National Library of Energy BETA

Sample records for ground water contamination

  1. Vertical Distribution of Contamination in Ground Water at the Tuba City,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona, Site | Department of Energy Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site (7.2 MB) More Documents & Publications Diffusion Multilayer Sampling of Ground Water in Five Wells at the

  2. Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tuba City, Arizona, Site | Department of Energy Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site (11.1 MB) More Documents & Publications Diffusion

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    SciTech Connect (OSTI)

    1995-05-01

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

  4. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado

    SciTech Connect (OSTI)

    1995-09-01

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site is under way and is scheduled for completion in 1996. The tailings are being stabilized in-place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the environment. Currently, no points of exposure (e.g. a drinking water well); and no receptors of contaminated ground water have been identified at the Maybell site. Therefore, there are no current human health and ecological risks associated with exposure to contaminated ground water. Furthermore, if current site conditions and land- and water-use patterns do not change, it is unlikely that contaminated ground water would reach people or the ecological communities in the future.

  5. DOE Moab Site Cost-Effectively Eliminates 200 Million Gallons of Contaminated Ground Water

    Broader source: Energy.gov [DOE]

    Grand Junction, CO ― The Department of Energy (DOE) announced today that it has extracted 200 million gallons of contaminated ground water from the Moab site in Utah as part of the Moab Uranium Mill Tailings Remedial Action Project.

  6. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    SciTech Connect (OSTI)

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  7. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water.

  8. A dual phased approach for bioremediation of petroleum contaminated soil and ground water

    SciTech Connect (OSTI)

    Kennel, N.D.; Maher, A.; Buckallew, B.

    1994-12-31

    A case study will be presented to demonstrate an effective and timely method of site remediation which yields complete contaminant destruction rather than the contaminant transfer that traditional ground water extraction and treatment techniques result in. By utilizing bioremediation at this site, the client was able to completely degrade the contamination beneath the property, and in the process avoid future liability from transfer of the contamination to another party (i.e. landfill) or phase (i.e. liquid to vapor through air stripping). The provisions of a real estate transaction involving a former service station site in Central Iowa stipulated that the site be remediated prior to title transfer. Previous Environmental Investigative activities revealed significant soil and ground water contamination resulting from over 50 years of diesel and gasoline fuel storage and dispensing operations at the site. Microbial Environmental Services, Inc. (MES) utilized a dual phased bioremediation approach to meet regulatory clean-up guidelines in order for a timely property transfer to occur. To facilitate and expedite ground water remediation, contaminated soil was excavated and remediated via Advanced Biological Surface Treatment (ABST) techniques. ABST techniques are utilized by MES to treat excavated soil in closed cell to control emissions and treatment conditions. Following contaminant source removal, ground water was extracted and treated in a submerged, fixed film, flow through 1,000 gallon fixed film bioreactor at a rate of 2.5 gallons per minute.

  9. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado

    SciTech Connect (OSTI)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site began in 1995 and is scheduled for completion in 1996. The tailings are being stabilized in place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results presented in this document and other evaluations will determine whether any action is needed to protect human health or the environment.

  10. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    SciTech Connect (OSTI)

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

    1992-11-01

    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992.

  11. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    SciTech Connect (OSTI)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  12. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    In April 1990 Wright-Patterson Air Force Base (WPAFB) initiated an investigation to evaluate a potential CERCLA removal action to prevent, to the extent practicable, the migration of ground-water contamination in the Mad River Valley Aquifer within and across WPAFB boundaries. The action will be based on a Focused Feasibility Study with an Action Memorandum serving as a decision document that is subject to approval by the Ohio Environmental Protection Agency. The first phase (Phase 1) of this effort involves an investigation of ground-water contamination migrating across the southwest boundary of Area C and across Springfield Pike adjacent to Area B. Task 4 of Phase 1 is a field investigation to collect sufficient additional information to evaluate removal alternatives. The field investigation will provide information in the following specific areas of study: water-level data which will be used to permit calibration of the ground-water flow model to a unique time in history; and ground-water quality data which will be used to characterize the current chemical conditions of ground water.

  13. Applications of permeable barrier technology to ground water contamination at the Shiprock, NM, UMTRA site

    SciTech Connect (OSTI)

    Thomson, B.M.; Henry, E.J.; Thombre, M.S.

    1996-12-31

    The Shiprock uranium mill tailings pile in far northwestern New Mexico consists of approximately 1.5 million tons of uranium mill tailings from an acid leach mill which operated from 1954 to 1968. Located on land owned by the Navajo Nation, it was one of the first tailings piles stabilized under the Uranium Mill Tailings Remedial Action (UMTRA) project. Stabilization activities were completed in 1986 and consisted principally of consolidating the tailings, contouring the pile to achieve good drainage, and covering the pile with a multi-layer cap to control infiltration of water, radon emanation, and surface erosion. No ground water protection or remediation measures were implemented other than limiting infiltration of water through the pile, although a significant ground water contamination plume exists in the flood plain adjacent to the San Juan River. The major contaminants at the Shiprock site include high concentrations of sulfate, nitrate, arsenic, and uranium. One alternative for remediation may be the use of a permeable barrier in the flood plain aquifer. As proposed for the Shiprock site, the permeable barrier would be a trench constructed in the flood plain that would be backfilled with a media that is permeable to ground water, but would intercept or degrade the pollutants. Work to date has focused on use of a mixed microbial population of sulfate and nitrate reducing organisms. These organisms would produce strongly reducing conditions which would result in precipitation of the metal contaminants (i.e., Se(IV) and U(IV)) in the barrier. One of the first considerations in designing a permeable barrier is developing an understanding of ground water flow at the site. Accordingly, a steady state numerical model of the ground water flow at the site was developed using the MODFLOW code.

  14. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    SciTech Connect (OSTI)

    1995-12-01

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  15. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

  16. BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT THE URAN~UM MILL TAILINGS

    Office of Legacy Management (LM)

    I~:-:ii*.i: i,<;.;.-;_r- --:-:ir-- - . . - -. . - . . - , -, . , , , - - - - . BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT THE URAN~UM MILL TAILINGS SITE NEAR RIVERTON, WYOMING I i I I I Prepared by the U.S. Department of Energy Albuquerque, New Mexico September 1995 INTENDED FOR PUBLIC RELEASE This report has been reproduced from the best available copy. Avai and microfiche Number of pages in this report: 166 DOE and DOE contractors can obtain copies of this report from: Office

  17. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    SciTech Connect (OSTI)

    1996-02-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

  18. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Lakeview, Oregon. Revision 2

    SciTech Connect (OSTI)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the UMTRA Project site near Lakeview, Oregon, was completed in 1989. The mill operated from February 1958 to November 1960. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  19. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    SciTech Connect (OSTI)

    Thompson, Bill

    1991-10-01

    In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

  20. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    SciTech Connect (OSTI)

    1995-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  1. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

  2. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30 percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size.

  3. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

  4. Acoustically enhanced remediation of contaminated soils and ground water. Volume 1

    SciTech Connect (OSTI)

    1995-10-01

    The Phase 1 laboratory bench-scale investigation results have shown that acoustically enhanced remediation (AER) technology can significantly accelerate the ground water remediation of non-aqueous phase liquids (NAPLs) in unconsolidated soils. The testing also determined some of the acoustic parameters which maximize fluid and contaminant extraction rates. A technology merit and trade analysis identified the conditions under which AER could be successfully deployed in the field, and an analysis of existing acoustical sources and varying methods for their deployment found that AER technology can be successfully deployed in-situ. Current estimates of deployability indicate that a NAPL plume 150 ft in diameter can be readily remediated. This program focused on unconsolidated soils because of the large number of remediation sites located in this type of hydrogeologic setting throughout the nation. It also focused on NAPLs and low permeability soil because of the inherent difficult in the remediation of NAPLs and the significant time and cost impact caused by contaminated low permeability soils. This overall program is recommended for Phase 2 which will address the technology scaling requirements for a field scale test.

  5. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    SciTech Connect (OSTI)

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables.

  6. Electrosorption on carbon aerogel electrodes as a means of treating low-level radioactive wastes and remediating contaminated ground water

    SciTech Connect (OSTI)

    Tran, Tri Duc; Farmer, Joseph C.; DePruneda, Jean H.; Richardson, Jeffery H.

    1997-07-01

    A novel separation process based upon carbon aerogel electrodes has been recently developed for the efficient removal of ionic impurities from aqueous streams. This process can be used as an electrical y- regenerated alternative to ion exchange, thereby reducing-the need for large quantities of chemical regenerants. Once spent (contaminated), these regenerants contribute to the waste that must be disposed of in landfills. The elimination of such wastes is especially beneficial in situations involving radioactive contaminants, and pump and treat processing of massive volumes of ground water. A review and analysis of potential applications will be presented.

  7. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 9, Removal action system design

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30 percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size.

  8. Relating ground water and sediment chemistry to microbial characterization at a BTEX-contaminated site

    SciTech Connect (OSTI)

    Pfiffner, S.M.; Palumbo, A.V.; McCarthy, J.F.

    1997-12-31

    The National Center for Manufacturing Science is investigating bioremediation of petroleum hydrocarbon at a site near Belleville, MI. As part of this study, we examined the microbial communities to help elucidate biodegradative processes currently active at the site. We observed high densities of aerobic hydrocarbon degraders and denitrifiers in the less-contaminated sediments. Low densities of iron and sulfate reducers were measured in the same sediments. In contrast, the highly contaminated sediments showed low densities of aerobic hydrocarbon degraders and denitrifiers, and high densities of iron and sulfate reducers. Methanogens were also found in these highly contaminated sediments. These contaminated sediments also showed a higher biomass, by the phospholipid fatty acids, and greater ratios of phospholipid fatty acids, which indicate stress within the microbial community. Aquifer chemistry analyses indicated that the highly contaminated area was more reduced and had lower sulfate than the less-contaminated area. These conditions suggest that the subsurface environment at the highly contaminated area had progressed into sulfate reduction and methanogenesis. The less-contaminated area, although less reduced, also appeared to be progressing into primarily iron- and sulfate-reducing microbial communities. The proposed treatment to stimulate bioremediation includes addition of oxygen and nitrate to the subsurface. 24 refs., 5 figs., 3 tabs.

  9. Ground water and energy

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  10. Ground-water in Texas

    SciTech Connect (OSTI)

    Ward-McLemore, E.

    1985-01-01

    Amount 61% of the water used by Texans is ground-water. Some areas, both municipal and rural, depend entirely on ground-water. In many areas long term withdrawal is lowering the water levels, causing surface land subsidence, salt-water encroachment, and reducing future reservoir availability. The increasing probability of seepage from radioactive and toxic wastes, herbicide residues, septic systems, and oilfield brines is threatening dangerous contamination of fresh ground-water reservoirs. The Texas Department of Water Resources, the Texas Department of Health, State and private colleges and universities, the US Geological Survey, the Environmental Protection Agency, various underground water districts, among others, are cooperating with concerned hydrologists in a concentrated program to increase the efficiency of ground-water use and development, preserve the aquifer reservoirs, and decrease the pollution potential. 88 references.

  11. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 2, Work plan: Phase 1, Task 4, Field Investigation: Draft

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    In April 1990 Wright-Patterson Air Force Base (WPAFB) initiated an investigation to evaluate a potential CERCLA removal action to prevent, to the extent practicable, the migration of ground-water contamination in the Mad River Valley Aquifer within and across WPAFB boundaries. The action will be based on a Focused Feasibility Study with an Action Memorandum serving as a decision document that is subject to approval by the Ohio Environmental Protection Agency. The first phase (Phase 1) of this effort involves an investigation of ground-water contamination migrating across the southwest boundary of Area C and across Springfield Pike adjacent to Area B. Task 4 of Phase 1 is a field investigation to collect sufficient additional information to evaluate removal alternatives. The field investigation will provide information in the following specific areas of study: water-level data which will be used to permit calibration of the ground-water flow model to a unique time in history; and ground-water quality data which will be used to characterize the current chemical conditions of ground water.

  12. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 3, Sampling and analysis plan (SAP): Phase 1, Task 4, Field Investigation: Draft

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

  13. Diffusion Multilayer Sampling of Ground Water in Five Wells at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of MSE Cores Tuba City, Arizona, Site Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site Vertical Distribution of ...

  14. Purifying contaminated water

    DOE Patents [OSTI]

    Daughton, Christian G.

    1983-01-01

    Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  15. Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds

    Broader source: Energy.gov [DOE]

    The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

  16. Appendix D Surface Water and Ground Water Time-Concentration...

    Office of Legacy Management (LM)

    Surface Water and Ground Water Time-Concentration Plots, Stream Discharge Measurements, Ground Water Level Data, and Ground Water Well Hydrographs This page intentionally left ...

  17. Colorado Ground Water Commission | Open Energy Information

    Open Energy Info (EERE)

    Colorado Ground Water Commission Jump to: navigation, search Name: Colorado Ground Water Commission Place: Colorado Website: water.state.co.usgroundwater References: Colorado...

  18. Appendix B Ground Water Management Policy

    Office of Legacy Management (LM)

    Ground Water Management Policy for the Monticello Mill Tailings Site and Adjacent Areas ... OF NATURAL RESOURCES DIVISION OF WATER RIGHTS Ground-Water Management Policy for ...

  19. Hydrologic characterization of the Fry Canyon, Utah site prior to field demonstration of reactive chemical barriers to control radionuclide and trace-element contamination in ground water

    SciTech Connect (OSTI)

    Naftz, D.L.; Freethey, G.W.; Davis, J.A.

    1997-12-31

    The Fry Canyon Site in southeastern Utah has been selected as a long term demonstration site to assess the performance of selected reaction barrier technologies for the removal of uranium and other trace elements from ground water. Objectives include site characterization and evaluation of barrier technologies.

  20. Document Number Q0029500 Ground Water Model 3.0 Ground Water...

    Office of Legacy Management (LM)

    Ground Water Model 3.0 Ground Water Model This section presents a steady-state ground water flow model and a coupled solute transport model (ground water model) for the alluvial ...

  1. Tritium Ground Water Issues | Department of Energy

    Office of Environmental Management (EM)

    Ground Water Issues Tritium Ground Water Issues Presentation from the 35th Tritium Focus Group Meeting held in Princeton, New Jersey on May 05-07, 2015. Tritium Ground Water Issues ...

  2. Hanford Site ground-water monitoring for 1994

    SciTech Connect (OSTI)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  3. Cleaning Contaminated Water at Fukushima

    ScienceCinema (OSTI)

    Rende, Dean; Nenoff, Tina

    2014-02-26

    Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

  4. Cleaning Contaminated Water at Fukushima

    SciTech Connect (OSTI)

    Rende, Dean; Nenoff, Tina

    2013-11-21

    Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

  5. Hanford Site ground-water monitoring for 1993

    SciTech Connect (OSTI)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  6. Modeling of ground water aquifer remediation by pulsed pumping when contaminant transport is affected by physical, non-equilibrium sorption and desorption. Master's thesis

    SciTech Connect (OSTI)

    Caspers, J.L.

    1994-08-12

    This research postulates and demonstrates incorporating rate-limited sorption effects in the USGS SUTRA code for cleanup of a hypothetical sandy aquifer by pump-and-treat remediation methods. Contaminant transport is assumed to be affected by advection, dispersion, and rate-limited sorption/desorption. Sorption is assumed to be either equilibrium or rate-limited, with the rate-limitation described by either a first-order law, or by Fickian diffusion of contaminant through a spherical immobile pore region. Solutions are arrived at by split operator methods for the transport and one-dimensional Galerkin solutions for the solute concentration equations. The resulting model is tested against an analytical Laplace transform model for both first-order and Fickian diffusion methods in a radial pumping simulation. Model simulations are used to evaluate equilibrium, first-order and Fickian diffusion effects for pulsed and continuous pumping solutions within a hypothetical sandy aquifer. These show that equilibrium methods under-predicted rebound while first-order methods may both under and over predict rebound within the matrix for certain regions and may be equivalent to Fickian diffusion in equilibrium regimes for cleanup time prediction. Model simulations are then used to show the efficiency of pulsed pumping methods in cleanup mass extraction per pumped volume for a contaminated aquifer pump-and-treat remediation activity versus more conventional, continuous pumping methods.

  7. Ground-water flow and ground- and surface-water interaction at the Weldon Spring quarry, St. Charles County, Missouri

    SciTech Connect (OSTI)

    Imes, J.L.; Kleeschulte, M.J.

    1997-12-31

    Ground-water-level measurements to support remedial actions were made in 37 piezometers and 19 monitoring wells during a 19-month period to assess the potential for ground-water flow from an abandoned quarry to the nearby St. Charles County well field, which withdraws water from the base of the alluvial aquifer. From 1957 to 1966, low-level radioactive waste products from the Weldon Spring chemical plant were placed in the quarry a few hundred feet north of the Missouri River alluvial plain. Uranium-based contaminants subsequently were detected in alluvial ground water south of the quarry. During all but flood conditions, lateral ground-water flow in the bedrock from the quarry, as interpreted from water-table maps, generally is southwest toward Little Femme Osage Creek or south into the alluvial aquifer. After entering the alluvial aquifer, the ground water flows southeast to east toward a ground-water depression presumably produced by pumping at the St. Charles County well field. The depression position varies depending on the Missouri River stage and probably the number and location of active wells in the St. Charles County well field.

  8. Procedures for ground-water investigations

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  9. Natural radionuclides in ground waters and cores

    SciTech Connect (OSTI)

    Laul, J.C.; Smith, M.R.; Maiti, T.C.

    1988-01-01

    Investigations of natural radionuclides of uranium and thorium decay series in site-specific ground waters and cores (water/rock interaction) can provide information on the expected migration behavior of their radioactive waste and analog radionuclides in the unlikely event of radioactive releases from a repository. These data in ground waters can provide in situ retardation and sorption/desorption parameters for transport models and their associated kinetics (residence time). These data in cores can also provide information on migration or leaching up to a period of about one million years. Finally, the natural radionuclide data can provide baseline information for future monitoring of possible radioactive waste releases. The natural radionuclides of interest are {sup 238}U, {sup 234}Th, {sup 234}U, {sup 230}Th, {sup 226}Ra, {sup 222}Rn, {sup 210}Pb, {sup 210}Bi, {sup 210}Po, {sup 232}Th, {sup 228}Ra, {sup 228}Th, and {sup 224}Ra. The half-lives of the daughter radionuclides range from 3 days to 2.5 x 10{sup 5} yr. The data discussed are for low ionic strength ground waters from the Hanford (basalt) site and briny ground waters (high ionic strength) and cores from the Deaf Smith salt site. Similar applications of the natural radionuclide data can be extended to the Nevada Tuff repository site and subseabed disposal site. The concentrations of uranium, thorium, radium, lead, and polonium radionuclides are generally very low in ground waters. However, significant differences in disequilibrium exist between basalt and briny ground waters.

  10. Method of removing oxidized contaminants from water

    DOE Patents [OSTI]

    Amonette, J.E.; Fruchter, J.S.; Gorby, Y.A.; Cole, C.R.; Cantrell, K.J.; Kaplan, D.I.

    1998-07-21

    The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II). 8 figs.

  11. Method of removing oxidized contaminants from water

    DOE Patents [OSTI]

    Amonette, James E.; Fruchter, Jonathan S.; Gorby, Yuri A.; Cole, Charles R.; Cantrell, Kirk J.; Kaplan, Daniel I.

    1998-01-01

    The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II).

  12. Remediation of Uranium-Contaminated Ground Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A partnership was formed in June of 1996 between the DOE (Grand Junction Office), US EPA, Interior Department, Geological Survey (USGS), Bureau of Land Management (BLM), and the ...

  13. Cleaning Contaminated Water at Fukushima (Other) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Other: Cleaning Contaminated Water at Fukushima Citation Details In-Document Search Title: Cleaning Contaminated Water at Fukushima You are accessing a document from the ...

  14. Hedgehog(tm) Water Contaminant Removal System - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Hedgehog(tm) Water Contaminant Removal System Sandia ... recirculating treatment system reduces the levels of contaminants in water storage tanks. ...

  15. An Updated Site Scale Saturated Zone Ground Water Transport Model...

    Office of Scientific and Technical Information (OSTI)

    An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca Mountain. Citation Details In-Document Search Title: An Updated Site Scale Saturated Zone Ground Water ...

  16. Montana Ground Water Pollution Control System Permit Application...

    Open Energy Info (EERE)

    Ground Water Pollution Control System Permit Application Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution...

  17. Montana Ground Water Pollution Control System Information Webpage...

    Open Energy Info (EERE)

    Ground Water Pollution Control System Information Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution Control System...

  18. EPA - Ground Water Discharges (EPA's Underground Injection Control...

    Open Energy Info (EERE)

    Ground Water Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water...

  19. Water Quality Surface and Ground | Open Energy Information

    Open Energy Info (EERE)

    Water Quality Surface and Ground Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaterQualitySurfaceandGround&oldid612197" Feedback...

  20. UMTRA Ground Water Project management action process document

    SciTech Connect (OSTI)

    1996-03-01

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards.

