Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Designated Ground Water Basin Map | Open Energy Information  

Open Energy Info (EERE)

Designated Ground Water Basin Map Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Designated Ground Water Basin Map Details Activities (0) Areas...

2

GRR/Section 19-CO-c - Designated Ground Water Basin Well Permitting Process  

Open Energy Info (EERE)

GRR/Section 19-CO-c - Designated Ground Water Basin Well Permitting Process GRR/Section 19-CO-c - Designated Ground Water Basin Well Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-c - Designated Ground Water Basin Well Permitting Process 19COCDesignatedGroundWaterBasinWellPermit.pdf Click to View Fullscreen Contact Agencies Colorado Division of Water Resources Colorado Ground Water Commission Regulations & Policies CRS 37-90-107 CRS 37-90-108 Ground Water Management District Rules 2 CCR 410-1 - Rules and Regulations for the Management and Control of Designated Ground Water Basins Triggers None specified Click "Edit With Form" above to add content 19COCDesignatedGroundWaterBasinWellPermit.pdf 19COCDesignatedGroundWaterBasinWellPermit.pdf

3

GRR/Section 19-CO-c - Designated Ground Water Basin Well Permitting...  

Open Energy Info (EERE)

GRRSection 19-CO-c - Designated Ground Water Basin Well Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help...

4

Bordering on Water Management: Ground and Wastewater in the United States - Mexico Transboundary Santa Cruz Basin  

E-Print Network (OSTI)

change and global water resources. Global Environmentalin Managing International Water Resources (No. WPS 1303):Darcy Lecture Tour. Ground Water, 45(4), 390-391. Sadoff,

Milman, Anita Dale

2009-01-01T23:59:59.000Z

5

Ground Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Nature Bulletin No. 408-A February 27, 1971 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation GROUND WATER We take...

6

EPA Final Ground Water Rule  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Safety and Environment Office of Nuclear Safety and Environment Nuclear Safety and Environment Information Brief HS-20-IB-2007-02 (March 2007) EPA Final Ground Water Rule Safe Drinking Water Act: National Primary Drinking Water Regulations Ground Water Rule - 40 CFR Parts 9, 141 and 142 Final Rule: 71 FR 65574 Effective Date: January 8, 2007 1 RULE SYNOPSIS On November 8, 2006, the U.S. Environmental Protection Agency (EPA) published a final Ground Water Rule (GWR) to promote increased protection against microbial pathogens that may be present in public water systems (PWSs) that use ground water sources for their supply (these systems are known as ground water systems). This Rule establishes a risk-targeted approach

7

Ground Water Management Regulations (Louisiana) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water Management Regulations (Louisiana) Ground Water Management Regulations (Louisiana) Eligibility Agricultural Construction Developer Fuel Distributor Industrial...

8

Colorado Ground Water Commission | Open Energy Information  

Open Energy Info (EERE)

Water Commission Jump to: navigation, search Name Colorado Ground Water Commission Place Colorado Website http:water.state.co.usgroun References Colorado Ground Water Commission...

9

Ground water protection management program plan  

SciTech Connect

U.S. Department of Energy (DOE) Order 5400.1 requires the establishment of a ground water protection management program to ensure compliance with DOE requirements and applicable federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office was prepared this Ground Water Protection Management Program Plan (ground water protection plan) whose scope and detail reflect the program`s significance and address the seven activities required in DOE Order 5400.1, Chapter III, for special program planning. This ground water protection plan highlights the methods designed to preserve, protect, and monitor ground water resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies technical guidance documents and site-specific documents for the UMTRA Project ground water protection management program. In addition, the plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA Project sites.

Not Available

1994-02-01T23:59:59.000Z

10

Appendix B Ground Water Management Policy  

Office of Legacy Management (LM)

Ground Water Management Policy Ground Water Management Policy for the Monticello Mill Tailings Site and Adjacent Areas This page intentionally left blank Docun~ent Number Q0029500 Appendix B State of Utah DEPARTblENT OF NATURAL RESOURCES DIVISION OF WATER RIGHTS Ground-Water Management Policy for the Mot~ticello Mill Tailings Site and Adjacent Areas The Monticello Mill Tailings Site is on the southeast portion of the tovm of Monticello in Sectton 36, T33S, K23E and Section 31, i33S. R24E, SLB&M. The mill site was used from 1942 to 1960 in the processing of uranium and vanadium. The U.S. Department of Energy (DOE) is currently cleaning up the site. The site is in the small canyon that forms the drainage for South Creek. The general direction of water flow, of both surface streams and the shallow

11

Neptunium-239 in disassembly basin water  

SciTech Connect

Since the presence of neptunium-239 in disassembly basin water had been suggested, analysis of the water was undertaken. The occurrence of Np-239 was thought to be due to its diffusion through the slugs. Samples of water from the D and E Canals in K and R-Areas were analyzed to determine the presence of Np-239. Samples from and K and R Areas both showed Np-239 to be present in quantities greater than 50% of the initial total activity.

Carlton, W.H.; Boni, A.L.

1956-08-13T23:59:59.000Z

12

Montana Ground Water Assessment Act (Montana) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water Assessment Act (Montana) Montana Ground Water Assessment Act (Montana) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State...

13

EA-1406: Ground Water Compliance at the New Rifle, Colorado,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Ground Water Compliance at the New Rifle, Colorado, UMTRA Project Site, Rifle, Colorado EA-1406: Ground Water Compliance at the New Rifle, Colorado, UMTRA Project Site, Rifle,...

14

Vertical Distribution of Contamination in Ground Water at the...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site...

15

GRR/Section 19-CO-i - Determination of Nontributary Ground Water Status |  

Open Energy Info (EERE)

19-CO-i - Determination of Nontributary Ground Water Status 19-CO-i - Determination of Nontributary Ground Water Status < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-i - Determination of Nontributary Ground Water Status 19COIDeterminationOfNontributaryGroundWaterStatus.pdf Click to View Fullscreen Contact Agencies Colorado Division of Water Resources Regulations & Policies Colorado Division of Water Resources Policy 2010-4 CRS 37-90-137 Permits to Construct Wells Outside of Designated Basins CRS 37-90-103 Underground Water Definitions CRS 37-82-101 Waters of Natural Surface Streams Subject to Appropriation CRS 37-92-102 Legislative Declaration - Basic Tenets of Colorado Water Law Triggers None specified Click "Edit With Form" above to add content

16

Water budget for SRP burial ground area  

SciTech Connect

Radionuclide migration from the SRP burial ground for solid low-level waste has been studied extensively. Most of the buried radionuclides are fixed on the soil and show negligible movement. The major exception is tritium, which when leached from the waste by percolating rainfall, forms tritiated water and moves with the groundwater. The presence of tritium has been useful in tracing groundwater flow paths to outcrop. A subsurface tritium plume moving from the southwest corner of the burial ground toward an outcrop near Four Mile Creek has been defined. Groundwater movement is so slow that much of the tritium decays before reaching the outcrop. The burial ground tritium plume defined to date is virtually all in the uppermost sediment layer, the Barnwell Formation. The purpose of the study reported in this memorandum was to investigate the hypothesis that deeper flow paths, capable of carrying substantial amounts of tritium, may exist in the vicinity of the burial ground. As a first step in seeking deeper flow paths, a water budget was constructed for the burial ground site. The water budget, a materials balance used by hydrologists, is expressed in annual area inches of rainfall. Components of the water budget for the burial ground area were analyzed to determine whether significant flow paths may exist below the tan clay. Mean annual precipitation was estimated as 47 inches, with evapotranspiration, run-off, and groundwater recharge estimated as 30, 2, and 15 inches, respectively. These estimates, when combined with groundwater discharge data, suggest that 5 inches of the groundwater recharge flow above the tan clay and that 10 inches flow below the tan clay. Therefore, two-thirds of the groundwater recharge appears to follow flow paths that are deeper than those previously found. 13 references, 10 figures, 5 tables.

Hubbard, J.E.; Emslie, R.H.

1984-03-19T23:59:59.000Z

17

Ground water work breakdown structure dictionary  

SciTech Connect

This report contains the activities that are necessary to assess in ground water remediation as specified in the UMTRA Project. These activities include the following: site characterization; remedial action compliance and design documentation; environment, health, and safety program; technology assessment; property access and acquisition activities; site remedial actions; long term surveillance and licensing; and technical and management support.

NONE

1995-04-01T23:59:59.000Z

18

Selenium in Oklahoma ground water and soil  

SciTech Connect

Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

Atalay, A.; Vir Maggon, D.

1991-03-30T23:59:59.000Z

19

Appendix D Surface Water and Ground Water Time-Concentration Plots,  

Office of Legacy Management (LM)

Surface Water and Ground Water Time-Concentration Plots, Surface Water and Ground Water Time-Concentration Plots, Stream Discharge Measurements, Ground Water Level Data, and Ground Water Well Hydrographs This page intentionally left blank Contents Section .................................................................................. Surface Water Time-Concentration Plots D1.O ............................................................................................... Stream Discharge Measurements D2.0 ............................................................. Ground Water Time-Concentration Plots for Uranium D3.0 .......................................................................................................... Ground Water Level Data D4.0 ..............................................................................................

20

Water Rights: Ground Water (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water (Indiana) Ground Water (Indiana) Water Rights: Ground Water (Indiana) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Natural Resources It is the policy of the state to provide for the conservation of groundwater resources and limit groundwater waste. The Indiana Department of Natural Resources may designate restricted use areas and limit groundwater withdrawals by existing users in those areas, thus making groundwater use greater than 100,000 gallons per day subject to permitting

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Water Quality Surface and Ground | Open Energy Information  

Open Energy Info (EERE)

Quality Surface and Ground Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaterQualitySurfaceandGround&oldid612197...

22

U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan  

Office of Legacy Management (LM)

GWMON 1.12-1 GWMON 1.12-1 U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan for the Land Farm Pilot Test Monument Valley, Arizona August 2000 Prepared by U.S. Department of Energy Grand Junction Ofice Grand Junction, Colorado Project Number UGW-5 1 1-001 5-21-000 Document Number U0106701 This page intentionally left blank Document Number U0106701 Contents Contents 1.0 Introduction ....................................................................................................................... 1 2.0 Purpose and Scope ........................................................................................................... 1 3.0 Pilot-Test Extraction Wellfield 2 4.0 Water Elevation Measurements and Monitoring ............... 4

23

Diffusion Multilayer Sampling of Ground Water in Five Wells at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona,...

24

Analysis of Contaminant Rebound in Ground Water in Extraction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City,...

25

Arizona Water Atlas Volume 3 Lower San Pedro Basin References and Supplemental Reading References  

E-Print Network (OSTI)

Anderson, T.W., and G.W. Freethey, 1995, Simulation of groundwater flow in alluvial basins in south central Arizona and parts of adjacent states: USGS Professional Paper 1406-D. Anning, D.W. and N.R. Duet, 1994, Summary of ground-water conditions in Arizona, 1987-90, USGS Open-file Report 94-476.

unknown authors

2005-01-01T23:59:59.000Z

26

Arizona Water Atlas Volume 3 Willcox Basin References and Supplemental Reading References  

E-Print Network (OSTI)

Anderson, T.W. and G.W. Freethey, 1995, Simulation of groundwater flow in alluvial basins in south central Arizona and parts of adjacent states: USGS Professional Paper 1406-D. Anning, D.W. and N.R. Duet, 1994, Summary of ground-water conditions in Arizona, 1987-90, USGS Open-file Report 94-476.

unknown authors

2005-01-01T23:59:59.000Z

27

Appendix E Supporting Information for Ground Water Modeling  

Office of Legacy Management (LM)

Supporting Information for Ground Water Modeling Supporting Information for Ground Water Modeling This page intentionally left blank Contents Section Geologic Map of Site Area ........................................................................................................ E1.O Stream Flow Measurements ...................................................................................................... E2.0 Estimates of Ground Water Flow .............................................................................................. E3.0 .......................................... MODFLOW Flow Budget Analysis for OU 1 1 1 Model Subregions E4.0 ............................................................................ Burro Canyon Aquifer Ground Water Model E5.0 This page intentionally left blank

28

Ground Water Management Act (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water Management Act (Virginia) Ground Water Management Act (Virginia) Ground Water Management Act (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Virginia Program Type Environmental Regulations Siting and Permitting Provider Virginia Department of Environmental Quality Under the Ground Water Management Act of 1992, Virginia manages ground water through a program regulating the withdrawals in certain areas called

29

Introduction Application of numerical models of ground water flow  

E-Print Network (OSTI)

Introduction Application of numerical models of ground water flow almost always involves some sort (Yeh 1986; Poeter and Hill 1997; Hill et al. 1998). Other data beside hydraulic head have been used in calibration of ground water models, including rates of ground water exchange with streams and other surface

Saiers, James

30

Rocky Mountain Basins Produced Water Database  

DOE Data Explorer (OSTI)

Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

31

Inefficient remediation of ground-water pollution  

SciTech Connect

The problem of trying to remove ground-water pollution by pumping and treating are pointed out. Various Superfund sites are discussed briefly. It is pointed out that many chemicals have been discarded in an undocumented manner, and their place in the groundwater is not known. Results of a remedial program to remove perchloroethylene at a concentration of 6132 parts per billion from groundwater in a site in New Jersey showed that with an average extraction rate of 300 gallons per minute from 1978 to 1984 contamination level was lowered below 100 parts per billion. However, after shutdown of pumping the level rose to 12,588 parts per billion in 1988. These results lead the author to propose that the practical solutions for water supplies may be treatment at the time it enters the system for use.

Abelson, P.H.

1990-11-09T23:59:59.000Z

32

Ground water hydrology report: Revision 1, Attachment 3. Final  

SciTech Connect

This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards.

NONE

1996-12-01T23:59:59.000Z

33

Snow–Ground Interface Temperatures in the Kuparuk River Basin, Arctic Alaska: Measurements and Model  

Science Conference Proceedings (OSTI)

Air and snow–ground interface temperatures were measured during two winters at 33 stations spanning the 180-km-long Kuparuk basin in arctic Alaska. Interface temperatures averaged 7.5°C higher than air temperatures and varied in a manner that was ...

Brian Taras; Matthew Sturm; Glen E. Liston

2002-08-01T23:59:59.000Z

34

Hanford Site ground-water monitoring for 1994  

SciTech Connect

This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

1995-08-01T23:59:59.000Z

35

The Water Budget of the Kuparuk River Basin, Alaska  

Science Conference Proceedings (OSTI)

A water budget study that considers precipitation, river runoff, evapotranspiration, and soil moisture for the Kuparuk River basin on the North Slope of Alaska is presented. Numerical simulations of hydrologic processes using the NASA Catchment-...

Stephen J. Déry; Marc Stieglitz; Åsa K. Rennermalm; Eric F. Wood

2005-10-01T23:59:59.000Z

36

GRR/Section 19-TX-b - New Water Right Process For Surface Water and Ground  

Open Energy Info (EERE)

TX-b - New Water Right Process For Surface Water and Ground TX-b - New Water Right Process For Surface Water and Ground Water < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-b - New Water Right Process For Surface Water and Ground Water 19TXBNewWaterRightProcessForSurfaceWaterAndGroundWater.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Texas Water Development Board Regulations & Policies Tex. Water Code § 11 Triggers None specified Click "Edit With Form" above to add content 19TXBNewWaterRightProcessForSurfaceWaterAndGroundWater.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

37

GRR/Section 19-CO-h - Denver Basin and Designated Basin Permitting Process  

Open Energy Info (EERE)

9-CO-h - Denver Basin and Designated Basin Permitting Process 9-CO-h - Denver Basin and Designated Basin Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-h - Denver Basin and Designated Basin Permitting Process 19COHDenverBasinAndDesignatedBasinPermittingProcess.pdf Click to View Fullscreen Contact Agencies Colorado Ground Water Commission Colorado Division of Water Resources Regulations & Policies CRS 37-90-107 Application for Use of Ground Water 2 CCR 410-1 Rules and Regulations for the Management and Control of Designated Ground Water Triggers None specified Click "Edit With Form" above to add content 19COHDenverBasinAndDesignatedBasinPermittingProcess.pdf 19COHDenverBasinAndDesignatedBasinPermittingProcess.pdf

38

Hanford Site ground-water monitoring for 1993  

Science Conference Proceedings (OSTI)

This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

1994-09-01T23:59:59.000Z

39

Ground Water Protection (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water Protection (North Dakota) Ground Water Protection (North Dakota) Ground Water Protection (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting North Dakota has a degradation prevention program for groundwater protection, with standards established by the Department of Health. This section addresses groundwater standards, quality monitoring, notification

40

Ground Water Protection Act (New Mexico) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Protection Act (New Mexico) Water Protection Act (New Mexico) Ground Water Protection Act (New Mexico) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Mexico Program Type Environmental Regulations Provider New Mexico Environment Department The purpose of the Ground Water Protection Act is to provide substantive

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DOE/EA-1268: Environmental Assessment of Ground Water Compliance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Rev. 0 Environmental Assessment of Ground Water Compliance at the Tuba City Uranium Mill Tailings Site December 1998 Prepared by U.S. Department of Energy Grand Junction Office...

42

Ohio River Basin Trading Project Joint Session: Air, Water, Climate  

Science Conference Proceedings (OSTI)

Electric Power Research Institute (EPRI) project managers in air, water, and climate programs are working together to address the complex, interrelated issues associated with water and air quality in the United States. This session provided background and told the story of the pilot effort in the Ohio River Basin to develop broad, nontraditional collaborations that will support multi-stakeholder programs for water quality trading, carbon trading, and ecosystem services protection. Through this pilot effo...

2010-08-09T23:59:59.000Z

43

EA-1155: Ground-water Compliance Activities at the Uranium Mill...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook,...

44

Probability Models for Annual Extreme Water-Equivalent Ground Snow  

Science Conference Proceedings (OSTI)

A statistical analysis of annual extreme water-equivalents of ground snow (reported as inches of water) measured up through the winter of 1979–80 at 76 weather stations in the northeast quadrant of the United States is presented. The analysis ...

Bruce Ellingwood; Robert K. Redfield

1984-06-01T23:59:59.000Z

45

Deep-Water Renewal in the Upper Basin of Loch Sunart, a Scottish Fjord  

Science Conference Proceedings (OSTI)

Recording current meters were deployed near the surface and bottom in the upper basin of Loch Sunart during the summers of 1987, 1989, and 1990. The measurements revealed frequent, though irregular, deep-water renewal events when the basin water ...

Philip A. Gillibrand; William R. Turrell; Alan J. Elliott

1995-06-01T23:59:59.000Z

46

Climatological Basin-Scale Amazonian Evapotranspiration Estimated through a Water Budget Analysis  

Science Conference Proceedings (OSTI)

Spatially averaged evapotranspiration [ET] over the Amazon Basin is computed as the residual of the basin’s atmospheric water balance equation, at the monthly time scale and for the period 1988–2001. Basin-averaged rainfall [P] is obtained from ...

Hanan N. Karam; Rafael L. Bras

2008-10-01T23:59:59.000Z

47

Uranium in US surface, ground, and domestic waters. Volume 2  

Science Conference Proceedings (OSTI)

The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

1981-04-01T23:59:59.000Z

48

Ground and Surface Water Protection (New Mexico) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Surface Water Protection (New Mexico) and Surface Water Protection (New Mexico) Ground and Surface Water Protection (New Mexico) < Back Eligibility Agricultural Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Program Info State New Mexico Program Type Environmental Regulations Fees Provider New Mexico Environment Department This regulation implements the New Mexico Water Quality Act. Any person intending to make a new water contaminant discharge or to alter the character or location of an existing water contaminant discharge, unless the discharge is being made or will be made into a community sewer system

49

INTEC CPP-603 Basin Water Treatment System Closure: Process Design  

SciTech Connect

This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

2002-09-01T23:59:59.000Z

50

EPA Final Ground Water Rule Available Online, 3/07 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Final Ground Water Rule Available Online, 3/07 EPA Final Ground Water Rule Available Online, 3/07 EPA Final Ground Water Rule Available Online, 3/07 On November 8, 2006, the U.S. Environmental Protection Agency (EPA) published a final Ground Water Rule (GWR) to promote increased protection against microbial pathogens that may be present in public water systems (PWSs) that use ground water sources for their supply (these systems are known as ground water systems). This Rule establishes a risk-targeted approach to focus on ground water systems that are susceptible to fecal contamination, and requires ground water systems that are at risk of fecal contamination to take corrective action. A minor correction to the final Rule was published on November 21, 2006 (71 FR 67427). The GWR applies to all PWSs2 that use ground water

51

A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California  

SciTech Connect

This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

2006-05-16T23:59:59.000Z

52

Great Lakes-St. Lawrence River Basin Water Resources Compact (multi-state)  

Energy.gov (U.S. Department of Energy (DOE))

This Act describes the management of the Great Lakes - St. Lawrence River basin, and regulates water withdrawals, diversions, and consumptive uses from the basin. The Act establishes a Council,...

53

Ground water control for an in situ oil shale retort  

SciTech Connect

An in situ oil shale retort is formed in a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of particles containing oil shale. An open base of operation is excavated in the formation above the retort site, and an access drift is excavated to the bottom of the retort site. Formation is explosively expanded to form the fragmented mass between the access drift and an elevation spaced below the bottom of the base of operation, leaving a horizontal sill pillar of unfragmented formation between the top of the fragmented mass and the bottom of the base of operation. The sill pillar provides a safe base of operation above the fragmented mass from which to control retorting operations. A plurality of blasting holes used in explosively expanding the formation extend from the base of operation, through the sill pillar, and open into the top of the fragmented mass. Trenches are formed in the base of operation for collecting ground water which enters the base of operation prior to and during retorting operations, and collected ground water is withdrawn from the base of operation. Casings can be placed in the blasting holes and adapted for controlling gas flow through the fragmented mass during retorting operations. The casings extend above the floor of the base of operation to inhibit flow of ground water through the blasting holes into the fragmented mass, and other blasting holes not having such casings are sealed. After retorting is completed, the floor of the base of operation can be covered with a layer of concrete and/or the blasting holes can be sealed with concrete to inhibit leakage of ground water into treated oil shale particles in the fragmented mass.

Ridley, R.D.

1979-05-08T23:59:59.000Z

54

UMTRA Ground Water Project management action process document  

Science Conference Proceedings (OSTI)

A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards.

NONE

1996-03-01T23:59:59.000Z

55

Document Number Q0029500 Ground Water Model 3.0 Ground Water...  

Office of Legacy Management (LM)

and are not required by MODPATH or MT3D. 3.6.4 Flow Model Calibration The IRA Work Plan states that the model would be calibrated using October 2002 water levels. However,...

56

Effects of Climate Variability on Water Storage in the Colorado River Basin  

Science Conference Proceedings (OSTI)

Understanding the long-term (interannual–decadal) variability of water availability in river basins is paramount for water resources management. Here, the authors analyze time series of simulated terrestrial water storage components, observed ...

Ruud Hurkmans; Peter A. Troch; Remko Uijlenhoet; Paul Torfs; Matej Durcik

2009-10-01T23:59:59.000Z

57

File:04NVBTemporaryUseOfGroundWaterForExploration.pdf | Open...  

Open Energy Info (EERE)

ryUseOfGroundWaterForExploration.pdf Jump to: navigation, search File File history File usage File:04NVBTemporaryUseOfGroundWaterForExploration.pdf Size of this preview: 463 599...

58

Columbia Basin Water Transactions Program (Water Entity); National Fish and Wildlife Foundation, Annual Report 2003.  

DOE Green Energy (OSTI)

Launched in 2002, the Columbia Basin Water Transactions Program (CBWTP) is anticipated to be a five-year effort to test new strategies for enhancing tributary flows. The premise of the CBWTP is that water can most readily be made available for instream flows not by attempting to regulate senior water users but, instead, by acquiring water rights from willing sellers and transferring those rights to instream flows within the prior appropriation framework ('first in time, first in right'). The primary goals for this water initiative included: (1) To implement Action 151 of the NOAA Fisheries 2000 Biological Opinion on the Operation of the Federal Columbia River Power System. (2) To implement Provision A.8 of the Council's 2000 Columbia River Basin Fish and Wildlife Program related to securing water for instream flows. (3) To integrate components of the Northwest Power and Conservation Council's Program and Watershed Assessment process with the NOAA Fisheries 2000 Biological Opinion. (4) To ensure actions taken under the program would be effective, fiscally efficient, and biologically beneficial to fish and wildlife in the region. In the spring of 2002, BPA and a group of water experts selected ten local entities in Washington, Oregon, Idaho, and western Montana with a demonstrated potential to innovate and implement tributary flow improvements. We also selected the National Fish and Wildlife Foundation (NFWF) to serve as the regional entity for this initiative. BPA then set up the funding agreement and scope of work to establish what is now known as the Columbia Basin Water Transactions Program. In FY 2003, BPA provided over $1.5 million in funding to the CBWTP and approved 33 water transactions. In FY 2004, BPA will provide up to $4 million to the project to enhance habitat. Thanks to the dedicated efforts of partners throughout the Basin, the CBWTP is off to a strong start in improving tributary flows in key areas across the region.

National Fish and Wildlife Foundation

2004-02-01T23:59:59.000Z

59

GROUND WATER PROTECTION ISSUES WITH GEOTHERMAL HEAT PUMPS  

DOE Green Energy (OSTI)

Closed loop vertical boreholes used with geothermal heat pumps are grouted to facilitate heat transfer and prevent ground water contamination. The grout must exhibit suitable thermal conductivity as well as adequate hydraulic sealing characteristics. Permeability and infiltration tests were performed to assess the ability of cementitious grout to control vertical seepage in boreholes. It was determined that a superplasticized cement-sand grout is a more effective borehole sealant than neat cement over a range of likely operational temperatures. The feasibility of using non-destructive methods to verify bonding in heat exchangers is reviewed.

ALLAN,M.L.; PHILIPPACOPOULOS,A.J.

1999-10-01T23:59:59.000Z

60

Factors influencing biological treatment of MTBE contaminated ground water  

DOE Green Energy (OSTI)

Methyl tert-butyl ether (MTBE) contamination has complicated the remediation of gasoline contaminated sites. Many sites are using biological processes for ground water treatment and would like to apply the same technology to MTBE. However, the efficiency and reliability of MTBE biological treatment is not well documented. The objective of this study was to examine the operational and environmental variables influencing MTBE biotreatment. A fluidized bed reactor was installed at a fuel transfer station and used to treat ground water contaminated with MTBE and gasoline hydrocarbons. A complete set of chemical and operational data was collected during this study and a statistical approach was used to determine what variables were influencing MTBE treatment efficiency. It was found that MTBE treatment was more sensitive to up-set than gasoline hydrocarbon treatment. Events, such as excess iron accumulation, inhibited MTBE treatment, but not hydrocarbon treatment. Multiple regression analysis identified biomass accumulation and temperature as the most important variables controlling the efficiency of MTBE treatment. The influent concentration and loading of hydrocarbons, but not MTBE, also impacted MTBE treatment efficiency. The results of this study suggest guidelines for improving MTBE treatment. Long cell retention times in the reactor are necessary for maintaining MTBE treatment. The onset of nitrification only occurs when long cell retention times have been reached and can be used as an indicator in fixed film reactors that conditions favorable to MTBE treatment exist. Conversely, if the reactor can not nitrify, it is unlikely to have stable MTBE treatment.

Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

2001-09-14T23:59:59.000Z

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A Comparison of in Situ, Reanalysis, and Satellite Water Budgets over the Upper Colorado River Basin  

Science Conference Proceedings (OSTI)

Using in situ, reanalysis, and satellite-derived datasets, surface and atmospheric water budgets of the Upper Colorado River basin are analyzed. All datasets capture the seasonal cycle for each water budget component. For precipitation, all ...

Rebecca A. Smith; Christian D. Kummerow

2013-06-01T23:59:59.000Z

62

Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada  

DOE Green Energy (OSTI)

The study area occupies about 14,500 square miles in southwestern Idaho and north-central Nevada. Thermal ground water occurs under artesian conditions, in discontinuous or compartmented zones, in igneous or sedimentary rocks of Tertiary age. Ground-water movement is generally northward. Temperatures of the ground water range from about 30/sup 0/ to more than 80/sup 0/C. Chemical analyses of water from 12 wells and 9 springs indicate that nonthermal waters are a calcium bicarbonate type; thermal waters are a sodium bicarbonate type. Chemical geothermometers indicate probable maximum reservoir temperatures are near 100/sup 0/C. Concentration of tritium in the thermal water water is near zero.

Young, H.W.; Lewis, R.E.

1980-12-01T23:59:59.000Z

63

GRR/Section 14-CO-e - Ground Water Discharge Permit | Open Energy  

Open Energy Info (EERE)

CO-e - Ground Water Discharge Permit CO-e - Ground Water Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CO-e - Ground Water Discharge Permit 14COEGroundWaterDischargePermit.pdf Click to View Fullscreen Contact Agencies Colorado Department of Public Health and Environment Regulations & Policies Colorado Water Quality Control Act 5 CCR 1002-61 Colorado Discharge Permit System 5 CCR 1002-41 Basic Standards for Ground Water 5 CCR 1002-42 Site Specific Water Quality Standards for Ground Water Triggers None specified Click "Edit With Form" above to add content 14COEGroundWaterDischargePermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

64

Update to the Ground-Water Withdrawals Database for the Death Valley REgional Ground-Water Flow System, Nevada and California, 1913-2003  

SciTech Connect

Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913–1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

Michael T. Moreo; and Leigh Justet

2008-07-02T23:59:59.000Z

65

GRR/Section 4-NV-b - Temporary Use of Ground Water for Exploration | Open  

Open Energy Info (EERE)

b - Temporary Use of Ground Water for Exploration b - Temporary Use of Ground Water for Exploration < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-NV-b - Temporary Use of Ground Water for Exploration 04NVBTemporaryUseOfGroundWaterForExploration.pdf Click to View Fullscreen Contact Agencies Nevada Division of Water Resources Regulations & Policies NAC 534.444 Waiver to use water to explore for oil, gas or geothermal resources Triggers None specified Click "Edit With Form" above to add content 04NVBTemporaryUseOfGroundWaterForExploration.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Division of Water Resources (NDWR) may grant a waiver of the

66

EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Ground-water Compliance Activities at the Uranium Mill 5: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming SUMMARY This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill Tailings Site by using the selected alternative stated in the Final Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 1, 1997 EA-1155: Final Environmental Assessment Ground-water Compliance Activities at the Uranium Mill Tailings Site,

67

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado  

Science Conference Proceedings (OSTI)

The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

NONE

1995-05-01T23:59:59.000Z

68

Evolution of the Deep Western Boundary Current of Antarctic Bottom Water in the Brazil Basin  

Science Conference Proceedings (OSTI)

A synthesis of WOCE (and other) hydrographic data shows that the deep western boundary current of Antarctic Bottom Water has a double-core structure, and that it is differentially modified during its northward transit through the Brazil Basin. At ...

Francisco J. Sandoval; Georges L. Weatherly

2001-06-01T23:59:59.000Z

69

Estimation of the Surface Water Budget of the La Plata Basin  

Science Conference Proceedings (OSTI)

The Variable Infiltration Capacity (VIC) land surface hydrology model forced by gridded observed precipitation and temperature for the period 1979–99 is used to simulate the land surface water balance of the La Plata basin (LPB). The modeled ...

Fengge Su; Dennis P. Lettenmaier

2009-08-01T23:59:59.000Z

70

Interannual Variability of Summer Water Balance Components in Three Major River Basins of Northern Eurasia  

Science Conference Proceedings (OSTI)

This study investigated water balance components in the three major river basins of Siberia (the Lena, Yenisey, and Ob) based on the National Centers for Environmental Prediction (NCEP)–Department of Energy (DOE) Atmospheric Model Intercomparison ...

Yoshiki Fukutomi; Hiromichi Igarashi; Kooiti Masuda; Tetsuzo Yasunari

2003-04-01T23:59:59.000Z

71

Effects of Land Cover Change on the Energy and Water Balance of the Mississippi River Basin  

Science Conference Proceedings (OSTI)

The effects of land cover change on the energy and water balance of the Mississippi River basin are analyzed using the Integrated Biosphere Simulator (IBIS) model. Results of a simulated conversion from complete forest cover to crop cover over a ...

Tracy E. Twine; Christopher J. Kucharik; Jonathan A. Foley

2004-08-01T23:59:59.000Z

72

Fates and travel times of Denmark Strait Overflow Water in the Irminger Basin  

Science Conference Proceedings (OSTI)

The Denmark Strait Overflow (DSO) supplies about one third of the North Atlantic Deep Water and is critical to the global thermohaline circulation. Knowledge of the pathways of DSO through the Irminger Basin and its transformation there is still ...

Inga Koszalka; Thomas W. N. Haine; Marcello G. Magaldi

73

Planning Investments in Water Resources by Mixed-Integer Programming: The Vardar-Axios River Basin  

E-Print Network (OSTI)

A mixed integer programming model for planning water resources investments is presented. The model is a sequencing model applied to the Vardar-Axios river basin in Yugoslavia and Greece. The structure of the model is ...

Elliot, Dorothy P.

74

Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress report for the period July 1 to September 30, 1988: Volume 1, Text  

Science Conference Proceedings (OSTI)

This report describes the progress of 12 Hanford ground-water monitoring projects for the period July 1 to September 30, 1988. During this quarter, field activities at the 300 Area process trenches, the Nonradioactive Dangerous Waste Landfill, the 183-H Solar Evaporation Basins, the 1324-N/NA Surface Impoundment and Percolation Ponds, the 1301-N and 1325-N Liquid Waste Disposal Facilities, and the 216-A-36B Crib consisted of ground-water sampling and analyses, and water-level monitoring. The 200 Area Low-Level Burial Grounds section includes well development data, sediment analysis, and water-level measurements. Ground-water sampling was begun at this site, and results will be included in next quarter's report. Twelve new wells were installed during the quarter, two at the 216-A-29 Ditch, size at the 216-A-10 Crib, and four at the 216-B-3 Pond. Preliminary characterization data for these new wells are included in this report. Driller's logs and other drilling and site characterization data will be provided in the next quarterly report. At the 2101-M Pond, construction was completed on four wells, and initial ground-water samples were taken. The drilling logs, geophysical logging data, and as-built diagrams are included in this report in Volume 2. 19 refs., 24 figs., 39 tabs.

