National Library of Energy BETA

Sample records for gross square foot

  1. Samantha Gross

    Broader source: Energy.gov [DOE]

    Samantha Gross is the Director for International Climate and Clean Energy at the Office of International Affairs in the U.S. Department of Energy. She directs U.S. activities under the Clean Energy...

  2. Do it yourself lighting power survey: lighting power audit for use with the Massachusetts type watts per square foot method of calculating a building's lighting power budget

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Advantages of the self-audit approach to energy conservation are presented. These are that it is cheaper to do it yourself; the employees become part of the corporate conservation effect; and no one knows the building and its needs better than the occupant. Steps described in the lighting survey procedure are: (1) divide the building into categories; (2) determine the total square footage for each category; (3) assign a power allowance for each category; (4) multiply the total square footage for each category by the respective power allowances; (5) add the budget sub-totals for each category to determine total building budget; and (6) walk through the building room-by-room and calculate the connected lighting load fixture-by-fixture. Some worksheets are provided. (MCW)

  3. What is Gross Up?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the payment if we had not paid you the additional amount. For example: If the Relocation reimbursement request submitted 5668. Without a gross up the net payment received ...

  4. grossWCI.dvi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear multifragmentation, Its relation to general physics A rich test-ground of the fundamentals of statistical mechanics. D.H.E. Gross 1 Hahn-Meitner Institute Glienickerstr. 100 14109 Berlin, Germany gross@hmi.de; http://www.hmi.de/people/gross/ 2 Freie Universit¨ at Berlin, Fachbereich Physik. Received: date / Revised version: date Abstract. Heat can flow from cold to hot at any phase separation, even in macroscopic systems. Therefore also Lynden-Bell's famous gravo-thermal catastrophe [1]

  5. Table 4a. Total Fuel Oil Consumption per Effective Occupied Square...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table 4a. Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil Consumption (trillion...

  6. Jackson Square | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jackson Square Jackson Square Construction of Jackson Square Shopping Center.

  7. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" ... "Date","Alaska Natural Gas Gross Withdrawals (MMcf)","Alaska Natural ...

  8. SQUARE WAVE AMPLIFIER

    DOE Patents [OSTI]

    Leavitt, M.A.; Lutz, I.C.

    1958-08-01

    An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.

  9. ,"New York Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...2016 10:10:10 AM" "Back to Contents","Data 1: New York Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010NY2" "Date","New York Natural Gas Gross Withdrawals (MMcf)" ...

  10. ,"New Mexico Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...2016 10:10:09 AM" "Back to Contents","Data 1: New Mexico Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010NM2" "Date","New Mexico Natural Gas Gross Withdrawals (MMcf)" ...

  11. ,"West Virginia Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: West Virginia Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010WV2" "Date","West Virginia Natural Gas Gross Withdrawals (MMcf)" ...

  12. ,"New Mexico Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    9:51:59 AM" "Back to Contents","Data 1: New Mexico Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010NM2" "Date","New Mexico Natural Gas Gross Withdrawals (MMcf)" ...

  13. ,"North Dakota Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...2016 9:51:58 AM" "Back to Contents","Data 1: North Dakota Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010ND2" "Date","North Dakota Natural Gas Gross Withdrawals (MMcf)" ...

  14. Michael Gross | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Gross Michael Gross Michael Gross Principal Investigator E-mail: mgross@wustl.edu Phone: (314) 935-4814 Website: Washington University in St. Louis Principal Investigator Dr. Gross's research interests include analytical chemistry, biological chemistry, biophysical chemistry, FT-ICR instrument development, MALDI matrix development, mass spectrometry for protein biochemistry and biophysics, modified DNA and cancer, physical organic chemistry, protein and peptide analysis, and proteomics.

  15. Alaska--State Offshore Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alaska--State Offshore Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  16. US--Federal Offshore Natural Gas Gross Withdrawals (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) US--Federal Offshore Natural Gas Gross Withdrawals ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  17. Louisiana--State Offshore Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Louisiana--State Offshore Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  18. Federal Offshore--Alabama Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  19. Texas--State Offshore Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Texas--State Offshore Natural Gas Gross Withdrawals ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  20. Federal Offshore--Texas Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Federal Offshore--Texas Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  1. US--State Offshore Natural Gas Gross Withdrawals (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) US--State Offshore Natural Gas Gross Withdrawals ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  2. Alabama--State Offshore Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alabama--State Offshore Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  3. Federal Offshore--Louisiana Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  4. foote-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automated Weather Balloon Radiosonde Launcher Development J. P. Foote, J. T. Lineberry, and B. R. Thompson ERC, Incorporated Tullahoma, Tennessee Introduction Balloon-borne radiosondes are a primary means used by the Atmospheric Radiation Measurement (ARM) Program to collect atmospheric data. Currently, three radiosondes are launched daily from the Central Facility at the ARM Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site during non-intensive observation periods (IOPs).

  5. Total Natural Gas Gross Withdrawals (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  6. ,"Illinois Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151991" ,"Release ...

  7. ,"Oregon Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151991" ,"Release ...

  8. ,"California Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  9. ,"Louisiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  10. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  11. ,"Pennsylvania Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151991" ,"Release ...

  12. ,"Colorado Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  13. ,"Florida Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  14. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  15. ,"Montana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  16. ,"Kansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  17. ,"Texas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  18. ,"Texas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  19. ,"Kansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  20. ,"Pennsylvania Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  1. ,"Kentucky Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  2. ,"Oregon Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301979" ,"Release...

  3. ,"Virginia Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  4. ,"Missouri Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  5. ,"Illinois Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  6. ,"Florida Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  7. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  8. ,"Indiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  9. ,"Nevada Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301991" ,"Release...

  10. ,"Montana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  11. ,"Ohio Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  12. ,"California Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  13. ,"Mississippi Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  14. ,"Nebraska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  15. ,"Michigan Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  16. ,"Tennessee Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  17. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  18. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  19. ,"Maryland Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  20. ,"Louisiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  1. ,"Colorado Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  2. David J. Gross and the Strong Force

    Office of Scientific and Technical Information (OSTI)

    from Cal Alum David Gross (PhD '66) Shares Nobel Prize in Physics, University of California Berkeley Resources with Additional Information Additional information about David ...

  3. David J. Gross and the Strong Force

    Office of Scientific and Technical Information (OSTI)

    published their proposal simultaneously with H. David Politzer, a graduate student at Harvard University who independently came up with the same idea. ... The discovery of Gross,...

  4. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Monthly","32016","01151989" ,"Release ...

  5. Brad Foote Gear Works | Open Energy Information

    Open Energy Info (EERE)

    Brad Foote Gear Works Jump to: navigation, search Name: Brad Foote Gear Works Place: Cicero, Illinois Zip: 60804-1404 Sector: Wind energy Product: Gearing systems manufacturer...

  6. ,"Arizona Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"06292016 10:51:24 AM" "Back to Contents","Data 1: Arizona Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AZ2","N9011AZ2","N9012AZ2","NGME...

  7. ,"Arkansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"06292016 10:51:23 AM" "Back to Contents","Data 1: Arkansas Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AR2","N9011AR2","N9012AR2","NGME...

  8. ,"Arizona Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"06292016 10:51:23 AM" "Back to Contents","Data 1: Arizona Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AZ2","N9011AZ2","N9012AZ2","NGME...

  9. ,"Alabama Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"06292016 10:51:21 AM" "Back to Contents","Data 1: Alabama Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AL2","N9011AL2","N9012AL2","NGME...

  10. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"4292016 6:48:19 AM" "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AK2","N9011AK2","N9012AK2","NGME...

  11. ,"New York Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"12152015 12:10:48 PM" "Back to Contents","Data 1: New York Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010NY2" "Date","New York...

  12. Quantification of the Potential Gross Economic Impacts of Five...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quantification of the Potential Gross Economic Impacts of Five Methane Reduction Scenarios Quantification of the Potential Gross Economic Impacts of Five Methane Reduction Scenarios ...

  13. Property:DailyOpWaterUseGross | Open Energy Information

    Open Energy Info (EERE)

    Property Name DailyOpWaterUseGross Property Type Number Description Daily Operation Water Use (afday) Gross. Retrieved from "http:en.openei.orgwindex.php?titleProperty:...

  14. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Gross Withdrawals from Shale Gas Wells Federal Offshore Gulf of Mexico Natural Gas Gross ...

  15. ,"US--Federal Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Federal Offshore Natural Gas Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","US--Federal Offshore Natural Gas Gross Withdrawals ...

  16. ,"Texas--State Offshore Natural Gas Gross Withdrawals (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--State Offshore Natural Gas Gross Withdrawals ... "Back to Contents","Data 1: Texas--State Offshore Natural Gas Gross Withdrawals (MMcf)" ...

  17. ,"Federal Offshore--Texas Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Gross Withdrawals ... AM" "Back to Contents","Data 1: Federal Offshore--Texas Natural Gas Gross Withdrawals ...

  18. ,"US--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Natural Gas Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","US--State Offshore Natural Gas Gross Withdrawals ...

  19. ,"Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Gross Withdrawals ... AM" "Back to Contents","Data 1: Federal Offshore--Alabama Natural Gas Gross Withdrawals ...

  20. ,"Louisiana--State Offshore Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Gross Withdrawals ... to Contents","Data 1: Louisiana--State Offshore Natural Gas Gross Withdrawals (MMcf)" ...

  1. ,"Alaska--State Offshore Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alaska--State Offshore Natural Gas Gross Withdrawals ... to Contents","Data 1: Alaska--State Offshore Natural Gas Gross Withdrawals (MMcf)" ...

  2. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Federal Offshore Gulf of Mexico Natural Gas Gross ...

  3. ,"Federal Offshore--Louisiana Natural Gas Gross Withdrawals ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Louisiana Natural Gas Gross Withdrawals ... AM" "Back to Contents","Data 1: Federal Offshore--Louisiana Natural Gas Gross Withdrawals ...

  4. ,"Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alabama--State Offshore Natural Gas Gross Withdrawals ... to Contents","Data 1: Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf)" ...

  5. ,"Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab ... for" ,"Data 1","Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and ...

  6. ,"Texas Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals Total ... 7:03:02 AM" "Back to Contents","Data 1: Texas Natural Gas Gross Withdrawals Total ...

  7. Solar Energy Squared, LLC | Open Energy Information

    Open Energy Info (EERE)

    Squared, LLC Jump to: navigation, search Logo: Solar Energy Squared, LLC Name: Solar Energy Squared, LLC Address: 116 Ottenheimer Plaza, President Clinton Avenue Place: Little...

  8. Oregon Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 2013 2014 View History Gross Withdrawals 821 1,407 1,344 770 770 950 1979-2014 From Gas Wells 821 1,407 1,344 770 770 950 1979-2014 From Oil Wells 0 0 0 0 0 0 1996-2014 From ...

  9. Table 10.6 Solar Thermal Collector Shipments by Type, Price, and Trade, 1974-2009 (Thousand Square Feet, Except as Noted)

    U.S. Energy Information Administration (EIA) Indexed Site

    Solar Thermal Collector Shipments by Type, Price, and Trade, 1974-2009 (Thousand Square Feet, Except as Noted) Year Low-Temperature Collectors 1 Medium-Temperature Collectors 2 High-Temperature Collectors 3 Total Shipments Trade Number of U.S. Manu- facturers Quantity Shipped Shipments per Manu- facturer Price 4 (dollars 5 per square foot) Number of U.S. Manu- facturers Quantity Shipped Shipments per Manu- facturer Price 4 (dollars 5 per square foot) Quantity Shipped Price 4 (dollars 5 per

  10. SmallFoot LLC | Open Energy Information

    Open Energy Info (EERE)

    SmallFoot LLC Place: Boulder, Colorado Product: Colorado-based developer of wireless demand control devices for the small commercial market. References: SmallFoot LLC1 This...

  11. Performance oriented packaging testing of the six-foot flexible linear shaped charge box for packing group II hazardous materials. Final report

    SciTech Connect (OSTI)

    Libbert, K.J.

    1992-10-01

    The wood box (Drawing 53711-6665109) for six-foot flexible linear shaped charges was tested for conformance to Performance Oriented Packaging standards specified by the Code of Federal Regulations, Title 49 CFR, Parts 107 through 178, dated 31 December 1991. The box was tested with a gross weight of 14 kilograms and met all the requirements.

  12. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 ... Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Missouri Natural Gas Gross ...

  13. Virginia Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gross Withdrawals (Million Cubic Feet per Day) Virginia Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 271 275...

  14. ,"Nevada Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Nevada Natural Gas Gross Withdrawals from Shale ... 1:29:33 AM" "Back to Contents","Data 1: Nevada Natural Gas Gross Withdrawals from Shale ...

  15. ,"U.S. Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    6:48:07 AM" "Back to Contents","Data 1: U.S. Natural Gas Gross Withdrawals and ...2","N9030US2","N9050US2","N9070US2" "Date","U.S. Natural Gas Gross Withdrawals ...

  16. ,"U.S. Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    1:00:33 PM" "Back to Contents","Data 1: U.S. Natural Gas Gross Withdrawals and ...2","N9030US2","N9050US2","N9070US2" "Date","U.S. Natural Gas Gross Withdrawals ...

  17. West Virginia Natural Gas Gross Withdrawals (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet per Day) West Virginia Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006...

  18. Montana Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet per Day) Montana Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 317 313...

  19. California Natural Gas Gross Withdrawals (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet per Day) California Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 998...

  20. ,"New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from ... 10:10:49 AM" "Back to Contents","Data 1: New Mexico Natural Gas Gross Withdrawals from ...

  1. ,"New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from ... 10:13:23 AM" "Back to Contents","Data 1: New Mexico Natural Gas Gross Withdrawals from ...

  2. ,"New Mexico Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals and ... 8:15:20 AM" "Back to Contents","Data 1: New Mexico Natural Gas Gross Withdrawals and ...

  3. ,"New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from ... 10:10:30 AM" "Back to Contents","Data 1: New Mexico Natural Gas Gross Withdrawals from ...

  4. ,"New York Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Gross Withdrawals from ... 10:13:24 AM" "Back to Contents","Data 1: New York Natural Gas Gross Withdrawals from ...

  5. Kansas Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gross Withdrawals (Million Cubic Feet per Day) Kansas Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 1,049...

  6. Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  7. New York Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet per Day) New York Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 149 147...

  8. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    Gasoline and Diesel Fuel Update (EIA)

    Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per...

  9. ,"Kansas Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals from Shale ... 7:12:26 AM" "Back to Contents","Data 1: Kansas Natural Gas Gross Withdrawals from Shale ...

  10. ,"North Dakota Natural Gas Gross Withdrawals from Oil Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from ... 9:52:34 AM" "Back to Contents","Data 1: North Dakota Natural Gas Gross Withdrawals from ...

  11. ,"North Dakota Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals and ... 10:51:41 AM" "Back to Contents","Data 1: North Dakota Natural Gas Gross Withdrawals and ...

  12. ,"North Dakota Natural Gas Gross Withdrawals from Gas Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from ... 9:52:18 AM" "Back to Contents","Data 1: North Dakota Natural Gas Gross Withdrawals from ...

  13. ,"North Dakota Natural Gas Gross Withdrawals from Shale Gas ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from ... 9:55:03 AM" "Back to Contents","Data 1: North Dakota Natural Gas Gross Withdrawals from ...

  14. New Mexico Natural Gas Gross Withdrawals (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gross Withdrawals (Million Cubic Feet per Day) New Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 4,406...

  15. ,"Texas Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals from Shale ... 7:12:29 AM" "Back to Contents","Data 1: Texas Natural Gas Gross Withdrawals from Shale ...

  16. Weigh-in-motion scale with foot alignment features

    DOE Patents [OSTI]

    Abercrombie, Robert Knox; Richardson, Gregory David; Scudiere, Matthew Bligh

    2013-03-05

    A pad is disclosed for use in a weighing system for weighing a load. The pad includes a weighing platform, load cells, and foot members. Improvements to the pad reduce or substantially eliminate rotation of one or more of the corner foot members. A flexible foot strap disposed between the corner foot members reduces rotation of the respective foot members about vertical axes through the corner foot members and couples the corner foot members such that rotation of one corner foot member results in substantially the same amount of rotation of the other corner foot member. In a strapless variant one or more fasteners prevents substantially all rotation of a foot member. In a diagonal variant, a foot strap extends between a corner foot member and the weighing platform to reduce rotation of the foot member about a vertical axis through the corner foot member.

  17. 2015 Federal Energy and Water Management Award Winners | Department...

    Broader source: Energy.gov (indexed) [DOE]

    reduced its energy and water use per gross square foot by 25% and by 30% respectively. ... for an increased number of energy and water efficiency projects, renewable energy ...

  18. Nebraska Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 2,916 2,255 1,980 1,328 1,032 402 1967-2014 From Gas Wells 2,734 2,092 1,854 1,317 1,027 400 1967-2014 From Oil Wells 182 163 126 11 5 1 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 1967-2014 Vented and Flared 9 24 21 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 2,908 2,231 1,959 1,328 1,032 402 1967-2014 Dry Production

  19. Pennsylvania Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 572,902 1,310,592 2,256,696 3,259,042 4,214,643 4,768,848 1967-2015 From Gas Wells 173,450 242,305 210,609 207,872 174,576 1967-2014 From Oil Wells 0 0 3,456 2,987 3,564 1967-2014 From Shale Gas Wells 399,452 1,068,288 2,042,632 3,048,182 4,036,504 2007-2014 From Coalbed Wells 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 1997-2014 Marketed Production

  20. Virginia Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 140,738 147,255 151,094 146,405 139,382 131,885 1967-2014 From Gas Wells 16,046 23,086 20,375 21,802 26,815 27,052 1967-2014 From Oil Wells 0 0 0 9 9 9 2006-2014 From Shale Gas Wells 18,284 16,433 18,501 17,212 13,016 12,226 2007-2014 From Coalbed Wells 106,408 107,736 112,219 107,383 99,542 92,599 2006-2014 Repressuring 0 0 0 0 0 0 2003-2014 Vented and Flared NA NA NA 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2014

  1. Kansas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 325,591 309,952 296,299 292,467 286,080 292,450 1967-2015 From Gas Wells 247,651 236,834 264,610 264,223 260,715 1967-2014 From Oil Wells 39,071 37,194 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 2007-2014 From Coalbed Wells 38,869 35,924 31,689 28,244 25,365 2002-2014 Repressuring 548 521 0 NA NA 1967-2014 Vented and Flared 323 307 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 2002-2014 Marketed Production 324,720 309,124

  2. Kentucky Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 113,300 135,330 124,243 106,122 94,665 78,737 1967-2014 From Gas Wells 111,782 133,521 122,578 106,122 94,665 78,737 1967-2014 From Oil Wells 1,518 1,809 1,665 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 113,300 135,330 124,243 106,122

  3. Louisiana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 2,218,283 3,040,523 2,955,437 2,366,943 1,987,630 1,941,727 1967-2015 From Gas Wells 911,967 883,712 775,506 780,623 737,185 1967-2014 From Oil Wells 63,638 68,505 49,380 51,948 50,638 1967-2014 From Shale Gas Wells 1,242,678 2,088,306 2,130,551 1,534,372 1,199,807 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 3,606 5,015 0 2,829 3,199 1967-2014 Vented and Flared 4,578 6,302 0 3,912 4,143 1967-2014 Nonhydrocarbon Gases

  4. ,"Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  5. ,"New Mexico Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  6. ,"West Virginia Natural Gas Gross Withdrawals from Shale Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  7. ,"Tennessee Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  8. ,"Missouri Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  9. ,"Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  10. ,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  11. ,"Michigan Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  12. ,"Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  13. ,"Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  14. ,"Oregon Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  15. ,"Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  16. ,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  17. ,"Ohio Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  18. ,"Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  19. ,"South Dakota Natural Gas Gross Withdrawals from Shale Gas ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  20. Gross Gamma-Ray Calibration Blocks (May 1978) | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for, and the Procedures Currently Utilized in, Gross Gamma-Ray Log Calibration (October 1976) Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984

  1. ,"West Virginia Natural Gas Gross Withdrawals and Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Gross Withdrawals and Production",10,"Monthly","22016","1151991" ,"Release ...

  2. ,"Other States Total Natural Gas Gross Withdrawals and Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ...

  3. ,"New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf)",1,"Annual",2014 ,"Release...

  4. ,"New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf)",1,"Annual",2014 ,"Release...

  5. Deming's General Least Square Fitting

    Energy Science and Technology Software Center (OSTI)

    1992-02-18

    DEM4-26 is a generalized least square fitting program based on Deming''s method. Functions built into the program for fitting include linear, quadratic, cubic, power, Howard''s, exponential, and Gaussian; others can easily be added. The program has the following capabilities: (1) entry, editing, and saving of data; (2) fitting of any of the built-in functions or of a user-supplied function; (3) plotting the data and fitted function on the display screen, with error limits if requested,more » and with the option of copying the plot to the printer; (4) interpolation of x or y values from the fitted curve with error estimates based on error limits selected by the user; and (5) plotting the residuals between the y data values and the fitted curve, with the option of copying the plot to the printer. If the plot is to be copied to a printer, GRAPHICS should be called from the operating system disk before the BASIC interpreter is loaded.« less

  6. Blue Square Energy BSE | Open Energy Information

    Open Energy Info (EERE)

    Energy BSE Jump to: navigation, search Name: Blue Square Energy (BSE) Place: Maryland Zip: 21901 Product: US manufacturer of low-purity crystalline silicon cells and modules...

  7. South Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells South Dakota Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from

  8. Other States Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 72,328 ...

  9. Other States Natural Gas Gross Withdrawals from Coalbed Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0 ...

  10. Other States Natural Gas Gross Withdrawals from Oil Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 3,459 3,117 ...

  11. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    from Oil Wells (Million Cubic Feet) Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  12. Physics Nobel winner David Gross gives public lecture at Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nobel winner David Gross gives public lecture at Jefferson Lab on June 12 (Monday) Physics ... "The Coming Revolutions in Fundamental Physics" beginning at 8 p.m. at Jefferson Lab on ...

  13. Fact #564: March 30, 2009 Transportation and the Gross Domestic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Housing, health care, and food are the only categories with greater shares of the GDP. GDP ... Gross Domestic Product, 2007 Housing 24.3% Health Care 17.4% Food 11.6% ...

  14. Montana Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Montana Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 4,561 3,826 4,106 ...

  15. Utah Natural Gas Gross Withdrawals from Gas Wells (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Utah Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 21,638 18,808 21,037 ...

  16. Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 7,051 6,368 ...

  17. Louisiana Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 425,704 369,500 ...

  18. Florida Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Florida Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - ...

  19. Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 1 1 1 1 1 1 1 1 1 1 ...

  20. Michigan Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Michigan Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 9,579 8,593 ...

  1. Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 1,239 1,119 1,239 ...

  2. Michigan Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Michigan Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 11,582 10,461 ...

  3. Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 1,622 1,465 ...

  4. Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 1,273 1,150 ...

  5. Oregon Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    from Gas Wells (Million Cubic Feet) Oregon Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 246 244 232 ...

  6. Colorado Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Colorado Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 11,749 10,612 ...

  7. Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 14,797 13,076 ...

  8. Wyoming Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Wyoming Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 58,111 51,244 ...

  9. Utah Natural Gas Gross Withdrawals from Shale Gas (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Utah Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 ...

  10. Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 331 299 331 320 ...

  11. Colorado Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Colorado Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 15,390 18,697 ...

  12. Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    from Shale Gas (Million Cubic Feet) Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 ...

  13. Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 107,415 97,020 ...

  14. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov ...

  15. Fact# 904: December 21, 2015 Gross Domestic Product and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    With the growth of VMT in 2015, the gap between the two series has narrowed for the first time since the Great Recession. GDP and VMT Trends, 1960-2015 Graph showing gross national ...

  16. Property:CoolingTowerWaterUseSummerGross | Open Energy Information

    Open Energy Info (EERE)

    Property Name CoolingTowerWaterUseSummerGross Property Type Number Description Cooling Tower Water use (summer average) (afday) Gross. Retrieved from "http:en.openei.orgw...

  17. Elmo bumpy square plasma confinement device

    DOE Patents [OSTI]

    Owen, L.W.

    1985-01-01

    The invention is an Elmo bumpy type plasma confinement device having a polygonal configuration of closed magnet field lines for improved plasma confinement. In the preferred embodiment, the device is of a square configuration which is referred to as an Elmo bumpy square (EBS). The EBS is formed by four linear magnetic mirror sections each comprising a plurality of axisymmetric assemblies connected in series and linked by 90/sup 0/ sections of a high magnetic field toroidal solenoid type field generating coils. These coils provide corner confinement with a minimum of radial dispersion of the confined plasma to minimize the detrimental effects of the toroidal curvature of the magnetic field. Each corner is formed by a plurality of circular or elliptical coils aligned about the corner radius to provide maximum continuity in the closing of the magnetic field lines about the square configuration confining the plasma within a vacuum vessel located within the various coils forming the square configuration confinement geometry.

