Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

GridLab Power Distribution System Simulation | Open Energy Information  

Open Energy Info (EERE)

GridLab Power Distribution System Simulation GridLab Power Distribution System Simulation Jump to: navigation, search Tool Summary Name: GridLab Power Distribution System Simulation Agency/Company /Organization: Pacific Northwest National Laboratory Sector: Energy Focus Area: Grid Assessment and Integration Phase: Evaluate Options Topics: Pathways analysis User Interface: Desktop Application Website: www.gridlabd.org/ Cost: Free OpenEI Keyword(s): EERE tool Language: English References: GridLAB-D Simulation Software[1] Examine in detail the interplay of every part of a distribution system with every other part of the system. GridLAB-D(tm) is a new power distribution system simulation and analysis tool that provides valuable information to users who design and operate distribution systems, and to utilities that wish to take advantage of the

2

GridLab: a grid application toolkit and testbed  

Science Conference Proceedings (OSTI)

In this paper we present the new project called GridLab which is funded by the European Commission under the Fifth Framework Programme. The GridLab project, made up of computer scientists, astrophysicists and other scientists from various application ... Keywords: GAT, grid computing, gridLab, testbed

Ed Seidel; Gabrielle Allen; Andr Merzky; Jarek Nabrzyski

2002-10-01T23:59:59.000Z

3

Putting Economic Power In Distributed Power t  

U.S. Energy Information Administration (EIA)

Putting Economic Power in Distributed Power. A distributed electricity generation system, often called distributed power, usually consists of ...

4

MODELING WIND TURBINES IN THE GRIDLAB-D SOFTWARE ENVIRONMENT  

SciTech Connect

In recent years, the rapid expansion of wind power has resulted in a need to more accurately model the effects of wind penetration on the electricity infrastructure. GridLAB-D is a new simulation environment developed for the U.S. Department of Energy (DOE) by the Pacifi c Northwest National Laboratory (PNNL), in cooperation with academic and industrial partners. GridLAB-D was originally written and designed to help integrate end-use smart grid technologies, and it is currently being expanded to include a number of other technologies, including distributed energy resources (DER). The specifi c goal of this project is to create a preliminary wind turbine generator (WTG) model for integration into GridLAB-D. As wind power penetration increases, models are needed to accurately study the effects of increased penetration; this project is a beginning step at examining these effects within the GridLAB-D environment. Aerodynamic, mechanical and electrical power models were designed to simulate the process by which mechanical power is extracted by a wind turbine and converted into electrical energy. The process was modeled using historic atmospheric data, collected over a period of 30 years as the primary energy input. This input was then combined with preliminary models for synchronous and induction generators. Additionally, basic control methods were implemented, using either constant power factor or constant power modes. The model was then compiled into the GridLAB-D simulation environment, and the power outputs were compared against manufacturers data and then a variation of the IEEE 4 node test feeder was used to examine the models behavior. Results showed the designs were suffi cient for a prototype model and provided output power similar to the available manufacturers data. The prototype model is designed as a template for the creation of new modules, with turbine-specifi c parameters to be added by the user.

Fuller, J.C.; Schneider, K.P.

2009-01-01T23:59:59.000Z

5

Putting Economic Power in Distributed Power  

Reports and Publications (EIA)

Electric Power Research Institute's Distributed Resources Week 1997 (October 22, 1997)AUTHOR: John Herbert

Information Center

1997-10-22T23:59:59.000Z

6

Industrial Distributed Energy: Combined Heat & Power | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Distributed Energy: Combined Heat & Power Industrial Distributed Energy: Combined Heat & Power Information about the Department of Energy's Industrial Technologies...

7

Protecting Intelligent Distributed Power Grids Against Cyber...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protecting Intelligent Distributed Power Grids Against Cyber Attacks - May 2008 Protecting Intelligent Distributed Power Grids Against Cyber Attacks - May 2008 Development of a...

8

Distributed Generation and Resilience in Power Grids  

E-Print Network (OSTI)

We study the effects of the allocation of distributed generation on the resilience of power grids. We find that an unconstrained allocation and growth of the distributed generation can drive a power grid beyond its design parameters. In order to overcome such a problem, we propose a topological algorithm derived from the field of Complex Networks to allocate distributed generation sources in an existing power grid.

Scala, Antonio; Chessa, Alessandro; Caldarelli, Guido; Damiano, Alfonso

2012-01-01T23:59:59.000Z

9

Renewable Energy andRenewable Energy and Distributed PowerDistributed Power  

E-Print Network (OSTI)

Government Intervention, Use of Renewable Energyof Renewable Energy #12;Brief US History of Electric PowerBrief US HistoryRenewable Energy andRenewable Energy and Distributed PowerDistributed Power GenerationGeneration PHistorical Perspectives DG FundamentalsDG Fundamentals Renewable Energy and DistributedRenewable Energy and Distributed

10

POSTER DESCRIPTION: Poster Title: "Distributed Electric Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

DESCRIPTION: Poster Title: "Distributed Electric Power from Bio-based and Fossil Fuels" Entity: Technology Management, Inc. 9718 Lake Shore Blvd., Cleveland, Ohio 44108 Author(s):...

11

Distributed Wind Power Generation - National Renewable Energy ...  

Technology breakthrough in roof-top distributed wind power generation Multi-billion $ market opportunity in next 10 years recent venture capital investments

12

Nanogrids, Power Distribution, and Building Networks  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanogrids, Power Distribution, and Building Networks Speaker(s): Bruce Nordman Date: February 24, 2011 - 12:00pm Location: 90-3122 Electricity consumption and information...

13

Utility Grid-Connected Distributed Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid-Connected Distributed Power Systems National Solar Energy Conference ASES Solar 96 Asheville, NC April 1996 Donald E. OsbornDavid E. Collier Sacramento Municipal Utility...

14

Hybrid distributed generation for power distribution systems planning  

Science Conference Proceedings (OSTI)

This paper presents planning models for hybrid distributed generation systems, as well as the results corresponding to a distribution systems planning problem obtained using a new computational tool based on a Geographic Information System, GIS. This ... Keywords: distributed generation (DG), geographical information systems (GIS), hybrid power systems, optimal planning

I. J. Ramrez-Rosado; P. J. Zorzano-Santamara; L. A. Fernndez-Jimnez; E. Garca-Garrido; P. Lara-Santilln; E. Zorzano-Alba; M. Mendoza-Villena

2006-02-01T23:59:59.000Z

15

Power Quality Impacts of Distributed Generation: Guidelines  

Science Conference Proceedings (OSTI)

With the advent of deregulation, distributed generation (DG) will play an increasing role in electric distribution systems. This report addresses the issue of integrating DG into the electric power system in a way that assures power quality in the grid and at end-use customer facilities.

2000-12-06T23:59:59.000Z

16

Power Quality Impacts of Distributed Generation  

Science Conference Proceedings (OSTI)

Distribution systems are designed for one-way power flow and can accommodate only a limited amount of distributed generation (DG) without alterations. This project focused on the economics associated with upgrading and designing distribution systems to support widespread integration of distributed resources, especially distributed generation. Costs were determined in the area of protection requirements and voltage regulation requirements, two of the main areas where changes are required to accommodate DG.

2005-03-22T23:59:59.000Z

17

Microsoft PowerPoint - Tsinghua Slideshow final for distribution...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PowerPoint - Tsinghua Slideshow final for distribution (2) Microsoft PowerPoint - Tsinghua Slideshow final for distribution (2) Microsoft PowerPoint - Tsinghua Slideshow final for...

18

DC Distribution: The Power To Change Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

DC Distribution: The Power To Change Buildings DC Distribution: The Power To Change Buildings Speaker(s): Brian Patterson Dennis Symanski Liang Downey Date: July 14, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Chris Marnay This seminar presents an overview of the effort to create new applications standards to drive the distribution and use of native direct current (dc) in net zero energy commercial and residential buildings. From the early days of electric power generation, distribution and use there's been a debate over which form of power, AC or DC, is best. Edison set the stage for this argument in the late 1800's with his invention of DC powered lighting systems. Tesla's system of AC dynamos, transformers and motors all but stopped the growing use of DC by the turn of the century. With the

19

GRIDLAB-D  

Energy Science and Technology Software Center (OSTI)

002351MLTPL00 GridLab-D version 1.0 http://sourceforge.net/project/platformdownload.php?group_id=233096

20

Active Power and Nonactive Power Control of Distributed Energy Resources  

SciTech Connect

Distributed energy resources (DE) have been widely used in the power systems to supply active power, and most of the present DE resources are operated with limited or without nonactive power capability. This paper shows that with a slight modification in hardware configuration and a small boost in the power ratings, as well as proper implementation of control strategies, a DE system with a power electronics converter interface can provide active power and nonactive power simultaneously and independently. A DE can provide dynamic voltage regulation to the local bus because of its nonactive power capability. Furthermore, the proposed DE control method in this paper can effectively compensate the unbalance in the local voltage. The system requirements such as the inverter current rating and the dc voltage rating are discussed. The analysis of the system requirements to provide nonactive power shows that it is cost-effective to have DE provide voltage regulation.

Xu, Yan [ORNL; Li, Fangxing [ORNL; Rizy, D Tom [ORNL; Kueck, John D [ORNL

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Residential Power Systems for Distributed Generation Markets  

Science Conference Proceedings (OSTI)

This report is an update to "Technology Assessment of Residential Power Systems for Distributed Generation Markets" (EPRIsolutions report 1000772). That previous report dealt with fuel cells, stirling engine generators, and reciprocating engine generators; this current report focuses on polymer electrolyte membrane fuel cells (PEMFCs) and solid oxide fuel cell (SOFC) power systems fueled with natural gas or propane and sized for residential loads.

2002-03-29T23:59:59.000Z

22

Protection system design for power distribution systems in the presence of distributed generation.  

E-Print Network (OSTI)

??The increasing presence of distributed generation and the steady modernization of power distribution system equipment have presented new opportunities in power distribution system studies. This (more)

Mao, Yiming

2005-01-01T23:59:59.000Z

23

Electric Power Transmission and Distribution (EPTD) Smart Grid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Power Transmission and Distribution (EPTD) Smart Grid Program (New York) Electric Power Transmission and Distribution (EPTD) Smart Grid Program (New York) < Back...

24

Industrial Distributed Energy: Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(DOE) (DOE) Industrial Technology Program (ITP) Industrial Distributed Energy: Combined Heat & Power (CHP) Richard Sweetser Senior Advisor DOE's Mid-Atlantic Clean Energy Application Center 32% Helping plants save energy today using efficient energy management practices and efficient new technologies Activities to spur widespread commercial use of CHP and other distributed generation solutions 10% Manufacturing Energy Systems 33% Industries of the Future R&D addressing top priorities in America's most energy-intensive industries and cross-cutting activities applicable to multiple industrial subsectors 25% Industrial Distributed Energy Industrial Technical Assistance DOE ITP FY'11 Budget: $100M Knowledge development and

25

Distributed Power Allocation in Prosumer Thiagarajan Ramachandran,  

E-Print Network (OSTI)

balancing agent: the prosumer, which was introduced in Grijalva and Tariq [2011]. As the electricityDistributed Power Allocation in Prosumer Networks Thiagarajan Ramachandran, Zak Costello, Peter for its solution. We show that the information required by the individual prosumers to solve the problem

Egerstedt, Magnus

26

Protecting Intelligent Distributed Power Grids Against Cyber Attacks - May  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protecting Intelligent Distributed Power Grids Against Cyber Protecting Intelligent Distributed Power Grids Against Cyber Attacks - May 2008 Protecting Intelligent Distributed Power Grids Against Cyber Attacks - May 2008 Development of a novel distributed and hierarchical security layer specific to intelligent grid design will help protect intelligent distributed power grids from cyber attacks. Intelligent power grids are interdependent energy management systems-encompassing generation, distribution, IT networks, and control systems-that use automated data analysis and demand response capabilities to increase system functionality, efficiency, and reliability. But increased interconnection and automation over a large geographical area requires a distributed and hierarchical approach to cybersecurity. Protecting Intelligent Distributed Power Grids Again Cyber Attacks.pdf

27

Distribution: Sonya Baskerville, Liaison, Bonneville Power Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11, 2013 11, 2013 Distribution: Sonya Baskerville, Liaison, Bonneville Power Administration Karen Boardman, Health Safety and Security, Director, National Training Center Wayne Elias, Fossil Energy, Director, FE-42 Gordon Fox, Office of Science, Director, SC-31.2 Mark Gilbertson, Environmental Management, DAS, Site Restoration Larry Harp, Division of Engineering and Planning, South Western Power Administration Joshua Hill, Federal Energy Regulatory Commission, Acting Director, Logistics Mgmt. Div. Doug Hooker, Energy Efficiency and Renewable Energy, Director, GO-OMA Mary McCune, Nuclear Energy, Director, Office of Facilities Management Peter O'Konski, Office of Management, Director, Office of Administration Jessica Schwersenska, Naval Reactors Laboratory Field Office, Analyst

28

Distributed multi-phase distribution power flow: modeling, solution algorithm, and simulation results.  

E-Print Network (OSTI)

??With the increasing presence of distributed intelligence throughout power distribution systems, the possibilities for distributed control and operation schemes are becoming progressively more attractive and (more)

Kleinberg, Michael R.

2007-01-01T23:59:59.000Z

29

Optimal Reactive Power Planning of Radial Distribution Systems with Distributed Generation  

Science Conference Proceedings (OSTI)

The paper analyzes reactive power optimization problem in distribution system with wind power and PV generators. Reactive power optimization mathematical model including the active power loss, reactive power compensation capacity and static voltage margin ... Keywords: Distributed generation, Distributed Generation, Immune Algorithm, Cluster Evolutionary

Li Shengqi, Zeng Lilin, Li Yongan, He Zhengping

2013-01-01T23:59:59.000Z

30

Investigating the electric power distribution system (EPDS) bus voltage in the presence of distributed generation (DG)  

Science Conference Proceedings (OSTI)

This paper investigates the Electric Power Distribution System (EPDS) bus voltage in the presence of Distributed Generation (DG). Distribution Company's (Discos) planner endeavor to develop new planning strategies for their network in order to serve ... Keywords: PSCAD, distributed generation, electric power distribution system, islanding, power quality, voltage stability

Hasham Khan; Mohammad Ahmad Choudhry; Tahir Mahmood; Aamir Hanif

2006-04-01T23:59:59.000Z

31

An enhanced load transfer scheme for power distribution systems connected with distributed generation sources  

Science Conference Proceedings (OSTI)

This paper presents an enhanced load transfer scheme for power distribution systems connected with distributed generation sources. Load transfer is an important approach to improve the reliability of power distribution systems. The proposed load transfer ... Keywords: distributed generation source, distribution feeder, distribution system, interconnection, load transfer

Wen-Chih Yang; Wei-Tzer Huang

2011-04-01T23:59:59.000Z

32

Distributed Power Electronics for PV Systems (Presentation)  

DOE Green Energy (OSTI)

An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

Deline, C.

2011-12-01T23:59:59.000Z

33

Wind Power Forecasting Error Distributions over Multiple Timescales (Presentation)  

DOE Green Energy (OSTI)

This presentation presents some statistical analysis of wind power forecast errors and error distributions, with examples using ERCOT data.

Hodge, B. M.; Milligan, M.

2011-07-01T23:59:59.000Z

34

Solid oxide fuel cell distributed power generation  

SciTech Connect

Fuel cells are electrochemical devices that oxidize fuel without combustion to convert directly the fuel`s chemical energy into electricity. The solid oxide fuel cell (SOFC) is distinguished from other fuel cell types by its all solid state structure and its high operating temperature (1,000 C). The Westinghouse tubular SOFC stack is process air cooled and has integrated thermally and hydraulically within its structure a natural gas reformer that requires no fuel combustion and no externally supplied water. In addition, since the SOFC stack delivers high temperature exhaust gas and can be operated at elevated pressure, it can supplant the combustor in a gas turbine generator set yielding a dry (no steam) combined cycle power system of unprecedented electrical generation efficiency (greater 70% ac/LHV). Most remarkably, analysis indicates that efficiencies of 60 percent can be achieved at power plant capacities as low as 250 kWe, and that the 70 percent efficiency level should be achievable at the two MW capacity level. This paper describes the individual SOFC, the stack, and the power generation system and its suitability for distributed generation.

Veyo, S.E.

1997-12-31T23:59:59.000Z

35

Distributed Robust Power System State Estimation  

E-Print Network (OSTI)

Deregulation of energy markets, penetration of renewables, advanced metering capabilities, and the urge for situational awareness, all call for system-wide power system state estimation (PSSE). Implementing a centralized estimator though is practically infeasible due to the complexity scale of an interconnection, the communication bottleneck in real-time monitoring, regional disclosure policies, and reliability issues. In this context, distributed PSSE methods are treated here under a unified and systematic framework. A novel algorithm is developed based on the alternating direction method of multipliers. It leverages existing PSSE solvers, respects privacy policies, exhibits low communication load, and its convergence to the centralized estimates is guaranteed even in the absence of local observability. Beyond the conventional least-squares based PSSE, the decentralized framework accommodates a robust state estimator. By exploiting interesting links to the compressive sampling advances, the latter jointly es...

Kekatos, Vassilis

2012-01-01T23:59:59.000Z

36

Distributed Battery Control for Peak Power Shaving in Datacenters  

E-Print Network (OSTI)

Distributed Battery Control for Peak Power Shaving in Datacenters Baris Aksanli and Tajana Rosing to shave peak power demands. Our novel distributed battery control design has no performance impact, reduces the peak power needs, and accurately estimates and maximizes the battery lifetime. We demonstrate

Simunic, Tajana

37

Optimal selection and sizing of distributed energy resources for distributed power systems  

Science Conference Proceedings (OSTI)

Optimal selection and sizing of distributed energy resources is an important research problem in the development of distributed power systems. This paper presents a methodology for optimal selection and sizing of distributed energy resources in integrated microgrids using the evolutionary strategy. Integrated microgrid is an innovative architecture in distributed power systems

Thillainathan Logenthiran; Dipti Srinivasan

2012-01-01T23:59:59.000Z

38

Fuel Cycle Comparison for Distributed Power Technologies  

Fuel Cell Technologies Publication and Product Library (EERE)

This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microtur

39

Multi-agent approach to power distribution network modelling  

Science Conference Proceedings (OSTI)

Power supply reliability has become a question of ever growing importance. Due to its geographical distribution and the high costs of maintaining electric power systems (EPS), the necessary quality cannot be achieved simply by redundancy. It is necessary ... Keywords: economic aspects of power outages, multi-agent systems, power network simulation

Miroslav Prmek; Ale Hork

2010-12-01T23:59:59.000Z

40

Distributed Generation: Issues Concerning a Changing Power Grid Paradigm.  

E-Print Network (OSTI)

??Distributed generation is becoming increasingly prevalent on power grids around the world. Conventional designs and grid operations are not always sufficient for handling the implementation (more)

Therien, Scott G.M.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Next-Generation Distributed Power Management for Photovoltaic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Office EETD Safety Program Development Contact Us Department Contacts Media Contacts Next-Generation Distributed Power Management for Photovoltaic Systems Speaker(s): Jason Stauth...

42

Distributed Generation and Virtual Power Plants: Barriers and Solutions.  

E-Print Network (OSTI)

??The present technological and regulatory power system needs to adapt to the increase in the share of distributed generation. This research focuses on the applicability (more)

Olejniczak, T.

2011-01-01T23:59:59.000Z

43

Surface wind speed distributions| Implications for climate and wind power.  

E-Print Network (OSTI)

?? Surface constituent and energy fluxes, and wind power depend non-linearly on wind speed and are sensitive to the tails of the wind distribution. Until (more)

Capps, Scott Blair

2010-01-01T23:59:59.000Z

44

DOE Announces Webinars on the Distributed Wind Power Market,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofits Financial Analysis Tool, and More DOE Announces Webinars on the Distributed Wind Power Market, Lighting Retrofits Financial Analysis Tool, and More August 16, 2013 -...

45

Fact Sheet: Protecting Intelligent Distributed Power Grids Against Cyber Attacks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protecting Intelligent Distributed Protecting Intelligent Distributed Power Grids Against Cyber Attacks Development of a novel distributed and hierarchical security layer specific to intelligent grid design Intelligent power grids are interdependent energy management systems- encompassing generation, distribution, IT networks, and control systems-that use automated data analysis and demand response capabilities to increase system functionality, efficiency, and reliability. But increased interconnection and automation over a large geographical area requires a distributed and hierarchical approach to cyber security. This two-year project will develop three security components unique to intelligent power grids. The first is an automated

46

Industrial Distributed Energy: Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE))

Information about the Department of Energys Industrial Technologies Program and its Combined Heat and Power program.

47

Distribution Power Flow in IRW Group Meeting  

E-Print Network (OSTI)

(PQ, SWING, PV) Maximum voltage error Busflag : HASSOURCE to indicates that this node can have.0; } Measurement: Energy, power, demand, real and reactive power 3 phase voltage and current Note: measured_demand is the watts measurement of the peak power demand of downstream objects. #12;Case study: IEEE 4 nodes test

Tesfatsion, Leigh

48

A Two-Stage Distributed Architecture for Voltage Control in Power Distribution Systems  

E-Print Network (OSTI)

-positive power injections. With respect to this, the University of Illinois solar decathlon house--the Gable Home by the US DOE Smart Grid initiative, and its European counterpart Electricity Networks of the Future, power1 A Two-Stage Distributed Architecture for Voltage Control in Power Distribution Systems Brett A

Hadjicostis, Christoforos

49

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network (OSTI)

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

Sulc, Petr; Backhaus, Scott; Chertkov, Michael

2010-01-01T23:59:59.000Z

50

Inverter power module with distributed support for direct substrate cooling  

Science Conference Proceedings (OSTI)

Systems and/or methods are provided for an inverter power module with distributed support for direct substrate cooling. An inverter module comprises a power electronic substrate. A first support frame is adapted to house the power electronic substrate and has a first region adapted to allow direct cooling of the power electronic substrate. A gasket is interposed between the power electronic substrate and the first support frame. The gasket is configured to provide a seal between the first region and the power electronic substrate. A second support frame is adapted to house the power electronic substrate and joined to the first support frame to form the seal.

Miller, David Harold (San Pedro, CA); Korich, Mark D. (Chino Hills, CA); Ward, Terence G. (Redondo Beach, CA); Mann, Brooks S. (Redondo Beach, CA)

2012-08-21T23:59:59.000Z

51

Northern Area Rural Power Distribution Project LAO: NOTHERN AREA RURAL POWER DISTRIBUTION  

E-Print Network (OSTI)

To enable Electricit du Laos (EdL) to extend its northern grid, the Asian Development Bank (ADB) is assisting EdL in the construction of a backbone high-voltage transmission network through a Power Transmission and Distribution (PTD) Project 1. The network facilities consist of 115-kV lines from Nam Leuk to Xieng Khouang, Xieng Ngeun to Xayaburi, and Thalat to Muang Feuang and 115/22 kV substations at the end of each line. By the completion of this Project in mid 2003, these backbone lines will permit further high-voltage extension of the northern grid while the substations will enable expanded coverage at 22-kV or 34.5-kV distribution level. The project objectives are to (i) extend the transmission and distribution system in the Northern rural area to provide electricity to rural low-income communities, and to improve their living standards and local economic conditions; (ii) strengthen EdLs project management ability and improve operational efficiency. The scope of the Project includes the following components: Extension of high voltage 115 kV transmission lines with a total length of about 303 km, including 173 km line from Louang Prabang to Oudomxai, and 79 km line from Oudomxai to Louang Namtha, 46 km line from Hin Heup to Vang Vieng, and 5 km line from Nam Ngum to Thalat; Construction of 115/34.5/22 kV substations at Oudomxai, Louang Namtha, Luang Prabang (extension), T tap at Hin Heup substation, Interface at Xaignabouli and Phonsavan substations and some extension work at Vang Vieng and Nam Ngum; Erection of mid-voltage (34.5/22 kV) distribution lines with a total length of about 1,009 km, distribution transformers of 237 sets, and electricity connection of approximately 33,800 households in 342 villages; Clearance of unexploded ordnance (UXO), Miscellaneous works including benefit monitoring program, land acquisition and compensation

Short Resettlement Plan; Short Resettlement Plan; Project Description

2002-01-01T23:59:59.000Z

52

Local control of reactive power by distributed photovoltaic generators  

SciTech Connect

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

53

Engineering Guide for Integration of Distributed Generation and Storage into Power Distribution Systems  

Science Conference Proceedings (OSTI)

Distributed resources (DR) hold great promise for improving the efficiency and reliability of electric power systems. The work described in this report focuses on distributed generation and storage, a subset of the larger family of DR technologies.

2000-12-11T23:59:59.000Z

54

Distributed Multi-Phase Distribution Power Flow: Modeling, Solution Algorithm and Simulation Results  

Science Conference Proceedings (OSTI)

With the increasing installation of power electronics and automated devices, the possibilities for distributed control and operation schemes are becoming progressively more attractive and feasible. This paper presents a new method for calculating distribution ...

Michael Kleinberg; Karen Miu; Chika Nwankpa

2008-08-01T23:59:59.000Z

55

Cascade Failures from Distributed Generation in Power Grids  

E-Print Network (OSTI)

Power grids are nowadays experiencing a transformation due to the introduction of Distributed Generation based on Renewable Sources. At difference with classical Distributed Generation, where local power sources mitigate anomalous user consumption peaks, Renewable Sources introduce in the grid intrinsically erratic power inputs. By introducing a simple schematic (but realistic) model for power grids with stochastic distributed generation, we study the effects of erratic sources on the robustness of several IEEE power grid test networks with up to 2000 buses. We find that increasing the penetration of erratic sources causes the grid to fail with a sharp transition. We compare such results with the case of failures caused by the natural increasing power demand.

Scala, Antonio; Scoglio, Caterina

2012-01-01T23:59:59.000Z

56

Property:Distributed Generation System Power Application | Open Energy  

Open Energy Info (EERE)

Application Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Power Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Based Load + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Based Load + Distributed Generation Study/Arrow Linen + Based Load + Distributed Generation Study/Dakota Station (Minnegasco) + Based Load +, Backup + Distributed Generation Study/Elgin Community College + Based Load +, Backup + Distributed Generation Study/Emerling Farm + Based Load + Distributed Generation Study/Floyd Bennett + Based Load + Distributed Generation Study/Harbec Plastics + Based Load + Distributed Generation Study/Hudson Valley Community College + Based Load +

57

Offering Premium Power to Select Customer Segments: Using Distributed Resources for Distribution Utilities  

Science Conference Proceedings (OSTI)

Electric sector restructuring will likely lead to increased opportunities for distributed resources (DR) technologies and solutions. In particular, distribution utilities may be able to use DR to provide innovative services that can help increase customer value and open new sources of revenue. Using DR to offer premium power services to customers with special sensitivity to power quality disturbances is one such opportunity.

2001-01-11T23:59:59.000Z

58

DOE Announces Webinars on the Distributed Wind Power Market, Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces Webinars on the Distributed Wind Power Market, DOE Announces Webinars on the Distributed Wind Power Market, Lighting Retrofits Financial Analysis Tool, and More DOE Announces Webinars on the Distributed Wind Power Market, Lighting Retrofits Financial Analysis Tool, and More August 16, 2013 - 12:00pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars August 21: Live Webinar on the 2012 Distributed Wind Market Report Webinar Sponsor: EERE's Wind and Water Power Technologies Program The Energy Department will present a live webcast titled "2012 Market

59

Distributed Solar-Thermal Combined Heat and Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Solar-Thermal Combined Heat and Power Speaker(s): Zack Norwood Date: February 22, 2007 - 12:00pm Location: 90-3122 This seminar will examine the potential for the mild...

60

Characterization of Magnetic Fields from Power Distribution Transformers  

Science Conference Proceedings (OSTI)

This report describes a measurement study that was performed to characterize magnetic fields from power distribution transformers. The purpose of the study was to evaluate magnetic field attenuation rates of various sizes of transformers.

2009-09-25T23:59:59.000Z

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE Announces Webinars on the Distributed Wind Power Market,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Energy Service Contracts, and More DOE Announces Webinars on the Distributed Wind Power Market, Utility Energy Service Contracts, and More August 21, 2013 - 12:00pm Addthis...

62

Power Quality Impacts of Distributed Generation: Survey of Distributed Generation Technologies  

Science Conference Proceedings (OSTI)

With the advent of deregulation, distributed generation (DG) will play an increasing role in electric distribution systems. Various new types of DG technologies, such as microturbines and fuel cells, now are being developed in addition to the more traditional solar and wind power. A common belief among developers is that DG will improve the local power quality. This potential for better quality is cited as one of the attributes that add value to the installation of distributed generators. In some cases, ...

2000-11-08T23:59:59.000Z

63

Calculated CIM Power Distributions for Coil Design  

SciTech Connect

Excessive bed expansion and material expulsion have occurred during experiments with the 3-inch diameter Cylindrical Induction Melter (CIM). Both events were attributed in part to the high power density in the bottom of the melter and the correspondingly high temperatures there. It is believed that the high temperatures resulted in the generation of gasses at the bottom of the bed which could not escape. The gasses released during heating and the response of the bed to gas evolution depend upon the composition of the bed.

Hardy, B.J.

1999-02-17T23:59:59.000Z

64

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices  

DOE Patents (OSTI)

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

2006-12-12T23:59:59.000Z

65

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices  

DOE Patents (OSTI)

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

2011-12-06T23:59:59.000Z

66

Sandia National Laboratories Distributive Power Initiative (DPI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peer Review This work was funded by the DOE Energy Storage Program November 2-3, 2006 Washington, DC Presented by: Tom Hund, Nancy Clark, David Johnson, and Wes Baca Sandia National Laboratories Albuquerque, NM (505) 844-8627 tdhund@sandia.gov *Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. 2 Introduction (Previous Work)  Sandia's Power Sources Component Development Dept. provides unbiased energy storage testing support to the DOE Energy Storage Program.  Previous work has included supercap testing on ESMA, Maxwell, and Okamura Labs devices, and battery testing on EEI Bipolar NiMH, Cyclon VRLA,

67

Sandia National Laboratories Distributive Power Initiative (DPI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benjamin L. Schenkman Benjamin L. Schenkman (505) 284-5883 BLSCHEN@SANDIA.GOV September 2008 ABMAS Battery Management System for USCG National Distress System Applications Annual DOE Peer Review National Distress System (NDS) Problem National Distress System (NDS) Problem  Supplying Fuel to the propane generators is expensive especially when the fuel has to be chartered by helicopter. NDS Background NDS Background  365/7/24 distress communication coverage  Remote Locations (Majority in Alaska)  VHF-FM system powered by Battery, PV and USCG owned propane generators  Fuel for the Generator is delivered by helicopter or car if possible Fuel/Battery Tradeoff Fuel/Battery Tradeoff Good charge acceptance Efficient generator operation Good charge acceptance Efficient generator

68

Virginia Electric & Power Company Electronic Mail Distribution  

E-Print Network (OSTI)

On June 29, 2007, the U.S. Nuclear Regulatory Commission (NRC) completed an inspection at your Surry Power Station. The enclosed inspection report documents the inspection results, which were discussed on June 28, 2007, with Mr. D. Jernigan, Site Vice President, and other members of your staff. The inspection examined activities conducted under your license as they relate to safety and compliance with the Commissions rules and regulations and with the conditions of your license. The inspectors reviewed selected procedures and records, observed activities, and interviewed personnel. Based on the results of this inspection, no findings of significance were identified. In accordance with 10 CFR 2.390 of the NRC's "Rules of Practice, " a copy of this letter and its enclosure will be available electronically for public inspection in the NRC Public Document Room or from the Publicly Available Records (PARS) component of NRC's document system (ADAMS). ADAMS is accessible from the NRC Web site at

Attn Mr; David A. Christian; Chief Nuclear Officer; Brian R. Bonser; Chris L. Funderburk; Donald E. Jernigan; Surry Power Station

2007-01-01T23:59:59.000Z

69

Next-Generation Distributed Power Management for Photovoltaic Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Distributed Power Management for Photovoltaic Systems Next-Generation Distributed Power Management for Photovoltaic Systems Speaker(s): Jason Stauth Date: July 29, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Steven Lanzisera In recent years, the balance of systems (BOS) side of photovoltaic (PV) energy has become a major focus in the effort to drive solar energy towards grid parity. The power management architecture has expanded to include a range of distributed solutions, including microinverters and 'micro' DC-DC converters to solve problems with mismatch (shading), expand networking and control, and solve critical BOS issues such as fire safety. This talk will introduce traditional and distributed approaches for PV systems, and will propose a next-generation architecture based on a new

70

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network (OSTI)

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design decision that weighs on the speed and quality of communication required is whether the control should be centralized or distributed (i.e. local). In general, we find that local control schemes are capable for maintaining voltage within acceptable bounds. We consider the benefits of choosing different local variables on which to control and how the control system can be continuously tuned between robust voltage control, suitable for daytime operation when circuit conditions can change rapidly, and loss minimization better suited for nighttime operation.