  1. Record of Decision for Ground Water | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record of Decision for Ground Water Record of Decision for Ground Water Record of Decision for Ground Water (April 1997) Record of Decision for Ground Water (625.12 KB) More Documents & Publications EIS-0198: Record of Decision EIS-0170: Record of Decision (April 1997) EIS-0251: Second Record of Decision (May 1997)

  2. Hanford Site ground-water monitoring for July through December 1987

    SciTech Connect (OSTI)

    Evans, J.C.; Dennison, D.I.; Bryce, R.W.; Mitchell, P.J.; Sherwood, D.R.; Krupka, K.M.; Hinman, N.W.; Jacobson, E.A.; Freshley, M.D.

    1988-12-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between July and December 1987 included monitoring ground-water elevations across the Site, monitoring hazardous chemicals and radionuclides in ground water, geochemical evaluations of unconfined ground-water data, and calibration of ground-water flow and transport models. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Central Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. The MINTEQ geochemical code was used to identify chemical reactions that may be affecting the concentrations of dissolved hazardous chemicals in the unconfined ground water. Results indicate that many cations are present mainly as dissolved carbonate complexes and that a majority of the ground-water samples are in near equilibrium with carbonate minerals (e.g., calcite, dolomite, otavite).

  3. Selenium in Oklahoma ground water and soil

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  4. Programmatic Environmental Impact Statement for Ground Water | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Programmatic Environmental Impact Statement for Ground Water Programmatic Environmental Impact Statement for Ground Water Programmatic Environmental Impact Statement for Ground Water Volumes I & II (October 1996) Optical character recognition has been applied to these files, but full search capabilities are not guaranteed. Programmatic Environmental Impact Statement for Ground Water-Volume I (10.79 MB) Programmatic Environmental Impact Statement for Ground Water-Volume II

  5. Hydrous pyrolysis/oxidation: in-ground thermal destruction of organic contaminants

    SciTech Connect (OSTI)

    Knauss, K. G.; Aines, R.D.; Dibley, M.J.; Leif, R.N.; Mew, D.A.

    1997-03-11

    Experimental work with organic solvents at Lawrence Livermore National Laboratory has suggested that in situ thermal oxidation of these compounds via hydrous pyrolysis forms the basis for a whole new remediation method, called hydrous pyrolysis oxidation. Preliminary results of hydrothermal oxidation using both dissolved 0{sub 2} gas and mineral oxidants present naturally in soils (e.g., MnO{sub 2}) demonstrate that TCE, TCA, and even PCE can be rapidly and completely degraded to benign products at moderate conditions, easily achieved in thermal remediation. Polycyclic aromatic hydrocarbons (PAHS) have an even larger thermodynamic driving force favoring oxidation, and they are also amenable to in situ destruction. Today, the principal treatment methods for chlorinated solvent- and PAH-contaminated soil are to remove it to landfills, or incinerate it on site. The most effective method for treating ground water, Dynamic Underground Stripping (Newmark et al., 1995), still involves removing the contaminant for destruction elsewhere. Hydrous pyrolysis/oxidation would eliminate the need for long-term use of expensive treatment facilities by converting all remaining contaminant to benign products (e.g., carbon dioxide, water, and chloride ion). The technique is expected to be applicable to dense non-aqueous phase liquids (DNAPLS) and dissolved organic components. Soil and ground water would be polished without bringing them to the surface. This would dramatically decrease the cost of final site closure efforts. Large-scale cleanup using hydrous pyrolysis/oxidation may cost less than $10/yd. The end product of hydrous pyrolysis/oxidation is expected to be a clean site. The delivery concept for hydrous pyrolysis/oxidation utilizes the established experience in heating large volumes of ground developed in the Dynamic Underground Stripping Demonstration (Newmark et al., 1995). Steam and possibly oxygen are injected together, building a heated, oxygenated zone in the

  6. Purifying contaminated water. [DOE patent application

    DOE Patents [OSTI]

    Daughton, C.G.

    1981-10-27

    Process is presented for removing biorefactory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  7. U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan

    Office of Legacy Management (LM)

    GWMON 1.12-1 U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan for the Land Farm Pilot Test Monument Valley, Arizona August 2000 Prepared by U.S. Department of Energy Grand Junction Ofice Grand Junction, Colorado Project Number UGW-5 1 1-001 5-21-000 Document Number U0106701 This page intentionally left blank Document Number U0106701 Contents Contents 1.0 Introduction

  8. Procedures for ground-water investigations

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual.

  9. Ground-water chemistry of a fen-wetland complex in northeastern Illinois

    SciTech Connect (OSTI)

    Panno, S.V.; Hensel, B.R.; Cartwright, K.; Krapac, I.G. ); Nuzzo, V. )

    1992-01-01

    Construction of homes within the watershed of a fen-wetland complex has resulted in encroachment of ground water-borne anthropogenic contaminants into 3 high-quality fens. The study area is located in northeastern Illinois and is situated at the base of a Wisconsinan moraine. The upper 15 to 45 m of glacial drift consists of permeable sand and gravel, overlain by 3 to 6 m of peat and marl. Ground-water samples were collected quarterly for 1.25 years from sand and gravel aquifers, and peat and marl of the fens, and analyzed for inorganic constituents. Density, cover and vigor data on threatened, endangered and selected common plant species in the fens were collected in conjunction with ground-water sampling. Ground water of the complex is of the Ca-HCO[sub 3] to Ca-Mg-HCO[sub 3] type which is typical of ground water of glacial deposits of North America. Contaminant plumes at this site are enriched in Ca, Mg, Na, Cl, NO[sub 3], SO[sub 4], with higher specific conductance and alkalinity. Some recharge areas within the complex yield ground-water samples containing 200--500 mg/L SO[sub 4]. Although this ground water is entering the fens, ground water from peat and marl in the fens contains an order of magnitude lower concentration of SO[sub 4] due to reducing conditions therein. Progressive enrichment of Cl and NO[sub 3], and decrease in Eh is occurring in recharge areas nearest housing developments, suggesting progressive degradation of ground-water quality. Mineral content of ground water appears to have the most significant affect on plant diversity within the fens. A specific conductance of greater than 100 [mu]s/cm in shallow fen ground water correlates well with the encroachment and proliferation of Typha angustifolia L. (narrow-leaf cattail) into areas of highly diverse flora.

  10. Environmental Assessment of Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    N /A

    2002-08-13

    The U.S. Department of Energy (DOE) is in the process of selecting a ground water compliance strategy for the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. This Environmental Assessment (EA) discusses two alternatives and the effects associated with each. The two alternatives are (1) natural flushing coupled with institutional controls and continued monitoring and (2) no action. The compliance strategy must meet U.S. Environmental Protection Agency (EPA) ground water standards defined in Title 40 ''Code of Federal Regulations'' Part 192, Subpart B, in areas where ground water beneath and around the site is contaminated as a result of past milling operations. It has been determined that contamination in the ground water at the Gunnison site consists of soluble residual radioactive material (RRM) as defined in the Uranium Mill Tailings Radiation Control Act (UMTRCA).

  11. Appendix E Supporting Information for Ground Water Modeling

    Office of Legacy Management (LM)

    Supporting Information for Ground Water Modeling This page intentionally left blank Contents Section Geologic Map of Site Area ........................................................................................................ E1.O Stream Flow Measurements ...................................................................................................... E2.0 Estimates of Ground Water Flow .............................................................................................. E3.0

  12. Designated Ground Water Basin Map | Open Energy Information

    Open Energy Info (EERE)

    Designated Ground Water Basin Map Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Designated Ground Water Basin Map Abstract This webpage provides...

  13. Final Environmental Assessment of Ground Water Compliance at...

    Office of Environmental Management (EM)

    458 Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA ... DE-AC13-02GJ79491 DOE Grand Junction Office EA of Ground Water Compliance at the Slick ...

  14. Ground Water Compliance Action Plan for the Old Rifle, Colorado...

    Office of Legacy Management (LM)

    GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, ... GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, ...

  15. Natural radionuclides in Hanford site ground waters

    SciTech Connect (OSTI)

    Smith, M.R.; Laul, J.C.; Johnson, V.G.

    1987-10-01

    Uranium, Th, Ra, Rn, Pb and Po radionuclide concentrations in ground waters from the Hanford Site indicate that U, Th, and Ra are highly sorbed. Relative to Rn, these radionuclides are low by factors of 10/sup -3/ to 10/sup -6/. Uranium sorption is likely due to its reduction from the +6 state, where it is introduced via surface waters, to the +4 state found in the confined aquifers. The distribution of radionuclides is very similar in all of the confined aquifers and significantly different from the distribution observed in the unconfined and surface waters. Barium correlates well with Ra over three orders of magnitude, indicating that stable element analogs may be useful for inferring the behavior of radioactive waste radionuclides in this candidate geologic repository. 8 refs., 7 figs., 1 tab.

  16. Ground Water Management District Rules | Open Energy Information

    Open Energy Info (EERE)

    Water Management District Rules Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Ground Water Management District Rules Abstract This webpage provides...

  17. Ground Water Surveillance Monitoring Implementation Guide for Use with DOE O 450.1, Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-06-24

    This Guide assists DOE sites in establishing and maintaining surveillance monitoring programs to detect future impacts on ground water resources from site operations, to track existing ground water contamination, and to assess the potential for exposing the general public to site releases. Canceled by DOE N 251.82.

  18. Two-Dimensional Ground Water Transport

    Energy Science and Technology Software Center (OSTI)

    1992-03-05

    FRACFLO computes the two-dimensional, space, time dependent, convective dispersive transport of a single radionuclide in an unbounded single or multiple parallel fracture system with constant aperture. It calculates the one-dimensional diffusive transport into the rock matrix as well as the mass flux and cumulative mass flux at any point in the fracture. Steady-state isothermal ground water flow and parallel streamlines are assumed in the fracture, and the rock matrix is considered to be fully saturatedmore » with immobile water. The model can treat a single or multiple finite patch source or a Gaussian distributed source subject to a step or band release mode.« less

  19. Ground water hydrology report: Revision 1, Attachment 3. Final

    SciTech Connect (OSTI)

    1996-12-01

    This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards.

  20. Hanford Site ground-water monitoring for April through June 1987

    SciTech Connect (OSTI)

    Evans, J.C.; Mitchell, P.J.; Dennison, D.I.

    1988-01-01

    Pacific Northwest Laboratory (PNL) is conducting ground-water monitoring at the Hanford Site. Results for monitoring by PNL and Westinghouse Hanford Company (WHC) during April-June 1987 show that certain regulated hazardous materials and radionuclides exist in Hanford Site ground waters. The presence of regulated constituents in the ground water derives both from site operations and from natural sources. The major contamination problems defined by recent monitoring activities are carbon tetrachloride in the 200 West Area; cyanide in and north of the 200 East Area; hexavalent chromium contamination in the 100B, 100D, 100K, and 100H areas; chlorinated hydrocarbons in the vicinity of the Central Landfill; uranium at the 216-U-1 and 216-U-2 cribs in the 200 West Area; tritium across the site; and nitrate across the site. The distribution of hazardous materials related to site operations is more limited than the distribution of tritium and nitrate. 8 refs., 22 figs., 5 tabs.

  1. Report of ground water monitoring for expansion of the golf course, Salt Lake City, Utah, vitro processing site

    SciTech Connect (OSTI)

    1995-06-01

    To determine the potential impacts of the proposed golf course expansion on the south side of the Vitro site, ground water data from the UMTRA Vitro processing site were evaluated in response to the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project Office request. Golf in the Round, Inc., has proposed an expansion of the present driving range to include a 9-hole golf course on the UMTRA Vitro processing site, which is owned by the Central Valley Water Reclamation Facility (CVWRF). An expanded golf course would increase irrigation and increase the amount of water that could infiltrate the soil, recharging the unconfined aquifer. Increased water levels in the aquifer could alter the ground water flow regime; contaminants in the shallow ground water could then migrate off the site or discharge to surface water in the area. Dewatering of the unconfined aquifer on CVWRF property could also impact site contaminant migration; a significant amount of ground water extraction at CVWRF could reduce the amount of contaminant migration off the site. Since 1978, data have been collected at the site to determine the distribution of tailings materials (removed from the site from 1985 to 1987) and to characterize the presence and migration of contaminants in sediments, soils, surface water, and ground water at the former Vitro processing site. Available data suggest that irrigating an expanded golf course may cause contamination to spread more rapidly within the unconfined aquifer. The public is not at risk from current Vitro processing site activities, nor is risk expected due to golf course expansion. However, ecological risk could increase with increased surface water contamination and the development of ground water seeps.

  2. Ground water in Animas Valley, Hidalgo County, New Mexico | Open...

    Open Energy Info (EERE)

    to library Report: Ground water in Animas Valley, Hidalgo County, New Mexico Author H. O. Reeder Published New Mexico State Engineer's Office, 1957 Report Number Technical...

  3. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    SciTech Connect (OSTI)

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  4. Ground-water surveillance at the Hanford Site for CY 1983

    SciTech Connect (OSTI)

    Prater, L.S.; Rieger, J.T.; Cline, C.S.; Jensen, E.J.; Liikala, T.L.; Oster, K.R.

    1984-07-01

    Operations at the Hanford Site have resulted in the discharge of large volumes of process cooling water and other waste waters to the ground. These effluents contain low level of radioactive and chemical substances. During 1983, 328 monitoring wells were sampled at various times for radioactive and chemical constituents. Three of these constituents, specifically tritium, nitrate, and gross beta activity, were selected for detailed discussion in this report because they are more readily transported in the ground water than some of the other constituents. Transport of these constituents in the ground water has resulted in the formation of plumes that can be mapped by contouring the analytical data obtained from the monitoring wells. This report describes recent changes in the configuration of the tritium, nitrate and gross beta plumes. Changes or trends in contaminant levels in wells located within both the main plumes (originating from the 200 Areas) and the smaller plumes are discussed in this report. Two potential pathways for radionuclide transport from the ground water to the environmental are discussed in this report, and the radiological impacts are examined. In addition to describing the present status of the ground water beneath the Hanford Site, this report contains the results of studies conducted in support of the ground-water surveillance effort during CY 1983. 21 references, 26 figures, 5 tables.

  5. Procedures for ground-water investigations. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  6. Hanford Site ground-water monitoring for January through June 1988

    SciTech Connect (OSTI)

    Evans, J.C.; Bryce, R.W.; Sherwood, D.R.

    1989-05-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between January and June 1988 included monitoring ground-water elevations across the Site, and monitoring hazardous chemicals and radionuclides in ground water. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Solid Waste Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. In addition, several new analytical initiatives were undertaken during this period. These include cyanide speciation in the BY Cribs plume, inductively coupled argon plasma/mass spectrometry (ICP/MS) measurements on a broad selection of samples from the 100, 200, 300, and 600 Areas, and high sensitivity gas chromatography measurements performed at the Solid Waste Landfill-Nonradioactive Dangerous Waste Landfill. 23 figs., 25 tabs.

  7. Guide to ground water remediation at CERCLA response action and RCRA corrective action sites

    SciTech Connect (OSTI)

    1995-10-01

    This Guide contains the regulatory and policy requirements governing remediation of ground water contaminated with hazardous waste [including radioactive mixed waste (RMW)], hazardous substances, or pollutants/contaminants that present (or may present) an imminent and substantial danger. It was prepared by the Office of Environmental Policy and Assistance, RCRA/CERCLA Division (EH-413), to assist Environmental Program Managers (ERPMs) who often encounter contaminated ground water during the performance of either response actions under CERCLA or corrective actions under Subtitle C of RCRA. The Guide begins with coverage of the regulatory and technical issues that are encountered by ERPM`s after a CERCLA Preliminary Assessment/Site Investigation (PA/SI) or the RCRA Facility Assessment (RFA) have been completed and releases into the environment have been confirmed. It is based on the assumption that ground water contamination is present at the site, operable unit, solid waste management unit, or facility. The Guide`s scope concludes with completion of the final RAs/corrective measures and a determination by the appropriate regulatory agencies that no further response action is necessary.

  8. 40 CFR 265 interim-status ground-water monitoring plan for the 2101-M pond

    SciTech Connect (OSTI)

    Chamness, M.A.; Luttrell, S.P.; Dudziak, S.

    1989-03-01

    This report outlines a ground-water monitoring plan for the 2101-M pond, located in the southwestern part of the 200-East Area on the Hanford Site in south-central Washington State. It has been determined that hazardous materials may have been discharged to the pond. Installation of an interim-status ground-water monitoring system is required under the Resource Conservation and Recovery Act to determine if hazardous chemicals are moving out of the pond. This plan describes the location of new wells for the monitoring system, how the wells are to be completed, the data to be collected, and how those data can be used to determine the source and extent of any ground-water contamination from the 2101-M pond. Four new wells are planned, one upgradient and three downgradient. 35 refs., 12 figs., 9 tabs.

  9. Method for detecting organic contaminants in water supplies

    DOE Patents [OSTI]

    Dooley, K.J.; Barrie, S.L.; Buttner, W.J.

    1999-08-24

    A system is described for detecting organic contaminants in water supplies. A sampling unit is employed which includes a housing having at least one opening therein and a tubular member positioned within the housing having a central passageway surrounded by a side wall. The side wall is made of a composition designed to absorb the contaminants. In use, the sampling unit is immersed in a water supply. The water supply contacts the tubular member through the opening in the housing, with any contaminants being absorbed into the side wall of the tubular member. A carrier gas is then passed through the central passageway of the tubular member. The contaminants will diffuse out of the side wall and into the central passageway where they will subsequently combine with the carrier gas, thereby yielding a gaseous product. The gaseous product is then analyzed to determine the amount and type of contaminants therein. 5 figs.

  10. Method for detecting organic contaminants in water supplies

    DOE Patents [OSTI]

    Dooley, Kirk J. (Shelley, ID); Barrie, Scott L. (Idaho Falls, ID); Buttner, William J. (White Bear Lake, MN)

    1999-01-01

    A system for detecting organic contaminants in water supplies. A sampling unit is employed which includes a housing having at least one opening therein and a tubular member positioned within the housing having a central passageway surrounded by a side wall. The side wall is made of a composition designed to absorb the contaminants. In use, the sampling unit is immersed in a water supply. The water supply contacts the tubular member through the opening in the housing, with any contaminants being absorbed into the side wall of the tubular member. A carrier gas is then passed through the central passageway of the tubular member. The contaminants will diffuse out of the side wall and into the central passageway where they will subsequently combine with the carrier gas, thereby yielding a gaseous product. The gaseous product is then analyzed to determine the amount and type of contaminants therein.

  11. EPA Final Ground Water Rule Available Online, 3/07

    Office of Energy Efficiency and Renewable Energy (EERE)

    On November 8, 2006, the U.S. Environmental Protection Agency (EPA) published a final Ground Water Rule (GWR) to promote increased protection against microbial pathogens that may be present in...

  12. Uranium isotopes in ground water as a prospecting technique

    SciTech Connect (OSTI)

    Cowart, J.B.; Osmond, J.K.

    1980-02-01

    The isotopic concentrations of dissolved uranium were determined for 300 ground water samples near eight known uranium accumulations to see if new approaches to prospecting could be developed. It is concluded that a plot of /sup 234/U//sup 238/U activity ratio (A.R.) versus uranium concentration (C) can be used to identify redox fronts, to locate uranium accumulations, and to determine whether such accumulations are being augmented or depleted by contemporary aquifer/ground water conditions. In aquifers exhibiting flow-through hydrologic systems, up-dip ground water samples are characterized by high uranium concentration values (> 1 to 4 ppB) and down-dip samples by low uranium concentration values (less than 1 ppB). The boundary between these two regimes can usually be identified as a redox front on the basis of regional water chemistry and known uranium accumulations. Close proximity to uranium accumulations is usually indicated either by very high uranium concentrations in the ground water or by a combination of high concentration and high activity ratio values. Ground waters down-dip from such accumulations often exhibit low uranium concentration values but retain their high A.R. values. This serves as a regional indicator of possible uranium accumulations where conditions favor the continued augmentation of the deposit by precipitation from ground water. Where the accumulation is being dispersed and depleted by the ground water system, low A.R. values are observed. Results from the Gulf Coast District of Texas and the Wyoming districts are presented.

  13. Remedial action plan and site design for stabilization of the inactive Uranium Mill Tailing site Maybell, Colorado. Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The U.S. Environmental Protection Agency (EPA) has established health and environmental regulations to correct and prevent ground water contamination resulting from former uranium processing activities at inactive uranium processing sites (40 CFR Part 192 (1993)) (52 FR 36000 (1978)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC {section} 7901 et seq.), the U.S. Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has decided that each assessment will include information on hydrogeologic site characterization. The water resources protection strategy that describes the proposed action compliance with the EPA ground water protection standards is presented in Attachment 4, Water Resources Protection Strategy. Site characterization activities discussed in this section include the following: (1) Definition of the hydrogeologic characteristics of the environment, including hydrostratigraphy, aquifer parameters, areas of aquifer recharge and discharge, potentiometric surfaces, and ground water velocities. (2) Definition of background ground water quality and comparison with proposed EPA ground water protection standards. (3) Evaluation of the physical and chemical characteristics of the contaminant source and/or residual radioactive materials. (4) Definition of existing ground water contamination by comparison with the EPA ground water protection standards. (5) Description of the geochemical processes that affect the migration of the source contaminants at the processing site. (6) Description of water resource use, including availability, current and future use and value, and alternate water supplies.