  18. A spectral mimetic least-squares method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bochev, Pavel; Gerritsma, Marc

    2014-09-01

    We present a spectral mimetic least-squares method for a model diffusion–reaction problem, which preserves key conservation properties of the continuum problem. Casting the model problem into a first-order system for two scalar and two vector variables shifts material properties from the differential equations to a pair of constitutive relations. We also use this system to motivate a new least-squares functional involving all four fields and show that its minimizer satisfies the differential equations exactly. Discretization of the four-field least-squares functional by spectral spaces compatible with the differential operators leads to a least-squares method in which the differential equations are alsomore » satisfied exactly. Additionally, the latter are reduced to purely topological relationships for the degrees of freedom that can be satisfied without reference to basis functions. Furthermore, numerical experiments confirm the spectral accuracy of the method and its local conservation.« less

  19. A spectral mimetic least-squares method

    SciTech Connect (OSTI)

    Bochev, Pavel; Gerritsma, Marc

    2014-09-01

    We present a spectral mimetic least-squares method for a model diffusionreaction problem, which preserves key conservation properties of the continuum problem. Casting the model problem into a first-order system for two scalar and two vector variables shifts material properties from the differential equations to a pair of constitutive relations. We also use this system to motivate a new least-squares functional involving all four fields and show that its minimizer satisfies the differential equations exactly. Discretization of the four-field least-squares functional by spectral spaces compatible with the differential operators leads to a least-squares method in which the differential equations are also satisfied exactly. Additionally, the latter are reduced to purely topological relationships for the degrees of freedom that can be satisfied without reference to basis functions. Furthermore, numerical experiments confirm the spectral accuracy of the method and its local conservation.

  20. Settlement of footing on compacted ash bed

    SciTech Connect (OSTI)

    Ramasamy, G.; Pusadkar, S.S.

    2007-11-15

    Compacted coal ash fills exhibit capillary stress due to contact moisture and preconsolidation stress due to the compaction process. As such, the conventional methods of estimating settlement of footing on cohesionless soils based on penetration tests become inapplicable in the case of footings on coal ash fills, although coal ash is also a cohesionless material. Therefore, a method of estimating load-settlement behavior of footings resting on coal ash fills accounting for the effect of capillary and preconsolidation stresses is presented here. The proposed method has been validated by conducting plate load tests on laboratory prepared compacted ash beds and comparing the observed and predicted load-settlement behavior. Overestimation of settlement greater than 100% occurs when capillary and preconsolidation stresses are not accounted for, as is the case in conventional methods.

  1. Gross alpha analytical modifications that improve wastewater treatment compliance

    SciTech Connect (OSTI)

    Tucker, B.J.; Arndt, S.

    2007-07-01

    This paper will propose an improvement to the gross alpha measurement that will provide more accurate gross alpha determinations and thus allow for more efficient and cost-effective treatment of site wastewaters. To evaluate the influence of salts that may be present in wastewater samples from a potentially broad range of environmental conditions, two types of efficiency curves were developed, each using a thorium-230 (Th-230) standard spike. Two different aqueous salt solutions were evaluated, one using sodium chloride, and one using salts from tap water drawn from the Bergen County, New Jersey Publicly Owned Treatment Works (POTW). For each curve, 13 to 17 solutions were prepared, each with the same concentration of Th-230 spike, but differing in the total amount of salt in the range of 0 to 100 mg. The attenuation coefficients were evaluated for the two salt types by plotting the natural log of the counted efficiencies vs. the weight of the sample's dried residue retained on the planchet. The results show that the range of the slopes for each of the attenuation curves varied by approximately a factor of 2.5. In order to better ensure the accuracy of results, and thus verify compliance with the gross alpha wastewater effluent criterion, projects depending on gross alpha measurements of environmental waters and wastewaters should employ gross alpha efficiency curves prepared with salts that mimic, as closely as possible, the salt content of the aqueous environmental matrix. (authors)

  2. Foote Creek Rim II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Foote Creek Rim II Wind Farm Facility Foote Creek Rim II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  3. Foote Creek Rim Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Edit History Foote Creek Rim Wind Farm Jump to: navigation, search The Foote Creek Rim Wind Farm is in Carbon County, Wyoming. It consists of 133 turbines and has a total...

  4. Latin square three dimensional gage master

    DOE Patents [OSTI]

    Jones, Lynn L.

    1982-01-01

    A gage master for coordinate measuring machines has an nxn array of objects distributed in the Z coordinate utilizing the concept of a Latin square experimental design. Using analysis of variance techniques, the invention may be used to identify sources of error in machine geometry and quantify machine accuracy.

  5. Federal Offshore Louisiana Natural Gas Gross Withdrawals and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series Area 2009 2010 2011 2012 2013 2014 View History Gross Withdrawals NA NA NA 0 0 0 1977-2014 From Gas Wells NA NA NA 0 0 0 1977-2014 From Oil Wells NA NA NA 0 0 0 ...

  6. Kansas Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 ...

  7. Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 ...

  8. Nebraska Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 ...

  9. New Mexico Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals 1,341,475 1,287,682 1,276,296 1,247,394 1,265,579 1,289,908 1967-2015 From Gas Wells 616,134 556,024 653,057 588,127 535,181 1967-2014 From Oil Wells 238,580 ...

  10. Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open...

    Open Energy Info (EERE)

    Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name: Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place: New Britain, Connecticut Zip: 6051...

  11. Optical inverse-square displacement sensor

    DOE Patents [OSTI]

    Howe, Robert D.; Kychakoff, George

    1989-01-01

    This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R+.DELTA.R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as ##EQU1##

  12. Optical inverse-square displacement sensor

    DOE Patents [OSTI]

    Howe, R.D.; Kychakoff, G.

    1989-09-12

    This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R + [Delta]R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as given in an equation. 10 figs.

  13. Hybrid least squares multivariate spectral analysis methods

    DOE Patents [OSTI]

    Haaland, David M.

    2002-01-01

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  14. Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals Total Offshore (Million Cubic Feet) Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 191,605 218,023 349,380 356,598 361,068 409,091 392,320 376,435 2000's 361,289 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  15. Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 222,009 228,298 229,483 223,527 221,233 220,674 212,470 207,863 2000's 200,255 191,119 184,500 176,571 173,106 164,304 160,381 155,167 152,051 146,751 2010's 139,215 134,305 128,312 120,666 110,226 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Alaska Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals Total Offshore (Million Cubic Feet) Alaska Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 72,813 71,946 1980's 63,355 71,477 66,852 68,776 68,315 62,454 63,007 69,656 101,440 122,595 1990's 144,064 171,665 216,377 233,198 224,301 113,552 126,051 123,854 133,111 125,841 2000's 263,958 262,937 293,580 322,010 334,125 380,568 354,816 374,204 388,188 357,490 2010's 370,148 364,702

  17. Alaska--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alaska--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,409,336 2,545,144 2,861,599 3,256,352 3,247,533 3,257,096 3,245,736 3,236,241 2000's 3,265,436 3,164,843 3,183,857 3,256,295 3,309,960 3,262,379 2,850,934 3,105,086 3,027,696 2,954,896 2010's 2,826,952 2,798,220 2,857,485 2,882,956 2,803,429 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  18. Calif--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Calif--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 386,382 346,733 334,987 322,544 326,919 317,137 315,701 347,667 2000's 334,983 336,629 322,138 303,480 287,205 291,271 301,921 286,584 281,088 258,983 2010's 273,136 237,388 214,509 219,386 218,512 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. California Natural Gas Gross Withdrawals Total Offshore (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Gross Withdrawals Total Offshore (Million Cubic Feet) California Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,417 19,929 20,394 1980's 19,980 26,692 31,904 38,084 60,207 84,062 77,355 67,835 60,308 59,889 1990's 58,055 59,465 62,473 58,635 60,765 60,694 73,092 80,516 81,868 84,547 2000's 83,882 78,209 74,884 64,961 61,622 60,773 47,217 52,805 51,931 47,281 2010's 46,755 41,742

  20. Federal Offshore California Natural Gas Gross Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Gross Withdrawals (Million Cubic Feet) Federal Offshore California Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,417 5,166 5,431 1980's 5,900 12,763 17,751 24,168 46,363 64,558 59,078 54,805 49,167 50,791 1990's 49,972 51,855 55,231 52,150 53,561 54,790 66,784 73,345 74,985 77,809 2000's 76,075 70,947 67,816 58,095 54,655 54,088 40,407 45,516 44,902 41,229 2010's 41,200 36,579 27,262 27,454

  1. Texas Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals Total Offshore (Million Cubic Feet) Texas Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 88,258 418,474 760,566 1980's 949,177 1,010,772 1,120,830 992,041 1,021,260 942,413 1,169,038 1,330,604 1,376,093 1,457,841 1990's 1,555,568 1,494,494 1,411,147 1,355,333 1,392,727 1,346,674 1,401,753 1,351,067 1,241,264 1,206,045 2000's 1,177,257 53,649 57,063 53,569 44,946 36,932 24,785

  2. Texas--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Texas--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,296,865 5,461,594 5,518,978 5,525,982 5,626,448 5,665,074 5,738,595 5,526,033 2000's 5,681,726 5,698,798 5,603,941 5,737,755 5,688,972 5,969,905 6,301,649 6,931,629 7,753,869 7,615,836 2010's 7,565,123 7,910,898 8,127,004 8,285,436 8,652,111 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals Total Offshore (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,838,521 4,600,197 4,750,119 1980's 4,617,585 4,584,491 4,246,464 3,635,942 4,070,279 3,542,827 3,279,165 3,610,041 3,633,594 3,577,685 1990's 3,731,764 3,550,230 3,442,437 3,508,112 3,673,494 3,554,147 3,881,697 3,941,802 3,951,997 3,896,569 2000's 3,812,991 153,871 137,192 133,456

  4. Louisiana--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Louisiana--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,535,033 1,538,511 1,552,603 1,608,633 1,469,698 1,357,155 1,386,478 1,434,389 2000's 1,342,963 1,370,802 1,245,270 1,244,672 1,248,050 1,202,328 1,280,758 1,309,960 1,301,523 1,482,252 2010's 2,148,447 2,969,297 2,882,193 2,289,193 1,925,968 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  5. Property:CoolingTowerWaterUseWinterGross | Open Energy Information

    Open Energy Info (EERE)

    lingTowerWaterUseWinterGross Property Type Number Description Cooling Tower Water use (winter average) (afday) Gross. Retrieved from "http:en.openei.orgwindex.php?titleProper...

  6. Property:CoolingTowerWaterUseAnnlAvgGross | Open Energy Information

    Open Energy Info (EERE)

    Property Name CoolingTowerWaterUseAnnlAvgGross Property Type Number Description Cooling Tower Water use (annual average) (afday) Gross. Retrieved from "http:en.openei.orgw...

  7. SHERATON STATION SQUARE FLOOR PLAN FIRST FLOOR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SHERATON STATION SQUARE FLOOR PLAN FIRST FLOOR 3 DETAILED PROG RAM MONDAY, AUGUST 8, 2016 REGISTRATION 7:00 a.m. - 8:00 a.m. Grand Station Foyer CONTINENTAL BREAKFAST 7:00 a.m. - 8:00 a.m. Grand Station III GRAND STATION I & II OPENING SESSION Moderator: Lynn Brickett, U.S. Department of Energy, National Energy Technology Laboratory 8:00 a.m. Welcoming Remarks Lynn Brickett, U.S. Department of Energy, National Energy Technology Laboratory 8:05 a.m. Overview of DOE's Clean Coal Program

  8. Augmented classical least squares multivariate spectral analysis

    DOE Patents [OSTI]

    Haaland, David M.; Melgaard, David K.

    2004-02-03

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  9. Augmented Classical Least Squares Multivariate Spectral Analysis

    DOE Patents [OSTI]

    Haaland, David M.; Melgaard, David K.

    2005-07-26

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  10. Augmented Classical Least Squares Multivariate Spectral Analysis

    DOE Patents [OSTI]

    Haaland, David M.; Melgaard, David K.

    2005-01-11

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  11. Total least squares for anomalous change detection

    SciTech Connect (OSTI)

    Theiler, James P; Matsekh, Anna M

    2010-01-01

    A family of difference-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQ-based anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and furthermore it is shown to be equivalent to the optimized covariance equalization algorithm. What whitened TLSQ offers, in addition to connecting with a common language the derivations of two of the most popular anomalous change detection algorithms - chronochrome and covariance equalization - is a generalization of these algorithms with the potential for better performance.

  12. Physics Nobel winner David Gross gives public lecture at Jefferson Lab on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 12 (Monday) | Jefferson Lab Nobel winner David Gross gives public lecture at Jefferson Lab on June 12 (Monday) Physics Nobel winner David Gross gives public lecture at Jefferson Lab on June 12 (Monday) June 6, 2006 David Gross David Gross, Nobel Prize recipient and lecturer David Gross, Nobel Prize recipient is scheduled to give a free, public lecture titled "The Coming Revolutions in Fundamental Physics" beginning at 8 p.m. at Jefferson Lab on (Monday) June 12. He is one of

  13. Gross Input to Atmospheric Crude Oil Distillation Units

    U.S. Energy Information Administration (EIA) Indexed Site

    Day) Process: Gross Input to Atmospheric Crude Oil Dist. Units Operable Capacity (Calendar Day) Operating Capacity Idle Operable Capacity Operable Utilization Rate Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Process Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 16,365 16,167 16,261 16,222 16,477 16,803 1985-2016 PADD 1 1,136 1,080 1,052 1,148 1,174 1,155 1985-2016 East

  14. Classical least squares multivariate spectral analysis

    DOE Patents [OSTI]

    Haaland, David M.

    2002-01-01

    An improved classical least squares multivariate spectral analysis method that adds spectral shapes describing non-calibrated components and system effects (other than baseline corrections) present in the analyzed mixture to the prediction phase of the method. These improvements decrease or eliminate many of the restrictions to the CLS-type methods and greatly extend their capabilities, accuracy, and precision. One new application of PACLS includes the ability to accurately predict unknown sample concentrations when new unmodeled spectral components are present in the unknown samples. Other applications of PACLS include the incorporation of spectrometer drift into the quantitative multivariate model and the maintenance of a calibration on a drifting spectrometer. Finally, the ability of PACLS to transfer a multivariate model between spectrometers is demonstrated.

  15. Hybrid least squares multivariate spectral analysis methods

    DOE Patents [OSTI]

    Haaland, David M.

    2004-03-23

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following prediction or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The hybrid method herein means a combination of an initial calibration step with subsequent analysis by an inverse multivariate analysis method. A spectral shape herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The shape can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  16. California--State Offshore Natural Gas Gross Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Gross Withdrawals (Million Cubic Feet) California--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,763 14,963 1980's 14,080 13,929 14,153 13,916 13,844 19,504 18,277 13,030 11,141 9,098 1990's 8,083 7,610 7,242 6,484 7,204 5,904 6,309 7,171 6,883 6,738 2000's 7,808 7,262 7,068 6,866 6,966 6,685 6,809 7,289 7,029 6,052 2010's 5,554 5,163 5,051 5,470 5,961 - = No Data Reported; -- =

  17. U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars per Foot)

    Gasoline and Diesel Fuel Update (EIA)

    Oil Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 13.22 13.11 13.41 13.20 13.12 13.94 15.04 16.61 18.63 19.28 1970's 19.29 18.41 20.77 22.54 27.82 34.17 37.35 41.16 49.72 58.29 1980's 66.36 80.40 86.34 72.65 66.32 66.78 68.35 58.35 62.28 64.92 1990's 69.17 73.75 69.50 67.52 70.57 78.09 70.60 90.48 108.88 156.45 2000's 125.96 153.72 194.55 221.13 298.45

  18. U.S. Nominal Cost per Foot of Dry Wells Drilled (Dollars per Foot)

    Gasoline and Diesel Fuel Update (EIA)

    Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10.56 10.56 11.20 10.58 10.64 11.21 12.34 12.87 12.88 13.23 1970's 15.21 16.02 17.28 19.22 26.76 33.86 36.94 43.49 52.55 64.60 1980's 73.70 90.03 104.09 79.10 67.18 73.69 76.53 51.05 66.96 67.61 1990's 67.49 83.05 67.82 72.56 86.60 84.60 95.74 115.09 157.79 182.99 2000's 181.83 271.63 284.17 345.94 327.91

  19. U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars per Foot)

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 18.57 17.65 18.10 17.19 18.57 18.35 21.75 23.05 24.05 25.58 1970's 26.75 27.70 27.78 27.46 34.11 46.23 49.78 57.57 68.37 80.66 1980's 95.16 122.17 146.20 108.37 88.80 93.09 93.02 69.55 84.65 86.86 1990's 90.73 93.10 72.83 83.15 81.90 95.97 98.67 117.55 127.94 138.42 2000's 138.39 172.05 175.78

  20. Secretary of Energy Recognizes Federal Employees for Efforts...

    Energy Savers [EERE]

    ... through the end of 2015. EPAct requires that the Federal government purchase at least 7.5 percent of electricity from ... has decreased energy consumption per gross square foot by ...

  1. Table 6.4 Natural Gas Gross Withdrawals and Natural Gas Well Productivity, 1960-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Gross Withdrawals and Natural Gas Well Productivity, 1960-2011 Year Natural Gas Gross Withdrawals From Crude Oil, Natural Gas, Coalbed, and Shale Gas Wells Natural Gas Well Productivity Texas 1 Louisiana 1 Oklahoma Other States 1 Federal Gulf of Mexico 2 Total Onshore Offshore Total Gross With- drawals From Natural Gas Wells 3 Producing Wells 4 Average Productivity Federal State Total Million Cubic Feet Million Cubic Feet Million Cubic Feet Number Cubic Feet per Well 1960 6,964,900

  2. Fact# 904: December 21, 2015 Gross Domestic Product and Vehicle Travel:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Both Increased during 2015 | Department of Energy 4: December 21, 2015 Gross Domestic Product and Vehicle Travel: Both Increased during 2015 Fact# 904: December 21, 2015 Gross Domestic Product and Vehicle Travel: Both Increased during 2015 SUBSCRIBE to the Fact of the Week The nation's highway vehicle miles of travel (VMT) and the U.S. gross domestic product (GDP) reflect strikingly similar patterns, indicating the strong relationship between the nation's economy and its travel. Beginning in

  3. Fact #904: December 21, 2015 Gross Domestic Product and Vehicle Travel:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Both Increased during 2015 - Dataset | Department of Energy Fact #904: December 21, 2015 Gross Domestic Product and Vehicle Travel: Both Increased during 2015 - Dataset Fact #904: December 21, 2015 Gross Domestic Product and Vehicle Travel: Both Increased during 2015 - Dataset Excel file and dataset for Gross Domestic Product and Vehicle Travel: Both Increased during 2015 fotw#904_web_rev.xlsx (19.75 KB) More Documents & Publications Vehicle Technologies Office Spring 2016 Quarterly

  4. Other States Total Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Gross Withdrawals 5,864,402 6,958,125 8,225,321 689,082 633,853 596,357 1991-2015 From Gas Wells 2,523,173 2,599,172 3,177,021 362,605 328,809 1991-2014 From Oil Wells 691,643 728,857 279,627 23,391 22,817 1991-2014 From

  5. Gross national happiness as a framework for health impact assessment

    SciTech Connect (OSTI)

    Pennock, Michael; Ura, Karma

    2011-01-15

    The incorporation of population health concepts and health determinants into Health Impact Assessments has created a number of challenges. The need for intersectoral collaboration has increased; the meaning of 'health' has become less clear; and the distinctions between health impacts, environmental impacts, social impacts and economic impacts have become increasingly blurred. The Bhutanese concept of Gross National Happiness may address these issues by providing an over-arching evidence-based framework which incorporates health, social, environmental and economic contributors as well as a number of other key contributors to wellbeing such as culture and governance. It has the potential to foster intersectoral collaboration by incorporating a more limited definition of health which places the health sector as one of a number of contributors to wellbeing. It also allows for the examination of the opportunity costs of health investments on wellbeing, is consistent with whole-of-government approaches to public policy and emerging models of social progress.

  6. Oregon Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 24,171 52,846 49,661 2000's 69,451 82,542 55,854 74,400 88,734 87,998 75,186 101,503 116,637 108,705 2010's 108,827 60,252 81,444 101,930 90,099 113

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 821 1,407 1,344 770 770 950 1979-2014 From Gas Wells 821 1,407 1,344 770 770 950 1979-2014 From Oil Wells 0 0 0 0 0 0 1996-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0

  7. Pennsylvania Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 20,430 30,240 31,353 2000's 20,597 22,632 50,251 41,238 76,186 80,640 100,946 143,954 141,011 210,542 2010's 245,559 306,266 393,775 362,349 390,816 439,248

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 572,902 1,310,592 2,256,696 3,259,042 4,214,643 4,768,848 1967-2015 From Gas Wells 173,450 242,305 210,609 207,872 174,576 1967-2014 From Oil Wells 0 0 3,456 2,987 3,564 1967-2014

  8. Fact #564: March 30, 2009 Transportation and the Gross Domestic Product,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2007 | Department of Energy 4: March 30, 2009 Transportation and the Gross Domestic Product, 2007 Fact #564: March 30, 2009 Transportation and the Gross Domestic Product, 2007 Transportation plays a major role in the U.S. economy. About 10% of the U.S. Gross Domestic Product (GDP) in 2007 is related to transportation. Housing, health care, and food are the only categories with greater shares of the GDP. GDP by Category, 2007 Graph showing the Gross Domestic Product (GDP) for various

  9. Spatial confinement and thermal deconfinement in the Gross-Neveu model

    SciTech Connect (OSTI)

    Malbouisson, J. M. C.; Khanna, F. C.; Malbouisson, A. P. C.

    2007-06-19

    We discuss the occurrence of spatial confinement and thermal deconfinement in the massive, D-dimensional, Gross-Neveu model with compactified spatial dimensions.

  10. DOE - Office of Legacy Management -- Foote Mineral Co - PA 27

    Office of Legacy Management (LM)

    Foote Mineral Co - PA 27 FUSRAP Considered Sites Site: Foote Mineral Co. (PA.27 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Exton , Pennsylvania PA.27-1 Evaluation Year: 1987 PA.27-1 Site Operations: Processed rare earth, principally zirconium and monazite sand was processed on a pilot-plant scale. PA.27-2 Site Disposition: Eliminated - Limited quantity of material handled - Potential for contamination considered remote

  11. 2-D weighted least-squares phase unwrapping

    DOE Patents [OSTI]

    Ghiglia, Dennis C.; Romero, Louis A.

    1995-01-01

    Weighted values of interferometric signals are unwrapped by determining the least squares solution of phase unwrapping for unweighted values of the interferometric signals; and then determining the least squares solution of phase unwrapping for weighted values of the interferometric signals by preconditioned conjugate gradient methods using the unweighted solutions as preconditioning values. An output is provided that is representative of the least squares solution of phase unwrapping for weighted values of the interferometric signals.

  12. 2-D weighted least-squares phase unwrapping

    DOE Patents [OSTI]

    Ghiglia, D.C.; Romero, L.A.

    1995-06-13

    Weighted values of interferometric signals are unwrapped by determining the least squares solution of phase unwrapping for unweighted values of the interferometric signals; and then determining the least squares solution of phase unwrapping for weighted values of the interferometric signals by preconditioned conjugate gradient methods using the unweighted solutions as preconditioning values. An output is provided that is representative of the least squares solution of phase unwrapping for weighted values of the interferometric signals. 6 figs.

  13. Square grid state in dielectric barrier discharge system

    SciTech Connect (OSTI)

    Dong, L. F.; Li, S. F.; Fan, W. L.; Pan, Y. Y.

    2009-12-15

    A square grid state and a hexagonal grid state are observed in a dielectric barrier discharge system. They are selected by different resonance mechanisms, namely, a four-wave interaction for the square grid state and a three-wave interaction for the hexagonal grid state. The spatiotemporal dynamics of the square grid state is studied by an optical method. It is found that the square grid state is an interleaving of three different sublattices, which correspond to a harmonic mode and two subharmonic modes.

