National Library of Energy BETA

Sample records for grid-connected electric drive

  1. Micro Climate Assessment of Grid-Connected Electric Drive Vehicles and Charging Infrastructure. Final Report

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2015-12-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s advanced vehicle testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America to conduct several U.S. Department of Defense-based micro-climate studies to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). The study included Joint Base Lewis McChord, located in Washington State; Naval Air Station Whidbey Island, located in Washington State; and United States Marine Corp Base Camp Lejeune, located in North Carolina. The project was divided into four tasks for each of the three bases studied. Task 1 consisted of surveying the non-tactical fleet of vehicles to begin review of vehicle mission assignments and types of vehicles in service. In Task 2, the daily operational characteristics of the vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. Results of the data analysis and observations were provided. Individual observations of these selected vehicles provided the basis for recommendations related to PEV adoption (i.e., whether a battery electric vehicle or plug-in hybrid electric vehicle [collectively referred to as PEVs] can fulfill the mission requirements). It also provided the basis for recommendations related to placement of PEV charging infrastructure. In Task 4, an implementation approach was provided for near-term adoption of PEVs into the respective fleets. Each facility was provided detailed reports on each of these tasks. This paper summarizes and provides observations on the project and completes Intertek’s required actions.

  2. Modeling Grid-Connected Hybrid Electric Vehicles Using ADVISOR

    SciTech Connect (OSTI)

    Markel, T.; Wipke, K.

    2001-01-01

    Presents an electric utility grid-connected energy management strategy for a parallel hybrid electric vehicle using ADVISOR, a modeling tool.

  3. Homeowners Guide to Financing a Grid-Connected Solar Electric System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Brochure), Solar Energy Technologies Program (SETP) | Department of Energy Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure), Solar Energy Technologies Program (SETP) Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure), Solar Energy Technologies Program (SETP) This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house. 48969.pdf

  4. EERE Success Story-Nevada Deploys Grid-Connected Electricity from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal Systems | Department of Energy Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems EERE Success Story-Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems May 16, 2013 - 12:00am Addthis The Southeast Propane Autogas Development Program, an $8.6 million Clean Cities Recovery Act project, finished bringing 1,200 propane vehicles and 11 new stations to support them to the road in October 2013. The Virginia Department of Mines,

  5. Transatlantic Workshop on Electric Vehicles and Grid Connectivity

    Broader source: Energy.gov [DOE]

    The U.S.-EU Energy Council convened equipment suppliers and manufacturers, utilities, policymakers, standards organizations, and government agencies to discuss mutually beneficial near-term actions to accelerate the introduction of electric vehicles to the market.

  6. Electricity storage for grid-connected household dwellings with PV panels

    SciTech Connect (OSTI)

    Mulder, Grietus; Six, Daan; Ridder, Fjo De

    2010-07-15

    Classically electricity storage for PV panels is mostly designed for stand-alone applications. In contrast, we focus in this article on houses connected to the grid with a small-scale storage to store a part of the solar power for postponed consumption within the day or the next days. In this way the house owner becomes less dependent on the grid and does only pay for the net shortage of his energy production. Local storage solutions pave the way for many new applications like omitting over-voltage of the line and bridging periods of power-line black-out. Since 2009 using self-consumption of PV energy is publicly encouraged in Germany, which can be realised by electric storage. This paper develops methods to determine the optimal storage size for grid-connected dwellings with PV panels. From measurements in houses we were able to establish calculation rules for sizing the storage. Two situations for electricity storage are covered: - the storage system is an optimum to cover most of the electricity needs; - it is an optimum for covering the peak power need of a dwelling. After these calculation rules a second step is needed to determine the size of the real battery. The article treats the aspects that should be taken into consideration before buying a specific battery like lead-acid and lithium-ion batteries. (author)

  7. Integration Technology for PHEV-Grid-Connectivity, with Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards Integration Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards 2010...

  8. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Environmental Management (EM)

    Grid-Connected Renewable Energy Systems Grid-Connected Renewable Energy Systems When connecting a home energy system to the electric grid, research and consider equipment required...

  9. Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

  10. Homeowners Guide to Financing a Grid-Connected Solar Electric System

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-10-11

    This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

  11. Estimating the maximum potential revenue for grid connected electricity storage : arbitrage and regulation.

    SciTech Connect (OSTI)

    Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.

    2012-12-01

    The valuation of an electricity storage device is based on the expected future cash ow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the maximum

  12. Magnitude and Variability of Controllable Charge Capacity Provided by Grid Connected Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    Scoffield, Don R; Smart, John; Salisbury, Shawn

    2015-03-01

    As market penetration of plug-in electric vehicles (PEV) increases over time, the number of PEVs charging on the electric grid will also increase. As the number of PEVs increases, their ability to collectively impact the grid increases. The idea of a large body of PEVs connected to the grid presents an intriguing possibility. If utilities can control PEV charging, it is possible that PEVs could act as a distributed resource to provide grid services. The technology required to control charging is available for modern PEVs. However, a system for wide-spread implementation of controllable charging, including robust communication between vehicles and utilities, is not currently present. Therefore, the value of controllable charging must be assessed and weighed against the cost of building and operating such as system. In order to grasp the value of PEV charge control to the utility, the following must be understood: 1. The amount of controllable energy and power capacity available to the utility 2. The variability of the controllable capacity from day to day and as the number of PEVs in the market increases.

  13. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Environmental Management (EM)

    Grid-Connected Renewable Energy Systems When connecting a home energy system to the electric ... your needs, eliminating the expense of electricity storage devices like batteries. ...

  14. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and how to implement them): The Institute of Electrical and Electronics Engineers (IEEE) has written a standard that addresses all grid-connected distributed generation...

  15. Electric Drive Status and Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leaf * 75 mile electric range * 80 kW electric drive * electric drive cost:1,600 Tesla Model S * 250 mile electric range * 270 kW electric drive * electric drive ...

  16. National Drive Electric Week

    Office of Energy Efficiency and Renewable Energy (EERE)

    Celebrate National Drive Electric Week with ways to make your all-electric or plug-in hybrid cars even greener!

  17. Geothermal/Grid Connection | Open Energy Information

    Open Energy Info (EERE)

    GeothermalGrid Connection < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection...

  18. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid-Connected Renewable Energy Systems Grid-Connected Renewable Energy Systems When connecting a home energy system to the electric grid, research and consider equipment required as well as your power provider’s requirements and agreements. | Photo courtesy of Solar Design Associates, Inc. When connecting a home energy system to the electric grid, research and consider equipment required as well as your power provider's requirements and agreements. | Photo courtesy of Solar Design

  19. High Penetration, Grid Connected Photovoltaic Technology Codes and Standards: Preprint

    SciTech Connect (OSTI)

    Basso, T. S.

    2008-05-01

    This paper reports the interim status in identifying and reviewing photovoltaic (PV) codes and standards (C&S) and related electrical activities for grid-connected, high-penetration PV systems with a focus on U.S. electric utility distribution grid interconnection.

  20. Grid Connected Functionalities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    research, development and deployment of critical building-grid transactional frameworks. View the Presentation 2015 BTO Peer Review Presentation - Grid Connected ...

  1. Electric drive mechanism for vehicles

    SciTech Connect (OSTI)

    Bader, C.

    1983-06-21

    An electric drive mechanism is disclosed for vehicles, especially buses with overhead trolley routes, which routes are provided with relatively short interruptions in the overhead trolley. The drive mechanism includes a flywheel two externally excited electric motors which are adapted to be switched over from prime mover operation to generator operation, and which motors are effective as a ward-leonard drive during flywheel operation. The first electric motor is constructed for half of a maximum drive power and the second electric motor is likewise constructed for half or for square root 2/2 times the maximum drive power. Both electric motors are connected electrically in parallel during operation from the main electrical supply. The first and second motors are electrically connected in parallel during operation of the vehicle from the main electrical supply when a change-speed transmission is provided for connecting a drive shaft of one of the motors with driven vehicle wheels. A planetary gear transmission and a further transmission are provided for mechanically connecting the drive shaft of one of the motors with the second motor and with the flywheel.

  2. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  3. Public Meeting: Physical Characterization of Smart and Grid-Connected...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and ...

  4. Electric Drive Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drive Systems - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  5. INTEGRATED ELECTRIC DRIVE WITH HV2 MODULAR ELECTRIC MACHINE AND...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ELECTRIC DRIVE WITH HV2 MODULAR ELECTRIC MACHINE AND SIC BASED POWER CONVERTERS INTEGRATED ELECTRIC DRIVE WITH HV2 MODULAR ELECTRIC MACHINE AND SIC BASED POWER CONVERTERS The Ohio ...

  6. GROWDERS Demonstration of Grid Connected Electricity Systems...

    Open Energy Info (EERE)

    2011 References EU Smart Grid Projects Map1 Overview The GROWDERS project (Grid Reliability and Operability with Distributed Generation using Flexible Storage) investigates...

  7. Maine Project Launches First Grid-Connected Offshore Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. May 31, 2013 - 11:00am Addthis ...

  8. United States Launches First Grid-Connected Offshore Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States Launches First Grid-Connected Offshore Wind Turbine United States Launches First Grid-Connected Offshore Wind Turbine August 22, 2013 - 12:00am Addthis Leveraging an ...

  9. EV Everywhere Grand Challenge - Electric Drive (Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Electric Drive (Power Electronics and Electric Machines) Workshop EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop List of ...

  10. Advanced Electric Drive Vehicles … A Comprehensive Education...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program Advanced Electric Drive Vehicles A Comprehensive ...

  11. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. PDF icon tiarravt034ferdowsi2010o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  12. Electric Drive Component Manufacturing Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Component Manufacturing Facilities Electric Drive Component Manufacturing Facilities 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ...

  13. Electric Drive Component Manufacturing Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Component Manufacturing Facilities Electric Drive Component Manufacturing Facilities 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ...

  14. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Energy Savers [EERE]

    Electric Drive Technologies Annual Progress Report Vehicle ... FY14EDTAnnualReport.pdf (15.14 MB) More Documents & Publications Vehicle Technologies Office: 2015 ...

  15. Electric Drive Transportation Association EDTA | Open Energy...

    Open Energy Info (EERE)

    Transportation Association EDTA Jump to: navigation, search Name: Electric Drive Transportation Association (EDTA) Product: EDTA is the preeminent U.S. industry association...

  16. Vehicle Technologies Office: 2015 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will ...

  17. Electric Drive Semiconductor Manufacturing (EDSM) Center | Department...

    Broader source: Energy.gov (indexed) [DOE]

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt030apesmith2011p.pdf (331.83 KB) More Documents & Publications Electric Drive Semiconductor ...

  18. FMC high power density electric drive technology

    SciTech Connect (OSTI)

    Shafer, G.A.

    1994-12-31

    FMC has developed a unique capability in energy-efficient, high-performance AC induction electric drive systems for electric and hybrid vehicles. These drives will not only be important to future military ground combat vehicles, but will also provide significant competitive advantages to industrial and commercial machinery and vehicles. The product line under development includes drive motors and associated power converters directed at three power/vehicle weight classes. These drive systems cover a broad spectrum of potential vehicle applications, ranging from light pickup trucks to full-size transit buses. The drive motors and power converters are described.

  19. Public Meeting: Physical Characterization of Grid-Connected Commercial And

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Building End-Use Equipment And Appliances | Department of Energy Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances The documents below are the agenda for the public meeting (held July 11, 2014) on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances,

  20. Public Meeting: Physical Characterization of Smart and Grid-Connected

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial and Residential Building End-Use Equipment and Appliances | Department of Energy Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and

  1. EV Everywhere Electric Drive Workshop: Preliminary Target-Setting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework Presentation given at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric ...

  2. EV Everywhere EV Everywhere Grand Challenge - Electric Drive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Agenda EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power ...

  3. Electric Drive Status and Challenges | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Status and Challenges Presentation given at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 ...

  4. Grid-Connected Renewable Energy Systems Case Studies | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Grid-Connected Renewable Energy Systems Case Studies AgencyCompany Organization: World Bank Sector: Energy Topics:...

  5. Grid-Connected Renewable Energy Generation Toolkit-Wind | Open...

    Open Energy Info (EERE)

    Agency for International Development Sector: Energy Focus Area: Wind Resource Type: Training materials Website: www.energytoolbox.orggcremod6index.shtml Grid-Connected...

  6. Grid-Connected Renewable Energy Generation Toolkit-Solar | Open...

    Open Energy Info (EERE)

    Agency for International Development Sector: Energy Focus Area: Solar Resource Type: Training materials Website: www.energytoolbox.orggcremod5index.shtml Grid-Connected...

  7. Grid-Connected Renewable Energy Generation Toolkit-Geothermal...

    Open Energy Info (EERE)

    for International Development Sector: Energy Focus Area: Geothermal Resource Type: Training materials Website: www.energytoolbox.orggcremod3index.shtml Grid-Connected...

  8. Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric...

    Open Energy Info (EERE)

    United States Agency for International Development Sector: Energy Resource Type: Training materials Website: www.energytoolbox.orggcremod4index.shtml Grid-Connected...