Fruland, R.M.; Bates, D.J.; Lundgren, R.E.

1989-02-01T23:59:59.000Z

75

Construction Summary and As-Built Report for Ground Water Treatment System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Summary and As-Built Report for Ground Water Treatment Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site More Documents & Publications Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008 Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah Performance Assessment and Recommendations for Rejuvenation of a Permeable

76

Ground-Water Table and Chemical Changes in an Alluvial Aquifer During  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground-Water Table and Chemical Changes in an Alluvial Aquifer Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells More Documents & Publications Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

77

Ground-Water Table and Chemical Changes in an Alluvial Aquifer During  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground-Water Table and Chemical Changes in an Alluvial Aquifer Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells More Documents & Publications Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

78

Desalination of brackish ground waters and produced waters using in-situ precipitation.  

Science Conference Proceedings (OSTI)

The need for fresh water has increased exponentially during the last several decades due to the continuous growth of human population and industrial and agricultural activities. Yet existing resources are limited often because of their high salinity. This unfavorable situation requires the development of new, long-term strategies and alternative technologies for desalination of saline waters presently not being used to supply the population growth occurring in arid regions. We have developed a novel environmentally friendly method for desalinating inland brackish waters. This process can be applied to either brackish ground water or produced waters (i.e., coal-bed methane or oil and gas produced waters). Using a set of ion exchange and sorption materials, our process effectively removes anions and cations in separate steps. The ion exchange materials were chosen because of their specific selectivity for ions of interest, and for their ability to work in the temperature and pH regions necessary for cost and energy effectiveness. For anion exchange, we have focused on hydrotalcite (HTC), a layered hydroxide similar to clay in structure. For cation exchange, we have developed an amorphous silica material that has enhanced cation (in particular Na{sup +}) selectivity. In the case of produced waters with high concentrations of Ca{sup 2+}, a lime softening step is included.

Krumhansl, James Lee; Pless, Jason; Nenoff, Tina Maria; Voigt, James A.; Phillips, Mark L. F.; Axness, Marlene; Moore, Diana Lynn; Sattler, Allan Richard

2004-08-01T23:59:59.000Z

79

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado  

SciTech Connect

The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site is under way and is scheduled for completion in 1996. The tailings are being stabilized in-place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the environment. Currently, no points of exposure (e.g. a drinking water well); and no receptors of contaminated ground water have been identified at the Maybell site. Therefore, there are no current human health and ecological risks associated with exposure to contaminated ground water. Furthermore, if current site conditions and land- and water-use patterns do not change, it is unlikely that contaminated ground water would reach people or the ecological communities in the future.

NONE

1995-09-01T23:59:59.000Z

80

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

NONE

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Water Sampling At Northern Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Northern Basin & Range Region Water Sampling At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

82

Water Sampling At Nw Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Nw Basin & Range Region (Laney, Water Sampling At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

83

Geophysical evidence for gas hydrates in the deep water of the South Caspian Basin, Azerbaijan  

E-Print Network (OSTI)

Geophysical evidence for gas hydrates in the deep water of the South Caspian Basin, Azerbaijan C the South Caspian Sea, offshore Azerbaijan, document for the ®rst time in the deep water (up to 650 m Caspian Sea. The Absheron block, named after the nearby Absheron Peninsula in Azerbaijan, is situated

Knapp, Camelia Cristina

84

Quasi-three dimensional ground-water modeling of the hydrologic influence of paleozoic rocks on the ground-water table at Yucca Mountain, Nevada  

E-Print Network (OSTI)

The proposed high-level radioactive waste repository site at Yucca Mountain, Nevada, has created a need to understand the, ground-water system at the site. One of the important hydrologic characteristics is a steep gradient on the ground-water table north of the repository site. This study investigates the cause of the steep gradient, based on the possible influence by Paleozoic rocks under the Yucca Mountain area. A quasi-three dimensional, steady-state, finite-difference model of the groundwater flow system of the Yucca Mountain Site and vicinity, was developed using a manual trial-and-error calibration technique to model the ground-water table. The ground-water system in the model was divided into a two layers, which consist of Cenozoic volcanic rocks and Paleozoic carbonate rocks. The carbonate rocks were defined to be a confined aquifer. The model simulates vertical flow from the volcanic rocks to the underlying carbonate rocks in an area where the Eleana Formation, a Paleozoic clastic aquitard, is absent. The model requires a vertical hydrologic connection in a particular region and a large difference in hydraulic heads between the volcanic rocks and the carbonates to create the steep gradient north of the repository site. The regions of different hydraulic gradient on the water-table surface could be simulated by spatial variations of the horizontal hydraulic conductivity in the volcanic rocks.

Lee, Si-Yong

1994-01-01T23:59:59.000Z

85

Ground-Based FSSP and PVM Measurements of Liquid Water Content  

Science Conference Proceedings (OSTI)

Recently published ground-based measurements of liquid water content (LWC) measured in fogs by two microphysical instruments, the FSSP-100 and PVM-100, are evaluated. These publications had suggested that the PVM-100 underestimated LWC ...

H. Gerber; Glendon Frick; Alfred R. Rodi

1999-08-01T23:59:59.000Z

86

Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water Vapor Radiometer Pazmany, Andrew ProSensing Inc. Category: Instruments ProSensing Inc. has developed a G-band (183 GHz, 1.5 mm wavelength) water vapor radiometer (GVR) for the measurement of low concentrations of atmospheric water vapor and liquid water. The instrument's precipitable water vapor measurement precision is approximately 0.01 mm in dry (<2 mm vapor column) conditions. The ground-based version of the instrument was first deployed at ProSensing's facility in Amherst, MA in February 2005, then at the North Slope of Alaska DOE ARM site in Barrow AK in April 2005, where it has been continuously operating since. An airborne version, designed to operate from a standard PMS 2-D probe canister, is now being

87

GRR/Section 14-TX-e - Ground Water Discharge Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-TX-e - Ground Water Discharge Permit GRR/Section 14-TX-e - Ground Water Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-e - Ground Water Discharge Permit 14TXEGroundWaterDischargePermit (1).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas United States Environmental Protection Agency Regulations & Policies 16 TAC 3.8 (Rule 8) Triggers None specified Click "Edit With Form" above to add content 14TXEGroundWaterDischargePermit (1).pdf 14TXEGroundWaterDischargePermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Pits are used in drilling operations to contain drilling related fluids and

88

Efficient Irrigation for Water Conservation in the Rio Grande Basin: 2010/2011 Progress and Accomplishments  

E-Print Network (OSTI)

Since 2001, the Efficient Irrigation for Water Conservation in the Rio Grande Basin Federal Initiative-known as the Rio Grande Basin Initiative (RGBI)-has saved more than 5 million acre-feet of water. Researchers, Extension specialists, and county Extension agents from Texas AgriLife Research, the Texas AgriLife Extension Service, and the New Mexico State University Agricultural Experiment Station and Cooperative Extension Service work with local irrigation districts, agricultural producers, homeowners, and regional agencies to meet present and future water demand through water conservation and efficient irrigation measures. This project is funded through the U.S. Department of Agriculture National Institute of Food and Agriculture and is administered by the Texas Water Resources Institute and the New Mexico State University Water Task Force.

Kalisek, D.; Harris, B. L.; Runyan, C.; DeMouche, L.

2011-06-01T23:59:59.000Z

89

Efficient Irrigation for Water conservation in the Rio Grande Basin: 2010-2011 Progress and Accomplishments  

E-Print Network (OSTI)

Since 2001, the Efficient Irrigation for Water Conservation in the Rio Grande Basin Federal Initiative— known as the Rio Grande Basin Initiative (RGBI)—has saved more than 5 million acre-feet of water. Researchers, Extension specialists, and county Extension agents from Texas AgriLife Research, the Texas AgriLife Extension Service, and the New Mexico State University Agricultural Experiment Station and Cooperative Extension Service work with local irrigation districts, agricultural producers, homeowners, and regional agencies to meet present and future water demand through water conservation and efficient irrigation measures. This project is funded through the U.S. Department of Agriculture National Institute of Food and Agriculture and is administered by the Texas Water Resources Institute and the New Mexico State University Water Task Force.

Kalisek, D.; Harris, B.L.; Runyan, C.; DeMouche, L.

2011-06-21T23:59:59.000Z

90

Final Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

58 58 Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Sites Final February 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-02GJ79491 DOE Grand Junction Office EA of Ground Water Compliance at the Slick Rock Sites February 2003 Final Page iii Contents Page Acronyms and Abbreviations...........................................................................................................v Executive Summary...................................................................................................................... vii 1.0 Introduction.............................................................................................................................1

91

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado  

SciTech Connect

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site began in 1995 and is scheduled for completion in 1996. The tailings are being stabilized in place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results presented in this document and other evaluations will determine whether any action is needed to protect human health or the environment.

NONE

1996-03-01T23:59:59.000Z

92

Radiological status of the ground water beneath the Hanford Site, January-December 1981  

Science Conference Proceedings (OSTI)

During 1981, 299 monitoring wells were sampled at various times for radionuclide chemical contaminants. This report is one of a series prepared annually to document and evaluate the status of ground water at the Hanford Site. Two substances, tritium and nonradioactive nitrate, are easily transported in ground water; therefore, these substances are used as primary tracers to monitor the movement of contaminated ground water. Data collected during 1981 describe the movement of tritium and the nonradioactive nitrate plumes as well as their response to the influences of ground-water flow, ionic dispersion, and radioactive decay. The gross beta (/sup 106/Ru) levels have become so low that it will no longer be considered a major radionuclide contaminant. The tritium plume continues to show increasing concentrations near the Columbia River. While it is mapped as having reached the Columbia River, its contribution to the river has not been distinguished from other sources at this time. This plume shows much the same configuration as in 1977, 1978, 1979, and 1980. The size of the nitrate plume appears stable. Concentrations of nitrate in the vicinity of the 100-H Area continue to be high as a result of past leaks from the evaporation facility. The overall quality of the ground water at the Hanford Site is generally comparable to that of other ground waters in eastern Washington. Any exceptions to this statement will be noted in this report.

Eddy, P.A.; Cline, C.S.; Prater, L.S.

1982-04-01T23:59:59.000Z

93

Ground and Water Source Heat Pump Performance and Design for Southern Climates  

E-Print Network (OSTI)

Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical or horizontal ground-coupling, an open groundwater loop, or a surface water loop. This paper discusses system performance characteristics, component selection procedures presently being used, improvements currently being considered and future possibilities for improved efficiency and reliability. Optimum designs require proper matching of the heat pump unit to the water circulation system, the building space heating/cooling load and water heating requirements. General trends resulting from system and component choices will be discussed. Water heating methods with these heat pumps will be considered.

Kavanaugh, S.

1988-01-01T23:59:59.000Z

94

GRR/Section 14-UT-e - Ground Water Quality Protection Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-UT-e - Ground Water Quality Protection Permit GRR/Section 14-UT-e - Ground Water Quality Protection Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-UT-e - Ground Water Quality Protection Permit 14UTEGroundWaterQualityProtectionPermit.pdf Click to View Fullscreen Contact Agencies Utah Department of Environmental Quality Regulations & Policies UAC R317-6 Triggers None specified Click "Edit With Form" above to add content 14UTEGroundWaterQualityProtectionPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Utah Department of Environmental Quality (DEQ) regulates discharges

95

Infiltration/ground water linkage in the southwest: Response of shallow ground water to interannual variations of precipitation, Jemez Mountains, New Mexico  

DOE Green Energy (OSTI)

Hydraulic gradients, residence times and the hydrochemistry of shallow ground water are linked to the episodic precipitation and recharge events characteristic of the arid southwest. In this region, the amount of precipitation, and corresponding biomass, is dependant upon altitude with greater frequency and duration in the montane highlands and less in the desert lowlands. Results from a four-year study at the Rio Calaveras research site in the Jemez Mountains of northern New Mexico show a strong correlation between the physical and hydrochemical properties of shallow ground water and variations of seasonal precipitation and infiltration. For example, the water table shows a dramatic response to snowmelt infiltration during years of abundant snow pack (El Nifio) and diminished response during years of reduced snow pack (La Niiia). The chemical structure of shallow ground water is also affected by the precipitation regime, primarily by variations in the flux of reductants (organic carbon) and oxidants (dissolved oxygen) from the vadose zone to the water table. Generally, oxic conditions persist during spring snowmelt infiltration shifting to anoxic conditions as biotic and abiotic processes transform dissolved oxygen. Other redox-sensitive constituents (ferrous iron, manganese, sulfate, nitrate, and nitrite) show increasing and decreasing concentrations as redox fluctuates seasonally and year-to-year. The cycling of these redox sensitive solutes in the subsurface depends upon the character of the aquifer materials, the biomass at the surface, moisture and temperature regime of the vadose zone, and frequency of infiltration events.

Groffman, A. R. (Armand R.)

2002-01-01T23:59:59.000Z

96

Simulation of Water Sources and Precipitation Recycling for the MacKenzie, Mississippi, and Amazon River Basins  

Science Conference Proceedings (OSTI)

An atmospheric general circulation model simulation for 1948–97 of the water budgets for the MacKenzie, Mississippi, and Amazon River basins is presented. In addition to the water budget, passive tracers are included to identify the geographic ...

Michael G. Bosilovich; Jiun-Dar Chern

2006-06-01T23:59:59.000Z

97

K West Basin Integrated Water Treatment System (IWTS) E-F Annular Filter Vessel Accident Calculations  

DOE Green Energy (OSTI)

Three bounding accidents postdated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing, and a hydrogen explosion. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.

RITTMANN, P.D.

1999-10-07T23:59:59.000Z

98

The Atmospheric Water Balance over the Semiarid Murray–Darling River Basin  

Science Conference Proceedings (OSTI)

The atmospheric water balance over the semiarid Murray–Darling River basin in southeast Australia is analyzed based on a consecutive series of 3- to 24-h NWP forecasts from the Australian Bureau of Meteorology’s Limited Area Prediction System (...

Clara Draper; Graham Mills

2008-06-01T23:59:59.000Z

99

VULNERABILITY ASSESSMENT OF WATER RESOURCES SYSTEMS IN THE EASTERN NILE BASIN  

E-Print Network (OSTI)

BCWUA BWR C&C CEDARE CEH COMEST DEWA DOE DPSEEA DPSIR EEAA ENB ENCID ENSAP EPADP EPA EPI ESI EVI EWP FAO the Water Resources System Source: Bossel, 1999 Moreover, trans-boundary river basins-as with our case- fuel effort must be placed on the development of indices than we have in the past. Failure to do so

Richner, Heinz

100

Wind-Produced Water Exchange between the Deep Basins of the Baltic Sea  

Science Conference Proceedings (OSTI)

The renewal of oxygen-rich water in the deep basins of the Baltic Sea depends mainly on the proper wind conditions. Strong westerly winds over the western Baltic yield an inclination in sea level from the Skagerrak to the Baltic Proper and strong ...

W. Krauss; B. Brügge

1991-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

K West Basin Integrated Water Treatment System (IWTS) E-F Annular Filter Vessel Accident Calculations  

DOE Green Energy (OSTI)

Four bounding accidents postulated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing a hydrogen explosion, and a fire breaching filter vessel and enclosure. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.

PIEPHO, M.G.

2000-01-10T23:59:59.000Z

102

POWDER RIVER BASIN COALBED METHANE DEVELOPMENT AND PRODUCED WATER...  

NLE Websites -- All DOE Office Websites (Extended Search)

Recoverable PRB CBM Resources, by Partition . . 3-3 3.4 Estimating Gas and Water Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 4.0 COSTS OF...

103

Feedback mechanisms between water availability and water use in a semi-arid river basin: A spatially explicit multi-agent simulation approach  

Science Conference Proceedings (OSTI)

Understanding the processes responsible for the distribution of water availability over space and time is of great importance to spatial planning in a semi-arid river basin. In this study the usefulness of a multi-agent simulation (MAS) approach for ... Keywords: Brazil, Irrigation, Multi-agent simulation, River basin, Semi-arid, Water availability

Pieter R. van Oel; Maarten S. Krol; Arjen Y. Hoekstra; Renzo R. Taddei

2010-04-01T23:59:59.000Z

104

Final Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact Impact Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Sites AGENCY: U.S. DEP.4RTMENT OF ENERGY ACTIOK: FL&-DING OF NO SIGNIFICANT IMP-ACT (FONSI) SU$IM$RY: The U.S. Department of Energy (DOE) plans to implement ground lvater compliance strategies for two Uranium Mill Tailings Remedial Action (UMTR.4) Project sites near Slick Rock. Colorado. The purpose of the strategies is to comply with U.S. En\.ironmental Protection .Qency (EP.Aj ground n'ater standards defined in Title 40 Codr ~fF~d~w/ iieplutio?r.s (CFR) Part 192. and in so doing. protect human health and the en\.ironment. Ground water at the Slick Rock sites is contaminated with residual radioactive materials from hisTorica acti\,ities, associated with the processin of uranium ore, The planned action (~formeri>,.

105

CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA PROJECT SITE |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA PROJECT SITE CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA PROJECT SITE August 2, 2010 - 12:00pm Addthis A sheep’s foot roller compacts the tailings in the disposal cell. A sheep's foot roller compacts the tailings in the disposal cell. Moab, UT MILL TAILINGS REMOVAL Sixteen million tons of uranium mill tailings 80 feet high stood on the banks of the Colorado River near Moab in southeast Utah, as a legacy to the former ore-processing site that operated for nearly three decades beginning in the mid-1950s. That is until April 2009, when the U.S. Department of Energy began moving the tailings by rail to an engineered disposal cell constructed 30 miles north near Crescent Junction, Utah. The mill tailings,

106

Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site  

Office of Legacy Management (LM)

GJO-2000-177-TAR GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site December 2001 Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy Approved for public release; distribution is unlimited. GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site December 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Project Number UGW-511-0017-12-000 Document Number U0066302 Work Performed under DOE Contract No. DE-AC13-96GJ87335 Document Number U0066302 Contents DOE/Grand Junction Office Ground Water Compliance Action Plan for Old Rifle, Colorado

107

Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,  

Open Energy Info (EERE)

Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Details Activities (2) Areas (1) Regions (0) Abstract: In geothermal fields, open faults and fractures often act as high permeability pathways bringing hydrothermal fluids to the surface from deep reservoirs. The Mount Princeton area, in south-central Colorado, is an area that has an active geothermal system related to faulting and is therefore a suitable natural laboratory to test geophysical methods. The Sawatch range-front normal fault bordering the half-graben of the Upper Arkansas

108

Hanford Site ground-water monitoring for January through June 1988  

Science Conference Proceedings (OSTI)

The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between January and June 1988 included monitoring ground-water elevations across the Site, and monitoring hazardous chemicals and radionuclides in ground water. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Solid Waste Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. In addition, several new analytical initiatives were undertaken during this period. These include cyanide speciation in the BY Cribs plume, inductively coupled argon plasma/mass spectrometry (ICP/MS) measurements on a broad selection of samples from the 100, 200, 300, and 600 Areas, and high sensitivity gas chromatography measurements performed at the Solid Waste Landfill-Nonradioactive Dangerous Waste Landfill. 23 figs., 25 tabs.

Evans, J.C.; Bryce, R.W.; Sherwood, D.R.

1989-05-01T23:59:59.000Z

109

Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii  

DOE Green Energy (OSTI)

This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

Sorey, M.L.; Colvard, E.M.

1994-07-01T23:59:59.000Z

110

Effects of uranium mining of ground water in Ambrosia Lake area, New Mexico  

SciTech Connect

The principal ore-bearing zone in the Ambrosia Lake area of the Grants uranium district is the Westwater Canyon Member of the Morrison Formation (Jurassic). This unit is also one of the major artesian aquifers in the region. Significant declines in the potentiometric lead within the aquifer have been recorded, although cones of depression do not appear to have spread laterally more than a few miles. Loss of potentiometric head in the Westwater Canyon Member has resulted in the interformational migration of ground water along fault zones from overlying aquifers of Cretaceous age. This migration has produced local deterioration in chemical quality of the ground water.

Kelly, T.E.; Link, R.L.; Schipper, M.R.

1980-01-01T23:59:59.000Z

111

Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill  

SciTech Connect

Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

1989-07-01T23:59:59.000Z

112

Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site  

Science Conference Proceedings (OSTI)

This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as Attachment 1.

N /A

2003-04-23T23:59:59.000Z

113

Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins  

Science Conference Proceedings (OSTI)

The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict with the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. Volume I provides the major analysis of these impacts. Volume II provides further technical data.

Lansford, R. R.; Roach, F.; Gollehon, N. R.; Creel, B. J.

1982-02-01T23:59:59.000Z

114

A Decision Support System for irrigation water allocation along the middle reaches of the Heihe River Basin, Northwest China  

Science Conference Proceedings (OSTI)

To improve the water resource management of the inland river basins of northwestern China, a Decision Support System (DSS) is developed to provide an operative computer platform for decision makers. The DSS is designed according to actual water resource ... Keywords: Decision Support System, GIS, Irrigation management, Irrigation water allocation, Water resource management

Yingchun Ge, Xin Li, Chunlin Huang, Zhuotong Nan

2013-09-01T23:59:59.000Z

115

Exploration of a lignite-bearing basin in Northern Ireland using ground magnetic and VLF-EM methods  

SciTech Connect

In an exploration technique feasibility study, a detailed magnetic and VLF-EM survey was carried out on the poorly exposed, lignite-bearing Crumlin subbasin within the Lough Neagh Basin, Co. Antrim, Northern Ireland. The faulted and onlapped margins of the basin, as well as lithological units and structures within the basin, were delineated by simple processing techniques applied to the data. The combination of the two methods overcomes the limitations of each method when it is used alone. These techniques could be successfully applied to other lignite-bearing basins sited on strongly magnetic basement worldwide.

McCaffrey, R.J.; McElroy, W.J.; Leslie, A.G. [Queen`s Univ. of Belfast (United Kingdom)

1995-03-01T23:59:59.000Z

116

Pacific Northwest National Laboratory Grounds Maintenance: Best Management Practice Case Studies #4 and #5 - Water Efficient Landscape and Irrigation (Brochure)  

SciTech Connect

FEMP Water Efficiency Best Management Practices #4 and #5 Case Study: Overview of the Pacific Northwest National Laboratory grounds maintenance program and results.

Not Available

2009-08-01T23:59:59.000Z

117

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

NONE

1995-09-01T23:59:59.000Z

118

Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota  

SciTech Connect

This baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota, evaluates the potential impacts to public health or the environment from contaminated ground water at this site. This contamination is a result of the uraniferous lignite ashing process, when coal containing uranium was burned to produce uranium. Potential risk is quantified only for constituents introduced by the processing activities and not for the constituents naturally occurring in background ground water in the site vicinity. Background ground water, separate from any site-related contamination, imposes a percentage of the overall risk from ground water ingestion in the Bowman site vicinity. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to address soil and ground water contamination at the site. The UMTRA Surface Project involves the determination of the extent of soil contamination and design of an engineered disposal cell for long-term storage of contaminated materials. The UMTRA Ground Water Project evaluates ground water contamination. Based on results from future site monitoring activities as defined in the site observational work plan and results from this risk assessment, the DOE will propose an approach for managing contaminated ground water at the Bowman site.

1994-11-01T23:59:59.000Z

119

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Hazardous Waste Management  

E-Print Network (OSTI)

Products such as paints, solvents, adhesives, oils, cleaners, batteries, pesticides and wood preservatives are commonly used in households and on farms, but they can be hazardous to ground water if handled improperly. This publication explains proper methods of using, storing and disposing of hazardous materials.

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

1997-08-29T23:59:59.000Z

120

Selenium in Oklahoma ground water and soil. Quarterly report No. 6  

SciTech Connect

Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

Atalay, A.; Vir Maggon, D.

1991-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Thermal ground water flow systems in the thrust zone in southeastern Idaho  

DOE Green Energy (OSTI)

The results of a regional study of thermal and non-thermal ground water flow systems in the thrust zone of southern Idaho and western Wyoming are presented. The study involved hydrogeologic and hydrochemical data collection and interpretation. Particular emphasis was placed on analyzing the role that thrust zones play in controlling the movement of thermal and non-thermal fluids.

Ralston, D.R.

1983-05-01T23:59:59.000Z

122

Baseline risk assessment of ground water contamination at the inactive uriniferous lignite ashing site near Belfield, North Dakota  

SciTech Connect

This Baseline Risk Assessment of Ground Water Contamination at the Inactive Uraniferous Lignite Ashing Site Near Belfield, North Dakota, evaluates potential impacts to public health or the environment resulting from ground water contamination at the site where coal containing uranium was burned to produce uranium. The US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project is evaluating plans to remedy soil and ground water contamination at the site. Phase I of the UMTRA Project consists of determining the extent of soil contamination. Phase II of the UMTRA Project consists of evaluating ground water contamination. Under Phase II, results of this risk assessment will help determine what remedial actions may be necessary for contaminated ground water at the site. This risk assessment evaluates the potential risks to human health and the environment resulting from exposure to contaminated ground water as it relates to historic processing activities at the site. Potential risk is quantified for constituents introduced from the processing activities, and not for those constituents naturally occurring in water quality in the site vicinity. Background ground water quality has the potential to cause adverse health effects from exposure through drinking. Any risks associated with contaminants attributable to site activities are incremental to these risks from background ground water quality. This incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition.

1994-08-01T23:59:59.000Z

123

Laboratory Investigation into the Contribution of Contaminants to Ground Water from Equipment Materials Used in Sampling  

SciTech Connect

Benzene contamination was detected in well water samples from the Ogallala Aquifer beneath and adjacent to the Department of Energy's Pantex Plant near Amarillo, Texas. This study assessed whether or not the materials used in multilevel sampling equipment at this site could have contributed to the contaminants found in well water samples. As part of this investigation, laboratory testing of the sample equipment material was conducted. Results from the laboratory test indicated three different materials from two types of multilevel samplers did, in fact, contribute volatile and semivolatile organic compounds to the ground water samples from static leach tests that were conducted during an eight week period. The nylon-11 tubing contributed trace concentrations of benzene (1.37 ?g/L) and relatively high concentrations of the plasticizer N-butylbenzenesulfonamide (NBSA) (764 mg/L) to the water; a urethane-coated nylon well liner contributed relatively high concentrations of toluene (278 ?g/L) and trace amounts of NBSA; and a sampling port spacer material made of nylon/polypropylene/polyester-composite contributed trace amounts of toluene and NBSA. While the concentrations of benzene and toluene measured in the laboratory tests were below the concentrations measured in actual ground water samples, the concentrations of organics from these equipment materials were sufficient to render the results reported for the ground water samples suspect.

Gilmore, Tyler J.; Mitroshkov, Alexandre V.; Dresel, P Evan; Sklarew, Debbie S.

2004-08-30T23:59:59.000Z

124

Urea for SCR-based NOx Control Systems and Potential Impacts to Ground Water Resources  

DOE Green Energy (OSTI)

One of the key challenges facing manufacturers of diesel engines for light- and heavy-duty vehicles is the development of technologies for controlling emissions of nitrogen oxides, In this regard, selective catalytic reduction (SCR) systems represent control technology that can potentially achieve the NOx removal efficiencies required to meet new U.S. EPA standards. SCR systems rely on a bleed stream of urea solution into exhaust gases prior to catalytic reduction. While urea's role in this emission control technology is beneficial, in that it supports reduced NOx emissions, it can also be an environmental threat to ground water quality. This would occur if it is accidentally released to soils because once in that environmental medium, urea is subsequently converted to nitrate--which is regulated under the U.S. EPA's primary drinking water standards. Unfortunately, nitrate contamination of ground waters is already a significant problem across the U.S. Historically, the primary sources of nitrate in ground waters have been septic tanks and fertilizer applications. The basic concern over nitrate contamination is the potential health effects associated with drinking water containing elevated levels of nitrate. Specifically, consumption of nitrate-contaminated water can cause a blood disorder in infants known as methemoglobinemia.

Layton, D.

2002-01-03T23:59:59.000Z

125

Barriers and Solutions for Farmer Participation in the Ohio River Basin Water Quality Trading Program  

Science Conference Proceedings (OSTI)

As part of a multiyear collaborative effort, American Farmland Trust (AFT) convened six listening sessions with approximately 150 agricultural producers (farmers) in the Ohio River Basin (ORB) to determine their readiness to sell nutrient credits in a regional water quality trading (WQT) market. In a WQT market, municipal wastewater treatment plants, industrial manufacturing plants, and electric power companies can purchase nutrient credits to meet their regulatory requirements. They pay farmers to imple...

2011-09-01T23:59:59.000Z

126

Modeling and Analysis of the Variability of the Water Cycle in the Upper Rio Grande Basin at High Resolution  

Science Conference Proceedings (OSTI)

Estimating the water budgets in a small-scale basin is a challenge, especially in the mountainous western United States, where the terrain is complex and observational data in the mountain areas are sparse. This manuscript reports on research ...

J. Li; X. Gao; S. Sorooshian

2007-08-01T23:59:59.000Z

127

Columbia Plateau Basin and Fifteenmile Subbasin Water Rights Acquisitons; Oregon Water Trust Combined Work Plan, 2002-2003 Final Report.  

DOE Green Energy (OSTI)

This is the Final Report submitted regarding Oregon Water Trust's Combined Work Plan for fiscal year 2003, with the contract period April 2002 to May 2003. Of this 12 month period, six month were spent concluding our work for the 2002 irrigation season and six months were spent preparing for the 2003 irrigation season. After this grant was completed, projects were finished with funding from the Columbia Basin Water Transactions Program. Many of the 2003 irrigation season successes began in the fall of 2002, when projects were researched and partnerships were developed. Trout Creek Ranch was one of the large successes. During the 2003 irrigation season, 2.6 cfs was leased which led to a permanent instream transfer, protecting critical spawning habitat for summer steelhead in the Deschutes basin. Another success was the Walla Walla Lease Bank project. This project is an agreement between the OWT, the Walla Walla Irrigation District and 11 individual landowners. Through this single year lease, 7.9 cfs of water was legally protected in the Walla Walla River. The Vidando lease on Middle Fork John Day River was renewed for 2 more years, protecting 11.29 cfs. An innovative single year split-season lease was conducted with Voight on Standard Creek in the John Day basin to protect 4.93 cfs. Many other deals were conducted and the total was an impressive 50.43 cfs instream during 2003 and 9.39 cfs pending approval for the 2004 season. Included is a summary of the activities within the Fifteenmile subbasin and the Columbia Plateau basin by quarter and two tables. The summary of activities is broken down by objectives and quarters. The first summarizes the total cfs by type of lease or transfer. The second table lists all the projects by subbasin and provides project type, lease number, cfs, cost of acquisition, partners in the project and funding source.

Paulus, Fritz

2003-12-01T23:59:59.000Z

128

Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

NONE

1996-03-01T23:59:59.000Z

129

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1  

SciTech Connect

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

NONE

1995-11-01T23:59:59.000Z

130

Local amplification of deep mining induced vibrations - Part.2: Simulation of the ground motion in a coal basin  

E-Print Network (OSTI)

This work investigates the impact of deep coal mining induced vibrations on surface constructions using numerical tools. An experimental study of the geological site amplification and of its influence on mining induced vibrations has already been published in a previous paper (Part 1: Experimental evidence for site effects in a coal basin). Measurements have shown the existence of an amplification area in the southern part of the basin where drilling data have shown the presence of particularly fractured and soft stratigraphic units. The present study, using the Boundary Element Method (BEM) in the frequency domain, first investigates canonical geological structures in order to get general results for various sites. The amplification level at the surface is given as a function of the shape of the basin and of the velocity contrast with the bedrock. Next, the particular coal basin previously studied experimentally (Driad-Lebeau et al., 2009) is modeled numerically by BEM. The amplification phenomena characteri...

Semblat, Jean-François; Driad-Lebeau, L; Bonnet, Guy; 10.1016/j.soildyn.2010.04.006

2010-01-01T23:59:59.000Z

131

Assessment of MTI Water Temperature Thermal Discharge Retrievals with Ground Truth  

Science Conference Proceedings (OSTI)

Surface water temperatures calculated from Multispectral Thermal Imager (MTI) brightness temperatures and the robust retrieval algorithm, developed by the Los Alamos National Laboratory (LANL), are compared with ground truth measurements at a mid-latitude cold-water site along the Atlantic coast near Plymouth, MA. In contrast to the relative uniformity of the sea-surface temperature in the open ocean the water temperature near Pilgrim exhibits strong spatial gradients and temporal variability. This made it critical that all images be accurately registered in order to extract temperature values at the six buoy locations. Sixteen images during a one-year period from August 2000 to July 2001 were selected for the study. The RMS error of Pilgrim water temperature is about 3.5 C for the 4 buoys located in open water. The RMS error of the combined temperatures from 3 of the open-water buoys is 2.8 C. The RMS error includes errors in the ground truth. The magnitude of this error is estimated to range between 0.8 and 2.3 C. The two main components of this error are warm-layer effect and spatial variability. The actual error in the MTI retrievals for Pilgrim daytime conditions is estimated to be between 2.7 and 3.4 C for individual buoys and between 1.7 and 2.7 C for the combined open-water buoys.

Kurzeja, R.J.

2002-12-06T23:59:59.000Z

132

Superfund Record of Decision (EPA region 8): Libby Ground Water Contamination Site, Libby, Montana, September 1986. Final report  

SciTech Connect

Abandoned wood-treating operations on the mill property are the source of ground-water contamination at the Libby Ground Water Contamination site in the northwest corner of Montana. In 1979, shortly after installation of private wells, some homeowners detected the presence of a creosote odor, and EPA monitoring in 1981 confirmed ground-water contamination. Based on 1984 well sample results, Champion International Corporation implemented the Buy Water Plan. Under this program, individuals with contaminated ground water wells agree to cease using their wells and use water from the public water system operated by the City of Libby. The program, indefinite in term, would be terminated upon the elimination of the threat of contamination, if the well owner provides a written termination notice, or if other alternatives become available. The primary contaminants of concern include: VOCs, PAHs, PCP, organics, inorganics, heavy metals, and creosote. Selected remedies are proposed and included in the report.