  14. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters are excluded. 2Total square footage includes all basements, finished or conditioned (heated ...

  15. Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,194 5,782 5,686 2000's 4,202 4,433 13,712 3,667 4,833 17,181 12,287 19,376 9,584 8,399 2010's 19,284 15,575 31,194 14,536 26,919 52,015

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 113,300 135,330 124,243 106,122 94,665 78,737 1967-2014 From Gas Wells 111,782 133,521 122,578 106,122 94,665 78,737 1967-2014 From Oil Wells 1,518 1,809 1,665 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0

  16. Nebraska Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,687 5,080 4,582 2000's 5,522 4,290 4,947 4,593 3,340 8,066 7,787 10,908 7,230 3,331 2010's 3,949 4,223 7,696 5,080 4,132 4,634

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 2,916 2,255 1,980 1,328 1,032 402 1967-2014 From Gas Wells 2,734 2,092 1,854 1,317 1,027 400 1967-2014 From Oil Wells 182 163 126 11 5 1 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0

  17. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    from Gas Wells (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Gross Withdrawals from Gas Wells Nevada Natural Gas Gross Withdrawals and

  18. Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight The gross weight of a vehicle (GVW) is the weight of the empty vehicle plus the weight of the maximum payload that the vehicle was designed to carry. In cars and small light trucks, the difference between the empty weight of the vehicle and the GVW is not significantly different (1,000 to 1,500 lbs). The largest trucks and tractor-trailers,

  19. Fact #768: February 25, 2013 New Light Vehicle Sales and Gross Domestic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Product | Department of Energy 8: February 25, 2013 New Light Vehicle Sales and Gross Domestic Product Fact #768: February 25, 2013 New Light Vehicle Sales and Gross Domestic Product Over the last four decades, new light vehicle sales have gone from a low of 9.9 million vehicles in 1970 to a high of 17.1 million vehicles sold in 2001, but along the way, there have been significant ups and downs. Those ups and downs are also reflected in the change in Gross Domestic Product (GDP) over time

  20. Square Grains in Asymmetric Rod-Coil Block Copolymers (Journal...

    Office of Scientific and Technical Information (OSTI)

    Unlike the rounded grains that are well known to form in most soft materials, square grains of microphase-separated lamellae are observed in thin films of a rod-coil block ...

  1. 2D barrier in a superconducting niobium square

    SciTech Connect (OSTI)

    Joya, Miryam R. Barba-ortega, J.; Sardella, Edson

    2014-11-05

    The presence of barriers changes the vortex structure in superconducting Nb square in presence of a uniform applied magnetic field. The Cooper pair configurations in a mesoscopics superconducting square of Nb with a barrier are calculated within the nonlinear Ginzburg Landau equations. We predict the nucleation of multi-vortex states into the sample and a soft entry of the magnetic field inside and around into the barrier. A novel and non-conventional vortex configurations occurs at determined magnetic field.

  2. The one-dimensional Gross-Pitaevskii equation and its some excitation states

    SciTech Connect (OSTI)

    Prayitno, T. B.

    2015-04-16

    We have derived some excitation states of the one-dimensional Gross-Pitaevskii equation coupled by the gravitational potential. The methods that we have used here are taken by pursuing the recent work of Kivshar et. al. by considering the equation as a macroscopic quantum oscillator. To obtain the states, we have made the appropriate transformation to reduce the three-dimensional Gross-Pitaevskii equation into the one-dimensional Gross-Pitaevskii equation and applying the time-independent perturbation theory in the general solution of the one-dimensional Gross-Pitaevskii equation as a linear superposition of the normalized eigenfunctions of the Schrödinger equation for the harmonic oscillator potential. Moreover, we also impose the condition by assuming that some terms in the equation should be so small in order to preserve the use of the perturbation method.

  3. ,"U.S. Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    2:54:05 AM" "Back to Contents","Data 1: U.S. Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSNUSMMCF" "Date","U.S. Natural Gas ...

  4. EIA Energy Efficiency-Table 4e. Gross Output by Selected Industries...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    e Page Last Modified: May 2010 Table 4e. Gross Output1by Selected Industries, 1998, 2002, and 2006 (Billion 2000 Dollars 2) MECS Survey Years NAICS Subsector and Industry 1998 2002...

  5. EIA Energy Efficiency-Table 3e. Gross Output by Selected Industries...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    e Page Last Modified: May 2010 Table 3e. Gross Output1 by Selected Industries, 1998, 2002, and 2006 (Current Billion Dollars) MECS Survey Years NAICS Subsector and Industry 1998...

  6. OSTIblog Articles in the David Gross Topic | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    David Gross Topic 100th DOE R&D Accomplishments Feature Page Celebration by Linda McBrearty 07 Jul, 2013 in Products and Content 7566 Accomp100slide.preview.jpg 100th DOE R&D ...

  7. 23 V.S.A. Section 1392 Gross Weight Limits on Highways | Open...

    Open Energy Info (EERE)

    Section 1392 Gross Weight Limits on HighwaysLegal Abstract Statute establishes the motor vehicle weight, load size, not to exceed 80,000 pounds without a permit. Published NA...

  8. A Least-Squares Transport Equation Compatible with Voids

    SciTech Connect (OSTI)

    Hansen, Jon; Peterson, Jacob; Morel, Jim; Ragusa, Jean; Wang, Yaqi

    2014-12-01

    Standard second-order self-adjoint forms of the transport equation, such as the even-parity, odd-parity, and self-adjoint angular flux equation, cannot be used in voids. Perhaps more important, they experience numerical convergence difficulties in near-voids. Here we present a new form of a second-order self-adjoint transport equation that has an advantage relative to standard forms in that it can be used in voids or near-voids. Our equation is closely related to the standard least-squares form of the transport equation with both equations being applicable in a void and having a nonconservative analytic form. However, unlike the standard least-squares form of the transport equation, our least-squares equation is compatible with source iteration. It has been found that the standard least-squares form of the transport equation with a linear-continuous finite-element spatial discretization has difficulty in the thick diffusion limit. Here we extensively test the 1D slab-geometry version of our scheme with respect to void solutions, spatial convergence rate, and the intermediate and thick diffusion limits. We also define an effective diffusion synthetic acceleration scheme for our discretization. Our conclusion is that our least-squares Sn formulation represents an excellent alternative to existing second-order Sn transport formulations

  9. High-frequency matrix converter with square wave input

    SciTech Connect (OSTI)

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  10. Organic light-emitting diodes from homoleptic square planar complexes

    DOE Patents [OSTI]

    Omary, Mohammad A

    2013-11-12

    Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").

  11. Higher velocity, high-foot implosions on the National Ignition Facility laser

    SciTech Connect (OSTI)

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Dppner, T.; Ma, T.; Park, H.-S.; Barrios Garcia, M. A.; Berzak Hopkins, L. F.; Casey, D. T.; Cerjan, C. J.; Dewald, E. L.; Dittrich, T. R.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Kritcher, A. L.; Landen, O. L.; LePape, S.; MacPhee, A. G.; Milovich, J. L.; and others

    2015-05-15

    By increasing the velocity in high foot implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), and the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1 10{sup 15} neutrons, the total yield ??v{sup 9.4}. This increase is considerably faster than the expected dependence for implosions without alpha heating (?v{sup 5.9}) and is additional evidence that these experiments have significant alpha heating.

  12. Higher velocity, high-foot implosions on the National Ignition Facility laser

    SciTech Connect (OSTI)

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Dppner, T.; Ma, T.; Park, H. -S.; Barrios Garcia, M. A.; Berzak Hopkins, L. F.; Casey, D. T.; Cerjan, C. J.; Dewald, E. L.; Dittrich, T. R.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Kline, J. L.; Knauer, J. P.; Kritcher, A. L.; Landen, O. L.; LePape, S.; MacPhee, A. G.; Milovich, J. L.; Nikroo, A.; Pak, A. E.; Patel, P. K.; Rygg, J. R.; Ralph, J. E.; Salmonson, J. D.; Spears, B. K.; Springer, P. T.; Tommasini, R.; Benedetti, L. R.; Bionta, R. M.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Field, J. E.; Fittinghoff, D. N.; Frenje, J.; Gatu Johnson, M.; Grim, G. P.; Hatarik, R.; Merrill, F. E.; Nagel, S. R.; Izumi, N.; Khan, S. F.; Town, R. P. J.; Sayre, D. B.; Volegov, P.; Wilde, C. H.

    2015-05-15

    By increasing the velocity in high foot implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), and the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v???. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v???) and is additional evidence that these experiments have significant alpha heating.

  13. Latin-square three-dimensional gage master

    DOE Patents [OSTI]

    Jones, L.

    1981-05-12

    A gage master for coordinate measuring machines has an nxn array of objects distributed in the Z coordinate utilizing the concept of a Latin square experimental design. Using analysis of variance techniques, the invention may be used to identify sources of error in machine geometry and quantify machine accuracy.

  14. Airborne spread of foot-and-mouth disease - model intercomparison

    SciTech Connect (OSTI)

    Gloster, J; Jones, A; Redington, A; Burgin, L; Sorensen, J H; Turner, R; Dillon, M; Hullinger, P; Simpson, M; Astrup, P; Garner, G; Stewart, P; D'Amours, R; Sellers, R; Paton, D

    2008-09-04

    Foot-and-mouth disease is a highly infectious vesicular disease of cloven-hoofed animals caused by foot-and-mouth disease virus. It spreads by direct contact between animals, by animal products (milk, meat and semen), by mechanical transfer on people or fomites and by the airborne route - with the relative importance of each mechanism depending on the particular outbreak characteristics. Over the years a number of workers have developed or adapted atmospheric dispersion models to assess the risk of foot-and-mouth disease virus spread through the air. Six of these models were compared at a workshop hosted by the Institute for Animal Health/Met Office during 2008. A number of key issues emerged from the workshop and subsequent modelling work: (1) in general all of the models predicted similar directions for 'at risk' livestock with much of the remaining differences strongly related to differences in the meteorological data used; (2) determination of an accurate sequence of events is highly important, especially if the meteorological conditions vary substantially during the virus emission period; and (3) differences in assumptions made about virus release, environmental fate, and subsequent infection can substantially modify the size and location of the downwind risk area. Close relationships have now been established between participants, which in the event of an outbreak of disease could be readily activated to supply advice or modelling support.

  15. ,"Other States Total Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Other States Total Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release

  16. ,"California--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  17. ,"Federal Offshore California Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  18. ,"Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1997" ,"Release Date:","08/31/2016" ,"Next Release

  19. A new least-squares transport equation compatible with voids

    SciTech Connect (OSTI)

    Hansen, J. B.; Morel, J. E.

    2013-07-01

    We define a new least-squares transport equation that is applicable in voids, can be solved using source iteration with diffusion-synthetic acceleration, and requires only the solution of an independent set of second-order self-adjoint equations for each direction during each source iteration. We derive the equation, discretize it using the S{sub n} method in conjunction with a linear-continuous finite-element method in space, and computationally demonstrate various of its properties. (authors)

  20. Solving linear inequalities in a least squares sense

    SciTech Connect (OSTI)

    Bramley, R.; Winnicka, B.

    1994-12-31

    Let A {element_of} {Re}{sup mxn} be an arbitrary real matrix, and let b {element_of} {Re}{sup m} a given vector. A familiar problem in computational linear algebra is to solve the system Ax = b in a least squares sense; that is, to find an x* minimizing {parallel}Ax {minus} b{parallel}, where {parallel} {center_dot} {parallel} refers to the vector two-norm. Such an x* solves the normal equations A{sup T}(Ax {minus} b) = 0, and the optimal residual r* = b {minus} Ax* is unique (although x* need not be). The least squares problem is usually interpreted as corresponding to multiple observations, represented by the rows of A and b, on a vector of data x. The observations may be inconsistent, and in this case a solution is sought that minimizes the norm of the residuals. A less familiar problem to numerical linear algebraists is the solution of systems of linear inequalities Ax {le} b in a least squares sense, but the motivation is similar: if a set of observations places upper or lower bounds on linear combinations of variables, the authors want to find x* minimizing {parallel} (Ax {minus} b){sub +} {parallel}, where the i{sup th} component of the vector v{sub +} is the maximum of zero and the i{sup th} component of v.

  1. DESIGN OF PHASE INDUCED AMPLITUDE APODIZATION CORONAGRAPHS OVER SQUARE APERTURES

    SciTech Connect (OSTI)

    Pueyo, Laurent; Jeremy Kasdin, N.; Carlotti, Alexis; Vanderbei, Robert

    2011-08-01

    The purpose of this paper is to present the results of a theoretical study pertaining to the feasibility of Phase Induced Amplitude Apodization (PIAA) units using deformable mirrors (DMs). We begin by reviewing the general derivation of the design equations driving PIAA. We then show how to solve these equations for square apertures and show the performance of pure PIAA systems in the ray optics regime. We tie these design equations into the study of edge diffraction effects and provide a general expression for the field after a full propagation through a PIAA coronagraph. Third, we illustrate how a combination of pre- and post-apodizers yields a contrast of 10{sup -10} even in the presence of diffractive effects, for configuration with neither wavefront errors or wavefront control. Finally, we present novel PIAA configurations over square apertures which circumvent the constraints on the manufacturing of PIAA optics by inducing the apodization with two square DMs. Such solutions rely on pupil size smaller than currently envisioned static PIAA solutions and thus require aggressive pre- and post-apodizing screens in order to mitigate for diffractive effect between the two mirrors. As a result they are associated with significant loss in performance, throughput in particular.

  2. Gross error detection and stage efficiency estimation in a separation process

    SciTech Connect (OSTI)

    Serth, R.W.; Srikanth, B. . Dept. of Chemical and Natural Gas Engineering); Maronga, S.J. . Dept. of Chemical and Process Engineering)

    1993-10-01

    Accurate process models are required for optimization and control in chemical plants and petroleum refineries. These models involve various equipment parameters, such as stage efficiencies in distillation columns, the values of which must be determined by fitting the models to process data. Since the data contain random and systematic measurement errors, some of which may be large (gross errors), they must be reconciled to obtain reliable estimates of equipment parameters. The problem thus involves parameter estimation coupled with gross error detection and data reconciliation. MacDonald and Howat (1988) studied the above problem for a single-stage flash distillation process. Their analysis was based on the definition of stage efficiency due to Hausen, which has some significant disadvantages in this context, as discussed below. In addition, they considered only data sets which contained no gross errors. The purpose of this article is to extend the above work by considering alternative definitions of state efficiency and efficiency estimation in the presence of gross errors.

  3. Positive Scattering Cross Sections using Constrained Least Squares

    SciTech Connect (OSTI)

    Dahl, J.A.; Ganapol, B.D.; Morel, J.E.

    1999-09-27

    A method which creates a positive Legendre expansion from truncated Legendre cross section libraries is presented. The cross section moments of order two and greater are modified by a constrained least squares algorithm, subject to the constraints that the zeroth and first moments remain constant, and that the standard discrete ordinate scattering matrix is positive. A method using the maximum entropy representation of the cross section which reduces the error of these modified moments is also presented. These methods are implemented in PARTISN, and numerical results from a transport calculation using highly anisotropic scattering cross sections with the exponential discontinuous spatial scheme is presented.

  4. R-SQUARE IMPEDANCES OF ERL FERRITE HOM ABSORBER.

    SciTech Connect (OSTI)

    HAHN, H.; BURRILL, A.; CALAGA,R.; KAYRAN, D.; ZHAO, Y.

    2005-07-10

    An R&D facility for an Energy Recovery Linac (ERL) intended as part of an electron-cooling project for RHIC is, being constructed at this laboratory. The center piece of the facility is a 5-cell 703.75 MHz super-conducting RF linac. Successful operation will depend on effective HOM damping. It is planned to achieve HOM damping exclusively with ferrite absorbers. The performance of a prototype absorber was measured by transforming it into a resonant cavity and alternatively by a conventional wire method. The results expressed as a surface or R-square impedance are presented in this paper.

  5. U.S. Natural Gas Gross Withdrawals Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals Offshore (Million Cubic Feet) U.S. Natural Gas Gross Withdrawals Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,932,196 5,111,413 5,603,025 1980's 5,650,097 5,693,432 5,466,050 4,734,843 5,220,061 4,631,756 4,588,565 5,078,178 5,180,875 5,231,028 1990's 5,509,312 5,308,457 5,324,039 5,373,300 5,700,666 5,431,665 5,843,661 5,906,329 5,800,561 5,689,438 2000's 5,699,377 5,815,542 5,312,348 5,215,683 4,736,252

  6. Floating Offshore Wind in California: Gross Potential for Jobs and Economic Impacts from Two Future Scenarios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Floating Offshore Wind in California: Gross Potential for Jobs and Economic Impacts from Two Future Scenarios Bethany Speer, David Keyser, and Suzanne Tegen National Renewable Energy Laboratory This report is available from the Bureau of Ocean Energy Management by referencing OCS Study BOEM 2016-029. The report may be downloaded from BOEM's Recently Completed Environmental Studies - Pacific webpage at http://www.boem.gov/Pacific-Completed-Studies/. This study was funded by the U.S. Department of

  7. DOE Zero Ready Home Case Study: Promethean Homes, Gross-Shepard Residence, Charlottesville, VA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Promethean Homes Gross-Shepard Residence Charlottesville, VA DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced

  8. U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled

    Gasoline and Diesel Fuel Update (EIA)

    (Dollars per Foot) Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 61.83 60.39 61.71 58.22 58.11 59.64 64.51 66.84 67.56 67.15 1970's 68.42 65.82 68.82 70.65 83.31 97.34 100.66 109.49 123.76 136.64 1980's 142.52 159.51 173.34 127.81 106.27 108.09 107.90 80.21 92.78 93.63 1990's 93.23 97.86

  9. A Galerkin least squares approach to viscoelastic flow.

    SciTech Connect (OSTI)

    Rao, Rekha R.; Schunk, Peter Randall

    2015-10-01

    A Galerkin/least-squares stabilization technique is applied to a discrete Elastic Viscous Stress Splitting formulation of for viscoelastic flow. From this, a possible viscoelastic stabilization method is proposed. This method is tested with the flow of an Oldroyd-B fluid past a rigid cylinder, where it is found to produce inaccurate drag coefficients. Furthermore, it fails for relatively low Weissenberg number indicating it is not suited for use as a general algorithm. In addition, a decoupled approach is used as a way separating the constitutive equation from the rest of the system. A Pressure Poisson equation is used when the velocity and pressure are sought to be decoupled, but this fails to produce a solution when inflow/outflow boundaries are considered. However, a coupled pressure-velocity equation with a decoupled constitutive equation is successful for the flow past a rigid cylinder and seems to be suitable as a general-use algorithm.

  10. Classical and quantum dynamics in an inverse square potential

    SciTech Connect (OSTI)

    Guillaumn-Espaa, Elisa; Nez-Ypez, H. N.; Salas-Brito, A. L.

    2014-10-15

    The classical motion of a particle in a 3D inverse square potential with negative energy, E, is shown to be geodesic, i.e., equivalent to the particle's free motion on a non-compact phase space manifold irrespective of the sign of the coupling constant. We thus establish that all its classical orbits with E < 0 are unbounded. To analyse the corresponding quantum problem, the Schrdinger equation is solved in momentum space. No discrete energy levels exist in the unrenormalized case and the system shows a complete fall-to-the-center with an energy spectrum unbounded by below. Such behavior corresponds to the non-existence of bound classical orbits. The symmetry of the problem is SO(3) SO(2, 1) corroborating previously obtained results.

  11. Square Turing patterns in reaction-diffusion systems with coupled layers

    SciTech Connect (OSTI)

    Li, Jing; Wang, Hongli E-mail: qi@pku.edu.cn; Center for Quantitative Biology, Peking University, Beijing 100871 ; Ouyang, Qi E-mail: qi@pku.edu.cn; Center for Quantitative Biology, Peking University, Beijing 100871; The Peking-Tsinghua Center for Life Sciences, Beijing 100871

    2014-06-15

    Square Turing patterns are usually unstable in reaction-diffusion systems and are rarely observed in corresponding experiments and simulations. We report here an example of spontaneous formation of square Turing patterns with the Lengyel-Epstein model of two coupled layers. The squares are found to be a result of the resonance between two supercritical Turing modes with an appropriate ratio. Besides, the spatiotemporal resonance of Turing modes resembles to the mode-locking phenomenon. Analysis of the general amplitude equations for square patterns reveals that the fixed point corresponding to square Turing patterns is stationary when the parameters adopt appropriate values.

  12. ,"Kansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  13. ,"Louisiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  14. ,"Maryland Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  15. ,"Michigan Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  16. ,"Montana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  17. ,"Nebraska Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  18. ,"New Mexico Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  19. ,"North Dakota Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  20. ,"Ohio Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1991" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  1. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  2. ,"Oregon Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1991" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  3. ,"Pennsylvania Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1991" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  4. ,"Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  5. ,"Texas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  6. ,"U.S. Natural Gas Gross Withdrawals Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Gross Withdrawals Offshore (MMcf)",1,"Annual",2014 ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File Name:","na1090_nus_2a.xls" ,"Available

  7. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  8. ,"West Virginia Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1991" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  9. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  10. OSTIblog Articles in the David Gross Topic | OSTI, US Dept of Energy Office

    Office of Scientific and Technical Information (OSTI)

    of Scientific and Technical Information David Gross Topic 100th DOE R&D Accomplishments Feature Page Celebration by Linda McBrearty 07 Jul, 2013 in Products and Content 7566 Accomp100_slide.preview.jpg 100th DOE R&D Accomplishments Feature Page Celebration Read more about 7566 DOE R&D Accomplishments is a unique website and database in the OSTI collection. For over 14 years, special Feature pages have been methodically researched and useful information collected on scientists,

  11. Soliton solutions of the 3D Gross-Pitaevskii equation by a potential control method

    SciTech Connect (OSTI)

    Fedele, R.; Eliasson, B.; Shukla, P. K.; Haas, F.; Jovanovic, D.; De Nicola, S.

    2010-12-14

    We present a class of three-dimensional solitary waves solutions of the Gross-Pitaevskii (GP) equation, which governs the dynamics of Bose-Einstein condensates (BECs). By imposing an external controlling potential, a desired time-dependent shape of the localized BEC excitation is obtained. The stability of some obtained localized solutions is checked by solving the time-dependent GP equation numerically with analytic solutions as initial conditions. The analytic solutions can be used to design external potentials to control the localized BECs in experiment.

  12. ,"Alaska Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2014 ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File Name:","na1090_sak_2a.xls"

  13. ,"California Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2014 ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File Name:","na1090_sca_2a.xls"

  14. ,"California Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  15. ,"California Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  16. ,"Colorado Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  17. ,"Colorado Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  18. ,"Florida Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  19. ,"Florida Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  20. ,"Illinois Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1991" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  1. ,"Illinois Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  2. ,"Indiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  3. Forty-Six-Foot Tall Needle Sculpture Rises Over Arts Quad > EMC2...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Section EMC2 News Archived News Stories Forty-Six-Foot Tall Needle Sculpture Rises Over Arts Quad September 14th, 2014 By ANUSHKA MEHROTRA Students walking around campus this...

  4. Comment on ''Mutually unbiased bases, orthogonal Latin squares, and hidden-variable models''

    SciTech Connect (OSTI)

    Hall, Joanne L.; Rao, Asha

    2011-03-15

    In a recent article Paterek, Dakic, and Brukner [Phys. Rev. A 79, 012109 (2009)] show an algorithm for generating mutually unbiased bases from sets of orthogonal Latin squares. They claim that this algorithm works for every set of orthogonal Latin squares. We show that the algorithm only works for particular sets of orthogonal Latin squares. Furthermore, the algorithm is a more readable version of work previously published [Phys. Rev. A 70, 062101 (2004)].

  5. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 NA NA NA NA NA NA NA NA NA NA NA NA 2009 NA NA NA NA NA NA NA NA NA NA NA NA 2010 NA NA NA NA NA NA NA NA NA NA NA NA 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 NA NA NA NA NA NA NA NA NA NA NA NA 2016 NA NA NA NA NA NA

    from Oil Wells (Million Cubic Feet) Missouri Natural Gas Gross Withdrawals

  6. 1990 yearly calibration of Pacific Northwest Laboratory's gross-gamma borehole geophysical logging system

    SciTech Connect (OSTI)

    Arthur, R.J.