  9. Grid-Connected Renewable Energy Generation Toolkit-Biomass |...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Grid-Connected Renewable Energy Generation Toolkit-Biomass AgencyCompany Organization: United States Agency for...

  10. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, Charles E.; Benson, Ralph A.

    1994-01-01

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  11. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, C.E.; Benson, R.A.

    1994-11-29

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

  12. Do You Drive a Hybrid Electric Vehicle?

    Broader source: Energy.gov [DOE]

    In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities coalition told us about his plug-in hybrid electric vehicle (PHEV). He's one of the lucky few in the United States to drive one...

  13. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle ...

  14. Vehicle Technologies Office Merit Review 2014: Electric Drive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB) ...

  15. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery ...

  16. Center for Electric Drive Transportation at the University of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Transportation at the University of Michigan - Dearborn Center for Electric Drive Transportation at the University of Michigan - Dearborn 2012 DOE Hydrogen and Fuel ...

  17. Computer-Aided Engineering for Electric-Drive Vehicle Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer-Aided Engineering for Electric-Drive Vehicle Batteries - Sandia Energy Energy ... Energy Storage Components and Systems Batteries Electric Drive Systems Hydrogen Materials ...

  18. Driving Change in Residential Energy Efficiency: Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Driving Change in Residential Energy Efficiency: Electric Vehicles Advanced Programs (301) Driving Change in Residential Energy Efficiency: Electric Vehicles Advanced Programs ...

  19. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    DOE Patents [OSTI]

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  20. EV Everywhere Grand Challenge - Electric Drive (Power Electronics and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Machines) Workshop | Department of Energy - Electric Drive (Power Electronics and Electric Machines) Workshop EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop List of companies in attendance at the Electric Drive Workshop held on July 24, 2012 at the Doubletree O'Hare, Chicago, IL companies_in_attendance_ed.pdf (145.65 KB) More Documents & Publications EV Everywhere Grand Challenge Introduction for Electric Drive Workshop EV

  1. Vehicle Technologies Office: Electric Drive Systems Research and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Plug-in Electric Vehicles & Batteries » Vehicle Technologies Office: Electric Drive Systems Research and Development Vehicle Technologies Office: Electric Drive Systems Research and Development Vehicle Technologies Office: Electric Drive Systems Research and Development Electric drive technologies, including the electric motor, inverter, boost converter, and on-board charger, are essential components of hybrid and plug-in electric vehicles (PEV)

  2. Charging Up with the Electric Drive Transportation Association | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Charging Up with the Electric Drive Transportation Association Charging Up with the Electric Drive Transportation Association May 20, 2014 - 4:51pm Addthis Test Drive 1 of 5 Test Drive Deputy Assistant Secretary for Transportation Reuben Sarkar drives a Chevrolet Spark EV during the Electric Drive Transportation Association conference in Indianapolis, Indiana on May 20, 2014. The conference brings together industry leaders who are advancing electric vehicle technologies and

  3. Integrated Inverter For Driving Multiple Electric Machines

    DOE Patents [OSTI]

    Su, Gui-Jia [Knoxville, TN; Hsu, John S [Oak Ridge, TN

    2006-04-04

    An electric machine drive (50) has a plurality of inverters (50a, 50b) for controlling respective electric machines (57, 62), which may include a three-phase main traction machine (57) and two-phase accessory machines (62) in a hybrid or electric vehicle. The drive (50) has a common control section (53, 54) for controlling the plurality of inverters (50a, 50b) with only one microelectronic processor (54) for controlling the plurality of inverters (50a, 50b), only one gate driver circuit (53) for controlling conduction of semiconductor switches (S1-S10) in the plurality of inverters (50a, 50b), and also includes a common dc bus (70), a common dc bus filtering capacitor (C1) and a common dc bus voltage sensor (67). The electric machines (57, 62) may be synchronous machines, induction machines, or PM machines and may be operated in a motoring mode or a generating mode.

  4. Oscillation control system for electric motor drive

    DOE Patents [OSTI]

    Slicker, James M.; Sereshteh, Ahmad

    1988-01-01

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

  5. Oscillation control system for electric motor drive

    DOE Patents [OSTI]

    Slicker, J.M.; Sereshteh, A.

    1988-08-30

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  6. QER- Comment of Electric Drive Transportation Association

    Broader source: Energy.gov [DOE]

    Please find attached the comments of the Electric Drive Transportation Association regarding the first volume of the Department of Energy’s QER. If you have questions about our submittal or require further information, please contact me using the information provided below. Thank you for the opportunity to comment. Genevieve Cullen

  7. Understanding the Benefits of Dispersed Grid-Connected Photovoltaics: From Avoiding the Next Major Outage to Taming Wholesale Power Markets

    SciTech Connect (OSTI)

    Letendre, Steven E.; Perez, Richard

    2006-07-15

    Thanks to new solar resource assessment techniques using cloud cover data available from geostationary satellites, it is apparent that grid-connected PV installations can serve to enhance electric grid reliability, preventing or hastening recovery from major power outages and serving to mitigate extreme price spikes in wholesale energy markets. (author)

  8. Vehicle Technologies Office Merit Review 2015: Electric Drive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Inverter R&D Vehicle Technologies Office Merit Review 2015: Electric ... at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit ...

  9. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Citation Details In-Document Search Title: High-Voltage Solid Polymer Batteries for Electric ...

  10. EV Everywhere Grand Challenge Introduction for Electric Drive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given by EERE Assistant Secretary David Danielson at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, ...

  11. Electric Drive Component Manufacturing: Magna E-Car Systems of...

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit ... Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Electric ...

  12. Electric Drive Component Manufacturing: Magna E-Car Systems of...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ... Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Electric ...

  13. US DRIVE Electrical and Electronics Technical Team Roadmap |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical and Electronics Technical Team Roadmap US DRIVE Electrical and Electronics Technical Team Roadmap The EETT focuses on the development of economically viable ETDSs, which ...

  14. Vehicle Technologies Office: 2014 Electric Drive Technologies Annual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Report | Department of Energy Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system

  15. Vehicle Technologies Office: Materials for Hybrid and Electric Drive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Hybrid and Electric Drive Systems Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems The Vehicle Technologies Office (VTO) is working to lower the cost and increase the convenience of electric drive vehicles, which include hybrid and plug-in electric vehicles. These vehicles use advanced power electronics and electric motors that face barriers because their subcomponents have specific material limitations. Novel propulsion materials

  16. EERE Success Story-United States Launches First Grid-Connected...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States Launches First Grid-Connected Offshore Wind Turbine EERE Success Story-United States Launches First Grid-Connected Offshore Wind Turbine August 22, 2013 - 12:00am ...

  17. Mongolia-GTZ Energy Efficiency within the Grid-Connected Energy...

    Open Energy Info (EERE)

    Energy Efficiency within the Grid-Connected Energy Supply Jump to: navigation, search Logo: Mongolia-GTZ Energy Efficiency within the Grid-Connected Energy Supply Name Mongolia-GTZ...

  18. Electric Drive and Advanced Battery and Components Testbed (EDAB) |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss033_carlson_2012_o.pdf (1.13 MB) More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB) Electric Drive and Advanced Battery Department of Energy

    1 DOE Hydrogen and Fuel Cells Program, and

  19. Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery and Components Testbed (EDAB) | Department of Energy Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB) Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Electric Drive and Advanced Battery and Components Testbed (EDAB).

  20. Advanced Electric Drive Vehicles … A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Comprehensive Education, Training, and Outreach Program Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program US-India S&T Agreement

  1. Driving Change in Residential Energy Efficiency: Electric Vehicles (301)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Better Buildings Residential Network Peer Exchange Call Series: Driving Change in Residential Energy Efficiency: Electric Vehicles (301), call slides and discussion summary.

  2. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries ...

  3. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer ...

  4. EV Everywhere EV Everywhere Grand Challenge - Electric Drive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and ... BREAKOUT SESSION 1: (three groups) * Traction Drive System * Power Electronics and ...

  5. FY2015 Electric Drive Technologies Annual Progress Report (Technical...

    Office of Scientific and Technical Information (OSTI)

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge ...

  6. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Environmental Management (EM)

    More Documents & Publications Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Battery Pack Requirements and Targets Validation FY 2009 DOE Vehicle ...

  7. Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    of Community Counseling Services. Clean Cities Helps Nonprofit Cut Fuel Costs with Propane Green Means Go for Hybrid and Alternative Fuel Taxis Project Overview Positive...

  8. EERE Success Story-Nevada Deploys Grid-Connected Electricity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 16, 2013 - 12:00am Addthis The Southeast Propane Autogas Development Program, an 8.6 million Clean Cities Recovery Act project, finished bringing 1,200 propane vehicles and 11 ...

  9. Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal...

    Office of Environmental Management (EM)

    freedom of mobility and energy security, while lowering costs and reducing impacts on the environment. Addthis Related Articles Nationwide: Southeast Propane Autogas Development...

  10. Electric Drive Vehicle Infrastructure Deployment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    73_vss_carleson_2011_o.pdf (315.3 KB) More Documents & Publications ChargePoint America ChargePoint America Grid Connectivity Research, Development & Demonstration Projects

  11. EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework

    Broader source: Energy.gov [DOE]

    Presentation given by Vehicle Technologies Office analyst Jake Ward at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

  12. EV Everywhere Grand Challenge Introduction for Electric Drive Workshop

    Broader source: Energy.gov [DOE]

    Presentation given by EERE Assistant Secretary David Danielson at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

  13. EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles

    Broader source: Energy.gov [DOE]

    Find out how the Energy Department's Vehicles Technologies Office is helping reduce the cost of plug-in electric vehicles through research and development of electric drive technologies.

  14. Subsystem engineering and development of grid-connected photovoltaic systems

    SciTech Connect (OSTI)

    Burgess, E.L.; Post, H.N.; Key, T.S.

    1982-01-01

    The experience gained in fielding residential and intermediate sized photovoltaic application experiments is summarized. This experience is used to guide the engineering and development of array and power conditioning subsystems for grid-connected photovoltaic systems. A major consideration in this development effort is cost. Through innovative engineering, using a modular building block approach for the array subsystem, it is now possible to construct array fields, in moderate quantities, for about $52/m/sup 2/ excluding the photovoltaic modules. Similarly, results of power conditioning subsystem development indicate a projected cost of about $0.25/W/sub p/ for advanced units with conversion efficiencies in excess of 90%.

  15. Electric Drive Transportation Association Conference | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Presentation given at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL. 4_rogers_ed.pdf (1.3 MB) More Documents & Publications Power Electronics and Thermal Management Breakout Session Advanced Power Electronics and Electric Motors (APEEM) R&D Program Overview Advanced Power Electronics and Electric Motors (APEEM) R&D Program Overview

    Test Drive 1 of 5 Test Drive Deputy

  16. Smart Energy Management and Control for Fuel Cell Based Micro-Grid Connected Neighborhoods

    SciTech Connect (OSTI)

    Dr. Mohammad S. Alam

    2006-03-15

    Fuel cell power generation promises to be an efficient, pollution-free, reliable power source in both large scale and small scale, remote applications. DOE formed the Solid State Energy Conversion Alliance with the intention of breaking one of the last barriers remaining for cost effective fuel cell power generation. The Alliance’s goal is to produce a core solid-state fuel cell module at a cost of no more than $400 per kilowatt and ready for commercial application by 2010. With their inherently high, 60-70% conversion efficiencies, significantly reduced carbon dioxide emissions, and negligible emissions of other pollutants, fuel cells will be the obvious choice for a broad variety of commercial and residential applications when their cost effectiveness is improved. In a research program funded by the Department of Energy, the research team has been investigating smart fuel cell-operated residential micro-grid communities. This research has focused on using smart control systems in conjunction with fuel cell power plants, with the goal to reduce energy consumption, reduce demand peaks and still meet the energy requirements of any household in a micro-grid community environment. In Phases I and II, a SEMaC was developed and extended to a micro-grid community. In addition, an optimal configuration was determined for a single fuel cell power plant supplying power to a ten-home micro-grid community. In Phase III, the plan is to expand this work to fuel cell based micro-grid connected neighborhoods (mini-grid). The economic implications of hydrogen cogeneration will be investigated. These efforts are consistent with DOE’s mission to decentralize domestic electric power generation and to accelerate the onset of the hydrogen economy. A major challenge facing the routine implementation and use of a fuel cell based mini-grid is the varying electrical demand of the individual micro-grids, and, therefore, analyzing these issues is vital. Efforts are needed to determine

  17. Comparative Study of Standards for Grid-Connected Wind Power Plant in China and the U.S.

    SciTech Connect (OSTI)

    Gao, Wenzhong; Tian, Tian; Muljadi, Eduard; Zhang, Yincheng; Miller, Mackay; Wang, Weisheng; Wang, Jing

    2015-10-06

    The rapid deployment of wind power has made grid integration and operational issues focal points in industry discussions and research. Compliance with grid connection standards for wind power plants (WPP) is crucial to ensuring the safe and stable operation of the electric power grid. The standards for grid-connected WPPs in China and the United States are compared in this paper to facilitate further improvements to the standards and enhance the development of wind power equipment. Detailed analyses in power quality, low-voltage ride-through capability, active power control, reactive power control, voltage control, and wind power forecasting are provided to enhance the understanding of grid codes in the two largest markets of wind power.