Petr Sulc; Konstantin Turitsyn; Scott Backhaus; Michael Chertkov

2010-08-04T23:59:59.000Z

71

Distributed Resources Premium Power Solutions: Market Analysis and Business Case for Distributed Resources-Based Premium Power  

Science Conference Proceedings (OSTI)

It has been postulated that distributed resources (DR) can solve power quality and reliability problems. While the application generation and storage technologies is quite common for providing premium power, extracting DR benefits from these installations, whether existing or future, is less well developed. This report analyzes different DR applications and options for improving power quality and reliability at end user facilities. In this analysis, DR-capable technologies refer to generator and storage ...

2003-01-29T23:59:59.000Z

72

Parallel Computing Environments and Methods for Power Distribution System Simulation  

SciTech Connect

The development of cost-effective high-performance parallel computing on multi-processor super computers makes it attractive to port excessively time consuming simulation software from personal computers (PC) to super computes. The power distribution system simulator (PDSS) takes a bottom-up approach and simulates load at appliance level, where detailed thermal models for appliances are used. This approach works well for a small power distribution system consisting of a few thousand appliances. When the number of appliances increases, the simulation uses up the PC memory and its run time increases to a point where the approach is no longer feasible to model a practical large power distribution system. This paper presents an effort made to port a PC-based power distribution system simulator (PDSS) to a 128-processor shared-memory super computer. The paper offers an overview of the parallel computing environment and a description of the modification made to the PDSS model. The performances of the PDSS running on a standalone PC and on the super computer are compared. Future research direction of utilizing parallel computing in the power distribution system simulation is also addressed.

Lu, Ning; Taylor, Zachary T.; Chassin, David P.; Guttromson, Ross T.; Studham, Scott S.

2005-11-10T23:59:59.000Z

73

Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration  

E-Print Network (OSTI)

We show how distributed control of reactive power can serve to regulate voltage and minimize resistive losses in a distribution circuit that includes a significant level of photovoltaic (PV) generation. To demonstrate the technique, we consider a radial distribution circuit with a single branch consisting of sequentially-arranged residential-scale loads that consume both real and reactive power. In parallel, some loads also have PV generation capability. We postulate that the inverters associated with each PV system are also capable of limited reactive power generation or consumption, and we seek to find the optimal dispatch of each inverter's reactive power to both maintain the voltage within an acceptable range and minimize the resistive losses over the entire circuit. We assume the complex impedance of the distribution circuit links and the instantaneous load and PV generation at each load are known. We compare the results of the optimal dispatch with a suboptimal local scheme that does not require any com...

Turitsyn, Konstantin; Backhaus, Scott; Chertkov, Michael

2009-01-01T23:59:59.000Z

74

Distributed Generation Planning for Loss and Cost Minimisation in Power Distribution Systems.  

E-Print Network (OSTI)

??In this thesis, a method based on a sensitivity analysis and quadratic curve-fitting technique for power loss reduction in a low-voltage distribution area is proposed. (more)

Anwar, Adnan

2012-01-01T23:59:59.000Z

75

Comparison of Wind Power and Load Forecasting Error Distributions: Preprint  

DOE Green Energy (OSTI)

The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

2012-07-01T23:59:59.000Z

76

Electric Power Transmission and Distribution (EPTD) Smart Grid Program (New  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Power Transmission and Distribution (EPTD) Smart Grid Electric Power Transmission and Distribution (EPTD) Smart Grid Program (New York) Electric Power Transmission and Distribution (EPTD) Smart Grid Program (New York) < Back Eligibility Agricultural Commercial Construction Industrial Institutional Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Home Weatherization Solar Wind Program Info State New York Program Type Grant Program Provider New York State Energy Research and Development Authority Up to $10 million in funds is available from NYSERDA to support research and engineering studies, product development and demonstration projects that improve the reliability, efficiency, quality, and overall performance

77

Cape Peninsula University of Technology - Centre for Distributed Power and  

Open Energy Info (EERE)

Peninsula University of Technology - Centre for Distributed Power and Peninsula University of Technology - Centre for Distributed Power and Electronic Systems Jump to: navigation, search Name Cape Peninsula University of Technology Address Symphony way, Bellville Place Cape Town, South Africa Zip 7535 Region Western cape Number of employees 11-50 Year founded 2004 Phone number +27219596563 Website http://www.cput.ac.za References Dr Atanda Raji[1] Prof. Kahn MTE[2] Dr Marco Adonis[3] Dr Wilfred Fritz[4] LinkedIn Connections This article is a stub. You can help OpenEI by expanding it. Cape Peninsula University of Technology - Centre for Distributed Power and Electronic Systems is a research institution based in Cape Town, South Africa. References ↑ "Dr Atanda Raji" ↑ "Prof. Kahn MTE" ↑ "Dr Marco Adonis"

78

Distributed control for optimal reactive power compensation in smart microgrids  

E-Print Network (OSTI)

We consider the problem of optimal reactive power compensation for the minimization of power distribution losses in a smart microgrid. We first propose an approximate model for the power distribution network, which allows us to cast the problem into the class of convex quadratic, linearly constrained, optimization problems. We also show how this model provides the tools for a distributed approach, in which agents have a partial knowledge of the problem parameters and state, and can only perform local measurements. Then, we design a randomized, gossip-like optimization algorithm, providing conditions for convergence together with an analytic characterization of the convergence speed. The analysis shows that the best performance can be achieved when we command cooperation among agents that are neighbors in the smart microgrid topology. Numerical simulations are included to validate the proposed model and to confirm the analytic results about the performance of the proposed algorithm.

Bolognani, Saverio

2011-01-01T23:59:59.000Z

79

Most Viewed Documents - Power Generation and Distribution | OSTI, US Dept  

Office of Scientific and Technical Information (OSTI)

Most Viewed Documents - Power Generation and Distribution Most Viewed Documents - Power Generation and Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; et al. (1994) ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Quarterly technical progress report, September 1993--December 1993 Benemann, J.R.; Oswald, W.J. (1994) Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; et al. (1997) Multilevel converters -- A new breed of power converters Lai, J.S. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.]; Peng, F.Z. [Univ. of Tennessee, Knoxville, TN (United

80

Globally Optimal Distributed Power Control for Nonconcave Utility Maximization  

E-Print Network (OSTI)

Future wireless networks are expected to operate in dense environments where the system capacity is fundamentally limited by severe co-channel interference among neighboring links. Transmit-power control has been recently explored as an important interference-mitigation technique that aims to maximize a system efficiency metric, which is often measured by a system utility function. Optimal power control is known to be difficult to achieve, mainly because the optimization problem is in general highly non-convex. This problem had eluded researchers and remained open until our recent work [11], where a centralized optimal power control algorithm, referred to as MAPEL, is developed based on a monotonic optimization framework. However, there does not yet exist a distributed power control algorithm that achieves the global optimal solution for generic utility functions, although the distributed implementation is crucial for the wireless infrastructureless networks such as ad hoc and sensor networks. This paper fill...

Qian, Li Ping; Zhang,; Chiang, Mung

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Power Distribution Options for LWA Active-Antennas  

E-Print Network (OSTI)

We examine a variety of power distribution methods for use in LWA-1 with an emphasis on determining whether a bias-T should be incorporated into future designs. We recommend that serious consideration be given to supplying power to the active baluns via bias-T units. If low level 60 Hz artifacts passing through the bias-T networks do not present an insurmountable receiver design problem, we would specifically recommend their use in distributing low voltage AC (e.g. 12.6 VAC) from a central transformer. I.

Brian Hicks; Nagini Paravastu; Paul Ray

2007-01-01T23:59:59.000Z

82

Modeling and Verification of Distributed Generation and Voltage Regulation Equipment for Unbalanced Distribution Power Systems; Annual Subcontract Report, June 2007  

Science Conference Proceedings (OSTI)

This report summarizes the development of models for distributed generation and distribution circuit voltage regulation equipment for unbalanced power systems and their verification through actual field measurements.

Davis, M. W.; Broadwater, R.; Hambrick, J.

2007-07-01T23:59:59.000Z

83

Verification of the SIMULATE-3 pin power distribution calculation  

SciTech Connect

The advanced nodal code SIMULATE-3 includes the capability to generate detailed pin-by-pin power distributions. An extensive series of benchmark calculations have been performed to verify the accuracy of this capability. Fuel depletion and fuel depletion after shuffling applications were examined. Comparisons were made among SIMULATE-3, higher order transport theory calculations, and calculations performed using fine-mesh finite difference diffusion theory. Detailed pin power data from multiassembly (colorsets) and quarter-core geometries were compared. The results demonstrate the accuracy of SIMULATE-3 relative to currently accepted methods of generating pin power data.

DiGiovine, A.S.; Gorski, J.P.; Tremblay, M.A. (Yankee Atomic Electric Co., Boston, MA (USA))

1989-12-01T23:59:59.000Z

84

Wind Power Forecasting Error Distributions: An International Comparison; Preprint  

DOE Green Energy (OSTI)

Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

2012-09-01T23:59:59.000Z

85

Cooperatives of distributed energy resources for efficient virtual power plants  

Science Conference Proceedings (OSTI)

The creation of Virtual Power Plants (VPPs) has been suggested in recent years as the means for achieving the cost-efficient integration of the many distributed energy resources (DERs) that are starting to emerge in the electricity network. In this work, ... Keywords: coalition formation, energy and emissions, incentives for cooperation, simulation

Georgios Chalkiadakis; Valentin Robu; Ramachandra Kota; Alex Rogers; Nicholas R. Jennings

2011-05-01T23:59:59.000Z

86

Rooftop Solar Potential Distributed Solar Power in NW  

E-Print Network (OSTI)

6/19/2013 1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 in 2012 4 #12;6/19/2013 3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow

87

LIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS  

E-Print Network (OSTI)

of a nuclear reactor with feedback," in: Applied Problems in the Theory of Oscillations [in RussianLIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS M. V. Bazhenov and E. F. Sabaev UDC of Nuclear Reactors [in Russian], l~nergoatomizdat, Moscow (1990). F. R. Gantmakher and V. A. Yakubovich

Bazhenov, Maxim

88

A distributed smart application for solar powered WSNs  

Science Conference Proceedings (OSTI)

Energy harvesting (EH) is a major step in solving the critical issue of availability of energy for sensor nodes. However, it throws many challenges. The applications built on the sensor networks powered by EH need to adapt their operations yet serve ... Keywords: distributed smart application, energy harvested wireless sensor network (EHWSN), multi-criteria optimization

T. V. Prabhakar; S. N. Akshay Uttama Nambi; R. Venkatesha Prasad; S. Shilpa; K. Prakruthi; Ignas Niemegeers

2012-05-01T23:59:59.000Z

89

High Resolution PV Power Modeling for Distribution Circuit Analysis  

DOE Green Energy (OSTI)

NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

Norris, B. L.; Dise, J. H.

2013-09-01T23:59:59.000Z

90

April 2013 Most Viewed Documents for Power Generation And Distribution |  

Office of Scientific and Technical Information (OSTI)

April 2013 Most Viewed Documents for Power Generation And Distribution April 2013 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 719 Seventh Edition Fuel Cell Handbook NETL (2004) 628 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 343 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 290 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 248 Controlled low strength materials (CLSM), reported by ACI Committee 229 Rajendran, N. (1997) 106 Micro-CHP Systems for Residential Applications Timothy DeValve; Benoit Olsommer (2007)

91

September 2013 Most Viewed Documents for Power Generation And Distribution  

Office of Scientific and Technical Information (OSTI)

Power Generation And Distribution Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 200 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 103 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 76 Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G. (1982) 69 Seventh Edition Fuel Cell Handbook NETL (2004) 65 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 52 Controlled low strength materials (CLSM), reported by ACI Committee

92

Electron beam machining using rotating and shaped beam power distribution  

DOE Patents (OSTI)

An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

Elmer, John W. (Pleasanton, CA); O' Brien, Dennis W. (Livermore, CA)

1996-01-01T23:59:59.000Z

93

Econophysical Dynamics of Market-Based Electric Power Distribution Systems  

E-Print Network (OSTI)

As energy markets begin clearing at sub-hourly rates, their interaction with load control systems becomes a potentially important consideration. A simple model for the control of thermal systems using market-based power distribution strategies is proposed, with particular attention to the behavior and dynamics of electric building loads and distribution-level power markets. Observations of dynamic behavior of simple numerical model are compared to that of an aggregate continuous model. The analytic solution of the continuous model suggests important deficiencies in each. The continuous model provides very valuable insights into how one might design such load control system and design the power markets they interact with. We also highlight important shortcomings of the continuous model which we believe must be addressed using discrete models.

Nicolas Ho; David P. Chassin

2006-02-09T23:59:59.000Z

94

Distributed Power Flow Control: Distributed Power Flow Control using Smart Wires for Energy Routing  

Science Conference Proceedings (OSTI)

GENI Project: Smart Wire Grid is developing a solution for controlling power flow within the electric grid to better manage unused and overall transmission capacity. The 300,000 miles of high-voltage transmission line in the U.S. today are congested and inefficient, with only around 50% of all transmission capacity utilized at any given time. Increased consumer demand should be met in part with more efficient and an economical power flow. Smart Wire Grids devices clamp onto existing transmission lines and control the flow of power withinmuch like how internet routers help allocate bandwidth throughout the web. Smart wires could support greater use of renewable energy by providing more consistent control over how that energy is routed within the grid on a real-time basis. This would lessen the concerns surrounding the grids inability to effectively store intermittent energy from renewables for later use.

None

2012-04-24T23:59:59.000Z

95

Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration  

SciTech Connect

We show how distributed control of reactive power can serve to regulate voltage and minimize resistive losses in a distribution circuit that includes a significant level of photovoltaic (PV) generation. To demonstrate the technique, we consider a radial distribution circuit with a single branch consisting of sequentially-arranged residential-scale loads that consume both real and reactive power. In parallel, some loads also have PV generation capability. We postulate that the inverters associated with each PV system are also capable of limited reactive power generation or consumption, and we seek to find the optimal dispatch of each inverter's reactive power to both maintain the voltage within an acceptable range and minimize the resistive losses over the entire circuit. We assume the complex impedance of the distribution circuit links and the instantaneous load and PV generation at each load are known. We compare the results of the optimal dispatch with a suboptimal local scheme that does not require any communication. On our model distribution circuit, we illustrate the feasibility of high levels of PV penetration and a significant (20% or higher) reduction in losses.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory; Sule, Petr [NEW MEXICO CONSORTIUM

2009-01-01T23:59:59.000Z

96

Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration  

SciTech Connect

We show how distributed control of reactive power can serve to regulate voltage and minimize resistive losses in a distribution circuit that includes a significant level of photovoltaic (PV) generation. To demonstrate the technique, we consider a radial distribution circuit with a single branch consisting of sequentially-arranged residential-scale loads that consume both real and reactive power. In parallel, some loads also have PV generation capability. We postulate that the inverters associated with each PV system are also capable of limited reactive power generation or consumption, and we seek to find the optimal dispatch of each inverter's reactive power to both maintain the voltage within an acceptable range and minimize the resistive losses over the entire circuit. We assume the complex impedance of the distribution circuit links and the instantaneous load and PV generation at each load are known. We compare the results of the optimal dispatch with a suboptimal local scheme that does not require any communication. On our model distribution circuit, we illustrate the feasibility of high levels of PV penetration and a significant (20% or higher) reduction in losses.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory; Sule, Petr [NEW MEXICO CONSORTIUM

2009-01-01T23:59:59.000Z

97

DOE Announces Webinars on the Distributed Wind Power Market, Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Retrofits Financial Analysis Tool, and More Lighting Retrofits Financial Analysis Tool, and More DOE Announces Webinars on the Distributed Wind Power Market, Lighting Retrofits Financial Analysis Tool, and More August 16, 2013 - 12:00pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars August 21: Live Webinar on the 2012 Distributed Wind Market Report Webinar Sponsor: EERE's Wind and Water Power Technologies Program The Energy Department will present a live webcast titled "2012 Market

98

Distributed Solar Power Ltd Di S P | Open Energy Information  

Open Energy Info (EERE)

Di S P Di S P Jump to: navigation, search Name Distributed Solar Power Ltd (Di.S.P) Place Yokneam, Israel Zip 20692 Sector Solar Product Distributed Solar Power Generation using miniature concentrated photovoltaic systems, which will also produce hot water. Coordinates 49.942429°, 7.97298° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.942429,"lon":7.97298,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

Tools, Methods, and Modeling for Dynamic Distribution Systems, Power Factor Guidelines: Power Control with Distributed Energy Resources  

Science Conference Proceedings (OSTI)

With the onset in the past few years of tax incentives, subsidies, and renewable portfolio standards for distributed energy resources (DER), utilities are experiencing increasing numbers of interconnection requests for both large, MW-class systems as well as small, residential-scale systems. As a result, utilities need methods for integrating DER without impacting system reliability or power quality for other customers, while also maintaining flexibility for future changes and minimizing ...

2013-12-19T23:59:59.000Z

100

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

2004-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

2004-09-30T23:59:59.000Z

102

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerin parabolic trough solar power technology. Journal of Solar

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

103

Time series power flow analysis for distribution connected PV generation.  

SciTech Connect

Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

2013-01-01T23:59:59.000Z

104

Multi-agent control and operation of electric power distribution systems.  

E-Print Network (OSTI)

??This dissertation presents operation and control strategies for electric power distribution systems containing distributed generators. First, models of microturbines and fuel cells are developed. These (more)

Al-Hinai, Amer.

2005-01-01T23:59:59.000Z

105

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the January to June 2004 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Nguyen Minh

2004-07-04T23:59:59.000Z

106

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Faress Rahman; Nguyen Minh

2004-01-04T23:59:59.000Z

107

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the January to June 2004 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Nguyen Minh

2004-07-04T23:59:59.000Z

108

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the October 2002 to December 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The following activities have been carried out during this reporting period: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} Part-load performance analysis was conducted {lg_bullet} Primary system concept was down-selected {lg_bullet} Dynamic control model has been developed {lg_bullet} Preliminary heat exchanger designs were prepared {lg_bullet} Pressurized SOFC endurance testing was performed

Nguyen Minh; Faress Rahman

2002-12-31T23:59:59.000Z

109

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Faress Rahman; Nguyen Minh

2004-01-04T23:59:59.000Z

110

Tomographic determination of the power distribution in electron beams  

DOE Patents (OSTI)

A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process.

Teruya, Alan T. (Livermore, CA); Elmer, John W. (Pleasanton, CA)

1996-01-01T23:59:59.000Z

111

Multi-agent control and operation of electric power distribution systems  

Science Conference Proceedings (OSTI)

This dissertation presents operation and control strategies for electric power distribution systems containing distributed generators. First, models of microturbines and fuel cells are developed. These dynamic models are incorporated in a power system ...

Amer Al-Hinai / Ali Feliachi

2005-01-01T23:59:59.000Z

112

Microsoft PowerPoint - UAE Masdar 2-24-10 final for distribution...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UAE Masdar 2-24-10 final for distribution.pptx Microsoft PowerPoint - UAE Masdar 2-24-10 final for distribution.pptx Microsoft PowerPoint - UAE Masdar 2-24-10 final for...

113

Microsoft PowerPoint - Saudi Arabia 2-22-10 final for distribution...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saudi Arabia 2-22-10 final for distribution.pptx Microsoft PowerPoint - Saudi Arabia 2-22-10 final for distribution.pptx Microsoft PowerPoint - Saudi Arabia 2-22-10 final for...

114

Study of the longitudinal distribution of power generated in a random distributed feedback Raman fibre laser with unidirectional pumping  

SciTech Connect

The longitudinal distribution of the Stokes-component power in a Raman fibre laser with a random distributed feedback and unidirectional pumping is measured. The fibre parameters (linear loss and Rayleigh backscattering coefficient) are calculated based on the distributions obtained. A numerical model is developed to describe the lasing power distribution. The simulation results are in good agreement with the experimental data. (optical fibres, lasers and amplifiers. properties and applications)

Churkin, D V; El-Taher, A E; Vatnik, I D; Babin, Sergei A

2012-09-30T23:59:59.000Z

115

Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint  

DOE Green Energy (OSTI)

Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

Allen, A.; Zhang, Y. C.; Hodge, B. M.

2013-09-01T23:59:59.000Z

116

Fuel cycle comparison of distributed power generation technologies.  

DOE Green Energy (OSTI)

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-12-08T23:59:59.000Z

117

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

Nguyen Minh

2002-03-31T23:59:59.000Z

118

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

DOE Green Energy (OSTI)

This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

Kurt Montgomery; Nguyen Minh

2003-08-01T23:59:59.000Z

119

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

DOE Green Energy (OSTI)

This report summarizes the work performed by Honeywell during the July 2001 to September 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. An internal program kickoff was held at Honeywell in Torrance, CA. The program structure was outlined and the overall technical approach for the program was presented to the team members. Detail program schedules were developed and detailed objectives were defined. Initial work has begun on the system design and pressurized SOFC operation.

Unknown

2002-03-01T23:59:59.000Z

120

Reliability Improvement Programs in Steam Distribution and Power Generation Systems  

E-Print Network (OSTI)

This paper will present alternatives to costly corrective maintenance of the steam trap and condensate return system, and the paybacks associated with instituting a program of planned maintenance management of that system. Energy costs can be reduced by 10% and maintenance costs by 20%, while achieving other tangible improvements in the reliability and efficiency of the system. Recent studies have shown that more than 40% of all installed steam traps and 20% of certain types of valves need some form of corrective action. The majority of all high backpressure problems in condensate return systems are due to poor design criteria. in expandlng or retrofitting existing return systems. By instituting a maintenance management program, a 95% reliability can be gained within two to four annual maintenance cycles. The associated operational problems can be greatly reduced. The maintenance management concept involves: 1) centralized project management; 2) diagnostic and inspection expertise; 3) system troubleshooting; 4) data analysis, reporting and recommendations; 5) maintenance repairs and follow-up; and 6) software and data base management. Several case studies, in which the concept has been successfully applied, will be presented. Energy costs, which have been on the rise for the past ten years, have now leveled off due to global supply and demand issues. But that is not true of the costs to maintain capital equipment such as steam distribution and power generation systems. Those costs continue to rise. If the basic principles of maintenance management are applied, when upgrading poorly maintained steam systems, those upgraded systems can be a fast payback of savings in energy, manpower and inventory. Three major areas where the savings can be gained are the steam traps, valve and condensate return systems. Such systems can be found in power generation, steam distribution, and in all types of durable and non-durable industrial productions.

Petto, S.

1987-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Applications of an electronic transformer in a power distribution system  

E-Print Network (OSTI)

In electrical power distribution and power electronic applications, a transformer is an indispensable component which performs many functions. At its operating frequency (60/50 Hz), it is one of the most bulky and expensive components. The concept of the electronic transformer introduced previously has shown considerable reduction in size, weight, and volume by operating at a higher frequency. In this dissertation, the concept of the electronic transformer is further extended to the auto-connected phase-shifting type to reduce harmonics generated by nonlinear loads. It is shown that with the addition of primary side and secondary side AC/AC converters achieves phase-shifting. With the addition of converters, magnetic components are operated at a higher frequency to yield a smaller size and weight. Two types of auto-connected electronic transformer configurations are explored. In the first configuration, the secondary converter is eliminated and the output is suitable for rectifier type loads such as adjustable speed drives. In the second configuration, the secondary converter is added to obtain a sinusoidal phase-shifted AC output voltage. This approach is applicable in general applications. With the proposed approaches, the th and 7th harmonic in utility line currents, generated by two sets of nonlinear loads, are subtracted within the electronic transformer, thereby reducing the total harmonic distortion (THD) of the line current. The analysis and simulation results are presented. In the second part of the dissertation, the electronic transformer concept is applied to a telecommunication power supply (-48 VDC) system. The proposed approach consists of a matrix converter to convert the low frequency three-phase input AC utility to a high frequency AC output without a DC-link. The output of the matrix converter is then processed via a high frequency isolation transformer to produce -48 VDC. Digital control of the system ensures that the output voltage is regulated and the input currents are of high quality, devoid of low frequency harmonics and at near unity input power factor under varying load conditions. Due to the absence of DC-link electrolytic capacitors, the power density of the proposed rectifier is shown to be higher. Analysis, design example and experimental results are presented from a three-phase 208 V, 1.5 kW laboratory prototype converter.

Ratanapanachote, Somnida

2004-08-01T23:59:59.000Z

122

Fact Sheet: Protecting Intelligent Distributed Power Grids Against...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

assessment graph * Creates a distributed, hierarchical security layer encompassing enterprise systems, substation controllers, and field devices * Distributes security devices to...

123

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

Faress Rahman; Nguyen Minh

2003-07-01T23:59:59.000Z

124

Incorporating Voltage Fluctuations of the Power Distribution Network into the Transient Analysis of CMOS Logic Gates  

Science Conference Proceedings (OSTI)

Decreased power supply levels have reduced the tolerance to voltage changes within power distribution networks in CMOS integrated circuits. High on-chip currents, required to charge and discharge large on-chip loads while operating at high frequencies, ... Keywords: IR drops, power distribution network, system-on-a-chip

Kevin T. Tang; Eby G. Friedman

2002-05-01T23:59:59.000Z

125

PAPER ACCEPTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, Nov. 2008 1 Reactive Power and Voltage Control in Distribution  

E-Print Network (OSTI)

PAPER ACCEPTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, Nov. 2008 1 Reactive Power and Voltage) problem associated with reactive power and voltage control in distribution systems to minimize daily on the number of switching operations of transformer load tap changers (LTCs) and capacitors, which are modeled

Cañizares, Claudio A.

126

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System Callaway Spring 2011 #12;Abstract A Better Steam Engine: Designing a Distributed Concentrating Solar of analysis of Distributed Concentrating Solar Combined Heat and Power (DCS-CHP) systems is a design

California at Berkeley, University of

127

Power Quality of Distributed Wind Projects in the Turbine Verification Program  

DOE Green Energy (OSTI)

The Electric Power Research Institute/U.S. Department of Energy (EPRI/DOE) Turbine Verification Program (TVP) includes four distributed wind generation projects connected to utility distribution feeders located in Algona, Iowa; Springview, Nebraska; Glenmore, Wisconsin; and Kotzebue, Alaska. The TVP has undertaken power quality measurements at each project to assess the impact that power quality has on the local utility grids. The measurements and analysis were guided by the draft IEC 61400-21 standard for power quality testing of wind turbines. The power quality characteristics measured include maximum power, distribution feeder voltage regulation, reactive power, and harmonics. This paper describes the approach to the measurements, the unique electrical system features of the four projects, and an assessment of measured power quality relative to limits prescribed by standards. It also gives anecdotal stories from each project regarding the impact of power quality on the respective distribution feeders.

Green, J; VandenBosche, J.; Lettenmaier, T.; Randall, G; Wind, T

2001-09-13T23:59:59.000Z

128

Voltage Support in Distributed Generation by Power Electronics.  

E-Print Network (OSTI)

?? There is an increasing amount of power processed through power electronics in the areas of generation interface, energy storage and loads. This increment enables (more)

Strand, Bjrn Erik

2008-01-01T23:59:59.000Z

129

Wind Power Forecasting Error Distributions over Multiple Timescales: Preprint  

DOE Green Energy (OSTI)

In this paper, we examine the shape of the persistence model error distribution for ten different wind plants in the ERCOT system over multiple timescales. Comparisons are made between the experimental distribution shape and that of the normal distribution.

Hodge, B. M.; Milligan, M.

2011-03-01T23:59:59.000Z

130

Direct current distribution systems for residential areas powered by distributed generation.  

E-Print Network (OSTI)

??Power system began its journey with DC power as pioneered by Edison. However, this was soon rivalled by AC power and ultimately DC paradigm found (more)

Dastgeer, Faizan

2011-01-01T23:59:59.000Z

131

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) under Cooperative Agreement DE-FC2601NT40779 for the US Department of Energy, National Energy Technology Laboratory (DoE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a gas turbine. A conceptual hybrid system design was selected for analysis and evaluation. The selected system is estimated to have over 65% system efficiency, a first cost of approximately $650/kW, and a cost of electricity of 8.4 cents/kW-hr. A control strategy and conceptual control design have been developed for the system. A number of SOFC module tests have been completed to evaluate the pressure impact to performance stability. The results show that the operating pressure accelerates the performance degradation. Several experiments were conducted to explore the effects of pressure on carbon formation. Experimental observations on a functioning cell have verified that carbon deposition does not occur in the cell at steam-to-carbon ratios lower than the steady-state design point for hybrid systems. Heat exchanger design, fabrication and performance testing as well as oxidation testing to support heat exchanger life analysis were also conducted. Performance tests of the prototype heat exchanger yielded heat transfer and pressure drop characteristics consistent with the heat exchanger specification. Multicell stacks have been tested and performance maps were obtained under hybrid operating conditions. Successful and repeatable fabrication of large (>12-inch diameter) planar SOFC cells was demonstrated using the tape calendering process. A number of large area cells and stacks were successfully performance tested at ambient and pressurized conditions. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Integrated gasification fuel cell systems or IGFCs were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems.

Nguyen Minh

2005-12-01T23:59:59.000Z

132

Making Connections: Case Studies of Interconnection Barriers and their Impact on Distributed Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of Interconnection of Interconnection Barriers and their Impact on Distributed Power Projects M a k i n g M a k i n g Connections Connections NREL/SR-200-28053 Revised July 2000 United States Department Of Energy Distributed Power Program Office of Energy Efficiency and Renewable Energy, Office of Power Technologies Joseph Galdo DOE Distributed Power Program Manager Office of Power Technologies, EE-15 U.S. Department of Energy Forrestal Building, 5H-021 1000 Independence Avenue SW Washington, DC 20585 Phone: (202) 586-0518 Fax: (202) 586-1640 Richard DeBlasio NREL Distributed Power Program Manager National Renewable Energy Laboratory 1617 Cole Blvd. (MS 3214) Golden, CO 80601 Phone: (303) 384-6452 Fax: (303) 384-6490 Gary Nakarado* National Renewable Energy Laboratory NREL Distributed Power Program Technical Monitor

133

Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)  

SciTech Connect

This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

Hodge, B. M.; Ela, E.; Milligan, M.

2011-10-01T23:59:59.000Z

134

An Improved Method for Estimating the Wind Power Density Distribution Function  

Science Conference Proceedings (OSTI)

The wind power density (WPD) distribution curve is essential for wind power assessment and wind turbine engineering. The usual practice of estimating this curve from wind speed data is to first estimate the wind speed probability density function ...

Mark L. Morrissey; Werner E. Cook; J. Scott Greene

2010-07-01T23:59:59.000Z

135

A consideration of cycle selection for meso-scale distributed solar-thermal power .  

E-Print Network (OSTI)

??Thermodynamic and thermoeconomic aspects of 12.5 kW residential solar-thermal power generating systems suitable for distributed, decentralized power generation paradigm are presented in this thesis. The (more)

Price, Suzanne

2009-01-01T23:59:59.000Z

136

The Probability Distribution of Wind Power From a Dispersed Array of Wind Turbine Generators  

Science Conference Proceedings (OSTI)

A method is presented for estimating the probability distribution of wind power from a dispersed array of wind turbine sites where the correlation between wind speeds at distinct sites is less than unity. The distribution is obtained from a model ...

John Carlin; John Haslett

1982-03-01T23:59:59.000Z

137

Decentralized control techniques applied to electric power distributed generation in microgrids.  

E-Print Network (OSTI)

??Distributed generation of electric energy has become part of the current electric power system. In this context a new scenario is arising in which small (more)

Vsquez Quintero, Juan Carlos

2009-01-01T23:59:59.000Z

138

Modeling, Analysis and Stabilization of Converter-Dominated Power Distribution Grids.  

E-Print Network (OSTI)

??The energy sector is moving towards extensive use of power electronic (PE) converters to interface distributed generation (DG) units and modern converter-interfaced loads (CILs). Therefore, (more)

Radwan, Amr A A

2012-01-01T23:59:59.000Z

139

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

Environmental impact study: CSP vs. CdTe thin filmsolar CHP Rankine CSP concentrating distributed the concentrating solar power (CSP) troughs in the central

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

140

Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California  

DOE Green Energy (OSTI)

The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

AMO Industrial Distributed Energy: Combined Heat and Power Basics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or power at the point of use, allowing the heat that would normally be lost in the power generation process to be recovered to provide needed heating andor cooling. CHP...