Not Available

1986-09-26T23:59:59.000Z

133

An update on the SRP burial ground area water balance and hydrology  

SciTech Connect

A water budget for the burial ground area prepared by Hubbard and Emslie concluded that about 15 inches, almost one-third of the average annual precipitation, normally infiltrates the land surface and recharges the groundwater. Also, evapotranspiration was estimated to average 30 inches annually, and runoff from the land surface was estimated as 1 to 3 inches. More information has become available recently from lysimeter studies, climatic stations, groundwater studies, and stream discharge measurements. These additional data generally support the conclusions above with some modifications. The type of vegetation cover on the land surface affects the site hydrology and water budget components of evapotranspiration and groundwater recharge. The lysimeter studies indicate that about 12 inches more water is lost annually to the atmosphere by evapotranspiration with deep-rooted pine trees present than in areas where bare soil or shallow-rooted grass cover occur. Therefore, recharge in the burial ground area may differ from that with similar soils in forested areas of the Savannah River Plant. Study of the hydrologic properties of soils in the burial ground area indicates that infiltration rates for the soils generally are relatively high, exceeding one inch per hour. Runoff as overland flow tends to occur only with intense rainfall events of 1 inch or more. The soil-water characteristic curves are representative of relatively coarse-textured soils.

Wells, D.G. [Westinghouse Savannah River Company, Aiken, SC (United States). Savannah River Site; Cook, J.W.

1986-01-09T23:59:59.000Z

134

A cost-effective, environmentally-responsive ground-water monitoring procedure  

E-Print Network (OSTI)

Ground-water monitoring is the primary method used to protect our ground-water resources. The primary objectives of monitoring programs are to detect, to attribute, and to mitigate any changes in-water quality or quantity. Previous monitoring programs have had numerous problems including the failure to produce usable information and the failure to balance the competing factors of cost-effectiveness and environmental protection. A cost-effective, environmentally-responsive ground-water procedure was designed which consists of eight steps and two feedback loops. The reason for monitoring must first be determined before clear monitoring goals can be set. Characterization of the site allows proper design of the monitoring network. Data is then collected and analyzed creating usable information. Applying this new information to the information expansion loop permits a better understanding of the initial site characterization. Finally evaluating the entire routine to determine the effectiveness of the program allows the optimization loop to modify the system for greater efficiency. The value of this procedure was tested at selected sites in the Gibbons Creek Lignite Mine in Grimes County, Texas. The mine, which is currently in compliance with state regulations, is not operating an efficient monitoring program. The problems included over-monitoring of metals in and around reclaimed mine blocks, over-monitoring by monitoring wells in the same aquifer, and the failure to attribute changes in a monitoring well near a dewatering well. The feedback loops helped to optimize the entire program by recognizing problems in the stratigraphic column and modifying the monitoring program to lower monitoring costs. Three major benefits are gained by using this procedure: the ground-water monitoring routine can be made more cost-effective, environmental protection will be increased, and environmental liability will be decreased.

Doucette, Richard Charles

1994-01-01T23:59:59.000Z

135

Origin of fluid inclusion water in bedded salt deposits, Palo Duro Basin, Texas  

DOE Green Energy (OSTI)

Salt horizons in the Palo Duro Basin being considered for repository sites contain fluid inclusions which may represent connate water retained in the salt from the time of original salt deposition and/or external waters which have somehow penetrated the salt. The exact origin of this water is important to the question of whether or not internal portions of the salt deposit have been, and are likely to be, isolated from the hydrosphere for long periods of time. The /sup 18/O//sup 16/O and D/H ratios measured for water extracted from solid salt samples show the inclusions to be dissimilar in isotopic composition to meteoric waters and to formation waters above and below the salt. The fluid inclusions cannot be purely external waters which have migrated into the salt. The isotope data are readily explained in terms of mixed meteoric-marine connate evaporite waters which date back to the time of deposition and early diagenesis of the salt (>250 million years). Any later penetration of the salt by meteoric waters has been insufficient to flush out the connate brines.

Knauth, L.P.; Beeunas, M.A.

1985-07-01T23:59:59.000Z

136

Powder River Basin Coalbed Methane Development and Produced Water Management Study  

DOE Green Energy (OSTI)

Coalbed methane resources throughout the entire Powder River Basin were reviewed in this analysis. The study was conducted at the township level, and as with all assessments conducted at such a broad level, readers must recognize and understand the limitations and appropriate use of the results. Raw and derived data provided in this report will not generally apply to any specific location. The coal geology in the basin is complex, which makes correlation with individual seams difficult at times. Although more than 12,000 wells have been drilled to date, large areas of the Powder River Basin remain relatively undeveloped. The lack of data obviously introduces uncertainty and increases variability. Proxies and analogs were used in the analysis out of necessity, though these were always based on sound reasoning. Future development in the basin will make new data and interpretations available, which will lead to a more complete description of the coals and their fluid flow properties, and refined estimates of natural gas and water production rates and cumulative recoveries. Throughout the course of the study, critical data assumptions and relationships regarding gas content, methane adsorption isotherms, and reservoir pressure were the topics of much discussion with reviewers. A summary of these discussion topics is provided as an appendix. Water influx was not modeled although it is acknowledged that this phenomenon may occur in some settings. As with any resource assessment, technical and economic results are the product of the assumptions and methodology used. In this study, key assumptions as well as cost and price data, and economic parameters are presented to fully inform readers. Note that many quantities shown in various tables have been subject to rounding; therefore, aggregation of basic and intermediate quantities may differ from the values shown.

Advanced Resources International

2002-11-30T23:59:59.000Z

137

HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve "clean closure" of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems.

Evans, S. K.

2007-11-07T23:59:59.000Z

138

TO: US Environmental Protection Agency (EPA) Office of Ground Water and Drinking Water  

E-Print Network (OSTI)

2001, which works to improve public water supply and sanitation. Thank you for the opportunity to submit a comment on the viability of bottled water as an alternative compliance option for chronic water contaminants for non-transient noncommunity water systems (NTNCWS), which are regulated under the Safe Water Drinking Act (SDWA) and 40 CFR s.141.101. Currently, bottled water may not be used by public water systems to achieve compliance with a Maximum Contaminant Level (MCL). This has been the policy over the past eight years. However, bottled water may be used on a temporary basis to avoid unreasonable risk to health. NTNCWS are public water systems. To put matters into perspective: According to the “Public Drinking Water Systems: Facts and Figures ” page on the EPA web site, last updated on February 28, 2006, almost 284 million people in the US are served by public water systems. Of these, only 6.9 million, or just under 2.5%, are served by NTNCWS. There are a total of 20,559 NTNCWS in the US. Type of Water Source: ? 821 of these systems rely on surface water, and serve 932,000 people.

Non-transient Non-community; Water Systems; Comment Arthur Cohen; Mph Convenor Of Saniplan

2006-01-01T23:59:59.000Z

139

Guide to ground water remediation at CERCLA response action and RCRA corrective action sites  

SciTech Connect

This Guide contains the regulatory and policy requirements governing remediation of ground water contaminated with hazardous waste [including radioactive mixed waste (RMW)], hazardous substances, or pollutants/contaminants that present (or may present) an imminent and substantial danger. It was prepared by the Office of Environmental Policy and Assistance, RCRA/CERCLA Division (EH-413), to assist Environmental Program Managers (ERPMs) who often encounter contaminated ground water during the performance of either response actions under CERCLA or corrective actions under Subtitle C of RCRA. The Guide begins with coverage of the regulatory and technical issues that are encountered by ERPM`s after a CERCLA Preliminary Assessment/Site Investigation (PA/SI) or the RCRA Facility Assessment (RFA) have been completed and releases into the environment have been confirmed. It is based on the assumption that ground water contamination is present at the site, operable unit, solid waste management unit, or facility. The Guide`s scope concludes with completion of the final RAs/corrective measures and a determination by the appropriate regulatory agencies that no further response action is necessary.

NONE

1995-10-01T23:59:59.000Z

140

U.S. Department of Energy Uranium Mill Tailings Remedial Action Ground Water Project: Project plan  

SciTech Connect

The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA Project processing sites. The compliance strategy for the processing sites must satisfy the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1987). This scope of work will entail the following activities on a site-specific basis: Develop a compliance strategy based on modification of the UMTRA Surface Project RAPs or develop Ground Water Project RAPs with NRC concurrence on the RAP and full participation of the affected states and tribes. Implement the RAP to include institutional controls, where appropriate, as an interim measure until compliance with the standards is achieved. Institute long-term verification monitoring for transfer to a separate long-term surveillance program on or before the Project end date. Prepare certification or confirmation reports and modify the long-term surveillance plan (LTSP), where needed, on those sites completed prior to the Project end date.

Not Available

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado  

SciTech Connect

This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

Not Available

1994-06-01T23:59:59.000Z

142

Ohio River Basin Trading Project Soil and Water Conservation District (SWCD) Informational Meeting: Ohio Department of Natural Resou rces  

Science Conference Proceedings (OSTI)

The Ohio River Basin Trading Project is a first-of-a-kind interstate nutrient trading program that represents a comprehensive approach to designing and developing credit markets for nitrogen and phosphorus discharges. The intent of this trading program is to allow exchanges of water quality credits for nitrogen and phosphorus aimed at protecting and improving watersheds at lower overall costs in the Ohio River Basin. The Electric Power Research Institute (EPRI) is coordinating this project with support f...

2010-09-08T23:59:59.000Z

143

Identifying and Remediating High Water Production Problems in Basin-Centered Formations  

SciTech Connect

Through geochemical analyses of produced waters, petrophysics, and reservoir simulation we developed concepts and approaches for mitigating unwanted water production in tight gas reservoirs and for increasing recovery of gas resources presently considered noncommercial. Only new completion research (outside the scope of this study) will validate our hypothesis. The first task was assembling and interpreting a robust regional database of historical produced-water analyses to address the production of excessive water in basin-centered tight gas fields in the Greater Green (GGRB ) and Wind River basins (WRB), Wyoming. The database is supplemented with a sampling program in currently active areas. Interpretation of the regional water chemistry data indicates most produced waters reflect their original depositional environments and helps identify local anomalies related to basement faulting. After the assembly and evaluation phases of this project, we generated a working model of tight formation reservoir development, based on the regional nature and occurrence of the formation waters. Through an integrative approach to numerous existing reservoir concepts, we synthesized a generalized development scheme organized around reservoir confining stress cycles. This single overarching scheme accommodates a spectrum of outcomes from the GGRB and Wind River basins. Burial and tectonic processes destroy much of the depositional intergranular fabric of the reservoir, generate gas, and create a rock volume marked by extremely low permeabilities to gas and fluids. Stress release associated with uplift regenerates reservoir permeability through the development of a penetrative grain bounding natural fracture fabric. Reservoir mineral composition, magnitude of the stress cycle and local tectonics govern the degree, scale and exact mechanism of permeability development. We applied the reservoir working model to an area of perceived anomalous water production. Detailed water analyses, seismic mapping, petrophysics, and reservoir simulation indicate a lithologic and structural component to excessive in situ water permeability. Higher formation water salinity was found to be a good pay indicator. Thus spontaneous potential (SP) and resistivity ratio approaches combined with accurate formation water resistivity (Rw) information may be underutilized tools. Reservoir simulation indicates significant infill potential in the demonstration area. Macro natural fracture permeability was determined to be a key element affecting both gas and water production. Using the reservoir characterization results, we generated strategies for avoidance and mitigation of unwanted water production in the field. These strategies include (1) more selective perforation by improved pay determination, (2) using seismic attributes to avoid small-scale fault zones, and (3) utilizing detailed subsurface information to deliberately target optimally located small scale fault zones high in the reservoir gas column. Tapping into the existing natural fracture network represents opportunity for generating dynamic value. Recognizing the crucial role of stress release in the natural generation of permeability within tight reservoirs raises the possibility of manmade generation of permeability through local confining stress release. To the extent that relative permeabilities prevent gas and water movement in the deep subsurface a reduction in stress around a wellbore has the potential to increase the relative permeability conditions, allowing gas to flow. For this reason, future research into cavitation completion methods for deep geopressured reservoirs is recommended.

R.L. Billingsley

2005-12-01T23:59:59.000Z

144

Modelling the fate and transport of negatively buoyant storm-river water in small multi-basin lakes  

Science Conference Proceedings (OSTI)

The dynamics of negatively buoyant river plumes in a small multi-basin kettle lake with steep bathymetry (Toolik Lake, AK) are simulated using a Cartesian hydrodynamic model based on the solution of the three-dimensional shallow water equations. To validate ... Keywords: Flow paths, Lakes, River, Shallow water models

Francisco J. Rueda; Sally MacIntyre

2010-01-01T23:59:59.000Z

145

Bordering on Water Management: Ground and Wastewater in the United States - Mexico Transboundary Santa Cruz Basin  

E-Print Network (OSTI)

180 The CEC conducts investigations of environmentalUSGS) conducts hydrogeological investigations, For morespecies Conduct hydro-geological investigations, monitor

Milman, Anita Dale

2009-01-01T23:59:59.000Z

146

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

NONE

1996-02-01T23:59:59.000Z

147

Ground water and oil field waste sites: a study in Vermilion Parish  

Science Conference Proceedings (OSTI)

Water samples were obtained from 128 private water wells surrounding eight oil field waste sites in Vermilion Parish. The specimens were analyzed for five heavy metals: barium, arsenic, chromium, lead, and cadmium. Half of the specimens were then analyzed for 16 volatile organic compounds. A blood sample was obtained from healthy adults drinking water from the wells tested for volatile organic compounds and this blood sample was also analyzed for volatile organic compounds. None of the water samples had levels of heavy metals or volatile organic compounds that exceeded the National Primary Drinking Water Standards. Barium levels in excess of 250 parts per billion suggested that styrene, toluene, and chloroform might be present. Blood levels of volatile organic compounds were significantly higher than could be accounted for by water consumption with levels in smokers significantly higher than in nonsmokers. These data suggest that as yet there is no contamination of ground water supplies around these sites. Volatile organic accumulation in humans probably occurs from a respiratory rather than from an oral route.

Rainey, J.M.; Groves, F.D.; DeLeon, I.R.; Joubert, P.E. (LSU School of Medicine, New Orleans, LA (USA))

1990-06-01T23:59:59.000Z

148

Operational readiness review implementation plan for K Basin sludge water system  

SciTech Connect

This Implementation Plan (IP) has been prepared consistent with the requirements of U.S. Department of Energy (DOE) Order 425.1B, ''Startup and Restart of Nuclear Facilities'', and DOE-STD-3006-2000, ''Planning and Conduct of Operational Readiness Reviews'' (ORR) (DOE 2002). The scope of the DOE ORR is described in the RL ''Plan of Action, K Basin Sludge Water System'' (Veitenheimer 2003), prepared by DOE project line management and approved by the RL Manager, the designated Approval Authority, on March 20, 2003. The scope of the contractor ORR is described in the contractor ''Plan of Action for the K Basins Sludge Water System Operational Readiness Review'' (FH 2002a) which was prepared by Spent Nuclear Fuel (SNF) Project line management and approved by the DOE Richland Operations Office (RL) Manager on December 19, 2002. DOE Order 425.1B indicates that the Secretarial Officer is the Authorization Authority when substantial modifications are made to a Hazard Category 2 nuclear facility. This Authorization Authority has been delegated to the RL Manager by memorandum from Jessie Hill Roberson, dated February 5, 2003 (Roberson 2003). This IP provides the overall approach and guidelines for performance of the DOE ORR. Appendix A contains the Criteria and Review Approach Documents (CRAD), which define the review objectives and criteria as well as the approach for assessing each objective. ORR results will be published in a final report, as discussed in Section 9.4.

IRWIN, R.M.

2003-05-01T23:59:59.000Z

149

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1  

SciTech Connect

This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.

Not Available

1994-09-01T23:59:59.000Z

150

Ground-water protection standards for inactive uranium tailings sites (40 CFR 192): Background information for final rule. Final report  

Science Conference Proceedings (OSTI)

The Final Background Information Document summarizes the information and data considered by the Agency in developing the ground-water protection standards. The report presents a brief description of the Title II ground water standard and how it can be used to develop the Title I rulemaking. A description of the 24 designated uranium-tailings sites and their current status in the DOE remedial-action program is included as well as a detailed analysis of the available data on the ground water in the vicinity of 14 of the 24 sites. It also describes different methods that can be used for the restoration of ground water and the costs of using these restoration methods.

Not Available

1989-03-01T23:59:59.000Z

151

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Pesticide Storage and Handling  

E-Print Network (OSTI)

Proper pesticide management is important to preventing ground water contamination. This publication contains helpful information about pesticide storage facilities, mixing and loading practices, and spill cleanup. A chart lists pesticides according to their "leachability.

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

1997-08-29T23:59:59.000Z

152

Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah  

Science Conference Proceedings (OSTI)

This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

Not Available

1994-09-01T23:59:59.000Z

153

DOE/EA-1388: Environmental Assessment of Ground Water Compliance at the Shiprock Uranium Mill Tailings Site (September 2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

388 388 Environmental Assessment of Ground Water Compliance at the Shiprock Uranium Mill Tailings Site Final September 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 This Page Intentionally Blank DOE Grand Junction Office EA of Ground Water Compliance at the Shiprock Site September 2001 Final Page iii Contents Page Acronyms and Abbreviations ........................................................................................................ vii Executive Summary ....................................................................................................................... ix 1.0 Introduction .............................................................................................................................1

154

(Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio)  

SciTech Connect

This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

Not Available

1991-10-01T23:59:59.000Z

155

Locating Ground-Water Discharge in the Hanford Reach of the Columbia River  

Science Conference Proceedings (OSTI)

A bottom-contacting probe for measuring electrical conductivity at the sediment-water interface was used to scan the bed of the Columbia River adjacent to the Hanford Site in southeast Washington State during a 10-day investigation. Four river-sections, each about a kilometer in length, were scanned for variations in electrical conductivity. The probe was towed along the riverbed at a speed of 1 m/s and is position was recorded using a Global Positioning System. The bottom tows revealed several areas of elevated electrical conductivity. Where these anomalies were relatively easy to access, piezometers were driven into the riverbed and porewater electrical conductivity ranged from 111 to 150 uS/cm. The piezometers, placed in electrical conductivity “hotspots,” yielded chemical or isotopic data consistent with previous analyses of water taken from monitoring wells and visible shoreline seeps. Tritium, nitrate, and chromium exceeded water quality standards in some porewaters. The highest tritium and nitrate levels were found near the Old Hanford Townsite at 120,000 pCi/L (+ 5,880 pCi/L total propagated analytical uncertainty) and ug/L (+ 5,880 ug/L), respectively. The maximum chromium (total and hexavalent) levels were found near 100-H reactor area where unfiltered porewater total chromium was 1,900 ug/L (+ 798 ug/L) and hexavalent chromium was 20 ug/L. The electrical conductivity probe provided rapid, cost-effective reconnaissance for ground-water discharge areas when used in combination with conventional piezometers. It may be possible to obtain quantitative estimates of both natural and contaminated ground-water discharge in the Hanford Reach with more extensive surveys of river bottom.

Lee, D.R.; Geist, D.R.; Saldi, K.; Hartwig, D.; Cooper, T.

1997-03-01T23:59:59.000Z

156

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Falls City, Texas: Revision 1  

Science Conference Proceedings (OSTI)

This baseline risk assessment of ground water contamination of the uranium mill tailings site near Falls City, Texas, evaluates potential impact to public health and the environment resulting from ground water contamination at the former Susquehanna Western, Inc. (SWI), uranium mill processing site. This document fulfills the following objectives: determine if the site presents immediate or potential future health risks, determine the need for interim institutional controls, serve as a key input to project planning and prioritization, and recommend future data collection efforts to more fully characterize risk. The Uranium Mill Tailings Remedial Action (UMTRA) Project has begun its evaluation of ground water contamination at the Falls City site. This risk assessment is one of the first documents specific to this site for the Ground Water Project. The first step is to evaluate ground water data collected from monitor wells at or near the site. Evaluation of these data show the main contaminants in the Dilworth ground water are cadmium, cobalt, fluoride, iron, nickel, sulfate, and uranium. The data also show high levels of arsenic and manganese occur naturally in some areas.

Not Available

1994-09-01T23:59:59.000Z

157

Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

NONE

1995-08-01T23:59:59.000Z

158

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Salt Lake City, Utah. Revision 1  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the first is the Surface Project, and the second is the Ground Water Project. For the UMTRA Project site known as the Vitro site, near Salt Lake City, Utah, Surface Project cleanup occurred from 1985 to 1987. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. A risk assessment is the process of describing a source of contamination and showing how that contamination may reach people and the environment. The amount of contamination people or the environment may be exposed to is calculated and used to characterize the possible health or environmental effects that may result from this exposure. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Vitro site. The results of this report and further site characterization of the Vitro site will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

NONE

1995-09-01T23:59:59.000Z

159

Raft River monitor well potentiometric head responses and water quality as related to the conceptual ground-water flow system  

DOE Green Energy (OSTI)

Ground-water monitoring near the Raft River site was initiated in 1974 by the IDWR. This effort consisted of semiannual chemical sampling of 22 irrigation wells near the Raft River geothermal development area. This program yielded useful baseline chemical data; however, several problems were inherent. For example, access to water pumped from the wells is limited to the irrigation season (April through September). All the wells are not continuously pumped; thus, some wells that are sampled one season cannot be sampled the next. In addition, information on well construction, completion, and production is often unreliable or not available. These data are to be supplemented by establishing a series of monitor wells in the proposed geothermal withdrawal and injection area. These wells were to be located and designed to provide data necessary for evaluating and predicting the impact of geothermal development on the Shallow Aquifer system.

Allman, D.W.; Tullis, J.A.; Dolenc, M.R.; Thurow, T.L.; Skiba, P.A.

1982-09-01T23:59:59.000Z

160

Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California  

SciTech Connect

Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

Warner, J.L.; Lutz, J.D.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

(Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)  

Science Conference Proceedings (OSTI)

In April 1990, Wright-Patterson Air Force Base (WPAFB) initiated an effort for the evaluation of potential removal of ground water contamination at the Base. This report presents a current assessment of the nature and extent of the contamination believed to be migrating across the southwestern boundary of Area C and the northern boundary of Area B based upon analysis of existing environmental data obtained from several sources. The existing data base indicates widespread, low-level contamination moving across Base boundaries at levels that pose no immediate threat to the Mad River Valley well fields. An investigation by the City of Dayton in May and June 1990, however, implies that a more identifiable plume of PCE and TCE may be crossing the southwestern boundary of Area C immediately downgradient of Landfill 5. More data is needed to delineate ground water contamination and to design and implement a suitable control system. This report concludes that although an extensive study of the boundaries in question would be the preferred approach, a limited, focused investigation and subsequent feasibility study can be accomplished with a reasonable certainty of achieving the desired outcome of this project.

Not Available

1991-10-01T23:59:59.000Z

162

Ground-state ammonia and water in absorption towards Sgr B2  

E-Print Network (OSTI)

We have used the Odin submillimetre-wave satellite telescope to observe the ground state transitions of ortho-ammonia and ortho-water, including their 15N, 18O, and 17O isotopologues, towards Sgr B2. The extensive simultaneous velocity coverage of the observations, >500 km/s, ensures that we can probe the conditions of both the warm, dense gas of the molecular cloud Sgr B2 near the Galactic centre, and the more diffuse gas in the Galactic disk clouds along the line-of-sight. We present ground-state NH3 absorption in seven distinct velocity features along the line-of-sight towards Sgr B2. We find a nearly linear correlation between the column densities of NH3 and CS, and a square-root relation to N2H+. The ammonia abundance in these diffuse Galactic disk clouds is estimated to be about (0.5-1)e-8, similar to that observed for diffuse clouds in the outer Galaxy. On the basis of the detection of H218O absorption in the 3 kpc arm, and the absence of such a feature in the H217O spectrum, we conclude that the water...

Wirström, E S; Black, J H; Hjalmarson, Å; Larsson, B; Olofsson, A O H; Encrenaz, P J; Falgarone, E; Frisk, U; Olberg, M; Sandqvist, Aa

2010-01-01T23:59:59.000Z

163

Water Prism, Volume 2: Prototype Applications  

Science Conference Proceedings (OSTI)

Water Prism is a decision support system (DSS) that evaluates alternative management plans to obtain water resource sustainability at the regional, watershed, or local levels. It considers surface, ground, and impoundment waters and all water-using sectors (industrial, agricultural, municipal, electric power, and the environment). This technical update illustrates how Water Prism is used by applying it to two large watersheds: the Muskingum River Basin (Ohio) and the Green River Basin ...

2013-10-01T23:59:59.000Z

164

Using Stable Water Isotopes to Evaluate Basin-Scale Simulations of Surface Water Budgets  

Science Conference Proceedings (OSTI)

Two rare but naturally occurring isotopes of water, 1H218O and 1H2H16O, are becoming of practical use in diagnosis of climate and earth system model performance. Their value as tracers and validation tools in hydrological subsystems derives from ...

A. Henderson-Sellers; K. McGuffie; D. Noone; P. Irannejad

2004-10-01T23:59:59.000Z

165

Geothermal resources of the Southern Powder River Basin, Wyoming  

DOE Green Energy (OSTI)

This report describes the geothermal resources of the Southern Powder River Basin. The report contains a discussion of the hydrology as it relates to the movement of heated water, a description and interpretation of the thermal regime, and four maps: a generalized geological map, a structure contour map, a thermal gradient contour map, and a ground water temperature map. 10 figs. (ACR)

Heasler, H.P.; Buelow, K.L.; Hinckley, B.S.

1985-06-13T23:59:59.000Z

166

Evolution of the Deep Water in the Canadian Basin in the Arctic Ocean  

Science Conference Proceedings (OSTI)

An overflow of magnitude 0.25 Sv (Sv ? 106 m?3 s?1) has been predicted to enter the Makarov Basin (part of the Canadian Basin in the Arctic Ocean) from the Eurasian Basin via a deep gap in the dividing Lomonosov ridge. The authors argue that this ...

M-L. Timmermans; Chris Garrett

2006-05-01T23:59:59.000Z

167

Computer simulation models relevant to ground water contamination from EOR or other fluids - state-of-the-art  

SciTech Connect

Ground water contamination is a serious national problem. The use of computers to simulate the behavior of fluids in the subsurface has proliferated extensively over the last decade. Numerical models are being used to solve water supply problems, various kinds of enertgy production problems, and ground water contamination problems. Modeling techniques have progressed to the point that their accuracy is only limited by the modeller's ability to describe the reservoir in question and the heterogeneities therein. Pursuant to the Task and Milestone Update of Project BE3A, this report summarizes the state of the art of computer simulation models relevant to contamination of ground water by enhanced oil recovery (EOR) chemicals and/or waste fluids. 150 refs., 6 tabs.

Kayser, M.B.; Collins, A.G.

1986-03-01T23:59:59.000Z

168

Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, 2004 Annual Report.  

DOE Green Energy (OSTI)

Redd counts were used to document the spawning distribution of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U.S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2004; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992), and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document, containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2004 was funded by the Bonneville Power Administration, Idaho Power Company, and Bureau of Land Management.

Garcia, A.P.; Bradbury, S.; Arnsberg, B.D.; Rocklage, S.J.; Groves, P.A.

2005-10-01T23:59:59.000Z

169

Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, 2005 Annual Report.  

DOE Green Energy (OSTI)

Redd counts are routinely used to document the spawning distribution of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2005; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992), and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U.S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document, containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2005 was funded by the Bonneville Power Administration and Idaho Power Company.

Garcia, A.P.; Bradbury, S.; Arnsberg, B.D.; Rocklage, S.J.; Groves, P.A.

2006-10-01T23:59:59.000Z

170

Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, 2007 Annual Report.  

DOE Green Energy (OSTI)

Redd counts are routinely used to document the spawning distribution of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2007; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992), and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches counted upstream of Lower Granite Dam into a single document, containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2007 was funded by the Bonneville Power Administration and Idaho Power Company.

Garcia, A.P.; Bradbury, S. [U.S. Fish and Wildlife Service; Arnsberg, B.D. [Nez Perce Tribe; Groves, P.A. [Idaho Power Company

2008-11-25T23:59:59.000Z

171

Wadter Resources Data Ohio: Water year 1994. Volume 2, St. Lawrence River Basin and Statewide Project Data  

Science Conference Proceedings (OSTI)

The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synaptic sites, and partial-record sites; and (4) water-level data for observation wells. Locations of lake- and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures ga through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two to three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

NONE

1994-12-31T23:59:59.000Z

172

Exergy and Energy analysis of a ground-source heat pump for domestic water heating under simulated occupancy conditions  

SciTech Connect

This paper presents detailed analysis of a water to water ground source heat pump (WW-GSHP) to provide all the hot water needs in a 345 m2 house located in DOE climate zone 4 (mixed-humid). The protocol for hot water use is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which aims to capture the living habits of the average American household and its impact on energy consumption. The entire house was operated under simulated occupancy conditions. Detailed energy and exergy analysis provides a complete set of information on system efficiency and sources of irreversibility, the main cause of wasted energy. The WW-GSHP was sized at 5.275 kW (1.5-ton) for this house and supplied hot water to a 303 L (80 gal) water storage tank. The WW-GSHP shared the same ground loop with a 7.56 kW (2.1-ton) water to air ground source heat pump (WA-GSHP) which provided space conditioning needs to the entire house. Data, analyses, and measures of performance for the WW-GSHP in this paper complements the results of the WA-GSHP published in this journal (Ally, Munk et al. 2012). Understanding the performance of GSHPs is vital if the ground is to be used as a viable renewable energy resource.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

173

Ground-Based Microwave Radiometric Observations of Precipitable Water Vapor: A Comparison with Ground Truth from Two Radiosonde Observing Systems  

Science Conference Proceedings (OSTI)

Dual-channel microwave radiometric measurements of precipitable water vapor are compared with values determined from two types of radiosondes. The first type is used in conventional soundings taken by the National Weather Service. The second is ...

Ed R. Westwater; Michael J. Falls; Ingrid A. Popa Fotino

1989-08-01T23:59:59.000Z

174

BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT THE URAN~UM MILL TAILINGS  

Office of Legacy Management (LM)

I~:-:ii*.i: i,<;.;.-;_r- --:-:ir-- I~:-:ii*.i: i,<;.;.-;_r- --:-:ir-- - . . - -. . - . . - , -, . , , , - - - - . BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT THE URAN~UM MILL TAILINGS SITE NEAR RIVERTON, WYOMING I i I I I Prepared by the U.S. Department of Energy Albuquerque, New Mexico September 1995 INTENDED FOR PUBLIC RELEASE This report has been reproduced from the best available copy. Avai and microfiche Number of pages in this report: 166 DOE and DOE contractors can obtain copies of this report from: Office of Scientific and Technical information P.O. Box 62 Oak Ridge, TN 37831 (61 5) 576-8401 This report is publicly available from: National Technical information Service Department of Commerce 5285 Port Royal Road Springfield, VA 22161 (703) 487-4650 DOEIAL162350-65

175

Hydrogeology and geochemistry of acid mine drainage in ground water in the vicinity of Penn Mine and Camanche Reservoir, Calaveras County, California. Summary report, 1993--1995  

Science Conference Proceedings (OSTI)

The report presents results from the ground-water investigation at the Penn Mine by the US Geological Survey from October 1991 to April 1995. The specific objectives of the investigation were to evaluate (1) the quantity and quality of ground water flowing toward Camanche Reservoir from the Penn Mine area; (2) the ground-water transport of metals, sulfate, and acidity between Mine Run and Camanche Reservoirs; and (3) the hydrologic interactions between the flooded mine workings and other ground water and surface water in the vicinity.

Alpers, C.N.; Hamlin, S.N.; Hunerlach, M.P.

1999-06-01T23:59:59.000Z

176

US Department of Energy Uranium Mill Tailings Remedial Action ground water Project. Revision 1, Version 1: Final project plan  

Science Conference Proceedings (OSTI)

The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA processing sites. The compliance strategy for the processing sites must satisfy requirements of the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1988). This scope of work will entail the following activities, on a site-specific basis: Development of a compliance strategy based upon modification of the UMTRA Surface Project remedial action plans (RAP) or development of Ground Water Project RAPs with NRC and state or tribal concurrence on the RAP; implementation of the RAP to include establishment of institutional controls, where appropriate; institution of long-term verification monitoring for transfer to a separate DOE program on or before the Project end date; and preparation of completion reports and final licensing on those sites that will be completed prior to the Project end date.

Not Available

1993-12-21T23:59:59.000Z

177

Stable isotopes of hydrogen and oxygen in surface water and ground water at selected sites on or near the Idaho National Engineering Laboratory, Idaho  

DOE Green Energy (OSTI)

Relative stable isotopic ratios for hydrogen and oxygen compared to standard mean ocean water are presented for water from 4 surface-water sites and 38 ground-water sites on or near the Idaho National Engineering Laboratory (INEL). The surface-water samples were collected monthly from March 1991 through April 1992 and after a storm event on June 18, 1992. The ground-water samples either were collected during 1991 or 1992. These data were collected as part of the US Geological Survey`s continuing hydrogeological investigations at the INEL. The relative isotopic ratios of hydrogen and oxygen are reported as delta {sup 2}H ({delta}{sup 2}H) and as delta {sup 18}O ({delta}{sup 18}O), respectively. The values of {delta}{sup 2}H and {delta}{sup 18}O in water from the four surface-water sites ranged from -143.0 to -122 and from -18.75 to -15.55, respectively. The values of {delta}{sup 2}H and {delta}{sup 18}O in water from the 38 ground-water sites ranged from -141.0 to -120.0 and from -18.55 to -14.95, respectively.

Ott, D.S.; Cecil, L.D.; Knobel, L.L.