  14. Results of a ground-water and DNAPL recovery and containment strategy

    SciTech Connect (OSTI)

    Mazierski, P.F.; Connor, J.M. )

    1993-10-01

    Ground-water contamination and dense nonaqueous phase liquids (DNAPL) were discovered at the DuPont Necco Park Landfill in Niagara Falls, New York, shortly after the facility was closed in the late 1970s. The facility received a variety of solid and liquid process wastes, including chlorinated volatile and semivolatile organic compounds. A number of proactive response activities--including the operation of a ground-water recovery system, installation of a grout curtain, and DNAPL recovery--were implemented by DuPont concurrent with site characterization. These efforts minimized off-site contaminant migration and removed most of the recoverable free-phase DNAPL prior to completion of the full site characterization. Site investigations to characterize hydrogeologic controls over occurrence and migration of ground water and DNAPL revealed with distinct water-bearing zones beneath the site. A DNAPL recovery program, using gas-driven pump assemblies, was initiated in early 1989 at a small group of wells where DNAPL was frequently observed. The volume of recovered DNAPL declined over the next four years from a peak of 397 gallons per month in 1989 to little or no recovery in recent months.

  15. Contamination source review for Building E7995, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Booher, M.N.; Miller, G.A.; Draugelis, A.K.; Glennon, M.A.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from the review may be used to assist the US Army in planning for the future use or disposition, of the buildings. The source contamination review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation, investigation of potential hazardous materials facilities (HMFs), and review of available records regarding underground storage tanks. This report provides the results of the contamination source review for Building E7995. any of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot-scale production of chemical warfare agents and other military substances, the potential exists for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings, and associated structures or appurtenances, may contribute to environmental concerns at APG.

  16. Process for treating waste water having low concentrations of metallic contaminants

    DOE Patents [OSTI]

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  17. GWVis: A Tool for Comparative Ground-Water Data Visualization

    SciTech Connect (OSTI)

    Best, Daniel M.; Lewis, Robert R.

    2010-11-01

    The Ground-Water Visualization application (GWVis) presents ground-water data visually in order to educate the public on ground-water issues. It is also intended for presentations to government and other funding agencies. Current three dimensional models of ground-water are overly complex, while the two dimensional representations (i.e., on paper) are neither comprehensive, nor engaging. At present, GWVis operates on water head elevation data over a given time span, together with a matching (fixed) underlying geography. Two elevation scenarios are compared with each other, typically a control data set (actual field data) and a simulation. Scenario comparison can be animated for the time span provided. We developed GWVis using the Python programming language, associated libraries, and pyOpenGL extension packages to improve performance and control of attributes of the mode (such as color, positioning, scale, and interpolation). GWVis bridges the gap between two dimensional and dynamic three dimensional research visualizations by providing an intuitive, interactive design that allows participants to view the model from different perspectives and to infer information about scenarios. By incorporating scientific data in an environment that can be easily understood, GWVis allows the information to be presented to a large audience base.

  18. Uranium in US surface, ground, and domestic waters. Volume 2

    SciTech Connect (OSTI)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  19. Method of removing arsenic and other anionic contaminants from contaminated water using enhanced coagulation

    DOE Patents [OSTI]

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.; Khandaker, Nadim R.

    2006-11-21

    An improved water decontamination process comprising contacting water containing anionic contaminants with an enhanced coagulant to form an enhanced floc, which more efficiently binds anionic species (e.g., arsenate, arsenite, chromate, fluoride, selenate, and borate, and combinations thereof) predominantly through the formation of surface complexes. The enhanced coagulant comprises a trivalent metal cation coagulant (e.g., ferric chloride or aluminum sulfate) mixed with a divalent metal cation modifier (e.g., copper sulfate or zinc sulfate).

  20. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    SciTech Connect (OSTI)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  1. Revised ground-water monitoring compliance plan for the 300 area process trenches

    SciTech Connect (OSTI)

    Schalla, R.; Aaberg, R.L.; Bates, D.J.; Carlile, J.V.M.; Freshley, M.D.; Liikala, T.L.; Mitchell, P.J.; Olsen, K.B.; Rieger, J.T.

    1988-09-01

    This document contains ground-water monitoring plans for process-water disposal trenches located on the Hanford Site. These trenches, designated the 300 Area Process Trenches, have been used since 1973 for disposal of water that contains small quantities of both chemicals and radionuclides. The ground-water monitoring plans contained herein represent revision and expansion of an effort initiated in June 1985. At that time, a facility-specific monitoring program was implemented at the 300 Area Process Trenches as part of a regulatory compliance effort for hazardous chemicals being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interim-status facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The applicable monitoring requirements are described in the Resource Conservation and Recovery Act (RCRA), 40 CFR 265.90 of the federal regulations, and in WAC 173-303-400 of Washington State's regulations (Washington State Department of Ecology 1986). The program implemented for the process trenches was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. The plans for the program, contained in a document prepared by the US Department of Energy (USDOE) in 1985, called for monthly sampling of 14 of the 37 existing monitoring wells at the 300 Area plus the installation and sampling of 2 new wells. 27 refs., 25 figs., 15 tabs.

  2. Apparatus for removing oil and other floating contaminants from a moving body of water

    DOE Patents [OSTI]

    Strohecker, J.W.

    1973-12-18

    The patent describes a process in which floating contaminants such as oil and solid debris are removed from a moving body of water by employing a skimming system which uses the natural gravitational flow of the water. A boom diagonally positioned across the body of water diverts the floating contaminants over a floating weir and into a retention pond where an underflow weir is used to return contaminant-free water to the moving body of water. The floating weir is ballasted to maintain the contaminant-receiving opening therein slightly below the surface of the water during fluctuations in the water level for skimming the contaminants with minimal water removal.

  3. 40 CFR 265 interim status indicator-evaluation ground-water monitoring plan for the 216-B-63 trench

    SciTech Connect (OSTI)

    Bjornstad, B.N.; Dudziak, S.

    1989-03-01

    This document outlines a ground-water monitoring plan for the 216-B-63 trench located in the northeast corner of the 200-East Area on the Hanford Site in southeastern Washington State. It has been determined that hazardous materials (corrosives) were disposed of to the trench during past operations. Installation of an interim-status ground-water monitoring system is required to determine whether hazardous chemicals are leaching to the ground water from beneath the trench. This document summarizes the existing data that are available from near the 216-B-63 trench and presents a plan to determine the extent of ground-water contamination, if any, derived from the trench. The plan calls for the installation of four new monitoring wells located near the west end of the trench. These wells will be used to monitor ground-water levels and water quality immediately adjacent to the trench. Two existing RCRA monitoring wells, which are located near the trench and hydraulically upgradient of it, will be used as background wells. 46 refs., 15 figs., 12 tabs.

  4. File:04NVBTemporaryUseOfGroundWaterForExploration.pdf | Open...

    Open Energy Info (EERE)

    NVBTemporaryUseOfGroundWaterForExploration.pdf Jump to: navigation, search File File history File usage Metadata File:04NVBTemporaryUseOfGroundWaterForExploration.pdf Size of this...

  5. ARM 17-30-10 - Ground Water Pollution Control System | Open Energy...

    Open Energy Info (EERE)

    - Ground Water Pollution Control System Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: ARM 17-30-10 - Ground Water...

  6. U.A.C. R317-6: Ground Water Quality Protection | Open Energy...

    Open Energy Info (EERE)

    6: Ground Water Quality Protection Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: U.A.C. R317-6: Ground Water Quality...

  7. Ground-Water Table and Chemical Changes in an Alluvial Aquifer...

    Office of Environmental Management (EM)

    Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical ...

  8. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-07-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the US Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. This report summarizes what is known and inferred about ground-water flow throughout the NTS region. The report identifies and updates what is known about some of the major controls on ground-water flow, highlights some of the uncertainties in the current understanding, and prioritizes some of the technical needs as related to the Environmental Restoration Program. 113 refs.

  9. Concentrations of 23 trace elements in ground water and surface water at and near the Idaho National Engineering Laboratory, Idaho, 1988--91

    SciTech Connect (OSTI)

    Liszewski, M.J.; Mann, L.J.

    1993-12-31

    Analytical data for 23 trace elements are reported for ground- and surface-water samples collected at and near the Idaho National Engineering Laboratory during 1988--91. Water samples were collected from 148 wells completed in the Snake River Plain aquifer, 18 wells completed in discontinuous deep perched-water zones, and 1 well completed in an alluvial aquifer. Surface-water samples also were collected from three streams, two springs, two ponds, and one lake. Data are categorized by concentrations of total recoverable of dissolved trace elements. Concentrations of total recoverable trace elements are reported for unfiltered water samples and include results for one or more of the following: aluminum, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, selenium, silver, and zinc. Concentrations of dissolved trace elements are reported for water samples filtered through a nominal 0.45-micron filter and may also include bromide, fluoride, lithium, molybdenum, strontium, thallium, and vanadium. Concentrations of dissolved hexavalent chromium also are reported for many samples. The water samples were analyzed at the US Geological Survey`s National Water Quality Laboratory in Arvada, Colorado. Methods used to collect the water samples and quality assurance instituted for the sampling program are described. Concentrations of chromium equaled or exceeded the maximum contaminant level at 12 ground-water quality monitoring wells. Other trace elements did not exceed their respective maximum contaminant levels.

  10. Isotopic discontinuities in ground water beneath Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Stuckless, J.S.; Whelan, J.F.; Steinkampf, W.C.

    1991-05-01

    Analytical data for stable isotopes in ground water from beneath Yucca Mountain, when examined in map view, show areal patterns of heterogeneity that can be interpreted in terms of mixing of at least three end members. One end member must be isotopically heavy in terms of hydrogen and oxygen and have a young apparent {sup 14}C age such as water found at the north end of Yucca Mountain beneath Fortymile Wash. A second end member must contain isotopically heavy carbon and have an old apparent {sup 14}C age such as water from the Paleozoic aquifer. The third end member cannot be tightly defined. It must be isotopically lighter than the first with respect of hydrogen and oxygen and be intermediate to the first and second end members with respect to both apparent {sup 14}C age and {delta}{sup 13}C. The variable isotopic compositions of hydrogen and oxygen indicate that two of the end members are waters, but the variable carbon isotopic composition could represent either a third water end member or reaction of water with a carbon-bearing solids such as calcite. 15 refs., 4 figs., 1 tab.

  11. RCRA ground-water monitoring: Draft technical guidance

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    The manual was prepared to provide guidance for implementing the ground-water monitoring regulations for regulated units contained in 40 CFR Part 264 Subpart F and the permitting standards of 40 CFR Part 270. The manual also provides guidance to owners and operators of treatment, storage, and disposal facilities (TSDFs) that are required to comply with the requirements of 40 CFR Part 264 Subparts J (Tank Systems), K (Surface Impoundments), L (Waste Piles), N (Landfills), and X (Miscellaneous Units). This document updates technical information contained in other sources of U.S. EPA guidance, such as chapter eleven of SW-846 (Revision O, September 1986) and the Technical Enforcement Guidance Document (TEGD).

  12. Assessment of produced water contaminated soils to determine remediation requirements

    SciTech Connect (OSTI)

    Clodfelter, C.

    1995-12-31

    Produced water and drilling fluids can impact the agricultural properties of soil and result in potential regulatory and legal liabilities. Produced water typically is classified as saline or a brine and affects surface soils by increasing the sodium and chloride content. Sources of produced water which can lead to problems include spills from flowlines and tank batteries, permitted surface water discharges and pit areas, particularly the larger pits including reserve pits, emergency pits and saltwater disposal pits. Methods to assess produced water spills include soil sampling with various chemical analyses and surface geophysical methods. A variety of laboratory analytical methods are available for soil assessment which include electrical conductivity, sodium adsorption ratio, cation exchange capacity, exchangeable sodium percent and others. Limiting the list of analytical parameters to reduce cost and still obtain the data necessary to assess the extent of contamination and determine remediation requirements can be difficult. The advantage to using analytical techniques is that often regulatory remediation standards are tied to soil properties determined from laboratory analysis. Surface geophysical techniques can be an inexpensive method to rapidly determine the extent and relative magnitude of saline soils. Data interpretations can also provide an indication of the horizontal as well as the vertical extent of impacted soils. The following discussion focuses on produced water spills on soil and assessment of the impacted soil. Produced water typically contains dissolved hydrocarbons which are not addressed in this discussion.

  13. Influence of ground water on soil-structure interaction

    SciTech Connect (OSTI)

    Costantino, C.J.; Philippacopoulos, A.J.

    1987-12-01

    This report presents a summary of the second year's effort on the subject of the influence of foundation ground water on the SSI phenomenon. A finite element computer program, developed during the first year's effort, was used to study the impact of depth to the ground water surface on the SSI problem. The formulation used therein is based on the Biot dynamic equations of motion for both the solid and fluid phases of a typical soil. Frequency dependent interaction coefficients were then generated for the two-dimensional plane problem of a rigid surface footing moving against a linear soil. The soil is considered dry above the GWT and fully saturated below. The results indicate that interaction coefficients are significantly modified as compared to the comparable values for a dry soil, particularly for the rocking mode of response, if the GWT is close to the foundation. As the GWT moves away from the foundation, these effects decrease in a relatively orderly fashion for both the horizontal and rocking modes of response. For the vertical interaction coefficients, the rate of convergence to the dry solution is frequency dependent. Calculations were made to study the impact of the modified interaction coefficients on the response of a typical nuclear reactor building. The amplification factors for a stick model placed atop a dry and saturated soil were computed. It was found that pore water caused the rocking response to decrease and translational response to increase over the frequency range of interest, as compared to the response on dry soil. 30 refs., 31 figs.

  14. Proceedings of the Radionuclide Contamination in Water Resources Workshop

    SciTech Connect (OSTI)

    Richardson, J H; Duisebayev, B; Janecky, D R; Knapp, R; Rosenburg, N D; Smith, D K; Tompson, A F B; Tyupkina, O; Veselov, V V

    2001-07-26

    A workshop entitled ''Radionuclide Contamination in Water Resources'' was held in Almaty, Kazakhstan from Tuesday 29 May through Friday 1 June. This workshop was co-sponsored by the U.S. Department of Energy, Lawrence Livermore National Laboratory, and three organizations from the Republic of Kazakhstan: the Institute of Nonproliferation, the Institute of Hydrogeology and Hydrophysics, and KazAtomProm. Representatives from the U.S. Department of Energy, three national laboratories, and 13 different organizations from the Republic of Kazakhstan attended the workshop. A complete list of attendees, the workshop program, and information on the background and motivation for this workshop are provided in this report. The objective of the workshop was to identify critical problems, discover what is known about the problems related to radionuclide contamination of groundwater resources, form collaborative teams, and produce a small number proposals that both address further characterization and assess risk via contaminant fate and transport modeling. We plan to present these proposals to U.S. government agencies and international sponsors for funding.

  15. Contamination source review for Building E3180, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Zellmer, S.D.; Smits, M.P.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review of Building E3180 at the Aberdeen Proving Ground (APG) in Maryland. The report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, geophysical investigation, collection of air samples, and review of available records regarding underground storage tanks associated with Building E3180. The field investigations were performed by ANL during 1994. Building,E3180 (current APG designation) is located near the eastern end of Kings Creek Road, north of Kings Creek, and about 0.5 miles east of the airstrip within APG`s Edgewood Area. The building was constructed in 1944 as a facsimile of a Japanese pillbox and used for the development of flame weapons systems until 1957 (EAI Corporation 1989). The building was not used from 1957 until 1965, when it was converted and used as a flame and incendiary laboratory. During the 1970s, the building was converted to a machine (metal) shop and used for that purpose until 1988.

  16. Contamination source review for Building E3163, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Draugelis, A.K.; Muir-Ploense, K.L.; Glennon, M.A.; Zimmerman, R.E.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review for Building E3163 at the Aberdeen Proving Ground (APG) in Maryland. This report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, and geophysical investigation. The field investigations were performed by ANL during 1994 and 1995. Building E3163 (APG designation) is part of the Medical Research Laboratories E3160 Complex. This research laboratory complex is located west of Kings Creek, east of the airfield and Ricketts Point Road, and south of Kings Creek Road in the Edgewood Area of APG. The original structures in the E3160 Complex were constructed during World War II. The complex was originally used as a medical research laboratory. Much of the research involved wound assessment. Building E3163, constructed in 1946, was used for toxicological studies on animals until 1965. All agent testing was done using laboratory-scale quantities of agents. All operational data were destroyed; total quantities and types of agents used during the testing are unknown. No experimentation has been conducted in the building since 1965. However, the building was used as overflow office space until the late 1980s. Since that time, the building has been unoccupied.

  17. Contamination source review for Building E1489, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Billmark, K.A.; Hayes, D.C.; Draugelis, A.K.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review of Building E1489 at the Aberdeen Proving Ground (APG) in Maryland. This report may be used to assist the U.S. Army-in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, and geophysical investigation. The field investigations were performed in 1994-1995. Building E1489 located in J-Field on the Gunpowder Peninsula in APG`s Edgewood Area housed a power generator that supplied electricity to a nearby observation tower. Building E1489 and the generator were abandoned in 1974, demolished by APG personnel and removed from real estate records. A physical inspection and photographic documentation of Building E1489 were completed by ANL staff during November 1994. In 1994, ANL staff conducted geophysical surveys in the immediate vicinity of Building E1489 by using several nonintrusive methods. Survey results suggest the presence of some underground objects near Building E1489, but they do not provide conclusive evidence of the source of geophysical anomalies observed during the survey. No air monitoring was conducted at the site, and no information on underground storage tanks associated with Building E1489 was available.

  18. Selected ground-water data for Yucca Mountain Region, Southern Nevada and Eastern California, through December 1997

    SciTech Connect (OSTI)

    La Camera, Richard J.; Locke, Glenn L.; Munson, Rodney H.

    1999-07-30

    Data on ground-water levels, discharges, and withdrawals from a variety of ground-water sources in the study area are reported for calendar year 1997.

  19. Implementation plan for the programmatic environmental impact statement for the Department of Energy UMTRA Ground Water Project

    SciTech Connect (OSTI)

    1994-04-01

    Under the Uranium Mill Tailings Remedial Action (UMTRA) Project, the U.S. Department of Energy (DOE) is cleaning up contamination to protect human health and the environment at 24 inactive uranium processing sites located in 10 states. Five of the sites are either on or near Native American lands. The UMTRA Project is divided into two projects: Surface and Ground Water. On November 18, 1992, the DOE issued a notice of intent (57 FR 54374, 1992) to prepare a programmatic environmental impact statement (PEIS) for the UMTRA Ground Water Project. The PEIS will result in a record of decision that will determine how the UMTRA Ground Water Project will address ground water contamination resulting from milling operations at the UMTRA Project processing sites. DOE regulations (10 CFR {section} 1021.312) require that an implementation plan be prepared to provide guidance for preparing a PEIS and to record the results of the scoping process. This implementation plan describes and records the results of the PEIS scoping process; summarizes comments received and their disposition; describes the purpose of and need for agency action, the proposed action, and alternatives; lists alternatives considered and eliminated from review; identifies cooperating agencies, their roles, and responsibilities; provides a draft PEIS outline, which includes the planned PEIS scope and content (Attachment A); and provides a schedule for the PEIS process. This plan will be placed in the UMTRA Project libraries listed in Attachment B. The PEIS will identify and evaluate the potential impacts associated with alternatives for conducting the UMTRA Ground Water Project. The PEIS will not assess site-specific impacts; site-specific impacts must be analyzed in separate National Environmental Policy Act (NEPA) documents that will tier off the PEIS. This tiering process will streamline the preparation of site-specific NEPA documents.

  20. Soil-structure interaction. Volume 3. Influence of ground water

    SciTech Connect (OSTI)

    Costantino, C.J.

    1986-04-01

    This report, Volume 3 of the report, presents a summary of the first year's effort on the subject of the influence of foundation ground water on the SSI phenomenon. A finite element computer program was developed for the two-phased formulation of the combined soil-water problem. This formulation is based on the Biot dynamic equations of motion for both the solid and fluid phases of a typical soil. Frequency dependent interaction coefficients were generated for the two-dimensional plane problem of a rigid surface footing moving against a saturated linear soil. The results indicate that interaction coefficients are significantly modified as compared to the comparable values for a dry soil, particularly for the rocking mode of response. Calculations were made to study the impact of the modified interaction coefficients on the response of a typical nuclear reactor building. The amplification factors for a stick model placed atop a dry and saturated soil were computed. It was found that pore water caused the rocking response to decrease and translatinal response to increase over the frequency range of interest, as compared to the response on dry soil. 56 refs., 31 figs.

  1. Reactive chemical transport in ground-water hydrology: Challenges to mathematical modeling

    SciTech Connect (OSTI)

    Narasimhan, T.N.; Apps, J.A.

