed during coal

  20. Factors influencing biological treatment of MTBE contaminated ground water

    SciTech Connect (OSTI)

    Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

    2001-09-14T23:59:59.000Z

    Methyl tert-butyl ether (MTBE) contamination has complicated the remediation of gasoline contaminated sites. Many sites are using biological processes for ground water treatment and would like to apply the same technology to MTBE. However, the efficiency and reliability of MTBE biological treatment is not well documented. The objective of this study was to examine the operational and environmental variables influencing MTBE biotreatment. A fluidized bed reactor was installed at a fuel transfer station and used to treat ground water contaminated with MTBE and gasoline hydrocarbons. A complete set of chemical and operational data was collected during this study and a statistical approach was used to determine what variables were influencing MTBE treatment efficiency. It was found that MTBE treatment was more sensitive to up-set than gasoline hydrocarbon treatment. Events, such as excess iron accumulation, inhibited MTBE treatment, but not hydrocarbon treatment. Multiple regression analysis identified biomass accumulation and temperature as the most important variables controlling the efficiency of MTBE treatment. The influent concentration and loading of hydrocarbons, but not MTBE, also impacted MTBE treatment efficiency. The results of this study suggest guidelines for improving MTBE treatment. Long cell retention times in the reactor are necessary for maintaining MTBE treatment. The onset of nitrification only occurs when long cell retention times have been reached and can be used as an indicator in fixed film reactors that conditions favorable to MTBE treatment exist. Conversely, if the reactor can not nitrify, it is unlikely to have stable MTBE treatment.

  1. Environmental assessment of ground-water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met.

  2. Management of water extracted from carbon sequestration projects

    SciTech Connect (OSTI)

    Harto, C. B.; Veil, J. A. (Environmental Science Division)

    2011-03-11T23:59:59.000Z

    Throughout the past decade, frequent discussions and debates have centered on the geological sequestration of carbon dioxide (CO{sub 2}). For sequestration to have a reasonably positive impact on atmospheric carbon levels, the anticipated volume of CO{sub 2} that would need to be injected is very large (many millions of tons per year). Many stakeholders have expressed concern about elevated formation pressure following the extended injection of CO{sub 2}. The injected CO{sub 2} plume could potentially extend for many kilometers from the injection well. If not properly managed and monitored, the increased formation pressure could stimulate new fractures or enlarge existing natural cracks or faults, so the CO{sub 2} or the brine pushed ahead of the plume could migrate vertically. One possible tool for management of formation pressure would be to extract water already residing in the formation where CO{sub 2} is being stored. The concept is that by removing water from the receiving formations (referred to as 'extracted water' to distinguish it from 'oil and gas produced water'), the pressure gradients caused by injection could be reduced, and additional pore space could be freed up to sequester CO{sub 2}. Such water extraction would occur away from the CO{sub 2} plume to avoid extracting a portion of the sequestered CO{sub 2} along with the formation water. While water extraction would not be a mandatory component of large-scale carbon storage programs, it could provide many benefits, such as reduction of pressure, increased space for CO{sub 2} storage, and potentially, 'plume steering.' Argonne National Laboratory is developing information for the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) to evaluate management of extracted water. If water is extracted from geological formations designated to receive injected CO{sub 2} for sequestration, the project operator will need to identify methods for managing very large volumes of water most of which will contain large quantities of salt and other dissolved minerals. Produced water from oil and gas production also typically contains large quantities of dissolved solids. Therefore, many of the same practices that are established and used for managing produced water also may be applicable for extracted water. This report describes the probable composition of the extracted water that is removed from the formations, options for managing the extracted water, the pros and cons of those options, and some opportunities for beneficial use of the water. Following the introductory material in Chapter 1, the report is divided into chapters covering the following topics: (Chapter 2) examines the formations that are likely candidates for CO{sub 2} sequestration and provides a general evaluation of the geochemical characteristics of the formations; (Chapter 3) makes some preliminary estimates of the volume of water that could be extracted; (Chapter 4) provides a qualitative review of many potential technologies and practices for managing extracted water and for each technology or management practice, pros and cons are provided; (Chapter 5) explores the potential costs of water management; and (Chapter 6) presents the conclusions.

  3. Water Extraction from Coal-Fired Power Plant Flue Gas

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30T23:59:59.000Z

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

  4. Copyright 2009 The Author(s) Journal compilation 2009 National Ground Water Association.

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Copyright © 2009 The Author(s) Journal compilation © 2009 National Ground Water Association. NGWA.org Ground Water Monitoring & Remediation 29, no. 3/ Summer 2009/pages 93­104 93 Pore Water Characteristics/day. This model aquifer system contained a residual nonaqueous phase liquid (NAPL) that extended from

  5. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium.

  6. Non-Lawyers' Guide to Hearings before the Colorado Ground Water...

    Open Energy Info (EERE)

    Lawyers' Guide to Hearings before the Colorado Ground Water Commission Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  7. Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    Methods Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,...

  8. Pattern of shallow ground water flow at Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    methods Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Pattern of shallow ground water flow at Mount Princeton Hot Springs,...

  9. Dolomitization by ground-water flow systems in carbonate platforms

    SciTech Connect (OSTI)

    Simms, M.

    1984-09-01T23:59:59.000Z

    Dolomite occurs throughout the subsurface of modern carbonate platforms such as the Bahamas. Groundwater flow systems must be responsible for delivery of reactants needed for dolomitization. Reflux, freshwater lens flows, and thermal convection are large-scale flow systems that may be widespread in active platforms. The author has evaluated some aspects of the dynamics and characteristics of these processes with ground-water flow theory and by scaled sandbox experiments. Reflux is not restricted to hypersaline brines, but can occur with bankwaters of only slightly elevated salinity such as those found on the Bahama Banks today (42%). The lack of evaporites in a stratigraphic section, therefore, does not rule out the possibility that reflux may have operated. Flows associated with freshwater lenses include flow in the lens, in the mixing zone, and in the seawater beneath and offshore of the lens. Upward transfer of seawater through the platform margins occurs when surrounding cold ocean water migrates into the platform and is heated. This type of thermal convection (Kohout convection) has been studied by Francis Kohout in south Florida. The ranges of mass flux of magnesium in these processes are all comparable and are all sufficient to account for young dolomites beneath modern platforms. Each process yields dolomitized zones of characteristic shape and location and perhaps may be distinguishable in ancient rocks. The concepts presented here may have application to exploration for dolomite reservoirs in the Gulf Coast and elsewhere.

  10. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

  11. Development and chemical quality of a ground-water system in cast overburden as the Gibbons Creek Lignite Mine

    E-Print Network [OSTI]

    Borbely, Evelyn Susanna

    1988-01-01T23:59:59.000Z

    -water conditions which develop in response to surface mining. TMPA has supported research at the Gibbons Creek Lignite Mine in order to meet the needs of mine develop- ment and permitting, Most of the data on ground-water conditions 1n reclaimed spoil has been... on the west by the Navasota River, on the south by Gibbons Creek, and on the north by State Highway 30 (Figure 1). This area includes the Gibbons Creek Steam Electric Station. Lignite is extracted from two pits within the permit boundary, termed the A...

  12. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION Robert Pitt, Shirley Clark, and Richard Field1

    E-Print Network [OSTI]

    Clark, Shirley E.

    GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION Robert Pitt, Shirley Clark, pathogens, metals, and salts and other dissolved minerals. The intention of this paper is to identify known stormwater contaminants as to their potential to contaminant ground water and to provide guidance

  13. "Hot Water" in Lassen Volcanic National Park--Fumaroles, Steaming Ground, and Boiling Mudpots

    E-Print Network [OSTI]

    Torgersen, Christian

    "Hot Water" in Lassen Volcanic National Park-- Fumaroles, Steaming Ground, and Boiling Mudpots U, ydrothermal (hot water) and steaming ground. These features are re- lated to active volcanism, the largest fumarole (steam and volcanic-gas vent) in the park. The temperature of the high-velocity steam

  14. Analytical Studies on the Impact of Land Reclamation on Ground Water Flow

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    Analytical Studies on the Impact of Land Reclamation on Ground Water Flow by Jiu J, Jiaol, Subhas Nandy2, and Hailong LP Abstract Land reclamation has been a common practice to produce valuable land of the ground water system caused by reclamation. Introduction Land reclamation has played a significant role

  15. Improved estimates of the total correlation energy in the ground state of the water molecule

    E-Print Network [OSTI]

    Anderson, James B.

    Improved estimates of the total correlation energy in the ground state of the water molecule Arne National Laboratory, Richland, Washington 99352 Received 1 October 1996; accepted 5 February 1997 Two new calculations of the electronic energy of the ground state of the water molecule yield energies lower than those

  16. Characterizing Hydraulic Properties and Ground-Water Chemistry in Fractured-Rock Aquifers: A User's Manual

    E-Print Network [OSTI]

    Characterizing Hydraulic Properties and Ground-Water Chemistry in Fractured-Rock Aquifers: A User source for science about the Earth, its natural and living resources, natural hazards., 2007, Characterizing hydraulic properties and ground-water chemistry in fractured-rock aquifers: A user

  17. Hanford Site ground-water model: Geographic information system linkages and model enhancements, FY 1993

    SciTech Connect (OSTI)

    Wurstner, S.K.; Devary, J.L.

    1993-12-01T23:59:59.000Z

    Models of the unconfined aquifer are important tools that are used to (1) identify and quantify existing, emerging, or potential ground-water quality problems, (2) predict changes in ground-water flow and contaminant transport as waste-water discharge operations change, and (3) assess the potential for contaminants to migrate from the US Department of Energy`s Hanford Site through the ground water. Formerly, most of the numerical models developed at the Hanford Site were two-dimensional. However, contaminant concentrations cannot be accurately predicted with a two-dimensional model, which assumes a constant vertical distribution of contaminants in the aquifer. Development of two- and three-dimensional models of ground-water flow based on the Coupled Fluid, Energy, and Solute Transport (CFEST) code began in the mid- 1980s. The CFEST code was selected because of its ability to simulate both ground-water flow and contaminant transport. Physical processes that can be modeled by CFEST include aquifer geometry, heterogeneity, boundary conditions, and initial conditions. The CFEST ground-water modeling library has been integrated with the commercially available geographic information system (GIS) ARC/INFO. The display and analysis capabilities of a GIS are well suited to the size and diversity of databases being generated at the Hanford Site. The ability to visually inspect large databases through a graphical analysis tool provides a stable foundation for site assessments and ground-water modeling studies. Any ground-water flow model being used by an ongoing project should be continually updated and refined to reflect the most current knowledge of the system. The two-dimensional ground-water flow model being used in support of the Ground-Water Surveillance Project has recently been updated and enhanced. One major enhancement was the extension of the model area to include North Richland.

  18. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site is under way and is scheduled for completion in 1996. The tailings are being stabilized in-place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the environment. Currently, no points of exposure (e.g. a drinking water well); and no receptors of contaminated ground water have been identified at the Maybell site. Therefore, there are no current human health and ecological risks associated with exposure to contaminated ground water. Furthermore, if current site conditions and land- and water-use patterns do not change, it is unlikely that contaminated ground water would reach people or the ecological communities in the future.

  19. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  20. Ground-water contribution to dose from past Hanford Operations. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01T23:59:59.000Z

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ``ground-water pathway,`` which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  1. Pore Water Extraction Test Near 241-SX Tank Farm at the Hanford Site, Washington, USA

    SciTech Connect (OSTI)

    Eberlein, Susan J. [Washington River Protection Systems, Richland, WA (United States); Parker, Danny L. [Washington River Protection Systems, Richland, WA (United States); Tabor, Cynthia L. [Washington River Protection Systems, Richland, WA (United States); Holm, Melissa J. [Washington River Protection Systems, Richland, WA (United States)

    2013-11-11T23:59:59.000Z

    A proof-of-principle test is underway near the Hanford Site 241-SX Tank Farm. The test will evaluate a potential remediation technology that will use tank farm-deployable equipment to remove contaminated pore water from vadose zone soils. The test system was designed and built to address the constraints of working within a tank farm. Due to radioactive soil contamination and limitations in drilling near tanks, small-diameter direct push drilling techniques applicable to tank farms are being utilized for well placement. To address space and weight limitations in working around tanks and obstacles within tank farms, the above ground portions of the test system have been constructed to allow deployment flexibility. The test system utilizes low vacuum over a sealed well screen to establish flow into an extraction well. Extracted pore water is collected in a well sump,and then pumped to the surface using a small-diameter bladder pump.If pore water extraction using this system can be successfully demonstrated, it may be possible to target local contamination in the vadose zone around underground storage tanks. It is anticipated that the results of this proof-of-principle test will support future decision making regarding interim and final actions for soil contamination within the tank farms.

  2. EPA (Environmental Protection Agency) activities related to sources of ground-water contamination

    SciTech Connect (OSTI)

    Black-Coleman, W.

    1987-02-01T23:59:59.000Z

    The report contains a listing of EPA programs and activities, as of October 1986, that address 33 sources of potential ground-water contamination. The information on each activity is presented in a matrix format that is organized by type of contamination source. The following information is presented for each program and activity listed: title, lead office, contact person, type of activity (study, regulation, guidance, strategy, etc.) status, and a summary of the activity. The 33 sources of ground-water contamination are discussed in the 1984 EPA Office of Technology report: Protecting the Nations Ground Water from Contamination.

  3. Colorimetric Determination of Nitrite in Foods Principle: The sample is extracted with distilled water and the aqueous extract clarified

    E-Print Network [OSTI]

    Nazarenko, Alexander

    water and the aqueous extract clarified with zinc hydroxide. Sulfanilic acid is diazotisedColorimetric Determination of Nitrite in Foods Principle: The sample is extracted with distilled/50 mL. The absorbance range should extend from 0 to 0.6 approx. E. Extraction Procedure Weigh ca 100g

  4. Coupled cluster benchmarks of water monomers and dimers extracted from density-functional theory liquid water: The importance of monomer

    E-Print Network [OSTI]

    Alavi, Ali

    Coupled cluster benchmarks of water monomers and dimers extracted from density-functional theory functionals in simulations of liquid water, water monomers and dimers were extracted from a PBE simulation liquid water: The importance of monomer deformations Biswajit Santra,1 Angelos Michaelides,1,2,a

  5. Original article Water extraction by tree fine roots in the forest

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Water extraction by tree fine roots in the forest floor of a temperate Fagus Germany. By field and laboratory measurements the aim was to quantify the water extraction by those tree extract more water per standing crop of root biomass and, thus, are thought to operate more economically

  6. Feasibility study of extracting runoff data from satellite altimetry over continental surface waters

    E-Print Network [OSTI]

    Stuttgart, Universität

    the feasibility of extracting runoff data using satellite altimetry over all possible continental surface waters- ered algorithm for extracting runoff from the satellite altimetry is based on making water level. not feasible be- cause of bad quality of extracted water level time series class 4. impossible. Computed runoff

  7. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water.

  8. Streamflow, Infiltration, and Ground-Water Recharge at Abo Arroyo, New Mexico

    E-Print Network [OSTI]

    Streamflow, Infiltration, and Ground-Water Recharge at Abo Arroyo, New Mexico USGS Professional, California (amystew@gmail.com). 2 Present address D.B. Stephens and Associates, Albuquerque, New Mexico

  9. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Hazardous Waste Management 

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

    1997-08-29T23:59:59.000Z

    Products such as paints, solvents, adhesives, oils, cleaners, batteries, pesticides and wood preservatives are commonly used in households and on farms, but they can be hazardous to ground water if handled improperly. This publication explains...

  10. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Household Wastewater Treatment

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    Household wastewater treatment systems (septic systems) can contaminate ground water unless they are properly designed, constructed and maintained. This publication describes various kinds of systems and guides the homeowner in assessing...

  11. Environmental Assessment of Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    N /A

    2002-08-13T23:59:59.000Z

    The U.S. Department of Energy (DOE) is in the process of selecting a ground water compliance strategy for the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. This Environmental Assessment (EA) discusses two alternatives and the effects associated with each. The two alternatives are (1) natural flushing coupled with institutional controls and continued monitoring and (2) no action. The compliance strategy must meet U.S. Environmental Protection Agency (EPA) ground water standards defined in Title 40 ''Code of Federal Regulations'' Part 192, Subpart B, in areas where ground water beneath and around the site is contaminated as a result of past milling operations. It has been determined that contamination in the ground water at the Gunnison site consists of soluble residual radioactive material (RRM) as defined in the Uranium Mill Tailings Radiation Control Act (UMTRCA).

  12. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site.

  13. EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill...

  14. Ground penetrating radar characterization of wood piles and the water table in Back Bay, Boston

    E-Print Network [OSTI]

    LeFrançois, Suzanne O'Neil, 1980-

    2003-01-01T23:59:59.000Z

    Ground penetrating radar (GPR) surveys are performed to determine the depth to the water table and the tops of wood piles beneath a residential structure at 122 Beacon Street in Back Bay, Boston. The area of Boston known ...

  15. Ground-water hydrogeology and geochemistry of a reclaimed lignite surface mine

    E-Print Network [OSTI]

    Pollock, Clifford Ralph

    1982-01-01T23:59:59.000Z

    GROUND-WATER HYDROGEOLOGY AND GEOCHEMISTRY OF A RECLAIMED LIGNITE SURFACE MINE A Thesis by CLIFFORD RALPH POLLOCK Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE August 1982 Major Subject: Geology GROUND-WATER HYDROGEOLOGY AND GEOCHEMISTRY OF A RECLAIMED LIGNITE SURFACE MINE A Thesis by CLIFFORD RALPH POLLOCK Approved as to sty1e and content by: (Chairman of Committee) ember) (Member (Member) F...

  16. Ground-water monitoring at the Hanford Site, January-December 1984

    SciTech Connect (OSTI)

    Cline, C.S.; Rieger, J.T.; Raymond, J.R.

    1985-09-01T23:59:59.000Z

    This program is designed to evaluate existing and potential pathways of exposure to radioactivity and hazardous chemicals from site operations. This document contains an evaluation of data collected during CY 1984. During 1984, 339 monitoring wells were sampled at various times for radioactive and nonradioactive constituents. Two of these constituents, specifically, tritium and nitrate, have been selected for detailed discussion in this report. Tritium and nitrate in the primary plumes originating from the 200 Areas continue to move generally eastward toward the Columbia River in the direction of ground-water flow. The movement within these plumes is indicated by changes in trends within the analytical data from the monitoring wells. No discernible impact on ground water has yet been observed from the start-up of the PUREX plant in December 1983. The shape of the present tritium plume is similar to those described in previous ground-water monitoring reports, although slight changes on the outer edges have been noted. Radiological impacts from two potential pathways for radionuclide transport in ground water to the environment are discussed in this report. The pathways are: (1) human consumption of ground water from onsite wells, and (2) seepage of ground water into the Columbia River. Concentrations of tritium in spring samples that were collected and analyzed in 1983, and in wells sampled adjacent to the Columbia River in 1984 confirmed that constituents in the ground water are entering the river via springs and subsurface flow. The primary areas where radionuclides enter the Columbia River via ground-water flow are the 100-N and 300 Areas and the shoreline adjacent to the Hanford Townsite. 44 refs., 25 figs., 11 tabs.

  17. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site began in 1995 and is scheduled for completion in 1996. The tailings are being stabilized in place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results presented in this document and other evaluations will determine whether any action is needed to protect human health or the environment.

  18. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    SciTech Connect (OSTI)

    Elizabeth C. Chapman,† Rosemary C. Capo,† Brian W. Stewart,*,† Carl S. Kirby,‡ Richard W. Hammack,§

    2012-02-24T23:59:59.000Z

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ?375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?Sr SW = +13.8 to +41.6, where ?Sr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  19. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    SciTech Connect (OSTI)

    Chapman, Elizabeth C; Capo, Rosemary C.; Stewart, Brian W.; Kirby, Carl S.; Hammack, Richard W.; Schroeder, Karl T.; Edenborn, Harry M.

    2012-03-20T23:59:59.000Z

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of 375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?{sub Sr}{sup SW} = +13.8 to +41.6, where ?{sub Sr}{sup SW} is the deviation of the {sup 87}Sr/{sup 86}Sr ratio from that of seawater in parts per 10{sup 4}); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  20. Acoustically enhanced remediation of contaminated soils and ground water. Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The Phase 1 laboratory bench-scale investigation results have shown that acoustically enhanced remediation (AER) technology can significantly accelerate the ground water remediation of non-aqueous phase liquids (NAPLs) in unconsolidated soils. The testing also determined some of the acoustic parameters which maximize fluid and contaminant extraction rates. A technology merit and trade analysis identified the conditions under which AER could be successfully deployed in the field, and an analysis of existing acoustical sources and varying methods for their deployment found that AER technology can be successfully deployed in-situ. Current estimates of deployability indicate that a NAPL plume 150 ft in diameter can be readily remediated. This program focused on unconsolidated soils because of the large number of remediation sites located in this type of hydrogeologic setting throughout the nation. It also focused on NAPLs and low permeability soil because of the inherent difficult in the remediation of NAPLs and the significant time and cost impact caused by contaminated low permeability soils. This overall program is recommended for Phase 2 which will address the technology scaling requirements for a field scale test.

  1. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Slick Rock, Colorado. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    Two UMTRA (Uranium Mill Tailings Remedial Action) Project sites are near Slick Rock, Colorado: the North Continent site and the Union Carbide site. Currently, no one uses the contaminated ground water at either site for domestic or agricultural purposes. However, there may be future land development. This risk assessment evaluates possible future health problems associated with exposure to contaminated ground water. Since some health problems could occur, it is recommended that the contaminated ground water not be used as drinking water.

  2. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Well-Head Management and Conditions

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    The condition of a water well and its proximity to contamination sources determine the risk it poses to ground water. Topics covered include well location, well construction, well age and type, well depth, well maintenance, water testing...

  3. Results of ground-water monitoring for radionuclides in the Separations Area, 1987

    SciTech Connect (OSTI)

    Serkowski, J.A.; Law, A.G.; Ammerman, J.J.; Schatz, A.L.

    1988-04-01T23:59:59.000Z

    The purpose of this report is to present a summary of the results for calendar year 1987 of the Westinghouse Hanford Company (Westinghouse Hanford) ground-water monitoring program for radiological constituents in the Separations Area of the Hanford Site. This monitoring program is implemented to partially fulfill the US Department of Energy (DOE) requirement that radioactivity in the environment be monitored. The program is also used to monitor operating disposal facilities for compliance with DOE requirements. The Separations Area radionuclide ground-water monitoring program is coordinated with other ground-water monitoring activities on the Hanford Site conducted by Westinghouse Hanford and Pacific Northwest Laboratory (PNL). The PNL program includes sampling for both radioactive and nonradioactive chemicals throughout the Site (including 100 and 300 Areas) and is responsible for estimating and evaluating the impact on ground water to the general public from all operations at the Hanford Site. Ground water characterization and monitoring for compliance with Resource Conservation and Recovery Act (RCRA) is also being conducted at facilities on the Hanford Site.

  4. Bioremediation of ground water contaminants at a uranium mill tailings site

    SciTech Connect (OSTI)

    Barton, L.L.; Nuttall, H.E.; Thomson, B.M.; Lutze, W. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-12-31T23:59:59.000Z

    Ground water contaminated with uranium from milling operations must be remediated to reduce the migration of soluble toxic compounds. At the mill tailings site near Tuba City, Arizona (USA) the approach is to employ bioremediation for in situ immobilization of uranium by bacterial reduction of uranyl, U(VI), compounds to uraninite, U(IV). In this initial phase of remediation, details are provided to indicate the magnitude of the contamination problem and to present preliminary evidence supporting the proposition that bacterial immobilization of uranium is possible. Additionally, consideration is given to contaminating cations and anions that may be at toxic levels in ground water at this uranium mill tailing site and detoxification strategies using bacteria are addressed. A model concept is employed so that results obtained at the Tuba City site could contribute to bioremediation of ground water at other uranium mill tailings sites.

  5. HOT PHENOL RNA EXTRACTION PROTOCOL 1) Set the water bath to 800

    E-Print Network [OSTI]

    Gill, Kulvinder

    HOT PHENOL RNA EXTRACTION PROTOCOL 1) Set the water bath to 800 C. 2) Make 50 mL Extraction bufferL SDS = 0.5 gm DEPC treated water = 43.2 mL Total = 50 mL 3) Add 50 mL phenol (pH = 4.7), in 50 mL extraction buffer (final concentration of 1:1). For small sample add 200 to 300ul of 1Extraction buffer: 1

  6. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    SciTech Connect (OSTI)

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

    1992-11-01T23:59:59.000Z

    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992.

  7. Predicted impacts of future water level decline on monitoring wells using a ground-water model of the Hanford Site

    SciTech Connect (OSTI)

    Wurstner, S.K.; Freshley, M.D.

    1994-12-01T23:59:59.000Z

    A ground-water flow model was used to predict water level decline in selected wells in the operating areas (100, 200, 300, and 400 Areas) and the 600 Area. To predict future water levels, the unconfined aquifer system was stimulated with the two-dimensional version of a ground-water model of the Hanford Site, which is based on the Coupled Fluid, Energy, and Solute Transport (CFEST) Code in conjunction with the Geographic Information Systems (GIS) software package. The model was developed using the assumption that artificial recharge to the unconfined aquifer system from Site operations was much greater than any natural recharge from precipitation or from the basalt aquifers below. However, artificial recharge is presently decreasing and projected to decrease even more in the future. Wells currently used for monitoring at the Hanford Site are beginning to go dry or are difficult to sample, and as the water table declines over the next 5 to 10 years, a larger number of wells is expected to be impacted. The water levels predicted by the ground-water model were compared with monitoring well completion intervals to determine which wells will become dry in the future. Predictions of wells that will go dry within the next 5 years have less uncertainty than predictions for wells that will become dry within 5 to 10 years. Each prediction is an estimate based on assumed future Hanford Site operating conditions and model assumptions.

  8. Commercial Light Water Reactor Tritium Extraction Facility Geotechnical Summary Report

    SciTech Connect (OSTI)

    Lewis, M.R.

    2000-01-11T23:59:59.000Z

    A geotechnical investigation program has been completed for the Circulating Light Water Reactor - Tritium Extraction Facility (CLWR-TEF) at the Savannah River Site (SRS). The program consisted of reviewing previous geotechnical and geologic data and reports, performing subsurface field exploration, field and laboratory testing and geologic and engineering analyses. The purpose of this investigation was to characterize the subsurface conditions for the CLWR-TEF in terms of subsurface stratigraphy and engineering properties for design and to perform selected engineering analyses. The objectives of the evaluation were to establish site-specific geologic conditions, obtain representative engineering properties of the subsurface and potential fill materials, evaluate the lateral and vertical extent of any soft zones encountered, and perform engineering analyses for slope stability, bearing capacity and settlement, and liquefaction potential. In addition, provide general recommendations for construction and earthwork.

  9. The recovery of crude oil spilled on a ground water aquifer 

    E-Print Network [OSTI]

    Malter, Paul Lawrence

    1983-01-01T23:59:59.000Z

    THE RECOVERY OF CRUDE OIL SPILLED ON A GROUND WATER AQUIFER A Thesis by PAUL LAWRENCE MALTER Approved as to style and content by: oy W, ann, J (Ch irman of Committee) / Dona McDona (Head of Department) as (Me ) 0 s Le a . ~e e (Member...) May 1983 ABSTRACT The Recovery of Crude Oil Spilled on a Ground Water Aquifer. (Nay 1983) Paul Lawrence Malter, B. S. , Texas A6K University Chairman of Advisory Committee: Roy W. Bann, Jr. Case histories of previous petroleum spill cleanups...

  10. Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    None

    2003-04-23T23:59:59.000Z

    This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as Attachment 1.

  11. Environmental controls for underground coal gasification: ground-water effects and control technologies

    SciTech Connect (OSTI)

    Mead, W.; Raber, E.

    1980-03-14T23:59:59.000Z

    Underground coal gasfication (UCG) promises to provide economic access to an enormous deep-coal resource. It is, therefore, of considerable importance to develop appropriate environmental controls for use in conjunction with the UCG process. The Lawrence Livermore Laboratory has conducted three UCG experiments at its Hoe Creek site in northeastern Wyoming. Environmental studies are being conducted in conjunction with these UCG experiments, including an investigation of changes in local ground-water quality and subsidence effects. Ground-water monitoring and geotechnical measurements have helped to clarify the environmental significance of reaction-product contaminants that remain underground following gasification, and the implications of cavity roof collapse and aquifer interconnection. These investigations have led to the development of preliminary plans for a specific method of ground water quality restoration utilizing activated carbon adsorption. Unconventional technologies are also being investigated that may be appropriate for restoring ground water that has been contaminated as a result of UCG operations. These water treatment technologies are being explored as possible supplements to natural controls and process restrictions.

  12. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota, evaluates the potential impacts to public health or the environment from contaminated ground water at this site. This contamination is a result of the uraniferous lignite ashing process, when coal containing uranium was burned to produce uranium. Potential risk is quantified only for constituents introduced by the processing activities and not for the constituents naturally occurring in background ground water in the site vicinity. Background ground water, separate from any site-related contamination, imposes a percentage of the overall risk from ground water ingestion in the Bowman site vicinity. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to address soil and ground water contamination at the site. The UMTRA Surface Project involves the determination of the extent of soil contamination and design of an engineered disposal cell for long-term storage of contaminated materials. The UMTRA Ground Water Project evaluates ground water contamination. Based on results from future site monitoring activities as defined in the site observational work plan and results from this risk assessment, the DOE will propose an approach for managing contaminated ground water at the Bowman site.