142

Noise Interaction Between Power Distribution Grids and Substrate  

Science Conference Proceedings (OSTI)

We have investigated the interaction between power delivery and substrate coupling in terms of noise. From our results, we identify that an increased density of substrate contacts does not to any significance decrease noise on the power supply lines. ... Keywords: Substrate noise, power supply

Daniel A. Andersson; Simon Kristiansson; Lars J. Svensson; Per Larsson-Edefors; Kjell O. Jeppson

2008-03-01T23:59:59.000Z

143

Reliability by design in distributed power transmission networks  

Science Conference Proceedings (OSTI)

The system operator of a large power transmission network must ensure that power is delivered whenever there is demand in order to maintain highly reliable electric service. To fulfill this mandate, the system operator must procure reserve capacity to ... Keywords: Inventory theory, Networks, Optimization, Power transmission

Mike Chen; In-Koo Cho; Sean P. Meyn

2006-08-01T23:59:59.000Z

144

Modeling, control, and power management of a power electrical system including two distributed generators based on fuel cell and supercapacitor  

Science Conference Proceedings (OSTI)

This paper focuses on Distributed Generator (DG) integration in Power Electrical System (PES) for dispersed nodes. The main objective of the DG use can be classified into two aspects: a load following service and ancillary service systems. In this study

2013-01-01T23:59:59.000Z

145

Power-Law Distributions in Circulating Money: Effect of Preferential Behavior  

E-Print Network (OSTI)

We introduce preferential behavior into the study on statistical mechanics of money circulation. The computer simulation results show that the preferential behavior can lead to power laws on distributions over both holding time and amount of money held by agents. However, some constraints are needed in generation mechanism to ensure the robustness of power-law distributions.

Ding, N; Ding, Ning; Wang, Yougui

2005-01-01T23:59:59.000Z

146

Effect of radial power distribution on MITR-II fuel element and control blade worth  

Science Conference Proceedings (OSTI)

This summary has been prepared to document and discuss several effects on fuel element and control blade reactivity worths that occur due to changes in the radial power distribution of the 5-MW(t) Massachusetts Institute of Technology Research Reactor (MITR-II). These results were obtained from reactor physics measurements and core power distribution calculations made during the past decade.

Bernard, J.A.; Kwok, K.S.; Lanning, D.D.; Clark, L.L. Jr.

1985-01-01T23:59:59.000Z

147

Simultaneous switching noise in on-chip CMOS power distribution networks  

Science Conference Proceedings (OSTI)

Simultaneous switching noise (SSN) has become an important issue in the design of the internal on-chip power distribution networks in current very large scale integration/ultra large scale integration (VLSI/ULSI) circuits. An inductive model is used ... Keywords: integrated circuit interconnection, on-chip inductance, power distribution network, simultaneous switching noise

Kevin T. Tang; Eby G. Friedman

2002-08-01T23:59:59.000Z

148

Optimal Planning of Reactive Power Compensators for Oil Field Distribution Networks  

Science Conference Proceedings (OSTI)

The characteristic behavior of the loads of oil pumps is analyzed. An approach for low-voltage side reactive power compensators of oil field distribution networks is put forward. Based on the supplied loads of transformers, the index of maximum reduction ... Keywords: Genetic Algorithm, distribution network, oil field, reactive power compensation

Wu Xiaomeng; Yan Suli

2009-05-01T23:59:59.000Z

149

Holistic optimization of distribution automation network designs using survivability modeling and power flow equations  

Science Conference Proceedings (OSTI)

Smart grids are fostering a paradigm shift in the realm of power distribution systems. Whereas traditionally different components of the power distribution system have been provided and analyzed by different teams, smart grids require a unified and holistic ... Keywords: smart-grids

Anne Koziolek; Alberto Avritzer; Daniel Sadoc Menasch

2013-04-01T23:59:59.000Z

150

Power Quality and Harmonic Impacts of Distributed Generation Technologies  

Science Conference Proceedings (OSTI)

The PQ TechWatch report series builds on EPRI's broad expertise and power quality testing and evaluation work to provide a vital flow of data, including important information on emerging trends powering ebusinesses and developments in next-generation power quality mitigation and energy storage technologies.This PQ TechWatch aims to present an overview of power quality impacts resulting from operation of DG technologies on the grid. An emphasis on harmonic effects is included here. Concerns in this area a...

2010-12-14T23:59:59.000Z

151

June 2013 Most Viewed Documents for Power Generation And Distribution...  

Office of Scientific and Technical Information (OSTI)

Timothy DeValve; Benoit Olsommer (2007) 55 Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report Michael Schuller; Frank...

152

Distributed Photovoltaic Generation in Residential Distribution Systems: Impacts on Power Quality and Anti-islanding.  

E-Print Network (OSTI)

??The past few decades have seen a consistent growth of distributed PV sources. Distributed PV, like other DG sources, can be located at or near (more)

Mitra, Parag

2013-01-01T23:59:59.000Z

153

Effects of Power System Harmonics on Distribution Transformer Insulation Performance.  

E-Print Network (OSTI)

??Floating feeder resonances are one of the new challenges being put forward by the renewable energy based distributed generation (DG) installations. Generally, the harmonic injection (more)

Hamid, Muhammad

2011-01-01T23:59:59.000Z

154

Developing A Data Set for Modeling Distributed Resource Devices in Electric Power System Simulations  

Science Conference Proceedings (OSTI)

Advances in distributed resource (DR) technologies and the restructuring of the electric utility industry are encouraging increased use of DR in power systems. For DR to realize full potential, however, it must be carefully integrated into the power system. This report provides a preliminary data set of DR device characteristics for use in simulation tools to model electric power systems incorporating varying levels of distributed generation and storage.

2000-12-06T23:59:59.000Z

155

Fuel Cycle Comparison of Distributed Power Generation Technologies  

E-Print Network (OSTI)

, as well as for coal and natural gas grid-generation technologies, are provided as baseline cases Cycle Power Plants 14.9 33.1 Natural Gas Turbine, Combined Cycle Power Plants 18.3 46.0 Coal comparable to the total energy use associated with the natural gas and coal grid-generation technologies

Argonne National Laboratory

156

Distributed Energy Resources, Power Quality and Reliability - Background  

Science Conference Proceedings (OSTI)

Power quality [PQ] and power reliability [PR] gained importance in the industrialized world as the pace of installation of sensitive appliances and other electrical loads by utility customers accelerated, beginning in the mid 1980s. Utility-grid-connected customers rapidly discovered that this equipment was increasingly sensitive to various abnormalities in the electricity supply.

Schienbein, Lawrence A.; DeSteese, John G.

2002-01-31T23:59:59.000Z

157

A Trust Based Distributed Kalman Filtering Approach for Mode Estimation in Power Systems  

E-Print Network (OSTI)

scale communication networks underlying the power grids make it impossible to collect data and control, the uncertainty of data accuracy has to be taken into consideration. Second, PMUs in the power grids often operateA Trust Based Distributed Kalman Filtering Approach for Mode Estimation in Power Systems Tao Jiang

Baras, John S.

158

Power Distribution in a CMS Tracker for the SLHC  

E-Print Network (OSTI)

An upgraded tracker for CMS will need a new architecture for powering to keep the power dissipated in the power cables to acceptable levels. Inductor topologies to reduce the stray magnetic field are discussed together with measurements of the magnetic field produced by prototype inductors. A transformer based DC-DC converter has the potential to produce a high stepdown ratio whilst producing a low stray field and retaining high efficiency. The relative merits of buck configuration and transformer based DC-DC converters are discussed.

Cussans, D G; Hill, C

2008-01-01T23:59:59.000Z

159

Most Viewed Documents - Power Generation and Distribution | OSTI...  

Office of Scientific and Technical Information (OSTI)

al. (1997) Multilevel converters -- A new breed of power converters Lai, J.S. Oak Ridge National Lab., TN (United States). Engineering Technology Div.; Peng, F.Z. Univ. of...

160

Program on Technology Innovation: Distributed Photovoltaic Power Applications for Utilities  

Science Conference Proceedings (OSTI)

Emerging PV technology brings significant opportunities for many stakeholders including electric utilities, electric customers, energy-service providers and PV equipment vendors. The opportunities for utilities range from owning and deploying various PV generation resources and related products to incentivizing other owners to install PV systems and technology that provide benefits to the power system. This technical update describes PV power system concepts that utilities may want to consider as they pl...

2009-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Distribution System Reliability Practices: Noteworthy Practices at Georgia Power  

Science Conference Proceedings (OSTI)

In 2010, EPRI initiated a multi-year effort to identify and illustrate noteworthy practices that utilities are using to meet the service reliability expectations of their customers. EPRI research focused on four host utilities: Ameren Corporation, Central Hudson Gas & Electric Corporation, Alabama Power, and We Energies. In 2011, EPRI completed research at American Electric Power Company (AEP) and initiated research with Memphis Light, Gas and Water (MLGW) and Duke Energy. In 2012, EPRI ...

2013-11-25T23:59:59.000Z

162

Technology Assessment of Residential Power Systems for Distributed Generation Markets  

Science Conference Proceedings (OSTI)

Significant research and development (R&D) investments in fuel cell technology have led to functioning prototypes of residential fuel power systems operating on natural gas. Efforts by at least four leading companies are expected to lead to early field trials of residential power systems in 2000 and early 2001, followed by pre-commercial prototypes during 2001-2002, and commercial introduction in the 2002-2005 time frame. Other technology companies are expected to follow suit.

2000-12-12T23:59:59.000Z

163

Power-Demand Routing in massive geo-distributed systems  

E-Print Network (OSTI)

There is an increasing trend toward massive, geographically distributed systems. The largest Internet companies operate hundreds of thousands of servers in multiple geographic locations, and are growing at a fast clip. A ...

Qureshi, Asfandyar

2010-01-01T23:59:59.000Z

164

50 kW Power Block for Distributed Energy Applications  

Distributed energy (DE) systems have begun to make a significant impact on energy supply and will certainly affect energy needs in the future. These systems include, but are not limited to, photovoltaics (PV), wind turbines, micro-turbines, fuel ...

165

Fourier and Cauchy-Stieltjes transforms of power laws including stable distributions  

E-Print Network (OSTI)

We introduce a class of probability measures whose densities near infinity are mixtures of Pareto distributions. This class can be characterized by the Fourier transform which has a power series expansion including real powers, not only integer powers. This class includes stable distributions in probability and also non-commutative probability theories. We also characterize the class in terms of the Cauchy-Stieltjes transform and the Voiculescu transform. If the stability index is greater than one, stable distributions in probability theory do not belong to that class, while they do in non-commutative probability.

Takahiro Hasebe

2011-07-20T23:59:59.000Z

166

Microgrids, virtual power plants and our distributed energy future  

Science Conference Proceedings (OSTI)

Opportunities for VPPs and microgrids will only increase dramatically with time, as the traditional system of building larger and larger centralized and polluting power plants by utilities charging a regulated rate of return fades. The key questions are: how soon will these new business models thrive - and who will be in the driver's seat? (author)

Asmus, Peter

2010-12-15T23:59:59.000Z

167

FUTURE POWER GRID INITIATIVE Modeling of Distributed Energy  

E-Print Network (OSTI)

with sophisti- cated mathematical models to conduct November 2012 PNNL-SA-90014 Shuai Lu Pacific Northwest National Laboratory (509) 375-2235 shuai.lu@pnnl.gov ABOUT FPGI The Future Power Grid Initiative (FPGI), the Pacific Northwest National Laboratory's (PNNL) national electric grid research facility, the FPGI

168

Protecting Intelligent Distributed Power Grids against Cyber Attacks  

Science Conference Proceedings (OSTI)

Like other industrial sectors, the electrical power industry is facing challenges involved with the increasing demand for interconnected operations and control. The electrical industry has largely been restructured due to deregulation of the electrical market and the trend of the Smart Grid. This moves new automation systems from being proprietary and closed to the current state of Information Technology (IT) being highly interconnected and open. However, while gaining all of the scale and performance benefits of IT, existing IT security challenges are acquired as well. The power grid automation network has inherent security risks due to the fact that the systems and applications for the power grid were not originally designed for the general IT environment. In this paper, we propose a conceptual layered framework for protecting power grid automation systems against cyber attacks. The following factors are taken into account: (1) integration with existing, legacy systems in a non-intrusive fashion; (2) desirable performance in terms of modularity, scalability, extendibility, and manageability; (3) alignment to the 'Roadmap to Secure Control Systems in the Energy Sector' and the future smart grid. The on-site system test of the developed prototype security system is briefly presented as well.

Dong Wei; Yan Lu; Mohsen Jafari; Paul Skare; Kenneth Rohde

2010-12-31T23:59:59.000Z

169

Distributed Electrical Power Generation: Summary of Alternative Available Technologies  

E-Print Network (OSTI)

Approved for public release; distribution is unlimited. Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000ABSTRACT: The Federal government is the greatest consumer of electricity in the nation. Federal procurement and installation of higher efficiency energy sources promises many benefits, in terms of economy, employment, export, and environment. While distributed generation (DG) technologies offer many of the benefits of alternative, efficient energy sources, few DG systems can currently be commercially purchased off the shelf, and complicated codes and standards deter potential users. Federal use of distributed generation demonstrates the technology, can help drive down costs, and an help lead the general public to accept a changing energy scheme. This work reviews and describes various distributed generation technologies, including fuel cells, microturbines, wind turbines, photovoltaic arrays, and Stirling engines. Issues such as fuel availability, construction considerations, protection controls are addressed. Sources of further information are provided. DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Sarah J. Scott; Franklin H. Holcomb; Nicholas M. Josefik; Sarah J. Scott; Franklin H. Holcomb; Nicholas M. Josefik

2003-01-01T23:59:59.000Z

170

Plug and Play Distributed Power Systems for Smart-Grid Connected Building |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Plug and Play Distributed Power Systems Emerging Technologies » Plug and Play Distributed Power Systems for Smart-Grid Connected Building Plug and Play Distributed Power Systems for Smart-Grid Connected Building The U.S. Department of Energy (DOE) is currently conducting research into plug-and-play distributed power systems for smart- grid connected buildings. Project Description This project seeks to advance and demonstrate a plug-and-play building energy micro-grid concept for integrating energy storage, loads, and sources at the building level with the external utility grid. The micro-grid demonstration is expected to include the following: Diesel synchronous generator Energy storage device Otis regenerative elevator system representing building critical loads Smart interface with the utility grid

171

Distributed Generation as Combined Heat and Power (DG-CHP) (New...  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Distributed Generation as Combined Heat and Power (DG-CHP) (New York) This is the approved revision of...

172

Sherlocka system for diagnosing power distribution ring network faults  

Science Conference Proceedings (OSTI)

This paper reports the development of a software system, SHERLOCK, for fault diagnosis in power distribution ring networks. The system consists of a fault diagnosis subsystem implemented using Prolog and a user interface subsystem developed in the SmallTalk ...

Kit Po Wong; Chi Ping Tsang; Wan Yee Chan

1988-06-01T23:59:59.000Z

173

Distribution System Reliability Practices: Noteworthy Practices at American Electric Power  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute's (EPRI's) members represent more than 90% of the electricity generated and delivered in the United States, and international participation extends to 40 countries. Participation by such a large cross section of the utility industry provides EPRI with a unique ability to reach out to and learn from a wide variety of utility companies. This level of exposure is a distinct advantage for this type of research, in which EPRI is documenting and sharing noteworthy practice...

2011-11-09T23:59:59.000Z

174

Compatibility Tests for Dissimilar Types of Distributed Generation Powering a Microgrid  

Science Conference Proceedings (OSTI)

Microgrids are small power systems that can operate independently of the bulk power system. They are composed of one or more distributed resources (DR) and electrical loads that are interconnected by a distribution system. Most of today's microgrids are fairly simple in design, consisting of a single generator supplying a dedicated load or of multiple identical generating units ganged to operate much like a single unit. This report addresses technical issues involved when dissimilar generators are used.

2003-03-12T23:59:59.000Z

175

Custom DC-DC converters for distributing power in SLHC trackers  

E-Print Network (OSTI)

A power distribution scheme based on the use of on-board DC-DC converters is proposed to efficiently distribute power to the on-detector electronics of SLHC trackers. A comparative analysis of different promising converter topologies is presented, leading to the choice of a magneticbased buck converter as a first conversion stage followed by an on-chip switched capacitors converter. An overall efficiency above 80% is estimated for the practical implementation proposed.

Allongue, B; Blanchot, G; Faccio, F; Fuentes, C; Mattavelli, P; Michelis, S; Orlandis, S; Spiazzi, G

2008-01-01T23:59:59.000Z

176

Fuzzy logic based operated device identification in power distribution systems  

E-Print Network (OSTI)

Fault location in distribution systems is a challenging task because of the lack of homogeneity in the system and due to uncertainity in the data used for estimating the faulted sections. Fuzzy logic has widely been applied for handling uncertainities in the input data and its processing. Fuzzy logic has also been used to model human expertise and decision making capabilites and to determine the possibility of a fault on a particular section. This thesis presents the design and implementation of an operated device identification algorithm to be used as one of four modules in an automated modular scheme for fault section estimation on radial distribution systems. This algorithm will be executed in tandem with the other fault location modules that form the second stage of a three stage scheme. The operated device identification algorithm can assign section fault possibilities representing the possibility of involvement of each section of a distribution feeder in an event. The operated device algorithm uses the recorded current waveform of an abnormal event, the time-current characteristics and settings of various protective devices on a feeder, and feeder topology information as inputs. The algorithm then assigns a fault possibility value to each section of a feeder using fuzzy rules and fuzzy membership functions to compare a fault event with protective device settings and characteristics. The section fault possibility values can be superimposed on the feeder map by color coding the sections of a feeder according to their fault possibility values. This helps in easy visualization of possibly faulted sections. A detailed illustration of the results obtained from running the algorithm is presented in this thesis. They prove the effectiveness of the algorithm in locating faults in a distribution feeder. The operated device identification module was tested using real data measured at feeder substations. The results obtained by the algorithm were verified with feedback given by the utilities that owned the feeders. The results obtained from the tests were encouraging.

Manivannan, Karthick Muthu

2002-01-01T23:59:59.000Z

177

MEC-IDC: joint load balancing and power control for distributed Internet Data Centers  

Science Conference Proceedings (OSTI)

Internet Data Center (IDC) supports the reliable operations of many important Internet on-line services. As the demand on Internet services and cloud computing keep increasing in recent years, the power usage associated with IDC operations has been uprising ... Keywords: cyber-physical system, distributed internet data center, load balancing, power control

Lei Rao; Xue Liu; Marija Ilic; Jie Liu

2010-04-01T23:59:59.000Z

178

Distributed Battery Control to Improve Peak Power Shaving Efficiency in Data Centers  

E-Print Network (OSTI)

Distributed Battery Control to Improve Peak Power Shaving Efficiency in Data Centers Baris Aksanli, Eddie Pettis and Tajana S. Rosing UCSD, Google Stored energy in batteries can be used to cap peak power.8% 99% 91.5% 84% Battery Configuration StudyBattery Configuration Study Goal: Improve the overall

Simunic, Tajana

179

Network reconfiguration of distributed controlled homogenous power inverter network using composite Lyapunov function based reachability bound  

Science Conference Proceedings (OSTI)

We outline a methodology to determine the reachability bound of a homogeneous interactive power network (IPN) with wireless distributed control by using a piecewise linear (PWL) model of the system. By formulating a convex optimization problem based ... Keywords: Lyapunov stability, Markov-chain model, linear matrix inequality, piecewise linear systems, reaching conditions, switching power converters

Sudip K. Mazumder; Kaustuva Acharya; Muhammad Tahir

2007-07-01T23:59:59.000Z

180

Interruptible Power Rates and Their Role in Utility Distributed Resources Programs  

Science Conference Proceedings (OSTI)

On-site generators installed primarily for use during power outages represent a significant distributed resource (DR). These generators can be readily incorporated into power markets through existing "interruptible" rate structures where customers agree to reduce the electrical demand (on the utility) for specified periods. The extent to which utilities have adopted and/or encouraged interruptible rates is the subject of this report.

2003-02-20T23:59:59.000Z

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Distributing Power to Electric Vehicles on a Smart Grid Yingjie Zhou*,  

E-Print Network (OSTI)

Distributing Power to Electric Vehicles on a Smart Grid Yingjie Zhou*, , Student Member, IEEE power to electric vehicles on a smart grid. We simulate the mechanisms using published data, Electric Vehicles, Smart Grid I. INTRODUCTION An emphasis on green technologies and the price of gasoline

Maxemchuk, Nicholas F.

182

Power allocation strategies for distributed space-time codes in two-way relay networks  

Science Conference Proceedings (OSTI)

We study a two-way relay network (TWRN), where distributed space-time codes are constructed across multiple relay terminals in an amplify-and-forward mode. Each relay transmits a scaled linear combination of its received symbols and their conjugates, ... Keywords: distributed space-time codes, power allocation, two-way relay channel

Wenjin Wang; Shi Jin; Xiqi Gao; Kai-Kit Wong; Matthew R. McKay

2010-10-01T23:59:59.000Z

183

Weight optimisation for iterative distributed model predictive control applied to power networks  

Science Conference Proceedings (OSTI)

This paper presents a weight tuning technique for iterative distributed Model Predictive Control (MPC). Particle Swarm Optimisation (PSO) is used to optimise both the weights associated with disturbance rejection and those associated with achieving consensus ... Keywords: Distributed model predictive control, Multi-agent, Particle swarm optimisation, Power networks, Smart grids, Weight tuning

Paul Mc Namara; Rudy R. Negenborn; Bart De Schutter; Gordon Lightbody

2013-01-01T23:59:59.000Z

184

Implementation of relaxed ACID properties for distributed load management in the electrical power industry  

Science Conference Proceedings (OSTI)

The consistency of data in central databases is normally implemented by using the ACID (Atomicity, Consistency, Isolation and Durability) properties of a DBMS (Data Base Management System). Distributed databases with high performance and availability ... Keywords: ACID properties, automatic process control, distributed systems, electrical power industry, relaxed atomicity property, smart grid conceptual model

Lars Frank; Rasmus Ulslev Pedersen

2013-01-01T23:59:59.000Z

185

Transport coefficients in Lorentz plasmas with the power-law kappa-distribution  

E-Print Network (OSTI)

Transport coefficients in Lorentz plasma with the power-law kappa-distribution are studied by means of using the transport equation and the macroscopic laws of Lorentz plasma without magnetic field. Expressions of electric conductivity, thermoelectric coefficient and thermal conductivity for the power-law kappa-distribution are accurately derived. It is shown that these transport coefficients are modified significantly by the kappa-parameter, and in the limit of the parameter kappa to infinit they are reduced to the standard forms for a Maxwellian distribution.

Jiulin, Du

2013-01-01T23:59:59.000Z

186

The Integration of Renewable Energy Sources into Electric Power Distribution Systems  

Science Conference Proceedings (OSTI)

Renewable energy technologies such as photovoltaic, solar thermal electricity, and wind turbine power are environmentally beneficial sources of electric power generation. The integration of renewable energy sources into electric power distribution systems can provide additional economic benefits because of a reduction in the losses associated with transmission and distribution lines. Benefits associated with the deferment of transmission and distribution investment may also be possible for cases where there is a high correlation between peak circuit load and renewable energy electric generation, such as photovoltaic systems in the Southwest. Case studies were conducted with actual power distribution system data for seven electric utilities with the participation of those utilities. Integrating renewable energy systems into electric power distribution systems increased the value of the benefits by about 20 to 55% above central station benefits in the national regional assessment. In the case studies presented in Vol. II, the range was larger: from a few percent to near 80% for a case where costly investments were deferred. In general, additional savings of at least 10 to 20% can be expected by integrating at the distribution level. Wind energy systems were found to be economical in good wind resource regions, whereas photovoltaic systems costs are presently a factor of 2.5 too expensive under the most favorable conditions.

Barnes, P.R.

1994-01-01T23:59:59.000Z

187

Using Direct-DC Power Distribution in U.S. Residential Buildings Can Save  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Direct-DC Power Distribution in U.S. Residential Buildings Can Save Using Direct-DC Power Distribution in U.S. Residential Buildings Can Save Energy October 2013 October-November Special Focus: Energy Efficiency, Buildings and the Electric Grid An increasing fraction of the most efficient appliances on the market operate on direct current (DC) internally, making it possible to use DC from renewable energy systems directly and avoid the losses inherent in converting power to alternating current (AC) and back, as is current practice. Products are also emerging on the commercial market that take advantage of that possibility. Lawrence Berkeley National Laboratory researchers Vagelis Vossos, Karina Garbesi, and Hongxia Shen investigated the potential savings of direct-DC power distribution in net-metered residences with on-site photovoltaics

188

Distributed Power Program DER Pilot Test at the Nevada Test Site  

SciTech Connect

The DOE Distributed Power Program conducted a pilot test of interconnection test procedures November 12-16, 2001 at Area 25 of the Nevada Test Site (NTS). The objective of this pilot test was to respond to Congressional direction in the Energy and Water Development Appropriations Act of 2001 to complete a distributed power demonstration at the Nevada Test Site and validated interconnection tests in the field. The demonstration consisted of field verification of tests in IEEE P1547 (Draft 7) that are required for interconnection of distributed generation equipment to electrical power systems. Some of the testing has been conducted in a laboratory setting, but the Nevada Test Site provided a location to verify the interconnection tests in the field. The testing also provided valuable information for evaluating the potential for the Nevada Test Site to host future field-testing activities in support of Distributed Energy Resources System Integration R&D.

Kroposki, B.; DeBlasio, R.; Galdo, J.

2002-05-01T23:59:59.000Z

189

Instantaneous Active and Nonactive Power Control of Distributed Energy Resources with Current Limiter  

SciTech Connect

Abstract -- Distributed energy resources (DER) with a power electronics inverter interface can provide both active power and nonactive power simultaneously and independently. A decoupled control algorithm of active power and nonactive power is developed based on the instantaneous active power and nonactive power theory. A current limiter is combined to the control algorithm, and it ensures that the inverter is not overloaded. During the normal system operation, the active power has higher priority over the nonactive power so that the energy from a DER can be fully transferred to the grid. Within the inverter s capability, nonactive power is provided to the grid as required. With this control algorithm, the inverter s capabilities are taken full advantage at all times, both in terms of functionality as well as making use of its full KVA rating. Through the algorithm, the inverter s active power and nonactive power are controlled directly, simultaneously, and independently. Several experimental results fully demonstrate the validity and effectiveness of this new control algorithm. As evidenced by the fast dynamic response that results, a DER system with the control algorithm can provide full services to the grid in both steady state and during transient events.

Xu, Yan [ORNL; Li, Huijuan [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Kueck, John D [ORNL

2010-01-01T23:59:59.000Z

190

Wind farm connection to Serbian distribution network - austere quality requirements vs. more economical power distribution  

Science Conference Proceedings (OSTI)

The paper presents the effects of severe demands on the quality of voltage that is raising the existing Serbian Technical recommendation no. 16. Possibilities of wind farm connection subject to the requirements in terms of voltage change in the transitional ... Keywords: connection, distribution network, energy efficiency, voltage quality, wind farm

Saa Mini?; Dragan Tasi?

2011-07-01T23:59:59.000Z

191

Learning Geo-Temporal Non-Stationary Failure and Recovery of Power Distribution  

E-Print Network (OSTI)

Smart energy grid is an emerging area for new applications of machine learning in a non-stationary environment. Such a non-stationary environment emerges when large-scale failures occur at power distribution networks due to external disturbances such as hurricanes and severe storms. Power distribution networks lie at the edge of the grid, and are especially vulnerable to external disruptions. Quantifiable approaches are lacking and needed to learn non-stationary behaviors of large-scale failure and recovery of power distribution. This work studies such non-stationary behaviors in three aspects. First, a novel formulation is derived for an entire life cycle of large-scale failure and recovery of power distribution. Second, spatial-temporal models of failure and recovery of power distribution are developed as geo-location based multivariate non-stationary GI(t)/G(t)/Infinity queues. Third, the non-stationary spatial-temporal models identify a small number of parameters to be learned. Learning is applied to two ...

Wei, Yun; Galvan, Floyd; Couvillon, Stephen; Orellana, George; Momoh, James

2013-01-01T23:59:59.000Z

192

Intelligent Monitoring System With High Temperature Distributed Fiberoptic Sensor For Power Plant Combustion Processes  

Science Conference Proceedings (OSTI)

The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we investigate a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. The 3D temperature data is furnished by the Penn State Energy Institute using FLUENT. Given a set of empirical data with no analytic expression, we first develop an analytic description and then extend that model along a single axis. Extrapolation capability was demonstrated for estimating enthalpy in a power plant.

Kwang Y. Lee; Stuart S. Yin; Andre Boheman

2005-12-26T23:59:59.000Z

193

Integrated Computing, Communication, and Distributed Control of Deregulated Electric Power Systems  

SciTech Connect

Restructuring of the electricity market has affected all aspects of the power industry from generation to transmission, distribution, and consumption. Transmission circuits, in particular, are stressed often exceeding their stability limits because of the difficulty in building new transmission lines due to environmental concerns and financial risk. Deregulation has resulted in the need for tighter control strategies to maintain reliability even in the event of considerable structural changes, such as loss of a large generating unit or a transmission line, and changes in loading conditions due to the continuously varying power consumption. Our research efforts under the DOE EPSCoR Grant focused on Integrated Computing, Communication and Distributed Control of Deregulated Electric Power Systems. This research is applicable to operating and controlling modern electric energy systems. The controls developed by APERC provide for a more efficient, economical, reliable, and secure operation of these systems. Under this program, we developed distributed control algorithms suitable for large-scale geographically dispersed power systems and also economic tools to evaluate their effectiveness and impact on power markets. Progress was made in the development of distributed intelligent control agents for reliable and automated operation of integrated electric power systems. The methodologies employed combine information technology, control and communication, agent technology, and power systems engineering in the development of intelligent control agents for reliable and automated operation of integrated electric power systems. In the event of scheduled load changes or unforeseen disturbances, the power system is expected to minimize the effects and costs of disturbances and to maintain critical infrastructure operational.

Bajura, Richard; Feliachi, Ali

2008-09-24T23:59:59.000Z

194

A Distributed Power Control and Transmission Rate Allocation Algorithm over Multiple Channels  

E-Print Network (OSTI)

In this paper, we consider multiple channels and wireless nodes with multiple transceivers. Each node assigns one transmitter at each available channel. For each assigned transmitter the node decides the power level and data rate of transmission in a distributed fashion, such that certain Quality of Service (QoS) demands for the wireless node are satisfied. More specifically, we investigate the case in which the average SINR over all channels for each communication pair is kept above a certain threshold. A joint distributed power and rate control algorithm for each transmitter is proposed that dynamically adjusts the data rate to meet a target SINR at each channel, and to update the power levels allowing for variable desired SINRs. The algorithm is fully distributed and requires only local interference measurements. The performance of the proposed algorithm is shown through illustrative examples.

Charalambous, Themistoklis

2011-01-01T23:59:59.000Z

195

Ion Distribution And Electronic Stopping Power For Au ions In Silicon Carbide  

SciTech Connect

Accurate knowledge of ion distribution and electronic stopping power for heavy ions in light targets is highly desired due to the large errors in prediction by the widely used Stopping and Range of Ions in Matter (SRIM) code. In this study, Rutherford backscattering spectrometry (RBS)and secondary ion mass spectrometry (SIMS) are used as complementary techniques to determine the distribution of Au ions in SiC with energie sfrom 700 keV to 15 MeV. In addition, asingle ion technique with an improved data analysis procedure is applied to measure the electronic stopping power for Au ions in SiC with energies up to ~70 keV/nucleon. Large overestimation of the electronic stopping power is found by SRIM prediction in the low energy regime up to ~50 keV/nucleon. The stopping power data and the ion ranges are crosschecked with each other and a good agreement is achieved.

Jin, Ke; Zhang, Yanwen; Xue, Haizhou; Zhu, Zihua; Weber, William J.

2013-07-15T23:59:59.000Z

196

Distributing Power Grid State Estimation on HPC Clusters A System Architecture Prototype  

Science Conference Proceedings (OSTI)

The future power grid is expected to further expand with highly distributed energy sources and smart loads. The increased size and complexity lead to increased burden on existing computational resources in energy control centers. Thus the need to perform real-time assessment on such systems entails efficient means to distribute centralized functions such as state estimation in the power system. In this paper, we present our early prototype of a system architecture that connects distributed state estimators individually running parallel programs to solve non-linear estimation procedure. The prototype consists of a middleware and data processing toolkits that allows data exchange in the distributed state estimation. We build a test case based on the IEEE 118 bus system and partition the state estimation of the whole system model to available HPC clusters. The measurement from the testbed demonstrates the low overhead of our solution.

Liu, Yan; Jiang, Wei; Jin, Shuangshuang; Rice, Mark J.; Chen, Yousu

2012-08-20T23:59:59.000Z

197

A model specific simulation of power distribution grids for non-destructive testing of network reconfiguration schemes  

Science Conference Proceedings (OSTI)

This work describes a simulation platform used to study and test grid control schemes for electric power distribution systems. The effectiveness of proposed control schemes can be simulated using the platform and prototyped within a hardware testbed ... Keywords: distribution automation, electric power distribution systems, network reconfiguration

Christian Schegan; Valentina Cecchi; Xiaoguang Yang; Karen Miu

2010-07-01T23:59:59.000Z

198

Power distributions in fresh and depleted LEU and HEU cores of the MITR reactor.  