    1990-07-01

    For a long time, earth scientists have qualitatively recognized that mineral assemblages in soils and rocks conform to established principles of chemistry. In the early 1960's geochemists began systematizing this knowledge by developing quantitative thermodynamic models based on equilibrium considerations. These models have since been coupled with advective-dispersive-diffusive transport models, already developed by ground-water hydrologists. Spurred by a need for handling difficult environmental issues related to ground-water contamination, these models are being improved, refined and applied to realistic problems of interest. There is little doubt that these models will play an important role in solving important problems of engineering as well as science over the coming years. Even as these models are being used practically, there is scope for their improvement and many challenges lie ahead. In addition to improving the conceptual basis of the governing equations, much remains to be done to incorporate kinetic processes and biological mediation into extant chemical equilibrium models. Much also remains to be learned about the limits to which model predictability can be reasonably taken. The purpose of this paper is to broadly assess the current status of knowledge in modeling reactive chemical transport and to identify the challenges that lie ahead.

  2. NMAC 20.6.2 Ground and Surface Water Protection | Open Energy...

    Open Energy Info (EERE)

    6.2 Ground and Surface Water Protection Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 20.6.2 Ground and Surface...

  3. Update to the Ground-Water Withdrawals Database for the Death Valley REgional Ground-Water Flow System, Nevada and California, 1913-2003

    SciTech Connect (OSTI)

    Michael T. Moreo; and Leigh Justet

    2008-07-02

    Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913–1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

  4. Final Environmental Assessment and Finding of No Significant Impact: Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    N /A

    2003-03-13

    This environmental assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Slick Rock, Colorado, Uranium Mill Tailings Remedial Action Project sites. The sites consist of two areas designated as the North Continent (NC) site and the Union Carbide (UC) site. In 1996, the U.S. Department of Energy (DOE) completed surface cleanup at both sites and encapsulated the tailings in a disposal cell 5 miles east of the original sites. Maximum concentration limits (MCLs) referred to in this environmental assessment are the standards established in Title 40 ''Code of Federal Regulations'' Part 192 (40 CFR 192) unless noted otherwise. Ground water contaminants of potential concern at the NC site are uranium and selenium. Uranium is more prevalent, and concentrations in the majority of alluvial wells at the NC site exceed the MCL of 0.044 milligram per liter (mg/L). Selenium contamination is less prevalent; samples from only one well had concentrations exceeding the MCL of 0.01 mg/L. To achieve compliance with Subpart B of 40 CFR 192 at the NC site, DOE is proposing the strategy of natural flushing in conjunction with institutional controls and continued monitoring. Ground water flow and transport modeling has predicted that concentrations of uranium and selenium in the alluvial aquifer will decrease to levels below their respective MCLs within 50 years.

  5. Construction Summary and As-Built Report for Ground Water Treatment System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monticello, Utah, Permeable Reactive Barrier Site | Department of Energy Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for

  6. Non-Lawyers' Guide to Hearings before the Colorado Ground Water...

    Open Energy Info (EERE)

    Lawyers' Guide to Hearings before the Colorado Ground Water Commission Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  7. Biotreatment of produced waters for volume reduction and contaminant removal

    SciTech Connect (OSTI)

    Negri, M.C.; Hinchman, R.R. [Argonne National Lab., IL (United States); Mollock, J. [Devon Energy Corp., Oklahoma City, OK (United States)

    1997-10-01

    Produced water is wastewater that is brought to the surface from natural gas wells during natural gas production. Its constituents, mostly salt, with traces of hydrocarbons and heavy metals, are a significant disposal problem. Argonne National Laboratory (ANL), in partnership with the Gas Research Institute (GRI), has developed a low-cost, low-tech method, in which green plants are used to reduce the volume of produced water. The authors have designed an engineered bioreactor system, which is modeled after natural saline wetland ecosystems. The plant bioreactor system maximizes plant evapotranspiration to reduce wastewater volume and, concurrently, may function as a biological filter to enhance contaminant degradation and immobilization in the root/rhizosphere zone. Halophyte plant species having high salt tolerance and high transpiration rates were selected after they tested them in greenhouse experiments. Models obtained by using their greenhouse findings reduced the volume of the wastewater (up to 6% salt) by 75% in about 8 days. A field demonstration of the bioreactor, designed on the basis of the results from the greenhouse study, is successfully under way at a natural gas well site in Oklahoma. The process could offer the petroleum industry a low-cost biological alternative to existing expensive options.

  8. 5 CCR 1002-42 Site Specific Water Quality Standards for Ground...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: 5 CCR 1002-42 Site Specific Water Quality Standards for Ground WaterLegal Abstract...

  9. Case Study for a Ground Source Heat Pump System using Mine Water...

    Office of Scientific and Technical Information (OSTI)

    System using Mine Water as Heat Sink and Source Citation Details In-Document Search Title: Case Study for a Ground Source Heat Pump System using Mine Water as Heat Sink and ...

  10. Evaluation of the US Geological Survey ground-water data-collection program in Hawaii, 1992. Water-resources investigations

    SciTech Connect (OSTI)

    Anthony, S.S.

    1997-12-31

    This report describes an evaluation of the 1992 USGS ground-water data-collection program in Hawaii. The occurrence of ground water in the Hawaiian islands is briefly described. Objectives for the data-collection program are identified followed by a description of well networks needed to prepare maps of water levels and chloride concentrations. For the islands of Oahu, Kauai, Maui, Molokai, and Hawaii, the wells in the 1992 ground-water data-collection program are described followed by maps showing the distribution and magnitude of pumpage, and the distribution of proposed pumped wells. Wells in the 1992 USGS ground-water data-collection program that provide useful data for mapping water levels and chloride concentrations are identified followed by locations where additional wells are needed for water-level and chloride-concentration data. In addition, a procedure to store and review data is described.

  11. Ground-water data for 1990--91 and ground-water withdrawals for 1951--91, Nevada Test Site and vicinity, Nye County, Nevada

    SciTech Connect (OSTI)

    Wood, D.B.; Reiner, S.R.

    1996-12-31

    This report presents selected ground-water data collected from wells and test holes at and in the vicinity of the Nevada Test Site. Depth-to-water measurements were made at 74 sites at and in the vicinity of the Nevada Test Site during water years 1990--91. Measured depths to water ranged from 301 to 2,215 feet below land surface and measured altitudes of the ground-water surface at the Nevada Test Site ranged from 2,091 to 6,083 feet above sea level. Depth-to-water measurements were obtained by a combination of wire-line, electric-tape, iron-horse, and steel-tape methods. Available historic withdrawal and depth-to-water data for ground-water supply wells have been included to show changes through time. Water samples were collected and analyzed for tritium concentrations at 15 sites during water years 1990--91. Tritium concentrations in bailed water samples ranged from below detection limits to 5,550,000 picocuries per liter. Tritium concentrations in samples from three wells exceeded drinking water standards established by the US Environmental Protection Agency. All three wells are separate piezometers contained within a single test hole near an area of extensive underground nuclear testing.

  12. Work plan for ground water elevation data recorder/monitor well injection at Grand Junction, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-07-18

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Grand Junction, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between the shallow aquifer and the Colorado River. Data collection objectives (DCO) identify reasons for collecting data. The following are DCOs for the Grand Junction ground water elevation data recorder/monitor well installation project: long-term continuous ground water level data and periodic ground water samples will be collected to better understand the relationship between surface and ground water at the site; water level and water quality data will eventually be used in future ground water modeling to more firmly establish boundary conditions in the vicinity of the Grand Junction processing site; modeling results will be used to demonstrate and document the potential remedial alternative of natural flushing.

  13. Detection of contamination of municipal water distribution systems

    DOE Patents [OSTI]

    Cooper, John F.

    2012-01-17

    A system for the detection of contaminates of a fluid in a conduit. The conduit is part of a fluid distribution system. A chemical or biological sensor array is connected to the conduit. The sensor array produces an acoustic signal burst in the fluid upon detection of contaminates in the fluid. A supervisory control system connected to the fluid and operatively connected to the fluid distribution system signals the fluid distribution system upon detection of contaminates in the fluid.

  14. Desalination of brackish ground waters and produced waters using in-situ precipitation.

    SciTech Connect (OSTI)

    Krumhansl, James Lee; Pless, Jason; Nenoff, Tina Maria; Voigt, James A.; Phillips, Mark L. F.; Axness, Marlene; Moore, Diana Lynn; Sattler, Allan Richard

    2004-08-01

    The need for fresh water has increased exponentially during the last several decades due to the continuous growth of human population and industrial and agricultural activities. Yet existing resources are limited often because of their high salinity. This unfavorable situation requires the development of new, long-term strategies and alternative technologies for desalination of saline waters presently not being used to supply the population growth occurring in arid regions. We have developed a novel environmentally friendly method for desalinating inland brackish waters. This process can be applied to either brackish ground water or produced waters (i.e., coal-bed methane or oil and gas produced waters). Using a set of ion exchange and sorption materials, our process effectively removes anions and cations in separate steps. The ion exchange materials were chosen because of their specific selectivity for ions of interest, and for their ability to work in the temperature and pH regions necessary for cost and energy effectiveness. For anion exchange, we have focused on hydrotalcite (HTC), a layered hydroxide similar to clay in structure. For cation exchange, we have developed an amorphous silica material that has enhanced cation (in particular Na{sup +}) selectivity. In the case of produced waters with high concentrations of Ca{sup 2+}, a lime softening step is included.

  15. Subsurface Contaminants Focus Area annual report 1997

    SciTech Connect (OSTI)

    1997-12-31

    In support of its vision for technological excellence, the Subsurface Contaminants Focus Area (SCFA) has identified three strategic goals. The three goals of the SCFA are: Contain and/or stabilize contamination sources that pose an imminent threat to surface and ground waters; Delineate DNAPL contamination in the subsurface and remediate DNAPL-contaminated soils and ground water; and Remove a full range of metal and radionuclide contamination in soils and ground water. To meet the challenges of remediating subsurface contaminants in soils and ground water, SCFA funded more than 40 technologies in fiscal year 1997. These technologies are grouped according to the following product lines: Dense Nonaqueous-Phase Liquids; Metals and Radionuclides; Source Term Containment; and Source Term Remediation. This report briefly describes the SCFA 1997 technologies and showcases a few key technologies in each product line.

  16. General and Localized corrosion of Austenitic and Borated Stainless Steels in Simulated Concentrated Ground Waters

    SciTech Connect (OSTI)

    D. Fix; J. Estill; L. Wong; R. Rebak

    2004-05-28

    Boron containing stainless steels are used in the nuclear industry for applications such as spent fuel storage, control rods and shielding. It was of interest to compare the corrosion resistance of three borated stainless steels with standard austenitic alloy materials such as type 304 and 316 stainless steels. Tests were conducted in three simulated concentrated ground waters at 90 C. Results show that the borated stainless were less resistant to corrosion than the witness austenitic materials. An acidic concentrated ground water was more aggressive than an alkaline concentrated ground water.

  17. Multivariate Statistical Analysis of Water Chemistry in Evaluating the Origin of Contamination in Many Devils Wash, Shiprock, New Mexico

    Broader source: Energy.gov [DOE]

    Multivariate Statistical Analysis of Water Chemistry in Evaluating the Origin of Contamination in Many Devils Wash, Shiprock, New Mexico

  18. Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vapor Radiometer Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water Vapor Radiometer Pazmany, Andrew ProSensing Inc. Category: Instruments ProSensing Inc. has developed a G-band (183 GHz, 1.5 mm wavelength) water vapor radiometer (GVR) for the measurement of low concentrations of atmospheric water vapor and liquid water. The instrument's precipitable water vapor measurement precision is approximately 0.01 mm in dry (<2 mm vapor column) conditions. The ground-based

  19. Nuclear decontamination technology evaluation to address contamination of a municipal water system

    SciTech Connect (OSTI)

    McFee, J.; Langsted, J.; Young, M.; Porcon, J.; Day, E.

    2007-07-01

    The US Environmental Protection Agency (EPA) and US Department of Homeland Security (DHS) are considering the impact and recovery from contamination of municipal water systems, including intentional contamination of those systems. Industrial chemicals, biological agents, drugs, pesticides, chemical warfare agents, and radionuclides all could be introduced into a municipal water system to create detrimental health effects and disrupt a community. Although unintentional, the 1993 cryptosporidium contamination of the Milwaukee WS water system resulted in 100 fatalities and disrupted the city for weeks. Shaw Environmental and Infrastructure Inc, (Shaw), as a subcontractor on a DHS contract with Michael Baker Jr., Inc., was responsible for evaluation of the impact and recovery from radionuclide contamination in a municipal water system distribution system. Shaw was tasked to develop a matrix of nuclear industry decontamination technologies and evaluate applicability to municipal water systems. Shaw expanded the evaluation to include decontamination methods commonly used in the drinking water supply. The matrix compared all technologies for implementability, effectiveness, and cost. To address the very broad range of contaminants and contamination scenarios, Shaw bounded the problem by identification of specific contaminant release scenario(s) for specific water system architecture(s). A decontamination technology matrix was developed containing fifty-nine decontamination technologies potentially applicable to the water distribution system piping, pumps, tanks, associated equipment, and/or contaminated water. Qualitatively, the majority of the nuclear industry decontamination technologies were eliminated from consideration due to implementability concerns. However, inclusion of the municipal water system technologies supported recommendations that combined the most effective approaches in both industries. (authors)

  20. EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill...

  1. 5 CCR 1002-41 Basic Standards for Ground Water | Open Energy...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: 5 CCR 1002-41 Basic Standards for Ground WaterLegal Abstract Regulations implementing the...

  2. Ground-water monitoring at the Hanford Site, January-December 1984

    SciTech Connect (OSTI)

    Cline, C.S.; Rieger, J.T.; Raymond, J.R.

    1985-09-01

    This program is designed to evaluate existing and potential pathways of exposure to radioactivity and hazardous chemicals from site operations. This document contains an evaluation of data collected during CY 1984. During 1984, 339 monitoring wells were sampled at various times for radioactive and nonradioactive constituents. Two of these constituents, specifically, tritium and nitrate, have been selected for detailed discussion in this report. Tritium and nitrate in the primary plumes originating from the 200 Areas continue to move generally eastward toward the Columbia River in the direction of ground-water flow. The movement within these plumes is indicated by changes in trends within the analytical data from the monitoring wells. No discernible impact on ground water has yet been observed from the start-up of the PUREX plant in December 1983. The shape of the present tritium plume is similar to those described in previous ground-water monitoring reports, although slight changes on the outer edges have been noted. Radiological impacts from two potential pathways for radionuclide transport in ground water to the environment are discussed in this report. The pathways are: (1) human consumption of ground water from onsite wells, and (2) seepage of ground water into the Columbia River. Concentrations of tritium in spring samples that were collected and analyzed in 1983, and in wells sampled adjacent to the Columbia River in 1984 confirmed that constituents in the ground water are entering the river via springs and subsurface flow. The primary areas where radionuclides enter the Columbia River via ground-water flow are the 100-N and 300 Areas and the shoreline adjacent to the Hanford Townsite. 44 refs., 25 figs., 11 tabs.

  3. Ground Water Compliance Action Plan for the Durango, Colorado,UMTRA Project Site

    Office of Legacy Management (LM)

    for the U.S. Department of Energy Approved for public release; distribution is unlimited. Ground Water Compliance Action Plan for the Durango, Colorado, UMTRA Project Site February 2008 This page intentionally left blank U0165200 Ground Water Compliance Action Plan for the Durango, Colorado, UMTRA Project Site February 2008 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed under DOE Contract No. DE-AC13-02GJ79491 This page intentionally left

  4. Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill

    SciTech Connect (OSTI)

    Fruland, R.M.

    1986-10-01

    Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

  5. Ground-water monitoring compliance projects for Hanford Site facilities: Progress Report for the Period July 1 to September 30, 1987

    SciTech Connect (OSTI)

    Not Available

    1987-11-01

    This report documents the progress of four Hanford Site ground-water monitoring projects for the period from July 1 to September 310, 1987. The four disposal facilities are the 300 Area Process Trenches, 183-H Solar Evaporation Basins, 200 Area Low-Level Burial Grounds, and Nonradioactive Dangerous Waste (NRDW) Landfill. This report is the fifth in a series of periodic status reports. During this reporting period, field activities consisted of completing repairs on five monitoring wells originally present around the 183-H Basins and completing construction of 25 monitoring wells around the 200 Area Burial Grounds. The 14 wells in the 200 East Area were completed by Kaiser Engineers Hanford (KEH) and the 11 wells in the 200 West Area were compelted by ONWEGO Well Drilling. The NRDW Landfill interim characterization report was submitted to the WDOE and the USEPA in August 1987. Analytical results for the 300 Area, 183-H, and the NRDW Landfill indicate no deviations from previously established trends. Results from the NRDW Land-fill indiate that the facility has no effect on the ground-water quality beneath the facility, except for the detection of coliform bacteria. A possible source of this contamination is the solid-waste lanfill (SWL) adjacent to the NRDW Landfill. Ground-water monitoring data for the NRDW and SWL will be evaluated together in the future. Aquifer testing was completed in the 25 new wells surrounding the 200 Area buiral grounds. 13 refs., 19 refs., 13 tabs.

  6. Shallow ground-water flow, water levels, and quality of water, 1980-84, Cowles Unit, Indiana Dunes National Lakeshore

    SciTech Connect (OSTI)

    Cohen, D.A.; Shedlock, R.J.

    1986-01-01

    The Cowles Unit of Indiana Dunes National Lakeshore in Porter County, northwest Indiana, contains a broad dune-beach complex along the southern shoreline of Lake Michigan and a large wetland, called the Great Marsh, that occupies the lowland between the shoreline dunes and an older dune-beach complex farther inland. Water levels and water quality in the surficial aquifer were monitored from 1977 to 1984 near settling ponds on adjacent industrial property at the western end of the Cowles Unit. Since 1980, when the settling pond bottoms were sealed, these intradunal lowlands contained standing water only during periods of high snowmelt or rainfall. Water level declines following the cessation of seepage ranged from 6 feet at the eastern-most settling pond to nearly 14 feet at the western-most pond. No general pattern of water table decline was observed in the Great Marsh or in the shoreline dune complex at distances > 3,000 ft east or north of the settling ponds. Since the settling ponds were sealed, the concentration of boron has decreased while concentrations of cadmium, arsenic, zinc, and molybdenum in shallow ground-water downgradient of the ponds show no definite trends in time. Arsenic, boron and molybdenum have remained at concentrations above those of shallow groundwater in areas unaffected by settling pond seepage. 11 refs., 10 figs., 1 tab.

  7. Radiological conditions at Bikini Atoll: Radionuclide concentrations in vegetation, soil, animals, cistern water, and ground water

    SciTech Connect (OSTI)

    Robison, W.L.; Conrado, C.L.; Stuart, M.L.

    1988-05-31

    This report is intended as a resource document for the eventual cleanup of Bikini Atoll and contains a summary of the data for the concentrations of /sup 137/Cs, /sup 90/Sr, /sup 239 +240/Pu, and /sup 241/Am in vegetation through 1987 and in soil through 1985 for 14 islands at Bikini Atoll. The data for the main residence island, Bikini, and the most important island, Eneu, are extensive; these islands have been the subject of a continuing research and monitoring program since 1974. Data for radionuclide concentrations in ground water, cistern water, fish and other marine species, and pigs from Bikini and Eneu Islands are presented. Also included are general summaries of our resuspension and rainfall data from Bikini and Eneu Islands. The data for the other 12 islands are much more limited because samples were collected as part of a screening survey and the islands have not been part of a continuing research and monitoring program. Cesium-137 is the radionuclide that produces most of the estimated dose for returning residents, mostly through uptake by terrestrial foods and secondly by direct external gamma exposure. Remedial measures for reducing the /sup 137/Cs uptake in vegetation are discussed. 40 refs., 32 figs., 131 tabs.

  8. User`s Guide: Database of literature pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Hall, L.F.

    1993-05-01

    Since its beginnings in 1949, hydrogeologic investigations at the Idaho National Engineering Laboratory (INEL) have resulted in an extensive collection of technical publications providing information concerning ground water hydraulics and contaminant transport within the unsaturated zone. Funding has been provided by the Department of Energy through the Department of Energy Idaho Field Office in a grant to compile an INEL-wide summary of unsaturated zone studies based on a literature search. University of Idaho researchers are conducting a review of technical documents produced at or pertaining to the INEL, which present or discuss processes in the unsaturated zone and surface water-ground water interactions. Results of this review are being compiled as an electronic database. Fields are available in this database for document title and associated identification number, author, source, abstract, and summary of information (including types of data and parameters). AskSam{reg_sign}, a text-based database system, was chosen. WordPerfect 5.1{copyright} is being used as a text-editor to input data records into askSam.

  9. Ground Water Levels for NGEE Areas A, B, C and D, Barrow, Alaska, 2012-2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Anna Liljedahl; Cathy Wilson

    2015-06-08

    Ice wedge polygonal tundra water levels were measured at a total of 45 locations representing polygon centers and troughs during three summers. Early season water levels, which were still affected by ice and snow, are represented by manual measurements only. Continuous (less than hourly) measurements followed through early fall (around mid-Sep). The data set contains inundation depth (cm), absolute water level and local ground surface elevation (masl).