  13. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  14. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Tuba City, Arizona

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This document evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium mill site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1990 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine what remedial actions are necessary for contaminated ground water at the site.

  15. Pacific Northwest National Laboratory Grounds Maintenance: Best Management Practice Case Studies #4 and #5 - Water Efficient Landscape and Irrigation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-08-01T23:59:59.000Z

    FEMP Water Efficiency Best Management Practices #4 and #5 Case Study: Overview of the Pacific Northwest National Laboratory grounds maintenance program and results.

  16. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards.

  17. Pore-Water Extraction Intermediate-Scale Laboratory Experiments and Numerical Simulations

    SciTech Connect (OSTI)

    Oostrom, Martinus; Freedman, Vicky L.; Wietsma, Thomas W.; Truex, Michael J.

    2011-06-30T23:59:59.000Z

    A series of flow cell experiments was conducted to demonstrate the process of water removal through pore-water extraction in unsaturated systems. In this process, a vacuum (negative pressure) is applied at the extraction well establishing gas and water pressure gradients towards the well. The gradient may force water and dissolved contaminants, such as 99Tc, to move towards the well. The tested flow cell configurations consist of packings, with or without fine-grained well pack material, representing, in terms of particle size distribution, subsurface sediments at the SX tank farm. A pore water extraction process should not be considered to be equal to soil vapor extraction because during soil vapor extraction, the main goal may be to maximize gas removal. For pore water extraction systems, pressure gradients in both the gas and water phases need to be considered while for soil vapor extraction purposes, gas phase flow is the only concern. In general, based on the limited set (six) of flow experiments that were conducted, it can be concluded that pore water extraction rates and cumulative outflow are related to water content, the applied vacuum, and the dimensions of the sediment layer providing the extracted water. In particular, it was observed that application of a 100-cm vacuum (negative pressure) in a controlled manner leads to pore-water extraction until the water pressure gradients towards the well approach zero. Increased cumulative outflow was obtained with an increase in initial water content from 0.11 to 0.18, an increase in the applied vacuum to 200 cm, and when the water-supplying sediment was not limited. The experimental matrix was not sufficiently large to come to conclusions regarding maximizing cumulative outflow.

  18. Baseline risk assessment of ground water contamination at the inactive uriniferous lignite ashing site near Belfield, North Dakota

    SciTech Connect (OSTI)

    NONE

    1994-08-01T23:59:59.000Z

    This Baseline Risk Assessment of Ground Water Contamination at the Inactive Uraniferous Lignite Ashing Site Near Belfield, North Dakota, evaluates potential impacts to public health or the environment resulting from ground water contamination at the site where coal containing uranium was burned to produce uranium. The US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project is evaluating plans to remedy soil and ground water contamination at the site. Phase I of the UMTRA Project consists of determining the extent of soil contamination. Phase II of the UMTRA Project consists of evaluating ground water contamination. Under Phase II, results of this risk assessment will help determine what remedial actions may be necessary for contaminated ground water at the site. This risk assessment evaluates the potential risks to human health and the environment resulting from exposure to contaminated ground water as it relates to historic processing activities at the site. Potential risk is quantified for constituents introduced from the processing activities, and not for those constituents naturally occurring in water quality in the site vicinity. Background ground water quality has the potential to cause adverse health effects from exposure through drinking. Any risks associated with contaminants attributable to site activities are incremental to these risks from background ground water quality. This incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition.

  19. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project`s second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water.

  20. Field evaluation of ground water sampling devices for volatile organic compounds

    SciTech Connect (OSTI)

    Muska, C F; Colven, W P; Jones, V D; Scogin, J T; Looney, B B; Price, V Jr

    1986-01-01T23:59:59.000Z

    Previous studies conducted under laboratory conditions demonstrated that the type of device used to sample ground water contaminated with volatile organic compounds can significantly influence and analytical results. The purpose of this study was to evaluate, under field conditions, both commercial and developmental ground water sampling devices as part of an ongoing ground water contamination investigation and remediation program at the Savannah River Plant (SRP). Ground water samples were collected using six types of sampling devices in monitoring wells of different depths and concentrations of volatile organic contaminants (primarily trichloroethylene and tetrachloroethylene). The study matrix was designed to statistically compare the reuslts of each sampling device under the test conditions. Quantitative and qualitative evaluation criteria were used to determine the relative performance of each device. Two categories of sampling devices were evaluated in this field study, positive displacement pumps and grab samplers. The positive displacement pumps consisted of a centrifugal (mechanical) pump and a bladder pump. The grab samples tested were a syringe sampler, a dual-check valve bailer, a surface bomb sampler, and a pressurized bailer. Preliminary studies were conducted to establish the analytical and sampling variability associated with each device. All six devices were then used to collect ground water samples in water table (unconfined), semi-confined aquifer, and confined aquifer monitoring wells. Results were evaluated against a set of criteria that included intrasampling device variability (precision), volatile organic concentration (accuracy), sampling and analytical logistics, and cost. The study showed that, by using careful and reproducible procedures, overall sampling variability is low regardless of sampling device.

  1. Ground-water maps of the Hanford Site Separations Area, December 1987

    SciTech Connect (OSTI)

    Schatz, A.L.; Ammerman, J.J.

    1988-03-01T23:59:59.000Z

    The ground-water maps of the Separations Area are prepared by the Environmental Technology Section of the Defense Waste Management Division of Westinghouse Hanford Company. The Separations Area consists of the 200 East and 200 West Areas, where chemical processing activities are carried out. This set of ground-water maps consists of a water-table map of the unconfined aquifer, a depth-to-water map of the unconfined aquifer, and a potentiometric map of the uppermost confined aquifer (the Rattlesnake Ridge sedimentary interbed) in the area where West Lake, the deactivated Gable Mountain Pond, and the B Pond system are located. The Separations Area water-table map is prepared from water-level measurements made in June and December. For the December 1987 map approximately 200 wells were used for contouring the water table. The water-table mound beneath the deactivated U Pond has decreased in size since the June 1987 measurements were taken, reflecting the impact of shutting off flow to the pond in the fall of 1984. This mound has declined approximately 8 ft. since 1984. The water-table map also shows the locations of wells where the December 1987 measurements were made, and the data for these measurements are listed.

  2. Ground-Water Recharge in the Arid and Semiarid Southwestern United States --

    E-Print Network [OSTI]

    Ground-Water Recharge in the Arid and Semiarid Southwestern United States -- Climatic and Geologic and semiarid southwest- ern United States results from the complex interplay of climate, geology and Range subregions. Introduction The arid and semiarid southwestern United States is among the fastest

  3. Status of the ground water flow model for the UMTRA Project, Shiprock, New Mexico, site

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    A two-dimensional numerical model was constructed for the alluvial aquifer in the area of the Uranium Mill Tailings Remedial Action (UMTRA) Project Shiprock, New Mexico, site. This model was used to investigate the effects of various hydrologic parameters on the evolution of the ground water flow field. Results of the model are useful for defining uncertainties in the site conceptual model and suggesting data collection efforts to reduce these uncertainties. The computer code MODFLOW was used to simulate the two-dimensional flow of ground water in the alluvium. The escarpment was represented as a no-flow boundary. The San Juan River was represented with the MODFLOW river package. A uniform hydraulic conductivity distribution with the value estimated by the UMTRA Project Technical Assistance Contractor (TAC) and a uniform recharge distribution was used. Infiltration from the flowing artesian well was represented using the well package. The ground water flow model was calibrated to ground water levels observed in April 1993. Inspection of hydrographs shows that these levels are representative of typical conditions at the site.

  4. Environmental Assessment of Ground Water Compliance at the Durango, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    N /A

    2002-11-29T23:59:59.000Z

    The U.S. Department of Energy (DOE) is proposing a ground water compliance strategy for the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Durango, Colorado. DOE has prepared this environmental assessment to provide the public with information concerning the potential effects of this proposed strategy.

  5. ReproducedfromJournalofEnvironmentalQuality.PublishedbyASA,CSSA,andSSSA.Allcopyrightsreserved. Ground Water Quality

    E-Print Network [OSTI]

    Simpkins, William W.

    for an unfractured till (Freeze als that preclude vertical and horizontal transport of and Cherry, 1979; JournalofEnvironmentalQuality.PublishedbyASA,CSSA,andSSSA.Allcopyrightsreserved. Ground Water Quality Fracture-Controlled Nitrate and Atrazine Transport in Four Iowa Till Units Martin F-quantify the influence of fractures on solute fate and transport using three conservative and two nonconservative tracers

  6. Selenium in Oklahoma ground water and soil. Quarterly report No. 6

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30T23:59:59.000Z

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  7. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado, evaluates potential public health and environmental impacts resulting from ground water contamination at the former North Continent (NC) and Union Carbide (UC) uranium mill processing sites. The tailings at these sites will be placed in a disposal cell at the proposed Burro Canyon, Colorado, site. The US Department of Energy (DOE) anticipates the start of the first phase remedial action by the spring of 1995 under the direction of the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project will evaluate ground water contamination. This baseline risk assessment is the first site-specific document for these sites under the Ground Water Project. It will help determine the compliance strategy for contaminated ground water at the site. In addition, surface water and sediment are qualitatively evaluated in this report.

  8. Baseline risk assessment of ground water contamination at the inactive uriniferous lignite ashing site near Belfield, North Dakota. Revision 1

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    This risk assessment evaluates the potential for impacts to public health or the environment from contaminated ground water at this site caused by the burning of coal containing uranium to produce uranium. Potential risk is quantified for constituents introduced from the processing activities and not for those constituents naturally occurring in background ground water in the site vicinity. Because background ground water quality has the potential to cause adverse health effects from exposure through drinking, any risks associated with contaminants attributable to site activities are incremental to these risks from background. The incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition. The US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to remedy soil and ground water contamination at the site. The UMTRA Surface Project consists of determining the extent of soil contamination and disposing of the contaminated soils in an engineered disposal cell. The UMTRA Ground Water Project consists of evaluating ground water contamination. Under the UMTRA Ground Water Project, results of this risk assessment will help determine what ground water compliance strategy may be applied at the site.

  9. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  10. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  11. Ground Water Surveillance Monitoring Implementation Guide for Use with DOE O 450.1, Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-06-24T23:59:59.000Z

    This Guide assists DOE sites in establishing and maintaining surveillance monitoring programs to detect future impacts on ground water resources from site operations, to track existing ground water contamination, and to assess the potential for exposing the general public to site releases. Canceled by DOE N 251.82.

  12. Ground-water temperature fluctuations at Lyons Ferry Fish Hatchery, Washington

    SciTech Connect (OSTI)

    Oberlander, P.L.; Myers, D.A.

    1987-06-01T23:59:59.000Z

    The well field serving the Lyons Ferry Fish Hatchery has experienced reduced water temperatures following continued, periodic withdrawal of large volumes of water. In January 1985, the well field temperature was 49/sup 0/F, which is less than the optimal 52/sup 0/F for raising salmon and steelhead trout. The aquifer supplying the hatchery is in hydraulic and thermal connection with the Snake River and a flooded embayment of the Palouse River. Ground-water temperatures in the well field cycle on an annual basis in response to changes in surface water temperature and pumping rate. Numerical simulation of the well field, using a simplified mixing cell model, demonstrates the coupling of well field hydraulics and aquifer thermal response. Alternative pumping schedules indicate that it is feasible to adjust ground-water pumping to effectively store heat in the aquifer during the summer months when surface water temperatures are elevated. Sensitivity analysis of this model indicated that the primary controls of the system's thermal response are the volume of the aquifer assumed to contribute to the well field and temperature of the overlying surface water body.

  13. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site`s contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determine what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination.

  14. Pore-Water Extraction from Unsaturated Porous Media: Intermediate-Scale Laboratory

    SciTech Connect (OSTI)

    Oostrom, Martinus; Truex, Michael J.; Wietsma, Thomas W.; Tartakovsky, Guzel D.

    2014-08-15T23:59:59.000Z

    As a remedial approach, vacuum-induced pore-water extraction offers the possibility of contaminant and water removal from the vadose zone, which may be beneficial in reducing the flux of vadose zone contaminants to groundwater. Vadose zone water extraction is being considered at the Hanford Site in Washington State as a means to remove technetium-99 contamination from low permeability sediments with relatively high water contents. A series of intermediate-scale laboratory experiments have been conducted to improve the fundamental understanding and limitations of the technique. Column experiments were designed to investigate the relations between imposed suctions, water saturations, and water production. Flow cell experiments were conducted to investigate the effects of high-permeability layers and near-well compaction on pore-water extraction efficiency. Results show that water extraction from unsaturated systems can be achieved in low permeability sediments, provided that the initial water saturations are relatively high. The presence of a high-permeability layer decreased the yield, and compaction near the well screen had a limited effect on overall performance. In all experiments, large pressure gradients were observed near the extraction screen. Minimum requirements for water extraction include an imposed vacuum-induced suction larger than the initial sediment capillary pressure, in combination with a fully saturated seepage-face boundary. A numerical multiphase simulator with a coupled seepage-face boundary conditions was used to simulate the experiments. Reasonable matches were obtained between measured and simulated results for both water extraction and capillary pressures, suggesting that numerical simulations may be used as a design tool for field-scale applications of pore-water extraction.

  15. A Modeling Study of the Potential Water Quality Impacts from In-Stream Tidal Energy Extraction

    SciTech Connect (OSTI)

    Wang, Taiping; Yang, Zhaoqing; Copping, Andrea E.

    2013-11-09T23:59:59.000Z

    To assess the effects of tidal energy extraction on water quality in a simplified estuarine system, which consists of a tidal bay connected to the coastal ocean through a narrow channel where energy is extracted using in-stream tidal turbines, a three-dimensional coastal ocean model with built-in tidal turbine and water quality modules was applied. The effects of tidal energy extraction on water quality were examined for two energy extraction scenarios as compared with the baseline condition. It was found, in general, that the environmental impacts associated with energy extraction depend highly on the amount of power extracted from the system. Model results indicate that, as a result of energy extraction from the channel, the competition between decreased flushing rates in the bay and increased vertical mixing in the channel directly affects water quality responses in the bay. The decreased flushing rates tend to cause a stronger but negative impact on water quality. On the other hand, the increase of vertical mixing could lead to higher bottom dissolved oxygen at times. As the first modeling effort directly aimed at examining the impacts of tidal energy extraction on estuarine water quality, this study demonstrates that numerical models can serve as a very useful tool for this purpose. However, more careful efforts are warranted to address system-specific environmental issues in real-world, complex estuarine systems.

  16. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP). The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. The QAIP is authorized and approved by the TAC Project Manager and QA manager. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization activities are carried out in a manner that will protect public health and safety, promote the success of the UMTRA Project and meet or exceed contract requirements.

  17. The detection and modelling of surface thermal structures and ground water discharges

    E-Print Network [OSTI]

    Roberts, Douglas Vincent

    1985-01-01T23:59:59.000Z

    . , Southern Illinois University Chairman of Advisory Committee: Dr. Earl R. Hoskins On March 29, 1973, data were collected by a thermal infrared scanner mounted in a twin-engine aircraft over a 55-mile stretch of the Clark Fork River in northwestern... on a VAX Il/750 interfaced with an I'S Model 70 processing system. Both qualitative and quantitative processing techniques were employed to identify and describe the surface temperature patterns and ground water discharges into the river. Computer...

  18. TECHNICAL EVALUATION REPORT TUBA CITY FINAL PHASE I GROUND-WATER COMPLIANCE ACTION PLAN

    E-Print Network [OSTI]

    unknown authors

    2000-01-01T23:59:59.000Z

    remediation at the site, and is expected to last approximately 3 years. Phase I includes installation of additional recovery wells and Phase II will include expansion of remediation capacity and monitoring to ensure the aquifer restoration standards are met. Phases I and II of ground-water remediation are expected to last approximately 12 years. DESCRIPTION OF THE REQUEST: The U.S. Department of Energy (DOE) has requested concurrence from the U.S. Nuclear

  19. U.S. Department of Energy Uranium Mill Tailings Remedial Action Ground Water Project: Project plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA Project processing sites. The compliance strategy for the processing sites must satisfy the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1987). This scope of work will entail the following activities on a site-specific basis: Develop a compliance strategy based on modification of the UMTRA Surface Project RAPs or develop Ground Water Project RAPs with NRC concurrence on the RAP and full participation of the affected states and tribes. Implement the RAP to include institutional controls, where appropriate, as an interim measure until compliance with the standards is achieved. Institute long-term verification monitoring for transfer to a separate long-term surveillance program on or before the Project end date. Prepare certification or confirmation reports and modify the long-term surveillance plan (LTSP), where needed, on those sites completed prior to the Project end date.

  20. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    For the UMTRA Project site located near Canonsburg, Pennsylvania (the Canonsburg site), the Surface Project cleanup occurred from 1983 to 1985, and involved removing the uranium processing mill tailings and radioactively contaminated soils and materials from their original locations and placing them in a disposal cell located on the former Canonsburg uranium mill site. This disposal cell is designed to minimize radiation emissions and further contamination of ground water beneath the site. The Ground Water Project will evaluate the nature and the extent of ground water contamination resulting from uranium processing at the former Canonsburg uranium mill site, and will determine a ground water strategy for complying with the US Environmental Protection Agency`s (EPA) ground water standards established for the UMTRA Project. For the Canonsburg site, an evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Canonsburg site. The results of this report and further site characterization of the Canonsburg site will be used to determine how to protect public health and the environment, and how to comply with the EPA standards.

  1. Use of Mini-Sprinklers to Strip Trichloroethylene and Tetrachloroethylene from Contaminated Ground Water.

    SciTech Connect (OSTI)

    Brerisford, Yvette, C.; Bush, Parshall, B.; Blake, John, I.; Bayer, Cassandra L.

    2003-01-01T23:59:59.000Z

    Berisford, Y.C., P.B. Bush, J.I. Blake, and C.L. Bayer. 2003. Use of mini-sprinklers to strip trichloroethylene and tetrachloroethylene from contaminated ground water. J. Env. Qual. 32:801-815. Three low-volume mini-sprinklers were tested for their efficacy to strip trichloroethylene (TCE) and tetrachloroethylene (PCE) from water. Deionized water spiked with TCE and PCE was pumped through a mini-sprinkler supported on top of a 1.8-m-tall. Water was collected in collection vessels at 0.61 and 1.22 m above the ground on support columns that were spaced at 0.61-m intervals from the riser base, and samples were composited per height and distance from the riser. Overall, air-stripping reduced dissolved concentrations of TCE and PCE by 99.1 to 100 and 96.9 to 100%, respectively. Mini-sprinklers offer the advantages of (i) easy setup in series that can be used on practically any terrain; (ii) operation over a long period of time that does not threaten aquifer depletion; (iii) use in small or confined aquifers in which the capacity is too low to support large irrigation or pumping systems; and (iv) use in forests in which the small, low-impact droplets of the mini-sprinklers do not damage bark and in which trees can help manage (via evapotransporation) excess waste water.

  2. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

  3. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  4. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

  5. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Lakeview, Oregon. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the UMTRA Project site near Lakeview, Oregon, was completed in 1989. The mill operated from February 1958 to November 1960. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  6. Ground water elevation monitoring at the Uranium Mill Tailings Remedial Action Salt Lake City, Utah, Vitro processing site

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    In February 1994, a ground water level monitoring program was begun at the Vitro processing site. The purpose of the program was to evaluate how irrigating the new golf driving range affected ground water elevations in the unconfined aquifer. The program also evaluated potential impacts of a 9-hole golf course planned as an expansion of the driving range. The planned golf course expansion would increase the area to be irrigated and, thus, the water that could infiltrate the processing site soil to recharge the unconfined aquifer. Increased water levels in the aquifer could alter the ground water flow regime; contaminants in ground water could migrate off the site or could discharge to bodies of surface water in the area. The potential effects of expanding the golf course have been evaluated, and a report is being prepared. Water level data obtained during this monitoring program indicate that minor seasonal mounding may be occurring in response to irrigation of the driving range. However, the effects of irrigation appear small in comparison to the effects of precipitation. There are no monitor wells in the area that irrigation would affect most; that data limitation makes interpretations of water levels and the possibility of ground water mounding uncertain. Limitations of available data are discussed in the conclusion.

  7. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1996

    SciTech Connect (OSTI)

    LaCamera, R.J.; Locke, G.L.

    1997-12-31T23:59:59.000Z

    The US Geological Survey, in support of the US Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1996. Data collected prior to 1996 are graphically presented and data collected by other agencies (or as part of other programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals in support of US Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992--96. At two water-supply wells and a nearby observation well, median water levels for calendar year 1996 were slightly lower (0.3 to 0.4 foot) than for the respective baseline periods. At four other wells in Jackass Flats, median water levels for 1996 were unchanged, slightly lower (0.2 foot), and slightly higher (0.2 and 0.7 foot) than for the respective baseline periods.

  8. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    SciTech Connect (OSTI)

    Starr, J.N.; King, C.J.

    1991-11-01T23:59:59.000Z

    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  9. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters

    E-Print Network [OSTI]

    Poole, L.J.

    2008-01-01T23:59:59.000Z

    $/1000 gal water) COMBINED STRIPPING/EXTRACTION a Sour Waterthe pH of the sour water leaving an extraction stage is notpH of the sour water leaving an extraction stage is assumed

  10. Molecular Simulation of Water Extraction into a Tri-n-Butyl-Phosphate/n-Dodecane Solution

    SciTech Connect (OSTI)

    de Almeida, Valmor F [ORNL] [ORNL; Ye, Xianggui [ORNL] [ORNL; Cui, Shengting [ORNL] [ORNL; Khomami, Bamin [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Abstract: Molecular dynamics simulations were performed to investigate water extraction into a solution of 30 vol% tri-n-butyl-phosphate (TBP) in n-dodecane. This solvent extraction mixture is commonly used in hydrometallurgical and nuclear fuel recycling operations for recovering metals from aqueous streams. It is known that water is coextracted in the organic phase and that it competes with metal ions for the available extractant agent (TBP). Therefore investigating pure water extraction provides a realistic prototype to test molecular simulation methods for the first time in this area. Our computational results indicate that the TBP electric dipole moment has a significant effect on the predicted water solubility. A larger TBP dipole moment decreases the aqueous-organic interfacial tension, leading to increased roughness of the aqueous-organic interface. Interfacial roughness has a significant effect on disrupting the interfacial water hydrogen bonding structure, resulting in a greater number of dangling water molecules at the interface. This enhances the probability of water molecules to break away from the aqueous phase and to migrate into the bulk of the organic phase. Therefore, the magnitude of the TBP dipole moment is a crucial factor in controlling water hydrogen bond breaking at the aqueous-organic interface. By slightly lowering the atomic partial charges of the TBP atoms, to produce a dipole moment that better agrees with experimental data, we were able to predict water solubility in close agreement with experimental measurements. Hence we demonstrate that a molecular modeling and simulation approach may provide quantitative support to experimental programs in this area. In addition, our simulation results shed light into the molecular mechanism of water extraction, the critical role of TBP, and the structural forms of water molecules both at the interface and in the bulk of the organic phase. Specifically, it is found that water molecules are extracted either as single molecules or as clusters. Furthermore, within the organic phase, the extracted water forms clusters with up to 20 water molecules, however, more than 70% of these water clusters contain less than 5 water molecules when the water extraction process reaches saturation.

  11. Pore-Water Extraction Scale-Up Study for the SX Tank Farm

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Wietsma, Thomas W.; Last, George V.; Lanigan, David C.

    2013-01-15T23:59:59.000Z

    The phenomena related to pore-water extraction from unsaturated sediments have been previously examined with limited laboratory experiments and numerical modeling. However, key scale-up issues have not yet been addressed. Laboratory experiments and numerical modeling were conducted to specifically examine pore-water extraction for sediment conditions relevant to the vadose zone beneath the SX Tank Farm at Hanford Site in southeastern Washington State. Available SX Tank Farm data were evaluated to generate a conceptual model of the subsurface for a targeted pore-water extraction application in areas with elevated moisture and Tc-99 concentration. The hydraulic properties of the types of porous media representative of the SX Tank Farm target application were determined using sediment mixtures prepared in the laboratory based on available borehole sediment particle size data. Numerical modeling was used as an evaluation tool for scale-up of pore-water extraction for targeted field applications.

  12. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Pesticide Storage and Handling

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    Proper pesticide management is important to preventing ground water contamination. This publication contains helpful information about pesticide storage facilities, mixing and loading practices, and spill cleanup. A chart lists pesticides according...

  13. Ground Water Protection Programs Implementation Guide for Use with DOE O 450.1, Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-05-05T23:59:59.000Z

    This Guide provides a description of the elements of an integrated site-wide ground water protection program that can be adapted to unique physical conditions and programmatic needs at each DOE site. Canceled by DOE N 251.82.

  14. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Fertilizer Storage and Handling

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

    1997-08-29T23:59:59.000Z

    Fertilizer is a major source of ground water contamination. This publication emphasizes the best management practices for storing fertilizers, whether you are building a new facility or modifying an existing one. It also includes information on safe...

  15. Ground-water protection standards for inactive uranium tailings sites (40 CFR 192): Background information for final rule. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The Final Background Information Document summarizes the information and data considered by the Agency in developing the ground-water protection standards. The report presents a brief description of the Title II ground water standard and how it can be used to develop the Title I rulemaking. A description of the 24 designated uranium-tailings sites and their current status in the DOE remedial-action program is included as well as a detailed analysis of the available data on the ground water in the vicinity of 14 of the 24 sites. It also describes different methods that can be used for the restoration of ground water and the costs of using these restoration methods.

  16. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.

  17. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

  18. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

  19. Environmental assessment of ground water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming. Revision 0

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This document is an environmental assessment of the Spook, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site. It analyzes the impacts of the U.S. Department of Energy (DOE) proposed action for ground water compliance. The proposed action is to comply with the U.S. Environmental Protection Agency (EPA) standards for the UMTRA Project sites (40 CFR Part 192) by meeting supplemental standards based on the limited use ground water at the Spook site. This proposed action would not require site activities, including ground water monitoring, characterization, or institutional controls. Ground water in the uppermost aquifer was contaminated by uranium processing activities at the Spook site, which is in Converse County, approximately 48 miles (mi) (77 kilometers [km]) northeast of Casper, Wyoming. Constituents from the site infiltrated and migrated into the uppermost aquifer, forming a plume that extends approximately 2500 feet (ft) (800 meters [m]) downgradient from the site. The principal site-related hazardous constituents in this plume are uranium, selenium, and nitrate. Background ground water in the uppermost aquifer at the site is considered limited use. It is neither a current nor a potential source of drinking water because of widespread, ambient contamination that cannot be cleaned up using treatment methods reasonably employed in public water supply systems (40 CFR {section} 192.11 (e)). Background ground water quality also is poor due to first, naturally occurring conditions (natural uranium mineralization associated with an alteration front), and second, the effects of widespread human activity not related to uranium milling operations (uranium exploration and mining activities). There are no known exposure pathways to humans, animals, or plants from the contaminated ground water in the uppermost aquifer because it does not discharge to lower aquifers, to the surface, or to surface water.

  20. The prediction of the effectiveness of interceptor trenches in the remediation of ground-water contamination by petroleum hydrocarbons

    E-Print Network [OSTI]

    Mast, Mary Katherine

    1991-01-01T23:59:59.000Z

    means of ground-water remediation. Ground water at all three sites is contaminated by petroleum hydrocarbons. Sites B and C are service stations in which the source of contamination has been leaky underground storage tanks. Site C was chosen based... pumping from the interceptor trench on the surrounding observation wells. Slug tests were also performed at Site A previously by others to calculate transmissivity. Data from Site C was obtained by a consulting firm hired to provide remedial action...

  1. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment.

  2. The passage of LB962 accelerated efforts to conjunctively manage ground water and surface water in Nebraska. The drought across the High Plains

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    -fill. With more water, irrigation began earlier and was extended through pod-fill. For dry bean we couldBACKGROUND The passage of LB962 accelerated efforts to conjunctively manage ground water and surface water in Nebraska. The drought across the High Plains from 1999 to 2008 magnified the seriousness

  3. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Salt Lake City, Utah. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the first is the Surface Project, and the second is the Ground Water Project. For the UMTRA Project site known as the Vitro site, near Salt Lake City, Utah, Surface Project cleanup occurred from 1985 to 1987. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. A risk assessment is the process of describing a source of contamination and showing how that contamination may reach people and the environment. The amount of contamination people or the environment may be exposed to is calculated and used to characterize the possible health or environmental effects that may result from this exposure. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Vitro site. The results of this report and further site characterization of the Vitro site will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  4. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Falls City, Texas: Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This baseline risk assessment of ground water contamination of the uranium mill tailings site near Falls City, Texas, evaluates potential impact to public health and the environment resulting from ground water contamination at the former Susquehanna Western, Inc. (SWI), uranium mill processing site. This document fulfills the following objectives: determine if the site presents immediate or potential future health risks, determine the need for interim institutional controls, serve as a key input to project planning and prioritization, and recommend future data collection efforts to more fully characterize risk. The Uranium Mill Tailings Remedial Action (UMTRA) Project has begun its evaluation of ground water contamination at the Falls City site. This risk assessment is one of the first documents specific to this site for the Ground Water Project. The first step is to evaluate ground water data collected from monitor wells at or near the site. Evaluation of these data show the main contaminants in the Dilworth ground water are cadmium, cobalt, fluoride, iron, nickel, sulfate, and uranium. The data also show high levels of arsenic and manganese occur naturally in some areas.

  5. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

  6. Locating Ground-Water Discharge in the Hanford Reach of the Columbia River

    SciTech Connect (OSTI)

    Lee, D.R.; Geist, D.R.; Saldi, K.; Hartwig, D.; Cooper, T.