  18. Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project July 24, 2012 - 1:12pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Today, Energy Secretary Steven Chu recognized the nation's first commercial, grid-connected tidal energy project off the coast of Eastport, Maine. Leveraging a $10 million investment from the Energy Department, Ocean Renewable Power Company (ORPC)

  19. EERE Success Story-United States Launches First Grid-Connected Offshore

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Turbine | Department of Energy United States Launches First Grid-Connected Offshore Wind Turbine EERE Success Story-United States Launches First Grid-Connected Offshore Wind Turbine August 22, 2013 - 12:00am Addthis Leveraging an EERE investment, the University of Maine deployed the nation's first grid-connected offshore floating wind turbine prototype off the coast of Castine, Maine. The university and its project partners conducted extensive design, engineering, and testing of

  20. Driving Research in Electric Machines |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Driving Research in Electric Machines Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to...

  1. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Scientific and Technical Information (OSTI)

    Title: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles The purpose of this project was for Seeo to develop a high energy lithium based technology with targets of ...

  2. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Scientific and Technical Information (OSTI)

    Voltage Solid Polymer Batteries for Electric Drive Vehicles Eitouni, Hany; Yang, Jin; Pratt, Russell; Wang, Xiao; Grape, Ulrik The purpose of this project was for Seeo to develop a...

  3. Climate Control Load Reduction Strategies for Electric Drive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Drive Cycle Simulations The vehicle simulation tool Autonomie was used to calculate ... The Focus Electric uses a 23-kWh capacity lithium-ion battery pack. The battery utilization ...

  4. Study and Development of Anti-Islanding Control for Grid-Connected Inverters

    SciTech Connect (OSTI)

    Ye, Z.; Walling, R.; Garces, L.; Zhou, R.; Li, L.; Wang, T.

    2004-05-01

    This is a report on the development of anti-islanding control for grid-connected inverters from distributed generation sources. Islanding occurs when a distributed generation source continues to provide electricity to a portion of the utility grid after the utility experiences a disruption in service. Since the utility no longer controls this part of the distribution system, islanding can pose problems for utility personnel safety, power quality, equipment damage, and restoration of service. This report proposes a new family of anti-islanding schemes that meet IEEE 1547 interconnection standards, that can detect all disruptions in service, have minimum power-quality impact, require low-cost implementation, work for multiple distributed generators, and work for any multi-phase inverters. It also provides design guidelines for the schemes, and evaluates and validates the proposed schemes for practical applications.

  5. Advanced Electric Drive Vehicles … A Comprehensive Education, Training,

    Broader source: Energy.gov (indexed) [DOE]

    and Outreach Program | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt034_ti_ferdowsi_2012_o.pdf (1.02 MB) More Documents & Publications Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach Program Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach Program US-India S&T Agreement

  6. Advanced Electric Drive Vehicles … A Comprehensive Education, Training,

    Broader source: Energy.gov (indexed) [DOE]

    and Outreach Program | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt034_ti_ferdowsi_2011_p.pdf (190.23 KB) More Documents & Publications Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach Program Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach Program EcoCAR 2 Plugging into the Future

  7. AVTA: Battery Testing - Electric Drive and Advanced Battery and Components

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testbed | Department of Energy Battery Testing - Electric Drive and Advanced Battery and Components Testbed AVTA: Battery Testing - Electric Drive and Advanced Battery and Components Testbed The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future

  8. Combined Electric Machine and Current Source Inverter Drive System - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Analysis Energy Analysis Advanced Materials Advanced Materials Find More Like This Return to Search Combined Electric Machine and Current Source Inverter Drive System Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00249_ID2505.pdf (764 KB) Technology Marketing SummaryThis technology is a drive system that includes a permanent magnet-less (PM-L) electric motor

  9. U.S. First Responder Safety Training for Advanced Electric Drive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First Responder Safety Training for Advanced Electric Drive Vehicle Presentation U.S. First Responder Safety Training for Advanced Electric Drive Vehicle Presentation 2010 DOE...

  10. Electrical motor/generator drive apparatus and method

    DOE Patents [OSTI]

    Su, Gui Jia

    2013-02-12

    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  11. EV Everywhere EV Everywhere Grand Challenge- Electric Drive (Power Electronics and Electric Machines) Workshop Agenda

    Broader source: Energy.gov [DOE]

    Agenda for the EV Everywhere Grand Challenge - Electric Drive Workshop on July 24, 2012 at the Doubletree O'Hare, Chicago, IL

  12. DOE Publishes Notice of Public Meeting for Smart Grid-connected Buildings

    Broader source: Energy.gov [DOE]

    The physical characterization of smart and grid-connected commercial and residential buildings end-use equipment and appliances, including but not limited to processes and metrics for measurement, identification of grid and building services, and identification of values and benefits of grid connectivity.

  13. Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.

    2011-05-01

    This presentation describes NREL's computer aided engineering program for electric drive vehicle batteries.

  14. Electric machine and current source inverter drive system

    DOE Patents [OSTI]

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  15. FY2014 Electric Drive Technologies Annual Progress Report

    SciTech Connect (OSTI)

    2014-12-01

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  16. Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid-Connected Enhanced Geothermal System April 12, 2013 - 12:00pm Addthis WASHINGTON -- As part of the Obama Administration's all-of-the-above energy strategy, the Energy ...

  17. Electric Motor Thermal Management for Electric Traction Drives (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.; Cousineau, J.; Moreno, G.

    2014-09-01

    Thermal constraints place significant limitations on how electric motors ultimately perform. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of material thermal properties and convective heat transfer coefficients. In this work, the thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. Also, convective heat transfer coefficients of automatic transmission fluid (ATF) jets were measured to better understand the heat transfer of ATF impinging on motor copper windings. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients.

  18. National Drive Electric Week: Celebrating the Growth of Electric Vehicles |

    Office of Environmental Management (EM)

    Notice, Volume 79, No. 160, August 19, 2014 | Department of Energy Congestion Study Notice of Public Comment: Federal Register Notice, Volume 79, No. 160, August 19, 2014 National Congestion Study Notice of Public Comment: Federal Register Notice, Volume 79, No. 160, August 19, 2014 On August 19, 2014, the Department issued a Federal Register Notice announcing the availability of a draft of its current National Electric Transmission Congestion Study for public comment. The Notice is

  19. INTEGRATED ELECTRIC DRIVE WITH HV2 MODULAR ELECTRIC MACHINE AND SIC BASED POWER CONVERTERS

    Broader source: Energy.gov [DOE]

    The Ohio State University – Columbus, OH A high performance, high-speed drive capable of integrating into electric grids will be designed, tested and demonstrated. If successful, the proposed project will significantly advance transformer-less drive technologies for a range of industries and motor applications. Fact sheet coming soon.

  20. Electric Drive Semiconductor Manufacturing (EDSM) Center | Department of

    Broader source: Energy.gov (indexed) [DOE]

    for the US Department of Energy Electric Drive Inverter R&D Madhu Chinthavali Email: chinthavalim@ornl.gov Phone: 865-946-1411 This presentation does not contain any proprietary, confidential, or otherwise restricted information U.S. DOE Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting Oak Ridge National Laboratory June10, 2015 Project ID: EDT053 2 Overview * Start - FY15 * Finish - FY17 * 17% complete * Availability and the cost of the WBG devices for the

  1. Battery and Electric Drive Awardee List from American Recovery and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reinvestment Act funding | Department of Energy Awardee List from American Recovery and Reinvestment Act funding Battery and Electric Drive Awardee List from American Recovery and Reinvestment Act funding This is a list of the awardees from American Recovery and Reinvestment Act funding: $1.5 billion in grants to United States-based manufacturers to produce batteries and their components and to expand battery recycling capacity $500 million in grants to United States-based manufacturers to

  2. Battery and Electric Drive Manufacturing Distribution Map - American

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery and Reinvestment Act funding | Department of Energy Manufacturing Distribution Map - American Recovery and Reinvestment Act funding Battery and Electric Drive Manufacturing Distribution Map - American Recovery and Reinvestment Act funding This is a map of the following awardees from the American Recovery and Reinvestment Act: $1.5 billion in grants to United States-based manufacturers to produce batteries and their components and to expand battery recycling capacity $500 million in

  3. First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project...

    Office of Science (SC) Website

    ORPC's TidGen(tm) turbine generator unit. R&D Opportunity Advanced water power technologies include devices capable of extracting electrical power from waves, water currents, and ...

  4. How to be a Clean Energy Baller: Drive an Electric Car | Department...

    Office of Environmental Management (EM)

    How to be a Clean Energy Baller: Drive an Electric Car How to be a Clean Energy Baller: Drive an Electric Car September 8, 2016 - 2:50pm Addthis Illustration by Sarah Harman, ...

  5. EV Everywhere: Electric Drive Systems Bring Power to Plug-in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the first time a domestic automaker is building electric motors for an electric vehicle ... electric drive system in a plug-in electric vehicle bridges two different types of energy. ...

  6. Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Electric Drive Inverter R&D Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric drive inverter R&D. edt053_chinthavali_2015_o.pdf (2.32 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2016: Electric Drive Inverter

  7. Vehicle Technologies Office Merit Review 2016: Electric Drive Inverter R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Electric Drive Inverter R&D Vehicle Technologies Office Merit Review 2016: Electric Drive Inverter R&D Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Electric Drive Systems edt053_chinthavali_2016_o_web.pdf (1.97 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Electric Drive

  8. First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maine | Department of Energy First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine October 1, 2013 - 12:33pm Addthis This is an excerpt from the Third Quarter 2013 edition of the Wind Program R&D Newsletter. A 65-foot tall, 20-kilowatt wind turbine with a white rotor and a yellow tower on a floating platform in the ocean. Castine, Maine - On May 31, 2013, the University of Maine's

  9. Controlling of grid connected photovoltaic lighting system with fuzzy logic

    SciTech Connect (OSTI)

    Saglam, Safak; Ekren, Nazmi; Erdal, Hasan

    2010-02-15

    In this study, DC electrical energy produced by photovoltaic panels is converted to AC electrical energy and an indoor area is illuminated using this energy. System is controlled by fuzzy logic algorithm controller designed with 16 rules. Energy is supplied from accumulator which is charged by photovoltaic panels if its energy would be sufficient otherwise it is supplied from grid. During the 1-week usage period at the semester time, 1.968 kWh energy is used from grid but designed system used 0.542 kWh energy from photovoltaic panels at the experiments. Energy saving is determined by calculations and measurements for one education year period (9 months) 70.848 kWh. (author)

  10. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, C.E.

    1994-12-27

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

  11. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, Jerome B.; Boothe, Richard W.; Konrad, Charles E.

    1995-01-01

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

  12. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

    1995-04-04

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

  13. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA)

    1994-01-01

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

  14. Statistical Characterization of Medium-Duty Electric Vehicle Drive Cycles

    SciTech Connect (OSTI)

    Prohaska, Robert; Duran, Adam; Ragatz, Adam; Kelly, Kenneth

    2015-05-03

    In an effort to help commercialize technologies for electric vehicles (EVs) through deployment and demonstration projects, the U.S. Department of Energy's (DOE's) American Recovery and Reinvestment Act (ARRA) provided funding to participating U.S. companies to cover part of the cost of purchasing new EVs. Within the medium- and heavy-duty commercial vehicle segment, both Smith Electric Newton and and Navistar eStar vehicles qualified for such funding opportunities. In an effort to evaluate the performance characteristics of the new technologies deployed in these vehicles operating under real world conditions, data from Smith Electric and Navistar medium-duty EVs were collected, compiled, and analyzed by the National Renewable Energy Laboratory's (NREL) Fleet Test and Evaluation team over a period of 3 years. More than 430 Smith Newton EVs have provided data representing more than 150,000 days of operation. Similarly, data have been collected from more than 100 Navistar eStar EVs, resulting in a comparative total of more than 16,000 operating days. Combined, NREL has analyzed more than 6 million kilometers of driving and 4 million hours of charging data collected from commercially operating medium-duty electric vehicles in various configurations. In this paper, extensive duty-cycle statistical analyses are performed to examine and characterize common vehicle dynamics trends and relationships based on in-use field data. The results of these analyses statistically define the vehicle dynamic and kinematic requirements for each vehicle, aiding in the selection of representative chassis dynamometer test cycles and the development of custom drive cycles that emulate daily operation. In this paper, the methodology and accompanying results of the duty-cycle statistical analysis are presented and discussed. Results are presented in both graphical and tabular formats illustrating a number of key relationships between parameters observed within the data set that relate to

  15. The eGallon: How Much Cheaper Is It to Drive on Electricity? | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy The eGallon: How Much Cheaper Is It to Drive on Electricity? The eGallon: How Much Cheaper Is It to Drive on Electricity? June 10, 2013 - 11:00pm Addthis eGallon: Compare the costs of driving with electricity What is eGallon? It is the cost of fueling a vehicle with electricity compared to a similar vehicle that runs on gasoline. Did you know? On average, it costs about half as much to drive an electric vehicle. Find out how much it costs to fuel an electric vehicle in your state

  16. Vehicle Technologies Office: 2015 Electric Drive Technologies Annual R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Report | Department of Energy Electric Drive Technologies Annual R&D Progress Report Vehicle Technologies Office: 2015 Electric Drive Technologies Annual R&D Progress Report The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and

  17. Secretary Chu to Kick-off the Electric Drive Transportation Association's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Motorcade | Department of Energy to Kick-off the Electric Drive Transportation Association's Innovation Motorcade Secretary Chu to Kick-off the Electric Drive Transportation Association's Innovation Motorcade April 18, 2011 - 12:00am Addthis WASHINGTON - Tuesday, April, 19, 2011, U.S. Energy Secretary Steven Chu will help kick-off the Electric Drive Transportation Association Annual Conference by participating in the Innovation Motorcade, an all electric vehicle motorcade that

  18. Socially optimal electric driving range of plug-in hybrid electric vehicles

    SciTech Connect (OSTI)

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    Our study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. Moreover, when workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Finally, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.