    1990-08-01

    This report describes the 1990 yearly calibration of a gross-gamma geophysical pulse logging system owned by the US Department of Energy (DOE) and operated by Pacific Northwest Laboratory (PNL). The calibration was conducted to permit the continued use of this system for geological and hydrologic studies associated with remedial investigation at the Hanford Site. Primary calibrations to equivalent uranium units were conducted in borehole model standards that were recently moved to the Hanford Site from the DOE field calibration facility in Spokane, Washington. The calibrations were performed in borehole models SBL/SBH and SBA/SBB, which contain low equivalent-uranium concentrations. The integrity of the system throughout the previous year from gamma-ray monitoring was demonstrated using the before- and after-logging field calibration readings with the field source in calibration Positions 1 and 2. Most of the Position 1 readings are within an 8% limit that is set by the governing PNL technical reference procedure as a critical value above which the instrument is considered suspect. Many of the Position 2 readings exceed the 8% limit; however, the fluctuation was traced to field-source geometry variability that affected Position 1 count rates by up to 6% and Position 2 count rates by as much as 16%. Correlations were established based on two similar approaches for relating observed count rate in before- and after-logging field calibrations to equivalent uranium concentrations. The temperature drift of the gamma-ray probe was documented and amounts to less than 0.1%/{degree}C within the temperature range 0{degree}C to 42{degree}C. The low-energy cutoff for the gross gamma-ray probe was determined to be between 46.5 and 59.5 keV. 10 refs., 4 figs., 13 tabs.

  7. New Better Buildings Challenge Partners Commit 70 Million Square Feet, $1.7

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Billion | Department of Energy Better Buildings Challenge Partners Commit 70 Million Square Feet, $1.7 Billion New Better Buildings Challenge Partners Commit 70 Million Square Feet, $1.7 Billion January 29, 2015 - 2:40pm Addthis News Media Contact 202-586-4940 DOENews@hq.doe.gov New Better Buildings Challenge Partners Commit 70 Million Square Feet, $1.7 Billion WASHINGTON - Building on President Obama's Climate Action Plan, the Energy Department announced today that more than 20 new partners

  8. Table 2. Real Gross Domestic Product Growth Trends, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Gross Domestic Product Growth Trends, Projected vs. Actual Projected Real GDP Growth Trend (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 3.09 3.15 2.86 2.78 2.73 2.65 2.62 2.60 2.56 2.53 2.52 2.49 2.45 2.41 2.40 2.36 2.32 2.29 AEO 1995 3.66 2.77 2.53 2.71 2.67 2.61 2.55 2.48 2.46 2.45 2.45 2.43 2.39 2.35 2.31 2.27 2.24 AEO 1996 2.61

  9. Other States Natural Gas Gross Withdrawals from Shale Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Shale Gas (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 13,204 11,926 13,204 12,778 13,204 12,778 13,204 13,204 12,778 13,204 12,778 13,204 2008 12,755 11,932 12,755 12,343 12,755 12,343 12,755 12,755 12,343 12,755 12,343 12,755 2009 12,222 11,039 12,222 11,827 12,222 11,827 12,222 12,222 11,827 12,222 11,827 12,222 2010 11,842 10,659 11,705 11,180 11,541 11,189 11,357 11,589

  10. Failure of the gross theory of beta decay in neutron deficient nuclei

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Firestone, R. B.; Schwengner, R.; Zuber, K.

    2015-05-28

    The neutron deficient isotopes 117-121Xe, 117-124Cs, and 122-124Ba were produced by a beam of 28Si from the LBNL SuperHILAC on a target of natMo. The isotopes were mass separated and their beta decay schemes were measured with a Total Absorption Spectrometer (TAS). The beta strengths derived from these data decreased dramatically to levels above ≈1 MeV for the even-even decays; 3–4 MeV for even-Z, odd-N decays; 4–5 MeV for the odd-Z, even-N decays; and 7–8 MeV for the odd-Z, odd-N decays. The decreasing strength to higher excitation energies in the daughters contradicts the predictions of the Gross Theory of Betamore » Decay. The integrated beta strengths are instead found to be consistent with shell model predictions where the single-particle beta strengths are divided amoung many low-lying levels. The experimental beta strengths determined here have been used calculate the half-lives of 143 neutron deficient nuclei with Z=51–64 to a precision of 20% with respect to the measured values.« less

  11. Failure of the gross theory of beta decay in neutron deficient nuclei

    SciTech Connect (OSTI)

    Firestone, R. B.; Schwengner, R.; Zuber, K.

    2015-05-28

    The neutron deficient isotopes 117-121Xe, 117-124Cs, and 122-124Ba were produced by a beam of 28Si from the LBNL SuperHILAC on a target of natMo. The isotopes were mass separated and their beta decay schemes were measured with a Total Absorption Spectrometer (TAS). The beta strengths derived from these data decreased dramatically to levels above ?1 MeV for the even-even decays; 34 MeV for even-Z, odd-N decays; 45 MeV for the odd-Z, even-N decays; and 78 MeV for the odd-Z, odd-N decays. The decreasing strength to higher excitation energies in the daughters contradicts the predictions of the Gross Theory of Beta Decay. The integrated beta strengths are instead found to be consistent with shell model predictions where the single-particle beta strengths are divided amoung many low-lying levels. The experimental beta strengths determined here have been used calculate the half-lives of 143 neutron deficient nuclei with Z=5164 to a precision of 20% with respect to the measured values.

  12. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 NA NA NA NA NA NA NA NA NA NA NA NA 2016 NA NA NA NA NA NA

    from Gas Wells (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)

  13. New Mexico Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 40,256 45,534 43,018 2000's 46,885 48,981 37,324 37,849 30,817 41,207 55,506 61,050 68,742 70,102 2010's 70,694 73,379 74,357 74,817 75,726 77,947

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 1,341,475 1,287,682 1,276,296 1,247,394 1,265,579 1,289,908 1967-2015 From Gas Wells 616,134 556,024 653,057 588,127 535,181 1967-2014 From Oil Wells 238,580 252,326 127,009 160,649 204,054

  14. Suppressed gross erosion of high-temperature lithium via rapid deuterium implantation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abrams, T.; Jaworski, M. A.; Chen, M.; Carter, E. A.; Kaita, R.; Stotler, D. P.; De Temmerman, G.; Morgan, T. W.; van den Berg, M. A.; van der Meiden, H. J.

    2015-12-17

    Lithium-coated high-Z substrates are planned for use in the NSTX-U divertor and are a candidate plasma facing component (PFC) for reactors, but it remains necessary to characterize the gross Li erosion rate under high plasma fluxes (>1023 m-2 s-1), typical for the divertor region. In this work, a realistic model for the compositional evolution of a Li/D layer is developed that incorporates first principles molecular dynamics (MD) simulations of D diffusion in liquid Li. Predictions of Li erosion from a mixed Li/D material are also developed that include formation of lithium deuteride (LiD). The erosion rate of Li from LiDmore » is predicted to be significantly lower than from pure Li. This prediction is tested in the Magnum-PSI linear plasma device at ion fluxes of 1023-1024 m-2 s-1 and Li surface temperatures. ≤800 °C. Li/LiD coatings ranging in thickness from 0.2 to 500 μm are studied. The dynamic D/Li concentrations are inferred via diffusion simulations. The pure Li erosion rate remains greater than Langmuir Law evaporation, as expected. For mixed-material Li/LiD surfaces, the erosion rates are reduced, in good agreement with modelling in almost all cases. Lastly, these results imply that the temperature limit for a Li-coated PFC may be significantly higher than previously imagined.« less

  15. Weak decay processes in pre-supernova core evolution within the gross theory

    SciTech Connect (OSTI)

    Ferreira, R. C.; Dimarco, A. J.; Samana, A. R.; Barbero, C. A.

    2014-03-20

    The beta decay and electron capture rates are of fundamental importance in the evolution of massive stars in a pre-supernova core. The beta decay process gives its contribution by emitting electrons in the plasma of the stellar core, thereby increasing pressure, which in turn increases the temperature. From the other side, the electron capture removes free electrons from the plasma of the star core contributing to the reduction of pressure and temperature. In this work we calculate the beta decay and electron capture rates in stellar conditions for 63 nuclei of relevance in the pre-supernova stage, employing Gross Theory as the nuclear model. We use the abundances calculated with the Saha equations in the hypothesis of nuclear statistical equilibrium to evaluate the time derivative of the fraction of electrons. Our results are compared with other evaluations available in the literature. They have shown to be one order less or equal than the calculated within other models. Our results indicate that these differences may influence the evolution of the star in the later stages of pre-supernova.

  16. Magnetic vortex crystal formation in the antidot complement of square artificial spin ice

    SciTech Connect (OSTI)

    Araujo, C. I. L. de Silva, R. C.; Ribeiro, I. R. B.; Nascimento, F. S.; Felix, J. F.; Ferreira, S. O.; Moura-Melo, W. A.; Pereira, A. R.; Ml, L. A. S.

    2014-03-03

    We have studied ferromagnetic nickel thin films patterned with square lattices of elongated antidots that are negative analogues of square artificial spin ice. Micromagnetic simulations and direct current magnetic moment measurements reveal in-plane anisotropy of the magnetic hysteresis loops, and the formation of a dense array of magnetic vortices with random polarization and chirality. These multiply-connected antidot arrays could be superior to lattices of disconnected nanodisks for investigations of vortex switching by applied electric current.

  17. Better Buildings Challenge to Cut Energy Waste Grows by 1 Billion Square

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feet | Department of Energy to Cut Energy Waste Grows by 1 Billion Square Feet Better Buildings Challenge to Cut Energy Waste Grows by 1 Billion Square Feet May 9, 2014 - 11:01am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan and the Administration's Better Buildings Challenge, the Energy Department announced today that Better Buildings Challenge partners are on track to meet their energy performance goals in their second year, saving

  18. Squaring the Circle in Biofuels? | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Squaring the Circle in Biofuels? Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 04.30.14 Squaring the Circle in Biofuels? Print Text Size: A A A Subscribe FeedbackShare Page Researchers produce a new type of plant fiber that supports normal growth while easing the difficulties of conversion to fuel. This work, featured in the Office of Science's Stories of

  19. U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled

    Gasoline and Diesel Fuel Update (EIA)

    (Dollars per Foot) Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 13.01 12.85 13.31 12.69 12.86 13.44 14.95 15.97 16.83 17.56 1970's 18.84 19.03 20.76 22.50 28.93 36.99 40.46 46.81 56.63 67.70 1980's 77.02 94.30 108.73 83.34 71.90 75.35 76.88 58.71 70.23 73.55 1990's 76.07 82.64 70.27 75.30 79.49 87.22

  20. The high-foot implosion campaign on the National Ignition Facility

    SciTech Connect (OSTI)

    Hurricane, O. A. Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Dppner, T.; Barrios Garcia, M. A.; Hinkel, D. E.; Berzak Hopkins, L. F.; Kervin, P.; Pape, S. Le; Ma, T.; MacPhee, A. G.; Milovich, J. L.; Moody, J.; Pak, A. E.; Patel, P. K.; Park, H.-S.; Remington, B. A.; Robey, H. F.; and others

    2014-05-15

    The High-Foot platform manipulates the laser pulse-shape coming from the National Ignition Facility laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This strategy gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. In this paper, we will cover the various experimental and theoretical motivations for the high-foot drive as well as cover the experimental results that have come out of the high-foot experimental campaign. At the time of this writing, the high-foot implosion has demonstrated record total deuterium-tritium yields (9.310{sup 15}) with low levels of inferred mix, excellent agreement with implosion simulations, fuel energy gains exceeding unity, and evidence for the bootstrapping associated with alpha-particle self-heating.

  1. Optical Square-Wave Clock Generation Based on an All-Optical Flip-Flop

    SciTech Connect (OSTI)

    Kaplan, A.M.; Agrawal, G.P.; Maywar, D.N.

    2010-03-10

    We demonstrate optical square-wave clock generation based on an all-optical flip-flop. The bistable output power from a resonant-type semiconductor optical amplifier (SOA) is switched ON and OFF by modulating its input with its output via cross-gain modulation in a traveling-wave SOA. All active components are driven by dc currents, and the wavelength and clock frequency are selectable. A clock frequency of 3.5 MHz is demonstrated, limited by the time of flight between bulk optical components. Optical square-wave clock signals are promising for applications in photonic integrated circuits and all-optical signal processing.

  2. U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,028 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,024 1,027 1,032 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages:

  3. Microsoft Word - Chemetall Foote_Kings Mountain and Silver Peak Final EA 9-15-10-1 _3_

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Final Environmental Assessment For Chemetall Foote Corporation Electric Drive Vehicle Battery and Component Manufacturing Initiative Kings Mountain, NC and Silver Peak, NV September 2010 Prepared for: Department of Energy National Energy Technology Laboratory This page intentionally left blank. Electric Drive Vehicle Battery and DOE/EA-1715 Component Manufacturing Initiative Project Environmental Assessment Chemetall Foote Corporation, Kings Mountain, NC and Silver Peak, NV September 2010

  4. Simulation of gross and net erosion of high-Z materials in the DIII-D divertor

    SciTech Connect (OSTI)

    Wampler, William R.; Ding, R.; Stangeby, P. C.; Elder, J. D.; Tskhakaya, D.; Kirschner, A.; Guo, H. Y.; Chan, V. S.; McLean, A. G.; Snyder, P. B.; Rudakov, D. L.

    2015-12-17

    The three-dimensional Monte Carlo code ERO has been used to simulate dedicated DIII-D experiments in which Mo and W samples with different sizes were exposed to controlled and well-diagnosed divertor plasma conditions to measure the gross and net erosion rates. Experimentally, the net erosion rate is significantly reduced due to the high local redeposition probability of eroded high-Z materials, which according to the modelling is mainly controlled by the electric field and plasma density within the Chodura sheath. Similar redeposition ratios were obtained from ERO modelling with three different sheath models for small angles between the magnetic field and the material surface, mainly because of their similar mean ionization lengths. The modelled redeposition ratios are close to the measured value. Decreasing the potential drop across the sheath can suppress both gross and net erosion because sputtering yield is decreased due to lower incident energy while the redeposition ratio is not reduced owing to the higher electron density in the Chodura sheath. Taking into account material mixing in the ERO surface model, the net erosion rate of high-Z materials is shown to be strongly dependent on the carbon impurity concentration in the background plasma; higher carbon concentration can suppress net erosion. As a result, the principal experimental results such as net erosion rate and profile and redeposition ratio are well reproduced by the ERO simulations.

  5. Simulation of gross and net erosion of high-Z materials in the DIII-D divertor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wampler, William R.; Ding, R.; Stangeby, P. C.; Elder, J. D.; Tskhakaya, D.; Kirschner, A.; Guo, H. Y.; Chan, V. S.; McLean, A. G.; Snyder, P. B.; et al

    2015-12-17

    The three-dimensional Monte Carlo code ERO has been used to simulate dedicated DIII-D experiments in which Mo and W samples with different sizes were exposed to controlled and well-diagnosed divertor plasma conditions to measure the gross and net erosion rates. Experimentally, the net erosion rate is significantly reduced due to the high local redeposition probability of eroded high-Z materials, which according to the modelling is mainly controlled by the electric field and plasma density within the Chodura sheath. Similar redeposition ratios were obtained from ERO modelling with three different sheath models for small angles between the magnetic field and themore » material surface, mainly because of their similar mean ionization lengths. The modelled redeposition ratios are close to the measured value. Decreasing the potential drop across the sheath can suppress both gross and net erosion because sputtering yield is decreased due to lower incident energy while the redeposition ratio is not reduced owing to the higher electron density in the Chodura sheath. Taking into account material mixing in the ERO surface model, the net erosion rate of high-Z materials is shown to be strongly dependent on the carbon impurity concentration in the background plasma; higher carbon concentration can suppress net erosion. As a result, the principal experimental results such as net erosion rate and profile and redeposition ratio are well reproduced by the ERO simulations.« less

  6. Three-Dimensional Rotational Angiography of the Foot in Critical Limb Ischemia: A New Dimension in Revascularization Strategy

    SciTech Connect (OSTI)

    Jens, Sjoerd; Lucatelli, Pierleone; Koelemay, Mark J. W.; Marquering, Henk A. Reekers, Jim A.

    2013-06-15

    Purpose. To evaluate the additional value of three-dimensional rotational angiography (3DRA) of the foot compared with digital subtraction angiography (DSA) in patients with critical limb ischemia (CLI). Technique. For 3DRA, the C-arm was placed in the propeller position with the foot in an isocentric position. The patient's unaffected foot was positioned in a footrest outside the field of view. For correct timing of 3DRA, the delay from contrast injection in the popliteal artery at the level of knee joint to complete pedal arterial enhancement was assessed using DSA. With this delay, 3DRA was started after injection of 15 ml contrast. Imaging of the 3DRA could directly be reconstructed and visualized.Materials and MethodsPatients undergoing 3DRA of the foot were prospectively registered. DSA and 3DRA images were scored separately for arterial patency and presence of collaterals. Treatment strategies were proposed based on DSA with and without the availability of 3DRA. Results. Eleven patients underwent 3DRA of the foot. One 3DRA was not included because the acquisition was focused on the heel instead of the entire foot. Diagnostic quality of 3DRA was good in all ten patients. 3DRA compared with DSA showed additional patent arteries in six patients, patent plantar arch in three patients, and collaterals between the pedal arteries in five patients. Additional information from 3DRA resulted in a change of treatment strategy in six patients. Conclusion, 3DRA of the foot contains valuable additional real-time information to better guide peripheral vascular interventions in patients with CLI and nonhealing tissue lesions.

  7. Ballistic electrons in an open square geometry: Selective probing of resonant-energy states

    SciTech Connect (OSTI)

    Zozoulenko, I.V.; Schuster, R.; Berggren, K.-.; Ensslin, K.

    1997-04-01

    We report on the interplay between classical trajectories and quantum-mechanical effects in a square geometry. At low magnetic fields the four-terminal resistance is dominated by phenomena that depend on ballistic trajectories in a classical billiard. Superimposed on these classical effects are quantum interference effects manifested by highly periodic conductance oscillations. Numerical analysis shows that these oscillations are directly related to excitations of particular eigenstates in the square. In spite of open leads, transport through an open cavity is effectively mediated by just a few (or even a single) resonant-energy states. The leads injecting electrons into the cavity play a decisive role in a selection of the particular set of states excited in the dot. The above selection rule sets a specific frequency of the oscillations seen in the experiment. {copyright} {ital 1997} {ital The American Physical Society}

  8. Non-perturbative and self-consistent models of neutron stars in R-squared gravity

    SciTech Connect (OSTI)

    Yazadjiev, Stoytcho S.; Doneva, Daniela D.; Kokkotas, Kostas D.; Staykov, Kalin V. E-mail: daniela.doneva@uni-tuebingen.de E-mail: kalin.v.staikov@gmail.com

    2014-06-01

    In the present paper we investigate non-perturbatively and self-consistently the structure of neutron stars in R-squared gravity by simultaneously solving the interior and exterior problem. The mass-radius relations are obtained for several equations of state and for wide range of the R-squared gravity parameter a. Even though the deviation from general relativity for nonzero values of a can be large, they are still comparable with the variations due to different modern realistic equations of state. That is why the current observations of the neutron star masses and radii alone can not put constraints on the value of the parameter a. We also compare our results with those obtained within the perturbative method and we discuss the differences between them.

  9. Method for exploiting bias in factor analysis using constrained alternating least squares algorithms

    DOE Patents [OSTI]

    Keenan, Michael R.

    2008-12-30

    Bias plays an important role in factor analysis and is often implicitly made use of, for example, to constrain solutions to factors that conform to physical reality. However, when components are collinear, a large range of solutions may exist that satisfy the basic constraints and fit the data equally well. In such cases, the introduction of mathematical bias through the application of constraints may select solutions that are less than optimal. The biased alternating least squares algorithm of the present invention can offset mathematical bias introduced by constraints in the standard alternating least squares analysis to achieve factor solutions that are most consistent with physical reality. In addition, these methods can be used to explicitly exploit bias to provide alternative views and provide additional insights into spectral data sets.

  10. Fast Combinatorial Algorithm for the Solution of Linearly Constrained Least Squares Problems

    DOE Patents [OSTI]

    Van Benthem, Mark H.; Keenan, Michael R.

    2008-11-11

    A fast combinatorial algorithm can significantly reduce the computational burden when solving general equality and inequality constrained least squares problems with large numbers of observation vectors. The combinatorial algorithm provides a mathematically rigorous solution and operates at great speed by reorganizing the calculations to take advantage of the combinatorial nature of the problems to be solved. The combinatorial algorithm exploits the structure that exists in large-scale problems in order to minimize the number of arithmetic operations required to obtain a solution.

  11. High-Frequency Matrix Converter with Square Wave Input - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Solar Photovoltaic Solar Photovoltaic Geothermal Geothermal Energy Storage Energy Storage Electricity Transmission Electricity Transmission Find More Like This Return to Search High-Frequency Matrix Converter with Square Wave Input DOE Grant Recipients Contact GRANT About This Technology Publications: PDF Document Publication 8995159.pdf (1,648 KB) Technology Marketing Summary As the use of renewable energy sources increase, there is an increasing need for power converters capable of

  12. Interband magneto-spectroscopy in InSb square and parabolic quantum wells

    SciTech Connect (OSTI)

    Kasturiarachchi, T.; Edirisooriya, M.; Mishima, T. D.; Doezema, R. E.; Santos, M. B.; Saha, D.; Pan, X.; Sanders, G. D.; Stanton, C. J.

    2015-06-07

    We measure the magneto-optical absorption due to intersubband optical transitions between conduction and valence subband Landau levels in InSb square and parabolic quantum wells. InSb has the narrowest band gap (0.24 eV at low temperature) of the III–V semiconductors leading to a small effective mass (0.014 m{sub 0}) and a large g–factor (−51). As a result, the Landau level spacing is large at relatively small magnetic fields (<8 T), and one can observe spin-splitting of the Landau levels. We examine two structures: (i) a multiple-square-well structure and (ii) a structure containing multiple parabolic wells. The energies and intensities of the strongest features are well explained by a modified Pidgeon-Brown model based on an 8-band k•p model that explicitly incorporates pseudomorphic strain. The strain is essential for obtaining agreement between theory and experiment. While modeling the square well is relatively straight-forward, the parabolic well consists of 43 different layers of various thickness to approximate a parabolic potential. Agreement between theory and experiment for the parabolic well validates the applicability of the model to complicated structures, which demonstrates the robustness of our model and confirms its relevance for developing electronic and spintronic devices that seek to exploit the properties of the InSb band structure.

  13. Foot Drop after Ethanol Embolization of Calf Vascular Malformation: A Lesson on Nerve Injury

    SciTech Connect (OSTI)

    Tay, Vincent Khwee-Soon; Mohan, P. Chandra; Liew, Wendy Kein Meng; Mahadev, Arjandas; Tay, Kiang Hiong

    2013-08-01

    Ethanol is often used in sclerotherapy to treat vascular malformations. Nerve injury is a known complication of this procedure. However, the management of this complication is not well described in literature. This case describes a 10-year-old boy with a slow flow vascular malformation in the right calf who underwent transarterial ethanol embolization following prior unsuccessful direct percutaneous sclerotherapy. The development of a dense foot drop that subsequently recovered is described, and the management of this uncommon but distressful complication is discussed.

  14. Multiplexed Molecular Assays for Rapid Rule-Out of Foot-and-Mouth Disease

    SciTech Connect (OSTI)

    Lenhoff, R; Naraghi-Arani, P; Thissen, J; Olivas, J; Carillo, C; Chinn, C; Rasmussen, M; Messenger, S; Suer, L; Smith, S M; Tammero, L; Vitalis, E; Slezak, T R; Hullinger, P J; Hindson, B J; Hietala, S; Crossley, B; Mcbride, M

    2007-06-26

    A nucleic acid-based multiplexed assay was developed that combines detection of foot-and-mouth disease virus (FMDV) with rule-out assays for two other foreign animal diseases and four domestic animal diseases that cause vesicular or ulcerative lesions indistinguishable from FMDV infection in cattle, sheep and swine. The FMDV 'look-alike' diagnostic assay panel contains five PCR and twelve reverse transcriptase PCR (RT-PCR) signatures for a total of seventeen simultaneous PCR amplifications for seven diseases plus incorporating four internal assay controls. It was developed and optimized to amplify both DNA and RNA viruses simultaneously in a single tube and employs Luminex{trademark} liquid array technology. Assay development including selection of appropriate controls, a comparison of signature performance in single and multiplex testing against target nucleic acids, as well of limits of detection for each of the individual signatures is presented. While this assay is a prototype and by no means a comprehensive test for FMDV 'look-alike' viruses, an assay of this type is envisioned to have benefit to a laboratory network in routine surveillance and possibly for post-outbreak proof of freedom from foot-and-mouth disease.