    1997-03-01T23:59:59.000Z

    A bottom-contacting probe for measuring electrical conductivity at the sediment-water interface was used to scan the bed of the Columbia River adjacent to the Hanford Site in southeast Washington State during a 10-day investigation. Four river-sections, each about a kilometer in length, were scanned for variations in electrical conductivity. The probe was towed along the riverbed at a speed of 1 m/s and is position was recorded using a Global Positioning System. The bottom tows revealed several areas of elevated electrical conductivity. Where these anomalies were relatively easy to access, piezometers were driven into the riverbed and porewater electrical conductivity ranged from 111 to 150 uS/cm. The piezometers, placed in electrical conductivity “hotspots,” yielded chemical or isotopic data consistent with previous analyses of water taken from monitoring wells and visible shoreline seeps. Tritium, nitrate, and chromium exceeded water quality standards in some porewaters. The highest tritium and nitrate levels were found near the Old Hanford Townsite at 120,000 pCi/L (+ 5,880 pCi/L total propagated analytical uncertainty) and ug/L (+ 5,880 ug/L), respectively. The maximum chromium (total and hexavalent) levels were found near 100-H reactor area where unfiltered porewater total chromium was 1,900 ug/L (+ 798 ug/L) and hexavalent chromium was 20 ug/L. The electrical conductivity probe provided rapid, cost-effective reconnaissance for ground-water discharge areas when used in combination with conventional piezometers. It may be possible to obtain quantitative estimates of both natural and contaminated ground-water discharge in the Hanford Reach with more extensive surveys of river bottom.

  7. (Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio)

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  8. A preliminary study of the significance of flourides in Texas ground waters

    E-Print Network [OSTI]

    Dixon, Robert Melton

    1939-01-01T23:59:59.000Z

    of fluorine an4 the oomyocads Ln whLoh it is ecnhined~ Tho yayere have been fairlF wall y~, an4 represent a widslF distributed sffox't on ths part of Luvastigatoce in their effcxrte to cncyla1n xscny of the yhsncnnaua that were held to be related... to be inoxeased bf the realisation that thoxe is a widespread ooouxrenee of flnorMss in ground cscters that serve as dcniestio water suyylies end that there Ls an Lnoreasing tsndcnop to utilise ftuoxide oomyounds in th? ~eture of Lnseotioides, Whccre fluorine...

  9. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water, Revision 2

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This document contains the Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The QAIP outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QA program is designed to use monitoring, audit, and surveillance activities as management tools to ensure that UMTRA Project activities are carried out in amanner to protect public health and safety, promote the success of the UMTRA Project, and meet or exceed contract requirements.

  10. Ground-water hydrology of the Panther Junction area of Big Bend National Park, Texas

    E-Print Network [OSTI]

    Gibson, John Lawrence

    1983-01-01T23:59:59.000Z

    -made discharge in the Panther Junction area is 52 acre-ft/yr. The possible ground-water deficit from total discharge is calculated at nine acre-ft/ yr. Therefore, recharge and discharge may be in balance. Transmissivity coefficients for six wells penetrating... the Aguja aquifer are 600 gpd/ft or less. The transmissi- vity at well 47-201, which also penetrates the Aguja aqui- fer, is 30, 000 gpd/ft. The transmissivity is 5500 gpd/ft at one of two production wells penetrating the Chisos aquifer in the K-Bar area...

  11. File:04NVBTemporaryUseOfGroundWaterForExploration.pdf | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf Jump to: navigation,Information 4NVBTemporaryUseOfGroundWaterForExploration.pdf

  12. Field Test Design Simulations of Pore-Water Extraction for the SX Tank Farm

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus

    2013-09-01T23:59:59.000Z

    A proof of principle test of pore water extraction is being performed by Washington River Protection Solutions for the U.S. Department of Energy, Office of River Protection. This test is being conducted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989) Milestone M 045-20, and is described in RPP-PLAN-53808, 200 West Area Tank Farms Interim Measures Investigation Work Plan. To support design of this test, numerical simulations were conducted to help define equipment and operational parameters. The modeling effort builds from information collected in laboratory studies and from field characterization information collected at the test site near the Hanford Site 241-SX Tank Farm. Numerical simulations were used to evaluate pore-water extraction performance as a function of the test site properties and for the type of extraction well configuration that can be constructed using the direct-push installation technique. Output of simulations included rates of water and soil-gas production as a function of operational conditions for use in supporting field equipment design. The simulations also investigated the impact of subsurface heterogeneities in sediment properties and moisture distribution on pore-water extraction performance. Phenomena near the extraction well were also investigated because of their importance for pore-water extraction performance.

  13. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Well-Head Management and Conditions 

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    the risk it poses to your ground water. For example, a cracked well casing may allow fertilizer, nitrates, oil or pesticides to enter the well if these materials are spilled near the well. Feedlots, animal yards, septic systems and waste storage areas also... can release large amounts of bacteria, nitrates and other contam- inants that could pollute well water. The Texas Water Well Drillers Act (1985), the Water Well Pump Installer Act (1991) and vari- ous other legislative actions have guided devel- opment...

  14. A review and assessment of variable density ground water flow effects on plume formation at UMTRA project sites

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    A standard assumption when evaluating the migration of plumes in ground water is that the impacted ground water has the same density as the native ground water. Thus density is assumed to be constant, and does not influence plume migration. This assumption is valid only for water with relatively low total dissolved solids (TDS) or a low difference in TDS between water introduced from milling processes and native ground water. Analyses in the literature suggest that relatively minor density differences can significantly affect plume migration. Density differences as small as 0.3 percent are known to cause noticeable effects on the plume migration path. The primary effect of density on plume migration is deeper migration than would be expected in the arid environments typically present at Uranium Mill Tailings Remedial Action (UMTRA) Project sites, where little or no natural recharge is available to drive the plume into the aquifer. It is also possible that at some UMTRA Project sites, a synergistic affect occurred during milling operations, where the mounding created by tailings drainage (which created a downward vertical gradient) and the density contrast between the process water and native ground water acted together, driving constituents deeper into the aquifer than either process would alone. Numerical experiments were performed with the U.S. Geological Survey saturated unsaturated transport (SUTRA) model. This is a finite-element model capable of simulating the effects of variable fluid density on ground water flow and solute transport. The simulated aquifer parameters generally are representative of the Shiprock, New Mexico, UMTRA Project site where some of the highest TDS water from processing has been observed.

  15. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    SciTech Connect (OSTI)

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01T23:59:59.000Z

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs.

  16. Implications of ground-water measurements at the Hoe Creek UCG site in northeastern Wyoming

    SciTech Connect (OSTI)

    Mead, S.W.; Wang, F.T.; Stuermer, D.H.; Raber, E.; Ganow, H.C.; Stone, R.

    1980-01-01T23:59:59.000Z

    Underground coal gasification (UCG) promises to become an important source of synthetic fuels. In an effort to provide timely information concerning the environmental implications of the UCG process, we are conducting investigations in conjunction with the UCG experiments carried out in northeastern Wyoming by the Lawrence Livermore National Laboratory. Our ground-water quality measurements have extended over a period of four years and have been supplemented by laboratory studies of contaminant sorption by coal. Cavity roof collapse and aquifer interconnection were also investigated, using surface and subsurface geotechnical instruments, post-burn coring, and hydraulic head measurements. We have found that a broad range of residual gasification products are introduced into the ground-water system. Fortunately, the concentrations of many of these contaminants are substantially reduced by sorption on the surrounding coal. However, some of these materials seem likely to remain in the local groundwater, at low concentrations, for several years. We have attempted to interpret our results in terms of concepts that will assist in the development of effective and practicable control technologies.

  17. Complete characterization of the water dimer vibrational ground state and testing the VRT(ASP-W)III,

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Complete characterization of the water dimer vibrational ground state and testing the VRT(ASP-W)III, SAPT-5st, and VRT(MCY-5f) surfaces FRANK N. KEUTSCH1 , NIR GOLDMAN2 , HEATHER A. HARKER3 , CLAUDE of the water dimer very well. The VRT(MCY-5f) and especially the VRT(ASP-W)III potentials show larger

  18. What is Nonpoint Source Pollution? Nonpoint Source Pollution, or people pollution, is a contamination of our ground water,

    E-Print Network [OSTI]

    Rainforth, Emma C.

    , recreational water activities, the fishing industry, tourism and our precious drinking water resources, humans and fish. Do not dump used motor oil down storm drains or on the ground. Recycle all used motor such as fertilizing the lawn, walking pets, changing motor oil and littering. With each rainfall, pollutants generated

  19. Proposed ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This document presents the US DOE water resources protection strategy for the Green River, Utah mill tailings disposal site. The modifications in the original plan are based on new information, including ground water quality data collected after remedial action was completed, and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. All aspects are discussed in this report.

  20. Exergy and Energy analysis of a ground-source heat pump for domestic water heating under simulated occupancy conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

    2012-01-01T23:59:59.000Z

    This paper presents detailed analysis of a water to water ground source heat pump (WW-GSHP) to provide all the hot water needs in a 345 m2 house located in DOE climate zone 4 (mixed-humid). The protocol for hot water use is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which aims to capture the living habits of the average American household and its impact on energy consumption. The entire house was operated under simulated occupancy conditions. Detailed energy and exergy analysis provides a complete set of information on system efficiency and sources of irreversibility, the main cause of wasted energy. The WW-GSHP was sized at 5.275 kW (1.5-ton) for this house and supplied hot water to a 303 L (80 gal) water storage tank. The WW-GSHP shared the same ground loop with a 7.56 kW (2.1-ton) water to air ground source heat pump (WA-GSHP) which provided space conditioning needs to the entire house. Data, analyses, and measures of performance for the WW-GSHP in this paper complements the results of the WA-GSHP published in this journal (Ally, Munk et al. 2012). Understanding the performance of GSHPs is vital if the ground is to be used as a viable renewable energy resource.

  1. Development of a three-dimensional ground-water model of the Hanford Site unconfined aquifer system: FY 1995 status report

    SciTech Connect (OSTI)

    Wurstner, S.K.; Thorne, P.D.; Chamness, M.A.; Freshley, M.D.; Williams, M.D.

    1995-12-01T23:59:59.000Z

    A three-dimensional numerical model of ground-water flow was developed for the uppermost unconfined aquifer at the Hanford Site in south-central Washington. Development of the model is supported by the Hanford Site Ground-Water Surveillance Project, managed by the Pacific Northwest National Laboratory, which is responsible for monitoring the sitewide movement of contaminants in ground water beneath the Hanford Site. Two objectives of the Ground-Water Surveillance Project are to (1) identify and quantify existing, emerging, or potential ground-water quality problems, and (2) assess the potential for contaminants to migrate from the Hanford Site through the ground-water pathway. Numerical models of the ground-water flow system are important tools for estimating future aquifer conditions and predicting the movement of contaminants through ground water. The Ground-Water Surveillance Project has supported development and maintenance of a two-dimensional model of the unconfined aquifer. This report describes upgrade of the two-dimensional model to a three-dimensional model. The numerical model is based on a three-dimensional conceptual model that will be continually refined and updated as additional information becomes available. This report presents a description of the three-dimensional conceptual model of ground-water flow in the unconfined aquifer system and then discusses the cur-rent state of the three-dimensional numerical model.

  2. Simulated effects of climate change on the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D`Agnese, F.A.; O`Brien, G.M.; Faunt, C.C.; San Juan, C.A.

    1999-04-01T23:59:59.000Z

    The US Geological Survey, in cooperation with the US Department of Energy, is evaluating the geologic and hydrologic characteristics of the Death Valley regional flow system as part of the Yucca Mountain Project. As part of the hydrologic investigation, regional, three-dimensional conceptual and numerical ground-water-flow models have been developed to assess the potential effects of past and future climates on the regional flow system. A simulation that is based on climatic conditions 21,000 years ago was evaluated by comparing the simulated results to observation of paleodischarge sites. Following acceptable simulation of a past climate, a possible future ground-water-flow system, with climatic conditions that represent a doubling of atmospheric carbon dioxide, was simulated. The steady-state simulations were based on the present-day, steady-state, regional ground-water-flow model. The finite-difference model consisted of 163 rows, 153 columns, and 3 layers and was simulated using MODFLOWP. Climate changes were implemented in the regional ground-water-flow model by changing the distribution of ground-water recharge. Global-scale, average-annual, simulated precipitation for both past- and future-climate conditions developed elsewhere were resampled to the model-grid resolution. A polynomial function that represents the Maxey-Eakin method for estimating recharge from precipitation was used to develop recharge distributions for simulation.

  3. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

    1997-12-31T23:59:59.000Z

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35{degrees}N., long 115{degrees}W and lat 38{degrees}N., long 118{degrees}W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system.

  4. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I

    SciTech Connect (OSTI)

    None

    1996-10-01T23:59:59.000Z

    This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings " ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings." Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are in accordance with the final standards. The EPA reserves the right to modify the ground water standards, if necessary, based on changes in EPA drinking water standards. Appendix A contains a copy of the 1983 EPA ground water compliance standards, the 1987 proposed changes to the standards, and the 1995 final rule. Under UMTRA, DOE is responsible for bringing the designated processing sites into compliance with the EPA ground water standards and complying with all other applicable standards and requirements. The U.S. Nuclear Regulatory Commission (NRC) must concur with DOE's actions. States are full participants in the process. The DOE also must consult with any affected Indian tribes and the Bureau of Indian Affairs. Uranium processing activities at most of the inactive mill sites resulted in the contamination of ground water beneath and, in some cases, downgradient of the sites. This contaminated ground water often has elevated levels of constituents such as but not limited to uranium and nitrates. The purpose of the UMTRA Ground Water Project is to eliminate or reduce to acceptable levels the potential health and environmental consequences of milling activities by meeting the EPA ground water standards.

  5. Comment and response document for the ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The US Department of Energy (DOE) responses to comments from both the US Nuclear Regulatory Commission (NRC) and the state of Utah are provided in this document. The Proposed Ground Water Protection Strategy for the Uranium Mill Tailings Site at Green River, Utah, presents the proposed (modified) ground water protection strategy for the disposal cell at the Green River disposal site for compliance with Subpart A of 40 CFR Part 192. Before the disposal cell was constructed, site characterization was conducted at the Green River Uranium Mill Tailings Remedial Action (UMTRA) Project site to determine an acceptable compliance strategy. Results of the investigation are reported in detail in the final remedial action plan (RAP) (DOE, 1991a). The NRC and the state of Utah have accepted the final RAP. The changes in this document relate only to a modification of the compliance strategy for ground water protection.

  6. US Department of Energy Uranium Mill Tailings Remedial Action ground water Project. Revision 1, Version 1: Final project plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-21T23:59:59.000Z

    The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA processing sites. The compliance strategy for the processing sites must satisfy requirements of the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1988). This scope of work will entail the following activities, on a site-specific basis: Development of a compliance strategy based upon modification of the UMTRA Surface Project remedial action plans (RAP) or development of Ground Water Project RAPs with NRC and state or tribal concurrence on the RAP; implementation of the RAP to include establishment of institutional controls, where appropriate; institution of long-term verification monitoring for transfer to a separate DOE program on or before the Project end date; and preparation of completion reports and final licensing on those sites that will be completed prior to the Project end date.

  7. Quantify Water Extraction by TBP/Dodecane via Molecular Dynamics Simulations

    SciTech Connect (OSTI)

    Khomami, Bamin [Univ. of Tennessee, Knoxville, TN (United States); Cui, Shengting [Univ. of Tennessee, Knoxville, TN (United States); de Almeida, Valmor F. [Oak Ridge National Lab., Oak Ridge, TN (United States); Felker, Kevin [Oak Ridge National Lab., Oak Ridge, TN (United States)

    2013-05-16T23:59:59.000Z

    The purpose of this project is to quantify the interfacial transport of water into the most prevalent nuclear reprocessing solvent extractant mixture, namely tri-butyl- phosphate (TBP) and dodecane, via massively parallel molecular dynamics simulations on the most powerful machines available for open research. Specifically, we will accomplish this objective by evolving the water/TBP/dodecane system up to 1 ms elapsed time, and validate the simulation results by direct comparison with experimentally measured water solubility in the organic phase. The significance of this effort is to demonstrate for the first time that the combination of emerging simulation tools and state-of-the-art supercomputers can provide quantitative information on par to experimental measurements for solvent extraction systems of relevance to the nuclear fuel cycle. Results: Initially, the isolated single component, and single phase systems were studied followed by the two-phase, multicomponent counterpart. Specifically, the systems we studied were: pure TBP; pure n-dodecane; TBP/n-dodecane mixture; and the complete extraction system: water-TBP/n-dodecane two phase system to gain deep insight into the water extraction process. We have completely achieved our goal of simulating the molecular extraction of water molecules into the TBP/n-dodecane mixture up to the saturation point, and obtained favorable comparison with experimental data. Many insights into fundamental molecular level processes and physics were obtained from the process. Most importantly, we found that the dipole moment of the extracting agent is crucially important in affecting the interface roughness and the extraction rate of water molecules into the organic phase. In addition, we have identified shortcomings in the existing OPLS-AA force field potential for long-chain alkanes. The significance of this force field is that it is supposed to be optimized for molecular liquid simulations. We found that it failed for dodecane and/or longer chains for this particular solvent extraction application. We have proposed a simple way to circumvent the artificial crystallization of the chains at ambient temperature.

  8. Experimentation and application of directional solvent extraction for desalination of seawater and shale gas 'frac' flowback water

    E-Print Network [OSTI]

    Kleinguetl, Kevin (Kevin G.)

    2011-01-01T23:59:59.000Z

    A recently demonstrated directional solvent technique for desalination of water has been tested for desalting seawater and shale gas 'frac' flowback water. The premise behind directional solvent extraction is that when ...

  9. Measurement of water-soluble arsenic species in freeze-dried marine animal tissues by microwave-assisted extraction and HPLC-ICP-MS

    E-Print Network [OSTI]

    Canberra, University of

    Article on the web 8th July 2002 A microwave-assisted procedure is outlined for the extraction of water extractions with 50% (v/v) methanol­ water at 70 to 75 uC for 5 min. Quantitative extraction of arsenic samples are prepared in a similar manner, the efficiency to extract arsenic in the methanol­water soluble

  10. Radiometric Determination of Uranium in Natural Waters after Enrichment and Separation by Cation-Exchange and Liquid-Liquid Extraction

    E-Print Network [OSTI]

    I. Pashalidis; H. Tsertos

    2003-04-28T23:59:59.000Z

    The alpha-radiometric determination of uranium after its pre-concentration from natural water samples using the cation-exchange resin Chelex-100, its selective extraction by tributylphosphate and electrodeposition on stainless steel discs is reported. The validity of the separation procedure and the chemical recoveries were checked by addition of uranium standard solution as well as by tracing with U-232. The average uranium yield was determined to be (97 +- 2) % for the cation-exchange, (95 +- 2) % for the liquid-liquid extraction, and more than 99% for the electrodeposition. Employing high-resolution alpha-spectroscopy, the measured activity of the U-238 and U-234 radioisotopes was found to be of similar magnitude; i.e. ~7 mBq/L and ~35 mBq/L for ground- and seawater samples, respectively. The energy resolution (FWHM) of the alpha-peaks was 22 keV, while the Minimum Detectable Activity (MDA) was estimated to be 1 mBq/L (at the 95% confidence limit).

  11. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    table The water table itself may cross many layers. Extraction of water from confined and unconfinedTD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 5: Aquifer () August 16 above and below the ground, which affect the water balance. surface features affect infiltration

  12. Membrane contactor assisted water extraction system for separating hydrogen peroxide from a working solution, and method thereof

    DOE Patents [OSTI]

    Snyder, Seth W. (Lincolnwood, IL); Lin, Yupo J. (Naperville, IL); Hestekin' Jamie A. (Fayetteville, AR); Henry, Michael P. (Batavia, IL); Pujado, Peter (Kildeer, IL); Oroskar, Anil (Oak Brook, IL); Kulprathipanja, Santi (Inverness, IL); Randhava, Sarabjit (Evanston, IL)

    2010-09-21T23:59:59.000Z

    The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H.sub.2O.sub.2) from a working solution.

  13. Evaluation of health risks associated with proposed ground water standards at selected inactive uranium mill-tailings sites

    SciTech Connect (OSTI)

    Hamilton, L.D.; Medeiros, W.H.; Meinhold, A.; Morris, S.C.; Moskowitz, P.D.; Nagy, J.; Lackey, K.

    1989-04-01T23:59:59.000Z

    The US Environmental Protection Agency (EPA) has proposed ground water standards applicable to all inactive uranium mill-tailings sites. The proposed standards include maximum concentration limits (MCL) for currently regulated drinking water contaminants, as well as the addition of standards for molybdenum, uranium, nitrate, and radium-226 plus radium-228. The proposed standards define the point of compliance to be everywhere downgradient of the tailings pile, and require ground water remediation to drinking water standards if MCLs are exceeded. This document presents a preliminary description of the Phase 2 efforts. The potential risks and hazards at Gunnison, Colorado and Lakeview, Oregon were estimated to demonstrate the need for a risk assessment and the usefulness of a cost-benefit approach in setting supplemental standards and determining the need for and level of restoration at UMTRA sites. 8 refs., 12 tabs.

  14. Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir Roth About UsLaboratory |New RifleTuba

  15. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Livestock Manure Storage and Treatment Facilities

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    -tight design, stalled according to according to accepted medium-textured soils coarse-textured above ground) accepted engineering engineering standards (silt loam, loam). soils (sands, sandy standards and specifi- and specifications. Not Water table deeper... loam). Water table cations. Properly maintained. than 20 feet. or fractured bed- maintained. rock shallower than 20 feet. Concrete (liquid- Designed and in- Designed and installed Concrete cracked, Concrete cracked, tight design) stalled according...

  16. Brine contamination of ground water and streams in the Baxterville Oil Field Area, Lamar and Marion Counties, Mississippi. Water resources investigation

    SciTech Connect (OSTI)

    Kalkhoff, S.J.

    1993-12-31T23:59:59.000Z

    The report defines the extent of oil-field-brine contamination in ground water and streams in the Baxterville oil field area. The report is based largely on data collected during the period October 1984 through November 1985. Water samples were collected from streams and wells in the study area. Data from a previous study conducted in the vicinity of the nearby Tatum Salt Dome were used for background water-quality information. Natural surface-water quality was determined by sampling streamflow from a nearby basin having no oil field activities and from samples collected in an adjacent basin during a previous study.

  17. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    DOE Patents [OSTI]

    Chaiko, David J. (Naperville, IL); Mego, William A. (Naperville, IL)

    1999-01-01T23:59:59.000Z

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  18. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    SciTech Connect (OSTI)

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01T23:59:59.000Z

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables.

  19. Measurement of biodegradation rate constants of a water extract from petroleum-contaminated soil

    SciTech Connect (OSTI)

    Li, K.Y.; Kane, A.J.; Wang, J.J.; Cawley, W.A. (Lamar Univ., Beaumont, TX (United States). Chemical Engineering Dept.)

    1993-01-01T23:59:59.000Z

    The study of biodegradation rate constants of petroleum products in water extract from contaminated soil presents an important component in the evaluation of bioremediation process. In this study, soil samples were gathered from an industrial site which was used for maintenance and storage of heavy equipment used in the oil and gas exploration and production industry. The petroleum contaminants were extracted from the soil using distilled water. This water extract was used as the substrate to acclimate a microbial community and also for the biological kinetic studies. Kinetic studies were carried out in batch reactors, and the biodegradation rates were monitored by a computer-controlled respirometer. The BOD data were analyzed by using the Monod equation. Experimental results give the average value of the maximum rate constant as 0.038 mg BOD/(mg VSS hr) and the average value of the substrate concentration of half rate as 746 mg BOD/l. A GC/MS analysis on the sample of the test solutions before and after 5 days of biological oxidation indicates that the hydrocarbons initially present in the solution were degraded.

  20. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 3, Ground water hydrology report: Preliminary final

    SciTech Connect (OSTI)

    Not Available

    1994-03-04T23:59:59.000Z

    The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent ground water contamination resulting from processing activities at inactive uranium milling sites (52 FR 36000 (1987)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, 42 USC {section}7901 et seq., the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined that for Slick Rock, this assessment shall include hydrogeologic site characterization for two separate uranium processing sites, the Union Carbide (UC) site and the North Continent (NC) site, and for the proposed Burro Canyon disposal site. The water resources protection strategy that describes how the proposed action will comply with the EPA ground water protection standards is presented in Attachment 4. The following site characterization activities are discussed in this attachment: Characterization of the hydrogeologic environment, including hydrostratigraphy, ground water occurrence, aquifer parameters, and areas of recharge and discharge. Characterization of existing ground water quality by comparison with background water quality and the maximum concentration limits (MCL) of the proposed EPA ground water protection standards. Definition of physical and chemical characteristics of the potential contaminant source, including concentration and leachability of the source in relation to migration in ground water and hydraulically connected surface water. Description of local water resources, including current and future use, availability, and alternative supplies.

  1. In Situ Chemical Oxidation of Contaminated Ground Water: Permanganate Reactive Barrier Systems for the Long-Term Treatment of Contaminants

    SciTech Connect (OSTI)

    Li, X. David; Schwartz, Frank W.

    2004-03-31T23:59:59.000Z

    Oxidation of chlorinated solvents by permanganate has proven to be effective in destroying these compounds in the aqueous phase. A semi-passive, well-based permanganate reactive barrier system (PRBS) was designed in order for the long-term treatment of dissolved contaminant in the ground water. Results from laboratory experiments indicate the PRBS could deliver permanganate at a stable, constant and controllable rate. In this paper, different field designs of the PRBS are discussed. Numerical simulation was conducted to elucidate the parameters that will influence the field implementation of a PRBS. We investigated issues such as permanganate consumption by aquifer materials, variable density flow effect, as well as lateral spreading under different geological settings. Results from this study continue to point to the promise of an in situ chemical oxidation scheme. PRBS provides a potential treatment of the contaminated ground water at relatively low management cost as compared with other alternatives.

  2. Remedial action plan and site design for stabilization of the inactive Uranium Mill Tailing site Maybell, Colorado. Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) has established health and environmental regulations to correct and prevent ground water contamination resulting from former uranium processing activities at inactive uranium processing sites (40 CFR Part 192 (1993)) (52 FR 36000 (1978)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC {section} 7901 et seq.), the U.S. Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has decided that each assessment will include information on hydrogeologic site characterization. The water resources protection strategy that describes the proposed action compliance with the EPA ground water protection standards is presented in Attachment 4, Water Resources Protection Strategy. Site characterization activities discussed in this section include the following: (1) Definition of the hydrogeologic characteristics of the environment, including hydrostratigraphy, aquifer parameters, areas of aquifer recharge and discharge, potentiometric surfaces, and ground water velocities. (2) Definition of background ground water quality and comparison with proposed EPA ground water protection standards. (3) Evaluation of the physical and chemical characteristics of the contaminant source and/or residual radioactive materials. (4) Definition of existing ground water contamination by comparison with the EPA ground water protection standards. (5) Description of the geochemical processes that affect the migration of the source contaminants at the processing site. (6) Description of water resource use, including availability, current and future use and value, and alternate water supplies.

  3. Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application

    SciTech Connect (OSTI)

    Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

  4. Bordering on Water Management: Ground and Wastewater in the United States - Mexico Transboundary Santa Cruz Basin

    E-Print Network [OSTI]

    Milman, Anita Dale

    2009-01-01T23:59:59.000Z

    have been caused to a lack of water; rather it is believedconsider how, given a lack of clear water management goals,incomplete due to a lack of surface water measurements. Not

  5. Final Environmental Assessment and Finding of No Significant Impact: Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    N /A

    2003-03-13T23:59:59.000Z

    This environmental assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Slick Rock, Colorado, Uranium Mill Tailings Remedial Action Project sites. The sites consist of two areas designated as the North Continent (NC) site and the Union Carbide (UC) site. In 1996, the U.S. Department of Energy (DOE) completed surface cleanup at both sites and encapsulated the tailings in a disposal cell 5 miles east of the original sites. Maximum concentration limits (MCLs) referred to in this environmental assessment are the standards established in Title 40 ''Code of Federal Regulations'' Part 192 (40 CFR 192) unless noted otherwise. Ground water contaminants of potential concern at the NC site are uranium and selenium. Uranium is more prevalent, and concentrations in the majority of alluvial wells at the NC site exceed the MCL of 0.044 milligram per liter (mg/L). Selenium contamination is less prevalent; samples from only one well had concentrations exceeding the MCL of 0.01 mg/L. To achieve compliance with Subpart B of 40 CFR 192 at the NC site, DOE is proposing the strategy of natural flushing in conjunction with institutional controls and continued monitoring. Ground water flow and transport modeling has predicted that concentrations of uranium and selenium in the alluvial aquifer will decrease to levels below their respective MCLs within 50 years.

  6. Storing carbon dioxide in saline formations : analyzing extracted water treatment and use for power plant cooling.

    SciTech Connect (OSTI)

    Dwyer, Brian P.; Heath, Jason E.; Borns, David James; Dewers, Thomas A.; Kobos, Peter Holmes; Roach, Jesse D.; McNemar, Andrea; Krumhansl, James Lee; Klise, Geoffrey T.