Science Conference Proceedings (OSTI)

The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (UMo) is expected to allow the conversion of U.S. domestic high performance reactors like the MITR-II reactor. Toward this goal, core geometry and power distributions are presented. Distributions of power are calculated for LEU cores depleted with MCODE using an MCNP5 Monte Carlo model. The MCNP5 HEU and LEU MITR models were previously compared to experimental benchmark data for the MITR-II. This same model was used with a finer spatial depletion in order to generate power distributions for the LEU cores. The objective of this work is to generate and characterize a series of fresh and depleted core peak power distributions, and provide a thermal hydraulic evaluation of the geometry which should be considered for subsequent thermal hydraulic safety analyses.

Wilson, E.H.; Horelik, N.E.; Dunn, F.E.; Newton, T.H., Jr.; Hu, L.; Stevens, J.G. (Nuclear Engineering Division); (2MIT Nuclear Reactor Laboratory and Nuclear Science and Engineering Department)

2012-04-04T23:59:59.000Z

199

Technical Assessment: Advanced Solid Oxide Fuel Cell Hybrids for Distributed Power Market Applications  

Science Conference Proceedings (OSTI)

High temperature solid oxide fuel cell (SOFCs) are under intense development in the U.S., Japan, and Europe. The U.S. DOE solid energy convergence alliance (SECA) has invested in SOFC technology for distributed power markets and for future applications involving integrated coal gasification. SOFC hybrid systems which incorporate the use of small turbines or turbo-charging have potentially high efficiencies near 60% LHV. Rolls Royce, GE Power Systems, Siemens, and Mitsubishi Heavy Industries are developin...

2007-03-22T23:59:59.000Z

200

Enhanced Recovery Utilizing Variable Frequency Drives and a Distributed Power System  

Science Conference Proceedings (OSTI)

This report describes complete results of the project entitled ''Enhanced Recovery Utilizing Variable Frequency Drives and a Distributed Power System''. This demonstration project was initiated in July 2003 and completed in March 2005. The objective of the project was to develop an integrated power production/variable frequency drive system that could easily be deployed in the oil field that would increase production and decrease operating costs. This report describes all the activities occurred and documents results of the demonstration.

Randy Peden; Sanjiv Shah

2005-07-26T23:59:59.000Z

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Intelligent Monitoring System with High Temperature Distributed Fiberoptic Sensor for Power Plant Combustion Processes  

Science Conference Proceedings (OSTI)

The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we have set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors have been completed. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we have investigated a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. Given a set of empirical data with no analytic expression, we first developed an analytic description and then extended that model along a single axis.

Kwang Y. Lee; Stuart S. Yin; Andre Boehman

2006-09-26T23:59:59.000Z

202

Power loss of a single electron charge distribution confined in a quantum plasma  

SciTech Connect

The dielectric tensor for a quantum plasma is derived by using a linearized quantum hydrodynamic theory. The wave functions for a nanostructure bound system have been investigated. Finally, the power loss for an oscillating charge distribution of a mixed state will be calculated, using the dielectric function formalism.

Mehramiz, A. [Department of Atomic and Molecular Physics, Faculty of Physics, University of Tabriz, East Azerbaijan 51664 (Iran, Islamic Republic of); Department of Physics, Faculty of Science, I. K. Int'l University, Qazvin 34149-16818 (Iran, Islamic Republic of); Mahmoodi, J. [Department of Physics, Faculty of Science, University of Qom, Qom 3716146611 (Iran, Islamic Republic of); Sobhanian, S. [Department of Atomic and Molecular Physics, Faculty of Physics, University of Tabriz, East Azerbaijan 51664 (Iran, Islamic Republic of)

2011-05-15T23:59:59.000Z

203

Joint optimization algorithm for network reconfiguration and reactive power control of wind farm in distribution system  

Science Conference Proceedings (OSTI)

In recent years, the number of small size wind farms used as DG sources located within the distribution system are rapidly increasing. Wind farm made up with doubly fed induction generators (DFIG) is proposed in this paper as the continuous reactive ... Keywords: DFIG wind turbine, network reconfiguration, particle swarm optimization, reactive power control, wind farm

Jingjing Zhao; Xin Li; Jiping Lu; Congli Zhang

2009-02-01T23:59:59.000Z

204

State-of-the-Art Assessment of Polymer Electrolyte Membrane Fuel Cells for Distributed Power Applications  

Science Conference Proceedings (OSTI)

Low-temperature polymer electrolyte membrane fuel cell technology targeted for transportation markets has been rapidly advancing the past few years. This technology represents a potentially strategic retail access technology that could be useful in a variety of utility, commercial, and residential distributed power and retail energy service applications.

1997-01-08T23:59:59.000Z

205

Stability, Power Sharing, & Distributed Secondary Control in Droop-Controlled Microgrids  

E-Print Network (OSTI)

Stability, Power Sharing, & Distributed Secondary Control in Droop-Controlled Microgrids John W, Denmark Email: qsh@et.aau.dk Abstract--Motivated by the recent and growing interest in microgrids, we study the operation of droop-controlled DC/AC inverters in an islanded microgrid. We present a necessary

Bullo, Francesco

206

Experimental power density distribution benchmark in the TRIGA Mark II reactor  

Science Conference Proceedings (OSTI)

In order to improve the power calibration process and to benchmark the existing computational model of the TRIGA Mark II reactor at the Josef Stefan Inst. (JSI), a bilateral project was started as part of the agreement between the French Commissariat a l'energie atomique et aux energies alternatives (CEA) and the Ministry of higher education, science and technology of Slovenia. One of the objectives of the project was to analyze and improve the power calibration process of the JSI TRIGA reactor (procedural improvement and uncertainty reduction) by using absolutely calibrated CEA fission chambers (FCs). This is one of the few available power density distribution benchmarks for testing not only the fission rate distribution but also the absolute values of the fission rates. Our preliminary calculations indicate that the total experimental uncertainty of the measured reaction rate is sufficiently low that the experiments could be considered as benchmark experiments. (authors)

Snoj, L.; Stancar, Z.; Radulovic, V.; Podvratnik, M.; Zerovnik, G.; Trkov, A. [Josef Stefan Inst., Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Barbot, L.; Domergue, C.; Destouches, C. [CEA DEN, DER, Instrumentation Sensors and Dosimetry laboratory Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

2012-07-01T23:59:59.000Z

207

DOE Announces Webinars on the Distributed Wind Power Market, Utility Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Energy Service Contracts, and More Utility Energy Service Contracts, and More DOE Announces Webinars on the Distributed Wind Power Market, Utility Energy Service Contracts, and More August 21, 2013 - 12:00pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars August 21: Live Webinar on the 2012 Distributed Wind Market Report Webinar Sponsor: EERE's Wind and Water Power Technologies Program The Energy Department will present a live webcast titled "2012 Market Report on U.S. Wind Technologies in Distributed Applications" on Wednesday,

208

Integrated models of distribution transformers and their loads for three-phase power flow analyses  

Science Conference Proceedings (OSTI)

This paper introduces integrated models of distribution transformers and their loads for three-phase power flow analyses. All transformer connections can be easily included, such as single-phase, open wye, open delta and three-phase. For an existing three-phase power flow program without rigorous transformer models, only a slight modification of this program is needed to analyze distribution systems in more detail by using these proposed models. For those with rigorous transformer models, the rigorous transformer models usually make the program converge with difficulty, or even diverge. The convergence characteristics of these program can be dramatically improved if proposed integrated models are used instead of the rigorous transformer models. Moreover, these models can be easily applied by some functions of advanced distribution management systems or automatic mapping and facility management systems, such as transformer load management and feeder load management, to evaluate the individual phase loads along a feeder.

Chen, T.H.; Chang, Y.L. [National Taiwan Inst. of Tech., Taipei (Taiwan, Province of China). Dept. of Electrical Engineering

1996-01-01T23:59:59.000Z

209

RELIABILITY ANALYSIS OF THE ELECTRICAL POWER DISTRIBUTION SYSTEM TO SELECTED PORTIONS OF THE NUCLEAR HVAC SYSTEM  

Science Conference Proceedings (OSTI)

A design requirement probability of 0.01 or less in a 4-hour period ensures that the nuclear heating, ventilation, and air-conditioning (HVAC) system in the primary confinement areas of the Dry Transfer Facilities (DTFs) and Fuel Handling Facility (FHF) is working during a Category 1 drop event involving commercial spent nuclear fuel (CSNF) assemblies (BSC 2004a , Section 5.1.1.48). This corresponds to an hourly HVAC failure rate of 2.5E-3 per hour or less, which is contributed to by two dominant causes: equipment failure and loss of electrical power. Meeting this minimum threshold ensures that a Category 1 initiating event followed by the failure of HVAC is a Category 2 event sequence. The two causes for the loss of electrical power include the loss of offsite power and the loss of onsite power distribution. Thus, in order to meet the threshold requirement aforementioned, the failure rate of mechanical equipment, loss of offsite power, and loss of onsite power distribution must be less than or equal to 2.5E-3 per hour for the nuclear HVAC system in the primary confinement areas of the DTFs and FHF. The loss of offsite power occurs at a frequency of 1.1E-5 per hour (BSC 2004a, Section 5.1.1.48). The purpose of this analysis is to determine the probability of occurrence of the unavailability of the nuclear HVAC system in the primary confinement areas of the DTFs and FHF due to loss of electrical power. In addition, this analysis provides insights on the contribution to the unavailability of the HVAC system due to equipment failure. The scope of this analysis is limited to finding the frequency of loss of electrical power to the nuclear HVAC system in the primary confinement areas of the DTFs and FHF.

N. Ramirez

2004-12-16T23:59:59.000Z

210

INTELLIGENT MONITORING SYSTEM WITH HIGH TEMPERATURE DISTRIBUTED FIBEROPTIC SENSOR FOR POWER PLANT COMBUSTION PROCESSES  

Science Conference Proceedings (OSTI)

The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, improvement was made on the performance of in-fiber grating fabricated in single crystal sapphire fibers, test was performed on the grating performance of single crystal sapphire fiber with new fabrication methods, and the fabricated grating was applied to high temperature sensor. Under Task 2, models obtained from 3-D modeling of the Demonstration Boiler were used to study relationships between temperature and NOx, as the multi-dimensionality of such systems are most comparable with real-life boiler systems. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we investigate a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. The 3D temperature data is furnished by the Penn State Energy Institute using FLUENT. Given a set of empirical data with no analytic expression, we first develop an analytic description and then extend that model along a single axis.

Kwang Y. Lee; Stuart S. Yin; Andre Boheman

2004-12-26T23:59:59.000Z

211

Study on a method of design for rural power distribution lines based on 3D GIS technology  

Science Conference Proceedings (OSTI)

The aim of this paper is to study a three-dimensional GIS method of design for power distribution lines in rural areas, by applying SuperMap to the GIS, and to integrate the visual computer programming environment in the secondary development. A three-dimensional ... Keywords: Digital elevation model, GIS, Power distribution lines, Section map

Yong Yang; Yong-Fu Liu; Ying-Li Cao

2010-06-01T23:59:59.000Z

212

752 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 24, NO. 2, MAY 2009 Large-Scale Distribution Planning--Part  

E-Print Network (OSTI)

752 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 24, NO. 2, MAY 2009 Large-Scale Distribution Planning methodology for low-voltage distribution network planning. Combined optimization of transformers and approximately 1 300 000 customers. Index Terms--Low voltage, network planning, power distribu- tion planning

Rudnick, Hugh

213

Magnetohydrodynamic electromagnetic pulse (MHD-EMP) interaction with power transmission and distribution systems  

SciTech Connect

This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth's surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.

Tesche, F.M. (Tesche (F.M.), Dallas, TX (United States)) [Tesche (F.M.), Dallas, TX (United States); Barnes, P.R. (Oak Ridge National Lab., TN (United States)) [Oak Ridge National Lab., TN (United States); Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Electrical Engineering) [Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Electrical Engineering

1992-02-01T23:59:59.000Z

214

Magnetohydrodynamic electromagnetic pulse (MHD-EMP) interaction with power transmission and distribution systems  

Science Conference Proceedings (OSTI)

This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T&D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth`s surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.

Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Barnes, P.R. [Oak Ridge National Lab., TN (United States); Meliopoulos, A.P.S. [Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Electrical Engineering

1992-02-01T23:59:59.000Z

215

Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems  

Science Conference Proceedings (OSTI)

The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

2009-01-11T23:59:59.000Z

216

RF Distribution System for High Power Test of the SNS Cryomodule  

Science Conference Proceedings (OSTI)

A four-way waveguide RF power distribution system for testing the Spallation Neutron Source (SNS) multi-cavity cryomodule to investigate the collective behavior has been developed. A single klystron operating at 805MHz for 1.3 msec at 60Hz powers the 4-way waveguide splitter to deliver up to 400 kW to individual cavities. Each cavity is fed through a combination of waveguide splitters and vector modulators (VM) to provide independent magnitude and phase controls. The waveguide vector modulator consists of two quadrature hybrids and two motorized waveguide phase shifters. The phase shifters and the assembled waveguide vector modulators were individually tested and characterized for low power and high RF power in the SNS RF test facility. Precise calibrations of magnitude and phase were performed to generate the look up tables (LUTs) to provide operational references during the cryomodule test. An I-Q demodulator module was developed and utilized to measure relative phases in pulsed high RF power operation. PLC units were developed for mechanical control of the phase shifters. Initial low/high power measurements were made using LabVIEW. An operation algorithm has been implemented into EPICS control for the cryomodule test stand.

Lee, Sung-Woo [ORNL; Kang, Yoon W [ORNL; Broyles, Michael R [ORNL; Crofford, Mark T [ORNL; Geng, Xiaosong [ORNL; Kim, Sang-Ho [ORNL; Phibbs, Curtis L [ORNL; Strong, William Herb [ORNL; Peglow, Robert C [ORNL; Vassioutchenko, Alexandre V [ORNL

2012-01-01T23:59:59.000Z

217

On-line reactive power compensation schemes for unbalanced three phase four wire distribution feeders  

Science Conference Proceedings (OSTI)

A new reactive power compensation method is developed to reduce the negative and zero sequence components of load currents and to improve the load bus power factor of unbalanced three-phase four-wire distribution feeders. Negative and zero sequences currents may cause additional losses and damages to power systems. Load compensation at the load bus is an effective method to eliminate those undesired sequence currents. The compensation technique uses a Y-connected and a [Delta]-connected static reactive power compensators to give a different amount of reactive power compensation to each phase. The compensation formulas are very suitable for on-line control by measuring phase voltages and currents in the real time. The compensation effect can also be achieved even if one leg of the SVCs is out of service. In addition to balancing effect and power factor improvement at the load bus, the SVCs can also be used to support the load bus voltage and to maintain the substation feeder at unity powder factor. Digital simulations are made with the load data measured from an 11.4kV secondary substation feeder.

Sanyi Lee; Chijui Wu (National Taiwan Inst. of Tech., Taipei (Taiwan, Province of China). Dept. of Electrical Engineering)

1993-10-01T23:59:59.000Z

218

Traffic scheduling mechanism based on graph theory for Power Saving mode of IEEE 802.11 distributed coordinator function  

Science Conference Proceedings (OSTI)

In IEEE 802.11 Power Saving (PS) mode specified for Independent Basic Service Set (IBSS), mobile stations announce their pending data packets within Announcement Traffic Indication Message (ATIM) window immediately after the reception ... Keywords: IEEE 80211, MAC protocol, ad hoc networks, distributed coordinator, energy efficiency, graph theory, medium access control, power saving, power-efficient, time synchronisation function, traffic scheduling

M. H. Ye; C. T. Lau; A. B. Premkumar

2009-03-01T23:59:59.000Z

219

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

30 A.1 Electrical power capacity from32 B.1 Electrical power capacity: Batterycompressed H 2 . 36 C.1.1 Electrical power

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

220

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

efficiency of the electric power system. This opportunity isvehicles and of the electric power grid, yet analysts,cell vehicle generates electric power, but it's not hooked

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Estimating the Spatial Distribution of Population without Power during Extreme Weather Events  

SciTech Connect

One challenge in emergency preparedness and response during extreme weather events such as hurricanes and ice storms is estimating how many people may be without power and how long they could be without power. In this presentation, we will discuss a method for estimating the spatial distribution of people without power during extreme weather events. The method is based on a directional nearest-neighbor approach in which grid cells representing substation locations acquire other grid cells representing customers/population demand with respect to the capacity of each substation. We also present a method for estimating restoration time in case of an outage. The application of these methods during the 2008 hurricane season will also be discussed.

Omitaomu, Olufemi A [ORNL; Fernandez, Steven J [ORNL; Bhaduri, Budhendra L [ORNL

2010-01-01T23:59:59.000Z

222

Control Strategies for Distributed Energy Resources to Maximize the Use of Wind Power in Rural Microgrids  

Science Conference Proceedings (OSTI)

The focus of this paper is to design control strategies for distributed energy resources (DERs) to maximize the use of wind power in a rural microgrid. In such a system, it may be economical to harness wind power to reduce the consumption of fossil fuels for electricity production. In this work, we develop control strategies for DERs, including diesel generators, energy storage and demand response, to achieve high penetration of wind energy in a rural microgrid. Combinations of centralized (direct control) and decentralized (autonomous response) control strategies are investigated. Detailed dynamic models for a rural microgrid are built to conduct simulations. The system response to large disturbances and frequency regulation are tested. It is shown that optimal control coordination of DERs can be achieved to maintain system frequency while maximizing wind power usage and reducing the wear and tear on fossil fueled generators.

Lu, Shuai; Elizondo, Marcelo A.; Samaan, Nader A.; Kalsi, Karanjit; Mayhorn, Ebony T.; Diao, Ruisheng; Jin, Chunlian; Zhang, Yu

2011-10-10T23:59:59.000Z

223

Universal inverse power-law distribution for temperature and rainfall in the UK region  

E-Print Network (OSTI)

Meteorological parameters, such as temperature, rainfall, pressure etc., exhibit selfsimilar space-time fractal fluctuations generic to dynamical systems in nature such as fluid flows, spread of forest fires, earthquakes, etc. The power spectra of fractal fluctuations display inverse power-law form signifying long-range correlations. The author has developed a general systems theory which predicts universal inverse power-law form incorporating the golden mean for the fractal fluctuations of all size scales, i.e., small, large and extreme values. The model predicted distribution is in close agreement with observed fractal fluctuations in the historic month-wise temperature (maximum and minimum) and rainfall in the UK region. The present study suggests that fractal fluctuations result from the superimposition of an eddy continuum fluctuations. The observed extreme values result from superimposition of maxima (or minima) of dominant eddies (waves) in the eddy continuum.

A. M. Selvam

2013-05-03T23:59:59.000Z

224

Using Distributed Energy Resources to Supply Reactive Power for Dynamic Voltage Regulation  

Science Conference Proceedings (OSTI)

Abstract Distributed energy (DE) resources are power sources located near load centers and equipped with power electronics converters to interface with the grid, therefore it is feasible for DE to provide reactive power (along with active power) locally for dynamic voltage regulation. In this paper, a synchronous condenser and a DE source with an inverter interface are implemented in parallel in a distribution system to regulate the local voltage. Developed voltage control schemes for the inverter and the synchronous condenser are presented. Experimental results show that both the inverter and the synchronous condenser can regulate the local voltage instantaneously although the dynamic response of the inverter is much faster than the synchronous condenser. In a system with multiple DEs performing local voltage regulation, the interaction of multiple DE at different locations under different load levels may have an impact to the control parameter setting for each individual DE control system. Future research is needed to find out the interaction of DEs to identify the optimal control parameter settings with the consideration of many factors such as system configuration, load variation, and so on

Xu, Yan [ORNL; Li, Fangxing [ORNL; Li, Huijuan [University of Tennessee, Knoxville (UTK); Rizy, D Tom [ORNL; Kueck, John D [ORNL

2008-01-01T23:59:59.000Z

225

Transition from Exponential to Power Law Distributions in a Chaotic Market  

E-Print Network (OSTI)

Economy is demanding new models, able to understand and predict the evolution of markets. To this respect, Econophysics offers models of markets as complex systems, that try to comprehend macro-, system-wide states of the economy from the interaction of many agents at micro-level. One of these models is the gas-like model for trading markets. This tries to predict money distributions in closed economies and quite simply, obtains the ones observed in real economies. However, it reveals technical hitches to explain the power law distribution, observed in individuals with high incomes. In this work, non linear dynamics is introduced in the gas-like model in way that an effort to overcome these flaws. A particular chaotic dynamics is used to break the pairing symmetry of agents $(i,j)\\Leftrightarrow(j,i)$. The results demonstrate that a "chaotic gas-like model" can reproduce the Exponential and Power law distributions observed in real economies. Moreover, it controls the transition between them. This may give some insight of the micro-level causes that originate unfair distributions of money in a global society. Ultimately, the chaotic model makes obvious the inherent instability of asymmetric scenarios, where sinks of wealth appear and doom the market to extreme inequality.

Carmen Pellicer-Lostao; Ricardo Lopez-Ruiz

2010-11-23T23:59:59.000Z

226

Distributed Hierarchical Control of Multi-Area Power Systems with Improved Primary Frequency Regulation  

SciTech Connect

The conventional distributed hierarchical control architecture for multi-area power systems is revisited. In this paper, a new distributed hierarchical control architecture is proposed. In the proposed architecture, pilot generators are selected in each area to be equipped with decentralized robust control as a supplementary to the conventional droop speed control. With the improved primary frequency control, the system frequency can be restored to the nominal value without the help of secondary frequency control, which reduces the burden of the automatic generation control for frequency restoration. Moreover, the low frequency inter-area electromechanical oscillations can also be effectively damped. The effectiveness of the proposed distributed hierarchical control architecture is validated through detailed simulations.

Lian, Jianming; Marinovici, Laurentiu D.; Kalsi, Karanjit; Du, Pengwei; Elizondo, Marcelo A.

2012-12-12T23:59:59.000Z

227

Chaotic itinerancy and power-law residence time distribution in stochastic dynamical system  

E-Print Network (OSTI)

To study a chaotic itinerant motion among varieties of ordered states, we propose a stochastic model based on the mechanism of chaotic itinerancy. The model consists of a random walk on a half-line, and a Markov chain with a transition probability matrix. To investigate the stability of attractor ruins in the model, we analyze the residence time distribution of orbits at attractor ruins. We show that the residence time distribution averaged by all attractor ruins is given by the superposition of (truncated) power-law distributions, if a basin of attraction for each attractor ruin has zero measure. To make sure of this result, we carry out a computer simulation for models showing chaotic itinerancy. We also discuss the fact that chaotic itinerancy does not occur in coupled Milnor attractor systems if the transition probability among attractor ruins can be represented as a Markov chain.

Jun Namikawa

2004-10-15T23:59:59.000Z

228

Design and implementation of low power multistage amplifiers and high frequency distributed amplifiers  

E-Print Network (OSTI)

The advancement in integrated circuit (IC) technology has resulted in scaling down of device sizes and supply voltages without proportionally scaling down the threshold voltage of the MOS transistor. This, coupled with the increasing demand for low power, portable, battery-operated electronic devices, like mobile phones, and laptops provides the impetus for further research towards achieving higher integration on chip and low power consumption. High gain, wide bandwidth amplifiers driving large capacitive loads serve as error amplifiers in low-voltage low drop out regulators in portable devices. This demands low power, low area, and frequency-compensated multistage amplifiers capable of driving large capacitive loads. The first part of the research proposes two power and area efficient frequency compensation schemes: Single Miller Capacitor Compensation (SMC) and Single Miller Capacitor Feedforward Compensation (SMFFC), for multistage amplifiers driving large capacitive loads. The designs have been implemented in a 0.5??m CMOS process. Experimental results show that the SMC and SMFFC amplifiers achieve gain-bandwidth products of 4.6MHz and 9MHz, respectively, when driving a load of 25K?/120pF. Each amplifier operates from a ??1V supply, dissipates less than 0.42mW of power and occupies less than 0.02mm2 of silicon area. The inception of the latest IEEE standard like IEEE 802.16 wireless metropolitan area network (WMAN) for 10 -66 GHz range demands wide band amplifiers operating at high frequencies to serve as front-end circuits (e.g. low noise amplifier) in such receiver architectures. Devices used in cascade (multistage amplifiers) can be used to increase the gain but it is achieved at an expense of bandwidth. Distributing the capacitance associated with the input and the output of the device over a ladder structure (which is periodic), rather than considering it to be lumped can achieve an extension of bandwidth without sacrificing gain. This concept which is also known as distributed amplification has been explored in the second part of the research. This work proposes certain guidelines for the design of distributed low noise amplifiers operating at very high frequencies. Noise analysis of the distributed amplifier with real transmission lines is introduced. The analysis for gain and noise figure is verified with simulation results from a 5-stage distributed amplifier implemented in a 0.18??m CMOS process.

Mishra, Chinmaya

2004-08-01T23:59:59.000Z

229

The Integration of Renewable Energy Sources into Electric Power Distribution Systems, Vol. II Utility Case Assessments  

SciTech Connect

Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: the local solar insolation and/or wind characteristics, renewable energy source penetration level, whether battery or other energy storage systems are applied, and local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kW-scale applications may be connected to three+phase secondaries, and larger hundred-kW and y-scale applications, such as MW-scale windfarms, or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. In any case, the installation of small, distributed renewable energy sources is expected to have a significant impact on local utility distribution primary and secondary system economics. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications. The following utility- and site-specific conditions that may affect the economic viability of distributed renewable energy sources were considered: distribution system characteristics, and design standards, and voltage levels; load density, reliability, and power quality; solar insolation and wind resource levels; utility generation characteristics and load profiles; and investor-owned and publicly owned utilities, size, and financial assumptions.

Zaininger, H.W.

1994-01-01T23:59:59.000Z

230

Final Technical Report Power through Policy: "Best Practices" for Cost-Effective Distributed Wind  

SciTech Connect

Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The project's final products include the Distributed Wind Policy Comparison Tool, found at www.windpolicytool.org, and its accompanying documentation: Distributed Wind Policy Comparison Tool Guidebook: User Instructions, Assumptions, and Case Studies. With only two initial user inputs required, the Policy Tool allows users to adjust and test a wide range of policy-related variables through a user-friendly dashboard interface with slider bars. The Policy Tool is populated with a variety of financial variables, including turbine costs, electricity rates, policies, and financial incentives; economic variables including discount and escalation rates; as well as technical variables that impact electricity production, such as turbine power curves and wind speed. The Policy Tool allows users to change many of the variables, including the policies, to gauge the expected impacts that various policy combinations could have on the cost of energy (COE), net present value (NPV), internal rate of return (IRR), and the simple payback of distributed wind projects ranging in size from 2.4 kilowatts (kW) to 100 kW. The project conducted case studies to demonstrate how the Policy Tool can provide insights into 'what if' scenarios and also allow the current status of incentives to be examined or defended when necessary. The ranking of distributed wind state policy and economic environments summarized in the attached report, based on the Policy Tool's default COE results, highlights favorable market opportunities for distributed wind growth as well as market conditions ripe for improvement. Best practices for distributed wind state policies are identified through an evaluation of their effect on improving the bottom line of project investments. The case studies and state rankings were based on incentives, power curves, and turbine pricing as of 2010, and may not match the current results from the Policy Tool. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOE's '20% Wind Energy by 2030' report and helping to meet COE targets. In providing a simple and easy-to-use policy comparison tool that estimates financial performance, the Policy Tool and guidebook are expected to enhance market expansion by the small wind industry by increasing and refining the understanding of distributed wind costs, policy best practices, and key market opportunities in all 50 states. This comprehensive overview and customized software to quickly calculate and compare policy scenarios represent a fundamental step in allowing policymakers to see how their decisions impact the bottom line for distributed wind consumers, while estimating the relative advantages of different options available in their policy toolboxes. Interested stakeholders have suggested numerous ways to enhance and expand the initial effort to develop an even more user-friendly Policy Tool and guidebook, including the enhancement and expansion of the current tool, and conducting further analysis. The report and the project's Guidebook include further details on possible next steps. NREL Report No. BK-5500-53127; DOE/GO-102011-3453.

Rhoads-Weaver, Heather; Gagne, Matthew; Sahl, Kurt; Orrell, Alice; Banks, Jennifer

2012-02-28T23:59:59.000Z

231

Power through Policy: "Best Practices" for Cost-Effective Distributed Wind  

DOE Green Energy (OSTI)

Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The project's final products include the Distributed Wind Policy Comparison Tool, found at www.windpolicytool.org, and its accompanying documentation: Distributed Wind Policy Comparison Tool Guidebook: User Instructions, Assumptions, and Case Studies. With only two initial user inputs required, the Policy Tool allows users to adjust and test a wide range of policy-related variables through a user-friendly dashboard interface with slider bars. The Policy Tool is populated with a variety of financial variables, including turbine costs, electricity rates, policies, and financial incentives; economic variables including discount and escalation rates; as well as technical variables that impact electricity production, such as turbine power curves and wind speed. The Policy Tool allows users to change many of the variables, including the policies, to gauge the expected impacts that various policy combinations could have on the cost of energy (COE), net present value (NPV), internal rate of return (IRR), and the simple payback of distributed wind projects ranging in size from 2.4 kilowatts (kW) to 100 kW. The project conducted case studies to demonstrate how the Policy Tool can provide insights into 'what if' scenarios and also allow the current status of incentives to be examined or defended when necessary. The ranking of distributed wind state policy and economic environments summarized in the attached report, based on the Policy Tool's default COE results, highlights favorable market opportunities for distributed wind growth as well as market conditions ripe for improvement. Best practices for distributed wind state policies are identified through an evaluation of their effect on improving the bottom line of project investments. The case studies and state rankings were based on incentives, power curves, and turbine pricing as of 2010, and may not match the current results from the Policy Tool. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOE's '20% Wind Energy by 2030' report and helping to meet COE targets. In providing a simple and easy-to-use policy comparison tool that estimates financial performance, the Policy Tool and guidebook are expected to enhance market expansion by the small wind industry by increasing and refining the understanding of distributed wind costs, policy best practices, and key market opportunities in all 50 states. This comprehensive overview and customized software to quickly calculate and compare policy scenarios represent a fundamental step in allowing policymakers to see how their decisions impact the bottom line for distributed wind consumers, while estimating the relative advantages of different options available in their policy toolboxes. Interested stakeholders have suggested numerous ways to enhance and expand the initial effort to develop an even more user-friendly Policy Tool and guidebook, including the enhancement and expansion of the current tool, and conducting further analysis. The report and the project's Guidebook include further details on possible next steps. NREL Report No. BK-5500-53127; DOE/GO-102011-3453.

Rhoads-Weaver, Heather; Gagne, Matthew; Sahl, Kurt; Orrell, Alice; Banks, Jennifer

2012-02-28T23:59:59.000Z

232

Distributed energy resources customer adoption modeling with combined heat and power applications  

SciTech Connect

In this report, an economic model of customer adoption of distributed energy resources (DER) is developed. It covers progress on the DER project for the California Energy Commission (CEC) at Berkeley Lab during the period July 2001 through Dec 2002 in the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. CERTS has developed a specific paradigm of distributed energy deployment, the CERTS Microgrid (as described in Lasseter et al. 2002). The primary goal of CERTS distributed generation research is to solve the technical problems required to make the CERTS Microgrid a viable technology, and Berkeley Lab's contribution is to direct the technical research proceeding at CERTS partner sites towards the most productive engineering problems. The work reported herein is somewhat more widely applicable, so it will be described within the context of a generic microgrid (mGrid). Current work focuses on the implementation of combined heat and power (CHP) capability. A mGrid as generically defined for this work is a semiautonomous grouping of generating sources and end-use electrical loads and heat sinks that share heat and power. Equipment is clustered and operated for the benefit of its owners. Although it can function independently of the traditional power system, or macrogrid, the mGrid is usually interconnected and exchanges energy and possibly ancillary services with the macrogrid. In contrast to the traditional centralized paradigm, the design, implementation, operation, and expansion of the mGrid is meant to optimize the overall energy system requirements of participating customers rather than the objectives and requirements of the macrogrid.

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-07-01T23:59:59.000Z

233

Power-law distributions and fluctuation-dissipation relation in the stochastic dynamics of two-variable Langevin equations  

E-Print Network (OSTI)

We show that the general two-variable Langevin equations with inhomogeneous noise and friction can generate many different forms of power-law distributions. By solving the corresponding stationary Fokker-Planck equation, we can obtain a condition under which these power-law distributions are accurately created in a system away from equilibrium. This condition is an energy-dependent relation between the diffusion coefficient and the friction coefficient and thus it provides a fluctuation-dissipation relation for nonequilibrium systems with power-law distributions. Further, we study the specific forms of the Fokker-Planck equation that correctly leads to such power-law distributions, and then present a possible generalization of Klein-Kramers equation and Smoluchowski equation to a complex system, whose stationary-state solutions are exactly a Tsallis distribution.