  19. Socially optimal electric driving range of plug-in hybrid electric vehicles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    Our study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. Moreover, when workplace charging is available, the optimalmore » electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Finally, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.« less

  20. Socially optimal electric driving range of plug-in hybrid electric vehicles

    SciTech Connect (OSTI)

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.

  1. Compatibility Study of Protective Relaying in a Grid-Connected Fuel Cell

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-04-15

    addressed other important and timely issues. For instance, the study includes an evaluation of the effectiveness of the fuel cell's synthesized relay protection scheme relative to the recently issued IEEE 1547 interconnection standard. Together, these activities should serve to reduce the number of unknowns pertaining to unconventional protective circuits, to the benefit of DG manufacturers, vendors, prospective and current users of DG, and electricity suppliers/distributors. Although more grid-connect fuel cell interruptions were encountered in this study than originally anticipated, and the investigation and findings became quite complex, every effort was made to clearly summarize the interconnection causes and issues throughout the report and especially in the summary found in Sect. 4. ORNL's funding of this study is sponsored equally by (1) the Department of Energy's (DOE's) Office of Distributed Energy Resources and (2) the Distributed Generation Technologies program of the Tennessee Valley Authority (TVA).

  2. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.; Burress, Timothy A; Marlino, Laura D

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if

  3. Highway vehicle electric drive in the United States : 2009 status and issues.

    SciTech Connect (OSTI)

    Santini, D. J.; Energy Systems

    2011-02-16

    The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drive are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.

  4. Impacts of Cooling Technology on Solder Fatigue for Power Modules in Electric Traction Drive Vehicles: Preprint

    SciTech Connect (OSTI)

    O'Keefe, M.; Vlahinos, A.

    2009-08-01

    Describes three power module cooling topologies for electric traction drive vehicles: two advanced options using jet impingement cooling and one option using pin-fin liquid cooling.

  5. EV Everywhere Electric Drive Workshop: Preliminary Target-Setting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adv SI Adv CI SI HEV SI PHEV10 SI PHEV40 BEV100 BEV300 Levelized cost of driving, 2011mile Fuel Cost (NPV) Drive, Wheels, Tires, 12V Battery Transmission Generator Motor Energy ...

  6. July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Office of Energy Efficiency and Renewable Energy (EERE)

    These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

  7. Communication and Control of Electric Vehicles Supporting Renewables: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Kuss, M.; Denholm, P.

    2009-08-01

    Discusses the technologies needed, potential scenarios, limitations, and opportunities for using grid-connected renewable energy to fuel the electric vehicles of the future.

  8. PVUSA experience with power conversion for grid-connected photovoltaic systems

    SciTech Connect (OSTI)

    Stolte, W.

    1995-11-01

    The Photovoltaics for Utility Scale Application (PVUSA) project was established to demonstrate photovoltaic (PV) systems in grid-connected utility applications. One of PVUSA`s key objectives is to evaluate the performance, reliability, and cost of the PV balance of system (BOS). Power conditioning units (PCUs) are the interface between the dc PV arrays and the ac utility lines, and have proved to be the most critical element in grid-connected PV systems. There are five different models of PCUs at PVUSA`s Davis and Kerman sites. This report describes the design, testing, performance characteristics, and maintenance history of each of these PCUs. PVUSA required PCUs in the power range 25 kW to 500 kW which could operate automatically and reliably under changing conditions of sunlight and changing conditions on the utility grid. Although a number of manufacturers can provide PCUs in this power range, none of these PCUs have been produced in sufficient quantity to allow refinement of a particular model into the highly reliable unit needed for long-term, unattended operation. Factory tests were useful but limited by the inability to test under full power and changing power conditions. The inability to completely test PCUs at the factory resulted in difficulty during startup, field testing, and subsequent operation. PVUSA has made significant progress in understanding the requirements for PCUs in grid-connected PV applications and improving field performance. This record of PVUSA`s experience with a variety of PCUs is intended to help utilities and their suppliers identify and retain the good performance characteristics of PCUs, and to make improvements where necessary to meet the needs of utilities.

  9. Modular Cascaded H-Bridge Multilevel PV Inverter with Distributed MPPT for Grid-Connected Applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Bailu; Hang, Lijun; Mei, Jun; Riley, Cameron; Tolbert, Leon M.; Ozpineci, Burak

    2014-09-04

    This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking (MPPT) control scheme is applied to both single-phase and three-phase multilevel inverters, which allows the independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is alsomore » proposed. An experimental three-phase 7-level cascaded H-bridge inverter has been built utilizing 9 H-bridge modules (3 modules per phase). Each H-bridge module is connected to a 185 W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach.« less

  10. Modular Cascaded H-Bridge Multilevel PV Inverter with Distributed MPPT for Grid-Connected Applications

    SciTech Connect (OSTI)

    Xiao, Bailu; Hang, Lijun; Mei, Jun; Riley, Cameron; Tolbert, Leon M.; Ozpineci, Burak

    2014-09-04

    This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking (MPPT) control scheme is applied to both single-phase and three-phase multilevel inverters, which allows the independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is also proposed. An experimental three-phase 7-level cascaded H-bridge inverter has been built utilizing 9 H-bridge modules (3 modules per phase). Each H-bridge module is connected to a 185 W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach.

  11. Fact #791: August 5, 2013 Comparative Costs to Drive an Electric Vehicle

    Broader source: Energy.gov [DOE]

    On average, it costs about three times less to drive an electric vehicle than a conventional gasoline-powered vehicle. The Department of Energy has created a new term, called the eGallon, to allow...

  12. Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop August 18, 2010 - 5:30pm Addthis Matt Rogers Matt Rogers McKinsey & Company Blogs have been abuzz ...

  13. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (62 miles) while the Tesla Model S with an 85 kW-hr battery pack has a range of 265 miles. ... Both Tesla models exceed 200 miles of range. Driving Ranges for Model Year 2014 Electric ...

  14. Market Implications of Synergism Between Low Drag Area and Electric Drive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Savings | Department of Energy Implications of Synergism Between Low Drag Area and Electric Drive Fuel Savings Market Implications of Synergism Between Low Drag Area and Electric Drive Fuel Savings Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. market_implications_synergism.pdf (547.65 KB) More Documents & Publications Battery Pack Requirements and Targets Validation FY 2009 DOE Vehicle Technologies Program Argonne

  15. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  16. Battery and Electric Drive Awardee List from American Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Awardee List from American Recovery and Reinvestment Act funding Battery and Electric ... and their components and to expand battery recycling capacity 500 million in grants ...

  17. Driving Change in Residential Energy Efficiency: Electric Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    Change in Residential Energy Efficiency: Electric Vehicles (301), call slides and discussion summary. Call Slides and Discussion Summary (4.41 MB) More Documents & Publications ...

  18. Extended cage adjustable speed electric motors and drive packages

    DOE Patents [OSTI]

    Hsu, J.S.

    1999-03-23

    The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced. 12 figs.

  19. Extended cage adjustable speed electric motors and drive packages

    DOE Patents [OSTI]

    Hsu, John S.

    1999-01-01

    The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced.

  20. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles |

    Broader source: Energy.gov (indexed) [DOE]

    Systems on Combustion Engines | Department of Energy This poster reports on recent developments, achievements, and capabilities within a virtual environment to predict the dynamic behavior of the Rankine cycle within real driving cycles. p-11_janssens.pdf (168.59 KB) More Documents & Publications Biodiesel Impact on Engine Lubricant Oil Dilution Statistical Analysis of Transient Cycle Test Results in a 40 CFR Part 1065 Engine Dynamometer Test Cell Small-Particle Solar Receiver for

  1. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System...

    Office of Scientific and Technical Information (OSTI)

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of ...

  2. Integration Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  3. Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect (OSTI)

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

    2010-12-01

    Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

  4. Evaluation of 2005 Honda Accord Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, R.H.; Burress, T.A.; Marlino, L.D.

    2006-09-11

    The Hybrid Electric Vehicle (HEV) program officially began in 1993 as a five-year, cost-shared partnership between the U.S. Department of Energy (DOE) and American auto manufacturers: General Motors, Ford, and Daimler Chrysler. Currently, HEV research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. The vehicle systems technologies subprogram, which is one of four subprograms under the FCVT program, supports the efforts of the FreedomCAR through a three-phase approach [1] intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the vehicle systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in electric, and fuel-cell-powered vehicles.

  5. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    SciTech Connect (OSTI)

    Caille, Gary

    2013-12-13

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

  6. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Citation Details In-Document Search Title: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles The purpose of this project was for Seeo to develop a high energy lithium based technology with targets of over 500 Wh/l and 325 Wh/kg. Seeo would leverage the work already achieved with its unique proprietary solid polymer DryLyteTM technology in cells which had a specific energy density of 220

  7. EERE Energy Impacts: You Can Now Drive a Fuel Cell Electric Vehicle |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Impacts: You Can Now Drive a Fuel Cell Electric Vehicle EERE Energy Impacts: You Can Now Drive a Fuel Cell Electric Vehicle April 10, 2015 - 11:45am Addthis Toyota Mirai FCEV (top left), Hyundai Tucson FCEV (top right), and Honda’s concept of its FCEV (bottom)—all showcased during the 2015 Washington Auto Show. | Photos by Sarah Gerrity, Energy Department Toyota Mirai FCEV (top left), Hyundai Tucson FCEV (top right), and Honda's concept of its FCEV

  8. A grid-connected photovoltaic power conversion system with single-phase multilevel inverter

    SciTech Connect (OSTI)

    Beser, Ersoy; Arifoglu, Birol; Camur, Sabri; Beser, Esra Kandemir

    2010-12-15

    This paper presents a grid-connected photovoltaic (PV) power conversion system based on a single-phase multilevel inverter. The proposed system fundamentally consists of PV arrays and a single-phase multilevel inverter structure. First, configuration and structural parts of the PV assisted inverter system are introduced in detail. To produce reference output voltage waves, a simple switching strategy based on calculating switching angles is improved. By calculated switching angles, the reference signal is produced as a multilevel shaped output voltage wave. The control algorithm and operational principles of the proposed system are explained. Operating PV arrays in the same load condition is a considerable point; therefore a simulation study is performed to arrange the PV arrays. After determining the number and connection types of the PV arrays, the system is configured through the arrangement of the PV arrays. The validity of the proposed system is verified through simulations and experimental study. The results demonstrate that the system can achieve lower total harmonic distortion (THD) on the output voltage and load current, and it is capable of operating synchronous and transferring power values having different characteristic to the grid. Hence, it is suitable to use the proposed configuration as a PV power conversion system in various applications. (author)

  9. Market Implications of Synergism Between Low Drag Area and Electric Drive Fuel Savings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implications of Synergism Between Low Drag Area and Electric Drive Fuel Savings by Dan Santini, Anant Vyas Center for Transportation Research Argonne National Laboratory Doug Saucedo, Bryan Jungers Electric Power Research Institute Presented at: Light-Duty Vehicle Workshop July 26, 2010 U.S. Department of Energy Washington DC The submitted manuscript has been created by Argonne National Laboratory, a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC, under Contract No.

  10. Optimizing and Diversifying Electric Vehicle Driving Range for U.S. Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong

    2014-08-11

    Properly determining the driving range is critical for accurately predicting the sales and social benefits of battery electric vehicles (BEVs). This study proposes a framework for optimizing the driving range by minimizing the sum of battery price, electricity cost, and range limitation cost referred to as the "range-related cost" as a measurement of range anxiety. The objective function is linked to policy-relevant parameters, including battery cost and price markup, battery utilization, charging infrastructure availability, vehicle efficiency, electricity and gasoline prices, household vehicle ownership, daily driving patterns, discount rate, and perceived vehicle lifetime. Qualitative discussion of the framework and its empirical application to a sample (N=36664) representing new car drivers in the United States is included. The quantitative results strongly suggest that ranges of less than 100 miles are likely to be more popular in the BEV market for a long period of time. The average optimal range among U.S. drivers is found to be largely inelastic. Still, battery cost reduction significantly drives BEV demand toward longer ranges, whereas improvement in the charging infrastructure is found to significantly drive BEV demand toward shorter ranges. In conclusion, the bias of a single-range assumption and the effects of range optimization and diversification in reducing such biases are both found to be significant.