  15. New self-assembly luminescent molecular triangle and square rhenium(I) complexes

    SciTech Connect (OSTI)

    Sun, S.S.; Lees, A.J.

    1999-09-20

    The design and study of well-arranged metal-containing macrocycles is one of the major current research areas in modern supramolecular chemistry. Apart from their particular structural features, supramolecular species formed by self-assembly of transition metals introduce many special functional properties such as luminescence, redox activity, and magnetism into the structure. More recently, transition metal based molecular squares have been synthesized by utilizing self-assembly of preorganized metal centers and pyridine-based bridging ligands. The 90{degree} bonding angles between ligands in transition metal complexes provide an attractive feature for constructing macrocyclic structures.

  16. Review of the Palisades pressure vessel accumulated fluence estimate and of the least squares methodology employed

    SciTech Connect (OSTI)

    Griffin, P.J.

    1998-05-01

    This report provides a review of the Palisades submittal to the Nuclear Regulatory Commission requesting endorsement of their accumulated neutron fluence estimates based on a least squares adjustment methodology. This review highlights some minor issues in the applied methodology and provides some recommendations for future work. The overall conclusion is that the Palisades fluence estimation methodology provides a reasonable approach to a {open_quotes}best estimate{close_quotes} of the accumulated pressure vessel neutron fluence and is consistent with the state-of-the-art analysis as detailed in community consensus ASTM standards.

  17. The effect of interelement dipole coupling in patterned ultrathin single crystal Fe square arrays

    SciTech Connect (OSTI)

    Sun Li; Zhai Ya; Wong Pingkwanj; Zhang Wen; Xu Yongbing; Zou Xiao; Wu Jing; Luo Linqiang; Zhai Hongru

    2011-02-01

    The correlation between the magnetic properties and the interelement separation in patterned arrays of ultrathin single crystal Fe films of 12 monolayers (ML) grown on GaAs(100) has been studied. The critical condition to form single domain remanent states in the square elements was found to be 10 {mu}m in size and 20 {mu}m for the interelement separation. The coercivity was also found to increase with the increasing interelement separation in the patterned arrays. These results are attributed to the competition between the large in-plane uniaxial anisotropy, the demagnetizing field, and interelement dipole coupling as determined semiqualitatively by the ferromagnetic resonance measurements.

  18. Self-assembly molecular squares with metal complexes as bridging ligands

    SciTech Connect (OSTI)

    Sun, S.S.; Silva, A.S.; Brinn, I.M.; Lees, A.J.

    2000-04-03

    Polynuclear transition metal complexes containing multichromophoric units, such as metal polypyridyl complexes, are of considerable current interest. Much attention has been paid to the synthesis of multicomponent systems that exhibit photoinduced intercomponent electron and/or energy-transfer processes and to their potential applications for photonic and electronic devices. Systems incorporating Re(I)- Ru(II)-, and Os(II)-based polypyridyl chromophores are the most commonly studied because of their favorable redox and spectroscopic characteristics. In this communication, the authors combine the concepts of self-assembly and complexes as ligands and report the preparation of a series of molecular squares with the general molecular formula [fac-Br(CO){sub 3}Re({mu}-(pyterpy){sub 2}M)]{sub 4}(PF{sub 6}){sub 8}, where pyterpy is 4{prime}-(4{prime}{double_prime}-pyridyl)-2,2{prime}:6{prime}2{double_prime}-terpyridine and M = Fe, Ru, or Os. The spectroscopic properties and a preliminary anion binding study of these novel octanuclear molecular squares are also presented.

  19. Bifurcation to square-wave switching in orthogonally delay-coupled semiconductor lasers: Theory and experiment

    SciTech Connect (OSTI)

    Masoller, C.; Sukow, D.; Gavrielides, A.

    2011-08-15

    We analyze the dynamics of two semiconductor lasers with so-called orthogonal time-delayed mutual coupling: the dominant TE (x) modes of each laser are rotated by 90 deg. (therefore, TM polarization or y) before being coupled to the other laser. Although this laser system allows for steady-state emission in either one or in both polarization modes, it may also exhibit stable time-periodic dynamics including square waveforms. A theoretical mapping of the switching dynamics unveils the region in parameter space where one expects to observe long-term time-periodic mode switching. Detailed numerical simulations illustrate the role played by the coupling strength, the mode frequency detuning, or the mode gain to loss difference. We complement our theoretical study with several experiments and measurements. We present time series and intensity spectra associated with the characteristics of the square waves and other waveforms observed as a function of the strength of the delay coupling. The experimental observations are in very good agreement with the analysis and the numerical results.

  20. Differentially-charged and sequentially-switched square-wave pulse forming network

    DOE Patents [OSTI]

    North, G.G.; Vogilin, G.E.

    1980-04-01

    Disclosed is a pulse forming network for delivering a high-energy square-wave pulse to a load, including a series of inductive-capacitive sections wherein the capacitors are differentially charged higher further from the load. Each charged capacitor is isolated from adjacent sections and the load by means of a normally open switch at the output of each section. The switch between the load and the closest section to the load is closed to begin discharge of the capacitor in that section into the load. During discharge of each capacitor, the voltage thereacross falls to a predetermined potential with respect to the potential across the capacitor in the next adjacent section further from the load. When this potential is reached, it is used to close the switch in the adjacent section further from the load and thereby apply the charge in that section to the load through the adjacent section toward the load. Each successive section further from the load is sequentially switched in this manner to continuously and evenly supply energy to the load over the period of the pulse, with the differentially charged capacitors providing higher potentials away from the load to compensate for the voltage drop across the resistance of each inductor. This arrangement is low in cost and yet provides a high-energy pulse in an acceptable square-wave form. 5 figs.

  1. Differentially-charged and sequentially-switched square-wave pulse forming network

    DOE Patents [OSTI]

    North, George G. [Stockton, CA; Vogilin, George E. [Livermore, CA

    1980-04-01

    A pulse forming network for delivering a high-energy square-wave pulse to a load, including a series of inductive-capacitive sections wherein the capacitors are differentially charged higher further from the load. Each charged capacitor is isolated from adjacent sections and the load by means of a normally open switch at the output of each section. The switch between the load and the closest section to the load is closed to begin discharge of the capacitor in that section into the load. During discharge of each capacitor, the voltage thereacross falls to a predetermined potential with respect to the potential across the capacitor in the next adjacent section further from the load. When this potential is reached, it is used to close the switch in the adjacent section further from the load and thereby apply the charge in that section to the load through the adjacent section toward the load. Each successive section further from the load is sequentially switched in this manner to continuously and evenly supply energy to the load over the period of the pulse, with the differentially charged capacitors providing higher potentials away from the load to compensate for the voltage drop across the resistance of each inductor. This arrangement is low in cost and yet provides a high-energy pulse in an acceptable square-wave form.

  2. c21.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    per Building (gallons) per Square Foot (gallons) per Worker (gallons) per Building (thousand dollars) per Square Foot (dollars) per Gallon (dollars) All Buildings...

  3. C16DIV.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    cubic feet) per Square Foot (cubic feet) per Worker (thousand cubic feet) per Building (thousand dollars) per Square Foot (dollars) per Thousand Cubic Feet (dollars) NEW...

  4. c25.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    per Building (million Btu) per Square Foot (thousand Btu) per Worker (million Btu) per Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All...

  5. c26.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu) per Square Foot (thousand Btu) per Worker (million Btu) per Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All Buildings...

  6. Optical pattern recognition architecture implementing the mean-square error correlation algorithm

    DOE Patents [OSTI]

    Molley, Perry A.

    1991-01-01

    An optical architecture implementing the mean-square error correlation algorithm, MSE=.SIGMA.[I-R].sup.2 for discriminating the presence of a reference image R in an input image scene I by computing the mean-square-error between a time-varying reference image signal s.sub.1 (t) and a time-varying input image signal s.sub.2 (t) includes a laser diode light source which is temporally modulated by a double-sideband suppressed-carrier source modulation signal I.sub.1 (t) having the form I.sub.1 (t)=A.sub.1 [1+.sqroot.2m.sub.1 s.sub.1 (t)cos (2.pi.f.sub.o t)] and the modulated light output from the laser diode source is diffracted by an acousto-optic deflector. The resultant intensity of the +1 diffracted order from the acousto-optic device is given by: I.sub.2 (t)=A.sub.2 [+2m.sub.2.sup.2 s.sub.2.sup.2 (t)-2.sqroot.2m.sub.2 (t) cos (2.pi.f.sub.o t] The time integration of the two signals I.sub.1 (t) and I.sub.2 (t) on the CCD deflector plane produces the result R(.tau.) of the mean-square error having the form: R(.tau.)=A.sub.1 A.sub.2 {[T]+[2m.sub.2.sup.2.multidot..intg.s.sub.2.sup.2 (t-.tau.)dt]-[2m.sub.1 m.sub.2 cos (2.tau.f.sub.o .tau.).multidot..intg.s.sub.1 (t)s.sub.2 (t-.tau.)dt]} where: s.sub.1 (t) is the signal input to the diode modulation source: s.sub.2 (t) is the signal input to the AOD modulation source; A.sub.1 is the light intensity; A.sub.2 is the diffraction efficiency; m.sub.1 and m.sub.2 are constants that determine the signal-to-bias ratio; f.sub.o is the frequency offset between the oscillator at f.sub.c and the modulation at f.sub.c +f.sub.o ; and a.sub.o and a.sub.1 are constant chosen to bias the diode source and the acousto-optic deflector into their respective linear operating regions so that the diode source exhibits a linear intensity characteristic and the AOD exhibits a linear amplitude characteristic.

  7. Sensitivity of Global Terrestrial Gross Primary Production to Hydrologic States Simulated by the Community Land Model Using Two Runoff Parameterizations

    SciTech Connect (OSTI)

    Lei, Huimin; Huang, Maoyi; Leung, Lai-Yung R.; Yang, Dawen; Shi, Xiaoying; Mao, Jiafu; Hayes, Daniel J.; Schwalm, C.; Wei, Yaxing; Liu, Shishi

    2014-09-01

    The terrestrial water and carbon cycles interact strongly at various spatio-temporal scales. To elucidate how hydrologic processes may influence carbon cycle processes, differences in terrestrial carbon cycle simulations induced by structural differences in two runoff generation schemes were investigated using the Community Land Model 4 (CLM4). Simulations were performed with runoff generation using the default TOPMODEL-based and the Variable Infiltration Capacity (VIC) model approaches under the same experimental protocol. The comparisons showed that differences in the simulated gross primary production (GPP) are mainly attributed to differences in the simulated leaf area index (LAI) rather than soil moisture availability. More specifically, differences in runoff simulations can influence LAI through changes in soil moisture, soil temperature, and their seasonality that affect the onset of the growing season and the subsequent dynamic feedbacks between terrestrial water, energy, and carbon cycles. As a result of a relative difference of 36% in global mean total runoff between the two models and subsequent changes in soil moisture, soil temperature, and LAI, the simulated global mean GPP differs by 20.4%. However, the relative difference in the global mean net ecosystem exchange between the two models is small (2.1%) due to competing effects on total mean ecosystem respiration and other fluxes, although large regional differences can still be found. Our study highlights the significant interactions among the water, energy, and carbon cycles and the need for reducing uncertainty in the hydrologic parameterization of land surface models to better constrain carbon cycle modeling.

  8. Simultaneous evaluation of interrelated cross sections by generalized least-squares and related data file requirements

    SciTech Connect (OSTI)

    Poenitz, W.P.

    1984-10-25

    Though several cross sections have been designated as standards, they are not basic units and are interrelated by ratio measurements. Moreover, as such interactions as /sup 6/Li + n and /sup 10/B + n involve only two and three cross sections respectively, total cross section data become useful for the evaluation process. The problem can be resolved by a simultaneous evaluation of the available absolute and shape data for cross sections, ratios, sums, and average cross sections by generalized least-squares. A data file is required for such evaluation which contains the originally measured quantities and their uncertainty components. Establishing such a file is a substantial task because data were frequently reported as absolute cross sections where ratios were measured without sufficient information on which reference cross section and which normalization were utilized. Reporting of uncertainties is often missing or incomplete. The requirements for data reporting will be discussed.

  9. Direct numerical simulation of turbulent flow in a rotating square duct

    SciTech Connect (OSTI)

    Dai, Yi-Jun; Huang, Wei-Xi Xu, Chun-Xiao; Cui, Gui-Xiang

    2015-06-15

    A fully developed turbulent flow in a rotating straight square duct is simulated by direct numerical simulations at Re{sub ?} = 300 and 0 ? Ro{sub ?} ? 40. The rotating axis is parallel to two opposite walls of the duct and normal to the main flow. Variations of the turbulence statistics with the rotation rate are presented, and a comparison with the rotating turbulent channel flow is discussed. Rich secondary flow patterns in the cross section are observed by varying the rotation rate. The appearance of a pair of additional vortices above the pressure wall is carefully examined, and the underlying mechanism is explained according to the budget analysis of the mean momentum equations.

  10. Multivariate analysis of remote LIBS spectra using partial least squares, principal component analysis, and related techniques

    SciTech Connect (OSTI)

    Clegg, Samuel M; Barefield, James E; Wiens, Roger C; Sklute, Elizabeth; Dyare, Melinda D

    2008-01-01

    Quantitative analysis with LIBS traditionally employs calibration curves that are complicated by the chemical matrix effects. These chemical matrix effects influence the LIBS plasma and the ratio of elemental composition to elemental emission line intensity. Consequently, LIBS calibration typically requires a priori knowledge of the unknown, in order for a series of calibration standards similar to the unknown to be employed. In this paper, three new Multivariate Analysis (MV A) techniques are employed to analyze the LIBS spectra of 18 disparate igneous and highly-metamorphosed rock samples. Partial Least Squares (PLS) analysis is used to generate a calibration model from which unknown samples can be analyzed. Principal Components Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA) are employed to generate a model and predict the rock type of the samples. These MV A techniques appear to exploit the matrix effects associated with the chemistries of these 18 samples.

  11. Spin-dependent Seebeck effects in a graphene nanoribbon coupled to two square lattice ferromagnetic leads

    SciTech Connect (OSTI)

    Zhou, Benhu Zeng, Yangsu; Zhou, Benliang; Zhou, Guanghui; Ouyang, Tao

    2015-03-14

    We theoretically investigate spin-dependent Seebeck effects for a system consisting of a narrow graphene nanoribbon (GNR) contacted to square lattice ferromagnetic (FM) electrodes with noncollinear magnetic moments. Both zigzag-edge graphene nanoribbons (ZGNRs) and armchair-edge graphene nanoribbons (AGNRs) were considered. Compared with our previous work with two-dimensional honeycomb-lattice FM leads, a more realistic model of two-dimensional square-lattice FM electrodes is adopted here. Using the nonequilibrium Green's function method combining with the tight-binding Hamiltonian, it is demonstrated that both the charge Seebeck coefficient S{sub C} and the spin-dependent Seebeck coefficient S{sub S} strongly depend on the geometrical contact between the GNR and the leads. In our previous work, S{sub C} for a semiconducting 15-AGNR system near the Dirac point is two orders of magnitude larger than that of a metallic 17-AGNR system. However, S{sub C} is the same order of magnitude for both metallic 17-AGNR and semiconducting 15-AGNR systems in the present paper because of the lack of a transmission energy gap for the 15-AGNR system. Furthermore, the spin-dependent Seebeck coefficient S{sub S} for the systems with 20-ZGNR, 17-AGNR, and 15-AGNR is of the same order of magnitude and its maximum absolute value can reach 8 μV/K. The spin-dependent Seebeck effects are not very pronounced because the transmission coefficient weakly depends on spin orientation. Moreover, the spin-dependent Seebeck coefficient is further suppressed with increasing angle between the relative alignments of magnetization directions of the two leads. Additionally, the spin-dependent Seebeck coefficient can be strongly suppressed for larger disorder strength. The results obtained here may provide valuable theoretical guidance in the experimental design of heat spintronic devices.

  12. Buildings Energy Data Book [EERE]

    3 Federal Building Delivered Energy Consumption Intensities, by Year (1) Consumption per Gross Consumption per Gross Year Square Foot (10^3 Btu/SF) Year Square Foot (10^3 Btu/SF) FY 1985 123.0 FY 1997 111.9 FY 1986 131.3 FY 1998 107.7 FY 1987 136.9 FY 1999 106.7 FY 1988 136.3 FY 2000 104.8 FY 1989 132.6 FY 2001 105.9 FY 1990 128.6 FY 2002 104.6 FY 1991 122.9 FY 2003 105.2 FY 1992 125.5 FY 2004 104.9 FY 1993 122.3 FY 2005 98.2 FY 1994 120.2 FY 2006 (2) 113.9 FY 1995 117.3 FY 2007 (3) 112.9 FY

  13. Natural Gas Gross Withdrawals

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S. 2,750,252 2,817,792 2,743,783 2,823,547 2,823,205 2,668,567 1973-2016 Alaska 261,150 279,434 289,770 304,048 298,809 ...

  14. Natural Gas Gross Withdrawals

    Gasoline and Diesel Fuel Update (EIA)

    Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

  15. Natural Gas Gross Withdrawals

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History U.S. 26,816,085 28,479,026 29,542,313 ... Alabama State Offshore 101,487 84,270 87,398 75,660 70,827 1987-2014 Arizona 183 168 117 ...

  16. Natural Gas Gross Withdrawals

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History U.S. 26,816,085 28,479,026 29,542,313 29,522,551 31,345,546 32,894,683 1936-2015 U.S. Offshore 2,875,945 2,416,644 2,044,643 1,859,469 1,818,267 1977-2014 U.S. State Offshore 575,601 549,151 489,505 505,318 514,809 1978-2014 Federal Offshore U.S. 2,300,344 1,867,492 1,555,138 1,354,151 1,303,458 1977-2014 Alaska 3,197,100 3,162,922 3,164,791 3,215,358 3,168,566 3,175,163 1967-2015 Alaska Onshore 2,826,952 2,798,220 2,857,485 2,882,956 2,803,429

  17. Natural Gas Gross Withdrawals

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 2,819,121 2,668,329 2,823,451 2,682,073 2,768,037 2,633,983 1973-2016 Alaska 298,809 273,296 295,244 246,120 269,204 233,790 1991-2016 Arkansas 77,842 71,967 74,543 70,831 71,769 67,293 1991-2016 California 18,737 17,100 18,166 17,618 18,096 17,265 1991-2016 Colorado 143,629 134,325 143,636 139,949 144,615 136,544 1991-2016 Federal Offshore Gulf of Mexico 108,752 101,117 111,315 101,883 108,634 100,402 1997-2016 Kansas 22,543 20,866

  18. Sofia Mancheno-Gross

    Broader source: Energy.gov [DOE]

    Sofia specializes in Communications strategies on behalf of the Office of Energy Efficiency and Renewable Energy.

  19. P.L. 100-615, "Federal Energy Management Improvement Act" (1988)

    SciTech Connect (OSTI)

    2011-12-13

    Requires agencies to improve construction designs for Federal buildings so that the energy consumption per gross square foot in use during FY 1995 is at least ten percent less than that of FY 1985. Sets forth implementation steps to meet such goal. Exempts from such requirement buildings in which energy intensive activities are implemented. Redescribes procedures involved in the establishment and use of life cycle cost methods for Federal buildings.

  20. Building 51 and Bevatron Demolition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building 51 and Bevatron Demolition Community Environmental Documents Tours Community Programs Friends of Berkeley Lab ⇒ Navigate Section Community Environmental Documents Tours Community Programs Friends of Berkeley Lab Project Description Building 51, which housed the Bevatron, was an approximately 125,000 gross-square-foot, steel-frame structure built in the early 1950s. The building was located in the west-central part of Berkeley Lab and occupied approximately 2.25 acres. During its

  1. Fixed conditions for achieving the real-valued partition function of one-dimensional Gross-Pitaevskii equation coupled with time-dependent potential

    SciTech Connect (OSTI)

    Prayitno, T. B.

    2014-03-24

    We have imposed the conditions in order to preserve the real-valued partition function in the case of onedimensional Gross-Pitaevskii equation coupled by time-dependent potential. In this case we have solved the Gross-Pitaevskii equation by means of the time-dependent perturbation theory by extending the previous work of Kivshar et al. [Phys. Lett A 278, 225–230 (2001)]. To use the method, we have treated the equation as the macroscopic quantum oscillator and found that the expression of the partition function explicitly has complex values. In fact, we have to choose not only the appropriate functions but also the suitable several values of the potential to keep the real-valued partition function.

  2. Searching for Minimum in Dependence of Squared Speed-of-Sound on Collision Energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Fu-Hu; Gao, Li-Na; Lacey, Roy A.

    2016-01-01

    Experimore » mental results of the rapidity distributions of negatively charged pions produced in proton-proton ( p - p ) and beryllium-beryllium (Be-Be) collisions at different beam momentums, measured by the NA61/SHINE Collaboration at the super proton synchrotron (SPS), are described by a revised (three-source) Landau hydrodynamic model. The squared speed-of-sound parameter c s 2 is then extracted from the width of rapidity distribution. There is a local minimum (knee point) which indicates a softest point in the equation of state (EoS) appearing at about 40 A  GeV/ c (or 8.8 GeV) in c s 2 excitation function (the dependence of c s 2 on incident beam momentum (or center-of-mass energy)). This knee point should be related to the searching for the onset of quark deconfinement and the critical point of quark-gluon plasma (QGP) phase transition.« less

  3. Neutron diffraction studies of a four-coordinated hydride in near square-planar geometry

    SciTech Connect (OSTI)

    Liao, Jian -Hong; Dhayal, Rajendra Singh; Wang, Xiaoping; Kahlal, Samia; Saillard, Jean -Yves; Liu, C. W.

    2014-10-07

    The structure of a nanospheric polyhydrido copper cluster, [Cu20(H)11{S2P(OiPr)2}9], was determined by single-crystal neutron diffraction. Cu20 cluster consists of an elongated triangular orthobicupola constructed from 18 Cu atoms that encapsulate a [Cu2H5}3- ion in the center with an exceptionally short Cu-Cu distance. The eleven hydrides in the cluster display three different coordination modes to the Cu atoms: Six μ3-hydrides in pyramidal geometry, two μ4-hydrides in tetrahedral cavity, and three μ4-hydrides in an unprecedented near square-planar geometry. The neutron data set was collected on a small crystal of the size 0.20 mm x 0.50 mm x 0.65 mm for seven days using the Spallation Neutron Source TOPAZ single-crystal time-of-flight Laue diffractometer at the Oak Ridge National Laboratory. Furthermore, the final R-factor is 8.64% for 16014 reflections.

  4. Neutron diffraction studies of a four-coordinated hydride in near square-planar geometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liao, Jian -Hong; Dhayal, Rajendra Singh; Wang, Xiaoping; Kahlal, Samia; Saillard, Jean -Yves; Liu, C. W.

    2014-10-07

    The structure of a nanospheric polyhydrido copper cluster, [Cu20(H)11{S2P(OiPr)2}9], was determined by single-crystal neutron diffraction. Cu20 cluster consists of an elongated triangular orthobicupola constructed from 18 Cu atoms that encapsulate a [Cu2H5}3- ion in the center with an exceptionally short Cu-Cu distance. The eleven hydrides in the cluster display three different coordination modes to the Cu atoms: Six μ3-hydrides in pyramidal geometry, two μ4-hydrides in tetrahedral cavity, and three μ4-hydrides in an unprecedented near square-planar geometry. The neutron data set was collected on a small crystal of the size 0.20 mm x 0.50 mm x 0.65 mm for seven daysmore » using the Spallation Neutron Source TOPAZ single-crystal time-of-flight Laue diffractometer at the Oak Ridge National Laboratory. Furthermore, the final R-factor is 8.64% for 16014 reflections.« less

  5. Simulated Stochastic Approximation Annealing for Global Optimization with a Square-Root Cooling Schedule

    SciTech Connect (OSTI)

    Liang, Faming; Cheng, Yichen; Lin, Guang

    2014-06-13

    Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to have such a long CPU time. This paper proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation Markov chain Monte Carlo, it is shown that the new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, e.g., a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors.