    2010-10-01T23:59:59.000Z

    In an effort to address the potential to scale up of carbon dioxide (CO{sub 2}) capture and sequestration in the United States saline formations, an assessment model is being developed using a national database and modeling tool. This tool builds upon the existing NatCarb database as well as supplemental geological information to address scale up potential for carbon dioxide storage within these formations. The focus of the assessment model is to specifically address the question, 'Where are opportunities to couple CO{sub 2} storage and extracted water use for existing and expanding power plants, and what are the economic impacts of these systems relative to traditional power systems?' Initial findings indicate that approximately less than 20% of all the existing complete saline formation well data points meet the working criteria for combined CO{sub 2} storage and extracted water treatment systems. The initial results of the analysis indicate that less than 20% of all the existing complete saline formation well data may meet the working depth, salinity and formation intersecting criteria. These results were taken from examining updated NatCarb data. This finding, while just an initial result, suggests that the combined use of saline formations for CO{sub 2} storage and extracted water use may be limited by the selection criteria chosen. A second preliminary finding of the analysis suggests that some of the necessary data required for this analysis is not present in all of the NatCarb records. This type of analysis represents the beginning of the larger, in depth study for all existing coal and natural gas power plants and saline formations in the U.S. for the purpose of potential CO{sub 2} storage and water reuse for supplemental cooling. Additionally, this allows for potential policy insight when understanding the difficult nature of combined potential institutional (regulatory) and physical (engineered geological sequestration and extracted water system) constraints across the United States. Finally, a representative scenario for a 1,800 MW subcritical coal fired power plant (amongst other types including supercritical coal, integrated gasification combined cycle, natural gas turbine and natural gas combined cycle) can look to existing and new carbon capture, transportation, compression and sequestration technologies along with a suite of extracting and treating technologies for water to assess the system's overall physical and economic viability. Thus, this particular plant, with 90% capture, will reduce the net emissions of CO{sub 2} (original less the amount of energy and hence CO{sub 2} emissions required to power the carbon capture water treatment systems) less than 90%, and its water demands will increase by approximately 50%. These systems may increase the plant's LCOE by approximately 50% or more. This representative example suggests that scaling up these CO{sub 2} capture and sequestration technologies to many plants throughout the country could increase the water demands substantially at the regional, and possibly national level. These scenarios for all power plants and saline formations throughout U.S. can incorporate new information as it becomes available for potential new plant build out planning.

  7. Ground-water flow and recharge in the Mahomet Bedrock Valley Aquifer, east-central Illinois: A conceptual model based on hydrochemistry

    SciTech Connect (OSTI)

    Panno, S.V.; Hackley, K.C.; Cartwright, K.; Liu, C.L. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-04-01T23:59:59.000Z

    Major-ion and isotopic analyses of ground water have been used to develop a conceptual model of flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA). The MVA is composed of clean, permeable sands and gravels and forms a basal'' fill up to 60 m thick in a buried, west-trending bedrock valley. A thick succession of glacial tills, some containing interbedded lenses of sand and gravel, covers the MVA. Three regions within the MVA have hydrochemically distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west.

  8. Extraction of Cs-137 by alcohol-water solvents from plants containing cardiac glycosides

    E-Print Network [OSTI]

    Dzyubak, S N; Dzyubak, O P; Sorokin, P V; Popov, V F; Orlov, A A; Krasnov, V P; Gubin, Yu.I.

    2001-01-01T23:59:59.000Z

    As a result of nuclear power plant accidents, large areas receive radioactive inputs of Cs-137. This cesium accumulates in herbs growing in such territories. The problem is whether the herbs contaminated by radiocesium may be used as a raw material for medicine. The answer depends on the amount of Cs-137 transfered from the contaminated raw material to the medicine. We have presented new results of the transfer of Cs-137 from contaminated Digitalis grandiflora Mill. and Convallaria majalis L. to medicine. We found that the extraction of Cs-137 depends strongly on the hydrophilicity of the solvent. For example 96.5%(vol.) ethyl alcohol extracts less Cs-137 (11.6%) than 40%(vol.) ethyl alcohol or pure water (66.2%). The solubility of the cardiac glycosides is inverse to the solubility of cesium, which may be of use in the technological processes for manufacturing ecologically pure herbal medicine.

  9. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress report for the period October 1 to December 31, 1989

    SciTech Connect (OSTI)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E. (eds.)

    1990-03-01T23:59:59.000Z

    This is Volume 1 of a two-volume document that describes the progress of 15 Hanford Site ground-water monitoring projects for the period October 1 to December 31, 1989. This volume discusses the projects. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the samples aquifer meets regulatory standards for drinking water quality. 51 refs., 35 figs., 86 tabs.

  10. Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL). Version 1.0

    SciTech Connect (OSTI)

    Bandy, P.J.; Hall, L.F.

    1993-03-01T23:59:59.000Z

    This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG&G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code.

  11. Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL). [Contaminant transport computer codes

    SciTech Connect (OSTI)

    Bandy, P.J.; Hall, L.F.

    1993-03-01T23:59:59.000Z

    This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code.

  12. Ground-water heat pumps: an examination of hydrogeologic, environmental, legal, and economic factors affecting their use

    SciTech Connect (OSTI)

    Armitage, D.M.; Bacon, D.J.; Massey-Norton, J.T.; Miller, J.D.

    1980-11-12T23:59:59.000Z

    Groundwater is attractive as a potential low-temperature energy source in residential space-conditioning applications. When used in conjuncton with a heat pump, ground water can serve as both a heat source (for heating) and a heat sink (for cooling). Major hydrogeologic aspects that affect system use include groundwater temperature and availability at shallow depths as these factors influence operational efficiency. Ground-water quality is considered as it affects the performance and life-expectancy of the water-side heat exchanger. Environmental impacts related to groundwater heat pump system use are most influenced by water use and disposal methods. In general, recharge to the subsurface (usually via injection wells) is recommended. Legal restrictions on system use are often stricter at the municipal and county levels than at state and Federal levels. Although Federal regulations currently exist, the agencies are not equipped to regulate individual, domestic installations. Computer smulations indicate that under a variety of climatologic conditions, groundwater heat pumps use less energy than conventional heating and cooling equipment. Life-cycle cost comparisons with conventional equipment depend on alternative system choices and well cost options included in the groundwater heat pump system.

  13. Final Report - Energy Reduction and Advanced Water Removal via Membrane Solvent Extraction Technology

    SciTech Connect (OSTI)

    Reed, John; Fanselow, Dan; Abbas, Charles; Sammons, Rhea; Kinchin, Christopher

    2014-08-06T23:59:59.000Z

    3M and Archer Daniels Midland (ADM) collaborated with the U.S. Department of Energy (DOE) to develop and demonstrate a novel membrane solvent extraction (MSE) process that can substantially reduce energy and water consumption in ethanol production, and accelerate the fermentation process. A cross-flow membrane module was developed, using porous membrane manufactured by 3M. A pilot process was developed that integrates fermentation, MSE and vacuum distillation. Extended experiments of 48-72 hours each were conducted to develop the process, verify its performance and begin establishing commercial viability.

  14. Chlorofluorocarbons, Sulfur Hexafluoride, and Dissolved Permanent Gases in Ground Water from Selected Sites In and Near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994 - 1997

    SciTech Connect (OSTI)

    Busenberg, E.; Plummer, L.N.; Bartholomay, R.C.; Wayland, J.E.

    1998-08-01T23:59:59.000Z

    From July 1994 through May 1997, the U.S. Geological Survey, in cooperations with the Department of Energy, sampled 86 wells completed in the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory (INEEL). The wells were sampled for a variety of constituents including one- and two-carbon halocarbons. Concentrations of dichlorodifluoromethane (CFC-12), trichlorofluoromethane (CFC-11), and trichlorotrifluororoethane (CFC-113) were determined. The data will be used to evaluate the ages of ground waters at INEEL. The ages of the ground water will be used to determine recharge rates, residence time, and travel time of water in the Snake River Plain aquifer in and near INEEL. The chromatograms of 139 ground waters are presented showing a large number of halomethanes, haloethanes, and haloethenes present in the ground waters underlying the INEEL. The chromatograms can be used to qualitatively evaluate a large number of contaminants at parts per trillion to parts per billion concentrations. The data can be used to study temporal and spatial distribution of contaminants in the Snake River Plain aquifer. Representative compressed chromatograms for all ground waters sampled in this study are available on two 3.5-inch high density computer disks. The data and the program required to decompress the data can be obtained from the U.S. Geological Survey office at Idaho Falls, Idaho. Sulfur hexafluoride (SF6) concentrations were measured in selected wells to determine the feasibility of using this environmental tracer as an age dating tool of ground water. Concentrations of dissolved nitrogen, argon, carbon dioxide, oxygen, and methane were measured in 79 ground waters. Concentrations of dissolved permanent gases are tabulated and will be used to evaluate the temperature of recharge of ground water in and near the INEEL.

  15. VARIATIONS IN RADON-222 IN SOIL AND GROUND WATER AT THE NEVADA TEST SITE

    E-Print Network [OSTI]

    Wollenberg, H.

    2010-01-01T23:59:59.000Z

    water 222Rn by gamma-ray spectrometry. There was no clearlyradioelement content by gamma-ray spectrometry. Results are

  16. Rev. 02/15/10 Construction: Any construction project regardless of size that disturbs soil, ground cover, or uses water (including pressure washing) that

    E-Print Network [OSTI]

    Rev. 02/15/10 Construction: Any construction project regardless of size that disturbs soil, ground/proposed construction project: EHS Office Use Only Recommendations: ______________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ ___________________________________________ _____________________ Approval Date Storm Water Management Program The University of Texas at Austin Notification of Construction

  17. Evaluation of two solid waste landfills, a Superfund site, and strip mining on ground water quality in Portage County, Ohio

    SciTech Connect (OSTI)

    Hunt, D.L. (OH/EPA, Logan, OH (United States)); Moody, J.B. (J.B. Moody and Associates, Athens, OH (United States)); Smith, G.W. (Ohio Univ., Athens, OH (United States). Dept. of Geology)

    1992-01-01T23:59:59.000Z

    The Willow Creek Landfill, the Jones Landfill, the Summit National Superfund Site, and Peterson Strip Mine are located in a 2 mi[sup 2] area in the SE portion of Portage County, OH. This study evaluated these potential sources of environmental pollution on ground water resources in 2 townships in Portage County, OH. The study area, comprising 15 mi[sup 2], is located in the glaciated portion of NE Ohio. The geology consists of alternating sandstones, siltstones, shales, and coal of the Pottsville Group of Pennsylvanian Age, overlain with glacial drift of the Wisconsin Glaciation of the Pleistocene Epoch. The Pottsville Formation was divided into 3 aquifers: shallow, intermediate, and deep for this study. 55 domestic wells in the study area and 13 monitoring wells at Willow Creek landfill were samples and analyzed for 23 inorganic chemical parameters. High concentrations of total dissolved solids, hardness, Cl, SO[sub 4], Ca, Fe, Mg, Mn, and Na were found in wells located to the SE and W of the potential contamination sources, from water in the shallow aquifer. The other two aquifers are inorganically uncontaminated at this time. The presence of a buried glacial valley is influencing the ground water flow patterns locally, which results in an increase in total dissolved solids with other inorganic geochemical parameters to the west of the four contamination sources.

  18. Electrosorption on carbon aerogel electrodes as a means of treating low-level radioactive wastes and remediating contaminated ground water

    SciTech Connect (OSTI)

    Tran, Tri Duc; Farmer, Joseph C.; DePruneda, Jean H.; Richardson, Jeffery H.

    1997-07-01T23:59:59.000Z

    A novel separation process based upon carbon aerogel electrodes has been recently developed for the efficient removal of ionic impurities from aqueous streams. This process can be used as an electrical y- regenerated alternative to ion exchange, thereby reducing-the need for large quantities of chemical regenerants. Once spent (contaminated), these regenerants contribute to the waste that must be disposed of in landfills. The elimination of such wastes is especially beneficial in situations involving radioactive contaminants, and pump and treat processing of massive volumes of ground water. A review and analysis of potential applications will be presented.

  19. Ground water of Yucca Mountain: How high can it rise?; Final report

    SciTech Connect (OSTI)

    NONE

    1992-12-31T23:59:59.000Z

    This report describes the geology, hydrology, and possible rise of the water tables at Yucca Mountain. The possibilities of rainfall and earthquakes causing flooding is discussed.

  20. In Situ Production of Chlorine-36 in the Eastern Snake River Plain Aquifer, Idaho: Implications for Describing Ground-Water Contamination Near a Nuclear Facility

    SciTech Connect (OSTI)

    L. D. Cecil; L. L. Knobel; J. R. Green (USGS); S. K. Frape (University of Waterloo)

    2000-06-01T23:59:59.000Z

    The purpose of this report is to describe the calculated contribution to ground water of natural, in situ produced 36Cl in the eastern Snake River Plain aquifer and to compare these concentrations in ground water with measured concentrations near a nuclear facility in southeastern Idaho. The scope focused on isotopic and chemical analyses and associated 36Cl in situ production calculations on 25 whole-rock samples from 6 major water-bearing rock types present in the eastern Snake River Plain. The rock types investigated were basalt, rhyolite, limestone, dolomite, shale, and quartzite. Determining the contribution of in situ production to 36Cl inventories in ground water facilitated the identification of the source for this radionuclide in environmental samples. On the basis of calculations reported here, in situ production of 36Cl was determined to be insignificant compared to concentrations measured in ground water near buried and injected nuclear waste at the INEEL. Maximum estimated 36Cl concentrations in ground water from in situ production are on the same order of magnitude as natural concentrations in meteoric water.

  1. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Petroleum Product Storage

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

    1997-08-29T23:59:59.000Z

    Texas AgriLife Extension Service Petroleum Products Overview Storing liquid petroleum products, such as motor fuel and heating fuel, above ground or underground presents a potential threat to pub- lic health and the environment. Nearly one out... with Varying Permeability Land Surface Figure 1. Petroleum product seepage into soils. Source: Underground Tank Corrective Action Technologies, EPA/625/6-87-015, January 1987. filled. Overfill protection is either a warning device, such as, a buzzer or a...

  2. User`s Guide: Database of literature pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Hall, L.F.

    1993-05-01T23:59:59.000Z

    Since its beginnings in 1949, hydrogeologic investigations at the Idaho National Engineering Laboratory (INEL) have resulted in an extensive collection of technical publications providing information concerning ground water hydraulics and contaminant transport within the unsaturated zone. Funding has been provided by the Department of Energy through the Department of Energy Idaho Field Office in a grant to compile an INEL-wide summary of unsaturated zone studies based on a literature search. University of Idaho researchers are conducting a review of technical documents produced at or pertaining to the INEL, which present or discuss processes in the unsaturated zone and surface water-ground water interactions. Results of this review are being compiled as an electronic database. Fields are available in this database for document title and associated identification number, author, source, abstract, and summary of information (including types of data and parameters). AskSam{reg_sign}, a text-based database system, was chosen. WordPerfect 5.1{copyright} is being used as a text-editor to input data records into askSam.

  3. IEEE International Conference on Dielectric Liquids (ICDL-2008), Poitiers, June 30-July 4, 2008 Drop-on-demand Extraction from a Water Meniscus by

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Drop-on-demand Extraction from a Water Meniscus by a High Field Pulse P. Atten, A. Ouiguini, J. Raisin of a small drop electrically neutral. The experimental results of water drops extraction in oil are presented, France Abstract- As a part of a study of electrocoalescence of water droplets in oil, the controlled

  4. RELATIONS BETWEEN THE DETECTION OF METHYL TERT-BUTYL ETHER (MTBE) IN SURFACE AND GROUND WATER AND ITS CONTENT IN GASOLINE

    E-Print Network [OSTI]

    RELATIONS BETWEEN THE DETECTION OF METHYL TERT-BUTYL ETHER (MTBE) IN SURFACE AND GROUND WATER.S. Geological Survey 1608 Mt. View Rapid City, SD 57702 Methyl tert-butyl ether (MTBE) is commonly used today, the one used most commonly is MTBE. To meet the oxygen requirements of the CAA Amendments, gasoline

  5. Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed ServicesGround-Based MicrowaveVapor

  6. Effect of pH, phosphorus, and water-extractable zinc of soil on plant growth and zinc absorption

    E-Print Network [OSTI]

    Karimian, Najafali

    1970-01-01T23:59:59.000Z

    EFFECT OF pH~ PHOSPHORilS, AND WATER-EXTRACTABLE ZINC OF SOIL ON PLANT GROWTH AND ZINC ABSORPT1ON A Thesis Najafali Karimian Submitted to the Graduate College cf Texas ARM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE December 1970 Major Sub ject: Soil Chemistry EFFECT OF pH, PHOSPHORUS, AND WATER-EXTRACTABLE ZINC OF SOIL ON PLANT GROWTH AND ZINC ABSORPTION A Thesis by NajafaIi Karimian Approved as to sty1e and content by: Chairman Committee...

  7. Inverse hydrochemical models of aqueous extracts tests

    E-Print Network [OSTI]

    Zheng, L.

    2010-01-01T23:59:59.000Z

    years to improve water extraction methods, develop numericalreactions during water extraction, redox processes were notAranyossy, J.F. , 2001. Extraction of water and solutes from

  8. Characterization and biodegradation of water-soluble biomarkers and organic carbon extracted from low temperature chars

    SciTech Connect (OSTI)

    Norwood, Matt J.; Louchouarn, Patrick; Kuo, Li-Jung; Harvey, Omar

    2013-03-16T23:59:59.000Z

    This study demonstrates that wildfires/biomass combustion may be an important source of labile pyrogenic water-soluble organic matter (Py-WSOM) to aquatic systems. Spectroscopic analysis (of the solid char and Py-WSOM) with Fourier transform infrared spectroscopy (FTIR) indicated that the Py-WSOM extracted from two low temperature chars (one wood, one grass) was dominated by polar moieties (-OH and C-O) derived from depolymerization and fragmentation of lignocellulose. Incubation experiments under aerobic conditions with unsterilized river water suggested that Py-WSOM and associated biomarkers may have turnover rates on the order of weeks to months, consistent with mixing and transport conditions of riverine systems. For example, pyrogenic dissolved organic carbon (Py-DOC) had a half-life of 30-40 days. Turnover rate for the combustion biomarkers was shorter, with levoglucosan and free lignin phenols having a half-life around 3-4 days and polymeric lignin components 13-14 days. The latter observations contradict earlier studies on the biodegradation of dissolved lignin and point to the need for re-assessment of lignin degradation kinetics in well-mixed riverine systems, particularly when such lignin components are derived from thermally altered plant material that may exist in a form more labile than that in highly processed riverine DOM.

  9. USGS Professional Paper 1703--Ground-Water Recharge in the Arid and Semiarid Southwestern United States--

    E-Print Network [OSTI]

    water at the land surface can occur at discreet locations, such as in stream channels, or be distributed on temperature include viscosity, density, and surface tension, all of which affect hydraulic conductivity the sun, radiant cooling into space, and evapotranspi- ration, in addition to the advective and conductive

  10. Prediction of postmine ground-water quality at a Texas surface lignite mine

    E-Print Network [OSTI]

    Wise, Clifton Farrell

    1995-01-01T23:59:59.000Z

    . The predominant factors which affect spoil water quality have not been completely identified to date. Therefore, the Gibbons Creek Lignite Mine in Grimes County, Texas was chosen as a test site to evaluate the potential factors that can affect the geochemical...

  11. Prediction of postmine ground-water quality at a Texas surface lignite mine 

    E-Print Network [OSTI]

    Wise, Clifton Farrell

    1995-01-01T23:59:59.000Z

    . The predominant factors which affect spoil water quality have not been completely identified to date. Therefore, the Gibbons Creek Lignite Mine in Grimes County, Texas was chosen as a test site to evaluate the potential factors that can affect the geochemical...

  12. The Development and Optimization of Techniques for Monitoring Water Quality on-Board Spacecraft Using Colorimetric Solid-Phase Extraction (C-SPE)

    SciTech Connect (OSTI)

    April Hill

    2007-12-01T23:59:59.000Z

    The main focus of this dissertation is the design, development, and ground and microgravity validation of methods for monitoring drinking water quality on-board NASA spacecraft using clorimetric-solid phase extraction (C-SPE). The Introduction will overview the need for in-flight water quality analysis and will detail some of the challenges associated with operations in the absence of gravity. The ability of C-SPE methods to meet these challenges will then be discussed, followed by a literature review on existing applications of C-SPE and similar techniques. Finally, a brief discussion of diffuse reflectance spectroscopy theory, which provides a means for analyte identification and quantification in C-SPE analyses, is presented. Following the Introduction, four research chapters are presented as separate manuscripts. Chapter 1 reports the results from microgravity testing of existing C-SPE methods and procedures aboard NASA's C-9 microgravity simulator. Chapter 2 discusses the development of a C-SPE method for determining the total concentration of biocidal silver (i.e., in both dissolved and colloidal forms) in water samples. Chapter 3 presents the first application of the C-SPE technique to the determination of an organic analyte (i.e., formaldehyde). Chapter 4, which is a departure from the main focus of the thesis, details the results of an investigation into the effect of substrate rotation on the kinetics involved in the antigen and labeling steps in sandwich immunoassays. These research chapters are followed by general conclusions and a prospectus section.

  13. Ground-water monitoring compliance projects for Hanford Site facilities: Volume 2, Appendices A and B: Progress report, January 1, 1987 to March 31, 1987

    SciTech Connect (OSTI)

    Not Available

    1987-05-01T23:59:59.000Z

    This report convers recent progress on ground-water monitoring programs for four Hanford Site facilities: the 300 Area Process Trenches, the 183-H Solar Evaporation Basins, the 200 Area Low-Level Burial Grounds, and the Nonradioactive Dangerous Waste Landfill. The time period covered by this covered by this report is January 1 to March 31, 1987. Volume 2 contains Appendices A and B.

  14. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    E-Print Network [OSTI]

    Warner, J.L.

    2009-01-01T23:59:59.000Z

    the temperature of the residual water encountered by theof hot water and the residual water might occur: (1) thehot water might drive the residual water through the piping

  15. IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER

    E-Print Network [OSTI]

    IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS #12;ii IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS............................................................... 2 1.3. Overview of the Parameter Estimation Water-to-Water Heat Pump Model ........... 5 1

  16. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; Belcher, W.R.; San Juan, Carma

    2002-11-22T23:59:59.000Z

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this ''second-generation'' regional model was to enhance the knowledge and understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-stat e representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration.

  17. UMTRA ground water sampling techniques: Comparison of the traditional and low flow methods

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This report describes the potential changes in water quality data that may occur with the conversion from MBV (multiple bore volume) to LF (low flow) sampling and provides two examples of how such a change might impact Project decisions. The existing scientific literature on LF sampling is reviewed and the new LF data from three UMTRA Uranium Mill Tailings Remedial Action Project sites are evaluated seeking answers to the questions posed above. Several possible approaches, that the UMTRA Project may take to address issues unanswered by the literature are presented and compared, and a recommendation is offered for the future direction of the LF conversion effort.

  18. U.A.C. R317-6: Ground Water Quality Protection | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpType B:7-15: Water

  19. Stir bar sorptive extraction coupled to liquid chromatography-tandem mass spectrometry for the2 determination of pesticides in water samples: method validation and measurement uncertainty3

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    carry-over between consecutive extractions with the same stir21 bar. Pesticide quantification in water1 Title :1 Stir bar sorptive extraction coupled to liquid chromatography-tandem mass spectrometry for the2 determination of pesticides in water samples: method validation and measurement uncertainty3

  20. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Appendixes to Attachment 3: Appendix A, Hydrological services calculations: Appendix B, Ground water quality by location, Final report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This report contains chemical analysis data for ground water for the following: elements; cyanides; chlorides; dissolved organic carbon; fluorides; silica; sulfates; sulfides; dissolved solids; nitrates; and nitrites.

  1. Geothermal assessment of the lower Bear River drainage and northern East Shore ground-water areas, Box Elder County, Utah

    SciTech Connect (OSTI)

    Klauk, R.H.; Budding, K.E.

    1984-07-01T23:59:59.000Z

    The Utah Geological and Mineral Survey (UGMS) has been researching the low-temperature geothermal resource potential in Utah. This report, part of an area-wide geothermal research program along the Wasatch Front, concerns the study conducted in the lower Bear River drainage and northern East Shore ground-water areas in Box Elder County, Utah. The primary purpose of the study is to identify new areas of geothermal resource potential. There are seven known low-temperature geothermal areas in this part of Box Elder County. Geothermal reconnaissance techniques used in the study include a temperature survey, chemical analysis of well and spring waters, and temperature-depth measurements in accessible wells. The geothermal reconnaissance techniques identified three areas which need further evaluation of their low-temperature geothermal resource potential. Area 1 is located in the area surrounding Little Mountain, area 2 is west and southwest of Plymouth, and area 3 is west and south of the Cutler Dam. 5 figures, 4 tables.

  2. Ground water and snow sensor based on directional detection of cosmogenic neutrons.

    SciTech Connect (OSTI)

    Cooper, Robert Lee; Marleau, Peter; Griffin, Patrick J.

    2011-06-01T23:59:59.000Z

    A fast neutron detector is being developed to measure the cosmic ray neutron flux in order to measure soil moisture. Soil that is saturated with water has an enhanced ability to moderate fast neutrons, removing them from the backscatter spectrum. The detector is a two-element, liquid scintillator detector. The choice of liquid scintillator allows rejection of gamma background contamination from the desired neutron signal. This enhances the ability to reconstruct the energy and direction of a coincident neutron event. The ability to image on an event-by-event basis allows the detector to selectively scan the neutron flux as a function of distance from the detector. Calibrations, simulations, and optimization have been completed to understand the detector response to neutron sources at variable distances and directions. This has been applied to laboratory background measurements in preparation for outdoor field tests.

  3. Vertical Extraction Process Implemented at the 118-K-1 Burial Ground for Removal of Irradiated Reactor Debris from Silo Structures - 12431

    SciTech Connect (OSTI)

    Teachout, Douglas B. [Vista Engineering Technologies, LLC, Richland, Washington, 99352 (United States); Adamson, Clinton J.; Zacharias, Ames [Washington Closure Hanford, LLC, Richland, Washington, 99352 (United States)

    2012-07-01T23:59:59.000Z

    The primary objective of a remediation project is the safe extraction and disposition of diverse waste forms and materials. Remediation of a solid waste burial ground containing reactor hardware and irradiated debris involves handling waste with the potential to expose workers to significantly elevated dose rates. Therefore, a major challenge confronted by any remediation project is developing work processes that facilitate compliant waste management practices while at the same time implementing controls to protect personnel. Traditional burial ground remediation is accomplished using standard excavators to remove materials from trenches and other excavation configurations often times with minimal knowledge of waste that will be encountered at a specific location. In the case of the 118-K-1 burial ground the isotopic activity postulated in historic documents to be contained in vertical cylindrical silos was sufficient to create the potential for a significant radiation hazard to project personnel. Additionally, certain reported waste forms posed an unacceptably high potential to contaminate the surrounding environment and/or workers. Based on process knowledge, waste management requirements, historic document review, and a lack of characterization data it was determined that traditional excavation techniques applied to remediation of vertical silos would expose workers to unacceptable risk. The challenging task for the 118-K-1 burial ground remediation project team then became defining an acceptable replacement technology or modification of an existing technology to complete the silo remediation. Early characterization data provided a good tool for evaluating the location of potential high exposure rate items in the silos. Quantitative characterization was a different case and proved difficult because of the large diameter of the silos and the potential for variable density of attenuating soils and waste forms in the silo. Consequently, the most relevant information supporting job planning and understanding of the conditions was the data obtained from the gross gamma meter that was inserted into each casing to provide a rough estimate of dose rates in the tubes. No added value was realized in attempting to quantify the source term and/or associate the isotopic activity with a particular actual waste form (e.g., sludge). Implementing the WRM system allowed monitoring of worker and boundary exposure rates from a distance, maintaining compliance with ALARA principles. This system also provided the project team early knowledge of items being removed that had high exposure rates associated with them, thus creating an efficient method of acknowledging an issue and arriving at a solution prior to having an upset condition. An electronic dosimeter with telemetry capability replaced the excavator mounted AMP-100 system approximately half way through remediation of the silos. Much higher connectivity efficiency was derived from this configuration. Increasing the data feed efficiency additionally led to less interruption of the remediation effort. Early in system testing process a process handicap on the excavator operator was acknowledged. A loss of depth perception resulted when maneuvering the excavator and bucket using the camera feed to an in-cab monitor. Considerable practice and mock-up testing allowed this handicap to be overcome. The most significant equipment failures involved the cable connection to the camera mounted between the clamshell bucket jaws and the video splitter in the excavator cab. Rotation of the clamshell bucket was identified as the cause of cable connection failures because of the cyclic twisting motion and continuous mechanical jarring of the connection. In-cab vibration was identified as the culprit in causing connection failures of the video splitter. While these failures were repaired, substantial production time was lost. Ultimately, the decision was made to purchase a second cable and higher quality video splitter eliminate the down time. An engineering improvement for future operations would be i

  4. Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters via Reduction by Zero-Valent Metals

    SciTech Connect (OSTI)

    Yarmoff, Jory A.; Amrhein, Christopher

    1999-06-01T23:59:59.000Z

    Contaminated groundwater and surface waters are a problem throughout the United States and the world. In many instances, the types of contamination can be directly attributed to man's actions. For instance, the burial of chemical wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater and surface water contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements (including radioisotopes) that are soluble and mobile in soils and aquifers. Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. Uranium is a particularly widespread contaminant at most DOE sites including Oak Ridge, Rocky Flats, Hanford, Idaho (INEEL), and Fernald. The uranium contamination is associated with mining and milling of uranium ore (UMTRA sites), isotope separation and enrichment, and mixed waste and TRU waste burial. In addition, the careless disposal of halogenated solvents, such as carbon tetrachloride and trichloroethylene, has further contaminated many groundwaters at these sites. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used on an experimental basis at many DOE sites. Both in situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the contaminants and the iron surfaces. We are performing fundamental investigations of the interactions of the relevant chlorinated solvents and trace element-containing compounds with single- and poly-crystalline Fe surfaces. The aim of this work is to develop th e fundamental physical and chemical understanding that is necessary for the development of cleanup techniques and procedures.