  11. Optimizing and Diversifying Electric Vehicle Driving Range for U.S. Drivers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Zhenhong

    2014-08-11

    Properly determining the driving range is critical for accurately predicting the sales and social benefits of battery electric vehicles (BEVs). This study proposes a framework for optimizing the driving range by minimizing the sum of battery price, electricity cost, and range limitation cost referred to as the "range-related cost" as a measurement of range anxiety. The objective function is linked to policy-relevant parameters, including battery cost and price markup, battery utilization, charging infrastructure availability, vehicle efficiency, electricity and gasoline prices, household vehicle ownership, daily driving patterns, discount rate, and perceived vehicle lifetime. Qualitative discussion of the framework and its empiricalmore » application to a sample (N=36664) representing new car drivers in the United States is included. The quantitative results strongly suggest that ranges of less than 100 miles are likely to be more popular in the BEV market for a long period of time. The average optimal range among U.S. drivers is found to be largely inelastic. Still, battery cost reduction significantly drives BEV demand toward longer ranges, whereas improvement in the charging infrastructure is found to significantly drive BEV demand toward shorter ranges. In conclusion, the bias of a single-range assumption and the effects of range optimization and diversification in reducing such biases are both found to be significant.« less

  12. Optimizing and Diversifying Electric Vehicle Driving Range for U.S. Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong

    2014-01-01

    Properly determining the driving range is critical for accurately predicting the sales and social benefits of battery electric vehicles (BEVs). This study proposes a framework for optimizing the driving range by minimizing the sum of battery price, electricity cost, and range limitation cost referred to as the range-related cost as a measurement of range anxiety. The objective function is linked to policy-relevant parameters, including battery cost and price markup, battery utilization, charging infrastructure availability, vehicle efficiency, electricity and gasoline prices, household vehicle ownership, daily driving patterns, discount rate, and perceived vehicle lifetime. Qualitative discussion of the framework and its empirical application to a sample (N=36,664) representing new car drivers in the United States is included. The quantitative results strongly suggest that ranges of less than 100 miles are likely to be more popular in the BEV market for a long period of time. The average optimal range among U.S. drivers is found to be largely inelastic. Still, battery cost reduction significantly drives BEV demand toward longer ranges, whereas improvement in the charging infrastructure is found to significantly drive BEV demand toward shorter ranges. The bias of a single-range assumption and the effects of range optimization and diversification in reducing such biases are both found to be significant.

  13. Comparison of a synergetic battery pack drive system to a pulse width modulated AC induction motor drive for an electric vehicle

    SciTech Connect (OSTI)

    Davis, A.; Salameh, Z.M.; Eaves, S.S.

    1999-06-01

    A new battery configuration technique and accompanying control circuitry, termed a Synergetic Battery Pack (SBP), is designed to work with Lithium batteries, and can be used as both an inverter for an electric vehicle AC induction motor drive and as a battery charger. In this paper, the performance of a Synergetic Battery Pack during motor drive operation is compared via computer simulation with a conventional motor drive which uses sinusoidal pulse width modulation (SPWM) to determine its effectiveness as a motor drive. The study showed that the drive efficiency was compatible with the conventional system, and offered a significant advantage in the lower frequency operating ranges. The voltage total harmonic distortion (THD) of the SBP was significantly lower than the PWM drive output, but the current THD was slightly higher due to the shape of the harmonic spectrum. In conclusion, the SBP is an effective alternative to a conventional drive, but the real advantage lies in its battery management capabilities and charger operation.

  14. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    SciTech Connect (OSTI)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  15. Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle

    SciTech Connect (OSTI)

    Jehlik, Forrest; LaClair, Tim J.

    2014-04-01

    Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

  16. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  17. Dynamic driving cycle analyses using electric vehicle time-series data

    SciTech Connect (OSTI)

    Staackmann, M.; Liaw, B.Y.; Yun, D.Y.Y.

    1997-12-31

    Dynamic analyses of time-series data collected from real-world driving-cycle field testing of electric vehicles is providing evidence that certain driving-cycle conditions can significantly impact vehicle performance. In addition, vehicle performance results derived from time-series data show relationships that help to characterize driving cycles. Such findings confirm the advantages of time-series data over statistical data, in allowing correlation of vehicle performance characteristics with driving cycles. The driving-cycle vehicle performance analyses were performed using time-series data collected at the Electric and Hybrid Vehicle (EHV) National Data Center (NDC). A total of 71 EHVs are registered in the NDC and over 4,000 trips files have already been uploaded into the NDC database, as of may 1997. Numerous EHVs on multiple trips have been analyzed over the past two years. This paper presents the results of time-series data collected and analyzed for two specific vehicles of the overall program, to illustrate the value of time-series data. The data were analyzed to establish criteria for defining different driving cycles for the day-to-day trips made by vehicles in the program. The authors examined specific parameters such as average vehicle speed, number of stops during a trip, average distance traveled between stops, vehicle acceleration, and average DC kWh consumed per kilometer. Correlation among various parameters is presented in relationship to three driving cycles (highway, suburban, and urban), along with suggested ranges of parametric values defining the regimes of the different cycles.

  18. Statistical Characterization of Medium-Duty Electric Vehicle Drive Cycles; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Prohaska, R.; Duran, A.; Ragatz, A.; Kelly, K.

    2015-05-03

    With funding from the U.S. Department of Energy’s Vehicle Technologies Office, the National Renewable Energy Laboratory (NREL) conducts real-world performance evaluations of advanced medium- and heavy-duty fleet vehicles. Evaluation results can help vehicle manufacturers fine-tune their designs and assist fleet managers in selecting fuel-efficient, low-emission vehicles that meet their economic and operational goals. In 2011, NREL launched a large-scale performance evaluation of medium-duty electric vehicles. With support from vehicle manufacturers Smith and Navistar, NREL research focused on characterizing vehicle operation and drive cycles for electric delivery vehicles operating in commercial service across the nation.

  19. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis DOE VTP Annual Merit Review PI: Robb A. Barnitt Organization: NREL May 10, 2011 Project ID: VSS043 This presentation does not contain any proprietary, confidential or otherwise restricted information NATIONAL RENEWABLE ENERGY LABORATORY Project Overview 2 Timeline * Project started in FY09 * Project is 75% complete Budget * Total DOE project funding - FY09: $150k - FY10: $150k - FY11: $250k * Total project partner funding: -

  20. Progress of the Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.; Han, T.; Hartridge, S.; Shaffer, C.; Kim, G. H.; Pannala, S.

    2013-06-01

    This presentation, Progress of Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) is about simulation and computer-aided engineering (CAE) tools that are widely used to speed up the research and development cycle and reduce the number of build-and-break steps, particularly in the automotive industry. Realizing this, DOE?s Vehicle Technologies Program initiated the CAEBAT project in April 2010 to develop a suite of software tools for designing batteries.

  1. NREL: Energy Storage - Computer-Aided Engineering for Electric-Drive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT) Graphic of a 24-cell module battery prototype. GM pack-level validation of CAEBAT tool using prototype for 24-cell module. Left: CAD geometry model. Right: FLUENT simulations. Images: Courtesy of GM Graphic of stack pouch, wound cylindrical, and wound prismatic battery cells. NREL enhancements to the framework functionality of cell domain models provided complete tool sets for CAEBAT partner

  2. 2014-04-30 Public Meeting Presentation Slides: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  3. 2014-04-30 Public Meeting Agenda: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    This document is the agenda for the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting being held on April 30, 2014.

  4. Agenda for Public Meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    Download the agenda below for the July 11 Public Meeting on the Physical Characterization of Grid-Connected Commercial and  Residential Buildings End-Use Equipment and Appliances.

  5. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather

    SciTech Connect (OSTI)

    Jeffers, M. A.; Chaney, L.; Rugh, J. P.

    2015-04-30

    Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehicle climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation. An advanced thermal test manikin was used to assess a zonal approach to climate control. In addition, vehicle thermal analysis was used to support testing by exploring thermal load reduction strategies, evaluating occupant thermal comfort, and calculating EV range impacts. Through stationary cooling tests and vehicle simulations, a zonal cooling configuration demonstrated range improvement of 6%-15%, depending on the drive cycle. A combined cooling configuration that incorporated thermal load reduction and zonal cooling strategies showed up to 33% improvement in EV range.

  6. Oak Ridge National Laboratory Annual Progress Report for the Electric Drive Technologies Program

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2015-10-01

    The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Electric Drive Technologies (EDT) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs. In supporting the development of advanced vehicle propulsion systems, the EDT subprogram fosters the development of technologies that will significantly improve efficiency, costs, and fuel economy

  7. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System Interim Report

    SciTech Connect (OSTI)

    Ayers, C.W.

    2004-11-23

    Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

  8. Sensitivity of Battery Electric Vehicle Economics to Drive Patterns, Vehicle Range, and Charge Strategies

    SciTech Connect (OSTI)

    Neubauer, J.; Brooker, A.; Wood, E.

    2012-07-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs discourage many potential purchasers. Making an economic comparison with conventional alternatives is complicated in part by strong sensitivity to drive patterns, vehicle range, and charge strategies that affect vehicle utilization and battery wear. Identifying justifiable battery replacement schedules and sufficiently accounting for the limited range of a BEV add further complexity to the issue. The National Renewable Energy Laboratory developed the Battery Ownership Model to address these and related questions. The Battery Ownership Model is applied here to examine the sensitivity of BEV economics to drive patterns, vehicle range, and charge strategies when a high-fidelity battery degradation model, financially justified battery replacement schedules, and two different means of accounting for a BEV's unachievable vehicle miles traveled (VMT) are employed. We find that the value of unachievable VMT with a BEV has a strong impact on the cost-optimal range, charge strategy, and battery replacement schedule; that the overall cost competitiveness of a BEV is highly sensitive to vehicle-specific drive patterns; and that common cross-sectional drive patterns do not provide consistent representation of the relative cost of a BEV.

  9. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    SciTech Connect (OSTI)

    John Smart; Stephen Schey

    2012-04-01

    As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV

  10. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    SciTech Connect (OSTI)

    Cardoso, Goncalo; Stadler, Michael; Bozchalui, Mohammed C.; Sharma, Ratnesh; Marnay, Chris; Barbosa-Povoa, Ana; Ferrao, Paulo

    2013-12-06

    The large scale penetration of electric vehicles (EVs) will introduce technical challenges to the distribution grid, but also carries the potential for vehicle-to-grid services. Namely, if available in large enough numbers, EVs can be used as a distributed energy resource (DER) and their presence can influence optimal DER investment and scheduling decisions in microgrids. In this work, a novel EV fleet aggregator model is introduced in a stochastic formulation of DER-CAM [1], an optimization tool used to address DER investment and scheduling problems. This is used to assess the impact of EV interconnections on optimal DER solutions considering uncertainty in EV driving schedules. Optimization results indicate that EVs can have a significant impact on DER investments, particularly if considering short payback periods. Furthermore, results suggest that uncertainty in driving schedules carries little significance to total energy costs, which is corroborated by results obtained using the stochastic formulation of the problem.

  11. Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives

    SciTech Connect (OSTI)

    Giorgio Rizzoni

    2005-09-30

    Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a

  12. Statistical Characterization of Medium-Duty Electric Vehicle Drive Cycles: Preprint

    SciTech Connect (OSTI)

    Prohaska, R.; Duran, A.; Ragatz, A.; Kelly, K.

    2015-05-01

    In an effort to help commercialize technologies for electric vehicles (EVs) through deployment and demonstration projects, the U.S. Department of Energy’s (DOE's) American Recovery and Reinvestment Act (ARRA) provided funding to participating U.S. companies to cover part of the cost of purchasing new EVs. Within the medium- and heavy-duty commercial vehicle segment, both Smith Electric Newton and and Navistar eStar vehicles qualified for such funding opportunities. In an effort to evaluate the performance characteristics of the new technologies deployed in these vehicles operating under real world conditions, data from Smith Electric and Navistar medium-duty EVs were collected, compiled, and analyzed by the National Renewable Energy Laboratory's (NREL) Fleet Test and Evaluation team over a period of 3 years. More than 430 Smith Newton EVs have provided data representing more than 150,000 days of operation. Similarly, data have been collected from more than 100 Navistar eStar EVs, resulting in a comparative total of more than 16,000 operating days. Combined, NREL has analyzed more than 6 million kilometers of driving and 4 million hours of charging data collected from commercially operating medium-duty electric vehicles in various configurations. In this paper, extensive duty-cycle statistical analyses are performed to examine and characterize common vehicle dynamics trends and relationships based on in-use field data. The results of these analyses statistically define the vehicle dynamic and kinematic requirements for each vehicle, aiding in the selection of representative chassis dynamometer test cycles and the development of custom drive cycles that emulate daily operation. In this paper, the methodology and accompanying results of the duty-cycle statistical analysis are presented and discussed. Results are presented in both graphical and tabular formats illustrating a number of key relationships between parameters observed within the data set that relate to

  13. Characterization of In-Use Medium Duty Electric Vehicle Driving and Charging Behavior: Preprint

    SciTech Connect (OSTI)

    Duran, A.; Ragatz, A.; Prohaska, R.; Kelly, K.; Walkowicz, K.