  6. The tunneling solutions of the time-dependent Schroedinger equation for a square-potential barrier

    SciTech Connect (OSTI)

    Elci, A.; Hjalmarson, H. P.

    2009-10-15

    The exact tunneling solutions of the time-dependent Schroedinger equation with a square-potential barrier are derived using the continuous symmetry group G{sub S} for the partial differential equation. The infinitesimal generators and the elements for G{sub S} are represented and derived in the jet space. There exist six classes of wave functions. The representative (canonical) wave functions for the classes are labeled by the eigenvalue sets, whose elements arise partially from the reducibility of a Lie subgroup G{sub LS} of G{sub S} and partially from the separation of variables. Each eigenvalue set provides two or more time scales for the wave function. The ratio of two time scales can act as the duration of an intrinsic clock for the particle motion. The exact solutions of the time-dependent Schroedinger equation presented here can produce tunneling currents that are orders of magnitude larger than those produced by the energy eigenfunctions. The exact solutions show that tunneling current can be quantized under appropriate boundary conditions and tunneling probability can be affected by a transverse acceleration.

  7. Nanocluster building blocks of artificial square spin ice: Stray-field studies of thermal dynamics

    SciTech Connect (OSTI)

    Pohlit, Merlin Porrati, Fabrizio; Huth, Michael; Müller, Jens

    2015-05-07

    We present measurements of the thermal dynamics of a Co-based single building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition. We employ micro-Hall magnetometry, an ultra-sensitive tool to study the stray field emanating from magnetic nanostructures, as a new technique to access the dynamical properties during the magnetization reversal of the spin-ice nanocluster. The obtained hysteresis loop exhibits distinct steps, displaying a reduction of their “coercive field” with increasing temperature. Therefore, thermally unstable states could be repetitively prepared by relatively simple temperature and field protocols allowing one to investigate the statistics of their switching behavior within experimentally accessible timescales. For a selected switching event, we find a strong reduction of the so-prepared states' “survival time” with increasing temperature and magnetic field. Besides the possibility to control the lifetime of selected switching events at will, we find evidence for a more complex behavior caused by the special spin ice arrangement of the macrospins, i.e., that the magnetic reversal statistically follows distinct “paths” most likely driven by thermal perturbation.

  8. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 1, 0.01 Foundations and footings

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    General information is presented for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; system work breakdown structure; and general system/material data. Deficiency standards and inspection methods are given for footings - spread/strip/grade beams; foundation walls; foundation dampproofing/waterproofing; excavation/backfill/ and piles & caissons.

  9. Simulation and analysis of the plutonium shipping container subject to 30-foot drops

    SciTech Connect (OSTI)

    Gong, C.; Gupta, N.K.; Gromada, R.J.

    1995-12-31

    The shipping container 5320 is a shipping package for radioactive materials. In order to maintain the component in this packaging within the sub-critical state when subjected to any kind of Hypothetical Accident conditions (HAC), this Type B packaging is designed with various impact limiters. The present study is to examine the energy absorbing capacity of the impact limiter design of this container subjected to a 30-foot drop onto a flat unyielding horizontal surface in each of the three critical dropping orientations. This paper presents the results of a three dimensional nonlinear dynamic impact analysis. This analysis shows the deformed configuration of the container caused by the impact and also determines the effects of different stress wave paths in three distinct drops on the stress states in the critical component. The solution to the problem was obtained using the ABAQUS (explicit) finite element computer code. The nonlinearity of this analysis involves large structural deformation, elasto-plastic materials with strain hardening as well as multiple contact interfaces. Three drop orientations were studied, namely, top down impact, bottom down impact and side impact. Results will be compared against actual drop test data.

  10. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    square feet) Total (million dollars) per Building (thousand dollars) per Square Foot (dollars) per Million Btu (dollars) All Buildings ......

  11. Robust parallel iterative solvers for linear and least-squares problems, Final Technical Report

    SciTech Connect (OSTI)

    Saad, Yousef

    2014-01-16

    The primary goal of this project is to study and develop robust iterative methods for solving linear systems of equations and least squares systems. The focus of the Minnesota team is on algorithms development, robustness issues, and on tests and validation of the methods on realistic problems. 1. The project begun with an investigation on how to practically update a preconditioner obtained from an ILU-type factorization, when the coefficient matrix changes. 2. We investigated strategies to improve robustness in parallel preconditioners in a specific case of a PDE with discontinuous coefficients. 3. We explored ways to adapt standard preconditioners for solving linear systems arising from the Helmholtz equation. These are often difficult linear systems to solve by iterative methods. 4. We have also worked on purely theoretical issues related to the analysis of Krylov subspace methods for linear systems. 5. We developed an effective strategy for performing ILU factorizations for the case when the matrix is highly indefinite. The strategy uses shifting in some optimal way. The method was extended to the solution of Helmholtz equations by using complex shifts, yielding very good results in many cases. 6. We addressed the difficult problem of preconditioning sparse systems of equations on GPUs. 7. A by-product of the above work is a software package consisting of an iterative solver library for GPUs based on CUDA. This was made publicly available. It was the first such library that offers complete iterative solvers for GPUs. 8. We considered another form of ILU which blends coarsening techniques from Multigrid with algebraic multilevel methods. 9. We have released a new version on our parallel solver - called pARMS [new version is version 3]. As part of this we have tested the code in complex settings - including the solution of Maxwell and Helmholtz equations and for a problem of crystal growth.10. As an application of polynomial preconditioning we considered the

  12. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    |Natural Gas Energy Intensity | | | (billion cubic feet) | square feet) | (cubic feetsquare foot) | | |---+---+---...

  13. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Electricity (million |Electricity Energy Intensity | | | (billion kWh) | square feet | (kWhsquare foot) | | |---+---...

  14. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square | Fuel Oil Energy Intensity | | | (million gallons) | feet) | (gallonssquare foot) | | |---+---+---...

  15. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    | Natural Gas Energy Intensity | | | (billion cubic feet) | square feet) | (cubic feetsquare foot) | | |---+---+---...

  16. Laser imprint reduction for the critical-density foam buffered target driven by a relatively strong foot pulse at early stage of laser implosions

    SciTech Connect (OSTI)

    Li, J. W. He, X. T.; Kang, W.; Li, J. H.; Zheng, W. D.

    2015-12-15

    In order to reduce the effect of laser imprint in direct-drive ignition scheme a low-density foam buffered target has been proposed. This target is driven by a laser pulse with a low-intensity foot at the early stage of implosion, which heats the foam and elongates the thermal conduction zone between the laser absorption region and ablation front, increasing the thermal smoothing effect. In this paper, a relatively strong foot pulse is adopted to irradiate the critical-density foam buffered target. The stronger foot, near 1 × 10{sup 14 }W/cm{sup 2}, is able to drive a radiative shock in the low-density foam, which helps smooth the shock and further reduce the effect of laser imprint. The radiative shock also forms a double ablation front structure between the two ablation fronts to further stabilize the hydrodynamics, achieving the similar results to a target with a high-Z dopant in the ablator. 2D analysis shows that for the critical-density foam buffered target irradiated by the strong foot pulse, the laser imprint can be reduced due to the radiative shock in the foam and an increased thermal smoothing effect. It seems viable for the critical-density foam buffered target to be driven by a relatively strong foot pulse with the goal of reducing the laser imprint and achieving better implosion symmetry in the direct-drive laser fusion.

  17. Higher velocity, high-foot implosions on the National Ignition Facility laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Döppner, T.; Ma, T.; Park, H. -S.; Barrios Garcia, M. A.; Berzak Hopkins, L. F.; Casey, D. T.; Cerjan, C. J.; et al

    2015-05-15

    By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), andmore » the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v⁹˙⁴. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v⁵˙⁹) and is additional evidence that these experiments have significant alpha heating.« less

  18. Higher velocity, high-foot implosions on the National Ignition Facility laser

    SciTech Connect (OSTI)

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Döppner, T.; Ma, T.; Park, H. -S.; Barrios Garcia, M. A.; Berzak Hopkins, L. F.; Casey, D. T.; Cerjan, C. J.; Dewald, E. L.; Dittrich, T. R.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Kline, J. L.; Knauer, J. P.; Kritcher, A. L.; Landen, O. L.; LePape, S.; MacPhee, A. G.; Milovich, J. L.; Nikroo, A.; Pak, A. E.; Patel, P. K.; Rygg, J. R.; Ralph, J. E.; Salmonson, J. D.; Spears, B. K.; Springer, P. T.; Tommasini, R.; Benedetti, L. R.; Bionta, R. M.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Field, J. E.; Fittinghoff, D. N.; Frenje, J.; Gatu Johnson, M.; Grim, G. P.; Hatarik, R.; Merrill, F. E.; Nagel, S. R.; Izumi, N.; Khan, S. F.; Town, R. P. J.; Sayre, D. B.; Volegov, P.; Wilde, C. H.

    2015-05-15

    By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), and the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v⁹˙⁴. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v⁵˙⁹) and is additional evidence that these experiments have significant alpha heating.

  19. A Continuous Measure of Gross Primary Production for the Conterminous U.S. Derived from MODIS and AmeriFlux Data

    SciTech Connect (OSTI)

    Xia, Jingfeng; Zhuang, Qianlai; Law, Beverly E.; Chen, Jiquan; Baldocchi, Dennis D.; Cook, David R.; Oren, Ram; Richardson, Andrew D.; Wharton, Sonia; Ma, Siyan; Martin, Timothy A.; Verma, Shashi B.; Suyker, Andrew E.; Scott, Russell L.; Monson, Russell K.; Litvak, Marcy; Hollinger, David Y.; Sun, Ge; Davis, Kenneth J.; Bolstad, Paul V.; Burns, Sean P.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Katul, Gabriel G.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Starr, Gregory; Torn, Margaret S.; Wofsy, Steven C.

    2009-01-28

    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these measurements only represent the fluxes at the scale of the tower footprint. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide range of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000-2004, and was validated using observed GPP over the period 2005-2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then used the model to estimate GPP for each 1 km x 1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous measure of gross primary production for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr{sup -1} for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were dominated

  20. C3DIV.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) per Worker (million Btu) NEW...

  1. A spectral mimetic least-squares method for the Stokes equations with no-slip boundary condition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gerritsma, Marc; Bochev, Pavel

    2016-03-22

    Formulation of locally conservative least-squares finite element methods (LSFEMs) for the Stokes equations with the no-slip boundary condition has been a long standing problem. Existing LSFEMs that yield exactly divergence free velocities require non-standard boundary conditions (Bochev and Gunzburger, 2009 [3]), while methods that admit the no-slip condition satisfy the incompressibility equation only approximately (Bochev and Gunzburger, 2009 [4, Chapter 7]). Here we address this problem by proving a new non-standard stability bound for the velocity–vorticity–pressure Stokes system augmented with a no-slip boundary condition. This bound gives rise to a norm-equivalent least-squares functional in which the velocity can be approximatedmore » by div-conforming finite element spaces, thereby enabling a locally-conservative approximations of this variable. Here, we also provide a practical realization of the new LSFEM using high-order spectral mimetic finite element spaces (Kreeft et al., 2011) and report several numerical tests, which confirm its mimetic properties.« less

  2. Model-Based Least Squares Reconstruction of Coded Source Neutron Radiographs: Integrating the ORNL HFIR CG1D Source Model

    SciTech Connect (OSTI)

    Santos-Villalobos, Hector J; Gregor, Jens; Bingham, Philip R

    2014-01-01

    At the present, neutron sources cannot be fabricated small and powerful enough in order to achieve high resolution radiography while maintaining an adequate flux. One solution is to employ computational imaging techniques such as a Magnified Coded Source Imaging (CSI) system. A coded-mask is placed between the neutron source and the object. The system resolution is increased by reducing the size of the mask holes and the flux is increased by increasing the size of the coded-mask and/or the number of holes. One limitation of such system is that the resolution of current state-of-the-art scintillator-based detectors caps around 50um. To overcome this challenge, the coded-mask and object are magnified by making the distance from the coded-mask to the object much smaller than the distance from object to detector. In previous work, we have shown via synthetic experiments that our least squares method outperforms other methods in image quality and reconstruction precision because of the modeling of the CSI system components. However, the validation experiments were limited to simplistic neutron sources. In this work, we aim to model the flux distribution of a real neutron source and incorporate such a model in our least squares computational system. We provide a full description of the methodology used to characterize the neutron source and validate the method with synthetic experiments.

  3. Width dependent transition of quantized spin-wave modes in Ni{sub 80}Fe{sub 20} square nanorings

    SciTech Connect (OSTI)

    Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Rousseau, Olivier [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Otani, YoshiChika [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2014-10-28

    We investigated optically induced ultrafast magnetization dynamics in square shaped Ni{sub 80}Fe{sub 20} nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.

  4. Study of radial growth rate and size control of silicon nanocrystals in square-wave-modulated silane plasmas

    SciTech Connect (OSTI)

    Nguyen-Tran, Th.; Roca i Cabarrocas, P.; Patriarche, G.

    2007-09-10

    The growth of silicon nanocrystals in high pressure and high dilution silane plasmas is investigated by using the temporal evolution of the self-bias on the radio frequency electrode and transmission electron microscopy. A square-wave-modulated plasma was used in order to control the growth of monodispersed nanoparticles with sizes smaller than 12 nm. To this end, the plasma on time was kept below 1 s. The radial growth rate of nanoparticles was varied in the range from 7.5 to 75 nm/s by changing silane partial pressure. Nanoparticles grown in silane-helium discharges have been found amorphous while they are crystalline in silane-hydrogen-argon discharges. Surprisingly, the crystallization in the gaseous phase does not depend on how slow or fast the particles grow but on the presence of atomic hydrogen.

  5. Inflection points of microcanonical entropy: Monte Carlo simulation of q state Potts model on a finite square lattice

    SciTech Connect (OSTI)

    Praveen, E. Satyanarayana, S. V. M.

    2014-04-24

    Traditional definition of phase transition involves an infinitely large system in thermodynamic limit. Finite systems such as biological proteins exhibit cooperative behavior similar to phase transitions. We employ recently discovered analysis of inflection points of microcanonical entropy to estimate the transition temperature of the phase transition in q state Potts model on a finite two dimensional square lattice for q=3 (second order) and q=8 (first order). The difference of energy density of states (DOS) ? ln g(E) = ln g(E+ ?E) ?ln g(E) exhibits a point of inflexion at a value corresponding to inverse transition temperature. This feature is common to systems exhibiting both first as well as second order transitions. While the difference of DOS registers a monotonic variation around the point of inflexion for systems exhibiting second order transition, it has an S-shape with a minimum and maximum around the point of inflexion for the case of first order transition.

  6. Energy Information Administration - Commercial Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption Natural Gas Expenditures per Building (thousand cubic feet) per Square Foot (cubic feet) Distribution of Building-Level Intensities (cubic feetsquare foot) 25th...

  7. 1020 One Energy Square

    Office of Environmental Management (EM)

    ... - the transmission voltage class from 69 kilovolts to 525 kilovolts. These power generating units range from 20 to 300 megawatts. The adaptable transformer design allows WATTSTOCK ...

  8. Concord Four Square Retrofit

    SciTech Connect (OSTI)

    2010-07-09

    This case study describes the retrofit of a home in West Concord, Massachusetts that proved that a 50% reduction in home energy use could be met today in existing housing.

  9. Total Gross Tumor Volume Is an Independent Prognostic Factor in Patients Treated With Selective Nodal Irradiation for Stage I to III Small Cell Lung Cancer

    SciTech Connect (OSTI)

    Reymen, Bart; Van Loon, Judith; Baardwijk, Angela van; Wanders, Rinus; Borger, Jacques; Dingemans, Anne-Marie C.; Bootsma, Gerben; Pitz, Cordula; Lunde, Ragnar; Geraedts, Wiel; Lambin, Philippe; De Ruysscher, Dirk; University Hospital Leuven/ KU Leuven, Leuven

    2013-04-01

    Purpose: In non-small cell lung cancer, gross tumor volume (GTV) influences survival more than other risk factors. This could also apply to small cell lung cancer. Methods and Materials: Analysis of our prospective database with stage I to III SCLC patients referred for concurrent chemo radiation therapy. Standard treatment was 45 Gy in 1.5-Gy fractions twice daily concurrently with carboplatin-etoposide, followed by prophylactic cranial irradiation (PCI) in case of non-progression. Only fluorodeoxyglucose (FDG)-positron emission tomography (PET)-positive or pathologically proven nodal sites were included in the target volume. Total GTV consisted of post chemotherapy tumor volume and pre chemotherapy nodal volume. Survival was calculated from diagnosis (Kaplan-Meier ). Results: A total of 119 patients were included between May 2004 and June 2009. Median total GTV was 93 ± 152 cc (7.5-895 cc). Isolated elective nodal failure occurred in 2 patients (1.7%). Median follow-up was 38 months, median overall survival 20 months (95% confidence interval = 17.8-22.1 months), and 2-year survival 38.4%. In multivariate analysis, only total GTV (P=.026) and performance status (P=.016) significantly influenced survival. Conclusions: In this series of stage I to III small cell lung cancer patients treated with FDG-PET-based selective nodal irradiation total GTV is an independent risk factor for survival.

  10. Population genomics of the Anthropocene: Urbanization is negatively associated with genome-wide variation in white-footed mouse populations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Munshi-South, Jason; Zolnik, Christine P.; Harris, Stephen E.

    2016-02-11

    Urbanization results in pervasive habitat fragmentation and reduces standing genetic variation through bottlenecks and drift. Loss of genomewide variation may ultimately reduce the evolutionary potential of animal populations experiencing rapidly changing conditions. In this study, we examined genomewide variation among 23 white-footed mouse (Peromyscus leucopus) populations sampled along an urbanization gradient in the New York City metropolitan area. Genomewide variation was estimated as a proxy for evolutionary potential using more than 10000 single nucleotide polymorphism (SNP) markers generated by ddRAD-Seq. We found that genomewide variation is inversely related to urbanization as measured by percent impervious surface cover, and to amore » lesser extent, human population density. We also report that urbanization results in enhanced genomewide differentiation between populations in cities. There was no pattern of isolation by distance among these populations, but an isolation by resistance model based on impervious surface significantly explained patterns of genetic differentiation. Isolation by environment modeling also indicated that urban populations deviate much more strongly from global allele frequencies than suburban or rural populations. Lastly, this study is the first to examine loss of genomewide SNP variation along an urban-to-rural gradient and quantify urbanization as a driver of population genomic patterns.« less

  11. Analysis of carbon-oxygen reactions by use of a square-input response technique and {sup 18}O isotope

    SciTech Connect (OSTI)

    Miura, Kouichi; Nakagawa, Hiroyuki

    1996-12-31

    Carbon gasification reaction has been investigated for decades including the pioneering works of Walker and his co-workers, but its mechanism has not been completely elucidated. The concept of the active surface area (ASA) was proposed by them, and its importance has been recognized. However, since ASA was measured by O{sub 2} chemisorption at below 300{degrees}C where carbon loss through gasification is negligible, it does not reflect the actual gasification situation. To overcome this weak point, measurements of ASA in a batch reactor and the so-called transient kinetic (TK) method were proposed. Ahmed and Back successfully measured the chemisorbed oxygen during the gasification using a batch reactor, and proposed a new mechanistic sequence for carbon-oxygen reaction which stresses the importance of the reaction between the gaseous oxygen and the chemisorbed oxygen. Radovic et al. proposed the concept of the reactive surface area (RSA), and reported excellent proportionality between the CO{sub 2} gasification rate and the RSA estimated by the TK and the TPD methods. Kapteijn et al. showed that the TK method with labeled molecules is more powerful to examine the mechanism. They found the presence of two types of surface oxygen complexes which desorb at different rates. A Square-input response (SIR) method is applied to the carbon-oxygen reaction. This method allows the observation of transient changes on two step changes. This method has been successfully applied to the analysis of a coal char gasification.

  12. Effects of in-situ and reanalysis climate data on estimation of cropland gross primary production using the Vegetation Photosynthesis Model

    SciTech Connect (OSTI)

    Jin, Cui; Xiao, Xiangming; Wagle, Pradeep; Griffis, Timothy; Dong, Jinwei; Wu, Chaoyang; Qin, Yuanwei; Cook, David R.

    2015-11-01

    Satellite-based Production Efficiency Models (PEMs) often require meteorological reanalysis data such as the North America Regional Reanalysis (NARR) by the National Centers for Environmental Prediction (NCEP) as model inputs to simulate Gross Primary Production (GPP) at regional and global scales. This study first evaluated the accuracies of air temperature (TNARR) and downward shortwave radiation (RNARR) of the NARR by comparing with in-situ meteorological measurements at 37 AmeriFlux non-crop eddy flux sites, then used one PEM – the Vegetation Photosynthesis Model (VPM) to simulate 8-day mean GPP (GPPVPM) at seven AmeriFlux crop sites, and investigated the uncertainties in GPPVPM from climate inputs as compared with eddy covariance-based GPP (GPPEC). Results showed that TNARR agreed well with in-situ measurements; RNARR, however, was positively biased. An empirical linear correction was applied to RNARR, and significantly reduced the relative error of RNARR by ~25% for crop site-years. Overall, GPPVPM calculated from the in-situ (GPPVPM(EC)), original (GPPVPM(NARR)) and adjusted NARR (GPPVPM(adjNARR)) climate data tracked the seasonality of GPPEC well, albeit with different degrees of biases. GPPVPM(EC) showed a good match with GPPEC for maize (Zea mays L.), but was slightly underestimated for soybean (Glycine max L.). Replacing the in-situ climate data with the NARR resulted in a significant overestimation of GPPVPM(NARR) (18.4/29.6% for irrigated/rainfed maize and 12.7/12.5% for irrigated/rainfed soybean). GPPVPM(adjNARR) showed a good agreement with GPPVPM(EC) for both crops due to the reduction in the bias of RNARR. The results imply that the bias of RNARR introduced significant uncertainties into the PEM-based GPP estimates, suggesting that more accurate surface radiation datasets are needed to estimate primary production of terrestrial ecosystems at regional and global scales.

  13. The Impact of Positron Emission Tomography/Computed Tomography in Edge Delineation of Gross Tumor Volume for Head and Neck Cancers

    SciTech Connect (OSTI)

    Ashamalla, Hani . E-mail: hashamalla@aol.com; Guirgius, Adel; Bieniek, Ewa; Rafla, Sameer; Evola, Alex; Goswami, Ganesh; Oldroyd, Randall; Mokhtar, Bahaa; Parikh, Kapila

    2007-06-01

    Purpose: To study anatomic biologic contouring (ABC), using a previously described distinct halo, to unify volume contouring methods in treatment planning for head and neck cancers. Methods and Materials: Twenty-five patients with head and neck cancer at various sites were planned for radiation therapy using positron emission tomography/computed tomography (PET/CT). The ABC halo was used in all PET/CT scans to contour the gross tumor volume (GTV) edge. The CT-based GTV (GTV-CT) and PET/CT-based GTV (GTV-ABC) were contoured by two independent radiation oncologists. Results: The ABC halo was observed in all patients studied. The halo had a standard unit value of 2.19 {+-} 0.28. The mean halo thickness was 2.02 {+-} 0.21 mm. Significant volume modification ({>=}25%) was seen in 17 of 25 patients (68%) after implementation of GTV-ABC. Concordance among observers was increased with the use of the halo as a guide for GTV determination: 6 patients (24%) had a {<=}10% volume discrepancy with CT alone, compared with 22 (88%) with PET/CT (p < 0.001). Interobserver variability decreased from a mean GTV difference of 20.3 cm{sup 3} in CT-based planning to 7.2 cm{sup 3} in PET/CT-based planning (p < 0.001). Conclusions: Using the 'anatomic biologic halo' to contour GTV in PET/CT improves consistency among observers. The distinctive appearance of the described halo and its presence in all of the studied tumors make it attractive for GTV contouring in head and neck tumors. Additional studies are needed to confirm the correlation of the halo with presence of malignant cells.