1994-11-01T23:59:59.000Z

178

Comparison of inorganic ion exchange materials for removing cesium, strontium, and transuranic elements from K-basin water  

SciTech Connect

The work presented in this report was conducted by the Pacific Northwest National Laboratory (PNNL) under the Efficient Separations and Crosscutting Program (ESP), Office of Science and Technology, U.S. Department of Energy (DOE). The objective of this work was to investigate radionuclide uptake by several newly produced ion exchange materials under actual waste conditions, and to compare the performance of those materials with that of commercially available ion exchangers. The equilibrium uptake data presented in this report are useful for identifying potential materials that are capable of removing cesium and strontium from 105-KE Basin water. The data show the relative selectivities of the ion exchange materials under similar operating conditions. Additional flow studies are needed to predict material capacities and to develop complete ion exchange process flow sheets. The materials investigated in this study include commercially available ion exchangers such as IONSIV{reg_sign} IE-911 (manufactured by UOP), clinoptilolite (a naturally occurring zeolite), and materials produced on an experimental basis by AlliedSignal (biotites and nonatitanates), 3M (hexacyanoferrates), Selion Technologies, Inc. (hexacyanoferrates and titanates), and Texas A&M University (pharmacosiderites, biotites, and nonatitanates). In all, the performance of 14 ion exchange materials was evaluated at two solution-to-exchanger mass ratios (i.e., 10{sup 4} and 10{sup 5}) using actual 105-KE Basin water. Evaluation consisted of determining cesium and strontium batch distribution coefficients, loading, and decontamination factors. Actual 105-KE Basin water was obtained from a sample collected during the sludge dissolution work conducted by PNNL in FY 1996. This sample was taken from the bottom of the basin and contained significantly higher concentrations of the radioactive constituents than do samples taken from the top of the basin.

Brown, G.N.; Bontha, J.R.; Carson, K.J.; Elovich, R.J.; DesChane, J.R.

1997-10-01T23:59:59.000Z

179

K East basin sludge volume estimates for integrated water treatment system  

Science Conference Proceedings (OSTI)

This document provides estimates of the volume of sludge expected from Integrated Process Strategy (IPS) processing of the fuel elements and in the fuel storage canisters in K East Basin. The original estimates were based on visual observations of fuel element condition in the basin and laboratory measurements of canister sludge density. Revision 1 revised the volume estimates of sludge from processing of the fuel elements based on additional data from evaluations of material from the KE Basin fuel subsurface examinations. A nominal Working Estimate and an upper level Working Bound is developed for the canister sludge and the fuel wash sludge components in the KE Basin.

Pearce, K.L.

1998-08-19T23:59:59.000Z

180

A Critique of the Climatic Record of “Water Equivalent of Snow on the Ground” in the United States  

Science Conference Proceedings (OSTI)

The water equivalent of snow on the ground (SWE) has been measured daily since 1952 at National Weather Service first-order stations whenever snow depth exceeded 5 cm (2 in). These data are used in snowmelt analyses, snow climatology, and snow ...

Thomas W. Schmidlin

1990-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Water Balance for the Ji-Paraná River Basin, Western Amazon, Using a Simple Method through Geographical Information Systems and Remote Sensing  

Science Conference Proceedings (OSTI)

The Thornthwaite–Mather climatological model integrated into a Geographic Information System (GIS) was used to simulate the monthly water balance for the Ji-Paraná river basin, in the western Amazonian state of Rondônia (RO), from February 1995 ...

Danielde Castro Victoria; Alailson Venceslau Santiago; Maria Victoria Ramos Ballester; Antonio Roberto Pereira; Reynaldo Luiz Victoria; Jeffrey E. Richey

2007-04-01T23:59:59.000Z

182

Colorado river basin and climatic change. The sensitivity of streamflow and water supply to variations in temperature and precipitation  

SciTech Connect

Growing international concern about the greenhouse effect has led to increased interest in the regional implications of changes in temperature and precipitation patterns for a wide range of societal and natural systems, including agriculture, sea level, biodiversity, and water resources. The accumulation of greenhouse gases in the atmosphere due to human activities are likely to have significant, though still poorly understood, impacts on water quality and availability. One method developed over the last several years for determining how regional water resources might be affected by climatic change is to develop scenarios of changes in temperature and precipitation and to use hydrologic simulation models to study the impacts of these scenarios on runoff and water supply. In the paper the authors present the results of a multi-year study of the sensitivity of the hydrology and water resources systems in the Colorado River Basin to plausible climatic changes.

Nash, L.L.; Gleick, P.H.

1993-12-01T23:59:59.000Z

183

Acoustically enhanced remediation of contaminated soils and ground water. Volume 1  

SciTech Connect

The Phase 1 laboratory bench-scale investigation results have shown that acoustically enhanced remediation (AER) technology can significantly accelerate the ground water remediation of non-aqueous phase liquids (NAPLs) in unconsolidated soils. The testing also determined some of the acoustic parameters which maximize fluid and contaminant extraction rates. A technology merit and trade analysis identified the conditions under which AER could be successfully deployed in the field, and an analysis of existing acoustical sources and varying methods for their deployment found that AER technology can be successfully deployed in-situ. Current estimates of deployability indicate that a NAPL plume 150 ft in diameter can be readily remediated. This program focused on unconsolidated soils because of the large number of remediation sites located in this type of hydrogeologic setting throughout the nation. It also focused on NAPLs and low permeability soil because of the inherent difficult in the remediation of NAPLs and the significant time and cost impact caused by contaminated low permeability soils. This overall program is recommended for Phase 2 which will address the technology scaling requirements for a field scale test.

NONE

1995-10-01T23:59:59.000Z

184

Ceramic Coatings for Corrosion Resistant Nuclear Waste Container Evaluated in Simulated Ground Water at 90?C  

SciTech Connect

Ceramic materials have been considered as corrosion resistant coatings for nuclear waste containers. Their suitability can be derived from the fully oxidized state for selected metal oxides. Several types of ceramic coatings applied to plain carbon steel substrates by thermal spray techniques have been exposed to 90 C simulated ground water for nearly 6 years. In some cases no apparent macroscopic damage such as coating spallation was observed in coatings. Thermal spray processes examined in this work included plasma spray, High Velocity Oxy Fuel (HVOF), and Detonation Gun. Some thermal spray coatings have demonstrated superior corrosion protection for the plain carbon steel substrate. In particular the HVOF and Detonation Gun thermal spray processes produced coatings with low connected porosity, which limited the growth rate of corrosion products. It was also demonstrated that these coatings resisted spallation of the coating even when an intentional flaw (which allowed for corrosion of the carbon steel substrate underneath the ceramic coating) was placed in the coating. A model for prediction of the corrosion protection provided by ceramic coatings is presented. The model includes the effect of the morphology and amount of the porosity within the thermal spray coating and provides a prediction of the exposure time needed to produce a crack in the ceramic coating.

Haslam, J J; Farmer, J C

2004-03-31T23:59:59.000Z

185

Residential Ground Source Heat Pumps with Integrated Domestic Hot Water Generation: Performance Results from Long-Term Monitoring  

SciTech Connect

Ground source heat pumps (GSHPs) show promise for reducing house energy consumption, and a desuperheater can potentially further reduce energy consumption where the heat pump from the space conditioning system creates hot water. Two unoccupied houses were instrumented to document the installed operational space conditioning and water heating efficiency of their GSHP systems. This paper discusses instrumentation methods and field operation characteristics of the GSHPs, compares manufacturers' values of the coefficients of performance calculated from field measured data for the two GSHPs, and compares the measured efficiency of the desuperheater system to other domestic hot water systems.

Stecher, D.; Allison, K.

2012-11-01T23:59:59.000Z

186

Arizona Water Atlas Volume 3 Upper San Pedro Basin References and Supplemental Reading References  

E-Print Network (OSTI)

Anderson, T.W., and G.W. Freethey, 1995, Simulation of groundwater flow in alluvial basins in south central Arizona and parts of adjacent states: USGS Professional Paper 1406-D.

unknown authors

2005-01-01T23:59:59.000Z

187

On the Connection between Dense Water Formation, Overturning, and Poleward Heat Transport in a Convective Basin  

Science Conference Proceedings (OSTI)

An isopycnal, two-layer, idealized model for a convective basin is proposed, consisting of a convecting, interior region and a surrounding boundary current (buoyancy and wind-driven). Parameterized eddy fluxes govern the exchange between the two. ...

Fiammetta Straneo

2006-09-01T23:59:59.000Z

188

Estimating evapotranspiration from the Amazon Basin using the atmospheric water balance  

E-Print Network (OSTI)

The spatio-temporal patterns of evapotranspiration (ET) in the Amazon basin are still poorly understood. Field studies in the Amazonian forest have shown that at some sites, deep roots allow trees to sustain elevated ...

Karam, Hanan Nadim

2006-01-01T23:59:59.000Z

189

Deep water deposits of the Tanqua and Laingsburg subbasins, southwest Karoo Basin, South Africa: Analog for the Gulf of Mexico  

Science Conference Proceedings (OSTI)

The Tanqua and Laingsburg subbasins in South Africa had near-contemporaneous formation and filling and contain Permian-age basin-floor and slope fans that display characteristics similar to deposits in the northern Gulf of Mexico. Outcrop area for each subbasin is about 650 km{sup 2} and individual fans range from 150 to 450 km{sup 2} with lateral continuity of individual fans up to 34 km. Both subbasins were influenced in their formation and in the architecture of their deposits by structures and events associated with the Cape Fold Belt. These fans most likely had a single point source which migrated over the time of basin fill. Unrestricted deposition suggests an open basin depositional setting. The Laingsburg subbasin was strongly influenced by the tectonism associated with the Cape Fold Belt. Deposition occurred in a deeper and narrower basin and the deposits, except for the overlying deltaics cannot be correlated with those of the Tanqua subbasin. The two subbasins, while associated with an active margin, were likely filled at slightly different times. Both had a distant source area which led to deposits exhibiting characteristics of a passive margin depositional environment. Understanding the evolution of the subbasins and the tectonic conditions under which the submarine fans were deposited leads to the determination of the mechanisms that influenced the formation of the fans and their resulting architecture. These fans permit detailed studies on their architecture necessary to (1) increase our understanding of fine-grained, {open_quotes}low{close_quotes} sandstone/shale ratio fans, (2) determine influences of paleostructures and tectonics on basin fill, (3) carry out detailed reservoir simulation programs, and (4) make predictive models of deep-water sands in the northern Gulf of Mexico.

Scott, E.D. [Louisiana State Univ., Baton Rouge, LA (United States)

1995-10-01T23:59:59.000Z

190

DC WRRC Report No. 103 Background Study of the Ground Water in  

E-Print Network (OSTI)

Flow at outlet from tower: Water Spray Guns: Water quantity for conditioning: Water quantity by controlling the amount of water returned from the atomizing nozzles. The water, when sprayed into the tower around the outside of the tower, and connected to the spray headers by means of flexible hoses. Water

District of Columbia, University of the

191

Mapping of a reactor coolant effluent ground disposal test using an infrared imaging system and ground water potential and temperature measurements  

SciTech Connect

The concept of reactor effluent disposal to ground in infiltration trenches was proposed by Nelson and Alkire in 1963. At that time the available data indicated that radionuclide infiltration rates were probably adequate for trench disposal and that decontamination factors of 10 to 100 should be obtainable. Field tests at 100-F Area 1965 and 100-D Area 1967 have indicated that the infiltration rates are adequate and DF`s of from 2.5 for {sup 51}Cr to 7276 for {sup 65}Zn were obtained during the 100-D test. The purpose of this report is to present the results and interpretations of data from studies conducted over a reactor coolant effluent disposal test site. Data presented in this report were collected over the 100-C Area test in which a significant percentage of the reactor coolant effluent was disposed to an existing trench for a five-month period. Results of infrared thermal surveys and ground water temperature and potential measurements collected during this test are presented.

Eliason, J.R.

1969-04-10T23:59:59.000Z

192

Probability distributions of hydraulic conductivity for the hydrogeologic units of the Death Valley regional ground-water flow system, Nevada and California  

Science Conference Proceedings (OSTI)

The use of geologic information such as lithology and rock properties is important to constrain conceptual and numerical hydrogeologic models. This geologic information is difficult to apply explicitly to numerical modeling and analyses because it tends to be qualitative rather than quantitative. This study uses a compilation of hydraulic-conductivity measurements to derive estimates of the probability distributions for several hydrogeologic units within the Death Valley regional ground-water flow system, a geologically and hydrologicaly complex region underlain by basin-fill sediments, volcanic, intrusive, sedimentary, and metamorphic rocks. Probability distributions of hydraulic conductivity for general rock types have been studied previously; however, this study provides more detailed definition of hydrogeologic units based on lithostratigraphy, lithology, alteration, and fracturing and compares the probability distributions to the aquifer test data. Results suggest that these probability distributions can be used for studies involving, for example, numerical flow modeling, recharge, evapotranspiration, and rainfall runoff. These probability distributions can be used for such studies involving the hydrogeologic units in the region, as well as for similar rock types elsewhere. Within the study area, fracturing appears to have the greatest influence on the hydraulic conductivity of carbonate bedrock hydrogeologic units. Similar to earlier studies, we find that alteration and welding in the Tertiary volcanic rocks greatly influence conductivity. As alteration increases, hydraulic conductivity tends to decrease. Increasing degrees of welding appears to increase hydraulic conductivity because welding increases the brittleness of the volcanic rocks, thus increasing the amount of fracturing.

Belcher, W.R.; Sweetkind, D.S.; Elliott, P.E.

2002-11-19T23:59:59.000Z

193

Negotiating contentious claims to water : shifting institutional dynamics for the allocation of water between the Eel and Russian river basins  

E-Print Network (OSTI)

and Power Commission, Sonoma County Water Contractors, California State Water Resources Control Board, California Department of Water Resources, National MarinePower Commission, the US Army Corps of Engineers, the State Water Resources Control Board, the National Marine

Gilless, J. Keith; Langridge, Ruth

2004-01-01T23:59:59.000Z

194

Supporting Water, Ecological, and Transportation Systems in the Great Lakes Basin Ecosystem  

E-Print Network (OSTI)

as well as in water conservation might help to slow anyrecent years because water conservation efforts is expecteddemand management and water conservation and the use of

Beck, Judy; Kamke, Sherry; Majerus, Kimberly

2007-01-01T23:59:59.000Z

195

The River Runs Dry: Examining Water Shortages in the Yellow River Basin  

E-Print Network (OSTI)

or place limits on water intake, but in China they areto impose limits on the intake of water and to slow water

Zusman, Eric

2000-01-01T23:59:59.000Z

196

Improved Ground Hydrology Calculations for Global Climate Models (GCMs): Soil Water Movement and Evapotranspiration  

Science Conference Proceedings (OSTI)

A physically based ground hydrology model is developed to improve the land-surface sensible and latent heat calculations in global climate models (GCMs). The processes of transpiration, evaporation from intercepted precipitation and dew, ...

F. Abramopoulos; C. Rosenzweig; B. Choudhury

1988-09-01T23:59:59.000Z

197

Repository site definition in basalt: Pasco Basin, Washington  

SciTech Connect

Discussion of the regional setting, geology, hydrology, and geochemistry of the Pasco Basin are included in this report. Pasco basin is a structural and topographic basin of approximately 2000 mi/sup 2/ (5180 km/sup 2/) located within the Yakima Fold Belt Subprovince of the Columbia Plateau. The stratigraphic sequence within the basin consists of an undetermined thickness of lower Miocene and younger flood basalts with interbedded and overlying sedimentary units. This sequence rests upon a basement of probably diverse rock types that may range in age from precambrian through early Tertiary. Although a large amount of information is available on the hydrology of the unconfined aquifer system, ground-water flow within the basin is, in general, poorly understood. Recharge areas for the Mabton interbed and the Saddle Mountains Formation are the highlands surrounding the basin with the flow for these units toward Gable Butte - Gable Mountain and Lake Wallula. Gable Butte - Gable Mountain probably is a ground-water sink, although the vertical flow direction in this zone is uncertain. The amount of upward vertical leakage from the Saddle Mountains Formation into the overlying sediments or to the Columbia River is unknown. Units underlying the Mabton interbed may have a flow scheme similar to those higher units or a flow scheme dominated by interbasin flow. Upward vertical leakage either throughout the basin, dominantly to the Columbia River, or dominantly to Lake Wallula has been proposed for the discharge of the lower units. None of these proposals is verified. The lateral and vertical distribution of major and minor ions in solution, Eh and pH, and ion exchange between basalt and ground-water are not well defined for the basin. Changes in the redox potential from the level of the subsurface facility to the higher stratigraphic levels along with the numerous other factors influencing K/sub d/, result in a poor understanding of the retardation process.

Guzowski, R.V.; Nimick, F.B.; Muller, A.B.

1982-03-01T23:59:59.000Z

198

Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2003-2004 Annual Report.  

DOE Green Energy (OSTI)

This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA Natural Resources Conservation Service, assist landowners in developing Resource Management Systems (RMS) that address resource concerns in a specified land unit. These RMS plans are developed using a nine step planning process that acts to balance natural resource issues with economic and social needs. Soil, Water, Air, Plants, Animals, and Human resource concerns are the core focus in developing a framework for improving the efficiency and effectiveness of conservation activities in a given planning unit, while working within the guidelines set forth by the National Environmental Policy Act (NEPA), Clean Water Act (CWA), Endangered Species Act (ESA), Magnuson-Stevens Act (MSA), National Historic Preservation Act (NHPA), and other federal, state, and local laws. Implementation of this project has provided technical and implementation assistance for numerous on the ground projects, including over 50 WASCBs, several thousand feet of terraces, numerous spring developments, fencing, 7 implemented CREP contracts, and the development of 8 additional CREP projects slated for enrollment at the beginning of FY '05. Within the past contract year in Sherman County, 589.4 acres of CREP have been enrolled protecting 30.8 miles of riparian habitat. In addition to the increase in on the ground projects, coordination and outreach to solicit conservation projects in Sherman County has increased due to the additional staffing provided by BPA funds. As a result there is an abundance of potential conservation projects for water quality and riparian management improvement. With the sustained availability of coordination and technical assistance provided through this grant, BPA personnel funds will translate to a much higher dollar figure applied on the ground. This project has been very successful in keeping up with the demand for conservation projects within Sherman County.

Faucera, Jason (Sherman County Soil and Water Conservation District, Sherman County, OR)

2004-05-01T23:59:59.000Z

199

Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon : Coordination and Technical Assistance, 2004-2005 Annual Report.  

Science Conference Proceedings (OSTI)

This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA Natural Resources Conservation Service, assist landowners in developing Resource Management Systems (RMS) that address resource concerns in a specified land unit. These RMS plans are developed using a nine step planning process that acts to balance natural resource issues with economic and social needs. Soil, Water, Air, Plants, Animals, and Human resource concerns are the core focus in developing a framework for improving the efficiency and effectiveness of conservation activities in a given planning unit, while working within the guidelines set forth by the National Environmental Policy Act (NEPA), Clean Water Act (CWA), Endangered Species Act (ESA), Magnuson-Stevens Act (MSA), National Historic Preservation Act (NHPA), and other federal, state, and local laws. Implementation of this project has provided technical and implementation assistance for numerous on the ground projects, including over 50 WASCBs, several thousand feet of terraces, numerous spring developments, fencing, 5 implemented CREP contracts, and the development of 12 additional CREP projects slated for enrollment at the beginning of FY06. Within the past contract year in Sherman County, 355.4 acres of CREP have been enrolled protecting 19.3 miles of riparian habitat. In addition to the increase in on the ground projects, coordination and outreach to solicit conservation projects in Sherman County has increased due to the additional staffing provided by BPA funds. As a result there is an abundance of potential conservation projects for water quality and riparian management improvement. With the sustained availability of coordination and technical assistance provided through this grant, BPA personnel funds will translate to a much higher dollar figure applied on the ground. This project has been very successful in keeping up with the demand for conservation projects within Sherman County.

Faucera, Jason (Sherman County Soil and Water Conservation District, Sherman County, OR)

2005-06-01T23:59:59.000Z

200

Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2002-2003 Annual Report.  

Science Conference Proceedings (OSTI)

This project was designed to provide project coordination and technical assistance to producers in Sherman County for on the ground water quality enhancement and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Enhancement Reserve Program (CREP) and other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Three of those four streams and one other major Sherman County stream are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Temperature in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA Natural Resources Conservation Service, assist landowners in developing Resource Management Systems (RMS) that address resource concerns in a specified land unit. These RMS plans are developed using a nine step planning process that acts to balance natural resource issues with economic and social needs. Soil, Water, Air, Plants, Animals, and Human resource concerns are the core focus in developing a framework for improving the efficiency and effectiveness of conservation activities in a given planning unit, while working within the guidelines set forth by the National Environmental Policy Act (NEPA), Clean Water Act (CWA), Endangered Species Act (ESA), Magnuson-Stevens Act (MSA), National Historic Preservation Act (NHPA), and other federal, state, and local laws. Implementation of this project has resulted in providing technical and implementation assistance for numerous on the ground projects, including over 50 WASCBs, several thousand feet of terraces, two implemented CREP contracts, and the development of 3 additional CREP projects slated for enrollment at the beginning of FY '04. In addition to the increase in on the ground projects, coordination and outreach to solicit conservation projects in Sherman County has increased due to the additional staffing provided by BPA funds. As a result there is an abundance of potential conservation projects for water quality and riparian management improvement. With the sustained availability of coordination and technical assistance provided through this grant, BPA personnel funds will translate to a much higher dollar figure applied on the ground. This project has been very successful in reducing the backlog of conservation projects within Sherman County, while adhering to the objectives set forth for this grant.

Faucera, Jason (Sherman County Soil and Water Conservation District, Sherman County, OR)

2003-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2005-2006 Annual Report.  

Science Conference Proceedings (OSTI)

This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA Natural Resources Conservation Service, assist landowners in developing Resource Management Systems (RMS) that address resource concerns in a specified land unit. These RMS plans are developed using a nine step planning process that acts to balance natural resource issues with economic and social needs. Soil, Water, Air, Plants, Animals, and Human resource concerns are the core focus in developing a framework for improving the efficiency and effectiveness of conservation activities in a given planning unit, while working within the guidelines set forth by the National Environmental Policy Act (NEPA), Clean Water Act (CWA), Endangered Species Act (ESA), Magnuson-Stevens Act (MSA), National Historic Preservation Act (NHPA), and other federal, state, and local laws. Implementation of this project has provided technical and implementation assistance for numerous on the ground projects, including 119 WASCBs, 74,591 feet of terraces, 3 spring developments, 24,839 feet of riparian or pasture cross fencing, 1,072 acres of direct seed trials, 14 landowners implementing 34 CREP contracts, and the development of 5 additional CREP contracts slated for enrollment at the beginning of FY07. Within the past contract year in Sherman County, 1898.3 acres of CREP have been enrolled protecting approximately 52 miles of riparian or intermittent stream channel habitat. In addition to the increase in on the ground projects, coordination and outreach to solicit conservation projects in Sherman County has increased due to the additional staffing provided by BPA funds. As a result there is an abundance of potential conservation projects for water quality and riparian management improvement. With the sustained availability of coordination and technical assistance provided through this grant, BPA personnel funds will translate to a much higher dollar figure applied on the ground. This project has been very successful in keeping up with the demand for conservation projects within Sherman County.

Faucera, Jason (Sherman County Soil and Water Conservation District, Sherman County, OR)

2006-06-01T23:59:59.000Z

202

Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge  

DOE Green Energy (OSTI)

Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen generation by no more than a factor of three while disodium phosphate increased the corrosion and hydrogen generation rates slightly. U(VI) showed some promise in attenuating hydrogen but only initial testing was completed. Uranium metal corrosion rates also were measured. Under many conditions showing high hydrogen gas attenuation, uranium metal continued to corrode at rates approaching those observed without additives. This combination of high hydrogen attenuation with relatively unabated uranium metal corrosion is significant as it provides a means to eliminate uranium metal by its corrosion in water without the accompanying hazards otherwise presented by hydrogen generation.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2010-01-29T23:59:59.000Z

203

An investigation of two homologous series of carboxylic acids in Black Trona Water from the Green River Basin  

SciTech Connect

Two series of carboxylic acids were identified in the dialysate from a sample of Black Trona Water from the Green River Basin of Wyoming. One of the series consists of straight-chain dicarboxylic acids ranging in carbon number from four to fourteen. This series had been observed by previous workers. The other series, much less abundant than the dicarboxylic acids, appears to be a series of homologous tricarboxylic acids that are derivatives of succinic acid. The structures of these compounds were determined by analysis of the mass spectra of their methyl esters and trideuteromethyl esters. Definitive biological precursors of this unusual class of compounds could not be assigned.

Branthaver, J.F.; Thomas, K.P.; Logan, E.R.; Barden, R.E.

1988-01-01T23:59:59.000Z

204

The Missouri Basin region's water quality planning strategy. Planning dossier. Second edition  

SciTech Connect

The Missouri Basin Region area includes the watersheds of the Missouri River and the Souris, Red River of the North, and Rainy Rivers. This area comprises all of Nebraska and North Dakota; the majority of Montana, Wyoming, South Dakota, Kansas, and Missouri; and lesser portions of Colorado, Minnesota, and Iowa. The report describes objectives, evaluation, costs, work schedule, and planning needs. (GRA)

1970-06-01T23:59:59.000Z

205

Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah  

Science Conference Proceedings (OSTI)

Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utahâ??s total crude oil production and 71 percent of Utahâ??s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water â?? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquiferâ??s areal extent, thickness, water chemistry, and relationship to Utahâ??s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utahâ??s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

2012-04-30T23:59:59.000Z

206

Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah  

SciTech Connect

Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

2012-04-30T23:59:59.000Z

207

Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California  

E-Print Network (OSTI)

Length Design for Ground Source Heat Pumps. ” InternationalClosed-Loop/Ground-Source Heat Pump Systems Installationon Closed-Loop Ground-Source Heat Pump Systems. ” ASHRAE

Warner, J.L.

2009-01-01T23:59:59.000Z

208

Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL). [Contaminant transport computer codes  

SciTech Connect

This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code.

Bandy, P.J.; Hall, L.F.

1993-03-01T23:59:59.000Z

209

Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL). Version 1.0  

SciTech Connect

This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG&G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code.

Bandy, P.J.; Hall, L.F.

1993-03-01T23:59:59.000Z

210

Dry-season soil water repellency affects Tahoe Basin infiltration rates  

E-Print Network (OSTI)

All of our untreated- water plots produced runoff. At theall untreated-water plots produced runoff, which occurred onrun- off was produced by all 12 untreated- water plots, but

Rice, Erin C; Grismer, Mark E

2010-01-01T23:59:59.000Z

211

Results of Year-Round Remotely Sensed Integrated Water Vapor by Ground-Based Microwave Radiometry  

Science Conference Proceedings (OSTI)

Based on two years of measurements with a time resolution of 1 min, some climatological findings on precipitable water vapor (PWV) and cloud liquid water (CLW) in central Europe are given. A weak diurnal cycle is apparent. The mean overall ...

J. Güldner; D. Spänkuch

1999-07-01T23:59:59.000Z

212

Closure of the R Reactor Disassembly Basin at the SRS  

Science Conference Proceedings (OSTI)

The Facilities Disposition Division (FDD) at the Savannah River Site is engaged in planning the deactivation/closure of three of the site's five reactor disassembly basins. Activities are currently underway at R-Reactor Disassembly Basin and will continue with the P and C disassembly basins. The basins still contain the cooling and shielding water that was present when operations ceased. Low concentrations of radionuclides are present, with tritium, Cs-137, and Sr-90 being the major contributors. Although there is no evidence that any of the basins have leaked, the 50-year-old facilities will eventually contaminate the surrounding groundwaters. The FDD is pursuing a pro-active solution to close the basins in-place and prevent a release to the groundwater. In-situ ion exchange is currently underway at the R-Reactor Disassembly Basin to reduce the Cs and Sr concentrations to levels that would allow release of the treated water to previously used on-site cooling ponds or to prevent ground water impact. The closure will be accomplished under CERCLA.

Austin, W.E.

2001-01-09T23:59:59.000Z

213

The Validation of AIRS Retrievals of Integrated Precipitable Water Vapor Using Measurements from a Network of Ground-Based GPS Receivers over the Contiguous United States  

Science Conference Proceedings (OSTI)

A robust and easily implemented verification procedure based on the column-integrated precipitable water (IPW) vapor estimates derived from a network of ground-based global positioning system (GPS) receivers has been used to assess the quality of ...

M. K. Rama Varma Raja; Seth I. Gutman; James G. Yoe; Larry M. McMillin; Jiang Zhao

2008-03-01T23:59:59.000Z

214

Experimental Determination of Water Vapor Profiles from Ground-Based Radiometer Measurements at 21.0 and 31.4 GHz.  

Science Conference Proceedings (OSTI)

Water vapor profiles have been obtained from radiometer measurements at 21.0 and 31.4 GHz and ground values of humidity, temperature and pressure. The inversion technique was based on minimum variance estimation, including constraints derived ...

B. G. Skoog; J. I. H. Askne; G. Elgered

1982-03-01T23:59:59.000Z

215

Arizona Water Atlas Volume 3 San Rafael Basin References and Supplemental Reading References  

E-Print Network (OSTI)

cover, received January 2006. _____, 2004, Water quality exceedences by watershed: Data file, received June 2004.

unknown authors

2005-01-01T23:59:59.000Z

216

Water Vapor Flux Measurements from Ground-Based Vertically Pointed Water Vapor Differential Absorption and Doppler Lidars  

Science Conference Proceedings (OSTI)

For the first time, two lidar systems were used to measure the vertical water vapor flux in a convective boundary layer by means of eddy correlation. This was achieved by combining a water vapor differential absorption lidar and a heterodyne wind ...

Andreas Giez; Gerhard Ehret; Ronald L. Schwiesow; Kenneth J. Davis; Donald H. Lenschow

1999-02-01T23:59:59.000Z

217

Ground water of Yucca Mountain: How high can it rise?; Final report  

SciTech Connect

This report describes the geology, hydrology, and possible rise of the water tables at Yucca Mountain. The possibilities of rainfall and earthquakes causing flooding is discussed.

NONE

1992-12-31T23:59:59.000Z

218

Trading pollution for water quality : assessing the effects of market-based instruments in three basins  

E-Print Network (OSTI)

Since its passage in 1972, the majority of pollution reduction under the federal Clean Water Act has resulted from technology-based limits imposed on point source dischargers. However, most U.S. water bodies are unmonitored ...

Wallace, Katherine Hay

2007-01-01T23:59:59.000Z

219

Arizona Water Atlas Volume 3 Duncan Valley Basin References and Supplemental Reading References  

E-Print Network (OSTI)

_____, 2005b, ADEQWWTP: Data file, received August 2005. _____, 2005c, Azurite: Data file, received September 2005. _____, 2005d, Impaired lakes and reaches: GIS cover, received January 2006. _____, 2005e, WWTP and permit files: Miscellaneous working files, received July 2005. _____, 2004a, Water quality exceedences by watershed: Data file, received June 2004. _____, 2004b, Water quality exceedences for drinking water providers in Arizona: Data file,

unknown authors

2005-01-01T23:59:59.000Z

220

User`s Guide: Database of literature pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory  

SciTech Connect

Since its beginnings in 1949, hydrogeologic investigations at the Idaho National Engineering Laboratory (INEL) have resulted in an extensive collection of technical publications providing information concerning ground water hydraulics and contaminant transport within the unsaturated zone. Funding has been provided by the Department of Energy through the Department of Energy Idaho Field Office in a grant to compile an INEL-wide summary of unsaturated zone studies based on a literature search. University of Idaho researchers are conducting a review of technical documents produced at or pertaining to the INEL, which present or discuss processes in the unsaturated zone and surface water-ground water interactions. Results of this review are being compiled as an electronic database. Fields are available in this database for document title and associated identification number, author, source, abstract, and summary of information (including types of data and parameters). AskSam{reg_sign}, a text-based database system, was chosen. WordPerfect 5.1{copyright} is being used as a text-editor to input data records into askSam.

Hall, L.F.

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

[Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 1, Site assessment report  

SciTech Connect

In April 1990, Wright-Patterson Air Force Base (WPAFB) initiated an effort for the evaluation of potential removal of ground water contamination at the Base. This report presents a current assessment of the nature and extent of the contamination believed to be migrating across the southwestern boundary of Area C and the northern boundary of Area B based upon analysis of existing environmental data obtained from several sources. The existing data base indicates widespread, low-level contamination moving across Base boundaries at levels that pose no immediate threat to the Mad River Valley well fields. An investigation by the City of Dayton in May and June 1990, however, implies that a more identifiable plume of PCE and TCE may be crossing the southwestern boundary of Area C immediately downgradient of Landfill 5. More data is needed to delineate ground water contamination and to design and implement a suitable control system. This report concludes that although an extensive study of the boundaries in question would be the preferred approach, a limited, focused investigation and subsequent feasibility study can be accomplished with a reasonable certainty of achieving the desired outcome of this project.

Not Available

1991-10-01T23:59:59.000Z

222

Continuous Water Vapor Profiles from Operational Ground—Based Active and Passive Remote Sensors  

Science Conference Proceedings (OSTI)

The Atmospheric Radiation Measurement program's Southern Great Plains Cloud and Radiation Testbed site central facility near Lamont, Oklahoma, offers unique operational water vapor profiling capabilities, including active and passive remote ...

D. D. Turner; W. F. Feltz; R. A. Ferrare

2000-06-01T23:59:59.000Z

223

Automated Quality Control Procedure for the "Water Equivalent of Snow on the Ground" Measurement  

Science Conference Proceedings (OSTI)

Snow water equivalent (SWE) has been measured daily by the United States National Weather Service since 1952, whenever snow depth is 2 in. (5 cm) or greater. These data are used to develop design snow loads for buildings, for hydrological ...

Thomas W. Schmidlin; Daniel S. Wilks; Megan McKay; Richard P. Cember

1995-01-01T23:59:59.000Z

224

Topographic Influence on the Seasonal and Interannual Variation of Water and Energy Balance of Basins in North America  

Science Conference Proceedings (OSTI)

A large area basin-scale (LABs) hydrologic model is developed for regional, continental, and global hydrologic studies. The heterogeneity in the soil-moisture distribution within a basin is parameterized through the statistical moments of the ...

Ji Chen; Praveen Kumar

2001-05-01T23:59:59.000Z

225

Supporting Water, Ecological, and Transportation Systems in the Great Lakes Basin Ecosystem  

E-Print Network (OSTI)

Nonpoint Source Pollution from Land Use Workshop. Novemberasked to investigate pollution from land use activities. Newland and water interactions and point and non-point sources of pollution

Beck, Judy; Kamke, Sherry; Majerus, Kimberly

2007-01-01T23:59:59.000Z

226

Water for energy. Missouri River reservoirs: Pick--Sloan Missouri Basin Program. Draft environmental statement  

SciTech Connect

The Bureau of Reclamation proposes to make available for energy related industrial purposes up to 1.0 million acre-feet of water annually from main-stem Missouri River reservoirs. The anticipated areas of water use include eastern Montana, western North Dakota, parts of western and central South Dakota, and northeastern Wyoming. Water service contracts would be issued for 40 years or less, with water delivery terminating no later than the year 2035. A summary of the environmental impact and adverse environmental effects postulated is presented.