  10. Ground-water solutes and eolian processes: An example from the High Plains of Texas

    SciTech Connect (OSTI)

    Wood, W.W.; Sanford, W.E. (Geological Survey, Reston, VA (United States))

    1992-01-01

    Eolian dunes associated with saline-lake basins are important geologic features in arid and semiarid areas. The authors propose that eolian processes may also be important in controlling solute concentration and composition of ground water in these environments. A study of Double Lakes on the Southern High Plains of Texas suggests that approximately 200 megagrams of chloride enters this topographically closed basin from the surrounding water table aquifer, direct precipitation and surface runoff. Solute-transport simulation suggest that approximately 70 of the 200 megagrams of the chloride annually leaves the basin by diffusion and ground-water advection through a 30 meter-thick shale underlying the lake. The remaining 130 megagrams is hypothesized to be removed by eolian processes. Closed water-table contours around the lake and a hydrologic analysis suggest that it is improbable that solutes will reach the surrounding water-table aquifer by ground-water transport from this lake system. The conceptual eolian-transport model is further supported by observed chloride profiles in the unsaturated zone. When analyzed with estimates of recharge fluxes, these profiles suggest that approximately 150 megagrams of chloride enter the unsaturated zone downwind of the lake annually. Thus two independent methods suggest that 130 to 150 megagrams of chloride enter the unsaturated zone downwind of the lake annually. Thus two independent methods suggest that 130 to 150 megagrams of chloride are removed from the basin annually by eolian process and redeposited downwind of the lake. Eolian input to the ground water is consistent with the observed plume shape as well as with the solute and isotopic composition of ground water in the water-table aquifer downwind of the lake basin.

  11. Treatment of arsenic-contaminated water using akaganeite adsorption

    DOE Patents [OSTI]

    Cadena C., Fernando; Johnson, Michael D.

    2008-01-01

    The present invention comprises a method and composition using akaganeite, an iron oxide, as an ion adsorption medium for the removal of arsenic from water and affixing it onto carrier media so that it can be used in filtration systems.

  12. Geodesic-dome tank roof cuts water contamination, vapor losses

    SciTech Connect (OSTI)

    Barrett, A.E. )

    1989-07-10

    Colonial Pipeline Co. has established an ongoing program for using geodesic-dome roofs on tanks in liquid petroleum-product service. As its standard, Colonial adopted geodesicodone roofs, in conjunction with internal floating decks, to replace worn external floating roofs on existing tanks used in gasoline service and for use on new tanks in all types of product service. Geodesic domes are clear-span structures requiring no internal-support columns. This feature allows the associated use of a floating deck that is as vapor tight as is possible to construct. Further, geodesic domes can practically eliminate rainwater contamination, eliminate wind-generated vapor losses, and greatly reduce filling losses associated with conventional external floating roofs.

  13. A detection-level hazardous waste ground-water monitoring compliance plan for the 200 areas low-level burial grounds and retrievable storage units

    SciTech Connect (OSTI)

    Not Available

    1987-02-01

    This plan defines the actions needed to achieve detection-level monitoring compliance at the Hanford Site 200 Areas Low-Level Burial Grounds (LLBG) in accordance with the Resource Conservation and Recovery Act (RCRA). Compliance will be achieved through characterization of the hydrogeology and monitoring of the ground water beneath the LLBG located in the Hanford Site 200 Areas. 13 refs., 20 figs.

  14. CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA PROJECT SITE |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA PROJECT SITE CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA PROJECT SITE August 2, 2010 - 12:00pm Addthis A sheep’s foot roller compacts the tailings in the disposal cell. A sheep's foot roller compacts the tailings in the disposal cell. Moab, UT MILL TAILINGS REMOVAL Sixteen million tons of uranium mill tailings 80 feet high stood on the banks of the Colorado River near Moab in southeast

  15. Subsiding land and falling ground water tables: public policy, private liability, and legal remedy

    SciTech Connect (OSTI)

    Bradley, M.D.; Carpenter, M.C.

    1986-07-01

    Focusing on the American Southwest, the authors review physical explanations of subsidence, then offer an explanation for the evolving doctrines of responsibility, laws of support, tort liability, and ground water management. Still in its infancy, the effort to develop effective measures to prevent subsidence or compensate for damages will become increasingly clear. They note the societal cost of not dealing directly and rationally with the problem and the subsequent loss of initiatives and options. Ground water withdrawal is a relatively new cause of land subsidence. Dealing with sub-surface support and the avoidance of subsidence damage is a geo-political problem calling for rational planning and management. 50 references.

  16. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    SciTech Connect (OSTI)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

  17. Pacific Northwest National Laboratory Grounds Maintenance: Best Management Practice Case Studies #4 and #5 - Water Efficient Landscape and Irrigation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-08-01

    FEMP Water Efficiency Best Management Practices #4 and #5 Case Study: Overview of the Pacific Northwest National Laboratory grounds maintenance program and results.

  18. Effect of faulting on ground-water movement in the Death Valley region, Nevada and California

    SciTech Connect (OSTI)

    Faunt, C.C.

    1997-12-31

    This study characterizes the hydrogeologic system of the Death Valley region, an area covering approximately 100,000 square kilometers. The study also characterizes the effects of faults on ground-water movement in the Death Valley region by synthesizing crustal stress, fracture mechanics,a nd structural geologic data. The geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. Faulting and associated fracturing is pervasive and greatly affects ground-water flow patterns. Faults may become preferred conduits or barriers to flow depending on whether they are in relative tension, compression, or shear and other factors such as the degree of dislocations of geologic units caused by faulting, the rock types involved, the fault zone materials, and the depth below the surface. The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional ground-water flow regime. Numerous examples of fault-controlled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths. 97 refs., 20 figs., 5 tabs.

  19. Selenium in Oklahoma ground water and soil. Quarterly report No. 6

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  20. Environmental Assessment of Ground Water Compliance at the Durango, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    N /A

    2002-11-29

    The U.S. Department of Energy (DOE) is proposing a ground water compliance strategy for the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Durango, Colorado. DOE has prepared this environmental assessment to provide the public with information concerning the potential effects of this proposed strategy.

  1. Evaluation of select trade-offs between ground-water remediation and waste minimization for petroleum refining industry

    SciTech Connect (OSTI)

    Andrews, C.D.; McTernan, W.F.; Willett, K.K.

    1996-08-01

    An investigation comparing environmental remediation alternatives and attendant costs for a hypothetical refinery site located in the Arkansas River alluvium was completed. Transport from the land`s surface to and through the ground water of three spill sizes was simulated, representing a base case and two possible levels of waste minimization. Remediation costs were calculated for five alternative remediation options, for three possible regulatory levels and alternative site locations, for four levels of technology improvement, and for eight different years. It is appropriate from environmental and economic perspectives to initiate significant efforts and expenditures that are necessary to minimize the amount and type of waste produced and disposed during refinery operations; or conversely, given expected improvements in technology, is it better to wait until remediation technologies improve, allowing greater environmental compliance at lower costs? The present work used deterministic models to track a light nonaqueous phase liquid (LNAPL) spill through the unsaturated zone to the top of the water table. Benzene leaching from LNAPL to the ground water was further routed through the alluvial aquifer. Contaminant plumes were simulated over 50 yr of transport and remediation costs assigned for each of the five treatment options for each of these years. The results of these efforts show that active remediation is most cost effective after a set point or geochemical quasi-equilibrium is reached, where long-term improvements in technology greatly tilt the recommended option toward remediation. Finally, the impacts associated with increasingly rigorous regulatory levels present potentially significant penalties for the remediation option, but their likelihood of occurrence is difficult to define.

  2. Process for removal of ammonia and acid gases from contaminated waters

    DOE Patents [OSTI]

    King, C.J.; Mackenzie, P.D.

    1982-09-03

    Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  3. Process for removal of ammonia and acid gases from contaminated waters

    DOE Patents [OSTI]

    King, C. Judson; MacKenzie, Patricia D.

    1985-01-01

    Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  4. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP). The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. The QAIP is authorized and approved by the TAC Project Manager and QA manager. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization activities are carried out in a manner that will protect public health and safety, promote the success of the UMTRA Project and meet or exceed contract requirements.

  5. In-situ biological reclamation of contaminated ground water. Master's thesis

    SciTech Connect (OSTI)

    Fant, R.L.

    1992-01-01

    Four triaxial permeability devices were designed and constructed for use in the Environmental Engineering Department at the Georgia Institute of Technology. These devices were used to determine how time and changing permeants affected a soil sample's hydraulic conductivity. Also the attenuation of the priority pollutant, 2,4-dichlorophenol, was studied. Two areas were looked at concerning attenuation, microbial degradation and adsorption. Microbes were grown in the laboratory and then placed into the soil samples. A permeant containing the pollutant, an oxidant, and nutrients was then passed through the soil sample with the microbes. The effects on the effluent concentration were then studied. Two breakthrough curves and two isotherm tests were run in an attempt to distinguish between microbial decay and adsorptive attenuation. Results of the attenuation studies unfortunately were inconclusive, but valuable knowledge was gained on the operation of and experimental procedures with the triaxial permeability devices.

  6. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    DOE Patents [OSTI]

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  7. Code System for Performance Assessment Ground-water Analysis for Low-level Nuclear Waste.

    Energy Science and Technology Software Center (OSTI)

    1994-02-09

    Version 00 The PAGAN code system is a part of the performance assessment methodology developed for use by the U. S. Nuclear Regulatory Commission in evaluating license applications for low-level waste disposal facilities. In this methodology, PAGAN is used as one candidate approach for analysis of the ground-water pathway. PAGAN, Version 1.1 has the capability to model the source term, vadose-zone transport, and aquifer transport of radionuclides from a waste disposal unit. It combines themore » two codes SURFACE and DISPERSE which are used as semi-analytical solutions to the convective-dispersion equation. This system uses menu driven input/out for implementing a simple ground-water transport analysis and incorporates statistical uncertainty functions for handling data uncertainties. The output from PAGAN includes a time- and location-dependent radionuclide concentration at a well in the aquifer, or a time- and location-dependent radionuclide flux into a surface-water body.« less

  8. Ground Water Protection Programs Implementation Guide for Use with DOE O 450.1, Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-05-05

    This Guide provides a description of the elements of an integrated site-wide ground water protection program that can be adapted to unique physical conditions and programmatic needs at each DOE site. Canceled by DOE N 251.82.

  9. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water, Revision 2

    SciTech Connect (OSTI)

    1995-11-01

    This document contains the Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The QAIP outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QA program is designed to use monitoring, audit, and surveillance activities as management tools to ensure that UMTRA Project activities are carried out in amanner to protect public health and safety, promote the success of the UMTRA Project, and meet or exceed contract requirements.

  10. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January 2000-December 2002

    SciTech Connect (OSTI)

    Locke, Glenn L. [US Geological Survey, Carson City, NV (United States); La Camera, Richard J. [US Geological Survey, Carson City, NV (United States)

    2003-12-31

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January 2000 through December 2002. Historical data on water levels, discharges, and withdrawals are graphically presented to indicate variations through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented for 19922002 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to selected baseline periods. Baseline periods varied for 198593. At six of the seven wells in Jackass Flats, the median water levels for 2002 were slightly higher (0.32.4 feet) than for their respective baseline periods. At the remaining well, data for 2002 was not summarized statistically but median water-level altitude in 2001 was 0.7 foot higher than that in its baseline period.

  11. PAMAM dendrimers and graphene: Materials for removing aromatic contaminants from water

    SciTech Connect (OSTI)

    DeFever, Ryan S.; Geitner, Nicholas K.; Bhattacharya, Priyanka; Ding, Feng; Ke, Pu Chun; Sarupria, Sapna

    2015-04-07

    We present results from experiments and atomistic molecular dynamics simulations on the association of naphthalene with polyamidoamine (PAMAM) dendrimers and graphene oxide (GrO). Specifically, we investigate 3rd-6th generation (G3-G6) PAMAM dendrimers and GrO with different levels of oxidation. The work is motivated by the potential applications of these materials in removing polycyclic aromatic hydrocarbon contaminants from water. Our experimental results indicate that graphene oxide outperforms dendrimers in removing naphthalene from water. Molecular dynamics simulations suggest that the prominent factors driving naphthalene association to these seemingly disparate materials are similar. Interestingly, we find that cooperative interactions between the naphthalene molecules play a significant role in enhancing their association to the dendrimers and graphene oxide. Our findings highlight that while selection of appropriate materials is important, the interactions between the contaminants themselves can also be important in governing the effectiveness of a given material. The combined use of experiments and molecular dynamics simulations allows us to comment on the possible factors resulting in better performance of graphene oxide in removing naphthalene from water.

  12. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    SciTech Connect (OSTI)

    Warner, J.L.; Lutz, J.D.

    2006-01-01

    Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

  13. Ground water and snow sensor based on directional detection of cosmogenic neutrons.

    SciTech Connect (OSTI)

    Cooper, Robert Lee; Marleau, Peter; Griffin, Patrick J.

    2011-06-01

    A fast neutron detector is being developed to measure the cosmic ray neutron flux in order to measure soil moisture. Soil that is saturated with water has an enhanced ability to moderate fast neutrons, removing them from the backscatter spectrum. The detector is a two-element, liquid scintillator detector. The choice of liquid scintillator allows rejection of gamma background contamination from the desired neutron signal. This enhances the ability to reconstruct the energy and direction of a coincident neutron event. The ability to image on an event-by-event basis allows the detector to selectively scan the neutron flux as a function of distance from the detector. Calibrations, simulations, and optimization have been completed to understand the detector response to neutron sources at variable distances and directions. This has been applied to laboratory background measurements in preparation for outdoor field tests.

  14. The effects of a stannous chloride-based water treatment system in a mercury contaminated stream

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mathews, Teresa J.; Looney, Brian B.; Smith, John G.; Miller, Carrie L.; Peterson, Mark J.; Bryan, A. Lawrence; Southworth, George R.

    2015-06-09

    Remediation of mercury (Hg)-contaminated watersheds is often challenging because of the complex nature of Hg biogeochemistry. Stream ecosystems have been shown to be particularly susceptible to Hg contamination and bioaccumulation in fish. Decreasing total Hg loading to stream systems, however, has shown variable performance in decreasing Hg concentrations in fish tissues. In this study, we assess the impacts of an innovative treatment system in reducing releases of Hg to a small stream system in the southeastern United States. The treatment system, installed in 2007, removes Hg from water using tin (Sn) (II) chloride followed by air stripping. Mercury concentrations inmore » the receiving stream, Tims Branch, decreased from > 100 to ~10 ng/L in the four years following treatment, and Hg body burdens in redfin pickerel (Esox americanus) decreased by 70 % at the most contaminated site. Tin concentrations in water and fish increased significantly in the tributary leading to Tims Branch, but concentrations remain below levels of concern for human health or ecological risks. While other studies have shown that Sn may be environmentally methylated and methyltin can transfer its methyl group to Hg, results from our field studies and sediment incubation experiments suggest that the added Sn to the Tims Branch watershed is not contributing to MeHg production and bioaccumulation. The stannous chloride treatment system installed at Tims Branch was effective at removing Hg inputs and reducing Hg bioaccumulation in the stream with minimal impacts on the environment due to the increased Sn in the system.« less

  15. Basic concepts of contaminant sorption. Summary paper

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of issue papers and briefing documents which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. In an attempt to make the content of these documents available to a wider audience, RSKERL is developing a series of summary papers which are condensed versions of the original documents. Understanding the processes which dictate transport and fate characteristics of contaminants in soil and ground water is of paramount importance in designing and implementing remediation systems at hazardous waste sites. Sorption is often the most significant of these processes. The summary paper addresses the basic concepts of sorption in soil and ground water with an emphasis on organic contaminants having the characteristics of those often found at existing hazardous waste sites.

  16. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

    1997-12-31

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35{degrees}N., long 115{degrees}W and lat 38{degrees}N., long 118{degrees}W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system.

  17. Exergy and Energy analysis of a ground-source heat pump for domestic water heating under simulated occupancy conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D; Gehl, Anthony C

    2012-01-01

    This paper presents detailed analysis of a water to water ground source heat pump (WW-GSHP) to provide all the hot water needs in a 345 m2 house located in DOE climate zone 4 (mixed-humid). The protocol for hot water use is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which aims to capture the living habits of the average American household and its impact on energy consumption. The entire house was operated under simulated occupancy conditions. Detailed energy and exergy analysis provides a complete set of information on system efficiency and sources of irreversibility, the main cause of wasted energy. The WW-GSHP was sized at 5.275 kW (1.5-ton) for this house and supplied hot water to a 303 L (80 gal) water storage tank. The WW-GSHP shared the same ground loop with a 7.56 kW (2.1-ton) water to air ground source heat pump (WA-GSHP) which provided space conditioning needs to the entire house. Data, analyses, and measures of performance for the WW-GSHP in this paper complements the results of the WA-GSHP published in this journal (Ally, Munk et al. 2012). Understanding the performance of GSHPs is vital if the ground is to be used as a viable renewable energy resource.

  18. EVALUATION OF A METHOD USING COLLOIDAL GAS APHRONS TO REMEDIATE METALS-CONTAMINATED MINE DRAINAGE WATERS

    SciTech Connect (OSTI)

    R. Williams Grimes

    2002-06-01

    Experiments were conducted in which three selected metals-contaminated mine drainage water samples were treated by chemical precipitation followed by flotation using colloidal gas aphrons (CGAs) to concentrate the precipitates. Drainage water samples used in the experiments were collected from an abandoned turn-of-the-century copper mine in south-central Wyoming, an inactive gold mine in Colorado's historic Clear Creek mining district, and a relatively modern gold mine near Rapid City, South Dakota. The copper mine drainage sample was nearly neutral (pH 6.5) while the two gold mine samples were quite acidic (pH {approx}2.5). Metals concentrations ranged from a few mg/L for the copper mine drainage to several thousand mg/L for the sample from South Dakota. CGAs are emulsions of micrometer-sized soap bubbles generated in a surfactant solution. In flotation processes the CGA microbubbles provide a huge interfacial surface area and cause minimal turbulence as they rise through the liquid. CGA flotation can provide an inexpensive alternative to dissolved air flotation (DAF). The CGA bubbles are similar in size to the bubbles typical of DAF. However, CGAs are generated at ambient pressure, eliminating the need for compressors and thus reducing energy, capital, and maintenance costs associated with DAF systems. The experiments involved precipitation of dissolved metals as either hydroxides or sulfides followed by flotation. The CGAs were prepared using a number of different surfactants. Chemical precipitation followed by CGA flotation reduced contaminant metals concentrations by more than 90% for the copper mine drainage and the Colorado gold mine drainage. Contaminant metals were concentrated into a filterable sludge, representing less than 10% of the original volume. CGA flotation of the highly contaminated drainage sample from South Dakota was ineffective. All of the various surfactants used in this study generated a large sludge volume and none provided a significant

  19. Innovative Use of Cr(VI) Plume Depictions and Pump-and-Treat Capture Analysis to Estimate Risks of Contaminant Discharge to Surface Water at Hanford Reactor Areas

    SciTech Connect (OSTI)

    Miller, Chuck W.; Hanson, James P.; Ivarson, Kristine A.; Tonkin, M.

    2015-01-14

    The Hanford Site nuclear reactor operations required large quantities of high-quality cooling water, which was treated with chemicals including sodium dichromate dihydrate for corrosion control. Cooling water leakage, as well as intentional discharge of cooling water to ground during upset conditions, produced extensive groundwater recharge mounds consisting largely of contaminated cooling water and resulted in wide distribution of hexavalent chromium (Cr[VI]) contamination in the unconfined aquifer. The 2013 Cr(VI) groundwater plumes in the 100 Areas cover approximately 6 km2 (1500 acres), primarily in the 100-HR-3 and 100-KR-4 groundwater operable units (OUs). The Columbia River is a groundwater discharge boundary; where the plumes are adjacent to the Columbia River there remains a potential to discharge Cr(VI) to the river at concentrations above water quality criteria. The pump-and-treat systems along the River Corridor are operating with two main goals: 1) protection of the Columbia River, and 2) recovery of contaminant mass. An evaluation of the effectiveness of the pump-and-treat systems was needed to determine if the Columbia River was protected from contamination, and also to determine where additional system modifications may be needed. In response to this need, a technique for assessing the river protection was developed which takes into consideration seasonal migration of the plume and hydraulic performance of the operating well fields. Groundwater contaminant plume maps are generated across the Hanford Site on an annual basis. The assessment technique overlays the annual plume and the capture efficiency maps for the various pump and treat systems. The river protection analysis technique was prepared for use at the Hanford site and is described in detail in M.J. Tonkin, 2013. Interpolated capture frequency maps, based on mapping dynamic water level observed in observation wells and derived water levels in the vicinity of extraction and injection wells

  20. Relationships among petroleum refining, water and sediment contamination, and fish health

    SciTech Connect (OSTI)

    Kuehn, R.L.; Berlin, K.D.; Ostrander, G.K.