  14. Ionic liquid-assisted preparation of square-shaped Y{sub 2}O{sub 3} nanoplates

    SciTech Connect (OSTI)

    Wang, Lei; Fang, Hao; Xu, Hualan; Wang, Caoli; Li, Yuanjin; Liu, Yang; Zhong, Shengliang

    2015-01-15

    Highlights: • Y{sub 4}O(OH){sub 9}(NO{sub 3}) nanosheets were prepared by an ionic liquid-assisted mixed solvothermal route. • Y{sub 2}O{sub 3} nanosheets were obtained after calcining the Y{sub 4}O(OH){sub 9}(NO{sub 3}) nanosheets. • The Y{sub 2}O{sub 3} nanosheets are with length of about 300 nm and thickness of several nanometers. - Abstract: Uniform square-shaped Y{sub 4}O(OH){sub 9}(NO{sub 3}) nanoplates with side length of about 300 nm and thickness of tens of nanometers have been successfully prepared by an ionic liquid-assisted mixed solvothermal route. Y{sub 2}O{sub 3} nanoplates with similar size were obtained after calcining the Y{sub 4}O(OH){sub 9}(NO{sub 3}) nanoplates at 800 °C. The products were analyzed by powder X-ray diffraction (XRD), thermogravimetric analysis (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), and electron diffraction (ED). The effects of reaction time, composition of solvents, and the molar ratio of reagents on the morphology of the products have been investigated. The possible formation mechanism of the Y{sub 4}O(OH){sub 9}(NO{sub 3}) nanoplates was also discussed. Y{sub 2}O{sub 3}:Eu{sup 3+} nanoplates were also synthesized and their photoluminescent properties were examined.

  15. Audit Report: OAS-L-11-02 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-02 Audit Report: OAS-L-11-02 February 9, 2011 The Department of Energy's Energy Conservation Efforts The Energy Independence and Security Act of 2007 (EISA) requires Federal agencies to apply energy efficiency measures to Federal buildings so that by Fiscal Year (FY) 2015, each agency's energy intensity is reduced by 30 percent from the baseline established in FY 2003. Energy intensity is calculated as the energy consumption in British Thermal Units (BTUs) per gross square foot of the Federal

  16. SU-F-18C-14: Hessian-Based Norm Penalty for Weighted Least-Square CBCT Reconstruction

    SciTech Connect (OSTI)

    Sun, T; Sun, N; Tan, S; Wang, J

    2014-06-15

    Purpose: To develop a Hessian-based norm penalty for cone-beam CT (CBCT) reconstruction that has a similar ability in suppressing noise as the total variation (TV) penalty while avoiding the staircase effect and better preserving low-contrast objects. Methods: We extended the TV penalty to a Hessian-based norm penalty based on the Frobenius norm of the Hessian matrix of an image for CBCT reconstruction. The objective function was constructed using the penalized weighted least-square (PWLS) principle. An effective algorithm was developed to minimize the objective function using a majorization-minimization (MM) approach. We evaluated and compared the proposed penalty with the TV penalty on a CatPhan 600 phantom and an anthropomorphic head phantom, each acquired at a low-dose protocol (10mA/10ms) and a high-dose protocol (80mA/12ms). For both penalties, contrast-to-noise (CNR) in four low-contrast regions-of-interest (ROIs) and the full-width-at-half-maximum (FWHM) of two point-like objects in constructed images were calculated and compared. Results: In the experiment of CatPhan 600 phantom, the Hessian-based norm penalty has slightly higher CNRs and approximately equivalent FWHM values compared with the TV penalty. In the experiment of the anthropomorphic head phantom at the low-dose protocol, the TV penalty result has several artificial piece-wise constant areas known as the staircase effect while in the Hessian-based norm penalty the image appears smoother and more similar to that of the FDK result using the high-dose protocol. Conclusion: The proposed Hessian-based norm penalty has a similar performance in suppressing noise to the TV penalty, but has a potential advantage in suppressing the staircase effect and preserving low-contrast objects. This work was supported in part by National Natural Science Foundation of China (NNSFC), under Grant Nos. 60971112 and 61375018, and Fundamental Research Funds for the Central Universities, under Grant No. 2012QN086.

  17. C10DIV.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Building (thousand kWh) per Square Foot (kWh) per Worker (thousand kWh) per Building (thousand dollars) per Square Foot (dollars) per kWh (dollars) NEW ENGLAND...

  18. 1992 CBECS C&E Table 3.29

    U.S. Energy Information Administration (EIA) Indexed Site

    per Square Foot and Load Factors, 1992 Building Characteristics RSE Column Factor: All Demand-Metered Buildings Peak Watts per Square Foot Load Factor RSE Row Factor Number of...

  19. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    lighting intensities per lighted square foot-hour (Figure 23). * Food service and health care buildings had the highest water-heating intensities per square foot--more than...

  20. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"1,001 to 10,000 Square Feet","10,001 to 100,000 Square Feet","Over 100,000...

  1. Table 6a. Total Electricity Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

  2. C4DIV.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace per Building (thousand square feet) Total (million dollars) per Building (thousand dollars) per Square Foot (dollars) per Million Btu (dollars) NEW ENGLAND...

  3. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North...

  4. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"West North Central","South Atlantic","East South Central","West North...

  5. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"North- east","Mid- west","South","West","North- east","Mid-...

  6. Released: Dec 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    (thousand square feet)","Total (trillion Btu)","per Building (million Btu)","per Square Foot (thousand Btu)","per Worker (million Btu)" "All Buildings* ...",4645...

  7. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"West South Central","Moun- tain","Pacific","West South Central","Moun-...

  8. On square-integrability of solutions of the stationary Schrödinger equation for the quantum harmonic oscillator in two dimensional constant curvature spaces

    SciTech Connect (OSTI)

    Noguera, Norman; Rózga, Krzysztof

    2015-07-15

    In this work, one provides a justification of the condition that is usually imposed on the parameters of the hypergeometric equation, related to the solutions of the stationary Schrödinger equation for the harmonic oscillator in two-dimensional constant curvature spaces, in order to determine the solutions which are square-integrable. One proves that in case of negative curvature, it is a necessary condition of square integrability and in case of positive curvature, a necessary condition of regularity. The proof is based on the analytic continuation formulas for the hypergeometric function. It is observed also that the same is true in case of a slightly more general potential than the one for harmonic oscillator.

  9. Table 10.7 Solar Thermal Collector Shipments by Market Sector, End Use, and Type, 2001-2009 (Thousand Square Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Solar Thermal Collector Shipments by Market Sector, End Use, and Type, 2001-2009 (Thousand Square Feet) Year and Type By Market Sector By End Use Total Residential Commercial 1 Industrial 2 Electric Power 3 Other 4 Pool Heating Water Heating Space Heating Space Cooling Combined Heating 5 Process Heating Electricity Generation Total Shipments 6<//td> 2001 Total 10,125 1,012 17 1 35 10,797 274 70 0 12 34 2 11,189 Low 7 9,885 987 12 0 34 10,782 42 61 0 0 34 0 10,919 Medium 8 240 24 5 0 1 16

  10. Two-dimensional equations of the surface harmonics method for solving problems of spatial neutron kinetics in square-lattice reactors

    SciTech Connect (OSTI)

    Boyarinov, V. F. Kondrushin, A. E. Fomichenko, P. A.

    2014-12-15

    Two-dimensional time-dependent finite-difference equations of the surface harmonics method (SHM) for the description of the neutron transport are derived for square-lattice reactors. These equations are implemented in the SUHAM-TD code. Verification of the derived equations and the developed code are performed by the example of known test problems, and the potential and efficiency of the SHM as applied to the solution of the time-dependent neutron transport equation in the diffusion approximation in two-dimensional geometry are demonstrated. These results show the substantial advantage of SHM over direct finite-difference modeling in computational costs.

  11. A Search for WIMP Dark Matter Using an Optimized Chi-square Technique on the Final Data from the Cryogenic Dark Matter Search Experiment (CDMS II)

    SciTech Connect (OSTI)

    Manungu Kiveni, Joseph

    2012-12-01

    This dissertation describes the results of a WIMP search using CDMS II data sets accumulated at the Soudan Underground Laboratory in Minnesota. Results from the original analysis of these data were published in 2009; two events were observed in the signal region with an expected leakage of 0.9 events. Further investigation revealed an issue with the ionization-pulse reconstruction algorithm leading to a software upgrade and a subsequent reanalysis of the data. As part of the reanalysis, I performed an advanced discrimination technique to better distinguish (potential) signal events from backgrounds using a 5-dimensional chi-square method. This dataanalysis technique combines the event information recorded for each WIMP-search event to derive a backgrounddiscrimination parameter capable of reducing the expected background to less than one event, while maintaining high efficiency for signal events. Furthermore, optimizing the cut positions of this 5-dimensional chi-square parameter for the 14 viable germanium detectors yields an improved expected sensitivity to WIMP interactions relative to previous CDMS results. This dissertation describes my improved (and optimized) discrimination technique and the results obtained from a blind application to the reanalyzed CDMS II WIMP-search data.

  12. Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl: A rare example of Ti(IV) in a square pyramidal oxygen coordination

    SciTech Connect (OSTI)

    Batuk, Maria; Batuk, Dmitry; Abakumov, Artem M.; Hadermann, Joke

    2014-07-01

    A new oxychloride Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl has been synthesized using the solid state method. Its crystal and magnetic structure was investigated in the 1.5550 K temperature range using electron diffraction, high angle annular dark field scanning transmission electron microscopy, atomic resolution energy dispersive X-ray spectroscopy, neutron and X-ray powder diffraction. At room temperature Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl crystallizes in the P4/mmm space group with the unit cell parameters a=3.91803(3) and c=19.3345(2) . Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is a new n=4 member of the oxychloride perovskite-based homologous series A{sub n+1}B{sub n}O{sub 3n?1}Cl. The structure is built of truncated Pb{sub 3}Fe{sub 3}TiO{sub 11} quadruple perovskite blocks separated by CsCl-type Pb{sub 2}Cl slabs. The perovskite blocks consist of two layers of (Fe,Ti)O{sub 6} octahedra sandwiched between two layers of (Fe,Ti)O{sub 5} square pyramids. The Ti{sup 4+} cations are preferentially located in the octahedral layers, however, the presence of a noticeable amount of Ti{sup 4+} in a five-fold coordination environment has been undoubtedly proven using neutron powder diffraction and atomic resolution compositional mapping. Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is antiferromagnetically ordered below 450(10) K. The ordered Fe magnetic moments at 1.5 K are 4.06(4) ?{sub B} and 3.86(5) ?{sub B} on the octahedral and square-pyramidal sites, respectively. - Highlights: Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl has been synthesized using the solid state method. The structure has been refined using neutron powder diffraction data at 1.5550 K. It is a new n=4 member of the perovskite-related homologous series A{sub n+1}B{sub n}O{sub 3n?1}Cl. Ti{sup 4+} cations have both octahedral and square-pyramidal coordination environment. Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is antiferromagnetically ordered below T{sub N}?450 K.

  13. Uncertainty in least-squares fits to the thermal noise spectra of nanomechanical resonators with applications to the atomic force microscope

    SciTech Connect (OSTI)

    Sader, John E.; Yousefi, Morteza; Friend, James R.; Melbourne Centre for Nanofabrication, Clayton, Victoria 3800

    2014-02-15

    Thermal noise spectra of nanomechanical resonators are used widely to characterize their physical properties. These spectra typically exhibit a Lorentzian response, with additional white noise due to extraneous processes. Least-squares fits of these measurements enable extraction of key parameters of the resonator, including its resonant frequency, quality factor, and stiffness. Here, we present general formulas for the uncertainties in these fit parameters due to sampling noise inherent in all thermal noise spectra. Good agreement with Monte Carlo simulation of synthetic data and measurements of an Atomic Force Microscope (AFM) cantilever is demonstrated. These formulas enable robust interpretation of thermal noise spectra measurements commonly performed in the AFM and adaptive control of fitting procedures with specified tolerances.

  14. Hodges residence: performance of a direct gain passive solar home in Iowa

    SciTech Connect (OSTI)

    Hodges, L.

    1980-01-01

    Results are presented for the performance of the Hodges residence, a 2200-square-foot earth-sheltered direct gain passive solar home in Ames, Iowa, during the 1979-80 heating season, its first occupied season. No night insulation was used on its 500 square feet of double-pane glass. Total auxiliary heat required was 43 GJ (41 MBtu) gross and 26 GJ (25 MBtu) net, amounting, respectively, to 60 and 36 kJ/C/sup 0/-day-m/sup 2/ (2.9 and 1.8 Btu/F/sup 0/-day-ft/sup 2/). The heating season was unusually cloudy and included the cloudiest January in the 21 years of Ames insolation measurements. Results are also presented for the performance of the hollowcore floor which serves as the main storage mass and for the comfort range in the house.

  15. Hodges residence: performance of a direct gain passive solar home in Iowa

    SciTech Connect (OSTI)

    Hodges, L.

    1980-01-01

    Results are presented for the performance of the Hodges Residence, a 2200-square-foot earth-sheltered direct gain passive solar home in Ames, Iowa, during the 1979-80 heating season, its first occupied season. No night insulation was used on its 500 square feet of double-pane glass. Total auxiliary heat required was 43 GJ (41 MBTU) gross and 26 GJ (25 MBTU) net, amounting, respectively, to 60 and 36 kJ/C/sup 0/-day-m/sup 2/ (2.9 and 1.8 BTU/F/sup 0/-day-ft/sup 2/). The heating season was unusually cloudy and included the cloudiest January in the 21 years of Ames insolation measurements. Results are also presented for the performance of the hollow-core floor which serves as the main storage mass and for the comfort range in the house.

  16. High-throughput prediction of Acacia and eucalypt lignin syringyl/guaiacyl content using FT-Raman spectroscopy and partial least squares modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lupoi, Jason S.; Healey, Adam; Singh, Seema; Sykes, Robert; Davis, Mark; Lee, David J.; Shepherd, Merv; Simmons, Blake A.; Henry, Robert J.

    2015-01-16

    High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acaciamore » and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. In conclusion, this research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials.« less

  17. High-throughput prediction of Acacia and eucalypt lignin syringyl/guaiacyl content using FT-Raman spectroscopy and partial least squares modeling

    SciTech Connect (OSTI)

    Lupoi, Jason S.; Healey, Adam; Singh, Seema; Sykes, Robert; Davis, Mark; Lee, David J.; Shepherd, Merv; Simmons, Blake A.; Henry, Robert J.

    2015-01-16

    High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acacia and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. In conclusion, this research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials.

  18. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"1,001 to 10,000 Square Feet","10,001 to 100,000 Square Feet","Over 100,000...

  19. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"1,001 to 10,000 Square Feet","10,001 to 100,000 Square Feet","Over 100,000...

  20. The tale of a modern animal plague: Tracing the evolutionary history and determining the time-scale for foot and mouth disease virus

    SciTech Connect (OSTI)

    Tully, Damien C. Fares, Mario A.

    2008-12-20

    Despite significant advances made in the understanding of its epidemiology, foot and mouth disease virus (FMDV) is among the most unexpected agricultural devastating plagues. While the disease manifests itself as seven immunologically distinct strains their origin, population dynamics, migration patterns and divergence times remain unknown. Herein we have assembled a comprehensive data set of gene sequences representing the global diversity of the disease and inferred the time-scale and evolutionary history for FMDV. Serotype-specific rates of evolution and divergence times were estimated using a Bayesian coalescent framework. We report that an ancient precursor FMDV gave rise to two major diversification events spanning a relatively short interval of time. This radiation event is estimated to have taken place towards the end of the 17th and the beginning of the 18th century giving us the present circulating Euro-Asiatic and South African viral strains. Furthermore our results hint that Europe acted as a possible hub for the disease from where it successfully dispersed elsewhere via exploration and trading routes.

  1. A chi-square goodness-of-fit test for non-identically distributed random variables: with application to empirical Bayes

    SciTech Connect (OSTI)

    Conover, W.J.; Cox, D.D.; Martz, H.F.

    1997-12-01

    When using parametric empirical Bayes estimation methods for estimating the binomial or Poisson parameter, the validity of the assumed beta or gamma conjugate prior distribution is an important diagnostic consideration. Chi-square goodness-of-fit tests of the beta or gamma prior hypothesis are developed for use when the binomial sample sizes or Poisson exposure times vary. Nine examples illustrate the application of the methods, using real data from such diverse applications as the loss of feedwater flow rates in nuclear power plants, the probability of failure to run on demand and the failure rates of the high pressure coolant injection systems at US commercial boiling water reactors, the probability of failure to run on demand of emergency diesel generators in US commercial nuclear power plants, the rate of failure of aircraft air conditioners, baseball batting averages, the probability of testing positive for toxoplasmosis, and the probability of tumors in rats. The tests are easily applied in practice by means of corresponding Mathematica{reg_sign} computer programs which are provided.

  2. A laser gyro with a four-mirror square resonator: formulas for simulating the dynamics of the synchronisation zone parameters of the frequencies of counterpropagating waves during the device operation in the self-heating regime

    SciTech Connect (OSTI)

    Bondarenko, E A

    2014-04-28

    For a laser gyro with a four-mirror square resonator we have developed a mathematical model, which allows one to simulate the temporal behaviour of the synchronisation zone parameters of the frequencies of counterpropagating waves in a situation when the device operates in the self-heating regime and is switched-on at different initial temperatures. (laser gyroscopes)

  3. Total Natural Gas Gross Withdrawals (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    2,819,121 2,668,329 2,823,451 2,682,073 2,768,037 2,633,983 1973-2016 Federal Offshore Gulf of Mexico 108,752 101,117 111,315 101,883 108,634 100,402 1997-2016 Alabama NA NA NA NA NA NA 1991-2016 Alaska 298,809 273,296 295,244 246,120 269,204 233,790 1991-2016 Arizona NA NA NA NA NA NA 1996-2016 Arkansas 77,842 71,967 74,543 70,831 71,769 67,293 1991-2016 California 18,737 17,100 18,166 17,618 18,096 17,265 1991-2016 Colorado 143,629 134,325 143,636 139,949 144,615 136,544 1991-2016 Florida NA

  4. Natural Gas Gross Withdrawals from Coalbed Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    2,010,171 1,916,762 1,779,055 1,539,395 1,425,783 1,285,189 2002-2014 Alaska 0 0 0 0 0 0 2002-2014 Alaska Onshore 0 0 0 0 0 0 2007-2014 Arkansas 0 0 0 0 0 0 2006-2014 California 0 0 0 0 0 0 2002-2014 Colorado 544,215 529,891 514,531 376,543 449,281 419,132 2002-2014 Federal Offshore Gulf of Mexico 0 0 0 0 0 0 2002-2014 Kansas 43,661 38,869 35,924 31,689 28,244 25,365 2002-2014 Louisiana 0 0 0 0 0 0 2002-2014 Louisiana Onshore 0 0 0 0 0 0 2007-2014 Montana 12,376 9,920 6,691 3,731 1,623 5,766

  5. Natural Gas Gross Withdrawals from Gas Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    14,414,287 13,247,498 12,291,070 12,504,227 10,759,545 10,384,119 1967-2014 U.S. State Offshore 259,848 234,236 208,970 204,667 186,887 159,337 1978-2014 Federal Offshore U.S. 1,878,928 1,701,665 1,355,489 1,028,474 831,636 720,400 1977-2014 Alaska 137,639 127,417 112,268 107,873 91,686 104,219 1967-2014 Alaska Onshore 96,685 85,383 76,066 74,998 64,537 81,565 1992-2014 Alaska State Offshore 40,954 42,034 36,202 32,875 27,149 22,654 1978-2014 Arkansas 164,316 152,108 132,230 121,684 107,666

  6. Nevada Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    4 3 4 3 3 1991-2014 From Gas Wells 0 0 0 0 0 3 2006-2014 From Oil Wells 4 4 3 4 3 * 1991-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1991-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 4 4 3 4 3 3 1991-2014 Dry Production 4 4 3 4 3 3 1991

  7. Ohio Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    78,122 78,858 84,482 166,017 518,767 1,014,848 1967-2015 From Gas Wells 73,459 30,655 65,025 55,583 78,204 1967-2014 From Oil Wells 4,651 45,663 6,684 10,317 13,037 1967-2014 From Shale Gas Wells 11 2,540 12,773 100,117 427,525 2007-2014 From Coalbed Wells 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 2006-2014 Marketed Production 78,122 78,858 84,482 166,017 518,767 1,014,848 1967-2015 Dry Production 78,122

  8. Oklahoma Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,827,328 1,888,870 2,023,461 1,993,754 2,310,114 2,499,599 1967-2015 From Gas Wells 1,140,111 1,281,794 1,394,859 1,210,315 1,456,519 1967-2014 From Oil Wells 210,492 104,703 53,720 71,515 106,520 1967-2014 From Shale Gas Wells 406,143 449,167 503,329 663,507 706,837 2007-2014 From Coalbed Wells 70,581 53,206 71,553 48,417 40,238 2002-2014 Repressuring 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 1996-2014 Marketed Production 1,827,328

  9. Florida Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    6-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA ...

  10. Natural Gas Gross Withdrawals from Coalbed Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    2002-2016 Alaska NA NA NA NA NA NA 2002-2016 Arkansas NA NA NA NA NA NA 2006-2016 California NA NA NA NA NA NA 2002-2016 Colorado NA NA NA NA NA NA 2002-2016 Federal Offshore Gulf ...

  11. Natural Gas Gross Withdrawals from Oil Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    1-2016 Illinois NA NA NA NA NA NA 1991-2016 Indiana NA NA NA NA NA NA 1991-2016 Kentucky NA NA NA NA NA NA 1991-2016 Maryland NA NA NA NA NA NA 1991-2016 Michigan NA NA NA NA NA NA ...

  12. Illinois Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2006-2016 Repressuring NA NA NA NA NA NA ...

  13. Colorado Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA ...

  14. Kansas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    23,819 23,559 22,451 22,896 22,535 20,900 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA ...

  15. Maryland Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    43 43 34 44 32 20 1967-2014 From Gas Wells 43 43 34 44 32 20 1967-2014 From Oil Wells 0 0 0 0 0 0 2006-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 ...

  16. Missouri Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA 9 9 1967-2014 From Gas Wells NA NA NA NA 8 8 1967-2014 From Oil Wells NA NA NA NA 1 * 2007-2014 From Shale Gas Wells NA NA NA NA 0 0 2007-2014 From Coalbed Wells NA NA ...

  17. Natural Gas Gross Withdrawals from Gas Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    6-2016 Illinois NA NA NA NA NA NA 1991-2016 Indiana NA NA NA NA NA NA 1991-2016 Kentucky NA NA NA NA NA NA 1991-2016 Maryland NA NA NA NA NA NA 1991-2016 Michigan NA NA NA NA NA NA ...

  18. Louisiana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA ...

  19. Michigan Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed ...

  20. David J. Gross and the Strong Force

    Office of Scientific and Technical Information (OSTI)

    The theory that came out of these initial ideas is called chromodynamics because the quark attribute analogous to the electric charge of an electron or proton is color.' - Edited ...

  1. California Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    8,737 17,100 18,166 17,618 18,096 17,265 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1991-2016 Vented and Flared NA NA NA NA NA NA 1996-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production 18,737 17,100 18,166 17,618 18,096 17,265

  2. Tennessee Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other...

  3. Maryland Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other...

  4. Nevada Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other...

  5. Missouri Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other...

  6. Mississippi Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other...

  7. Natural Gas Gross Withdrawals from Coalbed Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    2,010,171 1,916,762 1,779,055 1,539,395 1,425,783 1,285,189 2002-2014 Alaska 0 0 0 0 0 0 2002-2014 Alaska Onshore 0 0 0 0 0 0 2007-2014 Arkansas 0 0 0 0 0 0 2006-2014 California 0...