Jiulin, Du

2012-01-01T23:59:59.000Z

234

Investigation of anti-islanding schemes for utility interconnection of distributed fuel cell powered generations  

E-Print Network (OSTI)

The rapid emergence of distributed fuel cell powered generations (DFPGs) operating in parallel with utility has brought a number of technical concerns as more DFPGs are connected to utility grid. One of the most challenging problems is known as islanding phenomenon. This situation occurs when a network is disconnected from utility grid and is energized by local DFPGs. It can possibly result in injury to utility personnel arriving to service isolated feeders, equipment damage, and system malfunction. In response to the concern, this dissertation aims to develop a robust anti-islanding algorithm for utility interconnection of DFPGs. In the first part, digital signal processor (DSP) controlled power electronic converters for utility interconnection of DFPGs are developed. Current control in a direct-quadrature (dq) synchronous frame is proposed. The real and reactive power is controlled by regulating inverter currents. The proposed digital current control in a synchronous frame significantly enhances the performance of DFPGs. In the second part, the robust anti-islanding algorithm for utility interconnection of a DFPG is developed. The power control algorithm is proposed based on analysis of a real and reactive power mismatch. It continuously perturbs (±5%) the reactive power supplied by the DFPG while monitoring the voltage and frequency. If islanding were to occur, a measurable frequency deviation would take place, upon which the real power of the DFPG is further reduced to 80%; a drop in voltage positively confirms islanding. This method is shown to be robust and reliable. In the third part, an improved anti-islanding algorithm for utility interconnection of multiple DFPGs is presented. The cross correlation method is proposed and implemented in conjunction with the power control algorithm. It calculates the cross correlation index of a rate of change of the frequency deviation and (±5%) the reactive power. If this index increases above 50%, the chance of islanding is high. The algorithm initiates (±10%) the reactive power and continues to calculate the correlation index. If the index exceeds 80%, islanding is now confirmed. The proposed method is robust and capable of detecting islanding in the presence of several DFPGs independently operating. Analysis, simulation and experimental results are presented and discussed.

Jeraputra, Chuttchaval

2004-12-01T23:59:59.000Z

235

Power Distribution and Conditioning for a Small Student Satellite Design of the NUTS Backplane & EPS Module  

E-Print Network (OSTI)

Center for Space-related Education). The projects goal is to design, manufacture and launch a double CubeSat by 2014. As part of the NUTS satellite design, there is a need for a system backplane, which different sub-modules can be plugged into. The backplane will form the basis of the satellite, and must provide distribution of power and communication buses to the rest of the system. The Electrical Power System is a very important part of any satellite mission, and must handle power conversion and battery charging, as well as provide regulated supply to the rest of the system. Together with the system backplane, an EPS module has to be designed for the NUTS satellite. The candidate will: Gain an overview of the project and outline the necessary requirements and constraints. Become familiar with previous work on the subject. Propose a solution for a system backplane and electrical power system. Implement and test prototypes of the solutions, as extensively as allowed by the project time frame. Evaluate the proposed design and the results obtained from testing.

Dewald De Bruyn; Co-supervisor Roger Birkel

2011-01-01T23:59:59.000Z

236

Installation of the first Distributed Energy Storage System (DESS) at American Electric Power (AEP).  

DOE Green Energy (OSTI)

AEP studied the direct and indirect benefits, strengths, and weaknesses of distributed energy storage systems (DESS) and chose to transform its entire utility grid into a system that achieves optimal integration of both central and distributed energy assets. To that end, AEP installed the first NAS battery-based, energy storage system in North America. After one year of operation and testing, AEP has concluded that, although the initial costs of DESS are greater than conventional power solutions, the net benefits justify the AEP decision to create a grid of DESS with intelligent monitoring, communications, and control, in order to enable the utility grid of the future. This report details the site selection, construction, benefits and lessons learned of the first installation, at Chemical Station in North Charleston, WV.

Nourai, Ali (American Electric Power Company, Columbus, OH)

2007-06-01T23:59:59.000Z

237

System for tomographic determination of the power distribution in electron beams  

DOE Patents (OSTI)

A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.

Elmer, John W. (Pleasanton, CA); Teruya, Alan T. (Livermore, CA); O' Brien, Dennis W. (Livermore, CA)

1995-01-01T23:59:59.000Z

238

Characteristics of inhalable particulate matter concentration and size distribution from power plants in China  

Science Conference Proceedings (OSTI)

The collection efficiency of particulate emission control devices (PECDs), particulate matter (PM) emissions, and PM size distribution were determined experimentally at the inlet and outlet of PECDs at five coal-fired power plants. Different boilers, coals, and PECDs are used in these power plants. Measurement in situ was performed by an electrical low-pressure impactor with a sampling system, which consisted of an isokinetic sampler probe, precut cyclone, and two- stage dilution system with a sample line to the instruments. The size distribution was measured over a range from 0.03 to 10 {mu}m. Before and after all of the PECDs, the particle number size distributions display a bimodal distribution. The PM2.5 fraction emitted to atmosphere includes a significant amount of the mass from the coarse particle mode. The controlled and uncontrolled emission factors of total PM, inhalable PM (PM10), and fine PM (PM2.5) were obtained. Electrostatic precipitator (ESP) and baghouse total collection efficiencies are 96.38 99.89% and 99.94%, respectively. The minimum collection efficiency of the ESP and the baghouse both appear in the particle size range of 0.1 1 0 {mu}m. In this size range, ESP and baghouse collection efficiencies are 85.79 98.6% and 99.54%. Real- time measurement shows that the mass and number concentration of PM10 will be greatly affected by the operating conditions of the PECDs. The number of emitted particles increases with increasing boiler load level because of higher combustion temperature. During test run periods, the data reproducibility is satisfactory. 19 refs., 11 figs., 6 tabs.

Honghong Yi; Jiming Hao; Lei Duan; Xinghua Li; Xingming Guo [Tsinghua University, Beijing (China). Department of Environmental Science and Engineering

2006-09-15T23:59:59.000Z

239

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

for distributed generation . . . . . . . . . . . . . . 50environmentally benign distributed generation in a varietyfor inexpensive Distributed Generation (DG) technologies in

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

240

Distributed energy resources customer adoption modeling with combined heat and power applications  

E-Print Network (OSTI)

of Microgrid Distributed Energy Resource Potential Usingon Integration of Distributed Energy Resources: The CERTSof Customer Adoption of Distributed Energy Resources.

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A Preliminary Analysis of the Economics of Using Distributed Energy as a Source of Reactive Power Supply  

DOE Green Energy (OSTI)

A major blackout affecting 50 million people in the Northeast United States, where insufficient reactive power supply was an issue, and an increased number of filings made to the Federal Energy Regulatory Commission by generators for reactive power has led to a closer look at reactive power supply and compensation. The Northeastern Massachusetts region is one such area where there is an insufficiency in reactive power compensation. Distributed energy due to its close proximity to loads seems to be a viable option for solving any present or future reactive power shortage problems. Industry experts believe that supplying reactive power from synchronized distributed energy sources can be 2 to 3 times more effective than providing reactive support in bulk from longer distances at the transmission or generation level. Several technology options are available to supply reactive power from distributed energy sources such as small generators, synchronous condensers, fuel cells or microturbines. In addition, simple payback analysis indicates that investments in DG to provide reactive power can be recouped in less than 5 years when capacity payments for providing reactive power are larger than $5,000/kVAR and the DG capital and installation costs are lower than $30/kVAR. However, the current institutional arrangements for reactive power compensation present a significant barrier to wider adoption of distributed energy as a source of reactive power. Furthermore, there is a significant difference between how generators and transmission owners/providers are compensated for reactive power supplied. The situation for distributed energy sources is even more difficult, as there are no arrangements to compensate independent DE owners interested in supplying reactive power to the grid other than those for very large IPPs. There are comparable functionality barriers as well, as these smaller devices do not have the control and communications requirements necessary for automatic operation in response to local or system operators. There are no known distributed energy asset owners currently receiving compensation for reactive power supply or capability. However, there are some cases where small generators on the generation and transmission side of electricity supply have been tested and have installed the capability to be dispatched for reactive power support. Several concerns need to be met for distributed energy to become widely integrated as a reactive power resource. The overall costs of retrofitting distributed energy devices to absorb or produce reactive power need to be reduced. There needs to be a mechanism in place for ISOs/RTOs to procure reactive power from the customer side of the meter where distributed energy resides. Novel compensation methods should be introduced to encourage the dispatch of dynamic resources close to areas with critical voltage issues. The next phase of this research will investigate in detail how different options of reactive power producing DE can compare both economically and functionally with shunt capacitor banks. Shunt capacitor banks, which are typically used for compensating reactive power consumption of loads on distribution systems, are very commonly used because they are very cost effective in terms of capital costs. However, capacitor banks can require extensive maintenance especially due to their exposure to lightning at the top of utility poles. Also, it can be problematic to find failed capacitor banks and their maintenance can be expensive, requiring crews and bucket trucks which often requires total replacement. Another shortcoming of capacitor banks is the fact that they usually have one size at a location (typically sized as 300, 600, 900 or 1200kVAr) and thus don't have variable range as do reactive power producing DE, and cannot respond to dynamic reactive power needs. Additional future work is to find a detailed methodology to identify the hidden benefit of DE for providing reactive power and the best way to allocate the benefit among customers, utilities, transmission companies or RTOs.

Li, Fangxing [ORNL; Kueck, John D [ORNL; Rizy, D Tom [ORNL; King, Thomas F [ORNL

2006-04-01T23:59:59.000Z

242

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

spinning reserves, and regulation .3 C.1 Baseloadto be competitive for baseload power. The analysis usesto be competitive with baseload power, which typically has a

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

243

Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications: Assessing the Technical Needs for Utility Applications  

DOE Green Energy (OSTI)

Power electronics can provide utilities the ability to more effectively deliver power to their customers while providing increased reliability to the bulk power system. In general, power electronics is the process of using semiconductor switching devices to control and convert electrical power flow from one form to another to meet a specific need. These conversion techniques have revolutionized modern life by streamlining manufacturing processes, increasing product efficiencies, and increasing the quality of life by enhancing many modern conveniences such as computers, and they can help to improve the delivery of reliable power from utilities. This report summarizes the technical challenges associated with utilizing power electronics devices across the entire spectrum from applications to manufacturing and materials development, and it provides recommendations for research and development (R&D) needs for power electronics systems in which the U.S. Department of Energy (DOE) could make a substantial impact toward improving the reliability of the bulk power system.

Tolbert, L.M.

2005-12-21T23:59:59.000Z

244

INTELLIGENT MONITORING SYSTEM WITH HIGH TEMPERATURE DISTRIBUTED FIBEROPTIC SENSOR FOR POWER PLANT COMBUSTION PROCESSES  

SciTech Connect

The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, the efforts focused on developing an innovative high temperature distributed fiber optic sensor by fabricating in-fiber gratings in single crystal sapphire fibers. So far, our major accomplishments include: Successfully grown alumina cladding layers on single crystal sapphire fibers, successfully fabricated in-fiber gratings in single crystal sapphire fibers, and successfully developed a high temperature distributed fiber optic sensor. Under Task 2, the emphasis has been on putting into place a computational capability for simulation of combustors. A PC workstation was acquired with dual Xeon processors and sufficient memory to support 3-D calculations. An existing license for Fluent software was expanded to include two PC processes, where the existing license was for a Unix workstation. Under Task 3, intelligent state estimation theory is being developed which will map the set of 1D (located judiciously within a 3D environment) measurement data into a 3D temperature profile. This theory presents a semigroup-based approach to the design and training of a system type neural network which performs function extrapolation. The assumption of the semigroup property suffices to guarantee the existence of a generic mathematical architecture and operation which is explicit enough to support the direct design and training of a neural network.

Kwang Y. Lee; Stuart S. Yin; Andre Boheman

2003-12-26T23:59:59.000Z

245

Managing distributed ups energy for effective power capping in data centers  

Science Conference Proceedings (OSTI)

Power over-subscription can reduce costs for modern data centers. However, designing the power infrastructure for a lower operating power point than the aggregated peak power of all servers requires dynamic techniques to avoid high peak power costs and, ...

Vasileios Kontorinis; Liuyi Eric Zhang; Baris Aksanli; Jack Sampson; Houman Homayoun; Eddie Pettis; Dean M. Tullsen; Tajana Simunic Rosing

2012-06-01T23:59:59.000Z

246

Distributed simulation in manufacturing: EPOCHS: integrated commercial off-the-shelf software for agent-based electric power and communication simulation  

Science Conference Proceedings (OSTI)

This paper reports on the development of the Electric Power and Communication Synchronizing Simulator (EPOCHS), a distributed simulation environment. Existing electric power simulation tools accurately model power systems of the past, which were controlled ...

Kenneth M. Hopkinson; Kenneth P. Birman; Renan Giovanini; Denis V. Coury; Xiaoru Wang; James S. Thorp

2003-12-01T23:59:59.000Z

247

744 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 24, NO. 2, MAY 2009 Large-Scale Distribution Planning--Part I  

E-Print Network (OSTI)

744 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 24, NO. 2, MAY 2009 Large-Scale Distribution Planning--Part I: Simultaneous Network and Transformer Optimization Alejandro Navarro, Member, IEEE, and Hugh-voltage distribution networks. Combined optimization of transformers and associated networks is per- formed

Rudnick, Hugh

248

The sizes and powers of some stochastic dominance tests: A Monte Carlo study for correlated and heteroskedastic distributions  

Science Conference Proceedings (OSTI)

Testing for stochastic dominance among distributions is an important issue in the study of asset management, income inequality, and market efficiency. This paper conducts Monte Carlo simulations to examine the sizes and powers of several commonly used ... Keywords: C12, Correlated distributions, D31, G11, Grid points, Heteroskedasticity, Stochastic dominance

Hooi-Hooi Lean; Wing-Keung Wong; Xibin Zhang

2008-10-01T23:59:59.000Z

249

Technical evaluation of the adequacy of station electric distribution system voltages for the Yankee Rowe Nuclear Power Station  

SciTech Connect

This report documents the technical evaluation of the adequacy of the station electric distribution system voltages for the Yankee Rowe Nuclear Power Station. The evaluation is to determine if the onsite distribution system, in conjunction with the offsite power sources, has sufficient capacity to automatically start and operate all Class 1E loads within the equipment voltage ratings under certain conditions established by the Nuclear Regulatory Commission. The analysis shows that the station electric distribution system has the capacity and capability to supply voltage to the Class 1E equipment with their design ratings for the worst case loading condition.

Selan, J.C.

1981-05-29T23:59:59.000Z

250

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

shaded regions represent power generation costs . . 11 Heat-against conventional power generation technologies when thephotovoltaic and wind power generation have recently seen

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

251

Distributed energy resources customer adoption modeling with combined heat and power applications  

E-Print Network (OSTI)

MWh) KA natural gas consumed by power generation (MWh LMWh) KA natural gas consumed by power generation (MWh) LMWh) KA natural gas consumed by power generation (MWh) L

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

252

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

32 B.1 Electrical power capacity: BatteryB.1 Electrical power capacity: Battery EDVs For the battery-and/or generation capacity of battery, hybrid and fuel cell

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

253

Electric cartridge-type heater for producing a given non-uniform axial power distribution  

DOE Patents (OSTI)

An electric cartridge heater is provided to simulate a reactor fuel element for use in safety and thermal-hydraulic tests of model nuclear reactor systems. The electric heat-generating element of the cartridge heater consists of a specifically shaped strip of metal cut with variable width from a flat sheet of the element material. When spirally wrapped around a mandrel, the strip produces a coiled element of the desired length and diameter. The coiled element is particularly characterized by an electrical resistance that varies along its length due to variations in strip width. Thus, the cartridge heater is constructed such that it will produce a more realistic simulation of the actual nonuniform (approximately ''chopped'' cosine) power distribution of a reactor fuel element.

Clark, D.L.; Kress, T.S.

1975-10-14T23:59:59.000Z

254

A Case Study on the Effects of Distribution Line Capacitors on Substation Bus Voltage Regulated with a Load Tap Changing (LTC) Power Transformer: Southern Company Smart Grid Demonstration  

Science Conference Proceedings (OSTI)

This case study describes research to address the adverse effects of distribution capacitors on substation bus voltage with a load-tap-changing (LTC) power transformer. By adding fixed and switched capacitors to the distribution system, Southern Company is able to maintain an efficient distribution grid by providing the reactive power near the end-use devices consuming this power. However, pressure to improve the efficiency of the distribution system has resulted in Southern Company adding a large ...

2013-12-12T23:59:59.000Z

255

A Quantitative Assessment of Utility Reporting Practices for Reporting Electric Power Distribution Events  

E-Print Network (OSTI)

urban) Design of electricity distribution system (e.g. ,maintenance of the electricity distribution system (e.g. ,

Hamachi La Commare, Kristina

2013-01-01T23:59:59.000Z

256

A majorization-minimization approach to design of power distribution networks  

Science Conference Proceedings (OSTI)

We consider optimization approaches to design cost-effective electrical networks for power distribution. This involves a trade-off between minimizing the power loss due to resistive heating of the lines and minimizing the construction cost (modeled by a linear cost in the number of lines plus a linear cost on the conductance of each line). We begin with a convex optimization method based on the paper 'Minimizing Effective Resistance of a Graph' [Ghosh, Boyd & Saberi]. However, this does not address the Alternating Current (AC) realm and the combinatorial aspect of adding/removing lines of the network. Hence, we consider a non-convex continuation method that imposes a concave cost of the conductance of each line thereby favoring sparser solutions. By varying a parameter of this penalty we extrapolate from the convex problem (with non-sparse solutions) to the combinatorial problem (with sparse solutions). This is used as a heuristic to find good solutions (local minima) of the non-convex problem. To perform the necessary non-convex optimization steps, we use the majorization-minimization algorithm that performs a sequence of convex optimizations obtained by iteratively linearizing the concave part of the objective. A number of examples are presented which suggest that the overall method is a good heuristic for network design. We also consider how to obtain sparse networks that are still robust against failures of lines and/or generators.

Johnson, Jason K [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

257

Partial Shade Evaluation of Distributed Power Electronics for Photovoltaic Systems: Preprint  

Science Conference Proceedings (OSTI)

Site survey data for several residential installations are provided, showing the extent and frequency of shade throughout the year. This background information is used to design a representative shading test that is conducted on two side-by-side 8-kW photovoltaic (PV) installations. One system is equipped with a standard string inverter, while the other is equipped with microinverters on each solar panel. Partial shade is applied to both systems in a comprehensive range of shading conditions, simulating one of three shade extents. Under light shading conditions, the microinverter system produced the equivalent of 4% annual performance improvement, relative to the string inverter system. Under moderate shading conditions, the microinverter system outperformed the string inverter system by 8%, and under heavy shading the microinverter increased relative performance by 12%. In all three cases, the percentage of performance loss that is recovered by the use of distributed power electronics is 40%-50%. Additionally, it was found that certain shading conditions can lead to additional losses in string inverters due to peak-power tracking errors and voltage limitations.

Deline, C.; Meydbrav, J.; Donovan, M.

2012-06-01T23:59:59.000Z

258

Applying wind turbines and battery storage to defer Orcas Power and Light Company distribution circuit upgrades  

DOE Green Energy (OSTI)

The purpose of this study is to conduct a detailed assessment of the Orcas Power and Light Company (OPALCO) system to determine the potential for deferring the costly upgrade of the 25-kV Lopez- Eastsound circuit, by the application of a MW-scale wind farm and battery storage facilities as appropriate. Local wind resource data has been collected over the past year and used to determine MW-scale wind farm performance. This hourly wind farm performance data is used with measured hourly Eastsound load data, and recent OPALCO distribution system expansion plans and cost projections in performing this detailed benefit-cost assessment. The OPALCO distribution circuit expansion project and assumptions are described. MW-scale wind farm performance results are given. The economic benefit-cost results for the wind farm and battery storage applications on the OPALCO system using OPALCO system design criteria and cost assumptions are reported. A recalculation is presented of the benefit-cost results for similar potential wind farm and battery storage applications on other utility systems with higher marginal energy and demand costs. Conclusions and recommendations are presented.

Zaininger, H.W.; Barnes, P.R. [Zaininger Engineering Co., Inc., San Jose, CA (United States)

1997-03-01T23:59:59.000Z

259

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

interconnection safety, net metering and other renewableof tariff, called "net metering," the power company buysgrid system costs. But net metering is not adequate payment

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

260

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

metering and other renewable energy tariffs, demand charges,tariffs specify that the local distribution company pays in energyrenewable energy. There are two existing tariffs, both for

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Technical evaluation of the adequacy of station electric-distribution-system voltages for the Pilgrim Nuclear Power Station, Unit 1  

Science Conference Proceedings (OSTI)

This report documents the technical evaluation of the adequacy of the station electric distribution system voltages for the Pilgrim Nuclear Power Station, Unit 1. The evaluation is to determine if the onsite distribution system in conjunction with the offsite power sources has sufficient capacity to automatically start and operate all Class 1E loads within the equipment voltage ratings under certain conditions established by the Nuclear Regulatory Commission. The analyses demonstrated that for the worst case conditions established, the Class 1E equipment will automatically start and continue to operate within the equiment design voltage rating.

Selan, J.C.

1981-12-28T23:59:59.000Z

262

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

by CHP heat output P e Electrical power output of system Qratio of thermal to electrical power output R d Desiredratio of thermal to electrical power output T a Ambient

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

263

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

fossil-fuel based thermal power plants. Chapter 3 exploresthermal energy to be dissipated in concentrating solar power plants.thermal energy to electricity in a natural gas, coal or nuclear power plant

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

264

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

solar power (CSP) troughs in the central valley of California (Pricesolar combined heat and power with desalination Figure 2.7: Comparison of desalination plants; price

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

265

Active Distributed Power Systems Functional Structures for Real-Time Operation of Sustainable Energy Systems.  

E-Print Network (OSTI)

??Present power system will face great challenges in several areas depending on the market economy, extensive global integration and constant need for more electric power, (more)

Svensson, Jrgen

2006-01-01T23:59:59.000Z

266

Improving the reliability of wind power through spatially distributed wind generation.  

E-Print Network (OSTI)

??Wind power is a fast-growing, sustainable energy source. However, the problem of wind variability as it relates to wind power reliability is an obstacle to (more)

Fisher, Samuel Martin

2012-01-01T23:59:59.000Z

267

POWER SYSTEM VOLTAGE STABILITY AND AGENT BASED DISTRIBUTION AUTOMATION IN SMART GRID.  

E-Print Network (OSTI)

??Our interconnected electric power system is presently facing many challenges that it was not originally designed and engineered to handle. The increased interarea power transfers, (more)

Nguyen, Cuong Phuc

2011-01-01T23:59:59.000Z

268

GridLab: Enabling Applications on the Grid  

Science Conference Proceedings (OSTI)

Grid technology is widely emerging. Still, there is an eminent shortage of real Grid users, due to the absence of two important catalysts: First, a widely accepted vision on how applications can substantially benefit from Grids, and second a toolkit ...

Gabrielle Allen; Dave Angulo; Tom Goodale; Thilo Kielmann; Andr Merzky; Jarek Nabrzysky; Juliusz Pukacki; Michael Russell; Thomas Radke; Edward Seidel; John Shalf; Ian Taylor

2002-11-01T23:59:59.000Z

269

GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012  

Science Conference Proceedings (OSTI)

Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

270

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

Figures A typical wet steam Rankine cycle on a temperature-A Better Steam Engine: Designing a Distributed Concentrating2011 Abstract A Better Steam Engine: Designing a Distributed

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

271

Space-based solar power generation using a distributed network of satellites and methods for efficient space power transmission  

E-Print Network (OSTI)

Space-based solar power (SSP) generation is being touted as a solution to our ever-increasing energy consumption and dependence on fossil fuels. Satellites in Earth's orbit can capture solar energy through photovoltaic ...

McLinko, Ryan M.

272

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

Costs Revenue Costs a b Using utilities internal rule ofof revenues and costs based on a utilities "internal ruleRevenue and costs of using EDVs for regulation: power capacity limited only by the internal

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

273

Variability of Load and Net Load in Case of Large Scale Distributed Wind Power  

Science Conference Proceedings (OSTI)

Large scale wind power production and its variability is one of the major inputs to wind integration studies. This paper analyses measured data from large scale wind power production. Comparisons of variability are made across several variables: time scale (10-60 minute ramp rates), number of wind farms, and simulated vs. modeled data. Ramp rates for Wind power production, Load (total system load) and Net load (load minus wind power production) demonstrate how wind power increases the net load variability. Wind power will also change the timing of daily ramps.

Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Gomez-Lazaro, E.; Rawn, B.; Dobschinski, J.; Meibom, P.; Lannoye, E.; Aigner, T.; Wan, Y. H.; Milligan, M.

2011-01-01T23:59:59.000Z

274

Wireless Self-powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains  

SciTech Connect

Carnegie Mellon University (CMU) under contract from Department of Energy/National Energy Technology Laboratory (DoE/NETL) and co-funding from the Northeast Gas Association (NGA), has completed the overall system design of the next-generation Explorer-II (X-II) live gas main NDE and visual inspection robot platform. The design is based on the Explorer-I prototype which was built and field-tested under a prior (also DoE- and NGA co-funded) program, and served as the validation that self-powered robots under wireless control could access and navigate live natural gas distribution mains. The X-II system design ({approx}8 ft. and 66 lbs.) was heavily based on the X-I design, yet was substantially expanded to allow the addition of NDE sensor systems (while retaining its visual inspection capability), making it a modular system, and expanding its ability to operate at pressures up to 750 psig (high-pressure and unpiggable steel-pipe distribution mains). A new electronics architecture and on-board software kernel were added to again improve system performance. A locating sonde system was integrated to allow for absolute position-referencing during inspection (coupled with external differential GPS) and emergency-locating. The power system was upgraded to utilize lithium-based battery-cells for an increase in mission-time. The system architecture now relies on a dual set of end camera-modules to house the 32-bit processors (Single-Board Computer or SBC) as well as the imaging and wireless (off-board) and CAN-based (on-board) communication hardware and software systems (as well as the sonde-coil and -electronics). The drive-module (2 ea.) are still responsible for bracing (and centering) to drive in push/pull fashion the robot train into and through the pipes and obstacles. The steering modules and their arrangement, still allow the robot to configure itself to perform any-angle (up to 90 deg) turns in any orientation (incl. vertical), and enable the live launching and recovery of the system using custom fittings and a (to be developed) launch-chamber/-tube. The battery modules are used to power the system, by providing power to the robot's bus. The support modules perform the functions of centration for the rest of the train as well as odometry pickups using incremental encoding schemes. The electronics architecture is based on a distributed (8-bit) microprocessor architecture (at least 1 in ea. module) communicating to a (one of two) 32-bit SBC, which manages all video-processing, posture and motion control as well as CAN and wireless communications. The operator controls the entire system from an off-board (laptop) controller, which is in constant wireless communication with the robot train in the pipe. The sensor modules collect data and forward it to the robot operator computer (via the CAN-wireless communications chain), who then transfers it to a dedicated NDE data-storage and post-processing computer for further (real-time or off-line) analysis. CMU has fully designed every module in terms of the mechanical, electrical and software elements (architecture only). Substantial effort has gone into pre-prototyping to uncover mechanical, electrical and software issues for critical elements of the design. Design requirements for sensor-providers were also detailed and finalized and provided to them for inclusion in their designs. CMU is expecting to start 2006 with a detailed design effort for both mechanical and electrical components, followed by procurement and fabrication efforts in late winter/spring 2006. The assembly and integration efforts will occupy all of the spring and summer of 2006. Software development will also be a major effort in 2006, and will result in porting and debugging of code on the module- and train-levels in late summer and Fall of 2006. Final pipe mock-up testing is expected in late fall and early winter 2006 with an acceptance demonstration of the robot train (with a sensor-module mock-up) planned to DoE/NGA towards the end of 2006.

Susan Burkett; Hagen Schempf

2006-01-31T23:59:59.000Z

275

Office of Facilities and Grounds Future Power Distribution Grid Requirements for  

E-Print Network (OSTI)

). · This will require the combination of alternate generation (PV, SNG, HFC, etc.), storage, Demand Response switchable circuits ­ Scalable power production (Diesel, SNG, HFC, Batteries) ­ Combine Thermal power

276

Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies  

DOE Green Energy (OSTI)

This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

2008-03-01T23:59:59.000Z

277

Centralized and distributed power allocation in multi-user wireless relay networks  

E-Print Network (OSTI)

Optimal power allocation for multi-user amplify- and-forward wireless relay networks in which multiple source-destination pairs are assisted by a set of relays is investigated. Two relay power allocation strategies based ...

Le, Long Bao

278

Total power optimization combining placement, sizing and multi-Vt through slack distribution management  

Science Conference Proceedings (OSTI)

Power dissipation is quickly becoming one of the most important limiters in nanometer IC design for leakage increases exponentially as the technology scaling down. However, power and timing are often conflicting objectives during optimization. In this ...

Tao Luo; David Newmark; David Z. Pan

2008-01-01T23:59:59.000Z

279

Power system voltage stability and agent based distribution automation in smart grid  

Science Conference Proceedings (OSTI)

Our interconnected electric power system is presently facing many challenges that it was not originally designed and engineered to handle. The increased inter-area power transfers, aging infrastructure, and old technologies, have caused many problems ...

Cuong Phuc Nguyen / Alexander J. Flueck

2011-01-01T23:59:59.000Z

280

High performance power flow algorithm for symmetrical distribution networks with unbalanced loading  

Science Conference Proceedings (OSTI)

Size of the distribution and transmission networks to be planned or to be monitored in online systems is increasing significantly. The number of nodes of a complete distribution system exceeds several hundred thousand. As a consequence, efficient methods ...

Izudin Dzafic; Hans-Theo Neisius; Priyanka Mohapatra

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

pahwa@ksu.edu Holonic Multi-agent Control of Power Distribution Systems of the Future  

E-Print Network (OSTI)

are beginning to focus on advanced distribution automation within the smart grid paradigm to make the PDS more accelerated activities related to distribution automation and smart metering. Similarly, the number, 1997). [10] S.S. Venkata, S. Roy, A. Pahwa, G. L. Clark and E. C. Boardman. "Smart Distribution Grid

Deloach, Scott A.

282

Evidence for departure from a power-law flare size distribution for a small solar active region  

E-Print Network (OSTI)

Active region 11029 was a small, highly flare-productive solar active region observed at a time of extremely low solar activity. The region produced only small flares: the largest of the $>70$ Geostationary Observational Environmental Satellite (GOES) events for the region has a peak 1--$8{\\AA}$ flux of $2.2\\times 10^{-6} {\\rm W} {\\rm m}^{-2}$ (GOES C2.2). The background-subtracted GOES peak-flux distribution suggests departure from power-law behavior above $10^{-6} {\\rm W} {\\rm m}^{-2}$, and a Bayesian model comparison strongly favors a power-law plus rollover model for the distribution over a simple power-law model. The departure from the power law is attributed to this small active region having a finite amount of energy. The rate of flaring in the region varies with time, becoming very high for two days coinciding with the onset of an increase in complexity of the photospheric magnetic field. The observed waiting-time distribution for events is consistent with a piecewise-constant Poisson model. These res...

Wheatland, M S

2010-01-01T23:59:59.000Z

283

Features of adsorbed radioactive chemical elements and their isotopes distribution in iodine air filters AU-1500 at nuclear power plants  

E-Print Network (OSTI)

The main aim of research is to investigate the physical features of spatial distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the iodine air filters of the type of AU1500 in the forced exhaust ventilation systems at the nuclear power plant. The gamma activation analysis method is applied to accurately characterize the distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the AU1500 iodine air filter after its long term operation at the nuclear power plant. The typical spectrum of the detected chemical elements and their isotopes in the AU1500 iodine air filter, which was exposed to the bremsstrahlung gamma quantum irradiation, produced by the accelerating electrons in the tantalum target, are obtained. The spatial distributions of the detected chemical element 127I and some other chemical elements and their isotopes in the layer of absorber, which was made of the cylindrical coal granules of the type of SKT3, in the AU1500 iodine air filter are also researched. The possible influences by the standing acoustic wave of air pressure in the iodine air filter on the spatial distribution of the chemical elements and their isotopes in the iodine air filter are discussed. The comprehensive analysis of obtained research results on the distribution of the adsorbed chemical elements and their isotopes in the absorber of iodine air filter is performed.

I. M. Neklyudov; A. N. Dovbnya; N. P. Dikiy; O. P. Ledenyov; Yu. V. Lyashko

2013-06-21T23:59:59.000Z

284

A new method for power generation and distribution in outer space  

SciTech Connect

The power system is a major component of a space system's size, mass, technical complexity, and hence, cost. To date, space systems include the energy source as an integral part of the mission satellite. Potentially significant benefit could be realized by separating the energy source from the end-use system and transmitting the power via an energy beam (power beaming) (Coomes et al., 1989). This concept parallels the terrestrial central generating station and transmission grid. In this summary, the system components required for power beaming implementation are outlined and applied to a satellite for power beaming implementation are outlined and applied to a satellite constellation to demonstrate the feasibility of implementing power beaming in the next 20 years. 5 refs., 1 fig., 3 tabs.

Bamberger, J.A.