    1995-09-01

    Water, sediment, and fish were sampled from three streams that were receiving or had received effluents from oil refineries. Water and sediment samples were analyzed by gas chromatography/mass spectrometry. Each stream contained aromatic carbons including substituted benzenes and naphthalenes, which are related to oil refinery operations. Fish were identified, counted, and examined for external lesions. Lengths and weights were recorded for older bullhead catfish, and their livers were examined histologically. Differences were seen in the diversity and abundance of fish among the upstream, impacted (effluent-receiving), and downstream stations. In one stream, differences in liver pathology were observed between reference bullhead, collected from an upstream station, and those collected at impacted stations with more than 50% of the bullheads taken from impacted stations having some sort of pathological change, including one with a liver clear-cell focus, which is considered a preneoplastic lesion in rodents. These data suggest a correlation between contamination of water and sediments with aromatic hydrocarbons, presumably from refinery effluents, and compromised fish health.

  1. Applying GIS characterizing and modeling contaminant transport in surface water at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Becker, N.M.; Van Eeckhout, E.; David, N.A.; Irvine, J.M.

    1995-10-01

    During World War II, Los Alamos, New Mexico was chosen as the site for the secret development of the first atomic bomb. The remote location in the southwestern United States was ideal for such a project. After the war, research activities continued at the Los Alamos installation, focusing on new nuclear weapons models as well as greater effectiveness and reliability of existing weapons. Due to the emphasis on nuclear and non-nuclear weapons development as well as associated nuclear research, a large inventory of radionuclides and heavy metals have been tested, expended, and disposed of in the local environment, a high plateau of tuffaceous volcanic rocks incised by deep canyons in a semi-arid climate. In recent years an intensive evaluation of the environmental, impact of weapons testing at Los Alamos and elsewhere has been undertaken. GIS system utilization and image processing of past and current data has been an important part of this evaluation. Important problems can be more easily displayed and understood using this methodology. The main objective in this paper is to illustrate how transport of depleted uranium and associated heavy metals (copper in this case) used in dynamic testing of weapons components at open air firing sites can be evaluated and visualized. In our studies, surface water has been found to be the predominant transport mechanism. We have sampled soils, sediments, fallout, runoff water and snowmelt over a number of years in order to understand contaminant transport on- and offsite. Statistical analyses of these data have assisted in our characterization of issues such as contaminant variability, spatially and temporally, as well as in development of transport rates.

  2. Ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah. Final, Revision 2, Version 5: Appendix E to the remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Green River, Utah

    SciTech Connect (OSTI)

    1995-09-01

    The purpose of this appendix is to provide a ground water protection strategy for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Green River, Utah. Compliance with the US Environmental Protection Agency (EPA) ground water protection standards will be achieved by applying supplemental standards (40 CFR {section} 192.22(a); 60 FR 2854) based on the limited use ground water present in the uppermost aquifer that is associated with widespread natural ambient contamination (40 CFR {section} 192.11(e); 60 FR 2854). The strategy is based on new information, including ground water quality data collected after remedial action was completed, and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. The strategy will result in compliance with Subparts A and C of the EPA final ground water protection standards (60 FR 2854). The document contains sufficient information to support the proposed ground water protection strategy, with monitor well information and ground water quality data included as a supplement. Additional information is available in the final remedial action plan (RAP) (DOE, 1991a), the final completion report (DOE, 1991b), and the long-term surveillance plan (LTSP) (DOE, 1994a).

  3. Work plan for preliminary investigation of organic constituents in ground water at the New Rifle site, Rifle, Colorado. Revision 2

    SciTech Connect (OSTI)

    1996-01-01

    A special study screening for Appendix 9 (40 CFR Part 264) analytes identified the New Rifle site as a target for additional screening for organic constituents. Because of this recommendation and the findings in a recent independent technical review, the US Department of Energy (DOE) has requested that the Technical Assistance Contractor (TAC) perform a preliminary investigation of the potential presence of organic compounds in the ground water at the New Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project site, Rifle, Colorado. From 1958 to 1972, organic chemicals were used in large quantities during ore processing at the New Rifle site, and it is possible that some fraction was released to the environment. Therefore, the primary objective of this investigation is to determine whether organic chemicals used at the milling facility are present in the ground water. The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water well points at the New Rifle site. The selection of analytes and the procedures for collecting ground water samples for analysis of organic constituents are also described.

  4. Effects of uranium-mining releases on ground-water quality in the Puerco River Basin, Arizona and New Mexico

    SciTech Connect (OSTI)

    Van Metre, P.C.; Wirt, L.; Lopes, T.J.; Ferguson, S.A.

    1997-12-31

    The purpose of this report is to describe: (1) the water quality of the Puerco River alluvial aquifer, (2) the movement of water between the Puerco River and underlying alluvial aquifer, and (3) changes in the water quality of the alluvial and bedrock aquifers related to releases of contaminants by uranium-mining activities. This report focuses on the alluvial aquifer near the reach of the Puerco River that was subjected to continuous flow containing mine-dewatering effluents and to flow containing mine-dewatering effluents and to flow from the tailings-pond spill.

  5. Ground-water hydraulics of the deep-basin brine aquifer, Palo Duro Basin, Texas panhandle

    SciTech Connect (OSTI)

    Smith, D.A.

    1985-01-01

    The Deep-Basin Brine aquifer of the Palo Duro Basin (Texas Panhandle) underlies thick Permian bedded evaporites that are being evaluated as a potential high-level nuclear waste isolation repository. Potentiometric surface maps of 5 units of the Deep-Basin Brine aquifer were drawn using drill-stem test (DST) pressure data, which were analyzed by a geostatistical technique (kriging) to smooth the large variation in the data. The potentiometric surface maps indicate that the Deep-Basin Brine aquifer could be conceptually modeled as 5 aquifer units; a Lower Permian (Wolfcamp) aquifer, upper and lower Pennsylvanian aquifers, a pre-Pennsylvanian aquifer, and a Pennsylvanian to Wolfcampian granite-wash aquifer. The hydraulic head maps indicate that ground-water flow in each of the units is west to east with a minor northerly component near the Amarillo Uplift, the northern structural boundary of the basin. The Wolfcamp potentiometric surface indicates the strongest component of northerly flow. Inferred flow direction in Pennsylvanian aquifers is easterly, and in the pre-Pennsylvanian aquifer near its pinch-out in the basin center, flow is inferred to be to the north. In the granite-wash aquifer the inferred flow direction is east across the northern edge of the basin and southeast along the Amarillo Uplift.

  6. Distribution and geochemistry of contaminated subsurface waters in fissured volcanogenic bed rocks of the Lake Karachai Area, Chelyabinsk, Southern Urals

    SciTech Connect (OSTI)

    Solodov, I.N.; Belichkin, V.I.; Zotov, A.V.; Kochkin, B.T.; Drozhko, E.G.; Glagolev, A.V.; Skokov, A.N.

    1994-06-01

    The present investigation is devoted to the study of the distribution and geochemistry of contaminated subsurface waters, beneath the site of temporary storage of liquid radioactive waste known as Lake Karachai. For this purpose a method of hydrogeochemical logging (HGCL) together with standard hydrogeochemical and geophysical methods of uncased hole logging were used. The distribution of sodium nitrate brine plumes in the subsurface was determined by the physical and physico-chemical properties of these brines and by the petrochemical composition of enclosing rocks and the structural setting of the flow paths. The latter is represented by fractures and large faults in the bedrock of volcanogenic and volcanogenic-sedimentary rocks of intermediate-to-basic composition. The volcanogenic rocks are overlain in some places by a thin cover of unconsolidated sediments, i.e., by loams and relatively impermeable silts. Contaminated waters flow-in accordance with the eluvium bottom relief towards local areas of natural (Mishelyak and Techa rivers) and artificial (Novogomenskii water intake) discharge of subsurface waters. The large Mishelyak fault, southwest of Lake Karachai and under fluvial sediments of the Mishelyak, is assumed to significantly influence the flow pattern of contaminated waters, diverting them from an intake of drinking water.

  7. Ground water flow velocity in the bank of the Columbia River, Hanford, Washington

    SciTech Connect (OSTI)

    Ballard, S.

    1995-12-01

    To properly characterize the transport of contaminants from the sediments beneath the Hanford Site into the Columbia River, a suite of In Situ Permeable Flow Sensors was deployed to accurately characterize the hydrologic regime in the banks of the river. The three dimensional flow velocity was recorded on an hourly basis from mid May to mid July, 1994 and for one week in September. The first data collection interval coincided with the seasonal high water level in the river while the second interval reflected conditions during relatively low seasonal river stage. Two flow sensors located approximately 50 feet from the river recorded flow directions which correlated very well with river stage, both on seasonal and diurnal time scales. During time intervals characterized by falling river stage, the flow sensors recorded flow toward the river while flow away from the river was recorded during times of rising river stage. The flow sensor near the river in the Hanford Formation recorded a component of flow oriented vertically downward, probably reflecting the details of the hydrostratigraphy in close proximity to the probe. The flow sensor near the river in the Ringold Formation recorded an upward component of flow which dominated the horizontal components most of the time. The upward flow in the Ringold probably reflects regional groundwater flow into the river. The magnitudes of the flow velocities recorded by the flow sensors were lower than expected, probably as a result of drilling induced disturbance of the hydraulic properties of the sediments around the probes. The probes were installed with resonant sonic drilling which may have compacted the sediments immediately surrounding the probes, thereby reducing the hydraulic conductivity adjacent to the probes and diverting the groundwater flow away from the sensors.

  8. Reconnaissance of ground-water quality in the Papio-Missouri river natural resources district, Eastern Nebraska, July through September 1992. Water resources investigation

    SciTech Connect (OSTI)

    Verstraeten, I.M.; Ellis, M.J.

    1995-12-31

    The purpose of this report is to describe the water quality of the principal aquifers in the study area. Wells representative of the geology and land use in the study area were selected for water-quality sampling. Variations in constituent concentration among aquifers are discussed. The report describes the spatial distributions of dissolved nitrite plus-nitrate as nitrogen and triazine and other acetanilide herbicides and evaluates the effects of cropland application of nitrogen and herbicides on the ground-water quality within the study area. The report also summarizes the concentrations of dissolved major and trace constituents including radionuclide activity and concentration.

  9. Measured water heating performance of a vertical-bore water-to-water ground source heat pump (WW-GSHP) for domestic water heating over twelve months under simulated occupancy loads

    SciTech Connect (OSTI)

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D; Gehl, Anthony C

    2014-01-01

    This paper presents monthly performance metrics of a 5.275 kW (1.5 ton) WW-GSHP providing 227 L day-1 domestic hot water at 49 C. Daily water use is simulated as stipulated in the Building America Research Benchmark Definition capturing the living habits of the average U.S household. The 94.5m vertical-bore ground loop is shared with a separate GSHP for space conditioning the 251m2 residential home. Data on entering water temperatures, energy extracted from the ground, delivered energy, compressor electricity use, COP, WW-GSHP run times, and the impact of fan and pump energy consumption on efficiency are presented for each month. Factors influencing performance metrics are highlighted.

  10. Algorithm and simulation development in support of response strategies for contamination events in air and water systems.

    SciTech Connect (OSTI)

    Waanders, Bart Van Bloemen

    2006-01-01

    Chemical/Biological/Radiological (CBR) contamination events pose a considerable threat to our nation's infrastructure, especially in large internal facilities, external flows, and water distribution systems. Because physical security can only be enforced to a limited degree, deployment of early warning systems is being considered. However to achieve reliable and efficient functionality, several complex questions must be answered: (1) where should sensors be placed, (2) how can sparse sensor information be efficiently used to determine the location of the original intrusion, (3) what are the model and data uncertainties, (4) how should these uncertainties be handled, and (5) how can our algorithms and forward simulations be sufficiently improved to achieve real time performance? This report presents the results of a three year algorithmic and application development to support the identification, mitigation, and risk assessment of CBR contamination events. The main thrust of this investigation was to develop (1) computationally efficient algorithms for strategically placing sensors, (2) identification process of contamination events by using sparse observations, (3) characterization of uncertainty through developing accurate demands forecasts and through investigating uncertain simulation model parameters, (4) risk assessment capabilities, and (5) reduced order modeling methods. The development effort was focused on water distribution systems, large internal facilities, and outdoor areas.

  11. Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada

    SciTech Connect (OSTI)

    Young, H.W.; Lewis, R.E.

    1982-01-01

    Chemical analyses of water from 12 wells and 9 springs indicate that nonthermal waters are a calcium bicarbonate type; thermal waters are a sodium carbonate or bicarbonate type. Chemical geothermometers indicate probable maximum reservoir temperatures are near 100/sup 0/ Celsius. Concentration of tritium in the thermal water is near zero. Depletion of stable isotopes in the hot waters relative to present-day meteoric waters indicates recharge to the system probably occurred when the climate averaged 3/sup 0/ to 5/sup 0/ Celsius colder than at present. Temperatures about 3.5/sup 0/ Celsius colder than at present occurred during periods of recorded Holocene glacial advances and indicate a residence time of water in the system of at least several thousand years. Residence time calculated on the basis of reservoir volume and thermal-water discharge is 3400 to 6800 years for an effective reservoir porosity of 0.05 and 0.10, respectively. Preliminary analyses of carbon-14 determinations indicate an age of the hot waters of about 18,000 to 25,000 years. The proposed conceptual model for the area is one of an old system, where water has circulated for thousands, even tens of thousands, of years. Within constraints imposed by the model described, reservoir thermal energy for the geothermal system in southwestern Idaho and north-central Nevada is about 130 x 10/sup 18/ calories.

  12. Ground water of Yucca Mountain: How high can it rise?; Final report

    SciTech Connect (OSTI)

    1992-12-31

    This report describes the geology, hydrology, and possible rise of the water tables at Yucca Mountain. The possibilities of rainfall and earthquakes causing flooding is discussed.

  13. Reclamation of water contaminated with fuel system icing inhibitor: Phase 1, Literature review and information compilation. [281 references

    SciTech Connect (OSTI)

    Brinkman, D.W.; Stirling, K.Q.; Whisman, M.L.; Bhan, O.K.

    1988-02-01

    The volume of water that must be removed from an aviation turbine fuel storage tank can be as much as 15,000 to 20,000 gallons per year from a fuel tank of moderate capacity. If each fuel storage facility has 10 fuel storage tanks, a total water volume of 200,000 gallons per terminal per year is a reasonable estimate. Some terminals generate as much as one million gallons per year of FSII contaminated wastewater. In the past, this FSII/water mixture was released from time to time into diked areas around the storage tank where it evaporated or penetrated underlying media. A host of recent studies that have shown these glycol ethers to be toxic now make this practice questionable based on both vapor inhalation toxicity and potential groundwater contamination. The ensuing narrative sections contain a summary of the data and information that have been compiled as a result of computerized literature searches, personal contacts with government and industry representatives knowledgeable in the field of FSII, and contact with vendors of equipment and processes with some applicability to achieving the goals of this research. Our recommendations for the subsequent bench-scale testing phase are included and are based upon this literature compilation and review. If the second phase yields a technically and economically attractive solution, a third phase will follow to implement concept verification studies. 281 refs., 1 tab.

  14. Iron-mediated remediation of RDX-contaminated water and soil under controlled Eh/pH

    SciTech Connect (OSTI)

    Singh, J.; Comfort, S.D.; Shea, P.J.

    1999-05-01

    Soil and water contaminated with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a serious environmental problem at several active and abandoned munitions production facilities. Zero-valent iron (Fe{sup 0}) can effectively remediate RDX-contaminated soil and water. The objective of this study was to manipulate Eh and pH for enhanced Fe{sup 0}-mediated destruction of RDX. This was accomplished by monitoring RDX destruction under controlled Eh-pH conditions (Eh: {minus}300 to +150 mV; pH: 2--10). Decreasing Eh and pH increased RDX destruction in aqueous solution. Treating 20 mg of RDX L{sup {minus}1} (90 {micro}M) under a static Eh of {minus}150 mV and pH 7 with 20 g of Fe{sup 0} L{sup {minus}1} removed 95% of the RDX within 4 h; no RDX was detected after 8 h. Treating a soil slurry (20% solids; 510 mg RDX kg{sup {minus}1} soil) with 20 g of Fe{sup 0} L{sup {minus}1} at an Eh of {minus}150 mV and pH 7 increased RDX destruction by 24% over the unbuffered control and resulted in 99% RDX destruction within 24 h. Adding 4.2 mM sodium sulfide (in lieu of a static Eh) under similar conditions resulted in 93% RDX loss within 24 h. Results indicated that lowering Eh and maintaining neutral pH during Fe{sup 0} treatment can increase RDX destruction in contaminated soil and water.

  15. Pattern of shallow ground water flow at Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    Mt. Princeton hot water production (4.3-4.9)103m3day at approximately 60-86C). A temperature map indicates that a third upwelling zone termed U4 may exist at the southern...

  16. Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    Mt. Princeton hot water production (4.3-4.9) 103 m3day at approximately 60-86C). A temperature map indicates that a third upwelling zone termed U4 may exist at the southern...

  17. Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final

    SciTech Connect (OSTI)

    1995-09-01

    The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC {section}7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management.

  18. Restoration of water environment contaminated by radioactive cesium released from Fukushima Daiichi NPP

    SciTech Connect (OSTI)

    Takeshita, K.; Takahashi, H.; Jinbo, Y.; Ishido, A.

    2013-07-01

    In the Fukushima Daiichi NPP Accident, large amounts of volatile radioactive nuclides, such as {sup 131}I, {sup 134}Cs and {sup 137}Cs, were released to the atmosphere and huge areas surrounding the nuclear site were contaminated by the radioactive fallout. In this study, a combined process with a hydrothermal process and a coagulation settling process was proposed for the separation of radioactive Cs from contaminated soil and sewage sludge. The coagulation settling operation uses Prussian Blue (Ferric ferrocyanide) and an inorganic coagulant. The recovery of Cs from sewage sludge sampled at Fukushima city (100.000 Bq/kg) and soil at a nearby village (55.000 Bq/kg), was tested. About 96% of Cs in the sewage sludge was removed successfully by combining simple hydrothermal decomposition and coagulation settling. However, Cs in the soil was not removed sufficiently by the combined process (Cs removal is only 56%). The hydrothermal decomposition with blasting was carried out. The Cs removal from the soil was increased to 85%. When these operations were repeated twice, the Cs recovery was over 90%. The combined process with hydrothermal blasting and coagulation settling is applicable to the removal of Cs from highly contaminated soil.

  19. In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer Matthew Ginder-Vogel1, Wei-Min Wu1, Jack Carley2, Phillip Jardine2, Scott Fendorf1 and Craig Criddle1 1Stanford University, Stanford, CA 2Oak Ridge National Laboratory, Oak Ridge, TN Microbial Respiration Figure 1. Uranium(VI) reduction is driven by microbial respiration resulting in the precipitation of uraninite. Uranium contamination of ground and surface waters has been detected at numerous sites throughout the

  20. Experimental study of the dissolution of spent fuel at 85{sup 0} in natural ground water

    SciTech Connect (OSTI)

    Wilson, C.N.; Shaw, H.F.

    1987-12-31

    Semi-static dissolution tests using pressurized water reactor spent fuel rod segments and NNWSI reference J-13 well water in sealed stainless steel vessels at 85{sup 0}C are being conducted in support of the Waste Package Task of the NNWSI Project. Test specimens include: bare fuel plus the empty cladding hulls, fuel rod segments with artificially induced cladding defects and water-tight end caps, and undefected fuel rod segments with water-tight end caps. The test conditions approximate those expected in the proposed NNWSI Project repository when the waste package has cooled sufficiently to allow water to enter a breached container and contact the fuel rods, some of which may exhibit various degrees of cladding failure. Periodic solution samples (unfiltered and filtered) were analyzed for most radionuclides for which cumulative release limits are listed by the US Environmental Protection Agency. Results from the first six-month cycle of the 85{sup 0}C tests are presented and are compared with results from the first cycle of a previous test series run at 25{sup 0}C in fused silica test vessels. 5 references, 5 figures, 6 tables.

  1. Composition and process for organic and metal contaminant fixation in soil

    DOE Patents [OSTI]

    Schwitzgebel, Klaus

    1994-02-08

    A method and compositions using a first ferrous iron containing solution with the iron concentration in excess of theoretical requirements to treat a contaminated site to reduce hexavalent chromium to trivalent chromium and coprecipitate trivalent chromium with other heavy metals and using a second solution of silicate containing a destabilizing salt to form a relatively impermeable gel in the contaminated site thereby fixing metals and organics to the extent that there should be no detectable ground water contamination.