  5. An ecological study examining the correlation of end-stage renal disease and ground water heavy metal content in Texas counties

    E-Print Network [OSTI]

    Bishop, Scott Alan

    1999-01-01T23:59:59.000Z

    An ecological study was conducted to examine the correlation of end-stage renal disease (ESRD) and the ground water heavy metal level of lead, arsenic, cadmium, mercury and the cumulative level of all four metals in Texas counties. The heavy meal...

  6. Wyoming Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    , 2001). CBM extraction involves pumping methane and ground water out of coal seams. The gas and water://wwweng.uwyo.edu/civil/research/water/epmodeler.html. University of Wyoming, Laramie. 4. Wilkerson, G. V., 2002. A GIS model for evaluating the impacts of coal bed of America, Boulder, CO. #12;Problem and Research Objectives: Coal bed methane (CBM) development

  7. New Jersey Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    and ground water aquifers. Sae-Khow and her advisor developed a microscale solid phase extraction methodNew Jersey Water Resources Research Institute Annual Technical Report FY 2008 New Jersey Water Resources Research Institute Annual Technical Report FY 2008 1 #12;Introduction The New Jersey Water

  8. A significant number of Iowa water treatment systems are dependent upon well-based water sources. Because of this, CIRAS efforts have been focused on the "Ground Water Levels" as reported by Iowa DNR. Currently, DNR officials are indicating that restricti

    E-Print Network [OSTI]

    Lin, Zhiqun

    A significant number of Iowa water treatment systems are dependent upon well-based water sources. Because of this, CIRAS efforts have been focused on the "Ground Water Levels" as reported by Iowa DNR. Currently, DNR officials are indicating that restrictions or loss of the water supply is not likely

  9. Water Rights: Ground Water (Indiana)

    Broader source: Energy.gov [DOE]

    It is the policy of the state to provide for the conservation of groundwater resources and limit groundwater waste. The Indiana Department of Natural Resources may designate restricted use areas...

  10. Apparatus and method for extraction of chemicals from aquifer remediation effluent water

    DOE Patents [OSTI]

    McMurtrey, Ryan D. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID); Moor, Kenneth S. (Idaho Falls, ID); Shook, G. Michael (Idaho Falls, ID); Moses, John M. (Dedham, MA); Barker, Donna L. (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    An apparatus and method for extraction of chemicals from an aquifer remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating aquifers contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

  11. Method and system for extraction of chemicals from aquifer remediation effluent water

    DOE Patents [OSTI]

    McMurtrey, Ryan D. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID); Moor, Kenneth S. (Idaho Falls, ID); Shook, G. Michael (Idaho Falls, ID); Barker, Donna L. (Idaho Falls, ID)

    2003-01-01T23:59:59.000Z

    A method and system for extraction of chemicals from an groundwater remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating groundwater contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

  12. Ground Water Cooling System

    E-Print Network [OSTI]

    Greaves, K.; Chave, G. H.

    1984-01-01T23:59:59.000Z

    Based on a thorough study of products and anticipated growth, the Turbine and Generator Division of Westinghouse Canada Inc. concluded that a component feeder plant for fabrication and machining of turbine components was required. This facility now...

  13. UMTRA Ground Water Project

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations Guide Doc.5 R A D ISaltVerification

  14. UMTRA Ground Water Project

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations Guide Doc.5 R A D

  15. On the ground state calculation of a many-body system using a self-consistent basis and quasi-Monte Carlo: An application to water hexamer

    SciTech Connect (OSTI)

    Georgescu, Ionu?, E-mail: ionutg@gmail.com; Mandelshtam, Vladimir A. [Chemistry Department, University of California, Irvine, California 92697 (United States)] [Chemistry Department, University of California, Irvine, California 92697 (United States); Jitomirskaya, Svetlana [Department of Mathematics, University of California, Irvine, California 92697 (United States)] [Department of Mathematics, University of California, Irvine, California 92697 (United States)

    2013-11-28T23:59:59.000Z

    Given a quantum many-body system, the Self-Consistent Phonons (SCP) method provides an optimal harmonic approximation by minimizing the free energy. In particular, the SCP estimate for the vibrational ground state (zero temperature) appears to be surprisingly accurate. We explore the possibility of going beyond the SCP approximation by considering the system Hamiltonian evaluated in the harmonic eigenbasis of the SCP Hamiltonian. It appears that the SCP ground state is already uncoupled to all singly- and doubly-excited basis functions. So, in order to improve the SCP result at least triply-excited states must be included, which then reduces the error in the ground state estimate substantially. For a multidimensional system two numerical challenges arise, namely, evaluation of the potential energy matrix elements in the harmonic basis, and handling and diagonalizing the resulting Hamiltonian matrix, whose size grows rapidly with the dimensionality of the system. Using the example of water hexamer we demonstrate that such calculation is feasible, i.e., constructing and diagonalizing the Hamiltonian matrix in a triply-excited SCP basis, without any additional assumptions or approximations. Our results indicate particularly that the ground state energy differences between different isomers (e.g., cage and prism) of water hexamer are already quite accurate within the SCP approximation.

  16. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 2. Special test cases

    SciTech Connect (OSTI)

    Simmons, C.S.; Cole, C.R.

    1985-08-01T23:59:59.000Z

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. Volume 1, titled ''Guideline Approach,'' consists of Chapters 1 through 5 and a glossary. Chapters 2 through 5 provide the more detailed discussions about the code selection approach. This volume, Volume 2, consists of four appendices reporting on the technical evaluation test cases designed to help verify the accuracy of ground-water transport codes. 20 refs.

  17. Supercritical fluid extraction of bitumen free solids separated from Athabasca oil sand feed and hot water process tailings pond sludge

    SciTech Connect (OSTI)

    Kotlyar, L.S.; Sparks, B.D.; Woods, J.R.; Ripmeester, J.A. (National Research Council of Canada, Ottawa, ON (Canada). Div. of Chemistry)

    1990-01-01T23:59:59.000Z

    The presence of strongly bound organic matter (SOM), in association with certain solids fractions, causes serious problems in the processability of Athabasca oil sands as well as in the settling and compaction of hot water process tailing pond sludge. It has been demonstrated that a substantial amount of this SOM can be separated from oil sands feed and sludge solids, after removal of bitumen by toluene, using a supercritical fluid extraction (SFE) method. The extracted material is soluble in common organic solvents which allows a direct comparison, between the SOM separated from oil sands and sludges, from the point of view of both gross analysis of the major compound types and detailed analysis of chemical structures.

  18. Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE) plumes in ground water at leaking underground fuel tank (LUFT) sites

    SciTech Connect (OSTI)

    Happel, A.M.; Rice, D. [Lawrence Livermore National Lab., CA (United States); Beckenbach, E. [California Univ., Berkeley, CA (United States); Savalin, L.; Temko, H.; Rempel, R. [California State Water Resources Control Board, Sacramento, CA (United States); Dooher, B. [California Univ., Los Angeles, CA (United States)

    1996-11-01T23:59:59.000Z

    The 1990 Clean Air Act Amendments mandate the addition of oxygenates to gasoline products to abate air pollution. Currently, many areas of the country utilize oxygenated or reformulated fuel containing 15- percent and I I-percent MTBE by volume, respectively. This increased use of MTBE in gasoline products has resulted in accidental point source releases of MTBE containing gasoline products to ground water. Recent studies have shown MTBE to be frequently detected in samples of shallow ground water from urban areas throughout the United States (Squillace et al., 1995). Knowledge of the subsurface fate and transport of MTBE in ground water at leaking underground fuel tank (LUFT) sites and the spatial extent of MTBE plumes is needed to address these releases. The goal of this research is to utilize data from a large number of LUFT sites to gain insights into the fate, transport, and spatial extent of MTBE plumes. Specific goals include defining the spatial configuration of dissolved MTBE plumes, evaluating plume stability or degradation over time, evaluating the impact of point source releases of MTBE to ground water, and attempting to identify the controlling factors influencing the magnitude and extent of the MTBE plumes. We are examining the relationships between dissolved TPH, BTEX, and MTBE plumes at LUFT sites using parallel approaches of best professional judgment and a computer-aided plume model fitting procedure to determine plume parameters. Here we present our initial results comparing dissolved benzene and MTBE plumes lengths, the statistical significance of these results, and configuration of benzene and MTBE plumes at individual LUFT sites.

  19. Ground-water hydrologic effects resulting from underground coal gasification experiments at the Hoe Creek Site near Gillette, Wyoming. Interim report, October 1979-March 1980

    SciTech Connect (OSTI)

    Raber, E.; Stone, R.

    1980-05-01T23:59:59.000Z

    This technical note summarizes our activities, to date, on the research project: Ground-Water Hydrologic Effects Resulting from Underground Coal Gasification Experiments (EPA-IAG-79-D-X0795). The gasified coal seam (Felix No. 2 coal) and two overlying aquifers (Felix No. 1 coal and overlying sand) appear to have become interconnected as a result of roof collapse and subsidence at both Hoe Creek Sites II and III near Gillette, Wyoming. To evaluate changes in the ground-water flow regime at the two sites, completion of supplementary wells was necessary to define the distance versus head drawdown relationships in each of the three aquifers. Hydraulic head potentials have been measured at Site III since gasification ended on October 10, 1979. These data are presented in graphic format. Although hydraulic head measurements at Site II seemed to be approaching a steady-state condition 1.5 years after gasification, the subsequent gasification at Site III temporarily altered the ground-water flow patterns. These changes will have a definite effect on contaminant dispersal and will need to be taken into consideration.

  20. Microbial Community Changes in Hydraulic Fracturing Fluids and Produced Water from Shale Gas Extraction

    SciTech Connect (OSTI)

    Mohan, Arvind Murali; Hartsock, Angela; Bibby, Kyle J.; Hammack, Richard W.; Vidic, Radisav D.; Gregory, Kelvin B.

    2013-11-19T23:59:59.000Z

    Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

  1. 152 / JOURNAL OF HYDROLOGIC ENGINEERING / APRIL 1999 UNCERTAINTY OF ONE-DIMENSIONAL GROUND-WATER FLOW IN

    E-Print Network [OSTI]

    Zhan, Hongbin

    -WATER FLOW IN STRONGLY HETEROGENEOUS FORMATIONS By Hongbin Zhan1 and Stephen W. Wheatcraft2 ABSTRACT

  2. Foliar water uptake: a common water acquisition strategy for plants of the redwood forest

    E-Print Network [OSTI]

    Limm, Emily Burns; Simonin, Kevin A.; Bothman, Aron G.; Dawson, Todd E.

    2009-01-01T23:59:59.000Z

    at -20°C until leaf water extraction and stable hydrogenEhleringer JR (2006) Water extraction times for plant andthe extraction line, we extracted one known standard water

  3. Wave Energy Extraction from an Oscillating Water Column in a Truncated Circular Cylinder

    E-Print Network [OSTI]

    Wang, Hao

    2013-07-19T23:59:59.000Z

    Oscillating Water Column (OWC) device is a relatively practical and convenient way that converts wave energy to a utilizable form, which is usually electricity. The OWC is kept inside a fixed truncated vertical cylinder, which is a hollow structure...

  4. Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

  5. Cheap Artificial AB-Mountains, Extraction of Water and Energy from Atmosphere and Change of Regional Climate

    E-Print Network [OSTI]

    Alexander Bolonkin

    2008-05-11T23:59:59.000Z

    Author suggests and researches a new revolutionary method for changing the climates of entire countries or portions thereof, obtaining huge amounts of cheap water and energy from the atmosphere. In this paper is presented the idea of cheap artificial inflatable mountains, which may cardinally change the climate of a large region or country. Additional benefits: The potential of tapping large amounts of fresh water and energy. The mountains are inflatable semi-cylindrical constructions from thin film (gas bags) having heights of up to 3 - 5 km. They are located perpendicular to the main wind direction. Encountering these artificial mountains, humid air (wind) rises to crest altitude, is cooled and produces rain (or rain clouds). Many natural mountains are sources of rivers, and other forms of water and power production - and artificial mountains may provide these services for entire nations in the future. The film of these gasbags is supported at altitude by small additional atmospheric overpressure and may be connected to the ground by thin cables. The author has shown (in previous works about the AB-Dome) that this closed AB-Dome allows full control of the weather inside the Dome (the day is always fine, the rain is only at night, no strong winds) and influence to given region. This is a realistic and cheap method of economical irrigation, getting energy and virtual weather control on Earth at the current time.

  6. A direct and rapid leaf water extraction method for isotopic analysis

    E-Print Network [OSTI]

    Yakir, Dan

    Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, Israel for isotopic analysis via pyrolysis gas chromatography isotope ratio mass spectrometry (PYR/GC/IRMS). The new-scale studies that require high-throughput leaf water isotopic analysis. Copyright # 2008 John Wiley & Sons, Ltd

  7. Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction

    E-Print Network [OSTI]

    Jackson, Robert B.

    Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas Pennsylvania, ex- amining natural gas concentrations and isotopic signatures with proximity to shale gas wells this transformation, with shale gas and other unconventional sources now yielding more than one- half of all US

  8. Pilot plant studies for a new hot water process for extraction of bitumen from Utah tar sands

    SciTech Connect (OSTI)

    Dahlstrom, D.A.

    1996-12-31T23:59:59.000Z

    A process development pilot plant for extracting bitumen from tar sands under arid conditions are described. The hot water recovery process under development is required to maximize heat and water recovery, recover more than 90% of the bitumen, minimize the operating cost, and eliminate the use of a tailings pond by increasing the effectiveness of solids separation and dewatering. Technical aspects of process flow conditions, the liquid cyclone separator under development, and testing to analyze the influence of flow rates, size distribution in discharge streams, amount of bitumen recovery from different streams, and air addition are summarized. Test results indicate that bitumen recovery should be at least 90%, water content from thickener underflow and dewater coarse solids averages about 30 weight percent moisture, and the forced vortex cyclone can produce an underflow solids concentration of 69 to 72 weight percent moisture. The proposed flow sheet is believed to be a very low-cost method for bitumen recovery. 5 refs., 3 figs., 2 tabs.

  9. [Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio]. Volume 4, Health and Safety Plan (HSP); Phase 1, Task 4 Field Investigation report: Draft

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  10. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Livestock Manure Storage and Treatment Facilities 

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    , accumulating manure in a con- centrated area can be risky to the environment and to human and animal health unless done properly. Federal and state drinking water standards state that nitrate levels in drinking water should not exceed 10 milligrams per liter... (equivalent to parts per million for water mea- sure). Nitrate nitrogen levels higher than this can pose health problems for infants under 6 months of age, including the condition known as methemoglobinemia (blue baby syndrome). Nitrate also can affect adults...

  11. Vertical Concentric Tube Ground Couoled Heat Exchangers V. C. Mei and S. K. Fischer*

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    to extract heat from or reject heat to the environment. The majority of heat pumps use ambient air of the air. Ground water is a better heat source/sink for heat pump application (due to its superior thermal exchangers for use in heat-pump applications is described. The experimental apparatus consists

  12. Energy and Water Use in Irrigated Agriculture During Drought Conditions

    E-Print Network [OSTI]

    Ritschard, R.L.

    2011-01-01T23:59:59.000Z

    is overdrafted from ground water storage basins. 3 In 1976supply, pumping from ground water storage reservoirs mayIn of ground formation which reduces the water storage

  13. NGWA.org Ground Water Monitoring & Remediation 31, no. 3/ Summer 2011/pages 4754 47 2011, The Author(s)

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    contaminated with fuel ethanol blends. Introduction Ethanol is increasingly being used as a blending agent of an Ethanol Blend by Jie Ma, Zongming Xiu, Amy L. Monier, Irina Mamonkina, Yi Zhang, Yongzhi He, Brent P release of 10% v:v ethanol solution in water mixed with benzene and toluene (50 mg/L each

  14. A Fresh Perspective for Managing Water in California: Insights from Applying the European Water Framework Directive to the Russian River

    E-Print Network [OSTI]

    Grantham, Ted; Christian-Smith, Juliet; Kondolf, G. Mathias; Scheuer, Stefan

    2008-01-01T23:59:59.000Z

    drinking water supply; water extraction does not exceed theresulting from water diversions and extraction, as well asand effects of extraction water tables is generally not

  15. Ground-water monitoring compliance projects for Hanford Site facilities: Progress report for the period January 1--March 31, 1988: Volume 1, Text

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    This report describes the progress of eight Hanford Site ground-water monitoring projects for the period January 1 to March 31, 1988. The facilities represented by the eight projects are the 300 Area Process trenches, 183-H Solar Evaporation Basins, 200 Areas Low-Level Burial Grounds, Nonradioactive Dangerous Waste Landfill, 216-A-36B Crib, 1301-N Liquid Waste Disposal Facility, 1325-N Liquid Waste Disposal Facility, and 1324-N/NA Surface Impoundment and Percolation Ponds. The latter four projects are included in this series of quarterly reports for the first time. This report is the seventh in a series of periodic status reports; the first six cover the period from May 1, 1986, through December 31, 1987 (PNL 1986; 1987a, b, c, d; 1988a). This report satisfies the requirements of Section 17B(3) of the Consent Agreement and Compliance Order issued by the Washington State Department of Ecology (1986a) to the US Department of Energy-Richland Operations Office. 13 refs., 19 figs., 24 tabs.

  16. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Livestock Holding Pen Management

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    of yard surface 7) Manure storage and utilization 8) Abandoned livestock yards 9) Evaluation table A glossary in the back of this publication will clarify the terminology used. Separation Distance From Well Wells should be located in an elevated area..., so it remains relatively dry except during and immediately after rainfall. Manure typically accumulates on the surface, and decaying or decomposing manure is mixed into the soil by animal traffic, sealing the sur- face and reducing infiltration. Water...

  17. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Milking Center Wastewater Treatment

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    be affected by manure, milk solids, ammonia, phosphorus, and detergents. Wastewater from the dairy milking center is made up of waste from the milking parlor (manure, feed solids, hoof dirt, bulk tank rinse water and detergent used in cleaning), and should... topics: 1. Combining wastes 2. Application methods 3. Slow surface infiltration Combining Wastes When milking center wastes are combined with manure a common disposal system can be used for both types of waste. A liquid manure storage facility, properly...

  18. Fundamental Studies of The Removal of Contaminants from Ground and Waste Waters Via Reduction By Zero-Valent metals

    SciTech Connect (OSTI)

    Jory A. Yarmoff; Christopher Amrhein

    2002-04-23T23:59:59.000Z

    Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites, and in other areas of the U.S.. A potential remediation method is to react the contaminated water with zero-valent iron (ZVI). We are performing fundamental investigations of the interactions of the relevant compounds with Fe filings and single- and poly-crystalline surfaces. The aim of this work is to develop the physical and chemical understanding that is necessary for the development of cleanup techniques and procedures.

  19. {sup 222}Rn in water: A comparison of two sample collection methods and two sample transport methods, and the determination of temporal variation in North Carolina ground water

    SciTech Connect (OSTI)

    Hightower, J.H. III [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering] [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering

    1994-12-31T23:59:59.000Z

    Objectives of this field experiment were: (1) determine whether there was a statistically significant difference between the radon concentrations of samples collected by EPA`s standard method, using a syringe, and an alternative, slow-flow method; (2) determine whether there was a statistically significant difference between the measured radon concentrations of samples mailed vs samples not mailed; and (3) determine whether there was a temporal variation of water radon concentration over a 7-month period. The field experiment was conducted at 9 sites, 5 private wells, and 4 public wells, at various locations in North Carolina. Results showed that a syringe is not necessary for sample collection, there was generally no significant radon loss due to mailing samples, and there was statistically significant evidence of temporal variations in water radon concentrations.

  20. Economic-impact study for proposed Ground-water-Quality Standards 35 IL Admin. Code 260. Final report

    SciTech Connect (OSTI)

    Lantz, R.; Buss, D.F.

    1990-12-01T23:59:59.000Z

    The state passed the Illinois Groundwater Protection Act (IGPA) in September 1987, which among other things, directed the Illinois Environmental Protection Agency (IEPA) to develop groundwater classification system and nondegradation procedures. The IGPA also mandated that the Illinois Department of Energy and Natural Resources conduct an Economic Impact Study of the IEPA's proposed regulations. The report also analyzed alternatives considered during the development of the Code 620 regulations in addition to the final outcome. The proposed regulations would establish a groundwater classification which would be partially use-based and partially water quality-based. Numeric groundwater quality standards are also established which apply to General Resource and Potable Resource Groundwater. Cleanup criteria are identified for sites of contamination. As determined by this investigation, the most significant costs of the IEPA's proposed regulations could be expected to be groundwater remediation costs, which are those costs associated with returning contaminated groundwater to compliance with the standards.

  1. Innovative Drying and Nutrients Extraction

    E-Print Network [OSTI]

    to the extraction process. This method evaporates the water from the products but also drives off up to 70 percent dimethyl ether to extract the water from the material. The new process does not require the addition of heat to evaporate the water during the extraction process. Dimethyl ether has a lower heat

  2. Abstracts and parameter index database for reports pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Bloomsburg, G.; Finnie, J.; Horn, D.; King, B.; Liou, J. [Idaho Univ., Moscow, ID (United States)

    1993-05-01T23:59:59.000Z

    This report is a product generated by faculty at the University of Idaho in support of research and development projects on Unsaturated Zone Contamination and Transport Processes, and on Surface Water-Groundwater Interactions and Regional Groundwater Flow at the Idaho National Engineering Laboratory. These projects are managed by the State of Idaho`s INEL Oversight Program under a grant from the US Department of Energy. In particular, this report meets project objectives to produce a site-wide summary of hydrological information based on a literature search and review of field, laboratory and modeling studies at INEL, including a cross-referenced index to site-specific physical, chemical, mineralogic, geologic and hydrologic parameters determined from these studies. This report includes abstracts of 149 reports with hydrological information. For reports which focus on hydrological issues, the abstracts are taken directly from those reports; for reports dealing with a variety of issues beside hydrology, the abstracts were generated by the University of Idaho authors concentrating on hydrology-related issues. Each abstract is followed by a ``Data`` section which identifies types of technical information included in a given report, such as information on parameters or chemistry, mineralogy, stream flows, water levels. The ``Data`` section does not include actual values or data.

  3. Ground Loops for Heat Pumps and Refrigeration 

    E-Print Network [OSTI]

    Braud, H. J.

    1986-01-01T23:59:59.000Z

    Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water...

  4. Ground Loops for Heat Pumps and Refrigeration

    E-Print Network [OSTI]

    Braud, H. J.

    1986-01-01T23:59:59.000Z

    Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water...

  5. Impact-driven pressure management via targeted brine extraction Conceptual studies of CO2 storage in saline formations

    E-Print Network [OSTI]

    Birkholzer, J.T.

    2013-01-01T23:59:59.000Z

    of active pumping, water extraction wells can also bescenarios in which water extraction wells operate as passivemanagement via extraction of native saline water has been

  6. Feasibility of using nanoporous materials in water harvesting

    E-Print Network [OSTI]

    Chow, Brian Justin

    2010-01-01T23:59:59.000Z

    its importance for water extraction. 1. Carbon Nanotubes AFor the purposes of water extraction from the atmosphere,interest in the field of water extraction and isolation from

  7. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01T23:59:59.000Z

    Efforts Investigating Water Extraction •! LLNL –! Active CObenefits of various water extraction, treatment, and reuseof CO 2 storage and water extraction scenarios –! Technical

  8. Optimal Design for a Hybrid Ground-Source Heat Pump 

    E-Print Network [OSTI]

    Yu, Z.; Yuan, X.; Wang, B.

    2006-01-01T23:59:59.000Z

    extraction from the ground. The paper presented has shown that the heat rejection of the GLHEs and the system energy consumption are approached to discuss the ground heat balance with different design procedures and control strategies though the system...

  9. Mayors, Markets and Municipal Reform: The Politics of Water Delivery in Mexico

    E-Print Network [OSTI]

    Herrera, Veronica Maria Sol

    2011-01-01T23:59:59.000Z

    is composed of water extraction, treatment, transportationof the measurements of water extraction, pressure, and allfunctions (measuring water extraction, energy use, water

  10. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01T23:59:59.000Z

    water, mining/oil extraction water, and power generationfor this new “water-intensive” extraction technique, theOil Supply (Data Source: (5)) Extraction water use data from

  11. An Investigation of Ammonia Extraction from Liquid Manure Using a Gas-Permeable Membrane Pollution of air, soil and water caused by excessive ammonia (NH3) emission and deposition from animal

    E-Print Network [OSTI]

    Mukhtar, Saqib

    An Investigation of Ammonia Extraction from Liquid Manure Using a Gas-Permeable Membrane Summary Pollution of air, soil and water caused by excessive ammonia (NH3) emission and deposition from animal by extracting it from liquid manure and potentially using the recovered NH3 as fertilizer. For this purpose, lab

  12. The Functional Potential of Microbial Communities in Hydraulic Fracturing Source Water and Produced Water from Natural Gas Extraction Characterized by Metagenomic Sequencing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mohan, Arvind Murali; Bibby, Kyle J.; Lipus, Daniel; Hammack, Richard W.; Gregory, Kelvin B.

    2014-10-22T23:59:59.000Z

    Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. The metabolic profile revealed a relative increase in genes responsible formore »carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.« less

  13. Selenium speciation in ground water

    SciTech Connect (OSTI)

    Atalay, A.

    1990-07-10T23:59:59.000Z

    Selenium toxicity diseases in animals may occur when the intake exceeds 4 mg/kg and selenium deficiency symptoms may occur when dietary intake is less than 0.04 mg/kg. Since the selenium dietary requirement is very close to toxic concentration, it is important to understand the distribution of selenium in the environment. Selenium occurs in four oxidation states (-II, 0, +IV, and +VI) as selenide, elemental selenium, selenite and selenate. Selenate is reported as more soluble and less adsorbed than selenite. Selenate is more easily leached from soils and is the most available form for plants. Increased mobility of Se into the environment via anthropogenic activities, and the potential oxidation-reduction behavior of the element have made it imperative to study the aquatic chemistry of Se. For this purpose, Se species are divided into two different categories: dissolved Se (in material that passes through filters with 0.45 u openings) and particulate Se (in material of particle size > 0.45 mm) typically suspended sediment and other suspended solids. Element and colloidal phase, not truly dissolved, but passing through the filter is deemed to consist of selenium (-2,0). In dissolved state selenium may exist in three of its four oxidation states; Se(-II), Se(+IV), and Se(+VI). Particulate Se may exist in the same oxidation states as dissolved Se and can be found in different phases of the particulate matter. In sediments, Se may be within the organic material, iron and manganese oxides, carbonates or other mineral phases. The actual chemical forms of Se may be adsorbed to or coprecipitated with these phases (primarily selenite, SeO{sub 3}{sup 2{minus}}) and selenate, SeO{sub 4}{sup 2{minus}}. Selenide, Se(-II), can be covalently bound in the organic portion of a sediment. In addition, Se may be found in anoxic sediments as insoluble metal selenide precipitates, an insoluble elemental Se or as ferroselite (FeSe{sub 2}) and Se containing pyrite.

  14. Ground Water Protection (North Dakota)

    Broader source: Energy.gov [DOE]

    North Dakota has a degradation prevention program for groundwater protection, with standards established by the Department of Health. This section addresses groundwater standards, quality...

  15. Ground-Coupled Heat Pump Applications and Case Studies 

    E-Print Network [OSTI]

    Braud, H. J.

    1989-01-01T23:59:59.000Z

    The paper presents an overview of ground loops for space-conditioning heat pumps, hot water, ice machines, and water-cooled refrigeration in residential and commercial applications. In Louisiana, a chain of hamburger drive-ins uses total ground...

  16. Predicted macroinvertebrate response to water diversion from a montane stream using two-dimensional hydrodynamic models and zero flow approximation

    E-Print Network [OSTI]

    Holmquist, Jeffrey G; Waddle, Terry J

    2013-01-01T23:59:59.000Z

    rivers with differing water extraction. Fundamental andecological effects of water extraction in small, unregulated

  17. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which can lead to public health problems. * MtBE (Methyl tert Butyl Ether), a gasoline additive, has begun to contaminate ground water supplies. * Similarly, perchlorate has...

  18. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  19. Ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah. Final, Revision 2, Version 5: Appendix E to the remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Green River, Utah

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The purpose of this appendix is to provide a ground water protection strategy for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Green River, Utah. Compliance with the US Environmental Protection Agency (EPA) ground water protection standards will be achieved by applying supplemental standards (40 CFR {section} 192.22(a); 60 FR 2854) based on the limited use ground water present in the uppermost aquifer that is associated with widespread natural ambient contamination (40 CFR {section} 192.11(e); 60 FR 2854). The strategy is based on new information, including ground water quality data collected after remedial action was completed, and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. The strategy will result in compliance with Subparts A and C of the EPA final ground water protection standards (60 FR 2854). The document contains sufficient information to support the proposed ground water protection strategy, with monitor well information and ground water quality data included as a supplement. Additional information is available in the final remedial action plan (RAP) (DOE, 1991a), the final completion report (DOE, 1991b), and the long-term surveillance plan (LTSP) (DOE, 1994a).