    2014-11-01

    The U.S. Department of Energy's American Recovery and Reinvestment Act (ARRA) deployment and demonstration projects are helping to commercialize technologies for all-electric vehicles (EVs). Under the ARRA program, data from Smith Electric and Navistar medium duty EVs have been collected, compiled, and analyzed in an effort to quantify the impacts of these new technologies. Over a period of three years, the National Renewable Energy Laboratory (NREL) has compiled data from over 250 Smith Newton EVs for a total of over 100,000 days of in-use operation. Similarly, data have been collected from over 100 Navistar eStar vehicles, with over 15,000 operating days having been analyzed. NREL has analyzed a combined total of over 4 million kilometers of driving and 1 million hours of charging data for commercial operating medium duty EVs. In this paper, the authors present an overview of medium duty EV operating and charging behavior based on in-use data collected from both Smith and Navistar vehicles operating in the United States. Specifically, this paper provides an introduction to the specifications and configurations of the vehicles examined; discusses the approach and methodology of data collection and analysis, and presents detailed results regarding daily driving and charging behavior. In addition, trends observed over the course of multiple years of data collection are examined, and conclusions are drawn about early deployment behavior and ongoing adjustments due to new and improving technology. Results and metrics such as average daily driving distance, route aggressiveness, charging frequency, and liter per kilometer diesel equivalent fuel consumption are documented and discussed.

  14. Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System

    Broader source: Energy.gov [DOE]

    As part of the Obama Administration’s all-of-the-above energy strategy, the Energy Department recognized the nation’s first commercial enhanced geothermal system (EGS) project to supply electricity to the grid.

  15. A $5 Million Boost for Midsize Wind Turbines and Grid Connectivity

    Office of Energy Efficiency and Renewable Energy (EERE)

    With better forecasting, utilities can more reliably connect variable power sources such as wind energy with electricity grids, and can decrease their need for back-up energy sources such as natural gas and hydropower.

  16. EA-1723: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Application White Marsh, Maryland and Wixom, Michigan

    Broader source: Energy.gov [DOE]

    DOE’s Proposed Action is to provide GM with $105,387,000 in financial assistance in a cost sharing arrangement to facilitate construction and operation of a manufacturing facility to produce electric motor components and assemble an electric drive unit. This Proposed Action through the Vehicle Technologies Program will accelerate the development and production of electric-drive vehicle systems and reduce the United States’ consumption of petroleum. This Proposed Action will also meaningfully assist in the nation’s economic recovery by creating manufacturing jobs in the United States in accordance with the objectives of the Recovery Act.

  17. Silicon Valley Power- Solar Electric Buy Down Program

    Broader source: Energy.gov [DOE]

    Silicon Valley Power (SVP) offers incentives for the installation of new grid-connected solar electric (photovoltaic, or PV) systems. Incentive levels will step down over the life of the program...

  18. Three-Phase Modular Cascaded H-Bridge Multilevel Inverter with Individual MPPT for Grid-Connected Photovoltaic Systems

    SciTech Connect (OSTI)

    Xiao, Bailu; Hang, Lijun; Riley, Cameron; Tolbert, Leon M; Ozpineci, Burak

    2013-01-01

    A three-phase modular cascaded H-bridge multilevel inverter for a grid-connected photovoltaic (PV) system is presented in this paper. To maximize the solar energy extraction of each PV string, an individual maximum power point tracking (MPPT) control scheme is applied, which allows the independent control of each dc-link voltage. PV mismatches may introduce unbalanced power supplied to the three-phase system. To solve this issue, a control scheme with modulation compensation is proposed. The three-phase modular cascaded multilevel inverter prototype has been built. Each H-bridge is connected to a 185 W solar panel. Simulation and experimental results are presented to validate the proposed ideas.

  19. EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the “Delphi Kokomo, IN Corporate Technology Center” (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOE’s Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the nation’s economic recovery by creating manufacturing jobs in the United States. The Delphi CTC Project would involve the construction and operation of a 10,700 square foot (ft2) utilities building containing boilers and heaters and a 70,000 ft2 engineering laboratory, as well as site improvements (roads, parking, buildings, landscaping,and lighting).

  20. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy

    SciTech Connect (OSTI)

    Mellit, Adel; Pavan, Alessandro Massi

    2010-05-15

    Forecasting of solar irradiance is in general significant for planning the operations of power plants which convert renewable energies into electricity. In particular, the possibility to predict the solar irradiance (up to 24 h or even more) can became - with reference to the Grid Connected Photovoltaic Plants (GCPV) - fundamental in making power dispatching plans and - with reference to stand alone and hybrid systems - also a useful reference for improving the control algorithms of charge controllers. In this paper, a practical method for solar irradiance forecast using artificial neural network (ANN) is presented. The proposed Multilayer Perceptron MLP-model makes it possible to forecast the solar irradiance on a base of 24 h using the present values of the mean daily solar irradiance and air temperature. An experimental database of solar irradiance and air temperature data (from July 1st 2008 to May 23rd 2009 and from November 23rd 2009 to January 24th 2010) has been used. The database has been collected in Trieste (latitude 45 40'N, longitude 13 46'E), Italy. In order to check the generalization capability of the MLP-forecaster, a K-fold cross-validation was carried out. The results indicate that the proposed model performs well, while the correlation coefficient is in the range 98-99% for sunny days and 94-96% for cloudy days. As an application, the comparison between the forecasted one and the energy produced by the GCPV plant installed on the rooftop of the municipality of Trieste shows the goodness of the proposed model. (author)

  1. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles

  2. Performance of a grid connected residential photovoltaic system with energy storage

    SciTech Connect (OSTI)

    Palomino, G.E. [SRP, Phoenix, AZ (United States); Wiles, J. [Southwest Technology Development Institute, Las Cruces, NM (United States); Stevens, J. [Sandia National Labs., Albuquerque, NM (United States); Goodman, F. [EPRI, Palo Alto, CA (United States)

    1997-11-01

    In 1995, Salt River Project (SRP), a public power utility located in Phoenix, Arizona, collaborated with the Electric Power Research Institute (EPRI) and Sandia National Laboratories (Sandia) to initiate a photovoltaic (PV) power system with battery energy storage to match PV output with residential customer peak energy demand periods. The PV power system, a 2.4kW PV array with 25.2kWh of energy storage, was designed and installed by Southwest Technology Development Institute (SWTDI) at an SRP-owned facility, known as the Chandler Research House during August 1995. This paper presents an overview of the system design, operation and performance. 3 refs., 2 figs., 2 tabs.

  3. GAP analysis towards a design qualification standard development for grid-connected photovoltaic inverters.

    SciTech Connect (OSTI)

    Tamizhmani, Govindasamy; Granata, Jennifer E.; Maracas, George; Ayyanar, Raja; Marinella, Matthew; Venkataramanan, Sai Balasubramanian Alampoondi

    2011-06-01

    A dedicated design qualification standard for PV inverters does not exist. Development of a well-accepted design qualification standard, specifically for PV inverters will significantly improve the reliability and performance of inverters. The existing standards for PV inverters such as ANSI/UL 1741 and IEC 62109-1 primarily focus on safety of PV inverters. The IEC 62093 discusses inverter qualification but it includes all the BOS components. There are other general standards for distributed generators including the IEEE 1547 series of standards which cover major concerns like utility integration but they are not dedicated to PV inverters and are not written from a design qualification point of view. In this paper some of the potential requirements for a design qualification standard for PV inverters are addressed. The missing links in existing PV inverter related standards are identified and with the IEC 62093 as a guideline, the possible inclusions in the framework for a dedicated design qualification standard of PV inverter are discussed. Some of the key missing links are related to electric stress tests. Hence, a method to adapt the existing surge withstand test standards for use in design qualification standard of PV inverter is presented.

  4. NRELs Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles (Fact Sheet), Innovation Impact: Transportation, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles With average U.S. gasoline prices hovering in the $3 to $4 per gallon range and higher fuel economy standards taking effect, drivers and automakers are thinking more about electric vehicles, hybrid electric vehicles, and plug-in hybrids. But before more Americans switch to electric-drive vehicles, automakers need batteries that can deliver the range, performance, reliability, price, and safety that drivers

  5. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    SciTech Connect (OSTI)

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken

    2010-12-15

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)

  6. Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles

    SciTech Connect (OSTI)

    Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

    2007-11-30

    This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

  7. Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

    2013-02-01

    Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

  8. Renewable Electricity Use by the U.S. Information and Communication...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    generating non-grid connected electricity from small-scale landfill gas and solar photovoltaic (PV) renewable projects (CDP 2014f). 17 This report is available at no cost...

  9. Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various counties and US cities

    SciTech Connect (OSTI)

    Wang, M.Q.; Marr, W.W.

    1994-02-10

    Electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, we estimate greenhouse gas emission reductions for EVs, including these important aspects. We select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the United States) and analyze greenhouse emission impacts of EVs in each city or country. We also select six driving cycles developed around the world (i.e., the US federal urban driving cycle, the Economic Community of Europe cycle 15, the Japanese 10-mode cycle, the Los Angeles 92 cycle, the New York City cycle, and the Sydney cycle). Note that we have not analyzed EVs in high-speed driving (e.g., highway driving), where the results would be less favorable to EVs; here, EVs are regarded as urban vehicles only. We choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Finally, we estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and powerplant and vehicle operations.

  10. Grid-Interactive Electric Vehicle DC-Link Photovoltaic Charging System -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid-Connected Renewable Energy Systems Grid-Connected Renewable Energy Systems When connecting a home energy system to the electric grid, research and consider equipment required as well as your power provider’s requirements and agreements. | Photo courtesy of Solar Design Associates, Inc. When connecting a home energy system to the electric grid, research and consider equipment required as well as your power provider's requirements and agreements. | Photo courtesy of Solar Design

  11. Development and Implementation of Degree Programs in Electric Drive Vehicle Technology

    SciTech Connect (OSTI)

    Ng, Simon

    2013-09-30

    The Electric-drive Vehicle Engineering (EVE) MS degree and graduate certificate programs have been continuing to make good progress, thanks to the funding and the guidance from DOE grant management group, the support from our University and College administrations, and to valuable inputs and feedback from our Industrial Advisory Board as well as our project partners Macomb Community College and NextEnergy. Table 1 below lists originally proposed Statement of Project Objectives (SOPO), which have all been completed successfully. Our program and course enrollments continue to be good and increasing, as shown in later sections. Our graduating students continue to get good job offers from local EV-related companies. Following the top recommendation from our Industrial Advisory Board, we were fortunate enough to be accepted into the prestigious EcoCAR2 (http://www.ecocar2.org/) North America university design competition, and have been having some modest success with the competition. But most importantly, EcoCAR2 offers the most holistic educational environment for integrating real-world engineering and design with our EVE graduate curriculum. Such integrations include true real-world hands-on course projects based on EcoCAR2 related tasks for the students, and faculty curricular and course improvements based on lessons and best practices learned from EcoCAR2. We are in the third and last year of EcoCAR2, and we have already formed a core group of students in pursuit of EcoCAR”3”, for which the proposal is due in early December.

  12. April 30 Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014. The first document includes the first presentation from the meeting: DOE Vision and Objectives. The second document includes all other presentations from the meeting: Terminology and Definitions; End-User and Grid Services; Physical Characterization Framework; Value, Benefits & Metrics.

  13. Battery Wear from Disparate Duty-Cycles: Opportunities for Electric-Drive Vehicle Battery Health Management; Preprint

    SciTech Connect (OSTI)

    Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

    2012-10-01

    Electric-drive vehicles utilizing lithium-ion batteries experience wholly different degradation patterns than do conventional vehicles, depending on geographic ambient conditions and consumer driving and charging patterns. A semi-empirical life-predictive model for the lithium-ion graphite/nickel-cobalt-aluminum chemistry is presented that accounts for physically justified calendar and cycling fade mechanisms. An analysis of battery life for plug-in hybrid electric vehicles considers 782 duty-cycles from travel survey data superimposed with climate data from multiple geographic locations around the United States. Based on predicted wear distributions, opportunities for extending battery life including modification of battery operating limits, thermal and charge control are discussed.

  14. Transistors for Electric Motor Drives: High-Performance GaN HEMT Modules for Agile Power Electronics

    SciTech Connect (OSTI)

    2010-09-01

    ADEPT Project: Transphorm is developing transistors with gallium nitride (GaN) semiconductors that could be used to make cost-effective, high-performance power converters for a variety of applications, including electric motor drives which transmit power to a motor. A transistor acts like a switch, controlling the electrical energy that flows around an electrical circuit. Most transistors today use low-cost silicon semiconductors to conduct electrical energy, but silicon transistors don’t operate efficiently at high speeds and voltage levels. Transphorm is using GaN as a semiconductor material in its transistors because GaN performs better at higher voltages and frequencies, and it is more energy efficient than straight silicon. However, Transphorm is using inexpensive silicon as a base to help keep costs low. The company is also packaging its transistors with other electrical components that can operate quickly and efficiently at high power levels—increasing the overall efficiency of both the transistor and the entire motor drive.