1989-09-01T23:59:59.000Z

285

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

2002). Advances in parabolic trough solar power technology.use comparable to a parabolic trough with air cooling sincethe working fluid in parabolic trough collectors is in the

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

286

Distributed energy resources customer adoption modeling with combined heat and power applications  

E-Print Network (OSTI)

case, such as total electricity bill, electricity generationHeat and Power Applications electricity bill for electricityK$ Investment Costs Annual Electricity Bill for Purchases

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

287

Distributed energy resources customer adoption modeling with combined heat and power applications  

E-Print Network (OSTI)

CHP (PX and Tariff case) Distributed Energy Resources42 Figure 10. Energy Consumption Breakdown - 1999 (TariffFigure 10. Energy Consumption Breakdown - 1999 (Tariff Case)

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

288

Application of Fiber-Optic Distributed Temperature Sensing to Power Transmission Cables at BC Hydro  

Science Conference Proceedings (OSTI)

This report describes applications of distributed temperature sensing methods to underground and submarine cables at BC Hydro over a five-year period.

2002-05-31T23:59:59.000Z

289

Modeling of Doubly Fed Induction Generators for Distribution System Power Flow Analysis.  

E-Print Network (OSTI)

??Large-scale integration of Wind Generators (WGs) with distribution systems is underway right across the globe in a drive to harness green energy. The Doubly Fed (more)

Dadhania, Amitkumar

2010-01-01T23:59:59.000Z

290

Role of solid oxide fuel cell distributed generation for stationary power application.  

E-Print Network (OSTI)

??Based on an availabe fuel cell dyanmical model, an inportant concept feasible operating area is introduced. Fuel cell based distributed generator is studied to solve (more)

Li, Yonghui.

2008-01-01T23:59:59.000Z

291

AC/DC Smart Control and Power Sharing of DC Distribution Systems.  

E-Print Network (OSTI)

?? The purpose of this research is to develop a grid connected DC distribution system to ensure efficient integration of different alternate sources to the (more)

Elshaer, Mohamed A

2012-01-01T23:59:59.000Z

292

Integrated Technology for Distribution Systems Applications: Survey and Testing of Voltage Detecting/Indicating Devices for AC Power Lines  

Science Conference Proceedings (OSTI)

This report summarizes product reviews and testing commercially available voltage-sensing devices used to detect energized electric distribution lines, with particular focus on minimum detection and indication performance. To adequately detect line energization across the entire spectrum of possible voltage levels on a power line (from 40 Vac to full line voltage), multiple devices are currently necessary. The ideal improvement to address current gaps in voltage sensing would be the development of a ...

2013-12-17T23:59:59.000Z

293

PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.  

Science Conference Proceedings (OSTI)

This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

Robinett, Rush D., III; Kukolich, Keith (Opal RT Technologies, Montreal, Quebec, Canada); Wilson, David Gerald; Schenkman, Benjamin L.

2010-06-01T23:59:59.000Z

294

Use of Power Electronic Building Blocks (PEBBs) for Protection of DC distribution systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STATCOM with Energy Storage STATCOM with Energy Storage STATCOM with Energy Storage to Smooth out Intermittent Power Output to Smooth out Intermittent Power Output of Wind Farms of Wind Farms Mesut Baran Sercan Teleke Subhashish Bhattacharya Alex Huang Loren Anderson (BPA) Stanley Atcitty (SNL) Imre Gyuk (DOE) Sponsors: BPA & DOE Energy Storage Program Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Wind Farm Power Wind Farm Power Pinj V Challenges: Variation of Power

295

Thermal Power Systems, Point-Focusing Distributed Receiver Technology Project. Annual technical report, Fiscal Year 1978. Volume II. Detailed report  

DOE Green Energy (OSTI)

Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver technology is the goal of this Project. The energy thus produced must be economically competitive with other sources. This Project supports the industrial development of technology and hardware for extracting energy from solar power to achieve the stated goal. Present studies are working to concentrate the solar energy through mirrors or lenses, to a working fluid or gas, and through a power converter change it to an energy source useful to man. Rankine-cycle and Brayton-cycle engines are currently being developed as the most promising energy converters for our near future needs. Accomplishments on point-focusing technology in FY 1978 are detailed.

Not Available

1979-03-15T23:59:59.000Z

296

Analysis of the effect of transverse power distribution in an involute fuel plate with and without oxide film formation.  

Science Conference Proceedings (OSTI)

Existing thermal hydraulics computer codes can account for variations in power and temperature in the axial and thickness directions but variations across the width of the plate cannot be accounted for. In the case of fuel plates in an annular core this can lead to significant errors which are accentuated by the presence of an oxide layer that builds up on the aluminum cladding with burnup. This paper uses a three dimensional SINDA model to account for the transverse variations in power. The effect of oxide thickness on these differences is studied in detail. Power distribution and fuel conductivity are also considered. The lower temperatures predicted with the SINDA model result in a greater margin to clad and fuel damage.

Smith, R. S.

1998-10-27T23:59:59.000Z

297

Distributed Energy Resources and Control: A power system point of view  

E-Print Network (OSTI)

intelligent control systems that can manage both the electrical and financial operation of the grid and new. In a distributed controller, data may be processed and e.g. reduced locally, supervised or remote that are solved locally, using local data. Then, information is shared between local distributed control centers

298

Distributive Subband Allocation, Power and Rate Control for Relay-Assisted OFDMA Cellular System with Imperfect System State Knowledge  

E-Print Network (OSTI)

In this paper, we consider distributive subband, power and rate allocation for a two-hop transmission in an orthogonal frequency-division multiple-access (OFDMA) cellular system with fixed relays which operate in decode-and-forward strategy. We take into account of system fairness by considering weighted sum goodput as our optimization objective. Based on the cluster-based architecture, we obtain a fast-converging distributive solution with only local imperfect CSIT by using decomposition of the optimization problem. To further reduce the signaling overhead and computational complexity, we propose a reduced feedback distributive solution, which can achieve asymptotically optimal performance for large number of users with arbitrarily small feedback overhead per user. We also derive asymptotic average system throughput for the relay-assisted OFDMA system so as to obtain useful design insights.

Cui, Ying; Wang, Rui

2009-01-01T23:59:59.000Z

299

Distribution:  

Office of Legacy Management (LM)

JAN26 19% JAN26 19% Distribution: OR00 Attn: h.H.M.Roth DFMusser ITMM MMMann INS JCRyan FIw(2) Hsixele SRGustavson, Document rocm Formal file i+a@mmm bav@ ~@esiaw*cp Suppl. file 'Br & Div rf's s/health (lic.only) UNITED STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAB MATERIAL LICENSE pursuant to the Atomic Energy Act of 1954 and Title 10, Code of Federal Regulations, Chapter 1, P&t 70, "Special Nuclear Material Reg)llatiqm," a license is hereby issued a$hortztng the licensee to rekeive and possess the special nuclear material designated below; to use such special nuclear mat&ial for the purpose(s) and at the place(s) designated below; and to transfer such material to per&s authorized to receive it in accordance with the regula,tions in said Part.

300

System level design of power distribution network for mobile computing platforms  

E-Print Network (OSTI)

to meet the system voltage noise requirements. Introductiondifferent voltage level specs due to V cc min requirement ofvoltage and frequency scaling (DVFS), Dynamic Power Gat- ing (DPM), and area/performance requirements

Shayan Arani, Amirali

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Voltage Stability Analysis of a Distributed Network Incorporating Wind Power Resource  

Science Conference Proceedings (OSTI)

This paper investigates the impacts of a wind farm connected at Harterbeespoort substation in South Africa on voltage stability of the power network. The site wind speed was determined and analyzed for viability. A comparison is made between the use ...

Denis Juma; Bessie Monchusi; Josiah Munda; Adisa Jimoh

2011-01-01T23:59:59.000Z

302

1240 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 15, NO. 4, NOVEMBER 2000 State Estimation Distributed Processing  

E-Print Network (OSTI)

) and the Southwest Power Pool (SPP) systems. I. INTRODUCTION TO HOST SCADA and Energy Management System soft- ware. The authors are with The University of Texas at Austin, TX 78712. Publisher Item Identifier S 0885

Baldick, Ross

303

Innovative Distributed Power Grid Interconnection and Control Systems: Final Report, December 11, 2000 - August 30, 2005  

SciTech Connect

The contract goal was to further advance distributed generation in the marketplace by making installations more cost-effective and compatible with existing systems. This was achieved by developing innovative grid interconnection and control systems.

DePodesta, K.; Birlingmair, D.; West, R.

2006-03-01T23:59:59.000Z

304

Electric power transmission and distribution systems: costs and their allocation. Research report  

SciTech Connect

Transmission and distribution costs contribute significantly to the total costs of providing electrical service. The costs derived from the transmission and distribution (TandD) system have historically comprised about 2/3 the costs of producing and delivering electricity to residential-commercial customers, and over 1/3 the total costs supplying electricity to large industrial customers. This report: (1) estimates the differences in transmission and distribution equipment required to serve industrial and residential-commercial customers and allocates to the above two customer classes the average costs of installing this equipment; (2) estimates the costs of operation and maintenance of the transmission and distribution system, and allocates these costs to the customer classes; and (3) calculates the TandD derived average costs for the two customer classes. (GRA)

Baughman, M.L.; Bottaro, D.J.

1975-07-01T23:59:59.000Z

305

Load Modeling and State Estimation Methods for Power Distribution Systems: Final Report  

SciTech Connect

The project objective was to provide robust state estimation for distribution systems, comparable to what has been available on transmission systems for decades. This project used an algorithm called Branch Current State Estimation (BCSE), which is more effective than classical methods because it decouples the three phases of a distribution system, and uses branch current instead of node voltage as a state variable, which is a better match to current measurement.

Tom McDermott

2010-05-07T23:59:59.000Z

306

The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments  

Science Conference Proceedings (OSTI)

Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C. [Zaininger Engineering Co., San Jose, CA (United States)

1994-06-01T23:59:59.000Z

307

An Integrated Modeling Framework for Exploring Network Reconfiguration of Distributed Controlled Homogenous Power Inverter Network using Composite Lyapunov Function Based Reachability Bound  

Science Conference Proceedings (OSTI)

We describe an integrated modeling framework for an interactive power network (IPN) consisting of a power network (PN) and a wireless communication network (WCN). The PN is modeled using a set of piecewise linear (PWL) equations. The WCN is modeled using ... Keywords: Lyapunov stability, Markov-chain model, communication network, distributed control systems, electric power network, joint optimization, linear matrix inequality, optimization, piecewise linear systems, reaching conditions, stability, switching power converters, wireless

Sudip K. Mazumder; Muhammad Tahir; Kaustuva Acharya

2010-02-01T23:59:59.000Z

308

Optimal site selection and sizing of distributed utility-scale wind power plants  

DOE Green Energy (OSTI)

As electric market product unbundling occurs, sellers in the wholesale market for electricity will find it to their advantage to be able to specify the quantity of electricity available and the time of availability. Since wind power plants are driven by the stochastic nature of the wind itself, this can present difficulties. To the extent that an accurate wind forecast is available, contract deviations, and therefore penalties, can be significantly reduced. Even though one might have the ability to accurately forecast the availability of wind power, it might not be available during enough of the peak period to provide sufficient value. However, if the wind power plant is developed over geographically disperse locations, the timing and availability of wind power from these multiple sources could provide a better match with the utility`s peak load than a single site. There are several wind plants in various stages of planning or development in the US. Although some of these are small-scale demonstration projects, significant wind capacity has been developed in Minnesota, with additional developments planned in Wyoming and Iowa. As these and other projects are planned and developed, there is a need to perform analysis of the value of geographically diverse sites on the efficiency of the overall wind plant. In this paper, the authors use hourly wind-speed data from six geographically diverse sites to provide some insight into the potential benefits of disperse wind plant development. They provide hourly wind power from each of these sites to an electric reliability simulation model. This model uses generating plant characteristics of the generators within the state of Minnesota to calculate various reliability indices. Since they lack data on wholesale power transactions, they do not include them in the analysis, and they reduce the hourly load data accordingly. The authors present and compare results of their methods and suggest some areas of future research.

Milligan, M.R. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Artig, R. [Minnesota Dept. of Public Service, St. Paul, MN (United States)] [Minnesota Dept. of Public Service, St. Paul, MN (United States)

1998-04-01T23:59:59.000Z

309

Performance and Economic Analysis of Distributed Power Electronics in Photovoltaic Systems  

DOE Green Energy (OSTI)

Distributed electronics like micro-inverters and DC-DC converters can help recover mismatch and shading losses in photovoltaic (PV) systems. Under partially shaded conditions, the use of distributed electronics can recover between 15-40% of annual performance loss or more, depending on the system configuration and type of device used. Additional value-added features may also increase the benefit of using per-panel distributed electronics, including increased safety, reduced system design constraints and added monitoring and diagnostics. The economics of these devices will also become more favorable as production volume increases, and integration within the solar panel?s junction box reduces part count and installation time. Some potential liabilities of per-panel devices include increased PV system cost, additional points of failure, and an insertion loss that may or may not offset performance gains under particular mismatch conditions.

Deline, C.; Marion, B.; Granata, J.; Gonzalez, S.

2011-01-01T23:59:59.000Z

310

Environmental determinants of unscheduled residential outages in the electrical power distribution of Phoenix, Arizona  

E-Print Network (OSTI)

problem. We model electric interruptions using outage data between the years of 2002 and 2005 across, and interactions between the two. We model electric interruptions using outage data for the years 2002;22:117­21. [14] Fritts TH. Economic costs of electrical system instability and power outages caused by snakes

311

Load Forecasting on Special Days & Holidays in Power Distribution Substation Using Neural & Fuzzy Networks  

Science Conference Proceedings (OSTI)

The demand for neural and fuzzy network techniques to predict the increasing load and its application has changed to an ordinary action. However the facts of the real world caused special and exceptional conditions to be created in this network. Like ... Keywords: Power system, Load forecasting, neural & fuzzy network, Short-term prediction of load.

Saeid Nahi

2006-11-01T23:59:59.000Z

312

A hybrid intelligent system for alarm processing in power distribution substations  

Science Conference Proceedings (OSTI)

This application paper presents an intelligent system for alarm processing and fault location in power substations. A hybrid model is constructed using rule-based systems and an artificial neural network. Incoming alarms are initially handled by an input ... Keywords: Expert systems, fault location, neural networks

J. C. Stacchini de Souza; M. B. Do Coutto Filho; R. S. Freund

2010-04-01T23:59:59.000Z

313

Numerical calculation of thermal field distribution in oil immersed power transformer: a comparison of methods  

Science Conference Proceedings (OSTI)

This paper summarise a few computational methods and engineering models proposed for transformer thermal analysis and the accurate prediction of transformer thermal characteristics. The paper presents different approach for numerical calculation of thermal ... Keywords: hot-spot temperature, numerical calculation, power transformer, thermal field

Vlado Madzarevic; Izudin Kapetanovic; Majda Tesanovic; Mensur Kasumovic

2011-02-01T23:59:59.000Z

314

Power allocation strategies for distributed space-time codes in amplify-and-forward mode  

Science Conference Proceedings (OSTI)

We consider a wireless relay network with Rayleigh fading channels and apply distributed space-time coding (DSTC) in amplify-and-forward (AF) mode. It is assumed that the relays have statistical channel state information (CSI) of the local source-relay ...

Behrouz Maham; Are Hjrungnes

2009-01-01T23:59:59.000Z

315

Impact of Renewable Distributed Generation on Power Systems M. Begovi, A. Pregelj, A. Rohatgi D. Novosel  

E-Print Network (OSTI)

, improve the voltage profile across the feeder, may reduce the loading level of branches and substation the effect of DG penetration on the actual load demand and voltage profile of the distribution feeder. However, DG systems inherently provide some benefits to the utility. They may level the load curve

316

Electron Beam Welding of a Depleted Uranium Alloy to Niobium Using a Calibrated Electron Beam Power Density Distribution  

SciTech Connect

Electron beam test welds were made joining flat plates of commercially pure niobium to a uranium-6wt%Nb (binary) alloy. The welding parameters and joint design were specifically developed to minimize mixing of the niobium with the U-6%Nb alloy. A Modified Faraday Cup (MFC) technique using computer-assisted tomography was employed to determine the precise power distribution of the electron beam so that the welding parameters could be directly transferred to other welding machines and/or to other facilities.

Elmer, J.W.; Teruya, A.T.; Terrill, P.E.

2000-08-21T23:59:59.000Z

317

Power Quality for Transmission and Distribution: Harmonics Design and Analytics Guidebook  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has published numerous guidebooks, reports, and technical briefs on subjects pertaining to harmonics. Overall, the full EPRI library of documents on harmonics is highly comprehensive and spans the entire range of subject matter, from the effects of harmonic voltages and currents on customer and utility equipment to methodologies useful in conducting harmonic studies. Although this large selection of harmonics-related documents exists, the individual documents ...

2011-11-30T23:59:59.000Z

318

Small-Scale, Biomass-Fired Gas Turbine Plants Suitable for Distributed and Mobile Power Generation  

Science Conference Proceedings (OSTI)

This study evaluated the cost-effectiveness of small-scale, biomass-fired gas turbine plants that use an indirectly-fired gas turbine cycle. Such plants were originally thought to have several advantages for distributed generation, including portability. However, detailed analysis of two designs revealed several problems that would have to be resolved to make the plants feasible and also determined that a steam turbine cycle with the same net output was more economic than the gas turbine cycle. The incre...

2007-01-19T23:59:59.000Z

319

Modeling the Power Distribution Network of a Virtual City and Studying the Impact of Fire on the Electrical Infrastructure  

E-Print Network (OSTI)

The smooth and reliable operation of key infrastructure components like water distribution systems, electric power systems, and telecommunications is essential for a nation?s economic growth and overall security. Tragic events such as the Northridge earthquake and Hurricane Katrina have shown us how the occurrence of a disaster can cripple one or more such critical infrastructure components and cause widespread damage and destruction. Technological advancements made over the last few decades have resulted in these infrastructure components becoming highly complicated and inter-dependent on each other. The development of tools which can aid in understanding this complex interaction amongst the infrastructure components is thus of paramount importance for being able to manage critical resources and carry out post-emergency recovery missions. The research work conducted as a part of this thesis aims at studying the effects of fire (a calamitous event) on the electrical distribution network of a city. The study has been carried out on a test bed comprising of a virtual city named Micropolis which was modeled using a Geographic Information System (GIS) based software package. This report describes the designing of a separate electrical test bed using Simulink, based on the GIS layout of the power distribution network of Micropolis. It also proposes a method of quantifying the damage caused by fire to the electrical network by means of a parameter called the Load Loss Damage Index (LLDI). Finally, it presents an innovative graph theoretic approach for determining how to route power across faulted sections of the electrical network using a given set of Normally Open switches. The power is routed along a path of minimum impedance. The proposed methodologies are then tested by running numerous simulations on the Micropolis test bed, corresponding to different fire spread scenarios. The LLDI values generated from these simulation runs are then analyzed in order to determine the most damaging scenarios and to identify infrastructure components of the city which are most crucial in containing the damage caused by fire to the electrical network. The conclusions thereby drawn can give useful insights to emergency response personnel when they deal with real-life disasters.

Bagchi, Arijit

2009-12-01T23:59:59.000Z

320

Combined cycle electric power plant with coordinated steam load distribution control  

SciTech Connect

A combined cycle electric power plant includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes a superheater tube through which a fluid, e.g., water, is directed to be additionally heated into superheated steam by the exhaust gas turbine gases. An afterburner further heats the exhaust gas turbine gases passed to the superheater tube. The temperature of the gas turbine exhaust gases is sensed for varying the fuel flow to the afterburner by a fuel valve, whereby the temperatures of the gas turbine exhaust gases and therefore of the superheated steam, are controlled. Loading and unloading of the steam turbine is accomplished automatically in coordinated plant control as a function of steam throttle pressure.

Uram, R.

1979-09-25T23:59:59.000Z

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Low Insertion HVDC Circuit Breaker: Magnetically Pulsed Hybrid Breaker for HVDC Power Distribution Protection  

SciTech Connect

GENI Project: General Atomics is developing a direct current (DC) circuit breaker that could protect the grid from faults 100 times faster than its alternating current (AC) counterparts. Circuit breakers are critical elements in any electrical system. At the grid level, their main function is to isolate parts of the grid where a fault has occurredsuch as a downed power line or a transformer explosionfrom the rest of the system. DC circuit breakers must interrupt the system during a fault much faster than AC circuit breakers to prevent possible damage to cables, converters and other grid-level components. General Atomics high-voltage DC circuit breaker would react in less than 1/1,000th of a second to interrupt current during a fault, preventing potential hazards to people and equipment.

None

2012-01-09T23:59:59.000Z

322

Satellite power system (SPS). Rectenna siting: availability and distribution of nominally eligible sites  

DOE Green Energy (OSTI)

Siting of 60 ground receiving stations (rectennas) for the SPS may pose a problem due to the large area per rectenna (15,000 hectares, 38,000 acres) and numerous siting constraints. This study analyzes areas potentially eligible for rectenna sites by mapping, at a national scale, those conditions which would preclude rectenna construction. These exclusion variables which reflect restricted lands, topography, safety, national policy and electromagnetic (microwave) effects, have been computer encoded and tabulated. Subsequent analysis of the nine electric power planning regions that make up the contiguous states indicate an apparently adequate number of nominally eligible sites in all regions in comparison to projected electrical generation. Eligibility in this context means only that areas were not excluded in this national level analysis; more detailed investigation may reveal purely local constraints or smaller scale exclusions. A second major qualification relates to small isolated eligible areas. Eliminating individual eligible clusters with less than nine times the area of one rectenna eliminates much of the Eastern US; a four-to-one adjacent eligible area test poses no such problem. An independant study of the placement of 60 nominal sites in relation to projected load centers reveals that, even with modest transmission distances, the supply of eligible areas is not a key constraint, except perhaps in the Mid-Atlantic (Electric Reliability) Council Region. Even when several less critical (potential) exclusions are considered, more than 19% of the US is eligible; every region except Mid-Atlantic has at least 50 times an many eligible sites as are required.

Not Available

1980-11-01T23:59:59.000Z

323

Collaborative National Program for the Development and Performance Testing of Distributed Power Technologies with Emphasis on Combined Heat and Power Applications  

SciTech Connect

A current barrier to public acceptance of distributed generation (DG) and combined heat and power (CHP) technologies is the lack of credible and uniform information regarding system performance. Under a cooperative agreement, the Association of State Energy Research and Technology Transfer Institutions (ASERTTI) and the U.S. Department of Energy have developed four performance testing protocols to provide a uniform basis for comparison of systems. The protocols are for laboratory testing, field testing, long-term monitoring and case studies. They have been reviewed by a Stakeholder Advisory Committee made up of industry, public interest, end-user, and research community representatives. The types of systems covered include small turbines, reciprocating engines (including Stirling Cycle), and microturbines. The protocols are available for public use and the resulting data is publicly available in an online national database and two linked databases with further data from New York State. The protocols are interim pending comments and other feedback from users. Final protocols will be available in 2007. The interim protocols and the national database of operating systems can be accessed at www.dgdata.org. The project has entered Phase 2 in which protocols for fuel cell applications will be developed and the national and New York databases will continue to be maintained and populated.

Soinski, Arthur; Hanson, Mark

2006-06-28T23:59:59.000Z

324

Optimization of the Regional Spatial Distribution of Wind Power Plants to Minimize the Variability of Wind Energy Input into Power Supply Systems  

Science Conference Proceedings (OSTI)

In contrast to conventional power generation, wind energy is not a controllable resource because of its stochastic nature, and the cumulative energy input of several wind power plants into the electric grid may cause undesired fluctuations in the ...

Federico Cassola; Massimiliano Burlando; Marta Antonelli; Corrado F. Ratto

2008-12-01T23:59:59.000Z

325

Electric Power Metrology Portal  

Science Conference Proceedings (OSTI)

... Electric Power Metrology and the Smart Grid Our country's way of life depends on the electric power distribution system. ...

2012-12-26T23:59:59.000Z

326

Background for Terrestrial Antineutrino Investigations: Radionuclide Distribution, Georeactor Fission Events, and Boundary Conditions on Fission Power Production  

E-Print Network (OSTI)

Estimated masses of fissioning and non-fissioning radioactive elements and their respective distributions within the Earth are presented, based upon the fundamental identity of the components of the interior 82% of the Earth, the endo-Earth, with corresponding components of the Abee enstatite chondrite meteorite. Within limits of existing data, the following generalizations concerning the endo-Earth radionuclides can be made: (1) Most of the K-40 may be expected to exist in combination with oxygen in the silicates of the lower mantle, perhaps being confined to the upper region of the lower mantle where it transitions to the upper mantle; (2) Uranium may be expected to exist at the center of the Earth where it may undergo self-sustaining nuclear fission chain reactions, but there is a possibility that some non-fissioning uranium may be found scattered diffusely within the core floaters which are composed of CaS and MgS; and, (3) Thorium may be expected to occur within the core floaters at the core-mantle boundary, although its presence as well at the center of the Earth cannot be ruled out. Results of nuclear georeactor numerical simulations show: (1) The maximum constant nuclear fission power level is 30 terawatts; (2) U-235 comprises 76 percent of present-day georeactor fission, U-238 comprises 23 percent; and, (3) Thorium can neither be fuel nor converted into fuel for the georeactor.

J. Marvin Herndon; Dennis A. Edgerley

2005-01-24T23:59:59.000Z

327

SYNCHROTRON POLARIZATION AND SYNCHROTRON SELF-ABSORPTION SPECTRA FOR A POWER-LAW PARTICLE DISTRIBUTION WITH FINITE ENERGY RANGE  

SciTech Connect

We have derived asymptotic forms for the degree of polarization of the optically thin synchrotron and for synchrotron self-absorption (SSA) spectra assuming a power-law particle distribution of the form N({gamma}) {approx} {gamma}{sup -p} with {gamma}{sub 1} < {gamma} < {gamma}{sub 2}, especially for a finite high-energy limit, {gamma}{sub 2}, in the case of an arbitrary pitch angle. The new results inferred concern more especially the high-frequency range x >> {eta}{sup 2} with parameter {eta} = {gamma}{sub 2}/{gamma}{sub 1}. The calculated SSA spectra concern instantaneous photon emission where cooling effects are not considered. They have been obtained by also ignoring likely effects such as Comptonization, pair creation and annihilation, as well as magnetic photon splitting. To that aim, in addition to the two usual absorption frequencies, a third possible one has been derived and expressed in terms of the Lambert W function based on the analytical asymptotic form of the absorption coefficient, {alpha}{sub {nu}}, for the high-frequency range {nu} >> {nu}{sub 2} (with {nu}{sub 2} the synchrotron frequency corresponding to {gamma}{sub 2}). We have shown that the latter frequency may not have realistic applications in astrophysics, except in the case of an adequate set of parameters allowing one to neglect Comptonization effects. More detailed calculations and discussions are presented.

Fouka, M. [Research Center in Astronomy, Astrophysics and Geophysics, B.P. 63, Algiers Observatory, Bouzareah, Algiers (Algeria); Ouichaoui, S., E-mail: m.fouka@craag.dz, E-mail: souichaoui@usthb.dz [Laboratory of Nuclear Sciences, Faculty of Physics, University of Sciences and Technology H. Boumediene, B.P. 32, 16111 Bab Ezzouar, Algiers (Algeria)

2011-12-10T23:59:59.000Z

328

Explorer-II: Wireless Self-Powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains  

SciTech Connect

Carnegie Mellon University (CMU) under contract from Department of Energy/National Energy Technology Laboratory (DoE/NETL) and co-funding from the Northeast Gas Association (NGA), has completed the overall system design, field-trial and Magnetic Flux Leakage (MFL) sensor evaluation program for the next-generation Explorer-II (X-II) live gas main Non-destructive Evaluation (NDE) and visual inspection robot platform. The design is based on the Explorer-I prototype which was built and field-tested under a prior (also DoE- and NGA co-funded) program, and served as the validation that self-powered robots under wireless control could access and navigate live natural gas distribution mains. The X-II system design ({approx}8 ft. and 66 lbs.) was heavily based on the X-I design, yet was substantially expanded to allow the addition of NDE sensor systems (while retaining its visual inspection capability), making it a modular system, and expanding its ability to operate at pressures up to 750 psig (high-pressure and unpiggable steel-pipe distribution mains). A new electronics architecture and on-board software kernel were added to again improve system performance. A locating sonde system was integrated to allow for absolute position-referencing during inspection (coupled with external differential GPS) and emergency-locating. The power system was upgraded to utilize lithium-based battery-cells for an increase in mission-time. The resulting robot-train system with CAD renderings of the individual modules. The system architecture now relies on a dual set of end camera-modules to house the 32-bit processors (Single-Board Computer or SBC) as well as the imaging and wireless (off-board) and CAN-based (on-board) communication hardware and software systems (as well as the sonde-coil and -electronics). The drive-module (2 ea.) are still responsible for bracing (and centering) to drive in push/pull fashion the robot train into and through the pipes and obstacles. The steering modules and their arrangement, still allow the robot to configure itself to perform any-angle (up to 90 deg) turns in any orientation (incl. vertical), and enable the live launching and recovery of the system using custom fittings and a (to be developed) launch-chamber/-tube. The battery modules are used to power the system, by providing power to the robot's bus. The support modules perform the functions of centration for the rest of the train as well as odometry pickups using incremental encoding schemes. The electronics architecture is based on a distributed (8-bit) microprocessor architecture (at least 1 in ea. module) communicating to a (one of two) 32-bit SBC, which manages all video-processing, posture and motion control as well as CAN and wireless communications. The operator controls the entire system from an off-board (laptop) controller, which is in constant wireless communication with the robot train in the pipe. The sensor modules collect data and forward it to the robot operator computer (via the CAN-wireless communications chain), who then transfers it to a dedicated NDE data-storage and post-processing computer for further (real-time or off-line) analysis. The prototype robot system was built and tested indoors and outdoors, outfitted with a Remote-Field Eddy Current (RFEC) sensor integrated as its main NDE sensor modality. An angled launcher, allowing for live launching and retrieval, was also built to suit custom angled launch-fittings from TDW. The prototype vehicle and launcher systems are shown. The complete system, including the in-pipe robot train, launcher, integrated NDE-sensor and real-time video and control console and NDE-data collection and -processing and real-time display, were demonstrated to all sponsors prior to proceeding into final field-trials--the individual components and setting for said acceptance demonstration are shown. The launcher-tube was also used to verify that the vehicle system is capable of operating in high-pressure environments, and is safely deployable using proper evacuating/purging techniques for operation in the po

Carnegie Mellon University

2008-09-30T23:59:59.000Z

329

Language and Power in Self-organizing Distributed Teams In this paper, a comparative case study is conducted to explore the way power is  

E-Print Network (OSTI)

, making them important to study. Kanter (1979) notes that executive and managerial power is a necessary inspection, modification and redistribution of the softwares source code. There are thousands of FLOSS

Crowston, Kevin

330

Effects of blade configuration on flow distribution and power output of a zephyr vertical axis wind turbine.  

E-Print Network (OSTI)

??Worldwide interest in renewable energy systems has increased dramatically, due to environmental concerns like climate change and other factors. Wind power is a major source (more)

Ajedegba, John Oviemuno

2008-01-01T23:59:59.000Z

331

Power Quality Hotline Call-of-the Month for July 2009: Diagnosing Distribution Transformer Failure Caused by Ferroresonance  

Science Conference Proceedings (OSTI)

This Call of the Month evaluates the reasons behind the failure of transformer banks on a utility's 23.9-kV distribution system.

2009-12-11T23:59:59.000Z

332

Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.  

DOE Green Energy (OSTI)

This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr. (,.Distributed Utility Associates, Livermore, CA)

2005-11-01T23:59:59.000Z

333

Abstract--The issue of controlled and reliable integration of distributed energy resources into microgrids and large power  

E-Print Network (OSTI)

into microgrids and large power grids has recently gained considerable attention. The microgrid concept, which capabilities. In order to provide uninterruptible power supply to the loads, microgrids are expected to operate. The problem of optimal management of the resources in a microgrid is being widely investigated and recent

Cañizares, Claudio A.

334

Technical Challenges of Plug-In Hybrid Electric Vehicles and Impacts to the US Power System: Distribution System Analysis  

DOE Green Energy (OSTI)

This report documents work conducted by Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE) to address three basic questions concerning how typical existing electrical distribution systems would be impacted by the addition of PHEVs to residential loads.

Gerkensmeyer, Clint; Kintner-Meyer, Michael CW; DeSteese, John G.

2010-01-01T23:59:59.000Z

335

Effects of blade configurations on flow distribution and power output of a Zephyr vertical axis wind turbine  

Science Conference Proceedings (OSTI)

Numerical simulations with FLUENT software were conducted to investigate the fluid flow through a novel vertical axis wind turbine (VAWT). Simulation of flow through the turbine rotor was performed with the aim of predicting the performance characteristics ... Keywords: blade configuration, power output, rotor, simulation, vertical axis wind turbine

J. O. Ajedegba; G. F. Naterer; M. A. Rosen; E. Tsang

2008-02-01T23:59:59.000Z

336

Control and Protection of Power Electronics Interfaced Distri-buted Generation Systems in a Customer-Driven Microgrid  

E-Print Network (OSTI)

in a Customer-Driven Microgrid Fang Z. Peng, Yun Wei Li and Leon M. Tolbert Abstract ­ This paper discusses-driven microgrid (CDM). Particularly, the following topics will be addressed: microgrid system configurations); renewable energy source (RES); micro-source; microgrid; customer-driven micro- grid (CDM), power electronics

Tolbert, Leon M.