McPhail, R.L.

1976-01-01T23:59:59.000Z

227

A Transient Numerical Simulation of Perched Ground-Water Flow at the Test Reactor Area, Idaho National Engineering and Environmental Laboratory, Idaho, 1952-94  

SciTech Connect

Studies of flow through the unsaturated zone and perched ground-water zones above the Snake River Plain aquifer are part of the overall assessment of ground-water flow and determination of the fate and transport of contaminants in the subsurface at the Idaho National Engineering and Environmental Laboratory (INEEL). These studies include definition of the hydrologic controls on the formation of perched ground-water zones and description of the transport and fate of wastewater constituents as they moved through the unsaturated zone. The definition of hydrologic controls requires stratigraphic correlation of basalt flows and sedimentary interbeds within the saturated zone, analysis of hydraulic properties of unsaturated-zone rocks, numerical modeling of the formation of perched ground-water zones, and batch and column experiments to determine rock-water geochemical processes. This report describes the development of a transient numerical simulation that was used to evaluate a conceptual model of flow through perched ground-water zones beneath wastewater infiltration ponds at the Test Reactor Area (TRA).

B. R. Orr (USGS)

1999-11-01T23:59:59.000Z

228

Hydrology of the Piceance Basin and its impact on oil shale development  

SciTech Connect

The Piceance Basin is a structural downwarp in NW. Colorado. The Green River Formation, the uppermost stratigraphic unit in the basin, contains the richest oil shale deposits in the U.S. The near-surface rocks are commonly jointed. The joint density is a function of the competency and thickness of the individual layers, the lateral distance to a free surface, and the depth below the surface. These joints provide permeable paths for the flow of ground water. Consequently, soluble elements in the rock have been leached, thereby enhancing the transmissivity by fracture enlargement. Thus, the oil-shale layers are part of the aquifer matrix, and the richest layers of oil shale occur between, below or are part of the basin's complex aquifer system. Well over 1 million acre-ft of potable water is contained in the Green River ground-water system.

Knutson, C.F.; Boardman, C.R.

1973-01-01T23:59:59.000Z

229

2011-2012 Efficient Irrigation for Water Conservation in the Rio Grande Basin Progress and Accomplishments  

E-Print Network (OSTI)

During the past year, the RGBI Economics Team completed various technical reports and professional journals and presented findings on RGBI water-resource issues to local, statewide, and national audiences. Key topics included: 1) business economics of desalination water-treatment facilities; 2) mitigation cost investigations of increased off-site sediment runoff and nutrients associated with biofuels production; 3) economic and water conservation effects of drip irrigation compared to traditional strategies such as furrow or flood; 4) health-related economic analysis of water quality and household treatment/delivery systems; 5) impacts of analytical techniques involving discounting for time; and 6) regional market economics affected by changing water supply and demand from dynamic climate conditions and increasing population.

Kalisek, D.

2012-05-01T23:59:59.000Z

230

Optimizing Industry Water Use: Evaluation of the Use of Water Stewardship Tools by Great Lakes Basin Industries  

Science Conference Proceedings (OSTI)

This document reports on a research study funded by Electric Power Research Institute (EPRI), the Great Lakes Protection Fund (GLPF), the National Council for Air and Stream Improvement (NCASI), and the Council of Great Lakes Industries (CGLI). The objective of the research was to understand and compare, with the assistance of case study applications, water resource stewardship assessment tools that have been proposed by different organizations. The report concludes that tools used to assess global water...

2012-06-13T23:59:59.000Z

231

The ecology of Barataria Basin, Louisiana: An estuarine profile  

SciTech Connect

The Barataria Basin lies entirely in Louisiana between the natural levees of the active Mississippi River and the abandoned Bayou Lafourche distributary. It is characterized by a network of interconnecting water bodies which allows transport of water, materials, and migrating organisms throughout the basin. Natural and artificial levees and barrier islands are the only high, well-drained ground in the basin, which is otherwise characterized by extensive swamp forests and fresh, brackish, and salt marshes. These wetlands and water bodies are extremely productive biologically and provide valuable nursery habitat for a number of commercial and recreational fish and shellfish, as well as habitat for wintering waterfowl and furbearers. The basin is a dynamic system undergoing constant change because of geologic and human processes. The network of bays, lakes, and bayous has gradually enlarged over time due to natural subsidence and erosion. Superimposed on these natural processes has been the construction of levees for flood control and network of canals constructed for oil and gas exploration and extraction. These human activities have altered natural hydrologic patterns in the basin and may directly or indirectly contribute to wetland losses. Controlling wetland deterioration in the basin is a major management concern.

Conner, W.H.; Day, J.W. Jr. (eds.)

1987-07-01T23:59:59.000Z

232

Measurement of Low Amounts of Precipitable Water Vapor Using Ground-Based Millimeterwave Radiometry  

Science Conference Proceedings (OSTI)

Extremely dry conditions characterized by amounts of precipitable water vapor (PWV) as low as 1–2 mm commonly occur in high-latitude regions during the winter months. While such dry atmospheres carry only a few percent of the latent heat energy ...

Paul E. Racette; Ed R. Westwater; Yong Han; Albin J. Gasiewski; Marian Klein; Domenico Cimini; David C. Jones; Will Manning; Edward J. Kim; James R. Wang; Vladimir Leuski; Peter Kiedron

2005-04-01T23:59:59.000Z

233

Heating and cooling of municipal buildings with waste heat from ground water  

DOE Green Energy (OSTI)

The feasibility of using waste heat from municipal water wells to replace natural gas for heating of the City Hall, Fire Station, and Community Hall in Wilmer, Texas was studied. At present, the 120/sup 0/F well water is cooled by dissipating the excess heat through evaporative cooling towers before entering the distribution system. The objective of the study was to determine the pumping cycle of the well and determine the amount of available heat from the water for a specified period. This data were correlated with the heating and cooling demand of the City's buildings, and a conceptual heat recovery system will be prepared. The system will use part or all of the excess heat from the water to heat the buildings, thereby eliminating the use of natural gas. The proposed geothermal retrofit of the existing natural gas heating system is not economical because the savings in natural gas does not offset the capital cost of the new equipment and the annual operating and maintenance costs. The fuel savings and power costs are a virtual trade-off over the 25-year period. The installation and operation of the system was estimated to cost $105,000 for 25 years which is an unamortized expense. In conclusion, retrofitting the City of Wilmer's municipal buildings is not feasible based on the economic analysis and fiscal projections as presented.

Morgan, D.S.; Hochgraf, J.

1980-10-01T23:59:59.000Z

234

Inferring Changes in Terrestrial Water Storage Using ERA-40 Reanalysis Data: The Mississippi River Basin  

Science Conference Proceedings (OSTI)

Terrestrial water storage is an essential part of the hydrological cycle, encompassing crucial elements of the climate system, such as soil moisture, groundwater, snow, and land ice. On a regional scale, it is however not a readily measured ...

Sonia I. Seneviratne; Pedro Viterbo; Daniel Lüthi; Christoph Schär

2004-06-01T23:59:59.000Z

235

In search of water : Aqua Exhibition Center in Erie Basin, Red Hook, Brooklyn, New York  

E-Print Network (OSTI)

The main purpose of this thesis is to provide a solution to the underutilized and abandoned drydock and defamiliarized water in New York Shipyard within the Brooklyn Waterfront caused by a rapid change in maritime technology. ...

Nam, Keon-soo, 1971-

2003-01-01T23:59:59.000Z

236

Surface Energy and Water Balance for the Arkansas–Red River Basin from the ECMWF Reanalysis  

Science Conference Proceedings (OSTI)

Average surface energy and water budgets, subsurface variables, and atmospheric profiles were computed online with an hourly timescale from the ECMWF reanalysis for five subbasins of the Mississippi River from 1985–93. The results for the ...

Alan K. Betts; Pedro Viterbo; Eric Wood

1998-11-01T23:59:59.000Z

237

Ground-water characterization field activities for 1995--1996 Laboratory for Energy-Related Health Research, University of California, Davis  

SciTech Connect

This report documents ground-water characterization field activities completed from August to December 1995 and in January 1996 at the Laboratory for Energy-Related Health Research (LEHR) in Davis, California. The ground water at LEHR is one of several operable units under investigation by Pacific Northwest National Laboratory for the US Department of Energy. The purpose of this work was to further characterize the hydrogeology beneath the LEHR site, with the primary focus on ground water. The objectives were to estimate hydraulic properties for the two uppermost saturated hydrogeologic units (i.e., HSU-1 and HSU-2), and to determine distributions of contaminants of concern in these units. Activities undertaken to accomplish these objectives include well installation, geophysical logging, well development, ground-water sampling, slug testing, Westbay ground-water monitoring system installation, continuous water-level monitoring, Hydropunch installation, and surveying. Ground-water samples were collected from 61 Hydropunch locations. Analytical results from these locations and the wells indicate high chloroform concentrations trending from west/southwest to east/northeast in the lower portion of HSU-1 and in the upper and middle portions of HSU-2. The chloroform appears to originate near Landfill 2. Tritium was not found above the MCL in any of the well or Hydropunch samples. Hexavalent chromium was found at four locations with concentrations above the MCL in HSU-1 and at one location in HSU-2. One well in HSU-1 had a total chromium concentration above the MCL. Nitrate-nitrogen above the MCL was found at several Hydropunch locations in both HSU-1 and HSU-2.

Liikala, T.L.; Lanigan, D.C.; Last, G.V. [and others

1996-05-01T23:59:59.000Z

238

Study of the Reactions Controlling the Mobility of Uranium in Ground and Surface Water Systems in Contact with Apatite  

SciTech Connect

The objective of this project was to define the mechanisms, equilibria, kinetics, and extent of sorption of aqueous uranium onto hydroxyapatite (Ca{sub 5}(PO{sub 4}){sub 3}(OH)) for a range of pH, ionic strength, aqueous uranium concentration, dissolved carbon/air CO{sub 2}, and mineral surface area. We conducted chemical modeling, batch and flow-through experiments, chemical analysis, x-ray absorption and diffraction measurement, and electron microscopy. Our motivation was the need to immobilize U in water and soil to prevent it's entry into water supplies and ultimately, biological systems. Applying hydroxyapatite to in-situ treatment of uranium-bearing ground water could be an effective, low cost technology. We found that hydroxyapatite quickly, effectively, and reversibly sorbed uranium at a high capacity by inner-sphere complexation over a wide range of conditions. Our results indicate that at aqueous uranium concentrations below 10-20 ppb: (1) equilibrium sorption of uranium to hydroxyapatite occurs in hours, regardless of pH; (2) in ambient and CO{sub 2}-free atmospheres, over 98% of initial uranium is sorbed to hydroxyapatite, (3) in waters in equilibrium with higher air CO{sub 2} concentrations, sorption removed over 97% of aqueous uranium, except above pH 9, where aqueous uranium concentrations were reduced by less than 40%, and (4) at near-neutral pH, bicarbonate alkalinities in excess of 500 slightly retarded sorption of uranium to hydroxyapatite, relative to lower alkalinities. Uranium sorption and precipitation are reversible and are not appreciably affected by ionic strength. The reversibility of these reactions requires that in situ treatment be carefully monitored to avoid breakthrough and de-sorption of uranium unto ground water. At typical surface conditions, sorption is the only mode of uranium sequestration below 20-50 ppb U - above this range, precipitation of uranium phosphate minerals begins to dominate sequestration processes. We verified that one m{sup 2} of hydroxyapatite can sorb over 7.53 X 10{sup -6} moles or 1.8 mg of uranium in agreement with calculations based on phosphate and calcium oxide sites on the unit cell. Our work is significant because small masses of hydroxyapatite can sorb appreciable masses of uranium quickly over a wide range of chemistries. Preliminary work with ground water containing 260 ppb of uranium and cow bone char indicates that its sorptive capacity is appreciable less than pure hydroxyapatite. Pure crystalline hydroxyapatite sequestered 2.9 mg of uranium per m{sup 2} as opposed to 0.083 mg of uranium sequestered per m{sup 2} of cow bone char, or 27% versus 3.5% by surface area, respectively. Extended x-ray adsorption fine structure (EXAFS) spectroscopy defined mono- and bidentate sorption of uranium to phosphate and calcium oxide groups on the hydroxyapatite surface. The EXAFS data indicate that up to several thousand parts U per million parts hydroxyapatite, surface complexation, and not precipitation, is the predominant process. Above this uranium: hydroxyapatite mass ratio, precipitation of meta-autunite (H{sub 2}(UO{sub 2})2(PO{sub 4}){sub 2} x 10H{sub 2}0) dominates the sequestration process.

Taffet, M

2004-04-22T23:59:59.000Z

239

Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming  

SciTech Connect

U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operatio

James Bauder

2008-09-30T23:59:59.000Z

240

Determining an optimal sampling frequency for measuring bulk temporal changes in ground-water quality  

Science Conference Proceedings (OSTI)

In the Data Quality Objectives (DQO) process, statistical methods are used to determine an optimal sampling and analysis plan. When the DQO decision rule for instituting remedial actions is based on a critical change in water quality, the monitoring program design must ensure that this change can be detected and measured with a specified confidence. Usually the focus is on the change at a single monitoring location and the process is limited to addressing the uncertainty inherent in the analytical methods and the variability at that location. However, new strategies that permit ranking the waste sites and prioritizing remedial activities require the means for assessing overall changes for small regions over time, where both spatial and temporal variability exist and where the uncertainty associated with these variations far exceeds measurement error. Two new methods for assessing these overall changes have been developed and are demonstrated by application to a waste disposal site in Oak Ridge, Tennessee. These methods incorporate historical data where available and allow the user to either test the statistical significance of a linear trend or of an annual change compared to a baseline year for a group of water quality wells.

Moline, G.R.; Beauchamp, J.J.; Wright, T. [Oak Ridge National Lab., TN (United States)

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Resource Conservation and Recovery Act ground-water monitoring projects for Hanford Facilities: Progress report for the period July 1 to September 30, 1989 - Volume 1 - Text  

Science Conference Proceedings (OSTI)

This is Volume 1 of a two-volume document that describes the progress of 14 Hanford Site ground-water monitoring projects for the period July 1 to September 30, 1989. This volume discusses the projects; Volume 2 provides as-built diagrams, completion/inspection reports, drilling logs, and geophysical logs for wells drilled, completed, or logged during this period. Volume 2 can be found on microfiche in the back pocket of Volume 1. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality.

Smith, R.M.; Bates, D.J.; Lundgren, R.E.

1989-12-01T23:59:59.000Z

242

Water quality modelling for small river basins Stefano Marsili-Libelli*, Elisabetta Giusti  

E-Print Network (OSTI)

Optimal Experiments Design (OED) criteria (Fedorov, 1972; Atkinson and Donev, 1992) based on the Fisher and Donev, 1992; Versyck et al., 1998; Petersen, 2000; Insel et al., 2003; De Pauw, 2005; Checchi from continuous oxygen signals. Water Science and Technology 36, 43e51. Atkinson, A.C., Donev, A

243

Geophysical evidence for gas hydrates in the deep water of the South Caspian Basin, Azerbaijan  

E-Print Network (OSTI)

as methane clathrates or clathrate hydrates of natural gas, these substances are similar to ice accumulations of natural gas on Earth are in the form of gas hydrates (Collett, 1994) that occur mainly offshore water, concern over the potential hazard posed by gas hydrates has become an important issue. Chev- ron

Knapp, James Howard

244

DOE/EA-1312: Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) (September 1999)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Rev. 0 Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) Final September 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy EA of Ground Water Compliance at the Grand Junction UMTRA Project Site DOE Grand Junction Office Page ii Final September 1999 Contents Executive Summary.........................................................................................................................v 1.0 Introduction...............................................................................................................................1 1.1 Grand Junction UMTRA Project Site Location and Description.........................................1

245

DOE/EA-1313: Environmental Assessment of Ground Water Compliance at the Monument Valley, Arizona, Uranium Mill Tailings Site (03/22/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EA-1313 DOE/EA-1313 Rev. 0 Environmental Assessment of Ground Water Compliance at the Monument Valley, Arizona, Uranium Mill Tailings Site Final March 2005 Prepared by U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Document Number U0069700 This Page Intentionally Blank DOE Office of Legacy Management EA of Ground Water Compliance at the Monument Valley Site March 2005 Final Page iii Contents Page Acronyms and Abbreviations ....................................................................................................... vii Executive Summary.......................................................................................................................

246

Pesticides in ground water database: A compilation of monitoring studies, 1971-1991. Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming). Final report  

SciTech Connect

The report presents summary results on pesticide monitoring of ground water from 1971 to 1991. It is compiled from ground water monitoring projects performed primarily by federal agencies, state agencies and research institutions. The data is well and sample specific. The report is broken into a National Summary and 10 US EPA regional volumes. The information is presented as text, maps, graphs and tables on a national, EPA regional and state/county level. The Region 8 volume is comprised of data from Colorado, Montana, North Dakota, South Dakota and Wyoming.

Hoheisel, C.; Karrier, J.; Lees, S.; Davies-Hilliard, L.; Hannon, P.

1992-08-01T23:59:59.000Z

247

Geothermal assessment of the lower Bear River drainage and northern East Shore ground-water areas, Box Elder County, Utah  

DOE Green Energy (OSTI)

The Utah Geological and Mineral Survey (UGMS) has been researching the low-temperature geothermal resource potential in Utah. This report, part of an area-wide geothermal research program along the Wasatch Front, concerns the study conducted in the lower Bear River drainage and northern East Shore ground-water areas in Box Elder County, Utah. The primary purpose of the study is to identify new areas of geothermal resource potential. There are seven known low-temperature geothermal areas in this part of Box Elder County. Geothermal reconnaissance techniques used in the study include a temperature survey, chemical analysis of well and spring waters, and temperature-depth measurements in accessible wells. The geothermal reconnaissance techniques identified three areas which need further evaluation of their low-temperature geothermal resource potential. Area 1 is located in the area surrounding Little Mountain, area 2 is west and southwest of Plymouth, and area 3 is west and south of the Cutler Dam. 5 figures, 4 tables.

Klauk, R.H.; Budding, K.E.

1984-07-01T23:59:59.000Z

248

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

249

Evaporative Concentration of 100x J13 Ground Water at 60% Relative Humidity and 90C  

Science Conference Proceedings (OSTI)

In these experiments we studied the behavior of a synthetic concentrated J13 solution as it comes in contact with a Ni-Cr-Mo-alloy selected for waste canisters in the designated high-level nuclear-waste repository at Yucca Mountain, Nevada. Concentrated synthetic J13 solution was allowed to drip slowly onto heated test specimens (90 C, 60% relative humidity) where the water moved down the surface of the specimens, evaporated and minerals precipitated. Mineral separation or zoning along the evaporation path was not observed. We infer from solid analyses and geochemical modeling, that the most corrosive components (Ca, Mg, and F) are limited by mineral precipitation. Minerals identified by x-ray diffraction include thermonatrite, natrite, and trona, all sodium carbonate minerals, as well as kogarkoite (Na{sub 3}SO{sub 4}F), halite (NaCl), and niter (KNO{sub 3}). Calcite and a magnesium silicate precipitation are based on chemical analyses of the solids and geochemical modeling. The most significant finding of this study is that sulfate and fluoride concentrations are controlled by the solubility of kogarkoite. Kogarkoite thermodynamic data are needed in the Yucca Mountain Project database to predict the corrosiveness of carbonate brines and to establish the extent to which fluoride is removed from the brines as a solid.

Staggs, K; Maureen Alai,; Hailey, P; Carroll, S A; Sutton, M; Nguyen, Q A

2003-12-04T23:59:59.000Z

250

Susquehanna River Basin Compact (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

251

Intercomparison of Water Vapor Data Measured with Lidar during IHOP_2002. Part I: Airborne to Ground-Based Lidar Systems and Comparisons with Chilled-Mirror Hygrometer Radiosondes  

Science Conference Proceedings (OSTI)

The water vapor data measured with airborne and ground-based lidar systems during the International H2O Project (IHOP_2002), which took place in the Southern Great Plains during 13 May–25 June 2002 were investigated. So far, the data collected ...

Andreas Behrendt; Volker Wulfmeyer; Hans-Stefan Bauer; Thorsten Schaberl; Paolo Di Girolamo; Donato Summa; Christoph Kiemle; Gerhard Ehret; David N. Whiteman; Belay B. Demoz; Edward V. Browell; Syed Ismail; Richard Ferrare; Susan Kooi; Junhong Wang

2007-01-01T23:59:59.000Z

252

Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluation of Production of Oil & Gas From Oil Shale in the Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin The purpose of this paper is to provide the public and policy makers accurate estimates of energy efficiencies, water requirements, water availability, and CO2 emissions associated with the development of the 60 percent portion of the Piceance Basin where economic potential is the greatest, and where environmental conditions and societal concerns and controversy are the most challenging: i.e., the portion of the Piceance where very high quality oil shale resources and useful ground water co-exist. Evaluation of Energy Efficiency, Water Requirements and Availability, and CO2 Emissions Associated With the Production of Oil & Gas From Oil Shale in

253

Health assessment for Ossineke ground water (Ossineke Residential Wells), Ossineke, Michigan, Region 5. CERCLIS No. MID980794440. Preliminary report  

SciTech Connect

Ossineke Residential Wells are listed on the National Priorities List. The site is located in Alpena County, Michigan. In 1977, several residential wells were determined to be contaminated with components of gasoline, benzene, toluene, xylene, phenol, and tetrachloroethylene. Possible contamination sources include leaking underground gas storage tanks, a lagoon used for waste disposal by a commercial laundromat, or an auto rustproofing operation. Ground water samples showed maximum concentrations detected in parts per billion (ppb): benzene, 21,000; toluene, 53,000; xylene, 11,000; and PCE, 7 ppb. Sampling of the residential wells in 1988 showed the following maximum concentrations in ppb: benzene, 6,590; toluene, 726; xylene, 2,500; tetrachloroethylene, 16; and phenol, 26. The site is of potential public-health concern because of the risk to human health that could result from possible exposure to hazardous substances at levels that may result in adverse health effects over time. Human exposure to benzene, tetrachloroethylene, toluene, xylene, and phenol may occur via the exposure pathways of ingestion, inhalation, and dermal contact.

Not Available

1989-03-10T23:59:59.000Z

254

Performance evaluation of 24 ion exchange materials for removing cesium and strontium from actual and simulated N-Reactor storage basin water  

Science Conference Proceedings (OSTI)

This report describes the evaluation of 24 organic and inorganic ion exchange materials for removing cesium and strontium from actual and simulated waters from the 100 Area 105 N-Reactor fuel storage basin. The data described in this report can be applied for developing and evaluating ion exchange pre-treatment process flowsheets. Cesium and strontium batch distribution ratios (K{sub d}`s), decontamination factors (DF), and material loadings (mmol g{sup -1}) are compared as a function of ion exchange material and initial cesium concentration. The actual and simulated N-Basin waters contain relatively low levels of aluminum, barium, calcium, potassium, and magnesium (ranging from 8.33E-04 to 6.40E-05 M), with slightly higher levels of boron (6.63E-03 M) and sodium (1.62E-03 M). The {sup 137}Cs level is 1.74E-06 Ci L-{sup 1} which corresponds to approximately 4.87E-10 M Cs. The initial Na/Cs ratio was 3.33E+06. The concentration of total strontium is 4.45E-06 M, while the {sup 90}Sr radioactive component was measured to be 6.13E-06 Ci L{sup -1}. Simulant tests were conducted by contacting 0.067 g or each ion exchange material with approximately 100 mL of either the actual or simulated N-Basin water. The simulants contained variable initial cesium concentrations ranging from 1.00E-04 to 2.57E- 10 M Cs while all other components were held constant. For all materials, the average cesium K{sub d} was independent of cesium concentration below approximately 1.0E-06 M. Above this level, the average cesium K{sub d} values decreased significantly. Cesium K{sub d} values exceeding 1.0E+07 mL g{sup -1} were measured in the simulated N-Basin water. However, when measured in the actual N-Basin water the values were several orders of magnitude lower, with a maximum of 1.24E+05 mL g{sup -1} observed.

Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.

1997-09-01T23:59:59.000Z

255

UMTRA Ground Water Project  

Office of Legacy Management (LM)

... 7 Figure 3. Uranium Distribution from April 2013 Sampling at the Gunnison, Colorado, Processing Site...

256

The Role of Multimodel Climate Forecasts in Improving Water and Energy Management over the Tana River Basin, Kenya  

Science Conference Proceedings (OSTI)

The Masinga Reservoir located in the upper Tana River Basin, Kenya, is extremely important in supplying country’s hydropower and protecting downstream ecology. The Dam serves as the primary storage reservoir, controlling streamflow through a ...

C. Oludhe; Sankarasubramanian Arumugam; Tushar Sinha; Naresh Devineni; Upmanu Lall

257

K-Basins.pub  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 AUDIT REPORT U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES COMPLETION OF K BASINS MILESTONES APRIL 2002 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman (Signed) Inspector General SUBJECT: INFORMATION: Audit Report on "Completion of K Basins Milestones" BACKGROUND The Department of Energy (Department) has been storing 2,100 metric tons of spent nuclear fuel at the Hanford Site in southeastern Washington. The fuel, used in support of Hanford's former mission, is currently stored in canisters that are kept in two enclosed water-filled pools known as the K Basins. The K Basins represent a significant risk to the environment due to their deteriorating condition. In fact, the K East Basin, which is near the Columbia River, has

258

K Basin safety analysis  

DOE Green Energy (OSTI)

The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

Porten, D.R.; Crowe, R.D.

1994-12-16T23:59:59.000Z

259

A Political Ecology of the Citarum River Basin: Exploring "Integrated Water Resources Management" in West Java, Indonesia  

E-Print Network (OSTI)

ultimately produced higher water prices because rates wereon Environment and Water ( which produced Dublin Principles

Cavelle, Jenna

2013-01-01T23:59:59.000Z

260

Engineering design and testing of a ground water remediation system using electrolytically generated hydrogen with a palladium catalyst for dehalogenation of chlorinated hydrogen  

DOE Green Energy (OSTI)

Recent studies have shown that dissolved hydrogen causes rapid dehalogenation of chlorinated hydrocarbons in the presence of a palladium catalyst. The speed and completeness of these reactions offer advantages in designing remediation technologies for certain ground water contamination problems. However, a practical design challenge arises in the need to saturate the aqueous phase with hydrogen in an expeditious manner. To address this issue, a two-stage treatment reactor has been developed. The first stage consists of an electrolytic cell that generates hydrogen by applying a voltage potential across the influent water stream. The second stage consists of a catalyst column of palladium metal supported on alumina beads. A bench-scale reactor has been used to test this design for treating ground water contaminated with trichloroethene and other chlorinated hydrocarbons. In influent streams containing contaminant concentrations up to 4 ppm, initial results confirm that destruction efficiencies greater than 95% may be achieved with residence times short enough to allow practical implementation in specially designed flow-through treatment wells. Results from the bench-scale tests are being used to design a pilot ground water treatment system.

Ruiz, R.

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Monitored natural attenuation of manufactured gas plant tar mono- and polycyclic aromatic hydrocarbons in ground water: a 14-year field study  

Science Conference Proceedings (OSTI)

Site 24 was the subject of a 14-year (5110-day) study of a ground water plume created by the disposal of manufactured gas plant (MGP) tar into a shallow sandy aquifer approximately 25 years prior to the study. The ground water plume in 1988 extended from a well-defined source area to a distance of approximately 400 m down gradient. A system of monitoring wells was installed along six transects that ran perpendicular to the longitudinal axis of the plume centerline. The MGP tar source was removed from the site in 1991 and a 14-year ground water monitored natural attenuation (MNA) study commenced. The program measured the dissolved mono- and polycyclic aromatic hydrocarbons (MAHs and PAHs) periodically over time, which decreased significantly over the 14-year period. Naphthalene decreased to less than 99% of the original dissolved mass, with mass degradation rates of 0.30 per year (half-life 2.3 years). Bulk attenuation rate constants for plume centerline concentrations over time ranged from 0.33 {+-} 0.09 per year (half-life 2.3 {+-} 0.8 years) for toluene and 0.45 {+-} 0.06 per year (half-life 1.6 {+-} 0.2 years) for naphthalene. The hydrogeologic setting at Site 24, having a sandy aquifer, shallow water table, clay confining layer, and aerobic conditions, was ideal for demonstrating MNA. However, these results demonstrate that MNA is a viable remedial strategy for ground water at sites impacted by MAHs and PAHs after the original source is removed, stabilized, or contained.

Neuhauser, E.F.; Ripp, J.A.; Azzolina, N.A.; Madsen, E.L.; Mauro, D.M.; Taylor, T. [Foth Infrastructure & Environment LLC, Green Bay, WI (United States)

2009-07-01T23:59:59.000Z

262

Geohydrologic study of the Michigan Basin for the applicability of Jack W. McIntyre`s patented process for simultaneous gas recovery and water disposal in production wells  

Science Conference Proceedings (OSTI)

Geraghty & Miller, Inc. of Midland, Texas conducted a geohydrologic study of the Michigan Basin to evaluate the applicability of Jack McIntyre`s patented process for gas recovery and water disposal in production wells. A review of available publications was conducted to identify, (1) natural gas reservoirs which generate large quantities of gas and water, and (2) underground injection zones for produced water. Research efforts were focused on unconventional natural gas formations. The Antrim Shale is a Devonian gas shale which produces gas and large quantities of water. Total 1992 production from 2,626 wells was 74,209,916 Mcf of gas and 25,795,334 bbl of water. The Middle Devonian Dundee Limestone is a major injection zone for produced water. ``Waterless completion`` wells have been completed in the Antrim Shale for gas recovery and in the Dundee Limestone for water disposal. Jack McIntyre`s patented process has potential application for the recovery of gas from the Antrim Shale and simultaneous injection of produced water into the Dundee Limestone.

Maryn, S.

1994-03-01T23:59:59.000Z

263

Meteorological Applications of Temperature and Water Vapor Retrievals from the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI)  

Science Conference Proceedings (OSTI)

The Atmospheric Emitted Radiance Interferometer (AERI) is a well-calibrated ground-based instrument that measures high-resolution atmospheric emitted radiances from the atmosphere. The spectral resolution of the instrument is better than one ...

Wayne F. Feltz; William L. Smith; Robert O. Knuteson; Henry E. Revercomb; Harold M. Woolf; H. Ben Howell

1998-09-01T23:59:59.000Z

264

MEASUREMENTS OF THE 2001 APRIL 15 AND 2005 JANUARY 20 GROUND-LEVEL ENHANCEMENTS BY THE MILAGRO WATER CERENKOV  

E-Print Network (OSTI)

WATER CERENKOV DETECTOR BY Trevor Morgan B.S., University of New Hampshire (2004) DISSERTATION Submitted

California at Santa Cruz, University of

265

Earthquake ground motion modeling on parallel computers  

Science Conference Proceedings (OSTI)

We describe the design and discuss the performance of a parallel elastic wave propagation simulator that is being used to model and study earthquake-induced ground motion in large sedimentary basins. The components of the system include mesh generators, ...

Hesheng Bao; Jacobo Bielak; Omar Ghattas; Loukas F. Kallivokas; David R. O'Hallaron; Jonathan R. Shewchuk; Jifeng Xu

1996-11-01T23:59:59.000Z

266

Value creation in water allocation negotiations : lessons from the Apalachicola-Chattahoochee-Flint River and Lower Colorado River Basins  

E-Print Network (OSTI)

Intense water disputes in the United States are being caused by new and conflicting demands from many quarters and changes in water availability that appear to be caused by climate change. Projections of heightened water ...

Solis, Miriam

2012-01-01T23:59:59.000Z

267

Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions  

Science Conference Proceedings (OSTI)

In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

268

Basin evolution, diagenesis and uranium mineralization in the PaleoproterozicThelon Basin,  

E-Print Network (OSTI)

Basin evolution, diagenesis and uranium mineralization in the PaleoproterozicThelon Basin, Nunavut18 O values near 0% (Vienna Standard Mean OceanWater). Uranium-rich apatite cement (P1) also formed during diagenetic stage1indicating that oxygenated, uranium- bearing pore water was present in the basin

Hiatt, Eric E.

269

Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site  

SciTech Connect

In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site.

Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

1995-03-01T23:59:59.000Z

270

Deployment and Evaluation of a System for Ground-Based Measurement of Cloud Liquid Water Turbulent Fluxes  

Science Conference Proceedings (OSTI)

Direct interception of windblown cloud water by forests has been dubbed “occult deposition” because it represents a hydrological input that is hidden from rain gauges. Eddy correlation studies of this phenomenon have estimated cloud water fluxes ...

Andrew S. Kowalski; Peter M. Anthoni; Richard J. Vong; Anthony C. Delany; Gordon D. Maclean

1997-06-01T23:59:59.000Z

271

Relationships between {sup 222}Rn dissolved in ground water supplies and indoor {sup 222}Rn concentrations in some Colorado front range houses  

SciTech Connect

Indoor {sup 222}Rn concentrations were measured in 37 houses with alpha track detectors placed in water-use rooms near water sources (bathrooms, laundry rooms, and kitchens) and in non-water-use living rooms, dining rooms, and bedrooms away from water sources. Results show that relative contributions of {sup 222}Rn to indoor air from water use are insignificant when soil-gas concentrations are high but become increasingly important as the ratio of {sup 222}Rn-in-water:{sup 222}Rn-in-soil gas increases. High soil-gas {sup 222}Rn concentrations may mask {sup 222}Rn contributions from water even when waterborne {sup 222}Rn concentrations are as high as 750 kBq m{sup {minus}3}. Ground water in Precambrian Pikes Peak granite averages 340 kBq m{sup {minus}3} {sup 222}Rn, vs. 170 kBq m{sup {minus}3} in Precambrian migmatite, but average {sup 222}Rn concentrations in soil gas are also lower in migmatite. Because the ratio of {sup 222}Rn-in-water:{sup 222}Rn-in-soil gas may be consistently higher for houses in migmatite than in Pikes Peak granite, indoor air in houses built on migmatite have a greater relative contribution from water use even though average {sup 222}Rn concentrations in the water are lower. Continuous monitoring of {sup 222}Rn concentrations in air on 15-min intervals also indicates that additions to indoor concentrations from water use are significant and measurable only when soil-gas concentrations are low and concentrations in water are high. When soil-gas concentrations were mitigated to less than 150 Bq m{sup {minus}3} in one house, water contributed 20-40% of the annual indoor {sup 222}Rn concentration in the laundry room ({sup 222}Rn concentration in water of 670 kBq m{sup {minus}3}). Conversely, when the mitigation system is inactive, diurnal fluctuations and other variations in the soil-gas {sup 222}Rn contribution swamp the variability due to water use in the house. 9 refs., 8 figs., 8 tabs.