  15. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    SciTech Connect (OSTI)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less

  16. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles

    Broader source: Energy.gov [DOE]

    Driving ranges for all-electric vehicles vary considerably. Based on the official Environmental Protection Agency (EPA) range values reported on window stickers, the Mitsubishi i-MiEV has the...

  17. Vehicle Technologies Office Merit Review 2015: Electric Drive Vehicle Climate Control Load Reduction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  18. Vehicle Technologies Office Merit Review 2014: Electric Drive Vehicle Climate Control Load Reduction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  19. Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving

    Broader source: Energy.gov [DOE]

    The efficiencies of electric vehicles can vary significantly; however, compared with conventional vehicles, they are very efficient—converting about 60% of the energy from the grid to power at the...

  20. Electric Drive Dynamic Thermal System Model for Advanced Vehicle Propulsion Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-09-360

    SciTech Connect (OSTI)

    Bennion, K.

    2013-10-01

    Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the dependence of the U.S. transportation sector on petroleum. However, to penetrate the market, these electric drive technologies must enable vehicle solutions that are economically viable. The push to make critical electric drivesystems smaller, lighter, and more cost-effective brings respective challenges associated with heat removal and system efficiency. In addition, the wide application of electric drive systems to alternative propulsion technologies ranging from integrated starter generators, to hybrid electric vehicles, to full electric vehicles presents challenges in terms of sizing critical components andthermal management systems over a range of in-use operating conditions. This effort focused on developing a modular modeling methodology to enable multi-scale and multi-physics simulation capabilities leading to generic electric drive system models applicable to alternative vehicle propulsion configurations. The primary benefit for the National Renewable Energy Laboratory (NREL) is the abilityto define operating losses with the respective impact on component sizing, temperature, and thermal management at the component, subsystem, and system level. However, the flexible nature of the model also allows other uses related to evaluating the impacts of alternative component designs or control schemes depending on the interests of other parties.

  1. Analysis of Off-Board Powered Thermal Preconditioning in Electric Drive Vehicles: Preprint

    SciTech Connect (OSTI)

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.; Rugh , J.; Smith, K. A.

    2010-12-01

    Following a hot or cold thermal soak, vehicle climate control systems (air conditioning or heat) are required to quickly attain a cabin temperature comfortable to the vehicle occupants. In a plug-in hybrid electric or electric vehicle (PEV) equipped with electric climate control systems, the traction battery is the sole on-board power source. Depleting the battery for immediate climate control results in reduced charge-depleting (CD) range and additional battery wear. PEV cabin and battery thermal preconditioning using off-board power supplied by the grid or a building can mitigate the impacts of climate control. This analysis shows that climate control loads can reduce CD range up to 35%. However, cabin thermal preconditioning can increase CD range up to 19% when compared to no thermal preconditioning. In addition, this analysis shows that while battery capacity loss over time is driven by ambient temperature rather than climate control loads, concurrent battery thermal preconditioning can reduce capacity loss up to 7% by reducing pack temperature in a high ambient temperature scenario.

  2. Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications

    SciTech Connect (OSTI)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-02-01

    Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on (1) The utilization of a large area factory assembled PV panel, and (2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District{close_quote}s Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems. {copyright} {ital 1997 American Institute of Physics.}

  3. Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z.

    SciTech Connect (OSTI)

    Mock, Raymond Cecil

    2007-06-01

    The anode-cathode structure of the Z-machine wire array results in a higher negative radial electric field (Er) on the wires near the cathode relative to the anode. The magnitude of this field has been shown to anti-correlate with the axial radiation top/bottom symmetry in the DH (Dynamic Hohlraum). Using 3D modeling, the structure of this field is revealed for different wire-array configurations and for progressive mechanical alterations, providing insight for minimizing the negative Er on the wire array in the anode-to-cathode region of the DH. Also, the 3D model is compared to Sasorov's approximation, which describes Er at the surface of the wire in terms of wire-array parameters.

  4. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    SciTech Connect (OSTI)

    Lai, Jason; Yu, Wensong; Sun, Pengwei; Leslie, Scott; Prusia, Duane; Arnet, Beat; Smith, Chris; Cogan, Art

    2012-03-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  5. Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.

    SciTech Connect (OSTI)

    Nelson, P. A. Gallagher, K. G. Bloom, I. Dees, D. W.

    2011-10-20

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the

  6. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-10-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets

  7. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-08-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the

  8. System and method for design and optimization of grid connected photovoltaic power plant with multiple photovoltaic module technologies

    DOE Patents [OSTI]

    Thomas, Bex George; Elasser, Ahmed; Bollapragada, Srinivas; Galbraith, Anthony William; Agamy, Mohammed; Garifullin, Maxim Valeryevich

    2016-03-29

    A system and method of using one or more DC-DC/DC-AC converters and/or alternative devices allows strings of multiple module technologies to coexist within the same PV power plant. A computing (optimization) framework estimates the percentage allocation of PV power plant capacity to selected PV module technologies. The framework and its supporting components considers irradiation, temperature, spectral profiles, cost and other practical constraints to achieve the lowest levelized cost of electricity, maximum output and minimum system cost. The system and method can function using any device enabling distributed maximum power point tracking at the module, string or combiner level.

  9. Advanced Electric Drive Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  10. Advanced Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  11. Advanced Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Traction Drive Systems Breakout

    Broader source: Energy.gov [DOE]

    Presentation given at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

  13. Minnesota Power- Solar-Electric (PV) Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a maximum award of $20,000 per customer or 60% installed costs per customer. This...

  14. The renewable electric plant information system

    SciTech Connect (OSTI)

    Sinclair, K.

    1995-12-01

    This report explains the procedures used for creating the Renewable Electric Plant Information System (REPiS) database, describes the database fields, and summarizes the data. The REPiS database contains comprehensive information on grid-connected renewable electric generation plants in the United States. Originally designed in 1987 and updated in 1990, the database includes information through 1994. The report also illustrates ways of using the data for analysis is and describes how researchers validated the data.

  15. A microcomputer-based control and simulation of an advanced IPM (interior permanent magnet) synchronous machine drive system for electric vehicle propulsion

    SciTech Connect (OSTI)

    Bose, B.K.; Szczesny, P.M.

    1987-01-01

    Advanced digital control and computer-aided control system design techniques are playing key roles in the complex drive system design and control implementation. The paper describes a high performance microcomputer-based control and digital simulation of an inverter-fed interior permanent magnet (IPM) synchronous machine which uses Neodymium-Iron-Boron magnet. The fully operational four-quadrant drive system includes constant-torque region with zero speed operation and high speed field-weakening constant-power region. The control uses vector or field-oriented technique in constant-torque region with the direct axis aligned to the stator flux, whereas the constant-power region control is based on torque angle orientation of the impressed square-wave voltage. All the key feedback signals for the control are estimated with precision. The drive system is basically designed with an outer torque control loop for electric vehicle appliation, but speed and position control loops can be added for other industrial applications. The distributed microcomputer-based control system is based on Intel-8096 microcontroller and Texas Instruments TMS32010 type digital signal processor. The complete drive system has been simulated using the VAX-based simulation language SIMMON to verify the feasibility of the control laws and to study the performances of the drive system. The simulation results are found to have excellent correlation with the laboratory breadboard tests. 19 refs., 14 figs., 5 tabs.

  16. Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)

    SciTech Connect (OSTI)

    Fezzler, Raymond

    2011-03-01

    Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to

  17. A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in the EV Project

    SciTech Connect (OSTI)

    Stephen L. Schey; John G. Smart; Don R. Scoffield

    2012-05-01

    ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over 5,000 Nissan LEAFsTM and Chevrolet Volts and over 10,000 charging systems in 18 regions across the United States. This paper summarizes usage of residential charging units in The EV Project, based on data collected through the end of 2011. This information is provided to help analysts assess the impact on the electric grid of early adopter charging of grid-connected electric drive vehicles. A method of data aggregation was developed to summarize charging unit usage by the means of two metrics: charging availability and charging demand. Charging availability is plotted to show the percentage of charging units connected to a vehicle over time. Charging demand is plotted to show charging demand on the electric gird over time. Charging availability for residential charging units is similar in each EV Project region. It is low during the day, steadily increases in evening, and remains high at night. Charging demand, however, varies by region. Two EV Project regions were examined to identify regional differences. In Nashville, where EV Project participants do not have time-of-use electricity rates, demand increases each evening as charging availability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In San Francisco, where the majority of EV Project participants have the option of choosing a time-of-use rate plan from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak electricity rate period. Demand peaks at 01:00.

  18. Vehicle Technologies Office Merit Review 2015: North American Electric Traction Drive Supply Chain Analysis: Focus on Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Synthesis Partners at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American electric...

  19. Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect (OSTI)

    Ramroth, L. A.; Gonder, J.; Brooker, A.

    2012-09-01

    The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energy and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.

  20. Electrically powered hand tool

    DOE Patents [OSTI]

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  1. Electricity Demand of PHEVs Operated by Private Households and Commercial Fleets: Effects of Driving and Charging Behavior

    SciTech Connect (OSTI)

    John Smart; Matthew Shirk; Ken Kurani; Casey Quinn; Jamie Davies

    2010-11-01

    Automotive and energy researchers have made considerable efforts to predict the impact of plug-in hybrid vehicle (PHEV) charging on the electrical grid. This work has been done primarily through computer modeling and simulation. The US Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), in partnership with the University of California at Davis’s Institute for Transportation Stuides, have been collecting data from a diverse fleet of PHEVs. The AVTA is conducted by the Idaho National Laboratory for DOE’s Vehicle Technologies Program. This work provides the opportunity to quantify the petroleum displacement potential of early PHEV models, and also observe, rather than simulate, the charging behavior of vehicle users. This paper presents actual charging behavior and the resulting electricity demand from these PHEVs operating in undirected, real-world conditions. Charging patterns are examined for both commercial-use and personal-use vehicles. Underlying reasons for charging behavior in both groups are also presented.

  2. Upgrading coal plant damper drives

    SciTech Connect (OSTI)

    Hood, N.R.; Simmons, K.

    2009-11-15

    The replacement of damper drives on two coal-fired units at the James H. Miller Jr. electric generating plant by Intelligent Contrac electric rotary actuators is discussed. 2 figs.

  3. CONTROL ROD DRIVE

    DOE Patents [OSTI]

    Chapellier, R.A.; Rogers, I.

    1961-06-27

    Accurate and controlled drive for the control rod is from an electric motor. A hydraulic arrangement is provided to balance a piston against which a control rod is urged by the application of fluid pressure. The electric motor drive of the control rod for normal operation is made through the aforementioned piston. In the event scramming is required, the fluid pressure urging the control rod against the piston is relieved and an opposite fluid pressure is applied. The lack of mechanical connection between the electric motor and control rod facilitates the scramming operation.

  4. Electric Vehicle Supply Equipment (EVSE) Test Report: Schneider Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Schneider Electric EVSE Features Charge Delay Option Power Light Indicator Eight-segment Progress Indicator Auto-restart EVSE Specifcations Grid connection Plug and cord NEMA 6-50 Connector type J1772 Test lab certifcations UL Listed Approximate size (H x W x D inches) 10 x 13 x 4 Charge level AC Level 2 Input voltage 240 VAC Maximum input current 30 Amp Circuit breaker rating 40 Amp Test Conditions 1 Test date 10/30/2012 Nominal supply voltage (Vrms) 209.04 Supply frequency (Hz) 59.99 Initial

  5. Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles - SECOND EDITION

    SciTech Connect (OSTI)

    Nelson, Paul A.; Gallagher, Kevin G.; Bloom, Ira D.; Dees, Dennis W.

    2012-01-01

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publicly available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publicly peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on

  6. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  7. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  8. iDriving (Intelligent Driving)

    Energy Science and Technology Software Center (OSTI)

    2012-09-17

    iDriving identifies the driving style factors that have a major impact on fuel economy. An optimization framework is used with the aim of optimizing a driving style with respect to these driving factors. A set of polynomial metamodels is constructed to reflect the responses produced in fuel economy by changing the driving factors. The optimization framework is used to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving stylesmore » in responses to actual driving conditions to improve fuel efficiency.« less

  9. Control rod drive

    DOE Patents [OSTI]

    Hawke, Basil C.

    1986-01-01

    A control rod drive uses gravitational forces to insert one or more control rods upwardly into a reactor core from beneath the reactor core under emergency conditions. The preferred control rod drive includes a vertically movable weight and a mechanism operatively associating the weight with the control rod so that downward movement of the weight is translated into upward movement of the control rod. The preferred control rod drive further includes an electric motor for driving the control rods under normal conditions, an electrically actuated clutch which automatically disengages the motor during a power failure and a decelerator for bringing the control rod to a controlled stop when it is inserted under emergency conditions into a reactor core.

  10. CONTROL ROD DRIVE

    DOE Patents [OSTI]

    Chapellier, R.A.