  20. Thermal Neutron Computed Tomography of Soil Water and Plant Roots

    E-Print Network [OSTI]

    Leanne G. Tumlinson; Hungyuan Liu; Wendy K. Silk; Jan W. Hopmans

    2007-01-01T23:59:59.000Z

    and L.A.G. Aylmore. 1986. Water extraction by a single plantgrowth, water uptake, and nutrient extraction (Asseng et

  1. Water Rights Challenges to Coho Recovery in Coastal California Watersheds

    E-Print Network [OSTI]

    Alford, Chris

    2009-01-01T23:59:59.000Z

    related to land-use and water extraction can have a greatwater resources, water extraction is likely to shift from

  2. Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards and Labeling Programs for Clothes Washers, Water Dispensers, Vending Machines and CFLs

    E-Print Network [OSTI]

    Fridley, David

    2010-01-01T23:59:59.000Z

    wash performance, water extraction, etc. ) during whichand spin extraction processes as well as heating water is

  3. Cheap Artificial AB-Mountains, Extraction of Water and Energy from Atmosphere and Change of Regional Climate

    E-Print Network [OSTI]

    Bolonkin, Alexander

    2008-01-01T23:59:59.000Z

    Author suggests and researches a new revolutionary method for changing the climates of entire countries or portions thereof, obtaining huge amounts of cheap water and energy from the atmosphere. In this paper is presented the idea of cheap artificial inflatable mountains, which may cardinally change the climate of a large region or country. Additional benefits: The potential of tapping large amounts of fresh water and energy. The mountains are inflatable semi-cylindrical constructions from thin film (gas bags) having heights of up to 3 - 5 km. They are located perpendicular to the main wind direction. Encountering these artificial mountains, humid air (wind) rises to crest altitude, is cooled and produces rain (or rain clouds). Many natural mountains are sources of rivers, and other forms of water and power production - and artificial mountains may provide these services for entire nations in the future. The film of these gasbags is supported at altitude by small additional atmospheric overpressure and may be...

  4. Using Airborne Geophysics to Improve the Management of Produced Water from Coal Bed Natural Gas Extraction in the Powder River Basin

    SciTech Connect (OSTI)

    Sams, J.I.; Lipinski, B.A.; Hammack, R.W.; Veloski, G.A.; Ackman, T.E.; Harbert, W.P. (Univ. of Pittsburgh)

    2005-05-01T23:59:59.000Z

    The Powder River Basin (PRB) of Wyoming and Montana has seen a boom in drilling for coalbed natural gas (CBNG), the natural gas contained in coal seams. Large quantities of water are coproduced during the extraction process. The water is currently managed by land application (irrigation), returned to shallow groundwater aquifers via infiltration basins, directly discharged to ephemeral or perennial streams, or injected into the deep subsurface via injection wells. At present, there are over 28,000 CBNG wells permitted or drilled in the PRB and it is estimated that another 50,000 to 100,000 new wells will be drilled in the future. Produced water management is a major challenge to the oil and gas industry as well as federal and state regulators. The purpose of this study was to evaluate the use of airborne electromagnetic (AEM) methods for the large-scale mapping of vadose zone properties. The base maps derived from the AEM data show the location of conductive anomalies within the vadose zone. These conductive anomalies have been identified as conditions related to soil properties, geologic features, saturated areas, and seepage zones. In the PRB, the data can be used to identify suitable locations for constructing impoundments in areas that avoid highly conductive soils where infiltrating water may leach salts through the vadose zone and into shallow aquifers. Hydrologic changes within the vadose zone were evaluated by completing an AEM survey in 2003 and 2004 over two coincident spatial areas. The data were analyzed to determine statistical relationships between the data sets, in particular data outliers which may represent areas of significant change between each year. Some outliers plot near areas of CBNG development. Ultimately, it is hoped that the information from these surveys will identify cost effective treatment or disposal options for produced water that address both production and environmental issues.

  5. Determination of Extractives in Biomass: Laboratory Analytical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    steps. This procedure uses a two-step extraction process to remove water soluble and ethanol soluble material. Water soluble materials may include inorganic material,...

  6. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    incentivizing unbridled water extraction, this situation ledhow much individual water extraction practices impact theexcessive groundwater extraction Water Scarcity and Ac- cess

  7. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence

    E-Print Network [OSTI]

    Hasselquist, Niles J.; Allen, Michael F.; Santiago, Louis S.

    2010-01-01T23:59:59.000Z

    in the freezer until water extraction for stable isotopein the freezer until water extraction for stable isotopeand after thorough water extraction (100°C, 3 h). d 18 O

  8. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters

    E-Print Network [OSTI]

    Poole, L.J.

    2008-01-01T23:59:59.000Z

    Ashbrook, A.W. , Process Metallurgy I , Solvent Extraction,and Applications to Process Metallurgy, Elsevier ScienceAshbrook, A.W. , Process Metallurgy 1, Solvent Extraction:

  9. Analysis of Ground-Water Levels and Associated Trends in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1951-2003

    SciTech Connect (OSTI)

    J.M. Fenelon

    2005-10-05T23:59:59.000Z

    Almost 4,000 water-level measurements in 216 wells in the Yucca Flat area from 1951 to 2003 were quality assured and analyzed. An interpretative database was developed that describes water-level conditions for each water level measured in Yucca Flat. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes narratives that discuss the water-level history of each well. Water levels in 34 wells were analyzed for variability and for statistically significant trends. An attempt was made to identify the cause of many of the water-level fluctuations or trends. Potential causes include equilibration following well construction or development, pumping in the monitoring well, withdrawals from a nearby supply well, recharge from precipitation, earthquakes, underground nuclear tests, land subsidence, barometric pressure, and Earth tides. Some of the naturally occurring fluctuations in water levels may result from variations in recharge. The magnitude of the overall water-level change for these fluctuations generally is less than 2 feet. Long-term steady-state hydrographs for most of the wells open to carbonate rock have a very similar pattern. Carbonate-rock wells without the characteristic pattern are directly west of the Yucca and Topgallant faults in the southwestern part of Yucca Flat. Long-term steady-state hydrographs from wells open to volcanic tuffs or the Eleana confining unit have a distinctly different pattern from the general water-level pattern of the carbonate-rock aquifers. Anthropogenic water-level fluctuations were caused primarily by water withdrawals and nuclear testing. Nuclear tests affected water levels in many wells. Trends in these wells are attributed to test-cavity infilling or the effects of depressurization following nuclear testing. The magnitude of the overall water-level change for wells with anthropogenic trends can be large, ranging from several feet to hundreds of feet. Vertical water-level differences at 27 sites in Yucca Flat with multiple open intervals were compared. Large vertical differences were noted in volcanic rocks and in boreholes where water levels were affected by nuclear tests. Small vertical differences were noted within the carbonate-rock and valley-fill aquifers. Vertical hydraulic gradients generally are downward in volcanic rocks and from pre-Tertiary clastic rocks toward volcanic- or carbonate-rock units.

  10. Treatment of primary tailings and middlings from the hot water extraction process for recovering bitumen from tar sand

    SciTech Connect (OSTI)

    Cymbalisty, L. M. O.; Cymerman, J.

    1995-10-08T23:59:59.000Z

    The primary tailings and middlings are combined and fed to a vessel having the general form of a deep cone thickener. The feed is deflected outwardly and generally horizontally by a baffle, as it is delivered to the vessel. Simultaneously, the outwardly radiating layer of newly added feed is contacted from below by an upwelling stream of aerated middlings, which stream moves in parallel with the aforesaid layer. Bitumen froth is formed and recovered. The upwelling stream is provided by circulating middlings through eductor/aerator assemblies and a plenum chamber mounted centrally in the body of middlings in the vessel. A generally circular circulation of middlings is generated. In this manner, the newly added bitumen is quickly and efficiently recovered. Recirculation of middlings to the aeration zone yields an additional recovery of bitumen. Use of the deep cone ensures that the tailings from the vessel are relatively low in water and bitumen content.

  11. Field and Laboratory Study of a Ground-Coupled Water Source Heat Pump with an Integral Enthalpy Exchange System for Classrooms 

    E-Print Network [OSTI]

    Domitrovic, R.; Hayzen, G. J.; Johnson, W. S.; Chen, F. C.

    2002-01-01T23:59:59.000Z

    water-source heat pump, coupled with a geothermal water loop and incorporating a forced fresh-air enthalpy exchange system was installed in a typical middle school classroom in Oak Ridge, Tennessee. This project is a joint effort among Oak Ridge School...

  12. Steam treatment of surface soil: how does it affect water-soluble organic matter, C mineralization, and bacterial community composition?

    E-Print Network [OSTI]

    Roux-Michollet, Dad; Dudal, Yves; Jocteur-Monrozier, Lucile; Czarnes, Sonia

    2010-01-01T23:59:59.000Z

    organic components Water extraction was performed by shakingresulting from hot water extraction, as measured by Sparlingboiling soil in water resulted in the extraction of both

  13. The Expanding Dairy Industry: Impact on Ground Water Quality and Quantity with Emphasis on Waste Management System Evaluation for Open Lot Dairies

    E-Print Network [OSTI]

    Sweeten, John M.; Wolfe, Mary Leigh

    of dairy waste management practices. The results of these studies will aid producers, engineers, planners, and regulatory officials in the refinement and adoption of appropriate practices for water quality protection....

  14. Recovery of Sugars from Ionic Liquid Biomass Liquor by Solvent Extraction

    E-Print Network [OSTI]

    Brennan, Timothy C.; Datta, Supratim; Blanch, Harvey W.; Simmons, Blake A.; Holmes, Bradley M.

    2010-01-01T23:59:59.000Z

    in the IL/ water phase before extraction was 10 mM and atin the IL/ water phase before extraction was 10 mM and atin the IL/ water phase before extraction was 10 mM and at

  15. Arkansas Water Resources Center

    E-Print Network [OSTI]

    Soerens, Thomas

    for the training of scientists in water resources. Through the years, projects have included irrigation, ground water modeling, non-point source pollution, quality of ground water and surface water, efficient septic heavy metals from pasture soil amended with varying rates of poultry litter Basic Information Title

  16. Liquid chromatographic extraction medium

    DOE Patents [OSTI]

    Horwitz, E. Philip (Naperville, IL); Dietz, Mark L. (Evanston, IL)

    1994-01-01T23:59:59.000Z

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  17. Liquid chromatographic extraction medium

    DOE Patents [OSTI]

    Horwitz, E.P.; Dietz, M.L.

    1994-09-13T23:59:59.000Z

    A method and apparatus are disclosed for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water. 1 fig.

  18. Ground Control | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ground Control Ground Control Released: April 22, 2015 EMSL scientists develop new methods to dig deeper into soil organic matter International Year of the Soils Under our feet...

  19. Impact of Pacific and Atlantic sea surface temperatures on interannual and decadal variations of GRACE land water storage in tropical South America

    E-Print Network [OSTI]

    de Linage, Caroline; Kim, Hyungjun; Famiglietti, James S; Yu, Jin-Yi

    2013-01-01T23:59:59.000Z

    stress, i.e. , the ground water storage [Toomey et al. ,and longer time scales, as ground water storage multidecadal

  20. Analysis of terrestrial water storage changes from GRACE and GLDAS

    E-Print Network [OSTI]

    Syed, Tajdarul H; Famiglietti, James S; Rodell, Matthew; Chen, Jianli; Wilson, Clark R

    2008-01-01T23:59:59.000Z

    2007), Estimating ground water storage changes in theand ground- water stores, so that we were unable to quantify their potentially considerable contributions to storage

  1. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01T23:59:59.000Z

    CO 2 Geological Storage and Ground Water Resources U.S.and Ground Water Protection Council (GWPC) State and Federal Statutes Storage,

  2. SchoolFEFLOW Exercise Heat extraction

    E-Print Network [OSTI]

    Kornhuber, Ralf

    the flux: q = 0.15 m/d Pumping (heat extraction) from aquifer and re-injection (of cooled water-injected water: 20°C · T = 20°C Model Extension #12;Summer SchoolHeat extraction from sloped aquifer 22Summer SchoolFEFLOW® Exercise Heat extraction from a sloped sandstone aquifer Vertical cross

  3. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters

    E-Print Network [OSTI]

    Poole, L.J.

    2008-01-01T23:59:59.000Z

    Oil Shale Retorting Sour Waters from Petroleum Refining Sour Waters from Coking Operations in the Iron and Steel Industry

  4. 2010 New Mexico Water Research Symposium August 3, 2010 C-1 Curb the Urge to Purge: Is Now the Time to Switch to No-Purge Ground

    E-Print Network [OSTI]

    Johnson, Eric E.

    33965, 970-691-2241 #12;2010 New Mexico Water Research Symposium ­ August 3, 2010 C-3 Living Off-Grid family of three lives comfortably off-grid without a well in an arid region (~9 in/yr, average

  5. Groundwater and Terrestrial Water Storage, 

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01T23:59:59.000Z

    T. E. Reilly, 2002: Flow and storage in groundwater systems.Estimating ground water storage changes in the Mississippistorage..

  6. Silica extraction from geothermal water

    DOE Patents [OSTI]

    Bourcier, William L; Bruton, Carol J

    2014-09-23T23:59:59.000Z

    A method of producing silica from geothermal fluid containing low concentration of the silica of less than 275 ppm includes the steps of treating the geothermal fluid containing the silica by reverse osmosis treatment thereby producing a concentrated fluid containing the silica, seasoning the concentrated fluid thereby producing a slurry having precipitated colloids containing the silica, and separating the silica from the slurry.

  7. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters

    E-Print Network [OSTI]

    Poole, L.J.

    2008-01-01T23:59:59.000Z

    of Economic Materials from Oil Shale Retort Water by anDerived from In Situ Oil Shale Processing", Proceedings, 2ndWastewaters Sour Waters from Oil Shale Retorting Sour Waters

  8. Extraction of RNA-Trizol RNA extraction from M. tuberculosis (Mahenthiralingam 1998) is useful for RT-PCR

    E-Print Network [OSTI]

    Extraction of RNA-Trizol RNA extraction from M. tuberculosis (Mahenthiralingam 1998) is useful of isopropanol. 10. Precipitate overnight at ­20°C. Prepare cold 70% ethanol with DEPC treated water. Centrifuge DNA is present, repeat Trizol extraction. #12;

  9. A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois

    E-Print Network [OSTI]

    Swenson, Sean; Yeh, Pat J.-F.; Wahr, John; Famiglietti, James

    2006-01-01T23:59:59.000Z

    J. -F. Yeh et al. , Ground- water storage changes inferredstorage variations at these spatial scales, a GRACE ground-

  10. GeothermalHeat Extraction Anna Przybycin Feliks Nueske Mark Riesland

    E-Print Network [OSTI]

    Kornhuber, Ralf

    : 70% 32.8 m3/d water extraction - Extraction temperature: 12°C = aquifer temperature Injection the cold-water plume reaches the extraction well Is this realistic under practical considerations? ProbablyGeothermal­Heat Extraction Anna Przybycin ­ Feliks Nueske ­ Mark Riesland #12;1) Hydrogeological

  11. PAPER 2004-028 The Effect of Bitumen Extraction

    E-Print Network [OSTI]

    Schramm, Laurier L.

    1 PAPER 2004-028 The Effect of Bitumen Extraction Shear Conditions on Froth Treatment Performance U processing: extraction and froth treatment. The most common extraction process is hot water bitumen extraction where bitumen is produced in a froth consisting of bitumen, water, and inorganic solids. The froth

  12. Ground Turkey Stroganoff Ingredients

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Ground Turkey Stroganoff Ingredients: 8 ounces egg noodles, uncooked 1 pound ground turkey 1 onion. Meanwhile, brown ground turkey and onions in non stick skillet until meat is no longer pink and onions cup of egg noodles on plate, top with 1/2 cup of turkey mixture. Equipment: Knife Cutting board

  13. WATER INFLOW INTO BOREHOLES DURING THE STRIPA HEATER EXPERIMENTS

    E-Print Network [OSTI]

    Nelson, P.H.

    2010-01-01T23:59:59.000Z

    is plotted against water extraction rate with temper­ aturei^ H 2 _ -i I Liquid water extraction rate (liters/day) XBLholi? s due to water extraction was negligible because the

  14. Cooking with Ground Pork

    E-Print Network [OSTI]

    Anding, Jenna

    2008-12-09T23:59:59.000Z

    to thaw. Even when cooked, pork that has been thawed at room temperature can make you sick. Cooking ground pork safely For dishes that contain ground pork, cook the pork before mixing it with other ingredients. How to store cooked ground pork Leftover... dishes made with ground pork should be stored in a covered dish in the refrigerator right away to prevent spoilage. Use it within 3 days. Reheat foods with ground pork until they are steaming hot, bubbling, or at 165 degrees. Other uses Use cooked...

  15. A time-series study of the health effects of water-soluble and total-extractable metal content of airborne particulate matter 

    E-Print Network [OSTI]

    Heal, Mathew R; Elton, Robert A; Hibbs, Leon R; Agius, Raymond M; Beverland, Iain J

    2009-01-01T23:59:59.000Z

    -soluble and total-extractable content of 11 trace metals determined in each sample. Time series were analysed using generalised additive Poisson regression models, including adjustment for minimum temperature and loess smoothing of trends. Methods were explored...

  16. Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data

    E-Print Network [OSTI]

    Lo, Min-Hui; Famiglietti, James S; Yeh, P. J.-F.; Syed, T. H

    2010-01-01T23:59:59.000Z

    2007), Estimating ground water storage changes in thestorage (i.e. , all of the snow, ice, surface water, soil moisture, and ground-

  17. Evaluation of Automated Extraction of Organochlorine Contaminants from Freshwater

    E-Print Network [OSTI]

    Mazumder, Asit

    by solvent rinses of containers. Breakthrough, assessed by liquid-liquid extraction of water of SPE sample. The extraction of trace organic contaminants from environ- mental water samples has long been accomplished with appropriate solvents in separatory funnels or capped bottles. The need to extract much larger volumes of water

  18. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters

    E-Print Network [OSTI]

    Poole, L.J.

    2008-01-01T23:59:59.000Z

    19,20). In the coking step, coal is heated III the absencethe "coking" process in In the second step the which coal isCoal Liquefaction Wastewaters Sour Waters from Oil Shale Retorting Sour Waters from Petroleum Refining Sour Waters from Coking

  19. Basic Engineering Research for D and D of R Reactor Storage Pond Sludge: Electrokinetics, Carbon Dioxide Extraction, and Supercritical Water Oxidation

    SciTech Connect (OSTI)

    Michael A. Matthews; David A. Bruce,; Thomas A. Davis; Mark C. Thies; John W. Weidner; Ralph E. White

    2002-04-01T23:59:59.000Z

    Large quantities of mixed low level waste (MLLW) that fall under the Toxic Substances Control Act (TSCA) exist and will continue to be generated during D and D operations at DOE sites across the country. The standard process for destruction of MLLW is incineration, which has an uncertain future. The extraction and destruction of PCBs from MLLW was the subject of this research Supercritical Fluid Extraction (SFE) with carbon dioxide with 5% ethanol as cosolvent and Supercritical Waster Oxidation (SCWO) were the processes studied in depth. The solid matrix for experimental extraction studies was Toxi-dry, a commonly used absorbent made from plant material. PCB surrogates were 1.2,4-trichlorobenzene (TCB) and 2-chlorobiphenyl (2CBP). Extraction pressures of 2,000 and 4,000 psi and temperatures of 40 and 80 C were studied. Higher extraction efficiencies were observed with cosolvent and at high temperature, but pressure little effect. SCWO treatment of the treatment of the PCB surrogates resulted in their destruction below detection limits.

  20. Fluid extraction

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Laintz, Kenneth E. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  1. Ground Penetrating Radar in Hydrogeophysics

    SciTech Connect (OSTI)

    Hubbard, Susan; Lambot, S.; Binley, A.; Slob, E.; Hubbard, S.

    2008-01-15T23:59:59.000Z

    To meet the needs of a growing population and to provide us with a higher quality of life, increasing pressures are being placed on our environment through the development of agriculture, industry, and infrastructures. Soil erosion, groundwater depletion, salinization, and pollution have been recognized for decades as major threats to ecosystems and human health. More recently, the progressive substitution of fossil fuels by biofuels for energy production and climate change have been recognized as potential threats to our water resources and sustained agricultural productivity. The vadose zone mediates many of the processes that govern water resources and quality, such as the partition of precipitation into infiltration and runoff , groundwater recharge, contaminant transport, plant growth, evaporation, and energy exchanges between the Earth's surface and its atmosphere. It also determines soil organic carbon sequestration and carbon-cycle feedbacks, which could substantially impact climate change. The vadose zone's inherent spatial variability and inaccessibility precludes direct observation of the important subsurface processes. In a societal context where the development of sustainable and optimal environmental management strategies has become a priority, there is a strong prerequisite for the development of noninvasive characterization and monitoring techniques of the vadose zone. In particular, hydrogeophysical approaches applied at relevant scales are required to appraise dynamic subsurface phenomena and to develop optimal sustainability, exploitation, and remediation strategies. Among existing geophysical techniques, ground penetrating radar (GPR) technology is of particular interest for providing high-resolution subsurface images and specifically addressing water-related questions. Ground penetrating radar is based on the transmission and reception of VHF-UHF (30-3000 MHz) electromagnetic waves into the ground, whose propagation is determined by the soil electromagnetic properties and their spatial distribution. As the dielectric permittivity of water overwhelms the permittivity of other soil components, the presence of water in the soil principally governs GPR wave propagation. Therefore, GPR-derived dielectric permittivity is usually used as surrogate measure for soil water content. In the areas of unsaturated zone hydrology and water resources, GPR has been used to identify soil stratigraphy, to locate water tables, to follow wetting front movement, to estimate soil water content, to assist in subsurface hydraulic parameter identification, to assess soil salinity, and to support the monitoring of contaminants. The purpose of this special section of the Vadose Zone Journal is to present recent research advances and applications of GPR in hydrogeophysics, with a particular emphasis on vadose zone investigations. This special section includes contributions presented at the European Geosciences Union General Assembly 2006 (EGU 2006, Vienna, Austria) and the 11th International Conference on Ground Penetrating Radar (GPR 2006, Columbus, OH). The studies presented here deal with a wide range of surface and borehole GPR applications, including GPR sensitivity to contaminant plumes, new methods for soil water content determination, three-dimensional imaging of the subsurface, time-lapse monitoring of hydrodynamic events and inversion techniques for soil hydraulic properties estimation, and joint interpretation of GPR and electric resistivity tomography (ERT) data.

  2. Cooking with Ground Beef

    E-Print Network [OSTI]

    Anding, Jenna

    2008-12-09T23:59:59.000Z

    This fact sheet describes the nutritional value and safe storage of ground beef, a commodity food. It also offers food preparation ideas....

  3. Predaceous Ground Beetles

    E-Print Network [OSTI]

    Sansone, Chris; Minzenmayer, Rick

    2003-06-30T23:59:59.000Z

    Predaceous ground beetles can be a nuisance to homeowners, especially when they are numerous. This publication describes the beetles and discusses ways to prevent and treat them....

  4. Local Water Quality Districts (Montana)

    Broader source: Energy.gov [DOE]

    This statute provides for the creation of local water quality districts to prevent and mitigate ground and surface water contamination. Each local water quality district may develop and implement a...

  5. Ground State Quantum Computation

    E-Print Network [OSTI]

    Ari Mizel; M. W. Mitchell; Marvin L. Cohen

    1999-08-11T23:59:59.000Z

    We formulate a novel ground state quantum computation approach that requires no unitary evolution of qubits in time: the qubits are fixed in stationary states of the Hamiltonian. This formulation supplies a completely time-independent approach to realizing quantum computers. We give a concrete suggestion for a ground state quantum computer involving linked quantum dots.

  6. Sandia National Laboratories: Energy and Water in the Western...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of surface water for in-stream ecological and environmental uses Uncertainty about the impact of climate variability on future water fresh surface and ground water resources...

  7. Selenium speciation in ground water. Quarterly report

    SciTech Connect (OSTI)

    Atalay, A.

    1990-07-10T23:59:59.000Z

    Selenium toxicity diseases in animals may occur when the intake exceeds 4 mg/kg and selenium deficiency symptoms may occur when dietary intake is less than 0.04 mg/kg. Since the selenium dietary requirement is very close to toxic concentration, it is important to understand the distribution of selenium in the environment. Selenium occurs in four oxidation states (-II, 0, +IV, and +VI) as selenide, elemental selenium, selenite and selenate. Selenate is reported as more soluble and less adsorbed than selenite. Selenate is more easily leached from soils and is the most available form for plants. Increased mobility of Se into the environment via anthropogenic activities, and the potential oxidation-reduction behavior of the element have made it imperative to study the aquatic chemistry of Se. For this purpose, Se species are divided into two different categories: dissolved Se (in material that passes through filters with 0.45 u openings) and particulate Se (in material of particle size > 0.45 mm) typically suspended sediment and other suspended solids. Element and colloidal phase, not truly dissolved, but passing through the filter is deemed to consist of selenium (-2,0). In dissolved state selenium may exist in three of its four oxidation states; Se(-II), Se(+IV), and Se(+VI). Particulate Se may exist in the same oxidation states as dissolved Se and can be found in different phases of the particulate matter. In sediments, Se may be within the organic material, iron and manganese oxides, carbonates or other mineral phases. The actual chemical forms of Se may be adsorbed to or coprecipitated with these phases (primarily selenite, SeO{sub 3}{sup 2{minus}}) and selenate, SeO{sub 4}{sup 2{minus}}. Selenide, Se(-II), can be covalently bound in the organic portion of a sediment. In addition, Se may be found in anoxic sediments as insoluble metal selenide precipitates, an insoluble elemental Se or as ferroselite (FeSe{sub 2}) and Se containing pyrite.

  8. Practical probabilistic ground-water modeling

    SciTech Connect (OSTI)

    Woodbury, A. [Univ. of Manitoba, Winnipeg, Manitoba (Canada). Dept. of Civil and Geological Engineering; Render, F. [Ministry of Natural Resources, Winnipeg, Manitoba (Canada); Ulrych, T. [Univ. of British Columbia, Vancouver, British Columbia (Canada). Dept. of Geophysics and Astronomy

    1995-07-01T23:59:59.000Z

    Current emphasis by the public and scientific communities on environmental risk suggests that methods of probabilistic analysis for subsurface flow and transport will become more heavily utilized. Moreover, a probabilistic framework forces the explicit acknowledgement and treatment of uncertainty. The major obstruction to the effective use of probabilistic models is the determination of the statistical properties of unknown model parameters. In this paper the authors use the principal of minimum relative entropy (MRE) to determine the prior pdf, p(m) of a set of model parameters, (m) based on limited information. The pdf is of the form of a multivariate truncated exponential distribution. In this paper the authors use p(m) in Monte Carlo simulations to provide expected values in field variables such as drawdowns, pumping rates, and confidence limits. The examples presented illustrate some dangers associated with the practice in probabilistic modeling of assigning Gaussian pdf`s as priors. First, such an assumption for the input parameters actually injects more information into the problem than may actually exist, whether consciously or unconsciously. This fact is born out by comparison with minimum relative entropy theory. Second, the output parameters as suggested from the Monte Carlo analysis cannot be assumed to be Gaussian distributed even when the prior pdf is in Gaussian form. In a practical setting, the significance of this result and the approximation of Gaussian form would depend on the cost, risk, and consequences of the decision being made.

  9. Remediation of Uranium-Contaminated Ground Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/) Release for AnnouncementRick3

  10. Colorado Ground Water Commission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColorado Energy Office

  11. Appendix B Ground Water Management Policy

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN RCD _WOMPOC: A-2

  12. Extractant composition

    DOE Patents [OSTI]

    Smith, Barbara F. (Los Alamos, NM); Jarvinen, Gordon D. (Los Alamos, NM); Ryan, Robert R. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    An organic extracting solution useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  13. SEPARATION OF COPPER FROM METALS IN AN ALLOY BY LIQUID-LIQUID EXTRACTION

    E-Print Network [OSTI]

    Weston, Ken

    /L. Extraction. The extraction procedure is the same for the sample, standards and blank (water between sample extractions with water. The chloroform extracts at this point will normally be cloudySEPARATION OF COPPER FROM METALS IN AN ALLOY BY LIQUID-LIQUID EXTRACTION Background Reading: Harris

  14. Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water

    SciTech Connect (OSTI)

    Bud'ko, I. O. [JSC NIITsE 'Tsentrenergo' (Russian Federation)] [JSC NIITsE 'Tsentrenergo' (Russian Federation); Zhukov, A. G. [Rostov Nuclear Power Plant (Russian Federation)] [Rostov Nuclear Power Plant (Russian Federation)

    2013-11-15T23:59:59.000Z

    An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

  15. Arkansas Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    and heavy metals to surface runoff following storm events. Evaluating runoff water quality response, innovative domestic wastewater disposal systems, ground water modeling and landuse mapping, erosionArkansas Water Resources Center Annual Technical Report FY 2008 Arkansas Water Resources Center

  16. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters

    E-Print Network [OSTI]

    Poole, L.J.

    2008-01-01T23:59:59.000Z

    present gases, the shale decompose and oil, residual areupgrade oil derived from oil-shale and tar sands are similarof Economic Materials from Oil Shale Retort Water by an

  17. Hybrid joule heating/electro-osmosis process for extracting contaminants from soil layers

    DOE Patents [OSTI]

    Carrigan, Charles R.; Nitao, John J.