Folger, P.F. [Geological Survey, Denver, CO (United States)]|[Colorado School of Mines, Golden, CO (United States); Wanty, R.B. [Geological Survey, Denver, CO (United States); Poeter, E. [Colorado School of Mines, Golden, CO (United States); Nyberg, P. [Environmental Protection Agency, Denver, CO (United States)

1994-09-01T23:59:59.000Z

272

A computationally efficient open-source water resource system simulator - Application to London and the Thames Basin  

Science Conference Proceedings (OSTI)

Interactive River-Aquifer Simulation-2010 (IRAS-2010) is a generalized water resource system simulation model. IRAS-2010 is a new release of IRAS previously released by Cornell University in 1995. Given hydrological inflows, evaporation rates, water ... Keywords: Conjunctive use water resource systems, Decision support systems (DSS), Open-source, Simulation models, Water management models

Evgenii S. Matrosov; Julien J. Harou; Daniel P. Loucks

2011-12-01T23:59:59.000Z

273

Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms  

DOE Green Energy (OSTI)

Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2011-06-08T23:59:59.000Z

274

[Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio]. Volume 4, Health and Safety Plan (HSP); Phase 1, Task 4 Field Investigation report: Draft  

SciTech Connect

This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

Not Available

1991-10-01T23:59:59.000Z

275

Rivanna River Basin Commission (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

276

Modeling the Gila-San Francisco Basin using system dynamics in support of the 2004 Arizona Water Settlement Act.  

SciTech Connect

Water resource management requires collaborative solutions that cross institutional and political boundaries. This work describes the development and use of a computer-based tool for assessing the impact of additional water allocation from the Gila River and the San Francisco River prescribed in the 2004 Arizona Water Settlements Act. Between 2005 and 2010, Sandia National Laboratories engaged concerned citizens, local water stakeholders, and key federal and state agencies to collaboratively create the Gila-San Francisco Decision Support Tool. Based on principles of system dynamics, the tool is founded on a hydrologic balance of surface water, groundwater, and their associated coupling between water resources and demands. The tool is fitted with a user interface to facilitate sensitivity studies of various water supply and demand scenarios. The model also projects the consumptive use of water in the region as well as the potential CUFA (Consumptive Use and Forbearance Agreement which stipulates when and where Arizona Water Settlements Act diversions can be made) diversion over a 26-year horizon. Scenarios are selected to enhance our understanding of the potential human impacts on the rivers ecological health in New Mexico; in particular, different case studies thematic to water conservation, water rights, and minimum flow are tested using the model. The impact on potential CUFA diversions, agricultural consumptive use, and surface water availability are assessed relative to the changes imposed in the scenarios. While it has been difficult to gage the acceptance level from the stakeholders, the technical information that the model provides are valuable for facilitating dialogues in the context of the new settlement.

Tidwell, Vincent Carroll; Sun, Amy Cha-Tien; Peplinski, William J.; Klise, Geoffrey Taylor

2012-04-01T23:59:59.000Z

277

Western oil-shale development: a technology assessment. Volume 6: oil-shale development in the Piceance Creek Basin and potential water-quality changes  

SciTech Connect

This report brackets the stream quality changes due to pre-mining pumping activites required to prepare oil shale lease Tracts C-a and C-b for modified in situ retorting. The fluxes in groundwater discharged to the surface were identified for Tract C-b in a modeling effort by another laboratory. Assumed fluxes were used for Tract C-a. The quality of the groundwater aquifers of the Piceance Basin is assumed to be that reported in the literature. The changes are bracketed in this study by assuming all premining pumping is discharged to the surface stream. In one case, the pumped water is assumed to be of a quality like that of the upper aquifer with a relatively high quality. In the second case, the pumped water is assumed to come from the lower aquifer. Complete mixing and conservation of pollutants was assumed at sample points at the White River and at Lees Ferry of the Colorado River. A discussion of possible secondary effects of oil shale and coal mining is presented. In addition, a discussion of the uncertainties associated with the assumptions used in this study and alternative uses for the water to prevent stream contamination by oil shale development is provided.

1982-01-01T23:59:59.000Z

278

Screening model optimization for Panay River Basin planning in the Philippines.  

E-Print Network (OSTI)

??The state of the water resources of the Panay River Basin have motivated studies and initial basin planning to mitigate flood damages, to produce hydroelectricity,… (more)

Millspaugh, John Henry

2010-01-01T23:59:59.000Z

279

Green River formation water flood demonstration project, Unita Basin, Utah. Quarterly technical progress report, January 1, 1995--March 31, 1995  

SciTech Connect

The objective of this project was to understand the successful water flood in the Monument Butte unit and apply it to other units and other reservoirs. Expanding the Monument Butte Water Flood was also one of the objectives. This report provides progress in the areas of field drilling and production results and modeling the boundary unit.

Lomax, J.D.; Nielson, D.L.; Deo, M.D.

1995-06-01T23:59:59.000Z

280

Grounding intentionality  

E-Print Network (OSTI)

In this thesis, I argue that current attempts to ground intentionality face one of two challenges. Either the grounding feature of intentionality will be itself intentional or the grounding feature is disparate in nature from the representational capacity of an intentional mental state and therefore no connection between the two can be taken to exist. I examine two current accounts of intentionality and the features they utilize to ground it. I maintain that both views fall prey to one or both of the objections I raise. I conclude that any account of intentionality will need to meet both of these challenges in order to be counted successful.

Huizenga Steven R

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995  

SciTech Connect

Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data.

Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M. [and others

1996-12-31T23:59:59.000Z

282

An ecological study examining the correlation of end-stage renal disease and ground water heavy metal content in Texas counties  

E-Print Network (OSTI)

An ecological study was conducted to examine the correlation of end-stage renal disease (ESRD) and the ground water heavy metal level of lead, arsenic, cadmium, mercury and the cumulative level of all four metals in Texas counties. The heavy meal dab was collected from the United States Geologic Survey (USGS) measurement and covered the twenty-one year span 1970- 1990. The ESRD data was gathered from the Texas Department of Health Kidney Program ESRD Registry for the five-year span 1988-1992. This registry included more than 99% of incident ESRD cases over the same time period. The 1990 U.S. Census data was used to estimate county population by age, race and sex. Exposure was defined as residence in a county with ground water measurements that fell in the highest quartile for each metal (mercury 0.297ug/, arsenic 3.216ug/l, lead 4.685ug/l, cadmium 1.423ug/l, cumulative metal level 8.911ug/l). Outcome was defined as an incident case of ESRD between the years 1988-1992 and examined as five-year incidence of ESRD per 10,000 persons. Among 254 Texas counties, 52 had at least 7 years of metal measurements for lead and cadmium, 51 counties had at least 7 years of metal measurements for arsenic and mercury and 50 counties had 7 years of measurements for all four metals. Linear and logistic regression procedures were carried out to examine the relationship between heavy metal ground water levels and incidence of ESRD. None of the metals demonstrated a statistically significant positive relationship with five-year incidence of ESRD per 10,000 persons. Counties with high levels of heavy metals did not indicate an increased odds of having a five-year ESRD incidence per 10,000 persons above the 1988-1992 state average. The percentage of Black or Hispanic persons in a county was a positive predictor of increased five-year incidence of ESRD per 10,000 persons.

Bishop, Scott Alan

1999-01-01T23:59:59.000Z

283

KE Basin Sludge Flocculant Testing  

SciTech Connect

In the revised path forward and schedule for the K Basins Sludge Retrieval and Disposal Project, the sludge in K East (KE) Basin will be moved from the floor and pits and transferred to large, free-standing containers located in the pits (so as to isolate the sludge from the basin). When the sludge is pumped into the containers, it must settle fast enough and clarify sufficiently that the overflow water returned to the basin pool will not cloud the water or significantly increase the radiological dose rate to the operations staff as a result of increased suspended radioactive material. The approach being evaluated to enhance sludge settling and speed the rate of clarification is to add a flocculant to the sludge while it is being transferred to the containers. In February 2004, seven commercial flocculants were tested with a specific K Basin sludge simulant to identify those agents that demonstrated good performance over a broad range of slurry solids concentrations. From this testing, a cationic polymer flocculant, Nalco Optimer 7194 Plus (7194+), was shown to exhibit superior performance. Related prior testing with K Basin sludge and simulant in 1994/1996 had also identified this agent as promising. In March 2004, four series of jar tests were conducted with 7194+ and actual KE Basin sludge (prepared by combining selected archived KE sludge samples). The results from these jar tests show that 7194+ greatly improves settling of the sludge slurries and clarification of the supernatant.

Schmidt, Andrew J.; Hallen, Richard T.; Muzatko, Danielle S.; Gano, Sue

2004-06-23T23:59:59.000Z

284

Detection of water absorption in the dayside atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 microns  

E-Print Network (OSTI)

We report a 5 sigma detection of water absorption features in the dayside spectrum of the hot Jupiter HD 189733 b. We used high-resolution (R~100,000) spectra taken at 3.2 microns with CRIRES on the VLT to trace the radial velocity shift of the water features in the planet's dayside atmosphere during 5 hours of its 2.2 day orbit as it approached secondary eclipse. Despite considerable telluric contamination in this wavelength regime, we detect the signal within our uncertainties at the expected combination of systemic velocity (Vsys=-3 +5-6 km/s) and planet orbital velocity (Kp=154 +14-10 km/s), and determine a H2O line contrast ratio of (1.3+/-0.2)x10^-3 with respect to the stellar continuum. We find no evidence of significant absorption or emission from other carbon-bearing molecules, such as methane, although we do note a marginal increase in the significance of our detection with the inclusion of carbon dioxide in our template spectrum. This result demonstrates that ground-based, high-resolution spectrosc...

Birkby, J L; Brogi, M; de Mooij, E J W; Schwarz, H; Albrecht, S; Snellen, I A G

2013-01-01T23:59:59.000Z

285

Abstracts and parameter index database for reports pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory  

SciTech Connect

This report is a product generated by faculty at the University of Idaho in support of research and development projects on Unsaturated Zone Contamination and Transport Processes, and on Surface Water-Groundwater Interactions and Regional Groundwater Flow at the Idaho National Engineering Laboratory. These projects are managed by the State of Idaho`s INEL Oversight Program under a grant from the US Department of Energy. In particular, this report meets project objectives to produce a site-wide summary of hydrological information based on a literature search and review of field, laboratory and modeling studies at INEL, including a cross-referenced index to site-specific physical, chemical, mineralogic, geologic and hydrologic parameters determined from these studies. This report includes abstracts of 149 reports with hydrological information. For reports which focus on hydrological issues, the abstracts are taken directly from those reports; for reports dealing with a variety of issues beside hydrology, the abstracts were generated by the University of Idaho authors concentrating on hydrology-related issues. Each abstract is followed by a ``Data`` section which identifies types of technical information included in a given report, such as information on parameters or chemistry, mineralogy, stream flows, water levels. The ``Data`` section does not include actual values or data.

Bloomsburg, G.; Finnie, J.; Horn, D.; King, B.; Liou, J. [Idaho Univ., Moscow, ID (United States)

1993-05-01T23:59:59.000Z

286

K-Basins design guidelines  

Science Conference Proceedings (OSTI)

The purpose of the design guidelines is to enable SNF and K Basin personnel to complete fuel and sludge removal, and basin water mitigation by providing engineering guidance for equipment design for the fuel basin, facility modifications (upgrades), remote tools, and new processes. It is not intended to be a purchase order reference for vendors. The document identifies materials, methods, and components that work at K Basins; it also Provides design input and a technical review process to facilitate project interfaces with operations in K Basins. This document is intended to compliment other engineering documentation used at K Basins and throughout the Spent Nuclear Fuel Project. Significant provisions, which are incorporated, include portions of the following: General Design Criteria (DOE 1989), Standard Engineering Practices (WHC-CM-6-1), Engineering Practices Guidelines (WHC 1994b), Hanford Plant Standards (DOE-RL 1989), Safety Analysis Manual (WHC-CM-4-46), and Radiological Design Guide (WHC 1994f). Documents (requirements) essential to the engineering design projects at K Basins are referenced in the guidelines.

Roe, N.R.; Mills, W.C.

1995-06-01T23:59:59.000Z

287

F/H seepage basin groundwater process tank settling characterization task technical plan  

Science Conference Proceedings (OSTI)

The Environmental Restoration (ER) Department is responsible for environmental remediation projects on Site at the Savannah River Plant. ER requested Interim Waste Technology Section (IWTS) to conduct a treatability study to develop a system which would reduce the ground water contaminant levels in the aquifers at the F/H seepage basins. A task technical plan has been initiated to support the remediation system development. The task plan provides the methodology for conducting further investigations into the behavior of ground water in the tanks. Potential concerns exist that are related to the settling characteristics of particulate matter in the groundwater. During periods of operation, the injection system water tank and extraction system water tank will probably maintain some minimum water level. During periods of extended treatment system downtime, ground water may remain within the injection system and extraction system water tanks. The settling of particulate matter is of potential concern due to: Radioactivity-related safety issues may need to be investigated and documented; Accumulation of particulate matter will reduce the tank`s operating volumes; The characteristics of the settled particulate matter need to be determined and appropriate cleaning and/or decommission procedures developed for the tanks.

Siler, J.L.

1993-08-31T23:59:59.000Z

288

Computeer-based decision support tools for evaluation of actions affecting flow and water quality in the San Joaquin Basin  

SciTech Connect

This document is a preliminary effort to draw together some of the important simulation models that are available to Reclamation or that have been developed by Reclamation since 1987. This document has also attempted to lay out a framework by which these models might be used both for the purposes for which they were originally intended and to support the analysis of other issues that relate to the hydrology and to salt and water quality management within the San Joaquin Valley. To be successful as components of a larger Decision Support System the models should to be linked together using custom designed interfaces that permit data sharing between models and that are easy to use. Several initiatives are currently underway within Reclamation to develop GIS - based and graphics - based decision support systems to improve the general level of understanding of the models currently in use, to standardize the methodology used in making planning and operations studies and to permit improved data analysis, interpretation and display. The decision support systems should allow greater participation in the planning process, allow the analysis of innovative actions that are currently difficult to study with present models and should lead to better integrated and more comprehensive plans and policy decisions in future years.

Quinn, N.W.T.

1993-01-01T23:59:59.000Z

289

Rotating Hydraulics and Upstream Basin Circulation  

Science Conference Proceedings (OSTI)

The flow in a source-fed f-plane basin drained through a strait is explored using a single-layer (reduced gravity) shallow-water numerical model that resolves the hydraulic flow within the strait. The steady upstream basin circulation is found to ...

Karl R. Helfrich; Lawrence J. Pratt

2003-08-01T23:59:59.000Z

290

Commentary by Jerry S. Szymanski and C.B. Archambeau regarding ``Spring deposits and late pleistocene ground-water levels in southern Nevada``, by J. Quade. Special report number 16, Contract number 94/96.0003  

Science Conference Proceedings (OSTI)

This report is a critical analysis of a paper presented at the 5th Annual International Conference on High Level Radioactive Waste Management. The thrust of this paper was to determine the historic level of ground water in the vicinity of the proposed Yucca Mountain radioactive waste repository. This author reviews conclusions reached by the former author and analyzes reference materials used to obtain his assessment of paleo-ground water levels. This author disagrees with the conclusions and analytical methods used. This author presents information relative to water table fluctuations as a result of intrusion of geothermal fluids and makes claim that such intrusion would jeopardize the integrity of the repository by flooding.

Szymanski, J.S.; Archambeau, C.B.

1994-08-01T23:59:59.000Z

291

Flathead Basin Commission Act of 1983 (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This Act establishes the Flathead Basin Commission, the purpose of which is to protect the Flathead Lake aquatic environment, its waters, and surrounding lands and natural resources. The Commission...

292

Interstate Commission on the Potomac River Basin (Multiple States) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interstate Commission on the Potomac River Basin (Multiple States) Interstate Commission on the Potomac River Basin (Multiple States) Interstate Commission on the Potomac River Basin (Multiple States) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State District of Columbia Program Type Environmental Regulations Siting and Permitting Provider Interstate Commission on the Potomac River Basin The Interstate Commission on the Potomac River Basin's (ICPRB) mission is to enhance, protect, and conserve the water and associated land resources of the Potomac River and its tributaries through regional and interstate

293

K West basin isolation barrier leak rate test  

SciTech Connect

This document establishes the procedure for performing the acceptance test on the two isolation barriers being installed in K West basin. This acceptance test procedure shall be used to: First establish a basin water loss rate prior to installation of the two isolation barriers between the main basin and the discharge chute in K-Basin West. Second, perform an acceptance test to verify an acceptable leakage rate through the barrier seals.

Whitehurst, R.; McCracken, K.; Papenfuss, J.N.

1994-10-31T23:59:59.000Z

294

Ground Loops for Heat Pumps and Refrigeration  

E-Print Network (OSTI)

Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water easy. Since refrigeration equipment runs more than heat pumps, energy savings can be large for ground-coupled refrigeration. The paper presents a design procedure for ground loops for heat pumps, hot water, ice machines, and water-cooled refrigeration. It gives an overview of the commercial ground-coupled systems in Louisiana that have both refrigeration and heat pumps. Systems vary from small offices to a three-story office building with 187 tons. A chain of hamburger outlets uses total ground-coupling in all of its stores. A grocery store has ground-coupling for heat pumps and refrigeration. Desuperheaters provide 80 percent of the hot water for a coin laundry in the same building. A comparison of energy costs in a bank with a ground-coupled heat pump system to a similar bank with air-conditioning and gas for heat revealed a 31 percent reduction in utility costs for the ground-coupled building. Two buildings of the Mississippi Power and Light Co. have ground-coupled heat pumps in one, and high efficiency air source heat pumps in the other. Energy savings in nine months was 60,000 kWh (25 percent), and electric peak demand was reduced 42 kW (35 percent).

Braud, H. J.

1986-01-01T23:59:59.000Z

295

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

3. Estimated rail transportation rates for coal, basin to state, EIA data 3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $28.49 - W W - Northern Appalachian Basin Florida - $38.51 $39.67 - 3.0 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $20.35 $16.14 $16.64 -9.6 3.1 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $19.64 $19.60 $20.41 1.9 4.2 Northern Appalachian Basin Michigan $14.02 $16.13 $16.23 7.6 0.6 Northern Appalachian Basin New Hampshire $43.43 $40.18 $39.62 -4.5 -1.4

296

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, basin to state, EIA data 4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $26.24 - W W - Northern Appalachian Basin Florida - $35.10 $35.74 - 1.8 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $18.74 $14.70 $14.99 -10.6 1.9 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $18.09 $17.86 $18.39 0.8 3.0 Northern Appalachian Basin Michigan $12.91 $14.70 $14.63 6.4 -0.5 Northern Appalachian Basin New Hampshire $40.00 $36.62 $35.70 -5.5 -2.5

297

Designed Diamond Ground State via Optimized Isotropic Monotonic Pair Potentials  

E-Print Network (OSTI)

We apply inverse statistical-mechanical methods to find a simple family of optimized isotropic, monotonic pair potentials, under certain constraints, whose ground states for a wide range of pressures is the diamond crystal. These constraints include desirable phonon spectra and the widest possible pressure range for stability. We also ascertain the ground-state phase diagram for a specific optimized potential to show that other crystal structures arise for other pressures. Cooling disordered configurations interacting with our optimized potential to absolute zero frequently leads to the desired diamond crystal ground state, revealing that the capture basin for the global energy minimum is large and broad relative to the local energy minima basins.

Etienne Marcotte; Frank H. Stillinger; Salvatore Torquato

2012-12-15T23:59:59.000Z

298

File:GWS-53 - Application for Determination of Water Right Within a  

Open Energy Info (EERE)

GWS-53 - Application for Determination of Water Right Within a GWS-53 - Application for Determination of Water Right Within a Designated Ground Water Basin (and Denver Basin).pdf Jump to: navigation, search File File history File usage Metadata File:GWS-53 - Application for Determination of Water Right Within a Designated Ground Water Basin (and Denver Basin).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 33 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 10:36, 20 March 2013 Thumbnail for version as of 10:36, 20 March 2013 1,275 × 1,650, 2 pages (33 KB) Alevine (Talk | contribs)

299

Performance Testing Residential Heat Pump Water Heaters under South- and Central-Florida Climate Conditions: Hot, Humid Climate and Warm Ground Water Pose Unusual Operating Environment for Heat Pump Water Heaters  

Science Conference Proceedings (OSTI)

Heat pump water heaters (HPWHs) are known to provide considerable energy savings compared with electric resistance devices in many applications. However, as their performance is climate-dependent, it is important to understand their operation in extreme climates. Southern and Central Florida presents an extreme climate for HPWHs, as the air temperature, humidity, and entering water temperatures are all high nearly year-round. This report examines HPWH performance in the Florida Power & Light ...

2013-09-30T23:59:59.000Z

300

Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Laws Envirosearch Institutional Controls NEPA Activities RCRA RQ*Calculator Water HSS Logo Water Laws Overview of water-related legislation affecting DOE sites Clean...

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Ground Source Heat Pumps Ground source heat pumps (GSHPs) use the earth's  

E-Print Network (OSTI)

Ground Source Heat Pumps Fact Sheet Ground source heat pumps (GSHPs) use the earth's constant. Waste heat can be used to heat hot water. System Types There are two types of ground source heat pumps, closed loop and open loop systems. Closed loop heat pumps use the earth as the heat source and heat sink

Paulsson, Johan

302

Division of Water, Part 675: Great Lakes Water Withdrawal Registration Regulations (New York)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations set forth requirements for the registration of water withdrawals and reporting of water losses from the Great Lakes Basin. The regulations apply to water withdrawals from...

303

Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

Warm or Steaming Ground Warm or Steaming Ground Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Warm or Steaming Ground Dictionary.png Warm or Steaming Ground: An area where geothermal heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Steam rising from the ground at Eldvorp, a 10 km row of craters, in Southwestern Iceland. http://www.visiticeland.com/SearchResults/Attraction/eldvorp Warm or steaming ground is often an indicator of a geothermal system beneath the surface. In some cases a geothermal system may not show any

304

Delaware River Basin Commission (Multiple States) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware River Basin Commission (Multiple States) Delaware River Basin Commission (Multiple States) Delaware River Basin Commission (Multiple States) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Systems Integrator Savings Category Water Buying & Making Electricity Home Weatherization Program Info Start Date 1961 State Delaware Program Type Environmental Regulations Siting and Permitting Provider Project Review Section The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states (Pennsylvania, New York, New

305

Rappahannock River Basin Commission (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rappahannock River Basin Commission (Virginia) Rappahannock River Basin Commission (Virginia) Rappahannock River Basin Commission (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Siting and Permitting Provider Rappahannock River Basin Commission The Rappahannock River Basin Commission is an independent local entity

306

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

43 $0.0294 W - W W - - - 43 $0.0294 W - W W - - - Northern Appalachian Basin Florida $0.0161 W W W W $0.0216 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0296 $0.0277 $0.0292 $0.0309 $0.0325 $0.0328 $0.0357 $0.0451 $0.0427 4.7 -5.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

307

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$15.49 $13.83 W - W W - - - $15.49 $13.83 W - W W - - - Northern Appalachian Basin Florida $19.46 W W W W $29.49 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $10.33 $9.58 $10.68 $12.03 $13.69 $14.71 $16.11 $19.72 $20.69 9.1 4.9 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

308

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$0.0323 $0.0284 W - W W - - - $0.0323 $0.0284 W - W W - - - Northern Appalachian Basin Florida $0.0146 W W W W $0.0223 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0269 $0.0255 $0.0275 $0.0299 $0.0325 $0.0339 $0.0380 $0.0490 $0.0468 7.2 -4.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

309

Screening model optimization for Panay River Basin planning in the Philippines  

E-Print Network (OSTI)

The state of the water resources of the Panay River Basin have motivated studies and initial basin planning to mitigate flood damages, to produce hydroelectricity, and to increase irrigated rice areas. The goal of this ...

Millspaugh, John Henry

2010-01-01T23:59:59.000Z

310

Geochemistry of Delaware Basin groundwaters  

DOE Green Energy (OSTI)

Fluids from various formations were sampled and analyzed in order to characterize groundwaters in the Delaware Basin. Waters were analyzed for solute content and/or stable isotope ratios (D/H and /sup 18/O//sup 16/O). Three lines of geochemical arguments are summarized, in order to present the natures and probable origins of analyzed fluids: solute chemistry, thermodynamic modelling of low-temperature aqueous species, and stable isotope ratios. (JGB)

Lambert, S.J.

1977-04-25T23:59:59.000Z

311

Analysis of Ground-Water Levels and Associated Trends in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1951-2003  

Science Conference Proceedings (OSTI)

Almost 4,000 water-level measurements in 216 wells in the Yucca Flat area from 1951 to 2003 were quality assured and analyzed. An interpretative database was developed that describes water-level conditions for each water level measured in Yucca Flat. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes narratives that discuss the water-level history of each well. Water levels in 34 wells were analyzed for variability and for statistically significant trends. An attempt was made to identify the cause of many of the water-level fluctuations or trends. Potential causes include equilibration following well construction or development, pumping in the monitoring well, withdrawals from a nearby supply well, recharge from precipitation, earthquakes, underground nuclear tests, land subsidence, barometric pressure, and Earth tides. Some of the naturally occurring fluctuations in water levels may result from variations in recharge. The magnitude of the overall water-level change for these fluctuations generally is less than 2 feet. Long-term steady-state hydrographs for most of the wells open to carbonate rock have a very similar pattern. Carbonate-rock wells without the characteristic pattern are directly west of the Yucca and Topgallant faults in the southwestern part of Yucca Flat. Long-term steady-state hydrographs from wells open to volcanic tuffs or the Eleana confining unit have a distinctly different pattern from the general water-level pattern of the carbonate-rock aquifers. Anthropogenic water-level fluctuations were caused primarily by water withdrawals and nuclear testing. Nuclear tests affected water levels in many wells. Trends in these wells are attributed to test-cavity infilling or the effects of depressurization following nuclear testing. The magnitude of the overall water-level change for wells with anthropogenic trends can be large, ranging from several feet to hundreds of feet. Vertical water-level differences at 27 sites in Yucca Flat with multiple open intervals were compared. Large vertical differences were noted in volcanic rocks and in boreholes where water levels were affected by nuclear tests. Small vertical differences were noted within the carbonate-rock and valley-fill aquifers. Vertical hydraulic gradients generally are downward in volcanic rocks and from pre-Tertiary clastic rocks toward volcanic- or carbonate-rock units.

J.M. Fenelon

2005-10-05T23:59:59.000Z

312

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

Basin Basin Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Northern Appalachian Basin Delaware W W $16.45 $14.29 W - W W - - - Northern Appalachian Basin Florida $21.45 W W W W $28.57 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $11.39 $10.39 $11.34 $12.43 $13.69 $14.25 $15.17 $18.16 $18.85 6.5 3.8

313

Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Texas-Louisiana- Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin Appalachian Basin Wind River Basin Eastern Shelf NW Shelf Abo Sussex-Shannon Muddy J Mesaverde- Lance-Lewis Medina/Clinton-Tuscarora Bradford-Venango-Elk Berea-Murrysville Piceance Basin Bossier Williston Basin Ft Worth Basin Davis Bighorn Basin Judith River- Eagle Permian Basin Anadarko Basin Denver Basin San Juan Basin North-Central Montana Area Uinta Basin Austin Chalk Codell-Niobrara Penn-Perm Carbonate Niobrara Chalk Dakota Morrow Mesaverde Thirty- One Cleveland Ozona Canyon Wasatch- Mesaverde Red Fork Mesaverde Granite Wash Stuart City-Edwards Bowdoin- Greenhorn Travis Peak Olmos Cotton Valley Vicksburg Wilcox Lobo Pictured Cliffs Cretaceous Cretaceous-Lower Tertiary Mancos- Dakota Gilmer Lime Major Tight Gas Plays, Lower 48 States

314

Water Desalination: Arizona, California, Nevada and Mexico.  

E-Print Network (OSTI)

?? This was a study on the history of the Colorado River, the water challenges of the Lower Basin states and the international water laws… (more)

Kennedy, Clinton P.

2012-01-01T23:59:59.000Z

315

Independent Oversight Review, Hanford K Basin and Cold Vacuum Drying  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

K Basin and Cold Vacuum K Basin and Cold Vacuum Drying Facility - August 2012 Independent Oversight Review, Hanford K Basin and Cold Vacuum Drying Facility - August 2012 August 2012 Review of Hanford K Basin and Cold Vacuum Drying Facility Found Fuel Multi-Canister Overpack Operations The purpose of this independent oversight review by the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS) was to observe the operations associated with processing a Multi-Canister Overpack (MCO) of "found fuel" (small quantities of spent fuel discovered during cleanup of the reactor burial grounds) at the Cold Vacuum Drying Facility (CVDF). The found fuel MCO was transported from the K West Basin on the Hanford

316

Independent Oversight Review, Hanford K Basin and Cold Vacuum Drying  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford K Basin and Cold Vacuum Hanford K Basin and Cold Vacuum Drying Facility - August 2012 Independent Oversight Review, Hanford K Basin and Cold Vacuum Drying Facility - August 2012 August 2012 Review of Hanford K Basin and Cold Vacuum Drying Facility Found Fuel Multi-Canister Overpack Operations The purpose of this independent oversight review by the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS) was to observe the operations associated with processing a Multi-Canister Overpack (MCO) of "found fuel" (small quantities of spent fuel discovered during cleanup of the reactor burial grounds) at the Cold Vacuum Drying Facility (CVDF). The found fuel MCO was transported from the K West Basin on the Hanford

317

Alden Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Alden Wave Basin Overseeing Organization Alden Research Laboratory, Inc Hydrodynamic Testing Facility Type Wave Basin Length(m) 33.5 Beam(m) 21.3 Depth(m) 1.2 Water Type Freshwater Cost(per day) Depends on study Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 1.0 Maximum Wave Length(m) 1.8 Wave Period Range(s) 1.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Period adjustable electronically, height adjustable mechanically Wave Direction Both Simulated Beach Yes Description of Beach Designed as needed using commercially available sand/sediment

318

Haynes Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Haynes Wave Basin Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Wave Basin Length(m) 38.1 Beam(m) 22.9 Depth(m) 1.5 Water Type Freshwater Cost(per day) $150/hour (excluding labor) Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 3.3 Maximum Wave Length(m) 10.7 Wave Period Range(s) 3.3 Current Velocity Range(m/s) 0.2 Programmable Wavemaking Yes Wavemaking Description Directional, irregular, any spectrum, cnoidal or solitary wave Wave Direction Both Simulated Beach Yes Description of Beach Stone Channel/Tunnel/Flume Channel/Tunnel/Flume None

319

Transmission Line Grounding  

Science Conference Proceedings (OSTI)

In 2008, the Electric Power Research Institute (EPRI) published a comprehensive grounding report. Published in two parts, the report covered the theoretical and practical aspects of transmission line grounding practices. To further improve the tools available for grounding analysis, an investigation into practical ways to calculate the fault current distribution and ground potential rise of the transmission line grounding system was conducted. Furthermore, a survey of utilities has documented industry pr...

2011-12-23T23:59:59.000Z

320

Hydrogeochemistry of the Antrim Shale (Devonian) in the Michigan Basin  

SciTech Connect

The Antrim shale has been the focus of active exploration and production in the Michigan Basin since 1987. The producing trend is presently located along the northern rim of the basin, but new ventures are expanding into the southern part of the basin and a predictive model for gas generation and production is greatly needed. The authors have undertaken a geochemical investigation of the waters co-produced with gases in the Antrim shale. There is unusual regional variability in the water chemistry. For example, salinity ranges from near potable water to nearly 10 times the salinity of ocean water within a distance of 80 km. Understanding the origin of solutes, waters and natural gas being produced from the Antrim Shale will aid in developing a model for natural gas generation and migration within the basin. The chemical and isotopic compositions of Antrim waters suggest that there are two sources of water and salinity within the reservoir: (1) saline, high-bromide basinal brine moving updip into the producing areas, and (2) ancient, dilute glacial melt water. Either of these waters can gain additional NaCl from dissolving Br-poor halite located within the updip pinch-out of the Detroit River Salt. When plotted geographically, variations in these components exhibit distinct regional patterns and may ultimately highlight major water and gas migration avenues. In addition to variable water salinity, the authors' preliminary results suggest that complexities in natural gas chemistry are reflected in the composition of coexisting waters.

Martini, A.M.; Walter, L.M.; Richards, J.A.; Budai, J.M. (Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Geological Sciences)

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Geothermal fluid genesis in the Great Basin  

DOE Green Energy (OSTI)

Early theories concerning geothermal recharge in the Great Basin implied recharge was by recent precipitation. Physical, chemical, and isotopic differences between thermal and non-thermal fluids and global paleoclimatic indicators suggest that recharge occurred during the late Pleistocene. Polar region isotopic studies demonstrate that a depletion in stable light-isotopes of precipitation existed during the late Pleistocene due to the colder, wetter climate. Isotopic analysis of calcite veins and packrat midden megafossils confirm the depletion event occurred in the Great Basin. Isotopic analysis of non-thermal springs is utilized as a proxy for local recent precipitation. Contoured plots of deuterium concentrations from non-thermal and thermal water show a regional, systematic variation. Subtracting contoured plots of non-thermal water from plots of thermal water reveals that thermal waters on a regional scale are generally isotopically more depleted. Isolated areas where thermal water is more enriched than non-thermal water correspond to locations of pluvial Lakes Lahontan and Bonneville, suggesting isotopically enriched lake water contributed to fluid recharge. These anomalous waters also contain high concentrations of sodium chloride, boron, and other dissolved species suggestive of evaporative enrichment. Carbon-age date and isotopic data from Great Basin thermal waters correlate with the polar paleoclimate studies. Recharge occurred along range bounding faults. 151 refs., 62 figs., 15 tabs.