  2. Development of a System for Rapid Detection of Contaminants in Water Supplies Using Magnetic Resonance and Nanoparticles

    SciTech Connect (OSTI)

    Lowery, Thomas J; Neely, Lori; Chepin, James; Wellman, Parris; Toso, Ken; Murray, Paul; Audeh, Mark; Demas, Vasiliki; Palazzolo, Robert; Min, Michael; Phung, Nu; Blanco, Matt; Raphel, Jordan; O'Neil, Troy

    2010-09-14

    To keep the water supply safe and to ensure a swift and accurate response to a water supply contamination event, rapid and robust methods for microbial testing are necessary. Current technologies are complex, lengthy and costly and there is a need for rapid, reliable, and precise approaches that can readily address this fundamental security and safety issue. T2 Biosystems is focused on providing solutions to this problem by making breakthroughs in nanotechnology and biosensor techniques that address the current technical restrictions facing rapid, molecular analysis in complex samples. In order to apply the T2 Biosystems nucleic acid detection procedure to the analysis of nucleic acid targets in unprocessed water samples, Bacillus thuringeinsis was selected as a model organism and local river water was selected as the sample matrix. The initial assay reagent formulation was conceived with a manual magnetic resonance reader, was optimized using a high throughput system, and transferred back to the MR reader for potential field use. The final assay employing the designed and manufactured instruments was capable of detecting 10 CFU/mL of B. thuringiensis directly within the environmental water sample within 90 minutes. Further, discrimination of two closely related species of Bacilli was accomplished using the methods of this project; greater than 3-fold discrimination between B. cereus and B. thuringiensis at a concentrations spanning 10 CFU/mL to 10{sup 5} CFU/mL was observed.

  3. Residual radioactive contamination from decommissioning: Technical basis for translating contamination levels to annual dose

    SciTech Connect (OSTI)

    Kennedy, W.E. Jr.; Peloquin, R.A. )

    1990-01-01

    This document describes the generic modeling of the total effective dose equivalent (TEDE) to an individual in a population from a unit concentration of residual radioactive contamination. Radioactive contamination inside buildings and soil contamination are considered. Unit concentration TEDE factors by radionuclide, exposure pathway, and exposure scenario are calculated. Reference radiation exposure scenarios are used to derive unit concentration TEDE factors for about 200 individual radionuclides and parent-daughter mixtures. For buildings, these unit concentration factors list the annual TEDE for volume and surface contamination situations. For soil, annual TEDE factors are presented for unit concentrations of radionuclides in soil during residential use of contaminated land and the TEDE per unit total inventory for potential use of drinking water from a ground-water source. Because of the generic treatment of potentially complex ground-water systems, the annual TEDE factors for drinking water for a given inventory may only indicate when additional site data or modeling sophistication are warranted. Descriptions are provided of the models, exposure pathways, exposure scenarios, parameter values, and assumptions used. An analysis of the potential annual TEDE resulting from reference mixtures of residual radionuclides is provided to demonstrate application of the TEDE factors. 62 refs., 5 figs., 66 tabs.

  4. The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water

    SciTech Connect (OSTI)

    Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

    1995-02-17

    The capacitive deionization of water with a stack of carbon aerogel electrodes has been successfully demonstrated for the first time. Unlike ion exchange, one of the more conventional deionization processes, no chemicals were required for regeneration of the system. Electricity was used instead. Water with various anions and cations was pumped through the electrochemical cell. After polarization, ions were electrostatically removed from the water and held in the electric double layers formed at electrode surfaces. The water leaving the cell was purified, as desired.

  5. Environmental diagnostic analysis of ground water bacteria and their involvement in utilization of aromatic compounds

    SciTech Connect (OSTI)

    Wear, J.E. Jr.

    1993-05-01

    The objective of this study was to examine the hypothesis that select functional groups of bacteria from pristine sites have an innate ability to degrade synthetic aromatics that often contaminate groundwater environments,due to exposure to naturally occurring recalcitrant aromatics in their environment. This study demonstrates that subsurface microbial communities are capable of utilizing lignin and humic acid breakdown products. Utilizers of these compounds were found to be present in most all the wells tested. Even the deepest aquifer tested had utilizers present for all six of the aromatics tested. Highest counts for the aromatics tested were observed with the naturally occurring breakdown products of either lignin or humic acid. Carboxylic acids were found to be an important sole carbon source for groundwater bacteria possibly explained by the fact that they are produced by the oxidative cleavage of aromatic ring structures. The carbohydrate sole carbon sources that demonstrated the greatest densities were ones commonly associated with humics. This study indicates that utilization of naturally occurring aromatic compounds in the subsurface is an important nutritional source for groundwater bacteria. In addition, it suggests that adaptation to naturally occurring recalcitrant substrates is the origin of degradative pathways for xenobiotic compounds with analogous structure. This work has important implications for in situ bioremediation as a method of environmental cleanup.

  6. Ground state analytical ab initio intermolecular potential for the Cl{sub 2}-water system

    SciTech Connect (OSTI)

    Hormain, Laureline; Monnerville, Maurice Toubin, Cline; Duflot, Denis; Pouilly, Brigitte; Briquez, Stphane; Bernal-Uruchurtu, Margarita I.; Hernndez-Lamoneda, Ramn

    2015-04-14

    The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl{sub 2} molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl{sub 2} ? H{sub 2}O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by the comparison of ab initio results of Cl{sub 2} interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl{sub 2} on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.

  7. Contaminant profiles in Southeast Asian immigrants consuming fish from polluted waters in northeastern Wisconsin

    SciTech Connect (OSTI)

    Schantz, Susan L.; Gardiner, Joseph C.; Aguiar, Andrea; Tang, Xiaoqin; Gasior, Donna M.; Sweeney, Anne M.; Peck, Jennifer D.; Gillard, Douglas; Kostyniak, Paul J.

    2010-01-15

    Recent immigrants to the USA from Southeast Asia may be at higher risk of exposure to fish-borne contaminants including polychlorinated biphenyls (PCBs), p, p'-dichlorodiphenyldichloroethene (DDE) and methylmercury (MeHg) because of their propensity to engage in subsistence fishing. Exposure to contaminants was assessed in men and women of Hmong descent living in Green Bay, Wisconsin, where the Fox River and lower Green Bay are contaminated with PCBs, and to a lesser extent with mercury. Serum samples from 142 people were analyzed for PCBs and p,p'-DDE by capillary column gas chromatography with electron capture detection (ECD). Whole blood was analyzed for total mercury by cold vapor atomic absorption spectrometry and atomic fluorescence spectroscopy. Lipid-adjusted total PCB concentrations ranged from 8.7 to 3,091 ng/g (full range of the data), with a geometric mean of 183.6 ng/g (estimated after eliminating one outlier). DDE ranged from 0.3 to 7,083 (full range of the data) with a geometric mean of 449.8 ng/g (estimated after eliminating two outliers). Men had higher PCB and DDE concentrations than women. Serum PCB concentrations were significantly correlated with fish consumption (r=0.43, p<0.0001), whereas DDE concentrations were not (r=0.09,p=0.29). Instead, serum DDE was strongly associated with the number of years spent in a Thai refugee camp before immigrating to the USA (r=0.60;p<0.0001). PCB congeners 138, 153, 118 and 180 accounted for a smaller percentage of the total PCBs than has been reported in other fish-eating populations, and several lightly chlorinated congeners were present in relatively large amounts. Mercury exposure was low in this population. In conclusion, Hmong immigrants in northeastern Wisconsin are at risk of elevated PCB exposure from consumption of locally caught fish. The pattern of exposure is somewhat different than patterns in other fish-eating populations, possibly due to use of Aroclor 1242 by the paper industry in this region.

  8. Data, exergy, and energy analysis of a vertical-bore, ground-source heat pump to for domestic water heating under simulated occupancy conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D; Gehl, Anthony C

    2015-01-01

    Evidence is provided to support the view that greater than two-thirds of energy required to produce domestic hot water may be extracted from the ground which serves as renewable energy resource. The case refers to a 345 m2 research house located in Oak Ridge, Tennessee, 36.01 N 84.26 W in a mixed-humid climate with HDD of 2218 C-days (3993 F-days) and CDD of 723 C-days (1301 F-days). The house is operated under simulated occupancy conditions in which the hot water use protocol is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which captures the water consumption lifestyles of the average family in the United States. The 5.275 (1.5-ton) water-to-water ground source heat pump (WW-GSHP) shared the same vertical bore with a 7.56 KW water-to-air ground source heat pump for space conditioning the same house. Energy and exergy analysis of data collected continuously over a twelve month period provide performance metrics and sources of inherent systemic inefficiencies. Data and analyses are vital to better understand how WW-GSHPs may be further improved to enable the ground to be used as a renewable energy resource.

  9. Data, exergy, and energy analysis of a vertical-bore, ground-source heat pump to for domestic water heating under simulated occupancy conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza; Munk, Jeffrey D.; Baxter, Van D.; Gehl, Anthony C.

    2015-05-27

    Evidence is provided to support the view that greater than two-thirds of energy required to produce domestic hot water may be extracted from the ground which serves as renewable energy resource. The case refers to a 345 m2 research house located in Oak Ridge, Tennessee, 36.01 N 84.26 W in a mixed-humid climate with HDD of 2218 C-days (3993 F-days) and CDD of 723 C-days (1301 F-days). The house is operated under simulated occupancy conditions in which the hot water use protocol is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which captures the water consumption lifestyles of the average family in the United States. The 5.275 (1.5-ton) water-to-water ground source heat pump (WW-GSHP) shared the same vertical bore with a 7.56 KW water-to-air ground source heat pump for space conditioning the same house. Energy and exergy analysis of data collected continuously over a twelve month period provide performance metrics and sources of inherent systemic inefficiencies. Data and analyses are vital to better understand how WW-GSHPs may be further improved to enable the ground to be used as a renewable energy resource.

  10. Data, exergy, and energy analysis of a vertical-bore, ground-source heat pump to for domestic water heating under simulated occupancy conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ally, Moonis Raza; Munk, Jeffrey D.; Baxter, Van D.; Gehl, Anthony C.

    2015-05-27

    Evidence is provided to support the view that greater than two-thirds of energy required to produce domestic hot water may be extracted from the ground which serves as renewable energy resource. The case refers to a 345 m2 research house located in Oak Ridge, Tennessee, 36.01 N 84.26 W in a mixed-humid climate with HDD of 2218 C-days (3993 F-days) and CDD of 723 C-days (1301 F-days). The house is operated under simulated occupancy conditions in which the hot water use protocol is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which captures themore » water consumption lifestyles of the average family in the United States. The 5.275 (1.5-ton) water-to-water ground source heat pump (WW-GSHP) shared the same vertical bore with a 7.56 KW water-to-air ground source heat pump for space conditioning the same house. Energy and exergy analysis of data collected continuously over a twelve month period provide performance metrics and sources of inherent systemic inefficiencies. Data and analyses are vital to better understand how WW-GSHPs may be further improved to enable the ground to be used as a renewable energy resource.« less

  11. Removing Arsenic from Contaminated Drinking Water in Rural Bangladesh: Recent Fieldwork Results and Policy Implications

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin; Addy, Susan E.A.

    2009-09-17

    ARUBA (Arsenic Removal Using Bottom Ash) has proven effective at removing high concentrations of arsenic from drinking water in Bangladesh. During fieldwork in four sub-districts of the country, ARUBA reduced arsenic levels ranging from 200 to 900 ppb to below the Bangladesh standard of 50 ppb. The technology is cost-effective because the substrate--bottom ash from coal fired power plants--is a waste material readily available in South Asia. In comparison to similar technologies, ARUBA uses less media for arsenic removal due to its high surface area to volume ratio. Hence, less waste is produced. A number of experiments were conducted in Bangladesh to determine the effectiveness of various water treatment protocols. It was found that (1) ARUBA removes more than half of the arsenic from water within five minutes of treatment, (2) ARUBA, that has settled at the bottom of a treatment vessel, continues to remove arsenic for 2-3 days, (3) ARUBA's arsenic removal efficiency can be improved through sequential partial dosing (adding a given amount of ARUBA in fractions versus all at once), and (4) allowing water to first stand for two to three days followed by treatment with ARUBA produced final arsenic levels ten times lower than treating water directly out of the well. Our findings imply a number of tradeoffs between ARUBA's effective arsenic removal capacity, treatment system costs, and waste output. These tradeoffs, some a function of arsenic-related policies in Bangladesh (e.g., waste disposal regulations), must be considered when designing an arsenic removal system. We propose that the most attractive option is to use ARUBA in communityscale water treatment centers, installed as public-private partnerships, in Bangladeshi villages.

  12. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; Belcher, W.R.; San Juan, Carma

    2002-11-22

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this ''second-generation'' regional model was to enhance the knowledge and understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-stat e representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration.

  13. ''A ground water resources study of a Pacific Ocean atoll - Tarawa, Gilbert Islands,'' by J. W. Lloyd, J. C. Miles, G. R. Chessmand, and S. F. Bugg

    SciTech Connect (OSTI)

    Wheatcraft, S.W.; Buddemeier, R.W.

    1981-10-01

    Several inherent problems in the methodology employed in the ground water resource study of Tarawa Atoll (Lloyd, et al., 1981) are described. Studies of Enewetak Atoll have provided data that require a significantly different conceptual model of the atoll hydrogeology system. Comparison of well, lagoon, and ocean tidal observations with a mathematical model that assumes horizontal tidal propagation indicates that the observed results are more consistent with a system that is controlled by vertical coupling between the unconsolidated surface aquifer and an underlying aquifer of more permeable limestone. This indicates that most fresh water recharged to the aquifer migrates downward and mixes with the sea water in a deeper aquifer providing easy exchange with the ocean. Lloyd, et al., do not take tidal mixing or vertical transport into account and it therefore seems likely that fresh water inventories are significantly overestimated. Failure to include these significant loss terms in the island water budget may also account for calculated heads above ground level. (JMT)

  14. Porosity distribution in Wolfcamp strata, Palo Duro basin, Texas panhandle: implications for deep-basin ground-water flow

    SciTech Connect (OSTI)

    Conti, R.D.; Wirojanagud, P.

    1984-04-01

    Average-porosity distributions in the Wolfcamp deep-basin aquifer are critical to discernment of the geographic trends in effective-porosity in the Palo Duro basin. Precise data are used to improved resolution of porosity values for computer-simulated areal ground-water modeling. Assessing vertical distributions of lithology and porosity in each well studied involves analysis of crossplotted neutron- and density-porosity log responses. This method more accurately identifies lithology and porosity than does the commonly employed crossplotted neutron-porosity and sonic (interval travel time) responses. Log-derived average-porosity distributions yield information about effective pore volume (i.e., movable water) in the Wolfcamp aquifer and enhance the accuracy of estimated of travel times and velocities of brines in basinwide traverses. Mathematical analysis of average travel time and total effective pore volume yield estimates of the rates of annual discharge from the Wolfcamp aquifer in the Palo Duro basin. Based on average flush rates between 2.2 and 1.5 m.y., annual discharge rates from the Wolfcamp aquifer across the northern and eastern basin boundaries, are about 3.6 x 10/sup 5/ m/sup 3/ year/sup -1/ to 5.3 x 10/sup 5/m/sup 3/ year/sup -1/.

  15. Real-time discriminatory sensors for water contamination events :LDRD 52595 final report.

    SciTech Connect (OSTI)

    Borek, Theodore Thaddeus III; Carrejo-Simpkins, Kimberly; Wheeler, David Roger; Adkins, Douglas Ray; Robinson, Alex Lockwood; Irwin, Adriane Nadine; Lewis, Patrick Raymond; Goodin, Andrew M.; Shelmidine, Gregory J.; Dirk, Shawn M.; Chambers, William Clayton; Mowry, Curtis Dale; Showalter, Steven Kedrick

    2005-10-01

    The gas-phase {mu}ChemLab{trademark} developed by Sandia can detect volatile organics and semi-volatiles organics via gas phase sampling . The goal of this three year Laboratory Directed Research and Development (LDRD) project was to adapt the components and concepts used by the {mu}ChemLab{trademark} system towards the analysis of water-borne chemicals of current concern. In essence, interfacing the gas-phase {mu}ChemLab{trademark} with water to bring the significant prior investment of Sandia and the advantages of microfabrication and portable analysis to a whole new world of important analytes. These include both chemical weapons agents and their hydrolysis products and disinfection by-products such as Trihalomethanes (THMs) and haloacetic acids (HAAs). THMs and HAAs are currently regulated by EPA due to health issues, yet water utilities do not have rapid on-site methods of detection that would allow them to adjust their processes quickly; protecting consumers, meeting water quality standards, and obeying regulations more easily and with greater confidence. This report documents the results, unique hardware and devices, and methods designed during the project toward the goal stated above. It also presents and discusses the portable field system to measure THMs developed in the course of this project.

  16. Geochemical orientation survey of stream sediment, stream water, and ground water near uranium prospects, Monticello area, New York. National Uranium Resource Evaluation Program

    SciTech Connect (OSTI)

    Rose, A. W.; Smith, A. T.; Wesolowski, D.

    1982-08-01

    A detailed geochemical test survey has been conducted in a 570 sq km area around six small copper-uranium prospects in sandstones of the Devonian Catskill Formation near Monticello in southern New York state. This report summarizes and interprets the data for about 500 stream sediment samples, 500 stream water samples, and 500 ground water samples, each analyzed for 40 to 50 elements. The groundwater samples furnish distinctive anomalies for uranium, helium, radon, and copper near the mineralized localities, but the samples must be segregated into aquifers in order to obtain continuous well-defined anomalies. Two zones of uranium-rich water (1 to 16 parts per billion) can be recognized on cross sections; the upper zone extends through the known occurrences. The anomalies in uranium and helium are strongest in the deeper parts of the aquifers and are diluted in samples from shallow wells. In stream water, copper and uranium are slightly anomalous, as in an ore factor derived from factor analysis. Ratios of copper, uranium, and zinc to conductivity improve the resolution of anomalies. In stream sediment, extractable uranium, copper, niobium, vanadium, and an ore factor furnish weak anomalies, and ratios of uranium and copper to zinc improve the definition of anomalies. The uranium/thorium ratio is not helpful. Published analyses of rock samples from the nearby stratigraphic section show distinct anomalies in the zone containing the copper-uranium occurrences. This report is being issued without the normal detailed technical and copy editing, to make the data available to the public before the end of the National Uranium Reconnaissance Evaluation program.

  17. UMTRA Ground Water Project

    Office of Legacy Management (LM)

    Verification Monitoring Report for the Gunnison, Colorado, Processing Site September 2013 LMS/GUP/S10620 This page intentionally left blank LMS/GUP/S10620 2013 Verification Monitoring Report for the Gunnison, Colorado, Processing Site September 2013 This page intentionally left blank U.S. Department of Energy 2013 Verification Monitoring Report-Gunnison, Colorado, Processing Site September 2013 Doc. No. S10620 Page i Contents Abbreviations

  18. UMTRA Ground Water Project

    Office of Legacy Management (LM)

    ... DOE Monitoring Wells-Golf Course and Residential, near the Gunnison Site ... Monitoring Report-Gunnison, Colorado, Processing Site U.S. Department of Energy Doc. No. ...

  19. Separation and concentration of water-borne contaminants utilizing insulator-based dielectrophoresis.

    SciTech Connect (OSTI)

    Lapizco-Encinas, Blanca Hazalia; Fiechtner, Gregory J.; Cummings, Eric B.; Davalos, Rafael V.; Kanouff, Michael P.; Simmons, Blake Alexander; McGraw, Gregory J.; Salmi, Allen J.; Ceremuga, Joseph T.; Fintschenko, Yolanda

    2006-01-01

    This report focuses on and presents the capabilities of insulator-based dielectrophoresis (iDEP) microdevices for the concentration and removal of water-borne bacteria, spores and inert particles. The dielectrophoretic behavior exhibited by the different particles of interest (both biological and inert) in each of these systems was observed to be a function of both the applied electric field and the characteristics of the particle, such as size, shape, and conductivity. The results obtained illustrate the potential of glass and polymer-based iDEP devices to act as a concentrator for a front-end device with significant homeland security and industrial applications for the threat analysis of bacteria, spores, and viruses. We observed that the polymeric devices exhibit the same iDEP behavior and efficacy in the field of use as their glass counterparts, but with the added benefit of being easily mass fabricated and developed in a variety of multi-scale formats that will allow for the realization of a truly high-throughput device. These results also demonstrate that the operating characteristics of the device can be tailored through the device fabrication technique utilized and the magnitude of the electric field gradient created within the insulating structures. We have developed systems capable of handling numerous flow rates and sample volume requirements, and have produced a deployable system suitable for use in any laboratory, industrial, or clinical setting.

  20. Contaminant Concentrations in Storm Water Entering the Sinclair/Dyes Inlet Subasin of the Puget Sound, USA, During Storm Event and Baseflow Conditions

    SciTech Connect (OSTI)

    Brandenberger, Jill M.; May, Christopher W.; Cullinan, Valerie I.; Johnston, Robert K.; Leisle, D. E.; Beckwith, B.; Sherrell, Gerald; Mettallo, David; Pingree, Ryan

    2007-03-29

    The Sinclair and Dyes Inlet watershed is located on the west side of Puget Sound in Kitsap County, Washington, U.S.A. (Figure 1). Puget Sound Naval Shipyard (PSNS), U.S Environmental Protection Agency (USEPA), the Washington State Department of Ecology (WA-DOE), Kitsap County, City of Bremerton, City of Bainbridge Island, City of Port Orchard, and the Suquamish Tribe have joined in a cooperative effort to evaluate water-quality conditions the Sinclair-Dyes Inlet watershed and correct identified problems. A major focus of this project, known as Project ENVVEST, is to develop Water Clean-up (TMDL) Plans for constituents listed on the 303(d) list within the Sinclair and Dyes Inlet watershed. Segments within the Sinclair and Dyes Inlet watershed were listed on the State of Washington’s 1998 303(d) due to fecal coliform contamination in marine water, metals in sediment and fish tissue, and organics in sediment and fish tissue (WA-DOE 2003). Stormwater loading was identified by ENVVEST as one potential source of sediment contamination, which lacked sufficient data for the contaminant mass balance calculations conducted for the watershed. This paper summarizes the contaminant concentrations in representative streams and outfalls discharging into Sinclair and Dyes Inlets during 18 storm events and wet/dry season baseflow conditions between November 2002 and May 2005. This paper serves as a portion of the report titled, “Surface and Stormwater Quality Assessment for Sinclair and Dyes Inlet, Washington” (Brandenberger et al. 2007).