  8. Texas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    707,527 664,972 702,555 680,919 696,269 671,978 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1991-2016 Vented and Flared NA NA NA NA NA NA 1991-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2016 Marketed Production 635,571 597,344 631,105 611,669 625,459 603,638

  9. Michigan Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    159,400 136,782 143,826 129,333 123,622 114,946 1967-2014 From Gas Wells 20,867 7,345 18,470 17,041 17,502 13,799 1967-2014 From Oil Wells 12,919 9,453 11,620 4,470 4,912 5,507 1967-2014 From Shale Gas Wells 125,614 119,984 113,736 107,822 101,208 95,640 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2002-2014 Repressuring 2,340 2,340 2,340 0 NA NA 1967-2014 Vented and Flared 3,324 3,324 3,324 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1996-2014 Marketed Production 153,736 131,118

  10. Mississippi Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    352,888 401,660 443,351 452,915 59,272 54,440 1967-2014 From Gas Wells 337,168 387,026 429,829 404,457 47,385 43,091 1967-2014 From Oil Wells 8,934 8,714 8,159 43,421 7,256 7,150 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 6,785 5,921 5,363 5,036 4,630 4,199 2002-2014 Repressuring 3,039 3,480 3,788 0 NA NA 1967-2014 Vented and Flared 7,875 8,685 9,593 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 253,817 315,775 348,482 389,072 0 0 1980-2014 Marketed Production

  11. Montana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    93,266 79,506 66,954 63,242 59,930 57,218 1967-2015 From Gas Wells 51,117 37,937 27,518 19,831 11,796 1967-2014 From Oil Wells 19,292 21,777 20,085 23,152 23,479 1967-2014 From Shale Gas Wells 12,937 13,101 15,619 18,636 18,890 2007-2014 From Coalbed Wells 9,920 6,691 3,731 1,623 5,766 2002-2014 Repressuring 5 4 0 NA NA 1967-2014 Vented and Flared 5,722 4,878 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed NA NA 0 NA NA 1996-2014 Marketed Production 87,539 74,624 66,954 63,242 59,930 57,218

  12. Alabama Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Florida Illinois Indiana Kentucky Maryland Michigan Mississippi Missouri Nebraska Nevada New York Oregon South Dakota Tennessee Virginia Period-Unit: Monthly-Million Cubic ...

  13. Alaska Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Florida Illinois Indiana Kentucky Maryland Michigan Mississippi Missouri Nebraska Nevada New York Oregon South Dakota Tennessee Virginia Period-Unit: Monthly-Million Cubic ...

  14. Natural Gas Gross Withdrawals from Gas Wells

    Gasoline and Diesel Fuel Update (EIA)

    1978-2014 Federal Offshore U.S. 1,878,928 1,701,665 1,355,489 1,028,474 831,636 720,400 1977-2014 Alaska 137,639 127,417 112,268 107,873 91,686 104,219 1967-2014 Alaska Onshore...

  15. Natural Gas Gross Withdrawals from Oil Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    355,472 1978-2014 Federal Offshore U.S. 606,403 598,679 512,003 526,664 522,515 583,058 1977-2014 Alaska 3,174,747 3,069,683 3,050,654 3,056,918 3,123,671 3,064,346 1967-2014...

  16. Indiana Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,009 1,490 772 1,087 753 1,818 2,926 4,027 1,339 600 1,088 869 2002 1,860 2,683 2,173 3,043 1,326 3,544 6,744 4,557 3,299 1,903 2,010 1,962 2003 1,395 1,700 1,800 603 2,583 2,402 2,865 4,399 2,334 1,387 2,628 2,576 2004 3,287 4,188 1,799 1,693 3,079 1,320 2,176 2,179 1,520 393 332 980 2005 1,534 844 2,175 3,653 2,422 5,416 6,420 6,106 2,540 1,339 862 2,064 2006 1,376 779 1,617 1,685 1,740 2,619 6,100 4,873 1,454 1,584 1,831

  17. Kentucky Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 68 70 218 241 324 388 872 1,078 426 267 178 302 2002 293 537 811 629 560 2,192 4,626 1,996 1,262 296 261 251 2003 627 173 152 189 302 155 464 958 158 101 105 282 2004 406 277 311 554 475 551 511 526 233 141 219 627 2005 886 323 596 483 1,332 3,265 2,647 3,340 1,900 585 762 1,063 2006 344 411 575 224 1,084 1,504 3,274 3,669 273 179 302 447 2007 399 1,322 710 1,529 1,221 1,671 1,156 6,535 2,015 1,481 579 758 2008 1,346 942 655 275

  18. Nebraska Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 60 81 270 310 302 422 1,201 701 185 252 250 256 2002 220 89 93 269 283 618 1,251 842 548 413 175 145 2003 97 141 104 236 263 447 1,371 1,264 164 197 218 92 2004 145 159 179 176 606 603 487 314 231 150 152 138 2005 344 303 355 389 496 1,268 1,606 1,316 818 440 329 403 2006 123 185 298 379 503 742 2,463 1,465 314 564 334 417 2007 1,508 847 476 279 880 667 2,503 2,583 491 314 99 260 2008 532 171 428 129 109 657 1,664 1,537 288 371

  19. Wyoming Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    ,514,657 2,375,301 2,225,622 2,047,757 1,997,666 1,908,739 1967-2015 From Gas Wells 1,787,599 1,709,218 1,762,095 1,673,667 1,671,442 1967-2014 From Oil Wells 151,871 152,589 24,544 29,134 38,974 1967-2014 From Shale Gas Wells 5,519 4,755 9,252 16,175 25,387 2007-2014 From Coalbed Wells 569,667 508,739 429,731 328,780 261,863 2002-2014 Repressuring 2,810 5,747 6,630 2,124 5,210 1967-2014 Vented and Flared 42,101 57,711 45,429 34,622 29,641 1967-2014 Nonhydrocarbon Gases Removed 164,221 152,421

  20. Utah Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    34,199 31,283 33,192 31,720 31,806 29,945 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1991-2016 Vented and Flared NA NA NA NA NA NA 1994-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production 34,199 31,283 33,192 31,720 31,806 29,945

  1. Wyoming Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    55,930 145,478 156,116 148,710 148,672 145,311 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1991-2016 Vented and Flared NA NA NA NA NA NA 1991-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2016 Marketed Production 139,012 129,693 139,178 132,575 132,542 129,545 1989

  2. ,"Michigan Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...22982,5746,,0,195,277,0,28256 37909,19454,15563,3891,,0,195,277,0,18982 37940,9737,7790,1947,,0,195,277,0,9265 37970,18864,15091,3773,,0,195,277,0,18392 38001,25319,20255,5064,,0,1...

  3. ,"Arkansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    26480,169171,125319,43852,,,0,2649,,166522 26845,159476,120068,39408,,,0,1947,,157529 27210,125691,92265,33426,,,0,1716,,123975 27575,121518,91270,30248,,,3963,1318,...

  4. ,"Alabama Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 36661,34424,33911,512,,,1268,75,1947,31133 36692,32702,32147,555,,,1231,80,1796... 39859,20978,12275,441,0,8262,46,143,1320,19470,18112 39887,22927,13305,476,0,9147,42,143...

  5. Monthly Natural Gas Gross Production Report

    Gasoline and Diesel Fuel Update (EIA)

  6. Virginia Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,606 700 643 1,113 924 3,118 4,493 6,360 5,831 4,012 2,546 1,773 2002 2,080 942 1,105 2,957 1,949 3,473 6,757 6,819 4,318 1,913 659 1,963 2003 3,058 814 2,442 3,186 2,132 2,323 5,401 6,875 2,191 1,488 3,330 2,014 2004 3,391 4,221 1,468 2,754 7,758 5,257 6,805 7,343 4,415 1,065 2,302 2,006 2005 3,494 3,169 3,825 3,400 1,004 8,105 13,031 14,892 8,184 2,727 1,337 3,782 2006 753 3,326 2,765 1,439 2,191 7,879 16,761 16,098 2,052

  7. Arizona Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore California State Offshore Federal Offshore California Colorado Federal Offshore Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Kansas Louisiana Louisiana Onshore Louisiana Offshore Louisiana State Offshore Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Texas

  8. Arizona Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1996-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1996-2016 Vented and Flared NA NA NA NA NA NA 1996-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production NA NA NA NA NA NA 1991-2016 Dry Production 2006-2014

  9. Arkansas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore California State Offshore Federal Offshore California Colorado Federal Offshore Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Kansas Louisiana Louisiana Onshore Louisiana Offshore Louisiana State Offshore Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Texas

  10. Arkansas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other States Total Alabama Arizona Florida Illinois Indiana Kentucky Maryland Michigan Mississippi Missouri Nebraska Nevada New York Oregon South Dakota Tennessee Virginia Period-Unit: Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History

  11. Alaska Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore ...

  12. Alabama Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore ...

  13. ,"Ohio Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...8449,7920,528,,,0,0,0,8370 36784,8330,7809,521,,,0,0,0,8252 36814,9074,8506,567,,,0,0,0,8989 36845,9090,8522,568,,,0,0,0,9006 36875,9520,8925,595,,,0,0,0,9431 36906,8880,8628,251,,...

  14. Montana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    4,521 4,233 4,426 4,275 4,454 4,280 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1996-2016 Vented and Flared NA NA NA NA NA NA 1996-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production 4,521 4,233 4,426 4,275 4,454 4,280

  15. Natural Gas Gross Withdrawals from Coalbed Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    2002-2016 Alaska NA NA NA NA NA NA 2002-2016 Arkansas NA NA NA NA NA NA 2006-2016 California NA NA NA NA NA NA 2002-2016 Colorado NA NA NA NA NA NA 2002-2016 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 2002-2016 Kansas NA NA NA NA NA NA 2002-2016 Louisiana NA NA NA NA NA NA 2002-2016 Montana NA NA NA NA NA NA 2002-2016 New Mexico NA NA NA NA NA NA 2002-2016 North Dakota NA NA NA NA NA NA 2002-2016 Ohio NA NA NA NA NA NA 2006-2016 Oklahoma NA NA NA NA NA NA 2002-2016 Pennsylvania NA NA NA

  16. Natural Gas Gross Withdrawals from Gas Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    6-2016 Illinois NA NA NA NA NA NA 1991-2016 Indiana NA NA NA NA NA NA 1991-2016 Kentucky NA NA NA NA NA NA 1991-2016 Maryland NA NA NA NA NA NA 1991-2016 Michigan NA NA NA NA NA NA 1991-2016 Mississippi NA NA NA NA NA NA 1991-2016 Missouri NA NA NA NA NA NA 1991-2016 Nebraska NA NA NA NA NA NA 1991-2016 Nevada NA NA NA NA NA NA 1991-2016 New York NA NA NA NA NA NA 1991-2016 Oregon NA NA NA NA NA NA 1991

  17. Natural Gas Gross Withdrawals from Oil Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    1-2016 Illinois NA NA NA NA NA NA 1991-2016 Indiana NA NA NA NA NA NA 1991-2016 Kentucky NA NA NA NA NA NA 1991-2016 Maryland NA NA NA NA NA NA 1991-2016 Michigan NA NA NA NA NA NA 1991-2016 Mississippi NA NA NA NA NA NA 1991-2016 Missouri NA NA NA NA NA NA 1991-2016 Nebraska NA NA NA NA NA NA 1991-2016 Nevada NA NA NA NA NA NA 1991-2016 New York NA NA NA NA NA NA 1991-2016 Oregon NA NA NA NA NA NA 1996

  18. California Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    319,891 279,130 246,822 252,310 252,718 222,680 1967-2015 From Gas Wells 73,017 63,902 91,904 88,203 75,684 1967-2014 From Oil Wells 151,369 120,880 67,065 69,839 69,521 1967-2014 From Shale Gas Wells 95,505 94,349 87,854 94,268 107,513 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 27,240 23,905 0 NA NA 1967-2014 Vented and Flared 2,790 2,424 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 3,019 2,624 0 NA NA 1980-2014 Marketed Production 286,841 250,177 246,822 252,310 252,718

  19. Colorado Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,589,664 1,649,306 1,709,376 1,604,860 1,631,390 1,671,787 1967-2015 From Gas Wells 526,077 563,750 1,036,572 801,749 779,042 1967-2014 From Oil Wells 338,565 359,537 67,466 106,784 177,305 1967-2014 From Shale Gas Wells 195,131 211,488 228,796 247,046 255,911 2007-2014 From Coalbed Wells 529,891 514,531 376,543 449,281 419,132 2002-2014 Repressuring 10,043 10,439 0 NA NA 1967-2014 Vented and Flared 1,242 1,291 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 1980-2014 Marketed

  20. Florida Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    290 13,938 17,129 18,681 18,011 21,259 1971-2014 From Gas Wells 0 0 0 17,182 16,459 19,742 1996-2014 From Oil Wells 290 13,938 17,129 1,500 1,551 1,517 1971-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2002-2014 Repressuring 0 0 0 17,909 17,718 20,890 1976-2014 Vented and Flared 0 0 0 0 0 0 1971-2014 Nonhydrocarbon Gases Removed 32 1,529 2,004 0 NA NA 1980-2014 Marketed Production 257 12,409 15,125 773 292 369 1967-2014 Dry Production 257 12,409 15,125 773 292

  1. Illinois Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,443 1,702 2,121 2,125 2,887 2,626 1967-2014 From Gas Wells 1,438 1,697 2,114 2,125 2,887 2,626 1967-2014 From Oil Wells 5 5 7 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 1,443 1,702 2,121 2,125 2,887 2,626 1967-2014 Dry Production 1,412 1,357 1,078 2,125 2,887 2,579

  2. Indiana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 From Gas Wells 4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 From Oil Wells 0 0 0 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2003-2014 Vented and Flared 0 0 0 0 0 0 2003-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2014 Marketed Production 4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 Dry Production 4,927 6,802 9,075 8,814 7,938 6,616

  3. Property:GrossGen | Open Energy Information

    Open Energy Info (EERE)

    B Blundell 1 Geothermal Facility + 213,599 + Blundell 2 Geothermal Facility + 85,633 + G Gumuskoy Geothermal Power Plant + 104,000 + L Las Tres Virgenes Geothermal Plant + 19 +...

  4. Solar Energy Gross Receipts Tax Deduction

    Office of Energy Efficiency and Renewable Energy (EERE)

    The seller must have a signed copy of Form RPD-41341 to claim the deduction or other evidence acceptable to EMNRD that the service or equipment was purchased for the sole use of the sale and...

  5. Offshore Gross Withdrawals of Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Federal Offshore 108,752 101,117 111,315 101,883 108,634 100,402 1997-2016 From Gas Wells NA NA NA NA NA NA 1997-2016 From Oil Wells NA NA NA NA NA NA 1997-2016

  6. Offshore Gross Withdrawals of Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History U.S. Total Offshore 2,875,945 2,416,644 2,044,643 1,859,469 1,818,267 1977-2014 State Offshore 575,601 549,151 489,505 505,318 514,809 1978-2014 From Gas Wells 234,236 208,970 204,667 186,887 159,337 1978-2014 From Oil Wells 341,365 340,182 284,838 318,431 355,472 1978-2014 Federal Offshore 2,300,344 1,867,492 1,555,138 1,354,151 1,303,458 1977-2014 From Gas Wells 1,701,665 1,355,489 1,028,474 831,636 720,400 1977-2014 From Oil Wells 598,679 512,003

  7. Ohio Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    12,423 116,401 120,760 118,944 121,569 115,202 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2006-2016 Repressuring NA NA NA NA NA NA 1991-2016 Vented and Flared NA NA NA NA NA NA 1991-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2016 Marketed Production 112,423 116,401 120,760 118,944 121,569 115,202 1991

  8. Oklahoma Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    214,000 201,258 214,561 203,524 211,217 201,673 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1996-2016 Vented and Flared NA NA NA NA NA NA 1996-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production 214,000 201,258 214,561 203,524 211,217 201,673 1989

  9. Oregon Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1996-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1996-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1996-2016 Vented and Flared NA NA NA NA NA NA 1996-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production NA NA NA NA NA NA

  10. Pennsylvania Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    447,447 430,800 452,601 429,503 441,514 434,346 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2006-2016 Repressuring NA NA NA NA NA NA 1991-2016 Vented and Flared NA NA NA NA NA NA 1991-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2016 Marketed Production 447,447 430,800 452,601 429,503 441,514 434,346

  11. Tennessee Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 From Gas Wells 5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 From Oil Wells 0 0 0 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2014 Marketed Production 5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 Dry Production 5,478 4,638 4,335 5,324 4,912 4,912

  12. Texas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    7,593,697 7,934,689 8,143,510 8,299,472 8,663,333 8,763,381 1967-2015 From Gas Wells 4,441,188 3,794,952 3,619,901 3,115,409 2,734,153 1967-2014 From Oil Wells 849,560 1,073,301 860,675 1,166,810 1,520,200 1967-2014 From Shale Gas Wells 2,302,950 3,066,435 3,662,933 4,017,253 4,408,980 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 558,854 502,020 437,367 423,413 452,150 1967-2014 Vented and Flared 39,569 35,248 47,530 76,113 81,755 1967-2014 Nonhydrocarbon Gases Removed 279,981

  13. Utah Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    436,885 461,507 490,393 470,863 453,207 422,423 1967-2015 From Gas Wells 328,135 351,168 402,899 383,216 360,587 1967-2014 From Oil Wells 42,526 49,947 31,440 36,737 44,996 1967-2014 From Shale Gas Wells 0 0 1,333 992 1,003 2007-2014 From Coalbed Wells 66,223 60,392 54,722 49,918 46,622 2002-2014 Repressuring 1,187 1,449 0 NA NA 1967-2014 Vented and Flared 2,080 1,755 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 1,573 778 0 NA NA 1996-2014 Marketed Production 432,045 457,525 490,393 470,863

  14. Advanced Energy Gross Receipts Tax Deduction

    Broader source: Energy.gov [DOE]

    To qualify for the exemption, the owner of a qualified generating facility must first obtain a certificate of eligibility from the Department of Environment. The owner must then present the...

  15. Natural Gas Gross Withdrawals from Oil Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    Federal Offshore Gulf of Mexico 566,380 559,235 476,984 513,961 509,357 568,801 1997-2014 ... Montana 21,522 19,292 21,777 20,085 23,152 23,479 1967-2014 New Mexico 223,493 238,580 ...

  16. A VIRTUAL SKY WITH EXTRAGALACTIC H I AND CO LINES FOR THE SQUARE KILOMETRE ARRAY AND THE ATACAMA LARGE MILLIMETER/SUBMILLIMETER ARRAY

    SciTech Connect (OSTI)

    Obreschkow, D.; Kloeckner, H.-R.; Heywood, I.; Rawlings, S.; Levrier, F.

    2009-10-01

    We present a sky simulation of the atomic H I-emission line and the first 10 {sup 12}C{sup 16}O rotational emission lines of molecular gas in galaxies beyond the Milky Way. The simulated sky field has a comoving diameter of 500 h {sup -1} Mpc; hence, the actual field of view depends on the (user-defined) maximal redshift z {sub max}; e.g., for z {sub max} = 10, the field of view yields approx4 x 4 deg{sup 2}. For all galaxies, we estimate the line fluxes, line profiles, and angular sizes of the H I and CO-emission lines. The galaxy sample is complete for galaxies with cold hydrogen masses above 10{sup 8} M {sub sun}. This sky simulation builds on a semi-analytic model of the cosmic evolution of galaxies in a LAMBDA cold dark matter (LAMBDACDM) cosmology. The evolving CDM distribution was adopted from the Millennium Simulation, an N-body CDM simulation in a cubic box with a side length of 500 h {sup -1} Mpc. This side length limits the coherence scale of our sky simulation: it is long enough to allow the extraction of the baryon acoustic oscillations in the galaxy power spectrum, yet the position and amplitude of the first acoustic peak will be imperfectly defined. This sky simulation is a tangible aid to the design and operation of future telescopes, such as the Square Kilometre Array, Large Millimeter Telescope, and Atacama Large Millimeter/Submillimeter Array. The results presented in this paper have been restricted to a graphical representation of the simulated sky and fundamental dN/dz analyses for peak flux density limited and total flux limited surveys of H I and CO. A key prediction is that H I will be harder to detect at redshifts z approx> 2 than predicted by a no-evolution model. The future verification or falsification of this prediction will allow us to qualify the semi-analytic models.

  17. Cervical Gross Tumor Volume Dose Predicts Local Control Using Magnetic Resonance Imaging/Diffusion-Weighted Imaging—Guided High-Dose-Rate and Positron Emission Tomography/Computed Tomography—Guided Intensity Modulated Radiation Therapy

    SciTech Connect (OSTI)

    Dyk, Pawel; Jiang, Naomi; Sun, Baozhou; DeWees, Todd A.; Fowler, Kathryn J.; Narra, Vamsi; Garcia-Ramirez, Jose L.; Schwarz, Julie K.; Grigsby, Perry W.

    2014-11-15

    Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodes by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.

  18. Potential energy surface fitting by a statistically localized, permutationally invariant, local interpolating moving least squares method for the many-body potential: Method and application to N{sub 4}

    SciTech Connect (OSTI)

    Bender, Jason D.; Doraiswamy, Sriram; Candler, Graham V. E-mail: candler@aem.umn.edu; Truhlar, Donald G. E-mail: candler@aem.umn.edu

    2014-02-07

    Fitting potential energy surfaces to analytic forms is an important first step for efficient molecular dynamics simulations. Here, we present an improved version of the local interpolating moving least squares method (L-IMLS) for such fitting. Our method has three key improvements. First, pairwise interactions are modeled separately from many-body interactions. Second, permutational invariance is incorporated in the basis functions, using permutationally invariant polynomials in Morse variables, and in the weight functions. Third, computational cost is reduced by statistical localization, in which we statistically correlate the cutoff radius with data point density. We motivate our discussion in this paper with a review of global and local least-squares-based fitting methods in one dimension. Then, we develop our method in six dimensions, and we note that it allows the analytic evaluation of gradients, a feature that is important for molecular dynamics. The approach, which we call statistically localized, permutationally invariant, local interpolating moving least squares fitting of the many-body potential (SL-PI-L-IMLS-MP, or, more simply, L-IMLS-G2), is used to fit a potential energy surface to an electronic structure dataset for N{sub 4}. We discuss its performance on the dataset and give directions for further research, including applications to trajectory calculations.

  19. Development and Characterization of A Multiplexed RT-PCR Species Specific Assay for Bovine and one for Porcine Foot-and-Mouth Disease Virus Rule-Out

    SciTech Connect (OSTI)

    Smith, S M; Danganan, L; Tammero, L; Vitalis, B; Lenhoff, R; Naraghi-arani, P; Hindson, B

    2007-08-06

    Lawrence Livermore National Laboratory (LLNL), in collaboration with the Department of Homeland Security (DHS) and the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Services (APHIS) has developed candidate multiplexed assays that may potentially be used within the National Animal Health Laboratory Network (NAHLN), the National Veterinary Services Laboratory (Ames, Iowa) and the Plum Island Animal Disease Center (PIADC). This effort has the ability to improve our nation's capability to discriminate between foreign animal diseases and those that are endemic using a single assay, thereby increasing our ability to protect food and agricultural resources with a diagnostic test which could enhance the nation's capabilities for early detection of a foreign animal disease. In FY2005 with funding from the DHS, LLNL developed the first version (Version 1.0) of a multiplexed (MUX) nucleic-acid-based RT-PCR assay that included signatures for foot-and-mouth disease virus (FMDV) detection with rule-out tests for two other foreign animal diseases (FADs) of swine, Vesicular Exanthema of Swine (VESV) and Swine Vesicular Disease Virus (SVDV), and four other domestic viral diseases Bovine Viral Diarrhea Virus (BVDV), Bovine Herpes Virus 1 (BHV-1), Bluetongue virus (BTV) and Parapox virus complex (which includes Bovine Papular Stomatitis Virus [BPSV], Orf of sheep, and Pseudocowpox). In FY06, LLNL has developed Bovine and Porcine species-specific panel which included existing signatures from Version 1.0 panel as well as new signatures. The MUX RT-PCR porcine assay for detection of FMDV includes the FADs, VESV and SVD in addition to vesicular stomatitis virus (VSV) and porcine reproductive and respiratory syndrome (PRRS). LLNL has also developed a MUX RT-PCR bovine assay for detection of FMDV with rule out tests for the two bovine FADs malignant catarrhal fever (MCF), rinderpest virus (RPV) and the domestic diseases vesicular stomatitis virus (VSV

  20. Table C10. Electricity Consumption and Expenditure Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Consumption and Expenditure Intensities, 1999" ,"Electricity Consumption",,,,,,"Electricity Expenditures" ,"per Building (thousand kWh)","per Square Foot (kWh)","per...