    2003-06-10T23:59:59.000Z

    Joule (ohmic) heating and electro-osmosis are combined in a hybrid process for removal of both water-soluble contaminants and non-aqueous phase liquids from contaminated, low-permeability soil formations that are saturated. Central to this hybrid process is the partial desaturation of the formation or layer using electro-osmosis to remove a portion of the pore fluids by induction of a ground water flow to extraction wells. Joule heating is then performed on a partially desaturated formation. The joule heating and electro-osmosis operations can be carried out simultaneously or sequentially if the desaturation by electro-osmosis occurs initially. Joule heating of the desaturated formation results in a very effective transfer or partitioning of liquid state contaminants to the vapor phase. The heating also substantially increases the vapor phase pressure in the porous formation. As a result, the contaminant laden vapor phase is forced out into soil layers of a higher permeability where other conventional removal processes, such as steam stripping or ground water extraction can be used to capture the contaminants. This hybrid process is more energy efficient than joule heating or steam stripping for cleaning low permeability formations and can share electrodes to minimize facility costs.

  18. Automatic Extraction of Cartographic Information from Airborne Interferometric SAR Data

    E-Print Network [OSTI]

    Mayer, Helmut A.

    Automatic Extraction of Cartographic Information from Airborne Interferometric SAR Data Reinhold cartographic feature extraction by the airborne AeS--1 instrument is presented. We extract regions corresponding to cartographic features for the classes built--up area, forest, water and open area. Water

  19. Ground potential rise monitor

    DOE Patents [OSTI]

    Allen, Zachery Warren; Zevenbergen, Gary Allen

    2012-07-17T23:59:59.000Z

    A device and method for detecting ground potential rise (GPR) comprising a first electrode, a second electrode, and a voltage attenuator. The first electrode and the second electrode are both electrically connected to the voltage attenuator. A means for determining the presence of a dangerous ground potential is connected to the voltage attenuator. The device and method further comprises a means for enabling one or more alarms upon the detection of the dangerous ground potential. Preferably, a first transmitter/receiver is connected to the means for enabling one or more alarms. Preferably, a second transmitter/receiver, comprising a button, is electromagnetically connected to the first transmitter/receiver. Preferably, the means for determining the presence of a dangerous ground potential comprises a means for determining the true RMS voltage at the output of the voltage attenuator, a transient detector connected to the output of the voltage attenuator, or a combination thereof.

  20. Metal extraction

    SciTech Connect (OSTI)

    Covington, J.W.; Whittemore, R.G.

    1980-10-21T23:59:59.000Z

    In a process according to the present invention uranium is extracted into solution from its ore by leaching with an aqueous solution containing peroxomonosulphuric acid, the peroxoacid oxidizing the uranium through to its hexavalent state. Preferably the leaching is carried out at a temperature in the range of 50* to 100* C. The leach liquor can initially contain additional amounts of sulphuric acid or merely that present by virtue of the method of making the peroxomonosulphuric acid. In a preferred method of operation, the peroxoacid is introduced progressively into the leach liquor during the course of the leaching so as to maintain an electrochemical potential in the range of 450 to 650 mV. By use of the process, uranium is cleanly extracted into solution.

  1. Ground-Coupled Heat Pump Applications and Case Studies

    E-Print Network [OSTI]

    Braud, H. J.

    1989-01-01T23:59:59.000Z

    in all seasons. A loop sizing procedure for mul- tiple units on a common ground loop was given by Braud (1). See also Bose et al. (2) and Partin (3). APPLICATIONS OF GROUND-COUPLED HEAT PUMPS COLD SUPPLY +-fi- ;-"" WATER TANK A recent development...

  2. Marketing Ground Source Heat Pump Advanced Applications that

    E-Print Network [OSTI]

    Marketing Ground Source Heat Pump Advanced Applications that Deliver Competitive Advantage Al is the fastest growing market with the available capital and need for the benefits of ground source heat pumps Heating ... and Cooling n Comfort & Indoor Air Quality n Homes have domestic hot water - DHW n Less

  3. Plant Water Use in Owens Valley, CA: Understanding the Influence of Climate and Depth to Groundwater

    E-Print Network [OSTI]

    Pataki, Diane E

    2008-01-01T23:59:59.000Z

    J.R. Ehleringer. 2006. Water extraction times for plant andstems were sampled for water extraction and stable isotopeCA). Following the water extraction, roots were removed from

  4. Impact-driven pressure management via targeted brine extraction Conceptual studies of CO2 storage in saline formations

    E-Print Network [OSTI]

    Birkholzer, J.T.

    2013-01-01T23:59:59.000Z

    of CO 2 Storage for Full-Scale Deployment, Ground Water, 48(connect the storage formation with the ground surface. ToStorage Systems—Application of a New Analytical Solution, submitted to Ground

  5. Sources of Water Surface water and groundwater are present throughout

    E-Print Network [OSTI]

    MacAdam, Keith

    Sources of Water Surface water and groundwater are present throughout Kentucky's 39,486 square miles. Surface water occurs as rivers, streams, ponds, lakes, and wetlands. Ground- water occurs underlain by soluble carbonate rocks (for example, limestone). Water Supply · Approximately 49 inches

  6. Disturbing the Water: The Rise of Ground Water in Wetland

    E-Print Network [OSTI]

    Slatton, Clint

    With Kathy Bailey Boomer, Kathy Crowley, Sam Simkin Photographs by F. Robert Wesley unless otherwise noted #12;Kathy Crowley F. Robert Wesley Sam Simkin #12;Seminar Road Map Caveats, biases, and blind spots

  7. Cheaper oil extraction Taking a closer look

    E-Print Network [OSTI]

    be extracted from oil fields. Liquid CO2 is increasingly used industrially to replace common petrochemical-flammable and environmentally responsible alternative to conventional petrochemical solvents. For example, even water

  8. Transposon extraction protocol Maitreya Dunham November 2006

    E-Print Network [OSTI]

    Dunham, Maitreya

    Transposon extraction protocol Maitreya Dunham November 2006 modification of the Qiagen HSE precipitate. Mix equal amounts of DNA from each digest if multiple digests. Extraction In a screw-cap tube (Qiagen), and water to bring to 30 µl total. Heat for 15 minutes at 95C with a 100C block on top (blocks

  9. Selective aqueous extraction of organics coupled with trapping by membrane separation

    DOE Patents [OSTI]

    van Eikeren, Paul (Bend, OR); Brose, Daniel J. (Bend, OR); Ray, Roderick J. (Bend, OR)

    1991-01-01T23:59:59.000Z

    An improvement to processes for the selective extractation of organic solutes from organic solvents by water-based extractants is disclosed, the improvement comprising coupling various membrane separation processes with the organic extraction process, the membrane separation process being utilized to continuously recycle the water-based extractant and at the same time selectively remove or concentrate organic solute from the water-based extractant.

  10. Water pollution control for underground coal gasification

    SciTech Connect (OSTI)

    Humenick, M.J.

    1984-06-01T23:59:59.000Z

    Water pollution arising from underground gasification of coal is one of the important considerations in the eventual commercialization of the process. Because many coal seams which are amenable to in situ gasification are also ground-water aquifers, contaminants may be released to these ground waters during and after gasification. Also, when product gas is processed above ground for use, wastewater streams are generated which are too polluted to be discharged. The purpose of this paper is to characterize the nature of the groundwater and above-ground pollutants, discuss the potential long and short-term effects on ground water, propose control and restoration strategies, and to identify potential wastewater treatment schemes.

  11. Feasibility Study of Using Ground Source Heat Pumps in Two Buildings

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    , it was assumed that natural gas-fired water heaters would replace the steam converters that presently provide hot water for the buildings. It would also be possible to use dedicated water-to-water ground source heat pumps to provide hot water. #12; 2 II. BACKGROUND AND BASE CASE A. Background on McCormick Center

  12. Identifying Decomposition Products in Extracts of Cellular Metabolites

    E-Print Network [OSTI]

    Rabinowitz, Joshua D.

    with methanol:water, cold temperature and a high methanol fraction minimizes artifacts due to metabolite the efficiency of extracting E. coli with boiling ethanol:water, cold versus hot methanol:water, and perchloric Escherichia coli with different methanol:water mixtures, we observed that 50% water gave increased yield

  13. ARE Update Volume 12, Number 6

    E-Print Network [OSTI]

    Pfeiffer, Lisa; Lin, C.-Y. Cynthia; Sunding, David L.; Ajami, Newsha; Carman, Hoy

    2009-01-01T23:59:59.000Z

    concerning ground- water extraction, water table levels, andto decrease total water extraction. The Conservation Reserveflat state to reduce water extraction in areas called low-

  14. WATER RESOURCES NEWS NEBRASKA WATER RESOURCES RESEARCH INSTITUTE

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    , display the results of management changes, and forecast the effects of waste management practices operations on the Hanford ground-water regime which moves through ancient sand and gravel channels deep under system for the .Atlantic Richfield Hanford Company which will accept models of ground-water conditions

  15. Water Research Institute Annual Technical Report

    E-Print Network [OSTI]

    : Ground-water Flow and Transport Focus Category: Non Point Pollution, Surface Water, Toxic Substances Descriptors: Benthos, Bioindicators, Biomonitoring, Ecosystems, Heavy metals, Insects, Land use, PollutantsWater Research Institute Annual Technical Report FY 2001 Introduction Introduction - Research

  16. Tennessee Water Resources Information Act (Tennessee)

    Broader source: Energy.gov [DOE]

    The Tennessee Water Resources Information Act is designed to prevent the lowering of the ground water table by requiring that adequate information is obtained to document current demand for water...

  17. U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O'1repositoryShiprock,

  18. Document Number Q0029500 Ground Water Model 3.0 Ground Water Model

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN RCDBaseline0419 1 JAGround

  19. North Dakota Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    total PCBs and PCDFs in water samples. The objective was accomplished coupling solid-liquid extraction, namely water extraction, application of phosphorescence enhancers to the extraction membrane, and direct RTP detection on the extracting substrate. The water sample (10-100 mL) is processed through

  20. MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE

    E-Print Network [OSTI]

    MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE HEAT PUMP SYSTEMS By CENK SOURCE HEAT PUMP SYSTEMS Thesis Approved: ___________________________________________ Thesis Adviser scale test data. The short-term behavior of ground-coupled heat pump systems is important for the design

  1. Apparatus for hydrocarbon extraction

    DOE Patents [OSTI]

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19T23:59:59.000Z

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  2. Storm Water Discharge Permits (Wisconsin)

    Broader source: Energy.gov [DOE]

    Wisconsin's storm water runoff regulations include permitting requirements for construction sites and industrial facilities, including those processing or extracting coal or gas. The purpose of the...

  3. Fresh Water Increased temperature means higher proportion of water

    E-Print Network [OSTI]

    Houston, Paul L.

    Fresh Water Increased temperature means higher proportion of water falling on surface higher evaporation higher rainfall greater intensity of floods and droughts. Water use has grown four on How much storage compared to average flow Demand as percentage of supply How much ground water is used

  4. Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC {section}7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management.

  5. Ground-Based Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed ServicesGround-Based Microwave

  6. Arkansas Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    irrigation, ground water modeling, non-point source pollution, quality of ground water and surface water heavy metals from pasture soil amended with varying rates of poultry litter Basic Information Title: Vadose-zone losses of soluble heavy metals from pasture soil amended with varying rates of poultry litter

  7. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, D.M.; Taft, W.E.

    1994-12-20T23:59:59.000Z

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  8. Cruise Report 2003 RMP Water Cruise

    E-Print Network [OSTI]

    by Axys Analytical (100-liter solid phase extraction). 2. Collect water samples from 31 sites for analysis phase extraction). 2. Collect water samples from 3 sites for analysis of total PCDD/PCDF by FrontierCruise Report 2003 RMP Water Cruise 2003 CTR Dry Season Water Sampling August 5 - 15, 2003 A P P L

  9. Ground motion data for International Collider models

    SciTech Connect (OSTI)

    Volk, J.T.; LeBrun, P.; Shiltsev, V.; Singatulin, S.; /Fermilab

    2007-11-01T23:59:59.000Z

    The proposed location for the International Linear Collider (ILC) in the Americas region is Fermilab in Batavia Illinois. If built at this location the tunnels would be located in the Galena Platteville shale at a depth of 100 or more meters below the surface. Studies using hydro static water levels and seismometers have been conducted in the MINOS hall and the LaFrange Mine in North Aurora Illinois to determine the level of ground motion. Both these locations are in the Galena Platteville shale and indicate the typical ground motion to be expected for the ILC. The data contains both natural and cultural noise. Coefficients for the ALT law are determined. Seismic measurements at the surface and 100 meters below the surface are presented.

  10. A study of a solvent extraction desalination process 

    E-Print Network [OSTI]

    McFerrin, Arthur Ransom

    1969-01-01T23:59:59.000Z

    to separate salt from water has been known for decades, it was not investigated for use in desalination until 1953 (21). Since 1953, the Office of Saline Water, Department of Interior has supported an exhaustive study of the solvent extractjon desalinat... water to produce a solvent phase containing considerable water but little salt, and a water phase of increased salt content. The amine has a lower consolute temperature with water, and the fresh ~ster is recovered by heating the extract to a higher...

  11. Ground potential rise monitor

    DOE Patents [OSTI]

    Allen, Zachery W. (Mandan, ND); Zevenbergen, Gary A. (Arvada, CO)

    2012-04-03T23:59:59.000Z

    A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.

  12. Drinking Water Problems: MTBE

    E-Print Network [OSTI]

    Dozier, Monty; Lesikar, Bruce J.

    2008-08-28T23:59:59.000Z

    Methyl tertiary-butyl ether, a gasoline additive commonly known as MTBE, can contaminate ground water and cause health problems for those exposed to it for a long time. However, filtering devices can remove this and other additives from well water...

  13. Burial Ground Expansion Hydrogeologic Characterization

    SciTech Connect (OSTI)

    Gaughan , T.F.

    1999-02-26T23:59:59.000Z

    Sirrine Environmental Consultants provided technical oversight of the installation of eighteen groundwater monitoring wells and six exploratory borings around the location of the Burial Ground Expansion.

  14. SOLVENT EXTRACTION OF PHENOLS FROM WATER

    E-Print Network [OSTI]

    Greminger, Douglas C.

    2012-01-01T23:59:59.000Z

    Shale Retorting, Synthane Coal Gasification and COED CoalBeychok, M.R. , "Coal Gasification and the Phenosolvanwaters formed during coal gasification and liquefaction (Ho,

  15. Advanced Water Removal via Membrane Solvent Extraction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartmentDepartment2 DOE Hydrogen and

  16. Integrated Planning for Water and Energy Systems

    E-Print Network [OSTI]

    Keller, Arturo A.

    of water in a specific location. #12;Water Extraction & Conveyance Water Treatment End-Use AgriculturalIntegrated Planning for Water and Energy Systems Integrated Planning for Water and Energy Systems Wilkinson, Ph.D. Director, Water Policy Program Bren School of Environmental Science and Management

  17. Institute of Water Research Annual Technical Report

    E-Print Network [OSTI]

    and ground water protection. One project entitled "Decision Support System for Natural Resource Planning" (02 analysis, technology transfer, urban water systems, water quality, water quality management, watershed) was funded to address these problems and issues. In addition, support for the Institute of Water Research

  18. Ground-source Heat Pumps Applied to Commercial Buildings

    SciTech Connect (OSTI)

    Parker, Steven A.; Hadley, Donald L.

    2009-07-14T23:59:59.000Z

    Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

  19. Ground Turkey Stir Fry Ingredients

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Ground Turkey Stir Fry Ingredients: 1 1/2 cups brown rice, medium- grain, making 3 cups cooked 1 pound ground turkey 4 zucchini 1 onion 1 green pepper 1/4 teaspoon pepper Directions 1. Cook brown rice turkey in skillet and use a spatula to break beef into small pieces as it browns. Keep on stirring

  20. Design of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process

    E-Print Network [OSTI]

    Al-Arfaj, Muhammad A.

    Design of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process system for TAME reactive distillation process using extraction column with water as a solvent. The design distillation column which was optimized to recover methanol and recycle water to the extraction column. Other

  1. The Water-Energy Nexus: Challenges and Opportunities Overview...

    Broader source: Energy.gov (indexed) [DOE]

    Present day water and energy systems are interdependent. Water is used in all phases of energy production and electricity generation. Energy is required to extract, convey, and...

  2. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01T23:59:59.000Z

    potential CO 2 storage and water extraction projects based on the effort’s findings DOE’s Interagency CCS

  3. Regional analysis of ground and above-ground climate

    SciTech Connect (OSTI)

    Not Available

    1981-12-01T23:59:59.000Z

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  4. POLICY ANALYSIS OF PRODUCED WATER ISSUES ASSOCIATED WITH IN-SITU THERMAL TECHNOLOGIES

    SciTech Connect (OSTI)

    Robert Keiter; John Ruple; Heather Tanana

    2011-02-01T23:59:59.000Z

    Commercial scale oil shale and oil sands development will require water, the amount of which will depend on the technologies adopted and the scale of development that occurs. Water in oil shale and oil sands country is already in scarce supply, and because of the arid nature of the region and limitations on water consumption imposed by interstate compacts and the Endangered Species Act, the State of Utah normally does not issue new water rights in oil shale or oil sands rich areas. Prospective oil shale and oil sands developers that do not already hold adequate water rights can acquire water rights from willing sellers, but large and secure water supplies may be difficult and expensive to acquire, driving oil shale and oil sands developers to seek alternative sources of supply. Produced water is one such potential source of supply. When oil and gas are developed, operators often encounter ground water that must be removed and disposed of to facilitate hydrocarbon extraction. Water produced through mineral extraction was traditionally poor in quality and treated as a waste product rather than a valuable resource. However, the increase in produced water volume and the often-higher quality water associated with coalbed methane development have drawn attention to potential uses of produced water and its treatment under appropriations law. This growing interest in produced water has led to litigation and statutory changes that must be understood and evaluated if produced water is to be harnessed in the oil shale and oil sands development process. Conversely, if water is generated as a byproduct of oil shale and oil sands production, consideration must be given to how this water will be disposed of or utilized in the shale oil production process. This report explores the role produced water could play in commercial oil shale and oil sands production, explaining the evolving regulatory framework associated with produced water, Utah water law and produced water regulation, and the obstacles that must be overcome in order for produced water to support the nascent oil shale and oil sands industries.

  5. Variations of surface water extent and water storage in large river basins: A comparison of different global data sources

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of the spatio-temporal variations of total terrestrial water storage (the sum of ground water, soil water1 Variations of surface water extent and water storage in large river basins: A comparison mass variations monitored by GRACE, simulated surface and total water storage from WGHM, water levels

  6. Threats to the world's water

    SciTech Connect (OSTI)

    la Riviere, J.W.M.

    1989-09-01T23:59:59.000Z

    Water is in short supply in many regions; almost everywhere increasing amounts of organic waste and industrial pollutants threaten its quality. Only international cooperation in the integrated management of water resources can ameliorate the situation. Agriculture is usually the main drain on the water supply. Problems associated with overirrigation, increased population, and organic and industrial wastes are described. The paper explains the global water cycle; illustrates the uneven distribution of water among the oceans, ground water, ice caps, glaciers, lakes, and soil moisture; and gives data on the global water consumption from 1950 to 1980. Recommendations for water management are given.

  7. Information extraction system

    DOE Patents [OSTI]

    Lemmond, Tracy D; Hanley, William G; Guensche, Joseph Wendell; Perry, Nathan C; Nitao, John J; Kidwell, Paul Brandon; Boakye, Kofi Agyeman; Glaser, Ron E; Prenger, Ryan James

    2014-05-13T23:59:59.000Z

    An information extraction system and methods of operating the system are provided. In particular, an information extraction system for performing meta-extraction of named entities of people, organizations, and locations as well as relationships and events from text documents are described herein.

  8. A study of a solvent extraction desalination process

    E-Print Network [OSTI]

    McFerrin, Arthur Ransom

    1969-01-01T23:59:59.000Z

    of possible solvents were carefully evaluated, secondary and tertiary amines of 5 and 6 total carbon atoms were found to have by far the best solvent properties (9, 10, 26). In the developed process, the amine solvent extracts water selectively from salt... water to produce a solvent phase containing considerable water but little salt, and a water phase of increased salt content. The amine has a lower consolute temperature with water, and the fresh ~ster is recovered by heating the extract to a higher...

  9. Study of the design Method of an Efficient Ground Source Heat Pump Thermal Source System in a Cold Area 

    E-Print Network [OSTI]

    Shu, H.; Duanmu, L.; Hua, R.; Zou, Y.; Du, G.

    2006-01-01T23:59:59.000Z

    The ground source heat pump (GSHP) system-an energy efficiency and environment friendly system-is becoming popular in many parts of China. However, an imbalance usually exists between the annual heat extracted from and rejected to the ground due...

  10. Vadose zone water fluxmeter

    DOE Patents [OSTI]

    Faybishenko, Boris A.

    2005-10-25T23:59:59.000Z

    A Vadose Zone Water Fluxmeter (WFM) or Direct Measurement WFM provides direct measurement of unsaturated water flow in the vadose zone. The fluxmeter is a cylindrical device that fits in a borehole or can be installed near the surface, or in pits, or in pile structures. The fluxmeter is primarily a combination of tensiometers and a porous element or plate in a water cell that is used for water injection or extraction under field conditions. The same water pressure measured outside and inside of the soil sheltered by the lower cylinder of the fluxmeter indicates that the water flux through the lower cylinder is similar to the water flux in the surrounding soil. The fluxmeter provides direct measurement of the water flow rate in the unsaturated soils and then determines the water flux, i.e. the water flow rate per unit area.

  11. South Dakota Water Research Institute Annual Technical Report

    E-Print Network [OSTI]

    nutrients and bacteria in feedlot runoff, arsenic removal from drinking water, study of pharmaceuticals in surface water and uranium detoxification in ground water using bacteria. These projects were scheduled

  12. State of Washington Water Research Center Annual Technical Report

    E-Print Network [OSTI]

    : Fifth Research Category: Ground-water Flow and Transport Focus Category: Non Point Pollution, Water Quality, Hydrogeochemistry Descriptors: Non-point pollutants, lindane, triallate, pesticides, water agricultural mass discharges using enviro

  13. NLS ground states on graphs

    E-Print Network [OSTI]

    Riccardo Adami; Enrico Serra; Paolo Tilli

    2014-06-16T23:59:59.000Z

    We investigate the existence of ground states for the subcritical NLS energy on metric graphs. In particular, we find out a topological assumption that guarantees the nonexistence of ground states, and give an example in which the assumption is not fulfilled and ground states actually exist. In order to obtain the result, we introduce a new rearrangement technique, adapted to the graph where it applies. Owing to such a technique, the energy level of the rearranged function is improved by conveniently mixing the symmetric and monotone rearrangement procedures.

  14. The extraction of bitumen from western tar sands

    SciTech Connect (OSTI)

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1990-07-01T23:59:59.000Z

    Topics discussed include: characterization of bitumen impregnated sandstone, water based tar sand separation technology, electrophoretic characterization of bitumen and fine mineral particles, bitumen and tar sand slurry viscosity, the hot water digestion-flotation process, electric field use on breaking water-in-oil emulsions, upgrading of bitumens and bitumen-derived liquids, solvent extraction.

  15. The extraction of bitumen from western tar sands. Annual report

    SciTech Connect (OSTI)

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1990-07-01T23:59:59.000Z

    Topics discussed include: characterization of bitumen impregnated sandstone, water based tar sand separation technology, electrophoretic characterization of bitumen and fine mineral particles, bitumen and tar sand slurry viscosity, the hot water digestion-flotation process, electric field use on breaking water-in-oil emulsions, upgrading of bitumens and bitumen-derived liquids, solvent extraction.

  16. Bi-directionally draining pore fluid extraction vessel

    DOE Patents [OSTI]

    Prizio, Joseph (Boulder, CO); Ritt, Alexander (Lakewood, CO); Mower, Timothy E. (Wheat Ridge, CO); Rodine, Lonn (Arvada, CO)

    1991-01-01T23:59:59.000Z

    The invention is used to extract pore fluid from porous solids through a combination of mechanical compression and inert-gas injection and comprises a piston for axially compressing samples to force water out, and top and bottom drainage plates for capturing the exuded water and using inert gas to force water to exit when the limits of mechanical compression have been reached.

  17. Impact of Climate Change on Irrigation Water Availability, Crop Water Requirements and Soil Salinity in the SJV, CA

    E-Print Network [OSTI]

    Hopmans, Jan W; Maurer, Edwin P

    2008-01-01T23:59:59.000Z

    to the Environmental and Water Resources Institute of thesimulation of ground-water flow in the central part of theU.S. Geological Survey water-supply paper ; 2396.

  18. The determination of glucose in sonophoretically extracted interstitial fluid and the characterization of ultrasound parameters

    E-Print Network [OSTI]

    Cantrell, Jeffrey Travis

    2000-01-01T23:59:59.000Z

    chamber and used to correlate ultrasound spectral properties to the amount of fluid extracted. Results indicate that the highest amount of water extracted occurs when the acoustic coupling media on the surface of the skin is cavitating, resulting in mild...

  19. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  20. Short communication Optimization of hybrid ground coupled and air source heat pump systems

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Short communication Optimization of hybrid ­ ground coupled and air source ­ heat pump systems 2008 Accepted 14 January 2010 Available online 28 January 2010 Keywords: Ground coupled heat pump Air to water heat pump Thermal storage device Hybrid HVAC system Energy efficiency Numerical simulation a b

  1. Energy, Exergy and Uncertainty Analyses of the Thermal Response Test for a Ground Heat Exchanger

    E-Print Network [OSTI]

    Al-Shayea, Naser Abdul-Rahman

    exchanger, Ground coupled heat pump Corresponding author, Tel.: +1-617-308-7214, Fax: +1-617-253-3484, E calibration DAS data acquisition system g ground H heater loss1 losses from the heating section loss2 losses heating and cooling, water heating, crop drying, agricultural greenhouses, etc. In vertical U

  2. MODELING, SIMULATION AND OPTIMIZATION OF GROUND SOURCE

    E-Print Network [OSTI]

    MODELING, SIMULATION AND OPTIMIZATION OF GROUND SOURCE HEAT PUMP SYSTEMS By MUHAMMAD HAIDER KHAN AND OPTIMIZATION OF GROUND SOURCE HEAT PUMP SYSTEMS Thesis Approved..................................................................................................................... 1 1.1 Overview of Ground Source Heat Pump Systems.............................................. 1 1

  3. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems (DE-EE0002961)

    SciTech Connect (OSTI)

    Spitler, J.D.; Culling, J.R.; Conjeevaram, K.; Ramesh, M.; Selvakumar, M.

    2012-11-30T23:59:59.000Z

    Ground-source heat pump (GSHP) systems are perhaps the most widely used “sustainable” heating and cooling systems, with an estimated 1.7 million installed units with total installed heating capacity on the order of 18 GW. They are widely used in residential, commercial, and institutional buildings. Standing column wells (SCW) are one form of ground heat exchanger that, under the right geological conditions, can provide excellent energy efficiency at a relatively low capital cost. Closed-loop surface water heat pump (SWHP) systems utilize surface water heat exchangers (SWHE) to reject or extract heat from nearby surface water bodies. For building near surface water bodies, these systems also offer a high degree of energy efficiency at a low capital cost. However, there have been few design tools available for properly sizing standing column wells or surface water heat exchangers. Nor have tools for analyzing the energy consumption and supporting economics-based design decisions been available. The main contributions of this project lie in providing new tools that support design and energy analysis. These include a design tool for sizing surface water heat exchangers, a design tool for sizing standing column wells, a new model of surface water heat pump systems implemented in EnergyPlus and a new model of standing column wells implemented in EnergyPlus. These tools will better help engineers design these systems and determine the economic and technical feasibility.

  4. A Simplified Procedure for Sizing Vertical Ground Coupled Heat Pump Heat Exchangers for Residences in Texas 

    E-Print Network [OSTI]

    O'Neal, D. L.; Gonzalez, J. A.; Aldred, W.

    1994-01-01T23:59:59.000Z

    the simplified method were compared to two available heat exchanger sizing methods: the National Water Well Association (NWWA) and the International Ground Source Heat Pump Association (IGSHPA). The simplified method predicted shorter lengths than those from...

  5. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    tool for geothermal water loop heat pump systems, 9thInternational IEA Heat Pump Conference, Zürich, Switzerland,Performance of ground source heat pump system in a near-zero

  6. A Simplified Procedure for Sizing Vertical Ground Coupled Heat Pump Heat Exchangers for Residences in Texas

    E-Print Network [OSTI]

    O'Neal, D. L.; Gonzalez, J. A.; Aldred, W.

    1994-01-01T23:59:59.000Z

    the simplified method were compared to two available heat exchanger sizing methods: the National Water Well Association (NWWA) and the International Ground Source Heat Pump Association (IGSHPA). The simplified method predicted shorter lengths than those from...

  7. Selective solvent extraction of cellulosic material

    DOE Patents [OSTI]

    Wang, D.I.C.; Avgerinos, G.C.

    1983-07-26T23:59:59.000Z

    Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15 and about 70 C and for a time period between about 2 and about 80 hours. 6 figs.

  8. Selective solvent extraction of cellulosic material

    DOE Patents [OSTI]

    Wang, Daniel I. C. (Belmont, MA); Avgerinos, George C. (Newton Center, MA)

    1983-01-01T23:59:59.000Z

    Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15.degree. and about 70.degree. C. and for a time period between about 2 and about 80 hours.