337

Abstract--This paper analyzes a distribution system load time series through autocorrelation coefficient, power spectral density,  

E-Print Network (OSTI)

models [7], [8]. The load model developed in [7] provides different 24-hour load profiles for different seasons. The 24-hour load profile is obtained by a weighted sum of peak loads from different types1 Abstract--This paper analyzes a distribution system load time series through autocorrelation

Bak-Jensen, Birgitte

338

Physical features of accumulation and distribution processes of small disperse coal dust precipitations and absorbed radioactive chemical elements in iodine air filter at nuclear power plant  

E-Print Network (OSTI)

The physical features of absorption process of radioactive chemical elements and their isotopes in the iodine air filters of the type of AU-1500 at the nuclear power plants are researched. It is shown that the non-homogenous spatial distribution of absorbed radioactive chemical elements and their isotopes in the iodine air filter, probed by the gamma-activation analysis method, is well correlated with the spatial distribution of small disperse coal dust precipitations in the iodine air filter. This circumstance points out to an important role by the small disperse coal dust fractions of absorber in the absorption process of radioactive chemical elements and their isotopes in the iodine air filter. The physical origins of characteristic interaction between the radioactive chemical elements and the accumulated small disperse coal dust precipitations in an iodine air filter are considered. The analysis of influence by the researched physical processes on the technical characteristics and functionality of iodine ...

Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

2012-01-01T23:59:59.000Z

339

Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.  

SciTech Connect

This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr. (,.Distributed Utility Associates, Livermore, CA)

2005-11-01T23:59:59.000Z

340

Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems  

DOE Green Energy (OSTI)

This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

2013-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Power law burst and inter-burst interval distributions in the solar wind: turbulence or dissipative SOC ?  

E-Print Network (OSTI)

We calculate for the first time the probability density functions (PDFs) P of burst energy e, duration T and inter-burst interval tau for a known turbulent system in nature. Bursts in the earth-sun component of the Poynting flux at 1 AU in the solar wind were measured using the MFI and SWE experiments on the NASA WIND spacecraft. We find P(e) and P(T) to be power laws, consistent with self-organised criticality (SOC). We find also a power law form for P(tau) that distinguishes this turbulent cascade from the exponential P(tau) of ideal SOC, but not from some other SOC-like sandpile models. We discuss the implications for the relation between SOC and turbulence.

M. P. Freeman; N. W. Watkins; D. J. Riley

2000-03-08T23:59:59.000Z

342

Solartech Power | Open Energy Information  

Open Energy Info (EERE)

Solartech Power Jump to: navigation, search Name Solartech Power Place Cerritos, California Zip 90703 Sector Solar Product Solartech power is a distributer of solar modules....

343

Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter  

Science Conference Proceedings (OSTI)

Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

Chakraborty, S.; Kroposki, B.; Kramer, W.

2008-11-01T23:59:59.000Z

344

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network (OSTI)

heat and power; distributed generation; premium powerand operation of distributed generation, combined heat andcost combination of distributed generation technologies that

Norwood, Zack

2010-01-01T23:59:59.000Z

345

Safety implications associated with in-plant pressurized gas storage and distribution systems in nuclear power plants  

SciTech Connect

Storage and handling of compressed gases at nuclear power plants were studied to identify any potential safety hazards. Gases investigated were air, acetylene, carbon dioxide, chlorine, Halon, hydrogen, nitrogen, oxygen, propane, and sulfur hexaflouride. Physical properties of the gases were reviewed as were applicable industrial codes and standards. Incidents involving pressurized gases in general industry and in the nuclear industry were studied. In this report general hazards such as missiles from ruptures, rocketing of cylinders, pipe whipping, asphyxiation, and toxicity are discussed. Even though some serious injuries and deaths over the years have occurred in industries handling and using pressurized gases, the industrial codes, standards, practices, and procedures are very comprehensive. The most important safety consideration in handling gases is the serious enforcement of these well-known and established methods. Recommendations are made concerning compressed gas cylinder missiles, hydrogen line ruptures or leaks, and identification of lines and equipment.

Guymon, R.H.; Casto, W.R.; Compere, E.L.

1985-05-01T23:59:59.000Z

346

NREL: Electric Infrastructure Systems Research - Distributed...  

NLE Websites -- All DOE Office Websites (Extended Search)

the distributed power industry in the development and testing of distributed power systems. Researchers use state-of-the-art laboratories and outdoor test beds to characterize...

347

NREL: Distributed Grid Integration Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

the electric power system by integrating distributed energy and renewable energy systems along with advanced power electronics and control systems. NREL optimizes distributed...

348

Federal Energy Management Program: Distributed Energy Resources...  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Resources and Combined Heat and Power Distributed energy resources (DER) and combined heat and power (CHP) systems help Federal agencies meet increased demand,...

349

Economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell. Final report  

DOE Green Energy (OSTI)

The final report provides a summary of results of the Cost of Ownership Model and the circumstances under which a distributed fuel cell is economically viable. The analysis is based on a series of micro computer models estimate the capital and operations cost of a fuel cell central utility plant configuration. Using a survey of thermal and electrical demand profiles, the study defines a series of energy user classes. The energy user class demand requirements are entered into the central utility plant model to define the required size the fuel cell capacity and all supporting equipment. The central plant model includes provisions that enables the analyst to select optional plant features that are most appropriate to a fuel cell application, and that are cost effective. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. Other applications are also practical; however, such applications have a higher relative demand for thermal energy, a characteristic that is well-suited to a fuel cell application with its free source of hot water or steam. The analysis combines the capital and operation from the preceding models into a Cost of Ownership Model to compute the plant capital and operating costs as a function of capacity and principal features and compares these estimates to the estimated operating cost of the same central plant configuration without a fuel cell.

Not Available

1994-03-01T23:59:59.000Z

350

Distribution System Planning with Distributed Generation: Optimal versus Heuristic Approach.  

E-Print Network (OSTI)

??Distribution system design and planning is facing a major change in paradigm because of deregulation of the power industry and with rapid penetration of distributed (more)

Bin Humayd, Abdullah

2011-01-01T23:59:59.000Z

351

Ray trajectories, binomial of a new type, and the binary system; on binomial distribution of the second (nonlinear) type for big binomial power  

E-Print Network (OSTI)

The paper describes a new algorithm of construction of the nonlinear arithmetic triangle on the basis of numerical simulation and the binary system. It demonstrates that the numbers that fill the nonlinear arithmetic triangle may be binomial coefficients of a new type. An analogy has been drawn with the binomial coefficients calculated with the use of the Pascal triangle. The paper provides a geometrical interpretation of binomials of different types in considering the branching systems of rays. Results of numerical calculations of binomial distribution of the second (nonlinear) type for big power of a binomial are given. Difference of geometrical properties of linear and nonlinear arithmetic triangles and envelopes of binomial distributions of the first and second types is drawn. The empirical formula for half-sums of binomial coefficients of the second (nonlinear) type is offered. Comparison of envelopes of binomial coefficients sums is carried out. It is shown that at big degrees of a binomial a form of envelops of these sums are close.

Alexander V. Yurkin

2013-02-20T23:59:59.000Z

352

Distribution of small dispersive coal dust particles and absorbed radioactive chemical elements in conditions of forced acoustic resonance in iodine air filter at nuclear power plant  

E-Print Network (OSTI)

The physical features of distribution of the small dispersive coal dust particles and the adsorbed radioactive chemical elements and their isotopes in the absorber with the granular filtering medium with the cylindrical coal granules were researched in the case of the intensive air dust aerosol stream flow through the iodine air filter (IAF). It was shown that, at the certain aerodynamic conditions in the IAF, the generation of the acoustic oscillations is possible. It was found that the acoustic oscillations generation results in an appearance of the standing acoustic waves of the air pressure (density) in the IAF. In the case of the intensive blow of the air dust aerosol, it was demonstrated that the standing acoustic waves have some strong influences on both: 1) the dynamics of small dispersive coal dust particles movement and their accumulation in the IAF; 2) the oversaturation of the cylindrical coal granules by the adsorbed radioactive chemical elements and their isotopes in the regions, where the antinodes of the acoustic waves are positioned. Finally, we completed the comparative analysis of the theoretical calculations with the experimental results, obtained for the cases of: 1) the experimental aerodynamic modeling of physical processes of the absorbed radioactive chemical elements and their isotopes distribution in the IAF; and 2) the gamma-activation spectroscopy analysis of the absorbed radioactive chemical elements and their isotopes distribution in the IAF. We made the innovative propositions on the necessary technical modifications with the purpose to improve the IAF technical characteristics and increase its operational time at the nuclear power plant (NPP), going from the completed precise characterization of the IAF parameters at the long term operation.

Oleg P. Ledenyov; Ivan M. Neklyudov

2013-06-14T23:59:59.000Z

353

Gaia Power Technologies | Open Energy Information  

Open Energy Info (EERE)

Place New York, New York Zip 10038 Sector Efficiency Product Provides distributed electrical power and storage systems that improve the efficiency of power distribution...

354

Distributed Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Untapped Value of Backup Generation Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized solutions. These backup generators exist today in large numbers and provide utilities with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie Mellon's Electricity

355

The characterization of flow regimes with power spectral density distributions of pressure fluctuations during condensation in smooth and micro-fin tubes  

Science Conference Proceedings (OSTI)

This paper presents an objective predictor of the prevailing flow regime during refrigerant condensation inside smooth-, micro-fin and herringbone tubes. The power spectral density (PSD) distribution of the fluctuating condensing pressure signal was used to predict the prevailing flow regime, as opposed to the traditional (and subjective) use of visual-only methods, and/or smooth-tube flow regime maps. The prevailing flow regime was observed by using digital cameras and was validated with the use of the conventional smooth-tube flow regime transition criteria, Froude rate criteria, as well as a new flow regime map that was developed for micro-fin tube condensation. Experimental work was conducted for condensing R-22, R-407C, and R-134a at an average saturation temperature of 40{sup o}C with mass fluxes ranging from 300 to 800kg/m{sup 2}s, and with vapour qualities ranging from 0.85-0.95 at condenser inlet to 0.05-0.15 at condenser outlet. Tests were conducted with one smooth-tube condenser and three micro-fin tube condensers (with helix angles of 10{sup o}, 18{sup o}, and 37{sup o}, respectively). It is shown that the micro-fin tubes cause a delay in the transition from annular to intermittent flow by at least 19% (compared to the smooth tube), thus significantly contributing to the enhancement of heat transfer. (author)

Liebenberg, Leon; Meyer, Josua P. [Department of Mechanical and Aeronautical Engineering, University of Pretoria, Pretoria 0002 (South Africa)

2006-11-15T23:59:59.000Z

356

Distribution System Research Priorities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mark McGranaghan Mark McGranaghan EPRI ELECTRICITY DISTRIBUTION SYSTEM WORKSHOP Crystal City, VA September 24, 2012 Distribution System Research Priorities 2 © 2012 Electric Power Research Institute, Inc. All rights reserved. The Power System Roadmaps start with a Vision Future Power System will require new technologies, infrastructure, and control systems 3 © 2012 Electric Power Research Institute, Inc. All rights reserved. R&D Roadmaps - Coordination is Critical Roadmaps are living documents 4 © 2012 Electric Power Research Institute, Inc. All rights reserved. Developing the next generation grid * Industry needs new technologies, communication protocols, and information management methods - More variable generation sources and controllable loads - Aging infrastructure

357

Estimation of steady-state and transcient power distributions for the RELAP analyses of the 1963 loss-of-flow and loss-of-pressure tests at BR2.  

SciTech Connect

To support the safety analyses required for the conversion of the Belgian Reactor 2 (BR2) from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, the simulation of a number of loss-of-flow tests, with or without loss of pressure, has been undertaken. These tests were performed at BR2 in 1963 and used instrumented fuel assemblies (FAs) with thermocouples (TC) imbedded in the cladding as well as probes to measure the FAs power on the basis of their coolant temperature rise. The availability of experimental data for these tests offers an opportunity to better establish the credibility of the RELAP5-3D model and methodology used in the conversion analysis. In order to support the HEU to LEU conversion safety analyses of the BR2 reactor, RELAP simulations of a number of loss-of-flow/loss-of-pressure tests have been undertaken. Preliminary analyses showed that the conservative power distributions used historically in the BR2 RELAP model resulted in a significant overestimation of the peak cladding temperature during the transient. Therefore, it was concluded that better estimates of the steady-state and decay power distributions were needed to accurately predict the cladding temperatures measured during the tests and establish the credibility of the RELAP model and methodology. The new approach ('best estimate' methodology) uses the MCNP5, ORIGEN-2 and BERYL codes to obtain steady-state and decay power distributions for the BR2 core during the tests A/400/1, C/600/3 and F/400/1. This methodology can be easily extended to simulate any BR2 core configuration. Comparisons with measured peak cladding temperatures showed a much better agreement when power distributions obtained with the new methodology are used.

Dionne, B.; Tzanos, C. P. (Nuclear Engineering Division)

2011-05-23T23:59:59.000Z

358

Power and energy  

Science Conference Proceedings (OSTI)

The design and manufacture of electric power equipment, the one electrotechnology in which Europe could gain worldwide dominance by the end of the century, is examined. All three power-equipment categories-generation, transmission, and distribution-are ...

G. Zorpette

1990-04-01T23:59:59.000Z

359

RFI Comments - Electric Power Coalition  

Science Conference Proceedings (OSTI)

... The power grid is a complex infrastructure made up of networked generation, transmission, distribution, control, and communication technologies ...

2013-04-10T23:59:59.000Z

360

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

* Grain-oriented electrical steels for high efficiency power and distribution transformers. * Alloys for renewable energy systems. * Alloy design for optimization of...

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Power superconducting power transmission cable  

DOE Patents (OSTI)

The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

Ashworth, Stephen P. (Cambridge, GB)

2003-01-01T23:59:59.000Z

362

Federal Energy Management Program: Distributed Energy Resources...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Resources and Combined Heat and Power to someone by E-mail Share Federal Energy Management Program: Distributed Energy Resources and Combined Heat and Power on...

363

Federal Energy Management Program: Distributed Energy Resources...  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources and Combined Heat and Power Contacts to someone by E-mail Share Federal Energy Management Program: Distributed Energy Resources and Combined Heat and Power Contacts on...

364

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report

365

Protection of distributed generation interfaced networks.  

E-Print Network (OSTI)

??With the rapid increase in electrical energy demand, power generation in the form of distributed generation is becoming more important. However, the connections of distributed (more)

Dewadasa, Jalthotage Manjula Dinesh

2010-01-01T23:59:59.000Z

366

An analysis of DC distribution systems .  

E-Print Network (OSTI)

??The Master's Thesis research focuses on analyzing the possibilities of using Direct Current distribution systems to distribute power to end users. Considering the shift in (more)

Ajitkumar, Rohit

2011-01-01T23:59:59.000Z

367

NREL: Distributed Grid Integration - Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

interests include grid integration of renewables systems (wind and PV), energy storage system integration, distributed energy resources, distribution automation, power systems,...

368

Distributed Generation Investment by a Microgrid under Uncertainty  

E-Print Network (OSTI)

Dhaeseleer W. Distributed generation: definition, benefitsand their impact on distributed generation power projects,R, Zhou N. Distributed generation with heat recovery and

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

369

Distributed Energy | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Distributed Energy Distributed Energy Distributed energy consists of a range of smaller-scale and modular devices designed to provide electricity, and sometimes also thermal energy, in locations close to consumers. They include fossil and renewable energy technologies (e.g., photovoltaic arrays, wind turbines, microturbines, reciprocating engines, fuel cells, combustion turbines, and steam turbines); energy storage devices (e.g., batteries and flywheels); and combined heat and power systems. Distributed energy offers solutions to many of the nation's most pressing energy and electric power problems, including blackouts and brownouts, energy security concerns, power quality issues, tighter emissions standards, transmission bottlenecks, and the desire for greater control over energy costs.

370

Distribution System Voltage Performance Analysis for High-Penetration Photovoltaics  

DOE Green Energy (OSTI)

This report examines the performance of commonly used distribution voltage regulation methods under reverse power flow.

Liu, E.; Bebic, J.

2008-02-01T23:59:59.000Z

371

Some Aspects of Distribution System Planning in the Context of Investment in Distributed Generation.  

E-Print Network (OSTI)

??A paradigm shift in distribution system design and planning is being led by the deregulation of the power industry and the increasing adoption of distributed (more)

Wong, Steven M.

2009-01-01T23:59:59.000Z

372

Economic feasibility analysis of distributed electric power generation based upon the natural gas fired fuel cell. Draft and final progress report for the period May 1, 1993--July 31, 1993  

SciTech Connect

This report is an account of the work performed from May 1, 1993 to July 30,1993 on the economic feasibility generating electrical power by natural gas-fired fuel cells. The study is comprised of a survey of energy users, the development of numeric models of an energy distribution system and a central plant utilities system that includes a fuel cell. A model of the capital cost of the hardware elements is combined with a series of ownership scenarios and an operations model that provide the necessary input for a model of the cost of ownership of a fuel cell-based power generation system. The primary model development tasks are complete. The remaining study emphasis is to perform an economic analysis of varied ownership scenarios using the model. This report outlines the progress to date.

1993-09-01T23:59:59.000Z

373

A Micro-Grid Simulator Tool (SGridSim) using Effective Node-to-Node Complex Impedance (EN2NCI) Models  

SciTech Connect

This paper presents a micro-grid simulator tool useful for implementing and testing multi-agent controllers (SGridSim). As a common engineering practice it is important to have a tool that simplifies the modeling of the salient features of a desired system. In electric micro-grids, these salient features are the voltage and power distributions within the micro-grid. Current simplified electric power grid simulator tools such as PowerWorld, PowerSim, Gridlab, etc, model only the power distribution features of a desired micro-grid. Other power grid simulators such as Simulink, Modelica, etc, use detailed modeling to accommodate the voltage distribution features. This paper presents a SGridSim micro-grid simulator tool that simplifies the modeling of both the voltage and power distribution features in a desired micro-grid. The SGridSim tool accomplishes this simplified modeling by using Effective Node-to-Node Complex Impedance (EN2NCI) models of components that typically make-up a micro-grid. The term EN2NCI models means that the impedance based components of a micro-grid are modeled as single impedances tied between their respective voltage nodes on the micro-grid. Hence the benefit of the presented SGridSim tool are 1) simulation of a micro-grid is performed strictly in the complex-domain; 2) faster simulation of a micro-grid by avoiding the simulation of detailed transients. An example micro-grid model was built using the SGridSim tool and tested to simulate both the voltage and power distribution features with a total absolute relative error of less than 6%.

Udhay Ravishankar; Milos manic

2013-08-01T23:59:59.000Z

374

Analytical and Numerical Solutions for the Case of a Horizontal Well with a Radial Power-Law Permeability Distribution--Comparison to the Multi-Fracture Horizontal Case  

E-Print Network (OSTI)

In this work, I present the development of analytical solutions in the Laplace domain for a fully-penetrating, horizontal well producing at a constant flow rate or constant wellbore pressure in the center of a composite, cylindrical reservoir system with an impermeable outer boundary. The composite reservoir consists of two regions. The cylindrical region closest to the wellbore is stimulated, and the permeability within this region follows a power-law function of the radial distance from the wellbore. The unstimulated outer region has homogeneous reservoir properties. The current norm for successful stimulation of low permeability reservoir rocks is multi-stage hydraulic fracturing. The process of hydraulic fracturing creates thin, high permeability fractures that propagate deep into the reservoir, increasing the area of the rock matrix that is exposed to this low-resistance flow pathway. The large surface area of the high conductivity fracture is what makes hydraulic fracturing so successful. Unfortunately, hydraulic fracturing is often encumbered by problems such as high capital costs and a need for large volumes of water. Therefore, I investigate a new stimulation concept based upon the alteration of the permeability of a large volume around the producing well assembly from its original regime to that following a power-law function. I evaluate the effectiveness of the new concept by comparing it to conventional multi-stage hydraulic fracturing. The results of this investigation show that the power-law permeability reservoir (PPR) has a performance advantage over the multi-fractured horizontal treatment (MFH) only when the fracture conductivity and fracture half-length are small. Most importantly, the results demonstrate that the PPR can provide respectable flow rates and recovery factors, thus making it a viable stimulation concept for ultra-low permeability reservoirs, especially under conditions that may not be conducive to a conventional MHF treatment.

Broussard, Ryan Sawyer

2013-05-01T23:59:59.000Z

375

SunShot Initiative: Distribution Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Distribution Grid Integration to Distribution Grid Integration to someone by E-mail Share SunShot Initiative: Distribution Grid Integration on Facebook Tweet about SunShot Initiative: Distribution Grid Integration on Twitter Bookmark SunShot Initiative: Distribution Grid Integration on Google Bookmark SunShot Initiative: Distribution Grid Integration on Delicious Rank SunShot Initiative: Distribution Grid Integration on Digg Find More places to share SunShot Initiative: Distribution Grid Integration on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Research, Development, & Demonstration Distribution Grid Integration Transmission Grid Integration Solar Resource Assessment Technology Validation Power Electronics & Balance of System Hardware Technologies Competitive Awards

376

Transmission Power Quality Benchmarking Method  

Science Conference Proceedings (OSTI)

In 1990, EPRI initiated a power quality monitoring project at the distribution level known as the EPRI DPQ Project. During this project, twenty-four utilities monitored power quality levels on their distribution circuits. Nearly 300 sites were monitored for a period of approximately two years. The data gathered were characterized and analyzed to form a baseline of power quality on U.S. distribution circuits.

2000-12-05T23:59:59.000Z

377

Security of Power Grids: A European Perspective  

Science Conference Proceedings (OSTI)

... problems with energy production, distribution and consumption, ... systems employed in power generation and ... the diversity in the involved devices. ...

2012-04-05T23:59:59.000Z

378

Distribution of small dispersive coal dust particles and absorbed radioactive chemical elements in conditions of forced acoustic resonance in iodine air filter at nuclear power plant  

E-Print Network (OSTI)

The physical features of distribution of the small dispersive coal dust particles and the adsorbed radioactive chemical elements and their isotopes in the absorber with the granular filtering medium with the cylindrical coal granules were researched in the case of the intensive air dust aerosol stream flow through the iodine air filter (IAF). It was shown that, at the certain aerodynamic conditions in the IAF, the generation of the acoustic oscillations is possible. It was found that the acoustic oscillations generation results in an appearance of the standing acoustic waves of the air pressure (density) in the IAF. In the case of the intensive blow of the air dust aerosol, it was demonstrated that the standing acoustic waves have some strong influences on both: 1) the dynamics of small dispersive coal dust particles movement and their accumulation in the IAF; 2) the oversaturation of the cylindrical coal granules by the adsorbed radioactive chemical elements and their isotopes in the regions, where the antin...

Ledenyov, Oleg P

2013-01-01T23:59:59.000Z

379

The power of power-laws: Or how to save power in SoC  

Science Conference Proceedings (OSTI)

Power and energy issues have significantly gained in importance in computing environments in the last few decades. In a world of mobile devices and massive-scale data centers, low-power systems are crucial for cost, availability, and the environment. ... Keywords: power-efficient computers, power-laws, power saving, SoC, computing environments, mobile devices, massive-scale data centers, low-power systems, power consumption, system-on-chip, power-efficient network-on-chip topologies, nonlocal interconnect architectures, complex network perspective, optimization technique, small-world networks, power-law distance-dependent wire-length distributions

C. Teuscher; Haera Chung; A. Grimm; A. Amarnath; N. Parashar

2011-07-01T23:59:59.000Z

380

Distributed Wind Market Applications  

SciTech Connect

Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations. America pioneered small wind technology in the 1920s, and it is the only renewable energy industry segment that the United States still dominates in technology, manufacturing, and world market share. The series of analyses covered by this report were conducted to assess some of the most likely ways that advanced wind turbines could be utilized apart from large, central station power systems. Each chapter represents a final report on specific market segments written by leading experts in this field. As such, this document does not speak with one voice but rather a compendium of different perspectives, which are documented from a variety of people in the U.S. distributed wind field.

Forsyth, T.; Baring-Gould, I.

2007-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Control system for cogenerative power plants  

Science Conference Proceedings (OSTI)

The paper presents a distributed control system for the realization of cogenerative supply of electricity and heat and, in given case, for their combination with waste heat recovery, particularly in combined (gas-steam) cycle industrial power plants. ... Keywords: cogenerative gas power plant, control of distributed parameter systems, distribution management system, electric power systems, optimization, process control, real time systems, simulation

Florin Hartescu

2008-08-01T23:59:59.000Z

382

An economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell: a model of a central utility plant.  

DOE Green Energy (OSTI)

This central utilities plant model details the major elements of a central utilities plant for several classes of users. The model enables the analyst to select optional, cost effective, plant features that are appropriate to a fuel cell application. These features permit the future plant owner to exploit all of the energy produced by the fuel cell, thereby reducing the total cost of ownership. The model further affords the analyst an opportunity to identify avoided costs of the fuel cell-based power plant. This definition establishes the performance and capacity information, appropriate to the class of user, to support the capital cost model and the feasibility analysis. It is detailed only to the depth required to identify the major elements of a fuel cell-based system. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

Not Available

1993-06-30T23:59:59.000Z

383

NETL: Turbine Projects - Advanced Coal Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Coal Power Systems Turbine Projects Advanced Coal Power Systems SOFC Hybrid System for Distributed Power Generation DataFact Sheets SOFC Hybrid System PDF In-House FCT...

384

Integrating Smart Distributed Energy Resources with Distribution Management Systems  

Science Conference Proceedings (OSTI)

No portion of the electric power grid has been impacted more by grid modernization (that is, the smart grid) than the electric distribution system. A central part of this transformation is the distribution management system (DMS), which integrates numerous remote monitoring and central control facilities with enterprise-level systems to optimize distribution system performance and accomplish a variety of business goals. At the same time, distributed energy resources are often connected ...

2012-09-21T23:59:59.000Z

385

NREL: Learning - Distributed Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Basics Distributed Energy Basics Photo of transmission towers and lines extending for miles towards a pink sunset in the distance. Distributed energy technologies can relieve transmission bottlenecks by reducing the amount of electricity that must be sent long distances down high-voltage power lines. Distributed energy refers to a variety of small, modular power-generating technologies that can be combined with load management and energy storage systems to improve the quality and/or reliability of the electricity supply. They are "distributed" because they are placed at or near the point of energy consumption, unlike traditional "centralized" systems, where electricity is generated at a remotely located, large-scale power plant and then transmitted down power lines to the consumer.

386

Gradually Truncated Log-normal distribution- Size distribution of firms  

E-Print Network (OSTI)

Many natural and economical phenomena are described through power law or log-normal distributions. In these cases, probability decreases very slowly with step size compared to normal distribution. Thus it is essential to cut-off these distributions for larger step size. Recently we introduce the gradually truncated power law distribution to successfully describe variation of financial, educational, physical and citation index. In the present work, we introduce gradually truncated log-normal distribution in which we gradually cut-off larger steps due to physical limitation of the system. We applied this distribution successfully to size distribution of USAs manufactoring firms which is measured through their annual sell. The physical limitation are due to limited market size or shortage of highly competent executives. I.

Hari M. Gupta; Jos R. Campanha

2008-01-01T23:59:59.000Z

387

Online distributed sensor selection  

Science Conference Proceedings (OSTI)

A key problem in sensor networks is to decide which sensors to query when, in order to obtain the most useful information (e.g., for performing accurate prediction), subject to constraints (e.g., on power and bandwidth). In many applications the utility ... Keywords: approximation algorithms, distributed multiarmed bandit algorithms, sensor networks, submodular optimization

Daniel Golovin; Matthew Faulkner; Andreas Krause

2010-04-01T23:59:59.000Z

388

Distributed Wind | Open Energy Information  

Open Energy Info (EERE)

Distributed Wind Distributed Wind Jump to: navigation, search Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations.[1] Resources Clean Energy States Alliance. (2010). State-Based Financing Tools to Support Distributed and Community Wind Projects. Accessed September 27, 2013. This guide reviews the financing role that states, and specifically state clean energy funds, have played and can play in supporting community and distributed wind projects. Clean Energy States Alliance. (May 2010). Supporting Onsite Distributed Wind Generation Projects. Accessed September 27, 2013.

389

Unbalanced Load Flow for Weakly Meshed Distribution Systems with Distributed Generation  

Science Conference Proceedings (OSTI)

Distributed Generation (DG) can bring support to distribution system, meanwhile, it bring unbalancedness in power source, load and line. Traditional load flow algorithms are not applicable to the weakly meshed distribution system with DGs. First, this ... Keywords: weakly meshed distribution system, distributed generation, unbalanced load flow, sensitivity compensation

Shao-Qiang Hu; Sen-Mao Li

2010-06-01T23:59:59.000Z

390

Integrating portable and distributed storage  

Science Conference Proceedings (OSTI)

We describe a technique called lookaside caching that combines the strengths of distributed file systems and portable storage devices, while negating their weaknesses. In spite of its simplicity, this technique proves to be powerful and versatile. By ...

Niraj Tolia; Jan Harkes; Michael Kozuch; M. Satyanarayanan

2004-03-01T23:59:59.000Z

391

Integrating Portable and Distributed Storage  

Science Conference Proceedings (OSTI)

We describe a technique called lookaside caching that combines the strengths of distributed file systems and portable storage devices, while negating their weaknesses. In spite of its simplicity, this technique proves to be powerful and versatile. By ...

Niraj Tolia; Jan Harkes; Michael Kozuch; M. Satyanarayanan

2004-03-01T23:59:59.000Z

392

Power Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Operations Outage Coordination Standards of Conduct Transmission Planning You are here: SN Home page > Power Operations Power Operations Western's Sierra Nevada Region...

393

Distributed data transmitter  

DOE Patents (OSTI)

A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.

Brown, Kenneth Dewayne (Grain Valley, MO); Dunson, David (Kansas City, MO)

2006-08-08T23:59:59.000Z

394

Distributed data transmitter  

DOE Patents (OSTI)

A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.

Brown, Kenneth Dewayne (Grain Valley, MO); Dunson, David (Kansas City, MO)

2008-06-03T23:59:59.000Z

395

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Northern Power Systems, Inc 6 Northern Power Systems, Inc Northern Power Systems 182 Mad River Park Waitsfield, VT 05673 Ultracapacitor EnergyBridge(tm) UPS for Palmdale Water District DOE/ESS PEER Review November 3, 2006 11/03/2006 Northern Power Systems, Inc © 2006 2 Northern PowerDistributed Energy Systems Corp (NASDAQ:DESC)  Energy Solutions since 1974  Products, Systems and Services Divisions  Hundreds of Projects around the World  HQ and Manufacturing in Vermont  Regional offices in NY, TX, CA, England, and Mexico 11/03/2006 Northern Power Systems, Inc © 2006 3 Project Overview  CEC - California Energy Commission  Funding agency  Palmdale Water District  Award recipient, host site  Northern Power  Technology provider  Black & Veatch  Owner's engineer

396

Multi-Building Microgrids for a Distributed Energy Future in Portugal  

E-Print Network (OSTI)

J. Lents, Encouraging distributed generation of power thatresearch field of distributed generation, special attentionIn this context, distributed generation (DG) has been

Mendes, Goncalo

2013-01-01T23:59:59.000Z

397

Specification for Brayton Isotope Power System (BIPS) electrical output power characteristics  

SciTech Connect

The specification defines the Brayton Isotope Power System (BIPS) standards and characteristics for electrical power generation required to be maintained at utilizing equipments power-input terminals during generation and distribution.

Post, P

1976-06-20T23:59:59.000Z

398

Interline Photovoltaic (I-PV) power system - A novel concept of power flow control and management  

E-Print Network (OSTI)

This paper presents a new system configuration for a large-scale Photovoltaic (PV) power system with multi-line transmission/distribution networks. A PV power plant is reconfigured in a way that two adjacent power system ...

Khadkikar, Vinod

399

Architecture of the Entropia Distributed Computing System  

Science Conference Proceedings (OSTI)

Distributed Computing, the exploitation of idle cycles on pervasive desktop PC systems offers the opportunity to increase the available computing power by orders of magnitude (10x - 1000x). However, for desktop PC distributed computing ...

Andrew A. Chien

2002-04-01T23:59:59.000Z

400

The urban design of distributed energy resources  

E-Print Network (OSTI)

Distributed energy resources (DERs) are a considerable research focus for cities to reach emissions reduction goals and meet growing energy demand. DERs, consisting of local power plants and distribution infrastructure, ...

Sheehan, Travis (Travis P.)