Flynn, T.; Buchanan, P.K.

1990-01-01T23:59:59.000Z

322

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques (Redirected from Ground Electromagnetic Methods) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

323

GRR/Section 19-CO-b - Denver Basin Permitting Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 19-CO-b - Denver Basin Permitting Process GRR/Section 19-CO-b - Denver Basin Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-b - Denver Basin Permitting Process 19COBDenverBasinPermittingProcess.pdf Click to View Fullscreen Contact Agencies Colorado Division of Water Resources Regulations & Policies CRS 37-90-103 Underground Water Definitions CRS 37-90-137 Permits to Construct Wells Outside Designated Basins CRS 37-92-302 Application for Water Rights or Change of Such Water Rights 2 CCR 402-6 The Denver Basin Rules Triggers None specified Click "Edit With Form" above to add content 19COBDenverBasinPermittingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

324

Speciation and structural characterization of plutonium and actinide-organic complexes in surface and ground waters. Annual progress report, September 1996--September 1997  

SciTech Connect

'The authors proposed research is designed to study the association of actinides with dissolved organic complexes in subsurface waters. Actinide-humic matter associations in natural waters have been investigated previously, but the authors have postulated that much of the actinide binding activity may be supported by colloidal biopolymers. To investigate this, they are developing techniques to sample and identify organic constituents in groundwater, and to measure the Pu associated with different fractions of organic matter. Year 1 activities have focused on: (1) sampling techniques to minimize contamination and artifact formation, and to establish mass balances, (2) separation of Pu isotopes by oxidation state, and (3) analytical development of techniques for separation and identification of organic constituents from natural waters. The authors proposed research calls for field work at the Savannah River and Hanford Sites (SRS and HS, respectively). Towards this, they have been working on establishing protocols for ultra-clean (fg level) cross-flow filtration (CFF) techniques suitable for thermal ionization mass spectrometric (TIMS) analysis. A series of tests have been completed and the results have shown no Pu contamination from the CFF system was observable as long as the system is rigorously cleaned with acid, base and nano-pure water (Table 1). They have also collected a water sample from a pond near the laboratory in Woods Hole, MA to test blank conditions in the field, and to determine system mass balances. Blank levels were found to be satisfactory, and the mass balance is 100 \\261 10% for both {sup 239}Pu and {sup 240}Pu, the only two isotopes measurable in the sample. This is one of the major assurances for the success of the project because CFF will be the major sampling tool the authors will use to study natural Pu-organic complexes. Another important result from the field test is that > 80% of the dissolved Pu (based on the TIMS measurements) is in colloidal form.'

Buessler, K.O.; Repeta, D.J.

1997-01-01T23:59:59.000Z

325

Speciation and structural characterization of plutonium and actinide-organic complexes in surface and ground waters. Annual progress report, September 1996--September 1997  

SciTech Connect

'The authors proposed research is designed to study the association of actinides with dissolved organic complexes in subsurface waters. Actinide-humic matter associations in natural waters have been investigated previously, but they have postulated that much of the actinide binding activity may be supported by colloidal biopolymers. To investigate this, they are developing techniques to sample and identify organic constituents in groundwater, and to measure the Pu associated with different fractions of organic matter. Year 1 activities have focused on: (1) sampling techniques to minimize contamination and artifact formation, and to establish mass balances, (2) separation of Pu isotopes by oxidation state, and (3) analytical development of techniques for separation and identification of organic constituents from natural waters. Their proposed research calls for field work at the Savannah River and Hanford Sites (SRS and HS, respectively). Towards this, they have been working on establishing protocols for ultra-clean (fg level) cross-flow filtration (CFF) techniques suitable for thermal ionization mass spectrometric (TIMS) analysis. A series of tests have been completed and the results have shown no Pu contamination from the CFF system was observable as long as the system is rigorously cleaned with acid, base and nano-pure water. They have also collected a water sample from a pond near the laboratory in Woods Hole, MA to test blank conditions in the field, and to determine system mass balances. Blank levels were found to be satisfactory, and the mass balance is 100--210% for both {sup 239}Pu and {sup 240}Pu, the only two isotopes measurable in the sample. This is one of the major assurances for the success of the project because CFF will be the major sampling tool the authors will use to study natural Pu-organic complexes. Another important result from the field test is that > 80 % of the dissolved Pu (based on the TIMS measurements) is in colloidal form.'

Buessler, K.O.; Repeta, D.J.

1997-12-31T23:59:59.000Z

326

Spatial–Temporal Changes of Water Resources in a Typical Semiarid Basin of North China over the Past 50 Years and Assessment of Possible Natural and Socioeconomic Causes  

Science Conference Proceedings (OSTI)

Hydrological processes in most semiarid regions on Earth have been changing under the impacts of climate change, human activities, or combinations of the two. This paper first presents a trend analysis of the spatiotemporal changes in water ...

Bin Yong; Liliang Ren; Yang Hong; Jonathan J. Gourley; Xi Chen; Jinwei Dong; Weiguang Wang; Yan Shen; Jill Hardy

2013-08-01T23:59:59.000Z

327

River Basins Advisory Commissions (South Carolina) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Basins Advisory Commissions (South Carolina) River Basins Advisory Commissions (South Carolina) River Basins Advisory Commissions (South Carolina) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Environmental Regulations Provider Catawba Wateree River Basin Advisory Commission

328

Monticello Mill Tailings, Operable Unit III Surface and Ground...  

Office of Legacy Management (LM)

Action activities included millsite dewatering and treatment, initiation of a ground water management policy to prevent use Monticello Mill Tailings Site, Operable Unit III...

329

Field and Laboratory Study of a Ground-Coupled Water Source Heat Pump with an Integral Enthalpy Exchange System for Classrooms  

E-Print Network (OSTI)

School classroom space-conditioning equipment in hot and humid climates is often excessively burdened by the requirement to dehumidify incoming air to maintain proper thermal comfort and air quality. To that end, application of new or modified technologies is needed to increase the dehumidification abilities of equipment without compromising energy efficiency or the need for fresh ventilation air. To study the effectiveness of integrated heat pump and enthalpy exchange equipment, a nominal 4-ton water-source heat pump, coupled with a geothermal water loop and incorporating a forced fresh-air enthalpy exchange system was installed in a typical middle school classroom in Oak Ridge, Tennessee. This project is a joint effort among Oak Ridge School District, Tennessee Valley Authority, Energy Office of the State of Tennessee, and Oak Ridge National Laboratory. The retrofit classroom, along with a similar baseline classroom (employing a water source heat pump supplied by a boiler/cooling tower loop), were instrumented with an Internet-based system to control and monitor performance, efficiency, and a variety of air states. Those include classroom air, outdoor air, semi-conditioned fresh air, and supply air. Particular attention was dedicated to the humidity content and the carbon dioxide content of conditioned space (classroom) air and to the intake rate of forced fresh air. This field study builds on a previous laboratory study of a water-source heat pump coupled to an enthalpy recovery system. The laboratory work showed good potential for reducing the moisture load from forced ventilation air. At simulated outdoor conditions of 90°F (32.2°C) and 90% RH, the enthalpy recovery wheel in the nominal 2-ton system was able to capture and exhaust 9.9 lb of moisture that would otherwise have to be handled solely by the cooling coil.

Domitrovic, R.; Hayzen, G. J.; Johnson, W. S.; Chen, F. C.

2002-01-01T23:59:59.000Z

330

Contamination of ground and surface waters due to uranium mining and milling. Volume I: Biological processes for concentrating trace elements from uranium mine waters. Open file report 25 Jul 79-14 Sep 81  

Science Conference Proceedings (OSTI)

Wastewater from uranium mines in the Ambrosia Lake district near Grants, N. Mex., contains uranium, selenium, radium, and molybdenum. A novel treatment process for waters from two mines, sections 35 and 36, to reduce the concentrations of the trace contaminants was developed. Particulates are settled by ponding and the waters are passed through an ion exchange resin to remove uranium; barium chloride is added to precipitate sulfate and radium from the mine waters. The mine waters are subsequently passed through three consecutive algae ponds prior to discharge. Water, sediment, and biological samples were collected over a 4-year period and analyzed to assess the role of biological agents in removal of inorganic trace contaminants from the mine waters.

Brieley, C.L.; Brierley, J.A.

1981-11-01T23:59:59.000Z

331

River Basin Commissions (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

332

Electrical Subsurface Grounding Analysis  

SciTech Connect

The purpose and objective of this analysis is to determine the present grounding requirements of the Exploratory Studies Facility (ESF) subsurface electrical system and to verify that the actual grounding system and devices satisfy the requirements.

J.M. Calle

2000-11-01T23:59:59.000Z

333

Shale Gas Development in the Susquehanna River Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Water Resource Challenges Water Resource Challenges From Energy Production Major Types of Power Generation in SRB - Total 15,300 Megawatts - 37.5% 4.0% 12.0% 15.5% 31.0% Nuclear Coal Natural Gas Hydroelectric Other Marcellus Shale Gas Development in the Susquehanna River Basin The Basin: * 27,510-square-mile watershed * Comprises 43 percent of the Chesapeake Bay watershed * 4.2 million population * 60 percent forested * 32,000+ miles of waterways The Susquehanna River: * 444 miles, largest tributary to the Chesapeake Bay * Supplies 18 million gallons a minute to the Bay Susquehanna River Basin Geographic Location of Marcellus Shale within Susq. River Basin 72% of Basin (20,000 Sq. Miles) Underlain by Marcellus Shale Approximate Amount of Natural Gas in Marcellus Shale * U.S. currently produces approx. 30 trillion

334

Comparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami basin of Iran  

Science Conference Proceedings (OSTI)

Snow water equivalent (SWE) is a key parameter in hydrological cycle, and information on regional SWE is required for various hydrological and meteorological applications, as well as for hydropower production and flood forecasting. This study compares ... Keywords: Artificial neural network, Combined methods, Snow depth, Spatial distribution

Hossein Tabari; S. Marofi; H. Zare Abyaneh; M. R. Sharifi

2010-06-01T23:59:59.000Z

335

Missouri River Basin state and Federal water and related land resource program: fiscal years 1979-1985. Volume 10. South Dakota  

SciTech Connect

This report, Volume 10 in a series of 11, documents state and Federal water and related land resources planning, development, and management activities for the state of South Dakota. The other reports cover information on Colorado, Iowa, Kansas, Minnesota, Missouri, North Dakota, Wyoming, Nebraska, and Montana. Many planning and study activities are discussed.

1978-12-01T23:59:59.000Z

336

Corrosion in ICPP fuel storage basins  

SciTech Connect

The Idaho Chemical Processing Plant currently stores irradiated nuclear fuel in fuel storage basins. Historically, fuel has been stored for over 30 years. During the 1970`s, an algae problem occurred which required higher levels of chemical treatment of the basin water to maintain visibility for fuel storage operations. This treatment led to higher levels of chlorides than seen previously which cause increased corrosion of aluminum and carbon steel, but has had little effect on the stainless steel in the basin. Corrosion measurements of select aluminum fuel storage cans, aluminum fuel storage buckets, and operational support equipment have been completed. Aluminum has exhibited good general corrosion rates, but has shown accelerated preferential attack in the form of pitting. Hot dipped zinc coated carbon steel, which has been in the basin for approximately 40 years, has shown a general corrosion rate of 4 mpy, and there is evidence of large shallow pits on the surface. A welded Type 304 stainless steel corrosion coupon has shown no attack after 13 years exposure. Galvanic couples between carbon steel welded to Type 304 stainless steel occur in fuel storage yokes exposed to the basin water. These welded couples have shown galvanic attack as well as hot weld cracking and intergranular cracking. The intergranular stress corrosion cracking is attributed to crevices formed during fabrication which allowed chlorides to concentrate.

Dirk, W.J.

1993-09-01T23:59:59.000Z

337

GEOCHEMICAL MODELING OF F AREA SEEPAGE BASIN COMPOSITION AND VARIABILITY  

SciTech Connect

From the 1950s through 1989, the F Area Seepage Basins at the Savannah River Site (SRS) received low level radioactive wastes resulting from processing nuclear materials. Discharges of process wastes to the F Area Seepage Basins followed by subsequent mixing processes within the basins and eventual infiltration into the subsurface resulted in contamination of the underlying vadose zone and downgradient groundwater. For simulating contaminant behavior and subsurface transport, a quantitative understanding of the interrelated discharge-mixing-infiltration system along with the resulting chemistry of fluids entering the subsurface is needed. An example of this need emerged as the F Area Seepage Basins was selected as a key case study demonstration site for the Advanced Simulation Capability for Environmental Management (ASCEM) Program. This modeling evaluation explored the importance of the wide variability in bulk wastewater chemistry as it propagated through the basins. The results are intended to generally improve and refine the conceptualization of infiltration of chemical wastes from seepage basins receiving variable waste streams and to specifically support the ASCEM case study model for the F Area Seepage Basins. Specific goals of this work included: (1) develop a technically-based 'charge-balanced' nominal source term chemistry for water infiltrating into the subsurface during basin operations, (2) estimate the nature of short term and long term variability in infiltrating water to support scenario development for uncertainty quantification (i.e., UQ analysis), (3) identify key geochemical factors that control overall basin water chemistry and the projected variability/stability, and (4) link wastewater chemistry to the subsurface based on monitoring well data. Results from this study provide data and understanding that can be used in further modeling efforts of the F Area groundwater plume. As identified in this study, key geochemical factors affecting basin chemistry and variability included: (1) the nature or chemistry of the waste streams, (2) the open system of the basins, and (3) duration of discharge of the waste stream types. Mixing models of the archetype waste streams indicated that the overall basin system would likely remain acidic much of the time. Only an extended periods of predominantly alkaline waste discharge (e.g., >70% alkaline waste) would dramatically alter the average pH of wastewater entering the basins. Short term and long term variability were evaluated by performing multiple stepwise modeling runs to calculate the oscillation of bulk chemistry in the basins in response to short term variations in waste stream chemistry. Short term (1/2 month and 1 month) oscillations in the waste stream types only affected the chemistry in Basin 1; little variation was observed in Basin 2 and 3. As the largest basin, Basin 3 is considered the primary source to the groundwater. Modeling showed that the fluctuation in chemistry of the waste streams is not directly representative of the source term to the groundwater (i.e. Basin 3). The sequence of receiving basins and the large volume of water in Basin 3 'smooth' or nullify the short term variability in waste stream composition. As part of this study, a technically-based 'charge-balanced' nominal source term chemistry was developed for Basin 3 for a narrow range of pH (2.7 to 3.4). An example is also provided of how these data could be used to quantify uncertainty over the long term variations in waste stream chemistry and hence, Basin 3 chemistry.

Millings, M.; Denham, M.; Looney, B.

2012-05-08T23:59:59.000Z

338

The Oquirrh basin revisited  

SciTech Connect

The upper Paleozoic succession in the Oquirrh basin in unusually thick, up to 9300 m, and consists mainly of a Pennsylvanian-middle Permian miogeocline of northwestern Utah. Previous workers have suggested a tectonic origin for the Oquirrh basin that is incompatible with the basin location in both time and space. There is no evidence for Pennsylvanian and Lower Permian tectonism in the middle of the miogeocline. Thermal evidence from the Mississippian Mission Canyon shale does no support the implied deep burial of the crustal sag models of basin formation. Stratigraphic and facies evidence indicates a growth fault origin for the basin. Regional isopach maps and facies maps are powerful tools in interpreting depositional environments and in reconstructing fold-and-thrust belts. However, the location of measured sections relative to the location of the growth fault basin. The Charleston-Nebo thrust may have essentially reversed the movement on a growth fault. Thick Oquirrh basin sedimentary rocks may not be required to balance structural sections across this thrust fault. A thin-skinned, extensional growth fault origin for the Oquirrh basin implies that the Cordilleran miogeocline did not participate in the Pennsylvanian north-vergent uplifts of the Ancestral Rocky Mountains.

Erskine, M.C.

1997-04-01T23:59:59.000Z

339

September 2004 Water Sampling  

Office of Legacy Management (LM)

Sampling at the Sampling at the Shirley Basin South, Wyoming, Disposal Site September 2013 LMS/SBS/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Shirley Basin South, Wyoming September 2013 RIN 13065426 Page i Contents Sampling Event Summary ...............................................................................................................1 Shirley Basin South, Wyoming, Disposal Site Sample Location Map ............................................3 Data Assessment Summary ..............................................................................................................5 Water Sampling Field Activities Verification Checklist .............................................................7

340

Ohio River Basin Trading Project Listening Workshops  

Science Conference Proceedings (OSTI)

In March 2010, American Farmland Trust held two listening workshops in the Wabash River Watershed to provide information and collect feedback on the Ohio River Basin Trading Project. Each session began with a basic primer on water quality trading given by Jim Klang of Kieser Associates. The presentations were followed by facilitated discussions. Participants were prompted with several questions, developed from earlier listening sessions, addressing issues that producers will likely face in water quality ...

2010-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

In-Cloud Icing in the Columbia Basin  

Science Conference Proceedings (OSTI)

On 24 November 2005, 11 lattice steel towers of a high-voltage electrical transmission line running along the edge of an escarpment were damaged by an accumulation of rime on overhead ground wires. Cold air pooling in the Columbia basin of ...

Ronald M. Thorkildson; Kathleen F. Jones; Maggie K. Emery

2009-12-01T23:59:59.000Z

342

Chattanooga Eagle Ford Western Gulf TX-LA-MS Salt Basin Uinta Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Western Western Gulf TX-LA-MS Salt Basin Uinta Basin Devonian (Ohio) Marcellus Utica Bakken*** Avalon- Bone Spring San Joaquin Basin Monterey Santa Maria, Ventura, Los Angeles Basins Monterey- Temblor Pearsall Tuscaloosa Big Horn Basin Denver Basin Powder River Basin Park Basin Niobrara* Mowry Niobrara* Heath** Manning Canyon Appalachian Basin Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville- Bossier Hermosa Mancos Pierre Conasauga Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Montana Thrust Belt Marfa Basin Valley & Ridge Province Arkoma Basin Forest

343

Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction  

Science Conference Proceedings (OSTI)

Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of 375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?{sub Sr}{sup SW} = +13.8 to +41.6, where ?{sub Sr}{sup SW} is the deviation of the {sup 87}Sr/{sup 86}Sr ratio from that of seawater in parts per 10{sup 4}); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

Chapman, Elizabeth C; Capo, Rosemary C.; Stewart, Brian W.; Kirby, Carl S.; Hammack, Richard W.; Schroeder, Karl T.; Edenborn, Harry M.

2012-03-20T23:59:59.000Z

344

Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction  

SciTech Connect

Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ?375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?Sr SW = +13.8 to +41.6, where ?Sr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

Elizabeth C. Chapman,† Rosemary C. Capo,† Brian W. Stewart,*,† Carl S. Kirby,‡ Richard W. Hammack,§ Karl T. Schroeder,§ and Harry M. Edenborn

2012-02-24T23:59:59.000Z

345

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

346

Hinsdale Wave Basin 2 | Open Energy Information  

Open Energy Info (EERE)

Wave Basin 2 Wave Basin 2 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 2 Overseeing Organization Oregon State University Hydrodynamics Length(m) 48.8 Beam(m) 26.5 Depth(m) 2.1 Water Type Freshwater Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Both Simulated Beach Yes Description of Beach Built to client specifications, currently rigid concrete over gravel fill

347

Water application related to oil shale listed  

SciTech Connect

A water right application filed by the Rio Blanco Oil Shale Company, Inc. is reported for surface waters and ground water in Rio Blanco County, Colorado.

1986-09-01T23:59:59.000Z

348

Electrical grounding prong socket  

SciTech Connect

The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket.

Leong, Robert (Dublin, CA)

1991-01-01T23:59:59.000Z

349

Predaceous Ground Beetles  

E-Print Network (OSTI)

Predaceous ground beetles can be a nuisance to homeowners, especially when they are numerous. This publication describes the beetles and discusses ways to prevent and treat them.

Sansone, Chris; Minzenmayer, Rick

2003-06-30T23:59:59.000Z

350

Substation grounding programs  

SciTech Connect

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 3, is a users manual and an installation and validation manual for the computer program SGSYS (Substation Grounding SYStem Analysis Program). This program analyzes the substation ground field given the total electric current injected into the ground field and the design of the grounding system. Standard outputs of the program are (1) total ground resistance, (2) step voltage, (3) touch voltage, (4) voltages on a grid of points, (5) voltage profile along straight lines, (6) transfer voltages, (7) ground potential rise, (8) body currents, (9) step voltage profile along straight lines, and (10) touch voltage profile along straight lines. This program can be utilized in an interactive or batch mode. In the interactive mode, the user defines the grounding system geometry, soil parameters, and output requests interactively, with the use of a user friendly conversational program. The users manual describes data requirements and data preparation procedures. An appendix provides forms which facilitate data collection procedures. The installation and validation manual describes the computer files which make up the program SGSYS and provides a test case for validation purposes.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

351

K Basin Hazard Analysis  

Science Conference Proceedings (OSTI)

This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

PECH, S.H.

2000-08-23T23:59:59.000Z

352

Agent-based models of socio-hydrological systems for exploring the institutional dynamics of water resources conflict  

E-Print Network (OSTI)

The Basins-At-Risk theory formulates relations between institutional capacity in a basin and the level of water conflict in that basin, suggesting that higher levels of institutional capacity will lead to reduced levels ...

Kock, Beaudry E. (Beaudry Evan)

2008-01-01T23:59:59.000Z

353

History of Residential Grounding  

Science Conference Proceedings (OSTI)

This report describes the development of residential electrical service grounding practices in the United States. The report focuses on the history of the National Electrical Code (NEC), which prescribes standards for wiring practices in residences, including grounding of the building electrical service.

2002-09-19T23:59:59.000Z

354

Ways of grounding imagination  

Science Conference Proceedings (OSTI)

This paper discusses and evaluates use of different participatory design methods in relation to addressing the challenge of grounding imagination. It presents reflections on the use of three participatory design methods, deployed in the WorkSpace project: ... Keywords: PD methods, analytical triangulation, bricolage, future laboratory, grounding imagination, in-situ prototyping experiments

Monika Büscher; Mette Agger Eriksen; Jannie Friis Kristensen; Preben Holst Mogensen

2004-07-01T23:59:59.000Z

355

Ground Motion Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

2nd Advanced ICFA Beam Dynamics Workshop 2nd Advanced ICFA Beam Dynamics Workshop on Ground Motion in Future Accelerators November 6 - 9, 2000 SLAC Coordinators: Andrei Seryi & Tor Raubenheimer Proceedings Updated June 26, 2001 Agenda and Presentations Workshop photos Summaries Useful links Poster Goals Introduction to the problems Structure Registration Registered participants Committees Location, Accommodations and Travel Workshop on Ground Motion in Future Accelerators A workshop was held at SLAC that was devoted to ground motion and its effects on future accelerators. Ground motion and vibration can be a limiting effect in synchrotron light sources, hadron circular colliders, and electron/positron linear colliders. Over the last several years, there has been significant progress in the understanding of the ground motion and its effects, however, there are

356

New and Underutilized Technology: Commercial Ground Source Heat Pumps |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Ground Source Heat Commercial Ground Source Heat Pumps New and Underutilized Technology: Commercial Ground Source Heat Pumps October 8, 2013 - 2:59pm Addthis The following information outlines key deployment considerations for commercial ground source heat pumps within the Federal sector. Benefits Commercial ground source heat pumps are ground source heat pump with loops that feed multiple packaged heat pumps and a single ground source water loop. Unit capacity is typically 1-10 tons and may be utilized in an array of multiple units to serve a large load. Application Condensing boilers are appropriate for housing, service, office, and research and development applications. Key Factors for Deployment FEMP has made great progress with commercial ground source heat pump technology deployment within the Federal sector. Primary barriers deal with

357

METHOD OF LOCATING GROUNDS  

DOE Patents (OSTI)

ABS>This patent presents a method for locating a ground in a d-c circult having a number of parallel branches connected across a d-c source or generator. The complete method comprises the steps of locating the ground with reference to the mildpoint of the parallel branches by connecting a potentiometer across the terminals of the circuit and connecting the slider of the potentiometer to ground through a current indicating instrument, adjusting the slider to right or left of the mildpoint so as to cause the instrument to indicate zero, connecting the terminal of the network which is farthest from the ground as thus indicated by the potentiometer to ground through a condenser, impressing a ripple voltage on the circuit, and then measuring the ripple voltage at the midpoint of each parallel branch to find the branch in which is the lowest value of ripple voltage, and then measuring the distribution of the ripple voltage along this branch to determine the point at which the ripple voltage drops off to zero or substantially zero due to the existence of a ground. The invention has particular application where a circuit ground is present which will disappear if the normal circuit voltage is removed.

Macleish, K.G.

1958-02-11T23:59:59.000Z

358

Compound and Elemental Analysis At Northern Basin & Range Region  

Open Energy Info (EERE)

(Coolbaugh, Et Al., 2010) (Coolbaugh, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Northern Basin & Range Region (Coolbaugh, Et Al., 2010) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes "This second paper provides more detailed documentation on water and rock geochemistries and describes diagnostic major and trace element ratios and concentrations that can be used to distinguish tufa columns formed from thermal waters from those that formed from non-thermal waters." "In addition to providing a potentially diagnostic lithogeochemical tool for

359

Remediation of Uranium-Contaminated Ground Water  

NLE Websites -- All DOE Office Websites (Extended Search)

The shallow alluvial aquifer at Fry Canyon, Utah, is contaminated with up to 17 mgL uranium leached from processed tailings at an ore upgrader processing plant that was operated...

360

Geothermal resources of the Washakie and Great Divide basins, Wyoming  

DOE Green Energy (OSTI)

The geothermal resources of the Great Divide and Washakie Basins of southern Wyoming are described. Oil well bottomhole temperatures, thermal logs of wells, and heat flow data were interpreted within a framework of geologic and hydrologic constraints. It was concluded large areas in Wyoming are underlain by water hotter than 120{sup 0}F. Isolated areas with high temperature gradients exist within each basin. 68 refs., 8 figs., 7 tabs. (ACR)

Heasler, H.P.; Buelow, K.L.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Groundwater monitoring results for the 100-K Area fuel storage basins: January 1 to March 31, 1994  

SciTech Connect

Fuel storage basins associated with the 105-KE and 105-KW reactor buildings are currently being used to store irradiated fuel rods from past operations. Each reactor building contains a basin that holds approximately 1.3 million gal of water. The water provides a radiation shield, as well as a thermal sink for heat generated by the stored fuel. Some of the fuel rods stored in the K-East basin have damaged cladding and are stored in open canisters, allowing contact between the metallic uranium fuel and basin water. The interaction results in radionuclides being released to the basin water. Various exchange columns and filters associated with a closed-circuit circulation system are in place to reduce radionuclide concentrations in basin water. Tritium cannot be removed by these methods and is present in K-East basin water at a concentration of several million pCi/L. In contrast, K-West basin, where only fully encapsulated, undamaged fuel is stored, exhibits tritium concentrations at much lower levels--several hundred thousand pCi/L. The water budget for the basins includes water losses resulting from evaporation and possibly leakage, and the addition of make-up water to maintain a specific level. Water loss calculations are based on water level decreases during time intervals when no make-up water is added. A calculated loss rate beyond what is expected due to evaporation and uncertainty in the calculations, is assumed to be leakage to the soil column. Given sufficiently high leakage rates, and/or a preferential pathway for downward migration through the soil column, basin water may contaminate groundwater flowing beneath the basins.

Peterson, R.E.

1994-08-29T23:59:59.000Z

362

Modeling and Experimental Research on Ground-Source Heat Pump in Operation by Neural Network  

Science Conference Proceedings (OSTI)

Ground source Heat Pump(GSHP) is becoming the more and more focus of the world¡¯s attention as a HVAC technique of energy saving and environment protection. This paper first introduced the experiment for Ground-Source water/water Heat Pump. The heat ... Keywords: Ground-Source Heat Pump(GSHP), Neural Network(NN) Predication modeling

Jianping Chen; Zhiwei Lian; Lizheng Tan; Weifeng Zhu; Weiqiang Zhang

2011-02-01T23:59:59.000Z

363

Okanogan Basin Spring Spawner Report for 2007.  

DOE Green Energy (OSTI)

The Okanogan Basin Monitoring and Evaluation Program collected data related to spring spawning anadromous salmonid stocks across the entire Okanogan River basin. Data were collected using redd surveys, traps, underwater video, and PIT-tag technology then summarized and analyzed using simple estimate models. From these efforts we estimated that 1,266 summer steelhead spawned in the Okanogan River basin and constructed 552 redds;152 of these fish where of natural origin. Of these, 121 summer steelhead, including 29 of natural origin, created an estimated 70 redds in the Canadian portion of the Okanagan basin. We estimated summer steelhead spawner escapement into each sub-watershed along with the number from natural origin and the number and density of redds. We documented redd desiccation in Loup Loup Creek, habitat utilization in Salmon Creek as a result of a new water lease program, and 10 spring Chinook returning to Omak Creek. High water through most of the redd survey period resulted in development of new modeling techniques and allowed us to survey additional tributaries including the observation of summer steelhead spawning in Wanacut Creek. These 2007 data provide additional support that redd surveys conducted within the United States are well founded and provide essential information for tracking the recovery of listed summer steelhead. Conversely, redd surveys do not appear to be the best approach for enumerating steelhead spawners or there distribution within Canada. We also identified that spawning distributions within the Okanogan River basin vary widely and stocking location may play an over riding roll in this variability.

Colville Tribes, Department of Fish & Wildlife

2007-09-01T23:59:59.000Z

364

Substation Grounding Grids  

Science Conference Proceedings (OSTI)

This report is an account of research performed by the Electric Power Research Institute (EPRI) in 2011 on the subject of degradation of buried grounding grids in electric power substations. Substation ground grids are usually made of copper conductors, which are placed below grade and are joined together and to the above-grade structures with various types of connectors. While above-grade connections are visible and may be inspected, below-grade connections are not visible or readily accessible for insp...

2011-12-22T23:59:59.000Z

365

EPRI Substation Grounding Project  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has been conducting research in the area of substation grounding and fault current management for several decades. This research has resulted in a large number of reports and other products. To help users locate the results of EPRI’s research in substation grounding and fault current management, an annual update is prepared containing brief descriptions of the products.ObjectiveThe objective of this report is ...

2012-09-06T23:59:59.000Z

366

Substation grounding programs  

SciTech Connect

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 2, is a users manual and an installation and validation manual for the computer program SMECC (Substation Maximum Earth Current Computation Program). This program analyzes the electric current distribution among grounded structures inside and outside a substation for different fault conditions. The fault conditions are automatically selected by the program, or they may be specified by the user, or both. The fault condition resulting in maximum substation earth current is identified and reported. Data requirements for this program are: ground impedance, transformer data, transmission line data, transmission line grounding impedances, etc. The program provides four types of standard outputs: (1) a report of voltages and current flow in the unfaulted system, (2) a brief report of the maximum ground potential rise (worst fault condition), (3) a summary report of all fault conditions which have been analyzed by the program, and (4) a detailed report of voltages and current flow for a selected set of fault conditions.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

367

THE NATIONAL BASIN DELINEATION PROJECT  

Science Conference Proceedings (OSTI)

The National Basin Delineation Project (NBDP) was undertaken by the National Severe Storms Laboratory to define flash-flood-scale basin boundaries for the country in support of the National Weather Service (NWS) Flash Flood Monitoring and ...

Ami T. Arthur; Gina M. Cox; Nathan R. Kuhnert; David L. Slayter; Kenneth W. Howard

2005-10-01T23:59:59.000Z

368

Guide for Transmission Line Grounding  

Science Conference Proceedings (OSTI)

Electrical utilities have a duty to provide effective grounding for managing steady-state and fault currents, whether near a large generating station or at a remote distribution pole ground. For transmission lines, this imperative is usually met with investment in overhead ground wires and grounding electrodes. Effective grounding at each tower improves reliability8212by providing low path impedance to lightning strokes8212and contributes to safety. However, the fundamental physical parameters in ground ...

2007-12-20T23:59:59.000Z

369

OTRC Wave Basin | Open Energy Information  

Open Energy Info (EERE)

OTRC Wave Basin OTRC Wave Basin Jump to: navigation, search Basic Specifications Facility Name OTRC Wave Basin Overseeing Organization Texas A&M (OTRC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 45.7 Beam(m) 30.5 Depth(m) 5.8 Water Type Freshwater Cost(per day) $300/hour (excluding labor) Special Physical Features 4.6m wide x 9.1m long x 16.8m deep pit with adjustable depth floor in test area Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 0.6 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.9 Maximum Wave Height(m) at Wave Period(s) 4.0 Maximum Wave Length(m) 25 Wave Period Range(s) 4.0 Current Velocity Range(m/s) 0.6 Programmable Wavemaking Yes Wavemaking Description GEDAP 3D wave generation software, 48 hinged flap wave generator

370

Carderock Maneuvering & Seakeeping Basin | Open Energy Information  

Open Energy Info (EERE)

Maneuvering & Seakeeping Basin Maneuvering & Seakeeping Basin Jump to: navigation, search Basic Specifications Facility Name Carderock Maneuvering & Seakeeping Basin Overseeing Organization United States Naval Surface Warfare Center Hydrodynamic Testing Facility Type Wave Basin Length(m) 109.7 Beam(m) 73.2 Depth(m) 6.1 Water Type Freshwater Cost(per day) Contact POC Special Physical Features 10.7m deep x 15.2m wide trench along length of tank; the Maneuvering & Seakeeping Basin is spanned lengthwise by a 114.6m bridge supported on a rail system that permits the bridge to traverse one-half the width of the basin and to rotate through angles up to 45 degrees from the longitudinal centerline of the basin, ship models can be towed in head or following seas at any angle from 0 to 90 degrees, tracks attached to the bottom of the bridge support the towing carriage, bridge width is constant 6.1m.