  1. On the ground state calculation of a many-body system using a self-consistent basis and quasi-Monte Carlo: An application to water hexamer

    SciTech Connect (OSTI)

    Georgescu, Ionu? Mandelshtam, Vladimir A.; Jitomirskaya, Svetlana

    2013-11-28

    Given a quantum many-body system, the Self-Consistent Phonons (SCP) method provides an optimal harmonic approximation by minimizing the free energy. In particular, the SCP estimate for the vibrational ground state (zero temperature) appears to be surprisingly accurate. We explore the possibility of going beyond the SCP approximation by considering the system Hamiltonian evaluated in the harmonic eigenbasis of the SCP Hamiltonian. It appears that the SCP ground state is already uncoupled to all singly- and doubly-excited basis functions. So, in order to improve the SCP result at least triply-excited states must be included, which then reduces the error in the ground state estimate substantially. For a multidimensional system two numerical challenges arise, namely, evaluation of the potential energy matrix elements in the harmonic basis, and handling and diagonalizing the resulting Hamiltonian matrix, whose size grows rapidly with the dimensionality of the system. Using the example of water hexamer we demonstrate that such calculation is feasible, i.e., constructing and diagonalizing the Hamiltonian matrix in a triply-excited SCP basis, without any additional assumptions or approximations. Our results indicate particularly that the ground state energy differences between different isomers (e.g., cage and prism) of water hexamer are already quite accurate within the SCP approximation.

  2. Numerical modeling of regional ground-water flow in the deep-basin brine aquifer of the Palo Duro Basin, Texas Panhandle

    SciTech Connect (OSTI)

    Wirojanagud, P.; Kreitler, C.W.; Smith, D.A.

    1986-01-01

    Bedded Permian-age evaporite sequences in the Palo Duro Basin are being considered for a permanent nuclear waste repository by the U.S. Department of Energy. The purpose of this modeling study is to provide an understanding of regional ground-water flow in the formations beneath the Permian evaporite section. From this understanding, more detailed, smaller scale studies can be designed. This study is also intended to provide a better understanding of the boundary conditions and permeabilities of the aquifer and aquitard system as well as provide estimates of ground-water travel times across the basin. Numerical simulations were made of the Wolfcamp aquifer modeled as a single layer and of the entire Deep-Basin Brine aquifer system, including the Wolfcamp aquifer, modeled as a single layer.

  3. Jeff Grounds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jeff Grounds Jeff Grounds jeffgrounds-sm.jpg Jeff Grounds Facilities Manager JTGrounds@lbl.gov Phone: (510) 486-7197 Mobile: (510) 207-2273 Last edited: 2016-04-29 11:34:57

  4. Situ treatment of contaminated groundwater

    DOE Patents [OSTI]

    McNab, Jr., Walt W.; Ruiz, Roberto; Pico, Tristan M.

    2001-01-01

    A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

  5. Air cleaning issues with contaminated sites

    SciTech Connect (OSTI)

    Bellamy, R.R.

    1997-08-01

    The US Nuclear Regulatory Commission has developed a list of contaminated sites that warrant special USNRC attention because they pose unique or complex decommissioning issues. This list of radiologically contaminated sites is termed the Site Decommissioning Management Plan (SDMP), and was first issued in 1990. A site is placed on the SDMP list if it has; (1) Problems with the viability of the responsible organization (e.g., the licensee for the site is unable or unwilling to pay for the decommissioning); (2) Large amounts of soil contamination or unused settling ponds or burial grounds that may make the waste difficult to dispose of; (3) The long-term presence of contaminated, unused buildings; (4) A previously terminated license; or (5) Contaminated or potential contamination of the ground water from on-site wastes. In deciding whether to add a site to the SDMP list, the NRC also considers the projected length of time for decommissioning and the willingness of the responsible organization to complete the decommissioning in a timely manner. Since the list was established, 9 sites have been removed from the list, and the current SDMP list contains 47 sites in 11 states. The USNRC annually publishes NUREG-1444, {open_quotes}Site Decommissioning Management Plan{close_quotes}, which updates the status of each site. This paper will discuss the philosophical goals of the SDMP, then will concentrate on the regulatory requirements associated with air cleaning issues at the SDMP sites during characterization and remediation. Both effluent and worker protection issues will be discussed. For effluents, the source terms at sites will be characterized, and measurement techniques will be presented. Off-site dose impacts will be included. For worker protection issues, air sampling analyses will be presented in order to show how the workers are adequately protected and their doses measured to satisfy regulatory criteria during decontamination operations. 1 tab.

  6. Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts

    SciTech Connect (OSTI)

    Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

    2010-12-31

    Today, nearly all liquid fuels and commodity chemicals are produced from non-renewable resources such as crude oil and natural gas. Because of increasing scrutiny of carbon dioxide (CO{sub 2}) emissions produced using traditional fossil-fuel resources, the utilization of alternative feedstocks for the production of power, hydrogen, value-added chemicals, and high-quality hydrocarbon fuels such as diesel and substitute natural gas (SNG) is critical to meeting the rapidly growing energy needs of modern society. Coal and biomass are particularly attractive as alternative feedstocks because of the abundant reserves of these resources worldwide. The strategy of co-gasification of coal/biomass (CB) mixtures to produce syngas for synthesis of Fischer-Tropsch (FT) fuels offers distinct advantages over gasification of either coal or biomass alone. Co-feeding coal with biomass offers the opportunity to exploit economies of scale that are difficult to achieve in biomass gasification, while the addition of biomass to the coal gasifier feed leverages proven coal gasification technology and allows CO{sub 2} credit benefits. Syngas generated from CB mixtures will have a unique contaminant composition because coal and biomass possess different concentrations and types of contaminants, and the final syngas composition is also strongly influenced by the gasification technology used. Syngas cleanup for gasification of CB mixtures will need to address this unique contaminant composition to support downstream processing and equipment. To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants

  7. Decreasing aqueous mercury concentrations to achieve safe levels in fish: examining the water-fish relationship in two point-source contaminated streams

    SciTech Connect (OSTI)

    Mathews, Teresa J; Southworth, George R; Peterson, Mark J; Roy, W Kelly; Ketelle, Richard H; Valentine, Charles S; Gregory, Scott M

    2013-01-01

    East Fork Poplar Creek (EFPC) and White Oak Creek (WOC) are two mercury-contaminated streams located on the Department of Energy s Oak Ridge Reservation in east Tennessee. East Fork Poplar Creek is the larger and more contaminated of the two, with average aqueous mercury (Hg) concentrations exceeding those in reference streams by several hundred-fold. Remedial actions over the past 20 years have decreased aqueous Hg concentrations in EFPC by 85 %. Fish fillet concentrations, however, have not responded to this decrease in aqueous Hg and remain above the U.S. Environmental Protection Agency s ambient water quality criterion (AWQC) of 0.3 mg/kg. The lack of correlation between aqueous and fish tissue Hg concentrations in this creek has led to questions regarding the usefulness of target aqueous Hg concentrations and strategies for future remediation efforts. White Oak Creek has a similar contamination history but aqueous Hg concentrations in WOC are an order of magnitude lower than in EFPC. Despite the lower aqueous Hg concentrations, fish fillet concentrations in WOC have also been above the AWQC, making the most recent aqueous Hg target of 200 ng/L in EFPC seem unlikely to result in an effective decrease in fillet Hg concentrations. Recent monitoring efforts in WOC, however, suggest an aqueous total Hg threshold above which Hg bioaccumulation in fish may not respond. This new information could be useful in guiding remedial actions in EFPC and in other point-source contaminated streams.

  8. Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2012-01-01

    In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

  9. Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site

    SciTech Connect (OSTI)

    Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

    1995-03-01

    In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site.

  10. Concentration and removal of tritium and/or deuterium from water contaminated with tritium and/or deuterium

    DOE Patents [OSTI]

    Meyer, Thomas J.; Narula, Poonam M.

    2001-01-01

    Concentration of tritium and/or deuterium that is a contaminant in H.sub.2 O, followed by separation of the concentrate from the H.sub.2 O. Employed are certain metal oxo complexes, preferably with a metal from Group VIII. For instance, [Ru.sup.IV (2,2',6',2"-terpyridine)(2,2'-bipyridine)(O)](ClO.sub.4).sub.2 is very suitable.

  11. Contamination control device

    DOE Patents [OSTI]

    Clark, Robert M.; Cronin, John C.

    1977-01-01

    A contamination control device for use in a gas-insulated transmission bus consisting of a cylindrical center conductor coaxially mounted within a grounded cylindrical enclosure. The contamination control device is electrically connected to the interior surface of the grounded outer shell and positioned along an axial line at the lowest vertical position thereon. The contamination control device comprises an elongated metallic member having a generally curved cross-section in a first plane perpendicular to the axis of the bus and having an arcuate cross-section in a second plane lying along the axis of the bus. Each opposed end of the metallic member and its opposing sides are tapered to form a pair of generally converging and downward sloping surfaces to trap randomly moving conductive particles in the relatively field-free region between the metallic member and the interior surface of the grounded outer shell. The device may have projecting legs to enable the device to be spot welded to the interior of the grounded housing. The control device provides a high capture probability and prevents subsequent release of the charged particles after the capture thereof.

  12. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water

    SciTech Connect (OSTI)

    Muñoz, Alexandra; Chervona, Yana; Hall, Megan; Kluz, Thomas; Gamble, Mary V.; Costa, Max

    2015-05-01

    Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50 to 1000 μg/L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays. Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p < 0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic's possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females. - Highlights: • Males and females exhibit unique gene expression changes in response to arsenic. • Only 23 genes are common among the differentially expressed genes for the sexes. • Male and female gene lists exhibit common biological

  13. Subsurface contaminants focus area

    SciTech Connect (OSTI)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  14. Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts

    SciTech Connect (OSTI)

    Alptekin, Gokhan

    2013-02-15

    Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H2S, NH3, HCN, AsH3, PH3, HCl, NaCl, KCl, AS3, NH4NO3, NH4OH, KNO3, HBr, HF, and HNO3) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts.

  15. Method to Remove Uranium/Vanadium Contamination from Groundwater

    DOE Patents [OSTI]

    Metzler, Donald R.; Morrison Stanley

    2004-07-27

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  16. Method to remove uranium/vanadium contamination from groundwater

    SciTech Connect (OSTI)

    Metzler, Donald R.; Morrison, Stanley

    2004-07-27

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  17. Development of HUMASORB{trademark}, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    SciTech Connect (OSTI)

    Sanjay, H.G.; Srivastave, K.C.; Walia, D.S.

    1995-10-01

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project.The objective of this project is to develop a lignite-derived adsorbent, Humasorb{sup TM} to remove heavy metals and organics from ground water and surface water streams.

  18. Hybrid joule heating/electro-osmosis process for extracting contaminants from soil layers

    DOE Patents [OSTI]

    Carrigan, Charles R.; Nitao, John J.

    2003-06-10

    Joule (ohmic) heating and electro-osmosis are combined in a hybrid process for removal of both water-soluble contaminants and non-aqueous phase liquids from contaminated, low-permeability soil formations that are saturated. Central to this hybrid process is the partial desaturation of the formation or layer using electro-osmosis to remove a portion of the pore fluids by induction of a ground water flow to extraction wells. Joule heating is then performed on a partially desaturated formation. The joule heating and electro-osmosis operations can be carried out simultaneously or sequentially if the desaturation by electro-osmosis occurs initially. Joule heating of the desaturated formation results in a very effective transfer or partitioning of liquid state contaminants to the vapor phase. The heating also substantially increases the vapor phase pressure in the porous formation. As a result, the contaminant laden vapor phase is forced out into soil layers of a higher permeability where other conventional removal processes, such as steam stripping or ground water extraction can be used to capture the contaminants. This hybrid process is more energy efficient than joule heating or steam stripping for cleaning low permeability formations and can share electrodes to minimize facility costs.

  19. Implementation of passive samplers for monitoring volatile organic compounds in ground water at the Kansas City Plant

    SciTech Connect (OSTI)

    Gardner, F.G.; Korte, N.E.; Wilson-Nichols, M.J.; Baker, J.L.; Ramm, S.G.

    1998-06-01

    Passive sampling for monitoring volatile organic compounds (VOCs) has been suggested as a possible replacement to the traditional bailer method used at the Department of Energy Kansas City Plant (KCP) for routine groundwater monitoring. To compare methods, groundwater samples were collected from 19 KCP wells with VOC concentrations ranging from non-detectable to > 100,000 {micro}g/L. Analysis of the data was conducted using means and medians of multiple measurements of TCE, 1,2-DCE, 1,1-DCE and VC. All 95% confidence intervals of these VOCs overlap, providing evidence that the two methods are similar. The study also suggests that elimination of purging and decontamination of sampling equipment reduces the labor required to sample by approximately 32%. Also, because the passive method generates no waste water, there are no associated disposal costs. The results suggest evidence to continue studies and efforts to replace traditional bailer methods with passive sampling at KCP based on cost and the similarity of the methods.

  20. Multivariate Statistical Analysis of Water Chemistry in Evaluating the Origin of Contamination in Many Devils Wash, Shiprock, New Mexico

    SciTech Connect (OSTI)

    None, None

    2012-12-31

    This report evaluates the chemistry of seep water occurring in three desert drainages near Shiprock, New Mexico: Many Devils Wash, Salt Creek Wash, and Eagle Nest Arroyo. Through the use of geochemical plotting tools and multivariate statistical analysis techniques, analytical results of samples collected from the three drainages are compared with the groundwater chemistry at a former uranium mill in the Shiprock area (the Shiprock site), managed by the U.S. Department of Energy Office of Legacy Management. The objective of this study was to determine, based on the water chemistry of the samples, if statistically significant patterns or groupings are apparent between the sample populations and, if so, whether there are any reasonable explanations for those groupings.

  1. Remediation of Mercury and Industrial Contaminants

    Office of Energy Efficiency and Renewable Energy (EERE)

    The mission of the Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

  2. Electrochemical Interpretation of a Stress Corrosion Cracking of Thermally Treated Ni base Alloys in a Lead Contaminated Water

    SciTech Connect (OSTI)

    Hwang, Seong Sik; Lim, Yun Soo; Kim, Hong Pyo; Kim, Joung Soo; Thomas, Larry E.

    2007-08-20

    Since the PbSCC(Lead stress corrosion cracking) of alloy 600 tubing materials was reported by Copson and Dean in 1965, the effect of lead on a corrosion film and cracking morphology have been continually debated. An electrochemical interaction of lead with the alloying elements of SG tubings was studied and the corrosion products were analyzed. It was found that lead enhanced the anodic dissolution of alloy 600 and alloy 690 in the electrochemical test. The lead preferentially dissolved the Cr from the corrosion film of alloy 600 and alloy 690 in alkaline water. The lead ion seemed to penetrate into the TG crack tip and react with the corrosion film. A selective Cr depletion was observed to weaken the stability of the passive film on the alloys. Whereas passivity of Ni became stable in lead containing solution, Cr and Fe passivity became unstable.

  3. Characterization of calculation of in-situ retardation factors of contaminant transport using naturally-radionuclides and rock/water interaction occurring U-Series disequilibria timescales. 1997 annual progress report

    SciTech Connect (OSTI)

    Roback, R.; Murrel, M.; Goldstein, S.; Ku, T.L.; Luo, S.

    1997-01-01

    'The research is directed toward a quantitative assessment of contaminant transport rates in fracture-rock systems using uranium-series radionuclides. Naturally occurring uranium-and thorium-series radioactive disequilibria will provide information on the rates of adsorption-desorption and transport of radioactive contaminants as well as on fluid transport and rock dissolution in a natural setting. This study will also provide an improved characterization of preferential flow and contaminant transport at the Idaho Environmental and Engineering Lab. (INEEL) site. To a lesser extent, the study will include rocks in the unsaturated zone. The authors will produce a realistic model of radionuclide migration under unsaturated and saturated field conditions at the INEEL site, taking into account the retardation processes involved in the rock/water interaction. The major tasks are to (1) determine the natural distribution of U, Th, Pa and Ra isotopes in rock minerals. sorbed phases on the rocks, and in fluids from both saturated and unsaturated zones at the site, and (2) study rock/water interaction processes using U/Th series disequilibrium and a statistical analysis-based model for the Geologic heterogeneity plays an important role in transporting contaminants in fractured rocks. Preferential flow paths in the fractured rocks act as a major pathway for transport of radioactive contaminants in groundwaters. The weathering/dissolution of rock by groundwater also influences contaminant mobility. Thus, it is important to understand the hydrogeologic features of the site and their impact on the migration of radioactive contaminants. In this regard, quantification of the rock weathering/dissolution rate and fluid residence time from the observed decay-series disequilibria will be valuable. By mapping the spatial distribution of the residence time of groundwater in fractured rocks, the subsurface preferential flow paths (with high rock permeability and short fluid residence

  4. Pacific Northwest National Laboratory Grounds Maintenance

    SciTech Connect (OSTI)

    2009-08-05

    FEMP Water Efficiency Best Management Practice #4 and #5: Case study overview of the grounds maintenance program for Pacific Northwest National Laboratory.

  5. System for the removal of contaminant soil-gas vapors

    DOE Patents [OSTI]

    Weidner, J.R.; Downs, W.C.; Kaser, T.G.; Hall, H.J.

    1997-12-16

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources. 4 figs.

  6. System for the removal of contaminant soil-gas vapors

    DOE Patents [OSTI]

    Weidner, Jerry R.; Downs, Wayne C.; Kaser, Timothy G.; Hall, H. James

    1997-01-01

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources.

  7. Natural Contamination from the Mancos Shale | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Contamination from the Mancos Shale Natural Contamination from the Mancos Shale Natural Contamination from the Mancos Shale Natural Contamination from the Mancos Shale (5.02 MB) More Documents & Publications Application of Environmental Isotopes to the Evaluation of the Origin of Contamination in a Desert Arroyo: Many Devils Wash, Shiprock, New Mexico Multivariate Statistical Analysis of Water Chemistry in Evaluating the Origin of Contamination in Many Devils Wash, Shiprock, New

  8. Contaminant Sources are Known

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources are Known Historical contaminant sources from liquid discharges and solid waste management units are known. August 1, 2013 Contaminant source map LANL contaminant...

  9. Nitrate contamination of groundwater: A conceptual management framework

    SciTech Connect (OSTI)

    Almasri, Mohammad N. . E-mail: mnmasri@najah.edu

    2007-04-15

    In many countries, public concern over the deterioration of groundwater quality from nitrate contamination has grown significantly in recent years. This concern has focused increasingly on anthropogenic sources as the potential cause of the problem. Evidence indicates that the nitrate (NO{sub 3}) levels routinely exceed the maximum contaminant level (MCL) of 10 mg/l NO{sub 3}-N in many aquifer systems that underlie agriculture-dominated watersheds. Degradation of groundwater quality due to nitrate pollution along with the increasing demand for potable water has motivated the adoption of restoration actions of the contaminated aquifers. Restoration efforts have intensified the dire need for developing protection alternatives and management options such that the ultimate nitrate concentrations at the critical receptors are below the MCL. This paper presents a general conceptual framework for the management of groundwater contamination from nitrate. The management framework utilizes models of nitrate fate and transport in the unsaturated and saturated zones to simulate nitrate concentration at the critical receptors. To study the impact of different management options considering both environmental and economic aspects, the proposed framework incorporates a component of a multi-criteria decision analysis. To enhance spatiality in model development along with the management options, the utilization of a land use map is depicted for the allocation and computation of on-ground nitrogen loadings from the different sources.

  10. Multi Layer Contaminant Migration Model

    Energy Science and Technology Software Center (OSTI)

    1999-07-28

    This computer software augments and enhances certain calculation included in the previously copyrighted Vadose Zone Contaminant Migration Model. The computational method used in this model recognizes the heterogenous nature of the soils and attempts to account for the variability by using four separate layers to simulate the flow of water through the vadose zone. Therefore, the pore-water velocity calculated by the code will be different than the previous model because it accounts for a widermore » variety of soil properties encountered in the vadose zone. This model also performs an additional screening step than in the previous model. In this model the higher value of two different types of Soil Screening Levels are compared to soil concentrations of contaminants. If the contaminant concentration exceeds the highest of two SSLs, then that contaminant is listed. This is consistent with USEPA's Soil Screening Guidance.« less