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Dynamic ModelingDynamic Modeling the Electric Power Networkthe Electric Power Network  

E-Print Network (OSTI)

and distribution of Electric Power (ELECTRIC UTILITIES) At that time, many businesses (non-utilities) generated of power supplied by efficient, low-cost utility generation, transmission, and distribution was a natural;ElectricElectric PowerPower GenerationGeneration Steam Units: Steam produ

Oro, Daniel

402

ENGINEERED SETPOINTS FOR AUTONOMOUS DISTRIBUTED SENSORS AND ...  

Loads on an electric power system are configured with under frequency relays in which the frequency setpoints and delay times for reclosure are uniformly distributed.

403

Quarterly Coal Distribution Report - Energy Information ...  

U.S. Energy Information Administration (EIA)

The Quarterly Coal Distribution Report ... Electric Utilities and Independent Power Producers received approximately 92.2 percent of the total distrib ...

404

Federal Energy Management Program: Distributed Energy Resources...  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Implementation to someone by E-mail Share Federal Energy Management Program: Distributed Energy Resources and Combined Heat and Power Project Implementation on Facebook...

405

NREL: Distributed Grid Integration - Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

generation and storage sources (or "distributed resources," a key aspect of the Smart Grid) into the electric power system. There are two main groups, or families, of...

406

Green Power Network: Green Power Policies  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Power Marketing Green Certificates Carbon Offsets State Policies govern_purch Community Choice Aggregation Disclosure Policies Green Power Policies Net Metering Policies Green Power Policies A number of state and local governments have policies in place that encourage the development of green power markets. Government green power purchasing mandates or goals have been established by the federal government, as well as state and local governments to procure renewable energy for the electricity used by government facilities or operations. Community choice aggregation allows communities to determine their electricity generation sources by aggregating the community load and purchasing electricity from an alternate electricity supplier while still receiving transmission and distribution service from their existing provider.

407

Worst Case Scenario for Large Distribution Networks with Distributed Generation  

E-Print Network (OSTI)

and distribution networks, finally to the electric energy consumers. The life style of a nation is measured) in distri- bution network has significant effects on voltage profile for both customers and distribution of this formula is checked by comparing with the existing power systems simulation software. Using the voltage

Pota, Himanshu Roy

408

Equitable distribution  

Science Conference Proceedings (OSTI)

The problem of distributing available resources occurs in a great variety of networks, each with peculiarities of its own. Coal from mines has to be distributed to central dumps and to small yards. Ice cream must be distributed only to refrigerated stores ...

John A. Gosden

1963-05-01T23:59:59.000Z

409

Short-Term Power Fluctuations of Large Wind Power Plants: Preprint  

DOE Green Energy (OSTI)

With electric utilities and other power providers showing increased interest in wind power and with growing penetration of wind capacity into the market, questions about how wind power fluctuations affect power system operations and about wind power's ancillary services requirements are receiving lots of attention. The project's purpose is to acquire actual, long-term wind power output data for analyzing wind power fluctuations, frequency distribution of the changes, the effects of spatial diversity, and wind power ancillary services.

Wan, Y.; Bucaneg, D.

2002-01-01T23:59:59.000Z

410

Industrial Distributed Energy: Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

美国能源部(DOE) 美国能源部(DOE) 工业技术项目(ITP) 工业分布式能源: 热电联产 (CHP) Richard Sweetser 高级顾问 美国能源部大西洋中西部清洁能源应用中心 2011年5月5-6日|劳伦斯伯克利国家实验室,伯克利市,加州 32% 利用高效的能源管理措施和新兴节 能技术帮助工厂节能 促进热电联产和其他分布式能源 解决方案的广泛商用 10% 制造业 能源系统 33% 未来新兴产业 研发工作,主要针对美国高能耗产 业中最重要的领域以及跨行业中可 应用到多个工业领域的生产活动 25% 工业分布式能源 工业技术

411

Sandia National Laboratories Distributive Power Initiative (DPI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Devices Devices Testing and Evaluation of Energy Storage Devices DOE Energy Storage Systems Research Program Annual Peer Review Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL) September 29 - 30, 2008 Washington, DC Presented by: Tom Hund, Nancy Clark and Wes Baca Sandia National Laboratories Albuquerque, NM (505) 844-8627 tdhund@sandia.gov Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. 2 Objective (FY-08 Work) Objective (FY-08 Work)  Identify and test advanced battery technology including Valve Regulated Lead-Acid, (VRLA) and Li-ion (Li-

412

Sandia National Laboratories Distributive Power Initiative (DPI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing and Evaluation of Testing and Evaluation of Energy Storage Devices DOE Energy Storage Systems Research Program Annual Peer Review This work was funded by the DOE Energy Storage Program September 23 - 26, 2007 San Francisco, CA Presented by: Tom Hund, Nancy Clark, David Johnson, and Wes Baca Sandia National Laboratories Albuquerque, NM (505) 844-8627 tdhund@sandia.gov *Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. 2 Introduction (FY-07 Work) Introduction (FY-07 Work) Sandia/MeadWestvaco/NorthStar Supercap and Carbon Enhanced Lead-Acid Battery Work Prepared second generation of MWV carbon for testing in NorthStar and Battery Energy batteries

413

Sandia National Laboratories Distributive Power Initiative (DPI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large Format Carbon Enhanced Large Format Carbon Enhanced VRLA Battery Test Results EESAT 2009 Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL) October 4 - 7, 2009 Seattle, Washington Presented by: Tom Hund Sandia National Laboratories Albuquerque, NM (505) 844-8627 tdhund@sandia.gov *Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. 2 Objective  Test Advanced Lead-Acid Battery Consortium (ALABC) technology for utility partial state of charge (PSOC) cycling applications. Utility applications may include: Wind farm energy smoothing Photovoltaic energy smoothing

414

Distribution: Sonya Baskerville, Liaison, Bonneville Power Administrat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

that are energy-efficient (Energy Star or Federal Energy Management Program (FEMP)-designated), water-efficient, biobased, environmentally preferable (e.g., Electronic...

415

Power Flow Control Using Distributed Saturable Reactors  

V S /G V R /0q Z jX 2 cos S R S S Rsin SS V V V V V PQ XX G G 3 Managed by UT-Battelle for the Department of Energy Simple Example 3 x 150 MVA lines supply 250 MW load

416

Sandia National Laboratories Distributive Power Initiative (DPI...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benjamin L. Schenkman (505) 284-5883 BLSCHEN@SANDIA.GOV September 2008 ABMAS Battery Management System for USCG National Distress System Applications Annual DOE Peer Review...

417

Sandia National Laboratories Distributive Power Initiative (DPI...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Large Format Carbon Enhanced VRLA Battery Test Results EESAT 2009 Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOEESS) through Sandia National...

418

Sandia National Laboratories Distributive Power Initiative (DPI...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Objective (FY-08 Work) Objective (FY-08 Work) Identify and test advanced battery technology including Valve Regulated Lead-Acid, (VRLA) and Li-ion (Li- FePO 4 ) for...

419

Distribution Screening for Distributed Generation  

Science Conference Proceedings (OSTI)

As the deployment of renewable distributed generation increases, the need for traditional energy providers to interact with these resources increases. Detailed modeling and simulation of the distribution and distributed resources is a critical element to better analyze, understand and predict these interactions. EPRI has developed a tool for such analysis called OpenDSS. In addition, as part of the renewable integration program an applet was created for screening distributed generation (DG). This report ...

2009-12-23T23:59:59.000Z

420

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

4Q 2009 4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by transportation mode. The data sources beginning with the 2008 Coal Distribution Report

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Wind Power Integration: Smoothing Short-Term Power Fluctuations  

Science Conference Proceedings (OSTI)

With the rapid growth of wind power generation, utility systems are beginning to feel the intermittent and variable nature of these wind resources in electricity transmission and distribution system operations. Both short-term power fluctuations resulting from gusty winds and longer term variations resulting from diurnal wind speed variations and shifting weather patterns can affect utility power delivery as well as grid operations. This report addresses the characteristics of short-term power fluctuatio...

2005-04-12T23:59:59.000Z

422

Distribution Management Systems Planning Guide  

Science Conference Proceedings (OSTI)

No portion of the electric power grid has been impacted more significantly by the Smart Grid concept than the electric distribution system. In the past, the distribution portion of the system received little attention compared to transmission and generation systems unless the lights went out. Since the dawn of the smart grid era, many electric distribution utilities have transitioned from (or are in the process of transitioning from) a mostly manual, paper-driven business process to electronic ...

2013-03-22T23:59:59.000Z

423

Optimization of distributed generation penetration based on particle filtering  

Science Conference Proceedings (OSTI)

Distributed generation is small scale power cogeneration within an integrated energy network, that provides system wide and environmental benefits. Network benefits include enhancements to reliability, reduction of peak power requirements, improved power ...

Nurcin Celik; Juan Pablo Senz; Xiaoran Shi

2012-12-01T23:59:59.000Z

424

Making european-style community wind power development work in the United States  

E-Print Network (OSTI)

Support for Community Wind Power Development. LBNL-54715.at 2003 Oklahoma Wind Power and Bioenergy Conference, JuneWind. 2001. Distributed Wind Power Assessment. Prepared for

Bolinger, Mark A.

2004-01-01T23:59:59.000Z

425

Community wind power ownership schemes in Europe and their relevance to the United States  

E-Print Network (OSTI)

Andersen, P.D. 1998. Wind Power in Denmark: Technology,Inc. 1998. Distributed Wind Power Assessment. Draft reportwww.stem.se Swedish Wind Power Association. 2001. Current

Bolinger, Mark

2001-01-01T23:59:59.000Z

426

Property:Distributed Generation System Application | Open Energy  

Open Energy Info (EERE)

System Application System Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Application" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Combined Heat and Power + Distributed Generation Study/615 kW Waukesha Packaged System + Combined Heat and Power + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Combined Heat and Power + Distributed Generation Study/Arrow Linen + Combined Heat and Power + Distributed Generation Study/Dakota Station (Minnegasco) + Combined Heat and Power + Distributed Generation Study/Elgin Community College + Combined Heat and Power + Distributed Generation Study/Emerling Farm + Combined Heat and Power +

427

NREL: Distributed Grid Integration - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects Photo of two NREL engineers sitting in front of two computer monitors, discussing a project. NREL engineers work on data capture for micro-grid synchronization waveforms. Photo by Dennis Schroeder, NREL. NREL's distributed energy projects support the integration of new technologies into the electric power grid. This work involves industry, academia, other national laboratories, and various standards organizations. Learn more about our projects: Codes and standards Data collection and visualization Hawaii Clean Energy Initiative Microgrids Power systems modeling Solar Distributed Grid Integration (SunShot) Technology development Vehicle-to-Grid (V2G) Wind2Battery Printable Version Distributed Grid Integration Home Capabilities Projects Codes & Standards

428

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network (OSTI)

of investment New Power Generation/Distribution EnterprisesDG Distributed Generation Disco distribution company DOEof fuel) Electricity generation, transmission, distribution

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

429

Distributed Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie...

430

Generation Scheduling in Microgrids under Uncertainties in Power Generation.  

E-Print Network (OSTI)

??Recently, the concept of Microgrids (MG) has been introduced in the distribution network. Microgrids are defined as small power systems that consist of various distributed (more)

Zein Alabedin, Ayman

2012-01-01T23:59:59.000Z

431

Renewable Power Options for Electricity Generation on Kauai...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

coming from renewable energy by 2023. vii List of Acronyms Btu British thermal unit CSP concentrating solar power DER distributed energy resource DG distributed generation DOE...

432

Smart Distribution Applications for Distributed Energy Resources: Distribution Management System Use Cases  

Science Conference Proceedings (OSTI)

Technology advancements in solar photovoltaic and battery storage have driven sharp increases in their deployment by utilities, consumers, and third parties. Distributed energy resources (DERs), such as solar photovoltaic and battery storage, are often connected to the grid with a smart inverter at the distribution level, and distribution operational requirements are being greatly impacted by their presence. Smart inverters have advanced message processing and fast power control ...

2013-12-22T23:59:59.000Z

433

Agent-Based Control Framework for Distributed Energy Resources Microgrids  

Science Conference Proceedings (OSTI)

Distributed energy resources (DERs) provide many benefits for the electricity users and utilities. However, the electricity distribution system traditionally was not designed to accommodate active power generation and storage at the distribution level. ...

Zhenhua Jiang

2006-12-01T23:59:59.000Z

434

Continuous-Time Distributed Observers with Discrete Communication  

E-Print Network (OSTI)

computation. Distributed estimation problems arise, for instance, in sensor networks, electric power grids data, and rely upon distributed mechanisms to merge local computations, such as intermediate dataContinuous-Time Distributed Observers with Discrete Communication Florian D¨orfler, Fabio

Bullo, Francesco

435

Simulating Price Responsive Distributed Resources  

SciTech Connect

Distributed energy resources (DER) include distributed generation, storage, and responsive demand. The integration of DER into the power system control framework is part of the evolutinary advances that allow these resources to actively particpate in the energy balance equation. Price can provide a powerful signal for independent decision-making in distributed control strategies. To study the impact of price responsive DER on the electric power system requires generation and load models that can capture the dynamic coupling between the energy market and the physical operation of the power system in appropriate time frames. This paper presents modeling approaches for simulating electricity market price responsive DER, and introduces a statistical mechanics approach to modeling the aggregated response of a transformed electric system of pervasive, transacting DER.

Lu, Ning; Chassin, David P.; Widergren, Steven E.

2004-10-15T23:59:59.000Z

436

Fusion Power Deployment  

DOE Green Energy (OSTI)

Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment.

J.A. Schmidt; J.M. Ogden

2002-02-06T23:59:59.000Z

437

Distribution Workshop  

Energy.gov (U.S. Department of Energy (DOE))

On September 24-26, 2012, the GTT presented a workshop on grid integration on the distribution system at the Sheraton Crystal City near Washington, DC.

438

SITE ELECTRICAL POWER SYSTEM DESCRIPTION DOCUMENT  

Science Conference Proceedings (OSTI)

The Site Electrical Power System receives and distributes utility power to all North Portal site users. The major North Portal users are the Protected Area including the subsurface facility and Balance of Plant areas. The system is remotely monitored and controlled from the Surface Operations Monitoring and Control System. The system monitors power quality and provides the capability to transfer between Off-Site Utility and standby power (including dedicated safeguards and security power). Standby power is only distributed to selected loads for personnel safety and essential operations. Security power is only distributed to essential security operations. The standby safeguards and security power is independent from all other site power. The system also provides surface lighting, grounding grid, and lightning protection for the North Portal. The system distributes power during construction, operation, caretaker, and closure phases of the repository. The system consists of substation equipment (disconnect switches, breakers, transformers and grounding equipment) and power distribution cabling from substation to the north portal switch gear building. Additionally, the system includes subsurface facility substation (located on surface), switch-gear, standby diesel generators, underground duct banks, power cables and conduits, switch-gear building and associated distribution equipment for power distribution. Each area substation distributes power to the electrical loads and includes the site grounding, site lighting and lightning protection equipment. The site electrical power system distributes power of sufficient quantity and quality to meet users demands. The Site Electrical Power System interfaces with the North Portal surface systems requiring electrical power. The system interfaces with the Subsurface Electrical Distribution System which will supply power to the underground facilities from the North Portal. Power required for the South Portal and development side activities of the subsurface facility will be provided at the South Portal by the Subsurface Electrical Distribution System. The Site Electrical Power System interfaces with the Off-Site Utility System for the receipt of power. The System interfaces with the Surface Operations Monitoring and Control System for monitoring and control. The System interfaces with MGR Site Layout System for the physical location of equipment and power distribution.

E.P. McCann

1999-04-16T23:59:59.000Z

439

Distributed Energy Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Fuel Cells Energy Fuel Cells DOE Hydrogen DOE Hydrogen and and Fuel Cells Fuel Cells Coordination Meeting Fuel Cell Coordination Meeting June 2-3, 2003 Electricity Users Kathi Epping Kathi Epping Objectives & Barriers Distributed Energy OBJECTIVES * Develop a distributed generation PEM fuel cell system operating on natural gas or propane that achieves 40% electrical efficiency and 40,000 hours durability at $400-750/kW by 2010. BARRIERS * Durability * Heat Utilization * Power Electronics * Start-Up Time Targets and Status Integrated Stationary PEMFC Power Systems Operating on Natural Gas or Propane Containing 6 ppm Sulfur 40,000 30,000 15,000 Hours Durability 750 1,250 2,500 $/kWe Cost 40 32 30 % Electrical Efficiency Large (50-250 kW) Systems 40,000 30,000 >6,000 Hours Durability 1,000 1,500 3,000

440

Enhanced distributed energy resource system  

DOE Patents (OSTI)

A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.

Atcitty, Stanley (Albuquerque, NM); Clark, Nancy H. (Corrales, NM); Boyes, John D. (Albuquerque, NM); Ranade, Satishkumar J. (Las Cruces, NM)

2007-07-03T23:59:59.000Z

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Management of Active Distribution Networks with High Penetration of Distributed Generation.  

E-Print Network (OSTI)

??The penetration of distributed generation and wind power in particular is expected to increase significantly over the coming years, and a huge shift in control, (more)

Arram, Ahmed

2012-01-01T23:59:59.000Z

442

UWIG Distributed Wind Impacts Analysis Tool Progress Report: Utility Wind Interest Group Distributed Wind Impacts Project  

Science Conference Proceedings (OSTI)

Distributed wind generation systems consist of small clusters of wind turbines located near small load centers and connected directly to the distribution system. Depending on the electrical characteristics of the distribution line, the type of wind turbine, and the relative locations of the interconnection to the distribution system, the substation, and customer connections, distributed wind generation can significantly affect the stability, power quality, and operations of the distribution line. As a re...

2004-03-29T23:59:59.000Z

443

Information Sharing Across Transmission and Distribution Operations  

Science Conference Proceedings (OSTI)

In the real-time operation of the grid, there is a natural dividing line between the bulk power, or transmission, system and the distribution system. The increasing deployment of distributed resourcesincluding distributed energy resources (distributed generation) and curtailable load (demand response)will require update of transmission and distribution system processes and applications that ensure reliable and efficient grid operation. Closer coordination of activities will be necessary as both systems a...

2010-12-22T23:59:59.000Z

444

Distributed Generation Heat Recovery  

Science Conference Proceedings (OSTI)

Economic and environmental drivers are promoting the adoption of combined heat and power (CHP) systems. Technology advances have produced new and improved distributed generation (DG) units that can be coupled with heat recovery hardware to create CHP systems. Performance characteristics vary considerably among DG options, and it is important to understand how these characteristics influence the selection of CHP systems that will meet both electric and thermal site loads.

2002-03-06T23:59:59.000Z

445

Distributed Generation Biofuel Testing  

Science Conference Proceedings (OSTI)

This Technical Update report documents testing performed to assess aspects of using biofuel as an energy source for distributed generation. Specifically, the tests involved running Caterpillar Power Module compression ignition engines on palm methyl ester (PME) biofuel and comparing the emissions to those of the same engines running on ultra-low-sulfur diesel fuel. Fuel consumption and energy efficiency were also assessed, and some relevant storage and handling properties of the PME were noted. The tests...

2011-12-06T23:59:59.000Z

446

Distribution System Losses Evaluation  

Science Conference Proceedings (OSTI)

Currently, there is not an industry standard on how utilities calculate and account for electrical losses and reductions in electric system losses. Computer models used to analyze power flows typically only include the primary components of the distribution system infrastructure. More detailed electric system models can benefit utilities by providing more accurate loss calculations as well as benefits for system planning and engineering. The utility industry could benefit from having a consistent and uni...

2008-12-16T23:59:59.000Z

447

High Plains Power Inc | Open Energy Information  

Open Energy Info (EERE)

High Plains Power Inc High Plains Power Inc Place Wyoming Utility Id 8566 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png IRRIGATION Industrial LARGE POWER 500kW OR GREATER TIME OF USE Industrial LARGE POWER DISTRIBUTION SUBSTATION GREATER THAN 500kW LEVEL SERVICE Industrial LARGE POWER DISTRIBUTION SUBSTATION LESS THAN 500kW LEVEL SERVICE Industrial LARGE POWER THREE PHASE DISTRIBUTION PRIMARY LEVEL SERVICE Industrial LARGE POWER THREE PHASE DISTRIBUTION PRIMARY LEVEL SERVICE V2 Industrial

448

Definition: Distributed generation | Open Energy Information  

Open Energy Info (EERE)

generation generation Jump to: navigation, search Dictionary.png Distributed generation A term used by the power industry to describe localized or on-site power generation[1] View on Wikipedia Wikipedia Definition Distributed generation, also called on-site generation, dispersed generation, embedded generation, decentralized generation, decentralized energy or distributed energy, generates electricity from many small energy sources. Most countries generate electricity in large centralized facilities, such as fossil fuel, nuclear, large solar power plants or hydropower plants. These plants have excellent economies of scale, but usually transmit electricity long distances and can negatively affect the environment. Distributed generation allows collection of energy from many

449

Power supply apparatus  

SciTech Connect

The outputs of a plurality of modules or generators of electrical energy, such as fuel cells, chemical storage batteries, solar cells, MHD generators and the like, whose outputs are different are consolidated efficiently. The modules supply a power distribution system through an inverter. The efficiency is achieved by interconnecting the modules with an alternating voltage supply and electronic valves so controlled that the alternating-voltage supply absorbs power from modules whose output voltage is greater than the voltage at which the inverter operates and supplies this power as a booster to modules whose output voltage is less than the voltage at which the inverter operates.

Dickey, D. E.

1984-09-18T23:59:59.000Z

450

A method for identifying market power  

Science Conference Proceedings (OSTI)

An ability to exercise market power by suppliers may significantly reduce market efficiency in restructured electricity markets. Many studies have been performed to develop an effective tool to identify market power based on indices. Most often it is ... Keywords: Dispatch sensitivity matrix, HHI, KKT, LI, LMP, MC, Market power, Null space, PTDF, Power transfer distribution factor (PTDF) matrix

Hyungseon Oh; Robert J. Thomas

2013-02-01T23:59:59.000Z

451

Power marketing and renewable energy  

SciTech Connect

Power marketing refers to wholesale and retail transactions of electric power made by companies other than public power entities and the regulated utilities that own the generation and distribution lines. The growth in power marketing has been a major development in the electric power industry during the last few years, and power marketers are expected to realize even more market opportunities as electric industry deregulation proceeds from wholesale competition to retail competition. This Topical Issues Brief examines the nature of the power marketing business and its relationship with renewable power. The information presented is based on interviews conducted with nine power marketing companies, which accounted for almost 54% of total power sales by power marketers in 1995. These interviews provided information on various viewpoints of power marketers, their experience with renewables, and their respective outlooks for including renewables in their resource portfolios. Some basic differences exist between wholesale and retail competition that should be recognized when discussing power marketing and renewable power. At the wholesale level, the majority of power marketers stress the commodity nature of electricity. The primary criteria for developing resource portfolios are the same as those of their wholesale customers: the cost and reliability of power supplies. At the retail level, electricity may be viewed as a product that includes value-added characteristics or services determined by customer preferences.

Fang, J.M.

1997-09-01T23:59:59.000Z

452

Advanced Materials for High Power, High Temperature, and High ...  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Advanced magnetic materials are required for enhanced performance of electrical and thermal power generation, distribution, and conversion...

453

Plugless Power Evatran_Wireless Charging fact sheet.xlsx  

NLE Websites -- All DOE Office Websites (Extended Search)

Coil (mm) Power Flow from Generation to Vehicle Operation Electricity Generation Electricity Distribution Electricity Step Down Transformer Commercial Residential Wiring...

454

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Destination State, Destination State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

455

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Origin State, Origin State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

456

Generation, distribution and utilization of electrical energy  

SciTech Connect

An up-to-date account of electric power generation and distribution (including coverage of the use of computers in various components of the power system). Describes conventional and unconventional methods of electricity generation and its economics, distribution methods, substation location, electric drives, high frequency power for induction and heating, illumination engineering, and electric traction. Each chapter contains illustrative worked problems, exercises (some with answers), and a bibliography.

Wadhwa, C.L.

1989-01-01T23:59:59.000Z

457

Underground Distribution  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has undertaken a multiyear research effort to identify and describe best practices in managing urban network systems in the key functional areas of planning, design, construction, operations and maintenance, and safety. This report summarizes the results of a network practices survey developed and issued collaboratively by EPRI and the Network Subcommittee of the Association of Edison Illuminating Companies (AEIC) Power Delivery Group.

2009-09-18T23:59:59.000Z

458

Distribution Sensors  

Science Conference Proceedings (OSTI)

The strong industry push toward grid modernization is based on several advantages. Specifically, the grid will enable customers to actively determine their energy choices, accommodate customers generation and storage options, and provide the higher reliability and consistent power quality required by todays digital economy. These benefits will be realized when the industry optimizes grid operation and its use of present and future assets. Future power grids will become reality by ...

2013-12-19T23:59:59.000Z

459

Dairyland Power Cooperative | Open Energy Information  

Open Energy Info (EERE)

Power Cooperative Place La Crosse, Wisconsin Zip 54601 Sector Services Product Provides electricity generation and transmission services for 25 member distribution cooperatives...

460

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application of Large Application of Large Application of Large - - Scale Scale Energy Storage Systems Energy Storage Systems in AEP in AEP Ali Nourai Distributed Energy Resources American Electric Power EESAT Conference September 2007 Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL). 2 A Possible Future of Distribution A Possible Future of Distribution Energy Storage is a Key to our Future Grid Energy Storage is key to a controlled energy flow on the grid Transmission & Distribution Distribution Substation Commercial Industrial Gensets , FC, LM Gensets , Solar, Fuel Cells (FC), Load Management (LM) Residential Transmission Substation IGCC - FC Hybrid, Biomass, Solar, Nuclear, Direct Carbon FC Bulk Generation

Note: This page contains sample records for the topic "gridlab power distribution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Unclassified Distribution  

NLE Websites -- All DOE Office Websites (Extended Search)

63 1 Unclassified Distribution UNIVERSITY :OF CALIFORNU Radiation Lab oratory Contract No, W-7405-eng-48 THE DETECTION OF U T I F I C I B L L Y PRODUCED WOTOMESONS WITH COUNTERS *...

462

Special Distribution  

Office of Legacy Management (LM)

Special Distribution Special Distribution Issued: December 1977 ',, Radiological Survey and Decontamination of the Former Main Technical Area (TA-1) at Los Alamos, New Mexico Compiled by A. John Ahlquist Alan K. Stoker Linda K. Trocki c laboratory of, the University of California LOS ALAMOS, NEW MEXICO 87545 An Alfirmdve Action/Equal Opportunity Employer ..-_- .-- .--.-. c T -,--... _ _._-r..l __,.. - .-,_.. ..- _._ -- .--. " . . _ . - . c- - . . . _ -. . _ . - . - . _ - - n - _ _~ ~_. __ _ ~~_ --..&e+ L.';; CONTENTS ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .._____ 1 EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .._... _._ 2 I. BACKGROUND .............................................. 15

463

Reliability enhancement using optimal distribution feeder reconfiguration  

Science Conference Proceedings (OSTI)

Failure statistics show that distribution networks engage the most contribution to the customer unavailability services. Optimal reconfiguration of distribution systems has many advantages like total power losses reduction, voltage profile enhancement, ... Keywords: AENS, DFR, Distribution feeder reconfiguration (DFR), ISFLA, Improved shuffled frog leaping algorithm (ISFLA), MDFR, Multiobjective optimization, Reliability enhancement, SAIDI, SAIFI

Abdollah Kavousi-Fard; Mohammad-Reza Akbari-Zadeh

2013-04-01T23:59:59.000Z

464

A Tariff for Reactive Power  

DOE Green Energy (OSTI)

Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce system losses, increase circuit capacity, increase reliability, and improve efficiency. Reactive power is theoretically available from any inverter-based equipment such as photovoltaic (PV) systems, fuel cells, microturbines, and adjustable-speed drives. However, the installation is usually only economical if reactive power supply is considered during the design and construction phase. In this report, we find that if the inverters of PV systems or the generators of combined heat and power (CHP) systems were designed with capability to supply dynamic reactive power, they could do this quite economically. In fact, on an annualized basis, these inverters and generators may be able to supply dynamic reactive power for about $5 or $6 per kVAR. The savings from the local supply of dynamic reactive power would be in reduced losses, increased capacity, and decreased transmission congestion. The net savings are estimated to be about $7 per kVAR on an annualized basis for a hypothetical circuit. Thus the distribution company could economically purchase a dynamic reactive power service from customers for perhaps $6/kVAR. This practice would provide for better voltage regulation in the distribution system and would provide an alternate revenue source to help amortize the cost of PV and CHP installations. As distribution and transmission systems are operated under rising levels of stress, the value of local dynamic reactive supply is expected to grow. Also, large power inverters, in the range of 500 kW to 1 MW, are expected to decrease in cost as they become mass produced. This report provides one data point which shows that the local supply of dynamic reactive power is marginally profitable at present for a hypothetical circuit. We expect that the trends of growing power flow on the existing system and mass production of inverters for distributed energy devices will make the dynamic supply of reactive power from customers an integral component of economical and reliable system operation in the future.

Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Li, Fangxing [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator

2008-07-01T23:59:59.000Z

465

UTILITIES COLORADO WESTERN POWER ADMIN POC Cheryl Drake Telephone  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UTILITIES UTILITIES COLORADO WESTERN POWER ADMIN POC Cheryl Drake Telephone (720) 962-7154 Email drake@wapa.gov Electric Bulk Power Transmission and Control 221121 Electric Power Distribution 221122 GEORGIA SOUTHEASTERN POWER ADMIN POC Ann Craft Telephone (706) 213-3823 Email annc@sepa.doe.gov Electric Bulk Power Transmission and Control 221121 Electric Power Distribution 221122 OKLAHOMA SOUTHWESTERN POWER ADMIN POC Gary Bridges Telephone (918) 595-6671 Email gary.bridges@swpa.gov Electric Bulk Power Transmission and Control 221121 Electric Power Distribution 221122 OREGON BONNEVILLE POWER ADMIN POC Greg Eisenach Telephone (360) 418-8063 Email gaeisenach@bpa.gov Electric Bulk Power Transmission and Control 221121 Electric Power Distribution 221122 PENNSYLVANIA NATIONAL ENERGY TECHNOLOGY LAB - PA POC Larry Sullivan

466

High-availability power for MX  

Science Conference Proceedings (OSTI)

With modern computer-based analyses it was possible to optimize an extensive power transmission and distribution network for supplying power to MX missile shelter sites. This network would serve some 4600 of these sites, located in suitable contiguous areas, with the shelter sites spaced one mile apart. With a dedicated transmission network and underground distribution cables we were able to predict an average commercial power availability of 0.99993 at the shelters. However, standby diesel generator sets are required at distribution centers because power is required after an electromagnetic pulse from a high-altitude weapon burst. With this strengthened distribution network, the authors were able to predict a suitable power availability of 0.999 at each missile site with incoming power supplied to each of our distribution centers at a 0.99 availability or better by local public utilities.

Oman, H.; Bannon, C.F.

1982-08-01T23:59:59.000Z

467

Optimal Siting and Sizing of Solar Photovoltaic Distributed Generation to Minimize Loss, Present Value of Future Asset Upgrades and Peak Demand Costs on a Real Distribution Feeder.  

E-Print Network (OSTI)

??The increasing penetration of distributed generation (DG) in power distribution systems presents technical and economic benefits as well as integration challenges to utility engineers. Governments (more)

Mukerji, Meghana

2011-01-01T23:59:59.000Z

468

Advanced Distributed Energy Resource Compliant Distribution Circuits for High Reliability  

Science Conference Proceedings (OSTI)

Electric power distribution systems and their designs have not advanced much over the past 50 years. Industry restructuring has caused many utilities to defer infrastructure investments, and implement business as usual and conservative distribution system expansion plans. Many drivers are now causing utilities to rethink how the infrastructure of the future should be built out and how best to incorporate new technology. Drivers include higher demand for reliability, the ability to better manage loads, in...

2005-12-14T23:59:59.000Z

469

Distributed Energy Resources and Management of Future Distribution  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute's (EPRI's) Smart Grid demonstration initiative is a collaborative research effort focused on the design, implementation, and assessment of field demonstrations to address challenges with integrated distributed resources in grid and market operations as well as system planning. The main objective of this study is to identify approaches to interoperability and integration that can be used on a systemwide scale to help standardize the use of distributed energy resources...

2010-03-25T23:59:59.000Z

470

Taiwan Power TCSC Evaluation Study  

Science Conference Proceedings (OSTI)

This report evaluates the use of Thyristor Controlled Series Compensation (TCSC) and conventional series compensation to more evenly distribute power flows on the Taiwan Power Company's (TPC) 345-kV Center-North interface and improve system dampings. This study concludes that the proposed compensation scheme would significantly improve the interface's performance capability.

1997-06-10T23:59:59.000Z

471

GASIFICATION FOR DISTRIBUTED GENERATION  

DOE Green Energy (OSTI)

A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product w