  9. Fluidized bed gasification of extracted coal

    DOE Patents [OSTI]

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06T23:59:59.000Z

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  10. Fluidized bed gasification of extracted coal

    DOE Patents [OSTI]

    Aquino, Dolores C. (Houston, TX); DaPrato, Philip L. (Westfield, NJ); Gouker, Toby R. (Baton Rouge, LA); Knoer, Peter (Houston, TX)

    1986-01-01T23:59:59.000Z

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  11. Remediating pesticide contaminated soils using solvent extraction

    SciTech Connect (OSTI)

    Sahle-Demessie, E.; Meckes, M.C.; Richardson, T.L. [National Management Research Lab., Cincinnati, OH (United States)

    1996-12-31T23:59:59.000Z

    Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p{prime}-DDT, p,p{prime}-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as solvents over a wide range of operating conditions. It was demonstrated that a six-stage methanol extraction using a solvent-to-soil ratio of 1.6 can decrease pesticide levels in the soil by more than 99% and reduce the volume of material requiring further treatment by 25 times or more. The high solubility of the pesticides in methanol resulted in rapid extraction rates, with the system reaching quasi-equilibrium state in 30 minutes. The extraction efficiency was influenced by the number of extraction stages, the solvent-to-soil ratio, and the soil moisture content. Various methods were investigated to regenerate and recycle the solvent. Evaporation and solvent stripping are low cost and reliable methods for removing high pesticide concentrations from the solvent. For low concentrations, GAC adsorption may be used. Precipitating and filtering pesticides by adding water to the methanol/pesticide solution was not successful when tested with soil extracts. 26 refs., 10 figs., 6 tabs.

  12. Arkansas Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    wastewater disposal systems, ground water modeling and land use mapping, erosion and pollution, water quality focused on helping local, state and federal agencies understand, manage and protect water resources within Arkansas. AWRC has contributed substantially to the understanding and management of water resources through

  13. Virgin Islands Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    water harvesting are the principal sources of fresh water. Ground water supplies are very limited. WaterVirgin Islands Water Resources Research Institute Annual Technical Report FY 2008 Virgin Islands Water Resources Research Institute Annual Technical Report FY 2008 1 #12;Introduction The Virgin Islands

  14. Construction of prototype system for directional solvent extraction desalination

    E-Print Network [OSTI]

    Fowler, Michael James

    2012-01-01T23:59:59.000Z

    Directional solvent extraction has been demonstrated as a low temperature, membrane free desalination process. This method dissolves the water into an inexpensive, benign directional solvent, rejects the contaminants, then ...

  15. Numerical and Experimental Investigation of Tidal Current Energy Extraction 

    E-Print Network [OSTI]

    Sun, Xiaojing

    2008-01-01T23:59:59.000Z

    Numerical and experimental investigations of tidal current energy extraction have been conducted in this study. A laboratory-scale water flume was simulated using commercial computational fluid dynamics (CFD) code FLUENT. ...

  16. aqueous fish extract: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aqueous fish extract First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Extracting Fish and Water Velocity...

  17. Simultaneous Feature Extraction and Selection Using a Masking Genetic Algorithm

    E-Print Network [OSTI]

    1 Simultaneous Feature Extraction and Selection Using a Masking Genetic Algorithm Michael L. Raymer: identification of functional water molecules bound to protein surfaces, and diagnosis of thyroid deficiency of feature extraction ­ defining new features in terms of the original feature set to facilitate more

  18. Fission Product Extraction Process

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    A new INL technology can simultaneously extract cesium and strontium for reuse. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  19. In-situ continuous water monitoring system

    DOE Patents [OSTI]

    Thompson, C.V.; Wise, M.B.

    1998-03-31T23:59:59.000Z

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer. 2 figs.

  20. In-situ continuous water analyzing module

    DOE Patents [OSTI]

    Thompson, Cyril V. (Knoxville, TN); Wise, Marcus B. (Kingston, TN)

    1998-01-01T23:59:59.000Z

    An in-situ continuous liquid analyzing system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectometer and the volatile components are continuously analyzed by the mass spectrometer.

  1. In-situ continuous water monitoring system

    DOE Patents [OSTI]

    Thompson, Cyril V. (Knoxville, TN); Wise, Marcus B. (Kingston, TN)

    1998-01-01T23:59:59.000Z

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer.

  2. Centre for Water Economics, Environment and Policy THE AUSTRALIAN NATIONAL UNIVERSITY

    E-Print Network [OSTI]

    of extraction for water resources that are overallocated or overused; and (ii) to protect, restore and provide in terms of long-term averages, there will need to be a reduction in water interceptions and/or extractions from water courses in most parts of the Basin. The proposed permissible water extractions for the MDB

  3. Directional solvent extraction desalination

    E-Print Network [OSTI]

    Bajpayee, Anurag

    2012-01-01T23:59:59.000Z

    World water supply is struggling to meet demand. Production of fresh water from the oceans could supply this demand almost indefinitely. As global energy consumption continues to increase, water and energy resources are ...

  4. Quasi-particle Statistics and Braiding from Ground State Entanglement

    E-Print Network [OSTI]

    Yi Zhang; Tarun Grover; Ari Turner; Masaki Oshikawa; Ashvin Vishwanath

    2012-02-27T23:59:59.000Z

    Topologically ordered phases are gapped states, defined by the properties of excitations when taken around one another. Here we demonstrate a method to extract the statistics and braiding of excitations, given just the set of ground-state wave functions on a torus. This is achieved by studying the Topological Entanglement Entropy (TEE) on partitioning the torus into two cylinders. In this setting, general considerations dictate that the TEE generally differs from that in trivial partitions and depends on the chosen ground state. Central to our scheme is the identification of ground states with minimum entanglement entropy, which reflect the quasi-particle excitations of the topological phase. The transformation of these states allows for a determination of the modular S and U matrices which encode quasi-particle properties. We demonstrate our method by extracting the modular S matrix of an SU(2) spin symmetric chiral spin liquid phase using a Monte Carlo scheme to calculate TEE, and prove that the quasi-particles obey semionic statistics. This method offers a route to a nearly complete determination of the topological order in certain cases.

  5. Use of ground-penetrating radar to define recharge areas in the Central Sand Plain. Technical completion report

    SciTech Connect (OSTI)

    Bohling, G.C.; Anderson, M.P.; Bentley, C.R.

    1989-01-01T23:59:59.000Z

    Contamination of ground water by agricultural chemicals in the Central Sand Plain (Portage County in Wisconsin) has prompted studies of ground water flow in the region. Because the ground water system is particularly susceptible to contamination in areas where ground water recharge occurs, identification of recharge zones can contribute significantly to the effective management of agricultural chemical use. An accurate map of water-table elevation (ground water head) is crucial to identifying the distribution of recharge. The reliability of ground-penetrating radar as a total for obtaining high resolution maps of water table elevation was assessed. Sparse subsets of wells in the area were used to calibrate the radar; water-table depths obtained from these calibrations were compared to known water-table depths in the remaining wells. Three wells are the minimum needed to obtain an estimate of uncertainty in calibration parameters; specifically, the radar signal velocity in the subsurface materials and the return time correction factor. If several wells distributed throughout a region of interest yield consistent calibration results, radar can be used to produce a map of water-table elevation for that region.

  6. Nonlinear Dynamics of Longitudinal Ground Vehicle Traction

    E-Print Network [OSTI]

    Shaw, Steven W.

    asphalt b) Wet asphalt c) Gravel d) Packed Snow Nonlinear Dynamics of Longitudinal Ground Vehicle Traction

  7. An experimental study of heating performance and seasonal modeling of vertical U-tube ground coupled heat pumps 

    E-Print Network [OSTI]

    Margo, Randal E.

    1992-01-01T23:59:59.000Z

    configurations of heat pumps: air source heat pumps (ASHP) and ground coupled heat pumps (GCHP). Air source heat pumps extract energy from the outdoor air in the heating mode and reject excess heat in the cooling mode. One significant drawback to ASHP... season. Ground coupled heat pumps use the ground as a heat source or heat sink through The format of this proposal follows that of the Transactions of the American Society of Heating, Refrigeration and Air-Conditioning Engineers. the use of a ground...

  8. Development of a Residential Ground-Source Integrated Heat Pump

    SciTech Connect (OSTI)

    Rice, C Keith [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Hern, Shawn [ClimateMaster, Inc.] [ClimateMaster, Inc.; McDowell, Tim [Thermal Energy System Specialists, LLC] [Thermal Energy System Specialists, LLC; Munk, Jeffrey D [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internal control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.

  9. RAPID DETERMINATION OF {sup 210} PO IN WATER SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.

    2013-05-22T23:59:59.000Z

    A new rapid method for the determination of {sup 210}Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that can be used for emergency response or routine water analyses. If a radiological dispersive device (RDD) event or a radiological attack associated with drinking water supplies occurs, there will be an urgent need for rapid analyses of water samples, including drinking water, ground water and other water effluents. Current analytical methods for the assay of {sup 210}Po in water samples have typically involved spontaneous auto-deposition of {sup 210}Po onto silver or other metal disks followed by counting by alpha spectrometry. The auto-deposition times range from 90 minutes to 24 hours or more, at times with yields that may be less than desirable. If sample interferences are present, decreased yields and degraded alpha spectrums can occur due to unpredictable thickening in the deposited layer. Separation methods have focused on the use of Sr Resin?, often in combination with 210Pb analysis. A new rapid method for {sup 210}Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that utilizes a rapid calcium phosphate co-precipitation method, separation using DGA Resin? (N,N,N?,N? tetraoctyldiglycolamide extractant-coated resin, Eichrom Technologies or Triskem-International), followed by rapid microprecipitation of {sup 210}Po using bismuth phosphate for counting by alpha spectrometry. This new method can be performed quickly with excellent removal of interferences, high chemical yields and very good alpha peak resolution, eliminating any potential problems with the alpha source preparation for emergency or routine samples. A rapid sequential separation method to separate {sup 210} Po and actinide isotopes was also developed. This new approach, rapid separation with DGA Resin plus microprecipitation for alpha source preparation, is a significant advance in radiochemistry for the rapid determination of {sup 210}Po.

  10. The Unique Molecular Behavior of Water at the ChloroformWater Interface

    E-Print Network [OSTI]

    Richmond, Geraldine L.

    The properties that make the chloroform­water interface effective and important in extraction also makeThe Unique Molecular Behavior of Water at the Chloroform­Water Interface CATHRYN L. MCFEARIN, Oregon 97403 The molecular bonding and orientation of water at the chloroform­water interface has been

  11. Reducing lipid oxidation in irradiated ground beef patties by natural antioxidants

    E-Print Network [OSTI]

    Movileanu, Iulia

    2003-01-01T23:59:59.000Z

    Fresh ground beef patties with (1) no antioxidant, (2) 0.02% butylated hydroxyanisole/ butylated hydroxy toluene (BHA/BHT), (3) 3% dried plum puree, or (4) 0.25% rosemary extract were partially aerobic packed, irradiated at 0, 1.5, or 2.0 k...

  12. Water Resources Water Quality and Water Treatment

    E-Print Network [OSTI]

    Sohoni, Milind

    Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

  13. Modeling of Standing Column Wells in Ground Source Heat Pump Systems Zheng Deng O'Neill, Ph.D., P.E.

    E-Print Network [OSTI]

    Modeling of Standing Column Wells in Ground Source Heat Pump Systems Zheng Deng O'Neill, Ph.D., P Montfort University, Leicester, United Kingdom 1. INTRODUCTION In recent years, ground source heat pump-surface environment: · Ground-coupled heat pump (GCHP) systems (Closed-loop) · Surface water heat pump (SWHP) systems

  14. Cruise Report 2009 RMP Water Cruise

    E-Print Network [OSTI]

    organics analysis by AXYS Analytical (100-liter solid phase extraction) 22. Water dissolved samples from 22Cruise Report 2009 RMP Water Cruise August 23 ­ September 3, 2009 #12;CRUISE Report: 2009 Water activities associated with the annual Regional Monitoring Program for Water Quality in the San Francisco

  15. Surficial sediments and sedimentary structures: Middle Ground, Padre Island, Texas.

    E-Print Network [OSTI]

    Zupan, Alan-Jon Wellward

    1971-01-01T23:59:59.000Z

    '=- of time, al" water is driven from The Hole into Murdock Basin. Hnder this =ituation, a continuous subaerial mudflat stretches from tn. Central Mud Flats to the Middle Ground. !Iurdock Basin, aver- a; ing i m o- water desth) is se'pa' ted by a shoal... by coatings of mucilage provided by the algae (Neumann et al. , 19(0). After s, th-n sediment layer has been deposited on top of the algal mat, the algae due to mo+il'ty and positive phototrophism an move upward through the sediment to esta'olish a new...

  16. Extraction Utility Design Specification

    Energy Savers [EERE]

    Extraction Utility Design Specification January 11, 2011 Document Version 1.9 1 Revision History Date Version Section and Titles Author Summary of Change January 15, 2010 1.0 All...

  17. The extraction of bitumen from western oil sands. Final report, July 1989--September 1993

    SciTech Connect (OSTI)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1994-03-01T23:59:59.000Z

    Research and development of surface extraction and upgrading processes of western tar sands are described. Research areas included modified hot water, fluidized bed, and rotary kiln pyrolysis of tar sands for extraction of bitumen. Bitumen upgrading included solvent extraction of bitumen, and catalytic hydrotreating of bitumen. Characterization of Utah tar sand deposits is also included.

  18. Strawberry DNA Extraction 2009 1 Minority Science Programs School of Biological Sciences University of California, Irvine

    E-Print Network [OSTI]

    Rose, Michael R.

    · Frozen strawberries, thawed overnight · 20 mL DNA extraction buffer (water, salt, and soap) in bag · IceStrawberry DNA Extraction 2009 1 Minority Science Programs ­ School regular household chemicals to extract DNA from strawberries and other fruits. Each chemical has

  19. Gene Feature Extraction Using T-Test Statistics and Kernel Partial Least Squares

    E-Print Network [OSTI]

    Kwok, James Tin-Yau

    Gene Feature Extraction Using T-Test Statistics and Kernel Partial Least Squares Shutao Li1 , Chen Clear Water Bay, Hong Kong shutao li@yahoo.com.cn, lc337199@sina.com, jamesk@cs.ust.hk Abstract. In this paper, we propose a gene extraction method by us- ing two standard feature extraction methods, namely

  20. Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin, Eurasia, detected from GRACE

    E-Print Network [OSTI]

    Velicogna, I.; Tong, J.; Zhang, T.; Kimball, J. S

    2012-01-01T23:59:59.000Z

    or no change in ground water storage. Therefore, we con-ground- water table from 2002 through 2010 would be required to account for the subsurface water storageground water level over the same period repre- sents 1.9 cm of potential additional soil water storage

  1. www.barrandwray.com Barr + Wray 2013 The Treatment of Scottish Water

    E-Print Network [OSTI]

    Painter, Kevin

    + Wray 2013 Water Source. Surface Water e.g. Stream, Loch or River. Ground Water e.g. Borehole, Well to remove organics, Taste, residual colour, odour and possible heavy metal contamination NOTE 2: Number upstream if Fe levels Ground Water Supply #12;www.barrandwray.com © Barr

  2. In-Ground Radiation Detection

    SciTech Connect (OSTI)

    McCormick, Kathleen R.; Stromswold, David C.; Woodring, Mitchell L.; Ely, James H.; Siciliano, Edward R.; Caggiano, Joseph A.; Hensley, Walter K.

    2006-10-29T23:59:59.000Z

    Vertically oriented radiation detectors may not provide sufficient screening in rail or aviation applications. Railcars can be heavily shielded on the sides, reducing the sensitivity of vertically mounted monitors. For aviation, the distance required for wingspan clearance reduces a vertical detector’s coverage of the fuselage. To surmount these, and other, challenging operational and sensitivity issues, we have investigated the use of in-ground radiation detectors. (PIET-43741-TM-605).

  3. Missouri Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    the mentoring team. Renewable Energy Ground source heat pump technology is being studied with application with the Water Center, is installing ground source systems on turkey farms in Central Missouri. The energy system to the agriculture sector. The constant temperature of the ground represents an incredible source of environmentally

  4. Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 1, Text

    SciTech Connect (OSTI)

    Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

    1989-01-01T23:59:59.000Z

    This report presents information derived from the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. This volume contains the main text. Volume 2 contains the appendixes, including data and supporting information that verify content and results found in the main text. This report documents information collected by the Pacific Northwest Laboratory at the request of Westinghouse Hanford Company. Presented in this report are the preliminary interpretations of the hydrogeologic environment of six low-level burial grounds, which comprise four waste management areas (WMAs) located in the 200 Areas of the Hanford Site. This information and its accompanying interpretations were derived from sampling and testing activities associated with the construction of 35 ground-water monitoring wells as well as a multitude of previously existing boreholes. The new monitoring wells were installed as part of a ground-water monitoring program initiated in 1986. This ground-water monitoring program is based on requirements for interim status facilities in compliance with the Resource Conservation and Recovery Act (1976).

  5. Factors influencing biological treatment of MTBE contaminated ground water

    E-Print Network [OSTI]

    Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

    2001-01-01T23:59:59.000Z

    Methyl tertiary-butyl ether (MTBE) biodegradation in batchCometabolic degradation of MTBE by a cyclohexane-oxidizingof 49 Biological Treatment of MTBE Fortin, N. Y. , and M. A.

  6. assessing ground water: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Improving Milking Center CiteSeer Summary: 1. Do you dispose of milking parlor waste (manure, feed solids, hoof dirt) or milk house wastewater (bulk tank rinses or cleaning...

  7. Technical assistance contractor management plan: Surface and ground water

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This report presents the general management structure of the Technical Assistance Contractor (TAC) for the Uranium Mill Tailings Remedial Action (UMTRA) Project. This team is a partnership of four major private subcontractors, which teamed together, are striving to be the leader in environmental restoration of uranium mining and milling operations. It will provide a pool of experts in various aspects of the technologies necessary to accomplish this goal, available to DOE to deal with mission concerns. The report expands on goals from TAC`s mission statement, which include management concerns, environment, safety, and health, quality, technical support, communications, and personnel.

  8. GROUND WATER USE FOR COOLING: ASSOCIATED AQUIFER TEMPERATURE CHANGES

    E-Print Network [OSTI]

    Lippmann, Marcelo J.

    2012-01-01T23:59:59.000Z

    94720 ABSTRACT In steam-electric power plants, large voluMesaverage lOOO~MIJ steam-electric power plant would consume

  9. Introduction Fresh or brackish ground water has been shown to

    E-Print Network [OSTI]

    Krantz, David

    continental shelf (Hathaway et al. 1979; Kohout et al. 1988), as well as areas closer to shore in Florida

  10. Introduction Fresh or brackish ground water in submarine environ-

    E-Print Network [OSTI]

    Krantz, David

    reviewed by Kohout et al. (1988) outside the Floridan Aquifer, and distant from shore, can be attributed

  11. Programmatic Environmental Impact Statement for Ground Water | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 | Department of EnergyTheTheUpdate:50of

  12. Record of Decision for Ground Water | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In addition toDOEDepartmentDeliveryRecord of

  13. Ground Water Management District Rules | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000)2004) |1978) | OpenRules Jump to:

  14. Montana Ground Water Pollution Control System Information Webpage | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| Open Energy InformationEnergy

  15. Montana Ground Water Pollution Control System Permit Application Forms

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| Open Energy

  16. Appendix E Supporting Information for Ground Water Modeling

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN RCD _WOMPOC:

  17. Designated Ground Water Basin Map | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbs ValleyWind Power JumpDesignated

  18. EPA - Ground Water Discharges (EPA's Underground Injection Control Program)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Jump to: navigation, searchEMC3,webpage | Open

  19. Water Resource Uses and Issues in Texas.

    E-Print Network [OSTI]

    McNeely, John G.; Lacewell, Ronald D.

    1978-01-01T23:59:59.000Z

    Water Resource Uses and Issues in Texas The Texas A&M University System The Texas Agricultural Experiment Station Neville P. Clarke. Director, College Station, Texas Acknowledgments This study of the Texas water situation completes a series... Water Deuelopment in Texas August 1978 - B-1189: Wafer Resource Uses and Issues in Texas. The present publication considers the implications of ground-water over- drafts and impending full utilization of surface-water resources in Texas. Princi- gal...

  20. Inverse hydrochemical models of aqueous extracts tests

    SciTech Connect (OSTI)

    Zheng, L.; Samper, J.; Montenegro, L.

    2008-10-10T23:59:59.000Z

    Aqueous extract test is a laboratory technique commonly used to measure the amount of soluble salts of a soil sample after adding a known mass of distilled water. Measured aqueous extract data have to be re-interpreted in order to infer porewater chemical composition of the sample because porewater chemistry changes significantly due to dilution and chemical reactions which take place during extraction. Here we present an inverse hydrochemical model to estimate porewater chemical composition from measured water content, aqueous extract, and mineralogical data. The model accounts for acid-base, redox, aqueous complexation, mineral dissolution/precipitation, gas dissolution/ex-solution, cation exchange and surface complexation reactions, of which are assumed to take place at local equilibrium. It has been solved with INVERSE-CORE{sup 2D} and been tested with bentonite samples taken from FEBEX (Full-scale Engineered Barrier EXperiment) in situ test. The inverse model reproduces most of the measured aqueous data except bicarbonate and provides an effective, flexible and comprehensive method to estimate porewater chemical composition of clays. Main uncertainties are related to kinetic calcite dissolution and variations in CO2(g) pressure.

  1. Saturated hydraulic conductivity determined by on ground mono-offset Ground-Penetrating Radar inside a single ring infiltrometer

    E-Print Network [OSTI]

    Léger, Emmanuel; Coquet, Yves

    2013-01-01T23:59:59.000Z

    In this study we show how to use GPR data acquired along the infiltration of water inside a single ring infiltrometer to inverse the saturated hydraulic conductivity. We used Hydrus-1D to simulate the water infiltration. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity, knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the 1D time convolution between reflectivity and GPR signal at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relation ship to invert the saturated hydraulic conductivity for constant and fallin...

  2. Nebraska Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    ) Hydroclimatic Controls on the Conjunctive Use of Surface and Ground Water in the Platte River Basin; and (3 for organic, emerging contaminants, heavy metals, and for stable isotope mass spectrometry. Faculty, staffNebraska Water Resources Center Annual Technical Report FY 2013 Nebraska Water Resources Center

  3. A Simple Tool for Automatic Extraction of Moroccan Coastal Upwelling from Sea Surface

    E-Print Network [OSTI]

    Boyer, Edmond

    of northeasterly wind and the persistence of Ekman transport along the Moroccan coastline, the surface waters upwelling front, separating the cold waters near the coast and warmer offshore waters [14]. Several in order to extract the upwelling area from the remaining offshore waters. The objective of this paper

  4. North Village Ground Source Heat Pumps

    Broader source: Energy.gov [DOE]

    Overview: Installation of Ground Source Heat Pumps. Replacement of Aging Heat Pumps. Alignment with Furmans Sustainability Goals.

  5. Water resources data, Kentucky. Water year 1991

    SciTech Connect (OSTI)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31T23:59:59.000Z

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  6. Ground Turkey and Potato Plate Ingredients

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Ground Turkey and Potato Plate Ingredients: 1 onion 1/2 pound ground turkey 1 cup ketchup, low, brown ground turkey and onion together over medium heat 8 to 10 minutes or until turkey is no longer. Return turkey to skillet. 3. Add ketchup to skillet; cover and simmer over medium-low heat 10 minutes. 4

  7. Process for the solvent extraction for the radiolysis and dehalogenation of halogenated organic compounds in soils, sludges, sediments and slurries

    DOE Patents [OSTI]

    Golden, Jeffry

    2007-02-13T23:59:59.000Z

    A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacts a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.

  8. Process for the solvent extraction for the radiolysis and dehalogenation of halogenated organic compounds in soils, sludges, sediments and slurries

    DOE Patents [OSTI]

    Mincher, Bruce J. (3705 Creekside Dr., Idaho Falls, ID 83404); Curry, Randy Dale (1104 Merrill Ct., Columbia, MO 65203); Clevenger, Thomas E. (2512 Bluff Blvd., Columbia, MO 65201); Golden, Jeffry (12612 Cedarbrook La., Laurel, MD 20708)

    2000-01-01T23:59:59.000Z

    A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacting a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.

  9. Process for the solvent extraction for the radiolysis and dehalogenation of halogenated organic compounds in soils, sludges, sediments and slurries

    DOE Patents [OSTI]

    Mincher, Bruce J.; Curry, Randy Dale; Clevenger, Thomas E.; Golden, Jeffry

    2003-05-27T23:59:59.000Z

    A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacts a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.

  10. Hardness of water.

    E-Print Network [OSTI]

    Rahul Oza

    This project is helpful to those people who live in the coastal based and they are suffering every year with problem of safe drinking water and not available throughout the year. It has given ideas, technology and economical way of solution for water crisis and it’s also solving problem of scare by use of different methods to development evelopment new water source in water scare area of Saurashtra and Kutch in Gujarat. Saurashtra land is containing of different types of minerals specially bauxite, calcite, fluoride so many mineral based industries are developed here and those who continuous nuous need this as raw materials and they used many mines and processes units. These minerals are creating problem to polluted ground water some are melting and increasing TDS more than 6000 mg/l and

  11. An experimental study of heating performance and seasonal modeling of vertical U-tube ground coupled heat pumps

    E-Print Network [OSTI]

    Margo, Randal E.

    1992-01-01T23:59:59.000Z

    , 1985; Mei & Emerson, 1985; Couvillion, 1985; Edwards & Vitta, 1985; Mei & Baxter, 1986; Cane & Forgas, 1991, Deerman, 1991; Dobson, 1991]. Ground coupled heat pumps have the potential to perform more efficiently than air source heat pumps (ASHP... configurations of heat pumps: air source heat pumps (ASHP) and ground coupled heat pumps (GCHP). Air source heat pumps extract energy from the outdoor air in the heating mode and reject excess heat in the cooling mode. One significant drawback to ASHP...

  12. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    SciTech Connect (OSTI)

    Roychowdhury, P., E-mail: pradipr@barc.gov.in; Mishra, L.; Kewlani, H.; Mittal, K. C. [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)] [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Patil, D. S. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)] [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-03-15T23:59:59.000Z

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, ?2 to ?4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10{sup ?3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  13. Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    -Situ Bioremediation of MTBE Contaminated Ground Water Using Biobarriers, Marc Deshusses & Mark Matsumoto, UC Riverside of Using Bioaugmentation with Bacterial Strain PM 1 for Bioremediation of MTBE-Contaminated Vadose

  14. Threshold voltage extraction circuit

    E-Print Network [OSTI]

    Hoon, Siew Kuok

    2000-01-01T23:59:59.000Z

    to that of the saturation method. However, instead of fixing Vos ? Vos, the drain current is measured as a function of Vos while Vns is fixed at a constant low voltage of 100mV to ensure operation in the linear MOSFET region. Neglecting channel length modulation effect... transistors are layout next to the DUT of the NMOS and PMOS Vr extraction circuits respectively for extraction of Vr via graphical means. GRAPHICAL METHOD OF THE THRESHOLD-VOLTAGE MEASUREMENT Using the graphical method, the characteristics of 4n versus Vos...

  15. Supercritical fluid extraction

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Laintz, Kenneth (Pullman, WA)

    1994-01-01T23:59:59.000Z

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  16. Calibrating Pesticide Application Ground Equipment

    E-Print Network [OSTI]

    Shaw, Bryan W.

    2000-07-05T23:59:59.000Z

    , use either a strong household detergent or a commercial decontaminate for- mulation. Most contain a combination of soda ash, detergent and alkaline chlorine. Rinse thoroughly with clean water. Remove nozzles to clean screens and tips. Apply rinse water...,4- DB for any other purpose because of difficulty in removing all traces of the pesticide. n Check all hoses. Hoses in good condition save time and eliminate possible spray mix- ture losses. n Use screens upstream of the pump and each nozzle. Frequently...

  17. Onset of water stress, hysteresis in plant conductance, and hydraulic lift: Scaling soil water dynamics

    E-Print Network [OSTI]

    Katul, Gabriel

    for harvesting most of the soil water, which then flows within the plant vascular system up to the leaves where have been proposed and used [Li et al., 1999; Vrugt et al., 2001]. Usually, water extraction by rootsOnset of water stress, hysteresis in plant conductance, and hydraulic lift: Scaling soil water

  18. A simplified methodology for sizing ground coupled heat pump heat exchangers in cooling dominated climates 

    E-Print Network [OSTI]

    Gonzalez, Jose Antonio

    1993-01-01T23:59:59.000Z

    between GSIM and two commercially available heat exchanger sizing methods, the National Water Well Association (NWWA) and the International Ground Source Heat Pump Association (IGSHPA) methods, was performed. GSIM heat exchanger lengths for Dallas were... Pump Capacity and Cooling Load. . . . . Oversizing and Undersizing the Heat Pump. . . . . . . . . . . . . . Summary. . 72 74 76 78 80 82 85 87 90 92 IX COMPARISON OF HEAT EXCHANGER SIZING METHODS . . 93 International Ground Source Heat...

  19. Supercritical Fluid Extraction

    E-Print Network [OSTI]

    Johnston, K. P.; Flarsheim, W. M.

    1984-01-01T23:59:59.000Z

    supercritical tetrahydrofuran (583K, 10 MPa) or toluene (668K, 10 MPa) to remove 95% of the organic matter from Athabasca tar sanrls [4J. Compared to oil shale retorting at 870K which extracted 71% of the kerogen, supercritical toluene at 713K and 10 MPa...

  20. Method for liquid chromatographic extraction of strontium from acid solutions

    DOE Patents [OSTI]

    Horwitz, E. Philip (Naperville, IL); Dietz, Mark L. (Evanston, IL)

    1992-01-01T23:59:59.000Z

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.