371

Substation grounding programs  

SciTech Connect

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 5, is an applications guide of the three computer programs. SOMIP, SMECC, and SGSYS, for the purpose of designing a safe substation grounding system. The applications guide utilizes four example substation grounding systems for the purpose of illustrating the application of the programs, SOMIP, SMECC, and SGSYS. The examples are based on data provided by four contributing utilities, namely, Houston Lighting and Power Company, Southern Company Services, Puget Sound Power and Light Company, and Arizona Public Service Company. For the purpose of illustrating specific capabilities of the computer programs, the data have been modified. As a result, the final designs of the four systems do not necessarily represent actual grounding system designs by these utilities. The example system 1 is a 138 kV/35 kV distribution substation. The example system 2 is a medium size 230 kV/115 kV transmission substation. The third example system is a generation substation while the last is a large 525 kV/345 kV/230 kV transmission substation. The four examples cover most of the practical problems that a user may encounter in the design of substation grounding systems.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

372

Data Basin | Open Energy Information  

Open Energy Info (EERE)

Data Basin Data Basin Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Data Basin Agency/Company /Organization: Conservation Biology Institute Topics: GHG inventory Resource Type: Dataset, Maps Website: databasin.org/ Data Basin Screenshot References: Data Basin [1] Overview "Data Basin is an innovative, online system that connects users with spatial datasets, tools, and expertise. Individuals and organization can explore and download a vast library of datasets, upload their own data, create and publish projects, form working groups, and produce customized maps that can be easily shared. The building blocks of Data Basin are: Datasets: A dataset is a spatially explicit file, currently Arcshape and ArcGrid files. These can be biological, physical, socioeconomic, (and

373

Ground-Based Microwave Radiometer Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

Ground-Based Microwave Radiometer Measurements Ground-Based Microwave Radiometer Measurements and Radiosonde Comparisons During the WVIOP2000 Field Experiment D. Cimini University of L'Aquila L'Aquil, Italy E. R. Westwater Cooperative Institute for Research in the Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Y. Han Science System Applications National Aeronautics Space Administration Goddard Space Flight Center Greenbelt, Maryland S. Keihm Jet Propulsion Laboratory California Institute of Technology Pasadena, California Introduction During September to October 2000, a water vapor intensive operational period (WVIOP) was conducted at the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains (SGP) Cloud and

374

Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1994.  

DOE Green Energy (OSTI)

Spawning ground surveys were conducted in 1994 as part of a five year study of Snake River chinook salmon Oncorhynchus tshawyacha begun in 1991. Observations of fall chinook salmon spawning in the Snake River were limited to infrequent aerial red counts in the years prior to 1987. From 1987-1990, red counts were made on a limited basis by an interagency team and reported by the Washington Department of Fisheries. Starting in 1991, the U.S. Fish and Wildlife Service (USFWS), and other cooperating agencies and organizations, expanded the scope of spawning ground surveys to include: (1) additional aerial surveys to improve red counts and provide data on the timing of spawning; (2) the validation (ground truthing) of red counts from aerial surveys to improve count accuracy; (3) underwater searches to locate reds in water too deep to allow detection from the air; and (4) bathymetric mapping of spawning sites for characterizing spawning habitat. This document is the 1994 annual progress report for selected studies of fall chinook salmon. The studies were undertaken because of the growing concern about the declining salmon population in the Snake River basin.

Rondorf, Dennis W.; Tiffan, Kenneth F.

1996-08-01T23:59:59.000Z

375

Breaking Ground in Miami-Dade | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breaking Ground in Miami-Dade Breaking Ground in Miami-Dade Breaking Ground in Miami-Dade October 15, 2010 - 4:28pm Addthis Existing Miami-Dade county water treatment facility. Existing Miami-Dade county water treatment facility. Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Officials from Miami-Dade County and the U.S. Department of Energy were on hand Wednesday, October 13th to formally break ground on an innovative project that will help improve the energy efficiency of one of the county's major water treatment facilities. The project will upgrade and expand the existing power generation system at the water plant which generates electricity from digester gas produced at the plant. Landfill gas, which is produced from the Solid Waste Department's South Dade Landfill, will be collected and piped across a

376

Definition: Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Ret LikeLike UnlikeLike You like this.Sign Up to see...

377

L-Shaped Flume Wave Basin | Open Energy Information  

Open Energy Info (EERE)

L-Shaped Flume Wave Basin L-Shaped Flume Wave Basin Jump to: navigation, search Basic Specifications Facility Name L-Shaped Flume Wave Basin Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 76.2 Beam(m) 15.2 Depth(m) 1.8 Water Type Freshwater Special Physical Features Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control sys

378

DeFrees Small Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name DeFrees Small Wave Basin Overseeing Organization Cornell University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 15.0 Beam(m) 0.8 Depth(m) 0.9 Water Type Freshwater Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 30 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled hydraulic paddle, arbitrary wave shape possible Wave Direction Uni-Directional Simulated Beach Yes Description of Beach 1:10 sloping glass with dissipative horsehair covering if needed

379

DeFrees Large Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Large Wave Basin Large Wave Basin Jump to: navigation, search Basic Specifications Facility Name DeFrees Large Wave Basin Overseeing Organization Cornell University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 32.0 Beam(m) 0.6 Depth(m) 0.9 Water Type Freshwater Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 64 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled 4m hydraulic wave paddle stroke allows a series of solitary waves to be generated; arbitrary wave shape possible Wave Direction Uni-Directional Simulated Beach Yes

380

Substation Ground Grid Impedance Measurement  

Science Conference Proceedings (OSTI)

Because safety impacts all segments of the electric power industry, the integrity and conformance to standards of substation grounding systems is of paramount importance. This report summarizes field demonstrations of commercially available meters for performance evaluation of large grounding systems, including the EPRI Ground Grid Evaluator (commercially known as the Smart Ground Multimeter or SGM).

2007-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Snake River Basin environmental program  

DOE Green Energy (OSTI)

The Snake River Basin Environmental Program was designed to evaluate existing environmental data with respect to potential geothermal development in eight Known Geothermal Resource Areas (KGRAs) in Idaho. State and federal agencies, public interest groups, consulting groups, and universities participated in the DOE program. Final reports for the program are intended to be utilized as reference documents and planning tools for future environmental studies. Evaluation of the data indicated that the majority of the existing data base is adequate for small-scale direct-use developments. The potential impacts of development on water quality and water supply are the primary environmental concern. Preliminary data suggest that subsidence and induced seismicity may be a problem in several of the KGRAs. Sensitive animal species and habitats have been identified in each area; development in the Castle Creek KGRA may be restricted due to the Birds of Prey Natural Area. Two workshops provided public input on concerns and land use planning for geothermal development in Idaho. Based on the data evaluation and public input, a plan for supplementing the existing environmental data base was prepared.

Spencer, S.G.; Sullivan, J.F.

1979-09-01T23:59:59.000Z

382

EA-64 Basin Electric Power Cooperative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basin Electric Power Cooperative EA-64 Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada EA-64 Basin Electric...

383

EA-64-A Basin Electric Power Cooperative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-A Basin Electric Power Cooperative EA-64-A Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada EA-64-A Basin...

384

Improved Smart Ground Multimeter  

Science Conference Proceedings (OSTI)

The Smart Ground Multimeter (SGM) underwent three major redesigns since its original development in the early 1980s. This report describes the latest redesign and provides useful tips on the assessment of measured data quality and on resolving measurement problems in the field.

2006-12-18T23:59:59.000Z

385

Substation grounding programs  

SciTech Connect

The five volume report comprises the user manual, installation, and validation manual and an applications guide for the SGA (Substation Grounding Analysis) software package. SGA consists of four computer programs: (1) SOMIP, (2) SMECC, (3) SGSYS, and (4) TGRND. The first three programs provide a comprehensive analysis tool for the design of substation grounding systems to meet safety standards. The fourth program, TGRND, provides a state of the art analysis tool for computing transient ground potential rise and ground system impedance. This part of the report, Volume 1, is a users manual and an installation and validation manual for the computer program SOMIP (SOil Measurement Interpretation Program). This program computes the best estimate of the parameters of a two layer soil model from usual soil resistivity measurements. Four pin or three pin soil measurements can be accommodated. In addition, it provides error bounds on the soil parameters for a given confidence level. The users manual describes data requirements and data preparation procedures. The installation and validation manual describes the computer files which make up the program SOMIP and provides two test cases for validation purposes. 4 refs.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). School of Electrical Engineering)

1992-05-01T23:59:59.000Z

386

Concealed evaporite basin drilled in Arizona  

SciTech Connect

The White Mountains of Arizona are a high forested plateau underlain by volcanic rocks of Late Pliocene and Quaternary age on the south margin of the Colorado plateau province. Elevations range from 6,000--11,590 ft, with winter snow and summer rain but ideal conditions for much of the year. There was no evidence of a Permian evaporite basin concealed beneath the White Mountain volcanic field until 1993, when the Tonto 1 Alpine-Federal, a geothermal test well, was drilled. This test did not encounter thermal waters, but it did encounter a surprisingly thick and unexpected sequence of anhydrite, dolomite, and petroliferous limestone assigned to the Supai (Yeso) formation of Permian age. The Tonto test was continuously cored through the Permian section, providing invaluable information that is now stored at the Arizona Geological Survey in Tucson. The paper describes the area geology and the concealed basin.

Rauzi, S.L. [Arizona Geological Survey, Tucson, AZ (United States)

1996-10-21T23:59:59.000Z

387

Effect of Dewfall and Frostfall on Nighttime Cooling in a Small, Closed Basin  

Science Conference Proceedings (OSTI)

Series of tethered balloon soundings of temperature and humidity in Austria’s Gruenloch basin (floor elevation 1270 m MSL) on two June days showed that the water vapor mixing ratio fell by 2–3 g kg?1 overnight as dew or frost formed in the basin. ...

C. David Whiteman; Stephan F. J. De Wekker; Thomas Haiden

2007-01-01T23:59:59.000Z

388

Ground Gravity Survey | Open Energy Information  

Open Energy Info (EERE)

Ground Gravity Survey Ground Gravity Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Gravity Survey Details Activities (48) Areas (34) Regions (2) NEPA(2) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Gravity Techniques Information Provided by Technique Lithology: Distribution of density in the subsurface enables inference of rock type. Stratigraphic/Structural: Delineation of steeply dipping formations, geological discontinuities and faults, intrusions and large-scale deposition of silicates due to hydrothermal activity. Hydrological: Density of sedimentary rocks are strongly influenced by fluid contained within pore space. Dry bulk density refers to the rock with no moisture, while the wet bulk density accounts for water saturation; fluid content may alter density by up to 30%.(Sharma, 1997)

389

WATER RESOURCES NEWS NEBRASKA WATER RESOURCES RESEARCH INSTITUTE  

E-Print Network (OSTI)

system for the .Atlantic Richfield Hanford Company which will accept models of ground-water conditions operations on the Hanford ground-water regime which moves through ancient sand and gravel channels deep under environmental impacts as essential factors in the planning, design and construction of water resources projects

Nebraska-Lincoln, University of

390

SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING  

SciTech Connect

The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and 2,400 cubic yards (1,840 cubic meters) of structural concrete which will be placed over a twelve month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

2009-12-03T23:59:59.000Z

391

Ground Truth Collections at the MTI Core Sites  

Science Conference Proceedings (OSTI)

The Savannah River Technology Center (SRTC) selected 13 sites across the continental US and one site in the western Pacific to serve as the primary or core site for collection of ground truth data for validation of MTI science algorithms. Imagery and ground truth data from several of these sites are presented in this paper. These sites are the Comanche Peak, Pilgrim and Turkey Point power plants, Ivanpah playas, Crater Lake, Stennis Space Center and the Tropical Western Pacific ARM site on the island of Nauru. Ground truth data includes water temperatures (bulk and skin), radiometric data, meteorological data and plant operating data. The organizations that manage these sites assist SRTC with its ground truth data collections and also give the MTI project a variety of ground truth measurements that they make for their own purposes. Collectively, the ground truth data from the 14 core sites constitute a comprehensive database for science algorithm validation.

Garrett, A.J.

2001-01-25T23:59:59.000Z

392

Lithium In Tufas Of The Great Basin- Exploration Implications For  

Open Energy Info (EERE)

In Tufas Of The Great Basin- Exploration Implications For In Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Lithium In Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Details Activities (8) Areas (4) Regions (0) Abstract: Lithium/magnesium, lithium/sodium, and to a lesser extent, potassium/magnesium ratios in calcium carbonate tufa columns provide a fingerprint for distinguishing tufa columns formed from thermal spring waters versus those formed from non-thermal spring waters. These ratios form the basis of the Mg/Li, Na/Li, and K/Mg fluid geothermometers commonly used in geothermal exploration, which are based on the fact that at elevated temperatures, due to mineral-fluid equilibria, lithium

393

Ground State Entanglement Energetics  

E-Print Network (OSTI)

We consider the ground state of simple quantum systems coupled to an environment. In general the system is entangled with its environment. As a consequence, even at zero temperature, the energy of the system is not sharp: a projective measurement can find the system in an excited state. We show that energy fluctuation measurements at zero temperature provide entanglement information. For two-state systems which exhibit a persistent current in the ground state, energy fluctuations and persistent current fluctuations are closely related. The harmonic oscillator serves to illustrate energy fluctuations in a system with an infinite number of states. In addition to the energy distribution we discuss the energy-energy time-correlation function in the zero-temperature limit.

M. Buttiker; A. N. Jordan

2005-01-04T23:59:59.000Z

394

Solar Colletors Combined with Ground-Source Heat Pumps in Dwellings - Analyses of System Performance.  

E-Print Network (OSTI)

??The use of ground-source heat pumps for heating buildings and domestic hot water in dwellings is increasing rapidly in Sweden. The heat pump extracts heat… (more)

Kjellsson, Elisabeth

2009-01-01T23:59:59.000Z

395

Simulation of CO2 Sequestration and Enhanced Coalbed Methane Production in Multiple Appalachian Basin Coal Seams  

Science Conference Proceedings (OSTI)

A DOE-funded field injection of carbon dioxide is to be performed in an Appalachian Basin coal seam by CONSOL Energy and CNX Gas later this year. A preliminary analysis of the migration of CO2 within the Upper Freeport coal seam and the resulting ground movements has been performed on the basis of assumed material and geometric parameters. Preliminary results show that ground movements at the field site may be in a range that are measurable by tiltmeter technology.

Bromhal, G.S.; Siriwardane, H.J.; Gondle, R.K.

2007-11-01T23:59:59.000Z

396

CEUS Ground Motion Project  

Science Conference Proceedings (OSTI)

Three utilities are currently pursuing early site permits (ESPs) for possible siting of new nuclear power plant facilities in the central and eastern United States (CEUS). The geological, seismological, and engineering characteristics of a site and its environs must be investigated in sufficient scope and detail. These investigations are needed to adequately evaluate a proposed site and to provide sufficient information for estimating the site's safe shutdown earthquake (SSE) ground motion. Nuclear Regul...

2003-12-02T23:59:59.000Z

397

Potential for Generation of Flammable Mixtures of Hydrogen from Aluminum-Grout Interaction in the K Basins During Basin Grouting  

DOE Green Energy (OSTI)

During the course of deactivation and decommissioning (D&D) of the K-Basins, the basins will be partially filled with grout so as to immobilize residual equipment and debris. Some of this residual debris, principally empty fuel canisters, identification tags, and long-handled tools, contain aluminum metal. The aluminum metal will corrode when contacted with the high pH grout, resulting in the generation of hydrogen. Pacific Northwest National Laboratory (PNNL) evaluated existing experimental and analytical studies of this issue to (1) determine whether sufficient hydrogen will be generated and collected during the K-Basins grouting activity to potentially create the conditions for hydrogen deflagration/explosion and (2) identify process constraints that will provide assurance that the conditions for hydrogen deflagration/explosion will not exist. Based on the review of available experimental and analytical studies, it was concluded that the likelihood of generating a flammable mixture of hydrogen from interaction of residual aluminum metal with grout is low but not zero. However, a flammable mixture of hydrogen will not be generated anywhere in the basin facility during grouting of the KE Basin as long as the following conditions are met: (1) The residual aluminum metal inventory in the basin, especially the fuel canisters, are not stacked on top of one another. This will prevent over-concentrating the aluminum metal inventory over a small surface area of the basin floor. (2) The temperature of the grout is maintained below 90 C (194 F) during pouring and at least three hours after the aluminum metal has been covered (lower grout temperatures result in lower hydrogen generation rates). After about three hours immersed in the grout, an oxide or corrosion layer has formed on the aluminum metal significantly reducing the corrosion/hydrogen generation rates assumed in this analysis. (3) The basin water temperature is maintained at less than 60 C (140 F) for at least three hours after interruption of the grout pour if the aluminum metal in the basin has not been completely covered (so as to minimize reaction of the uncovered aluminum metal with Ca(OH)2). This can effectively be done by ensuring that the basin water temperature is less than 70 F (21 C) prior to initiating grouting of the basin and ensuring that the basin water level is at least 10 feet above the surface of the grout. (4) The basin water is not removed at the same time as grout is being poured (to avoid removing the hydrogen to another potential collection point). This condition is not necessary if the water removal system is appropriately vented to prevent accumulation of hydrogen in the system or after the aluminum metal has been covered with grout for at least three hours. These conclusions are supported as long as the amount and physical configuration of the residual aluminum inventory in the KE Basin is consistent with the assumptions described in Appendix A.

Short, Steven M.; Parker, Brian M.

2005-04-29T23:59:59.000Z

398

Ground Squirrels and Gophers  

NLE Websites -- All DOE Office Websites (Extended Search)

Squirrels and Gophers Squirrels and Gophers Nature Bulletin No. 224-A April 2, 1966 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation GROUND SQUIRRELS AND GOPHERS On sunny summer days, a dusty-colored animal with yellowish and brown stripes, about the size of a small rat, often may be noticed creeping through the grass of prairies, pastures, golf courses or lawns. Watch him. He pauses every few feet to sit up, look and listen for a moment. Nervous and timid, he crouches low at every distant sound or passing shadow. Startle him and he scurries away, and then may suddenly halt and freeze, bolt upright, as stiff and straight as a stake driven in the ground. If approached, he gives a loud shrill trilling whistle and, with a flip of his tail, pops out of sight. Watch that spot closely and, in less than a minute, a snaky head appears. Be quiet. He has many enemies above ground and he also has a lot of curiosity. Presently he sits up upon his haunches again.

399

Relationship of regional water quality to aquifer thermal energy storage  

DOE Green Energy (OSTI)

Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

Allen, R.D.

1983-11-01T23:59:59.000Z

400

Simulation of an Arctic Ground Blizzard Using a Coupled Blowing Snow–Atmosphere Model  

Science Conference Proceedings (OSTI)

A ground blizzard occurred from 16 to 18 November 1996 in the northern sectors of the Mackenzie River basin of Canada and the adjacent Beaufort Sea. This hazardous event, accompanied by a low-level jet with wind speeds approaching 20 m s?1 and ...

Stephen J. Déry; M. K. Yau

2001-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydroclimatic Trends in the Mississippi River Basin from 1948 to 2004  

Science Conference Proceedings (OSTI)

The trends of the surface water and energy budget components in the Mississippi River basin from 1948 to 2004 are investigated using a combination of hydrometeorological observations and observation-constrained simulations of the land surface ...

Taotao Qian; Aiguo Dai; Kevin E. Trenberth

2007-09-01T23:59:59.000Z

402

Monsoon variation and vegetative drought patterns in the Luni Basin in the rain-shadow zone  

Science Conference Proceedings (OSTI)

Drought has a significant impact on agricultural, ecological and socio-economic spheres. Poor and delayed monsoon, high temperature and insufficient water resources lead to recurrent drought in the Luni River basin located in the rain-shadow zone of ...

C. Bhuiyan; F. N. Kogan

2010-04-01T23:59:59.000Z

403

A Comparison of Geostrophic Velocities and Profiling ADCP Measurements in the Iberian Basin  

Science Conference Proceedings (OSTI)

During a hydrographic survey within the Iberian Basin and the Gulf of Cadiz, a combined CTD-ADCP profiling system is used to resolve the mesoscale mass distribution and flow fields of the Mediterranean Water tongue. Generally, the geostrophic ...

H-H. Hinrichsen; A. Lehmann

1995-08-01T23:59:59.000Z

404

Moisture Transport Diagnosis of a Wintertime Precipitation Event in the Mackenzie River Basin  

Science Conference Proceedings (OSTI)

Wintertime precipitation events in the Mackenzie River basin (MRB) play an important role in the hydrology of the region because they contribute substantially to water storage prior to the spring runoff maximum. The Mesoscale Compressible ...

Gary M. Lackmann; John R. Gyakum; Robert Benoit

1998-03-01T23:59:59.000Z

405

Tropical Ocean Decadal Variability and Resonance of Planetary Wave Basin Modes. Part II: Numerical Study  

Science Conference Proceedings (OSTI)

Oceanic response to stochastic wind forcing is studied in a tropical–extratropical basin using two shallow water models: a periodically forced model and a time-forward model. Consistent with theory, extratropical stochastic wind forces a decadal ...

Haijun Yang; Zhengyu Liu; Qiong Zhang

2004-04-01T23:59:59.000Z

406

Abyssal Mixing in the Brazil Basin  

Science Conference Proceedings (OSTI)

One of the major objectives of the Deep Basin Experiment, a component of the World Ocean Circulation Experiment, was to quantify the intensity and spatial distribution of deep vertical mixing within the Brazil Basin. In this study, basin-averaged ...

Michele Y. Morris; Melinda M. Hall; Louis C. St. Laurent; Nelson G. Hogg

2001-11-01T23:59:59.000Z

407

Thermal springs in the Salmon River basin, central Idaho  

DOE Green Energy (OSTI)

The Salmon River basin within the study area occupies an area of approximately 13,000 square miles in central Idaho. Geologic units in the basin are igneous, sedimentary, and metamorphic rocks; however, granitic rocks of the Idaho batholith are predominant. Water from thermal springs ranges in temperature from 20.5/sup 0/ to 94.0/sup 0/ Celsius. The waters are slightly alkaline and are generally a sodium carbonate or bicarbonate type. Dissolved-solids concentrations are variable and range from 103 to 839 milligrams per liter. Estimated reservoir temperatures determined from the silicic acid-corrected silica, sodium-potassium-calcium, and sulfate-water isotope geothermometers range from 30/sup 0/ to 184/sup 0/ Celsius. Tritium concentrations in sampled thermal waters are near zero and indicate the waters are at least 100 years old. Stable-isotope data indicate it is unlikely that a single hot-water reservoir supplies hot springs in the basin. Thermal springs discharged at least 15,800 acre-feet of water in 1980. Associated convective heat flux is 2.7 x 10/sup 7/ calories per second.

Young, H.W.; Lewis, R.E.

1982-02-01T23:59:59.000Z

408

Mitigation, Adaptation, Uncertainty -- Growing Water  

E-Print Network (OSTI)

naturally flows into Lake Michigan; all surface and ground-reversed, away from Lake Michigan, making the river thewater (extracted from Lake Michigan) per day. This water

Felsen, Martin; Dunn, Sarah

2008-01-01T23:59:59.000Z

409

COUPON SURVEILLANCE FOR CORROSION MONITORING IN NUCLEAR FUEL BASIN  

SciTech Connect

Aluminum and stainless steel coupons were put into a nuclear fuel basin to monitor the effect of water chemistry on the corrosion of fuel cladding. These coupons have been monitored for over ten years. The corrosion and pitting data is being used to model the kinetics and estimate the damage that is occurring to the fuel cladding.

Mickalonis, J.; Murphy, T.; Deible, R.

2012-10-01T23:59:59.000Z

410

C-1. Ground Water Remedial Technologies and Process Options C-1.1. Ground Water Extraction  

E-Print Network (OSTI)

This appendix presents detailed descriptions of the remedial technologies and process options presented in Chapter 3. Sources for these descriptions are referenced at the end of appropriate sections. Several of the remedial technologies described in this appendix have already been tested and used at Lawrence Livermore National Laboratory (LLNL) Site 300. The remedial technologies already being used in ongoing removal actions or prototype remedial actions at Site 300 are identified in the following discussion.

C. Ground; Water Extraction Wells

1999-01-01T23:59:59.000Z

411

Posters Ground-Based Radiometric Observations  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Posters Ground-Based Radiometric Observations of Atmospheric Water for Climate Research J. B. Snider, D. A. Hazen, A. J. Francavilla, W. B. Madsen, and M. D. Jacobson National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Introduction Surface-based microwave and infrared radiometers have been employed by the National Oceanic and Atmospheric Administration's Environmental Technology Laboratory (NOAA/ETL) in climate research since 1987. The ability of these systems to operate continuously and unattended for extended periods of time has provided significant new information on atmospheric water vapor and cloud liquid. These data are being employed to improve our understanding of cloud-radiation feedback mechanisms, an understanding

412

Advanced Chemistry Basins Model  

SciTech Connect

The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

2003-02-13T23:59:59.000Z

413

GRR/Section 19-CO-e - New Water Right Process for Surface Water and  

Open Energy Info (EERE)

19-CO-e - New Water Right Process for Surface Water and 19-CO-e - New Water Right Process for Surface Water and Tributary Ground Water < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-e - New Water Right Process for Surface Water and Tributary Ground Water 19COENewWaterRightProcessForSurfaceWaterAndTributaryGroundWater.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 19COENewWaterRightProcessForSurfaceWaterAndTributaryGroundWater.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Developers seeking a new water right to appropriate surface water and

414

Ground-Based Remote Sensing of Stratocumulus Properties during CLARA, 1996  

Science Conference Proceedings (OSTI)

A method is presented to obtain droplet concentration for water clouds from ground-based remote sensing observations. It relies on observations of cloud thickness, liquid water path, and optical extinction near the cloud base. The method was ...

R. Boers; H. Russchenberg; J. Erkelens; V. Venema; A. van Lammeren; A. Apituley; S. Jongen

2000-02-01T23:59:59.000Z

415

RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN  

SciTech Connect

Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to understand and quantify the resource itself and to develop technologies that will permit commercial exploitation. This study is a contribution to that process.

Robert Caldwell

1998-04-01T23:59:59.000Z

416

Framework to Evaluate Water Demands and Availability for Electrical Power Production Within Watersheds Across the United States: Dev elopment and Applications  

Science Conference Proceedings (OSTI)

A framework to evaluate the water resources available to sustain present and projected electrical power production is under development and has been applied to four case studies around the United States. Those case studies are: the Lower Coosa River Basin (AL), the Muskingum River Basin (OH), the San Juan River Basin (CO, UT, AZ, NM), and the Platte River Basin (NE, CO, WY). The river basins were chosen for the case studies because of the difference among these basins, including climatic conditions, wate...

2005-12-12T23:59:59.000Z

417

GAMA-LLNL Alpine Basin Special Study: Scope of Work  

SciTech Connect

For this task LLNL will examine the vulnerability of drinking water supplies in foothills and higher elevation areas to climate change impacts on recharge. Recharge locations and vulnerability will be determined through examination of groundwater ages and noble gas recharge temperatures in high elevation basins. LLNL will determine whether short residence times are common in one or more subalpine basin. LLNL will measure groundwater ages, recharge temperatures, hydrogen and oxygen isotopes, major anions and carbon isotope compositions on up to 60 samples from monitoring wells and production wells in these basins. In addition, a small number of carbon isotope analyses will be performed on surface water samples. The deliverable for this task will be a technical report that provides the measured data and an interpretation of the data from one or more subalpine basins. Data interpretation will: (1) Consider climate change impacts to recharge and its impact on water quality; (2) Determine primary recharge locations and their vulnerability to climate change; and (3) Delineate the most vulnerable areas and describe the likely impacts to recharge.

Singleton, M J; Visser, A; Esser, B K; Moran, J E

2011-12-12T23:59:59.000Z

418

Deactivation of the P, C, and R Reactor Disassembly Basins at the SRS  

Science Conference Proceedings (OSTI)

The Facilities Disposition Division (FDD) at the Savannah River Site is engaged in planning the deactivation/closure of three of the site's five reactor disassembly basins. Activities are currently underway at 105-R Disassembly Basin and will continue with the 105-P and 105-C disassembly basins. The basins still contain the cooling and shielding water that was present when operations ceased. Low concentrations of radionuclides are present, with tritium, Cs-137, and Sr-90 being the major contributors. Although there is no evidence that any of the basins have leaked, the 50-year-old facilities will eventually contaminate the surrounding groundwaters. The FDD is pursuing a pro-active solution to close the basins in-place and prevent a release to the groundwater. In-situ ion-exchange is currently underway at the R-Reactor Disassembly Basin to reduce the Cs and Sr concentrations to levels that would allow release of the treated water to previously used on-site cooling ponds. A NEPA Environm ental Assessment (EA) is being prepared to propose the preferred closure alternative for each of the three basins. The EA will be the primary mechanism to inform the public and gain stakeholder and regulatory approval.

Pickett, J.B.

2000-11-16T23:59:59.000Z

419

Deactivation of the P, C, and R Reactor Disassembly Basins at the SRS  

Science Conference Proceedings (OSTI)

The Facilities Disposition Division (FDD) at the Savannah River Site is engaged in planning the deactivation/closure of three of the site's five reactor disassembly basins. Activities are currently underway at 105-R Disassembly Basin and will continue with the 105-P and 105-C disassembly basins. The basins still contain the cooling and shielding water that was present when operations ceased. Low concentrations of radionuclides are present, with tritium, Cs-137, and Sr-90 being the major contributors. Although there is no evidence that any of the basins have leaked, the 50-year-old facilities will eventually contaminate the surrounding groundwaters. The FDD is pursuing a pro-active solution to close the basins in-place and prevent a release to the groundwater. In-situ ion-exchange is currently underway at the R-Reactor Disassembly Basin to reduce the Cs and Sr concentrations to levels that would allow release of the treated water to previously used on-site cooling ponds. A NEPA Environmental Assessment (EA) is being prepared to propose the preferred closure alternative for each of the three basins. The EA will be the primary mechanism to inform the public and gain stakeholder and regulatory approval.

Pickett, J.B.

2000-12-06T23:59:59.000Z

420

Radioactive air emissions notice of construction debris removal 105-KE basin  

SciTech Connect

The 105-KE Basin contains 1,150 Metric Tonnes of Uranium (MTU) of N Reactor fuel, along with less than half a MTU of single pass reactor (SPR) fuel. In addition to the spent nuclear fuel (SNF) in the 105-KE Basin, extensive quantities of debris and a substantial amount of sludge have accumulated in the basin. The 105-KE Basin fuel and sludge are not encapsulated and, as a result, corroding fuel has produced contamination products that are deposited on the basin walls, floor, and equipment. contamination products produce radiation dose exposures to the workers. To decrease worker exposures, this Notice of Construction (NOC) describes dose reduction modifications under consideration to mitigate worker radiation exposure from the basin walls and exposed piping. The major equipment egress paths from the basin (the dummy elevator pit and the south loadout pit) are blocked completely with debris and/or empty canisters. Therefore in addition to dose reduction, this NOC also describes debris removal activities and equipment. Recently, the primary water treatment system has been without mechanical filtration capabilities. This NOC describes planned modifications to the primary water treatment system to restore mechanical filtration by restarting the cartridge filters. The proposed modifications described in this NOC are expected to commence in the Fall of 1995. Finally, the NOC describes two other basin activities, fuel and sludge movement, that are expected to be routine in the future.

HAYS, C.B.

1999-10-06T23:59:59.000Z

Note: This page contains sample records for the topic "ground water basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS  

SciTech Connect

From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

2002-02-05T23:59:59.000Z

422

Trace Element Analysis At Northern Basin & Range Region (Coolbaugh, Et Al.,  

Open Energy Info (EERE)

At Northern Basin & Range Region (Coolbaugh, Et Al., At Northern Basin & Range Region (Coolbaugh, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Trace Element Analysis At Northern Basin & Range Region (Coolbaugh, Et Al., 2010) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Trace Element Analysis Activity Date Usefulness useful DOE-funding Unknown Notes "This second paper provides more detailed documentation on water and rock geochemistries and describes diagnostic major and trace element ratios and concentrations that can be used to distinguish tufa columns formed from thermal waters from those that formed from non-thermal waters." "In addition to providing a potentially diagnostic lithogeochemical tool for

423

Trace Element Analysis At Nw Basin & Range Region (Coolbaugh, Et Al., 2010)  

Open Energy Info (EERE)

Trace Element Analysis At Nw Basin & Range Region (Coolbaugh, Et Al., 2010) Trace Element Analysis At Nw Basin & Range Region (Coolbaugh, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Trace Element Analysis At Nw Basin & Range Region (Coolbaugh, Et Al., 2010) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Trace Element Analysis Activity Date Usefulness useful DOE-funding Unknown Notes "This second paper provides more detailed documentation on water and rock geochemistries and describes diagnostic major and trace element ratios and concentrations that can be used to distinguish tufa columns formed from thermal waters from those that formed from non-thermal waters." "In addition to providing a potentially diagnostic lithogeochemical tool for

424

A Three-Dimensional Numerical Study of Deep-Water Formation in the Northwestern Mediterranean Sea  

Science Conference Proceedings (OSTI)

Deep-water formation (DWF) in the northwestern Mediterranean Sea and the subsequent horizontal circulation are investigated in a rectangular basin with a three-dimensional primitive equation model. The basin is forced by constant climatological ...

Gurvan Madec; Pascale Delecluse; Michel Crepon; Michel Chartier

1991-09-01T23:59:59.000Z

425

Ground potential rise monitor  

SciTech Connect

A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.

Allen, Zachery W. (Mandan, ND); Zevenbergen, Gary A. (Arvada, CO)

2012-04-03T23:59:59.000Z

426

Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin | Open  

Open Energy Info (EERE)

Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Jump to: navigation, search Name Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Agency/Company /Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector Climate, Energy, Land, Water Focus Area Non-renewable Energy, Agriculture, Buildings, Economic Development, Energy Efficiency, Forestry, Greenhouse Gas, Grid Assessment and Integration, Industry, Land Use, Offsets and Certificates, Transportation Topics Adaptation, Background analysis, Baseline projection, GHG inventory, Low emission development planning, -NAMA, Pathways analysis, Policies/deployment programs Program Start 2012 Program End 2013 Country Angola, Burundi, Cameroon, Central African Republic, Democratic Republic of Congo, Republic of Congo, Rwanda

427

Thermal Conductivity and Shear Strength of K Basin Sludge  

DOE Green Energy (OSTI)

Hanford K Basin sludge contains metallic uranium and uranium oxides that will corrode, hydrate, and, consequently, generate heat and hydrogen gas during storage. Heat is generated within the K Basin slu