    1960-05-24

    BS>A drive mechanism was invented for the control rod of a nuclear reactor. Power is provided by an electric motor and an outside source of fluid pressure is utilized in conjunction with the fluid pressure within the reactor to balance the loadings on the motor. The force exerted on the drive mechanism in the direction of scramming the rod is derived from the reactor fluid pressure so that failure of the outside pressure source will cause prompt scramming of the rod.

  11. Methodology for Preliminary Design of Electrical Microgrids

    SciTech Connect (OSTI)

    Jensen, Richard P.; Stamp, Jason E.; Eddy, John P.; Henry, Jordan M; Munoz-Ramos, Karina; Abdallah, Tarek

    2015-09-30

    Many critical loads rely on simple backup generation to provide electricity in the event of a power outage. An Energy Surety Microgrid TM can protect against outages caused by single generator failures to improve reliability. An ESM will also provide a host of other benefits, including integration of renewable energy, fuel optimization, and maximizing the value of energy storage. The ESM concept includes a categorization for microgrid value proposi- tions, and quantifies how the investment can be justified during either grid-connected or utility outage conditions. In contrast with many approaches, the ESM approach explic- itly sets requirements based on unlikely extreme conditions, including the need to protect against determined cyber adversaries. During the United States (US) Department of Defense (DOD)/Department of Energy (DOE) Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) effort, the ESM methodology was successfully used to develop the preliminary designs, which direct supported the contracting, construction, and testing for three military bases. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military installations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Melanie Johnson and Harold Sanborn of the U.S. Army Corps of Engineers Construc- tion Engineering Research Laboratory * Experts from the National Renewable Energy Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory

  12. Development of a low-cost integrated 20-kW-AC solar tracking subarray for grid-connected PV power system applications. Final technical report

    SciTech Connect (OSTI)

    Stern, M.; Duran, G.; Fourer, G.; Mackamul, K.; Whalen, W.; Loo, M. van; West, R.

    1998-06-01

    This report chronicles Utility Power Group's (UPG) successful two-year Photovoltaic Manufacturing Technology (PVMaT) Phase 4A1 work effort which began in July, 1995. During this period, UPG completed design, fabrication, testing and demonstration of a modular and fully integrated 15-kW-ac, solar tracking PV power system sub-array. The two key and innovative components which were developed are a Modular Panel which optimizes factory assembly of PV modules into a large area, field-deployable, structurally-integrated PV panel, and an Integrated Power Processing Unit which combines all dc and ac power collection, conversion and control functions within a single, field-deployable structurally-integrated electrical enclosure. These two key sub-array elements, when combined with a number of other electrical, mechanical, and structural components, create a low-cost and high-performance PV power system. This system, or sub-array, can be deployed in individual units, or paralleled with any number of other sub-arrays, to construct multi-megawatt P fields. 21 figs.

  13. Electric Drive Component Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  14. Electric Drive Component Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  15. US Electric Drive Manufacturing Center

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Electric Drive Component Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Electric Drive Component Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Electric Drive Component Manufacturing Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * Second Generation interior permanent magnet (IPM) motor * Preliminary Specifications ... efficiency for parallel hybrids - "Engine replacement" programs * Higher voltage ...

  19. Stop/Start: Driving

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    highlighted Braking button subbanner graphic: gray bar PULLING OUT & DRIVING PART 1 The gasoline engine does not run when the vehicle is at rest. When pulling out, the electric starter/generator uses electricity from the battery to instantly start the gasoline engine---the sole source of propulsion for the vehicle. Go to next… stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric starter/generator visible. The car is stopped at an intersection.

  20. U.S. DRIVE

    SciTech Connect (OSTI)

    2012-03-16

    U.S. DRIVE, which stands for United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability, is an expanded government-industry partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company and General Motors; Tesla Motors; five energy companies – BP America, Chevron Corporation, ConocoPhillips, ExxonMobil Corporation, and Shell Oil Products US; two utilities – Southern California Edison and Michigan-based DTE Energy; and the Electric Power Research Institute (EPRI). The U.S. DRIVE mission is to accelerate the development of pre-competitive and innovative technologies to enable a full range of affordable and clean advanced light-duty vehicles, as well as related energy infrastructure.

  1. Grid Connectivity Research, Development & Demonstration Projects

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Geothermal/Grid Connection | Open Energy Information

    Open Energy Info (EERE)

    Transmission Lines How a Geothermal Power Plant Works (Simple) Western Renewable Energy Zones (WREZ) Reports Geothermal Regulations and Permitting for Transmission Siting...

  3. ELECTRIC

    Office of Legacy Management (LM)

    ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A

  4. Jing Jin Electric JJE | Open Energy Information

    Open Energy Info (EERE)

    Beijing Municipality, China Sector: Vehicles Product: Develops and manufactures high-performance electric motors and electric drive components for hybrid electric vehicles (HEV),...

  5. NREL: Learning - Hybrid Electric Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Series design-In this design, the primary engine is connected to a generator that produces electricity. The electricity charges the batteries, which drive an electric motor that ...

  6. Development and Implementation of Degree Programs in Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Development and Implementation of Degree Programs in Electric Drive Vehicle Technology Development and Implementation of Degree Programs in Electric Drive...

  7. Development and Implementation of Degree Programs in Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Implementation of Degree Programs in Electric Drive Vehicle Technology Development and Implementation of Degree Programs in Electric Drive Vehicle Technology Asia...

  8. Market Implications of Synergism Between Low Drag Area and Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implications of Synergism Between Low Drag Area and Electric Drive Fuel Savings Market Implications of Synergism Between Low Drag Area and Electric Drive Fuel Savings Presented at ...

  9. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  10. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  11. Electric avenues

    SciTech Connect (OSTI)

    Stone, P.; Chang, A.

    1994-12-31

    Highly efficient electric drive technology developed originally for defense applications is being applied to the development of all electric shuttle buses for the San Jose International Airport. An innovative opportunity charging system using induction chargers will be incorporated to extend operation hours. The project, if successful, is expected to reduce pollution at the airport and generate jobs for displaced defense workers.

  12. Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pROGRAM Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment EVSE Features LED status light EVSE Specifcations Grid connection Hardwired Connector type J1772 Test lab certifcations UL, cUL, CE, CTick listed Approximate size (H x W x D inches) 12 x 12 x 8 Charge level AC Level 2 Input voltage 208VAC to 240 VAC Maximum input current 30 Amp Circuit breaker rating 40 Amp Test Conditions 1 Test date 1/31/2012 Nominal supply voltage (Vrms) 235.68 Supply frequency (Hz) 60.00 Initial

  13. Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec 240V

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VEhICLE TEChNOLOgIES pROgRAm Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec 240V EVSE Features Integrated Flashlight 25ft of coiled cable Auto-reset EVSE Specifcations Grid connection Hardwired Connector type J1772 Test lab certifcations ETL Listed Approximate size (H x W x D inches) 10 x 15 x 5 Charge level AC Level 2 Input voltage 208 / 240 VAC Maximum input current 15 Amp Circuit breaker rating 20 Amp Test Conditions 1 Test date 3/29/2012 Nominal supply voltage (Vrms) 243.11

  14. Wind turbine ring/shroud drive system

    DOE Patents [OSTI]

    Blakemore, Ralph W.

    2005-10-04

    A wind turbine capable of driving multiple electric generators having a ring or shroud structure for reducing blade root bending moments, hub loads, blade fastener loads and pitch bearing loads. The shroud may further incorporate a ring gear for driving an electric generator. In one embodiment, the electric generator may be cantilevered from the nacelle such that the gear on the generator drive shaft is contacted by the ring gear of the shroud. The shroud also provides protection for the gearing and aids in preventing gear lubricant contamination.

  15. New York City Transit Drives Hybrid Electric Buses into the Future; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    DEPARTMENT OF ENERGY HYBRID ELECTRIC TRANSIT BUS EVALUATIONS The role of AVTA is to bridge the gap between R&D and commercial availability of advanced vehicle technologies that reduce U.S. petroleum use while improving air quality. AVTA supports the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program in moving these technologies from R&D to market deployment by examining market factors and customer requirements, evaluating performance and durability of alternative

  16. Test Driving the Toyota Mirai | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Driving the Toyota Mirai Test Driving the Toyota Mirai Watch Secretary Ernest Moniz take a spin in the Toyota Mirai, the first fuel cell electric vehicle available for sale.

  17. Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Chevrolet Spark EV 2015 Kia Soul Electric 2014 BMW i3 BEV 2014 Smart Electric Drive 2013 Ford Focus Electric 2013 Nissan Leaf SV 2012 Mitsubishi I-MiEV 2012 Nissan Leaf ...

  18. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  19. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  20. NREL: Transportation Research - Electric Motor Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Motor Thermal Management A photo of a piece of laboratory testing equipment. NREL ... motors is helping to improve the performance and reliability of electric-drive vehicles. ...

  1. Holiday Food Drive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Food Drive Holiday Food Drive Laboratory employees helped donate 300 boxes of nonperishable food items and 360 frozen turkeys during the 2015 annual food drive. September 16, 2013 LANL employees organize food for the Holiday Food Drive. Contacts Annual Food & Holiday Gift Drives Mike Martinez (505) 699-3388 Community Partnerships Office (505) 665-4400 Email Helping feed Northern New Mexico families During the Laboratory's 2015 Annual Food Drive, employees and subcontract workers once again

  2. EV Everywhere Workshop: Traction Drive Systems Breakout Group Report

    Broader source: Energy.gov [DOE]

    Presentation given at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

  3. Development of Radically Enhanced alnico Magnets (DREAM) for Traction Drive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motors | The Ames Laboratory Development of Radically Enhanced alnico Magnets (DREAM) for Traction Drive Motors Research Personnel Publications Synthesis In order to enable domestic automobile makers to offer a broad range of vehicles with electric drive motors with either hybrid or purely electric motor drives, this project will utilize a demonstrated science-based process to design and synthesize a high energy product permanent magnet of the alnico type in bulk final shapes without rare

  4. Electric Drive Vehicle Climate Control Load Reduction

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Electric Drive Semiconductor Manufacturing (EDSM) Center

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  6. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vssarravt066karner2010p...

  7. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt066vsskarner2011

  8. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt066vsskarner2012

  9. Advanced Electric Drive Vehicle Education Program

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  10. Advanced Electric Drive Vehicle Education Program

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Advanced Electric Drive Vehicle Education Program

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  12. Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Electric Drive Inverter R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Madhu Chinthavali Email: chinthavalim@ornl.gov Phone: 865-946-1411 This presentation does not contain any proprietary, confidential, or otherwise restricted information U.S. DOE ...

  14. Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices

    SciTech Connect (OSTI)

    2012-01-25

    Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’s new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.

  15. Low cost, compact, and high efficiency traction motor for electric and hybrid electric vehicles

    SciTech Connect (OSTI)

    Ehsani, Mark

    2002-10-07

    A new motor drive, the switched reluctance motor drive, has been developed for hybrid-electric vehicles. The motor drive has been designed, built and tested in the test bed at a near vehicle scale. It has been shown that the switched reluctance motor drive is more suitable for traction application than any other motor drive.

  16. Consumer's Guide: Get Your Power from the Sun

    DOE R&D Accomplishments [OSTI]

    Starrs, T.; Wenger, H.

    2003-12-01

    Photovoltaics; PV; Grid-Connected; Net Metering; Solar Electricity; Consumer Guides; Solar Energy - Photovoltaics

  17. Electric Motors and Critical Materials

    Broader source: Energy.gov [DOE]

    Presentation given at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

  18. Electricity Generation Cost Simulation Model

    Energy Science and Technology Software Center (OSTI)

    2003-04-25

    The Electricity Generation Cost Simulation Model (GENSIM) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration ofmore » a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the U.S. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emission trade-offs. The base case results using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax

  19. Drill drive mechanism

    DOE Patents [OSTI]

    Dressel, Michael O.

    1979-01-01

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

  20. Fluid cooled vehicle drive module

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-11-15

    An electric vehicle drive includes a support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EM/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  1. Mongolia Renewable Energy and Rural Electricity Access Project...

    Open Energy Info (EERE)

    legislation for grid-connected renewable energy systems; and (a) support for project management, monitoring and evaluation, and assistance in the institutional development of...

  2. Development and Implementation of Degree Programs in Electric...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Development and Implementation of Degree Programs in Electric Drive Vehicle Technology Development and Implementation of Degree Programs in Electric ...

  3. EV Everywhere Workshop: Electric Motors and Critical Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Workshop: Electric Motors and Critical Materials Breakout Group Report Presentation given at the EV Everywhere Grand Challenge Electric Drive (Power Electronics ...

  4. Sample Employee Newsletter Articles for Plug-In Electric Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    It to Drive on Electricity? Understanding Charging Networks and Locating Public Charging Stations Sample Employee Newsletter Articles: Plug-In Electric Vehicles 101 (323.35 KB) ...

  5. Driving/Idling Resources

    Broader source: Energy.gov [DOE]

    While transportation efficiency policies are often implemented under local governments, national and state programs can play supportive roles in reducing vehicle miles traveled. Find driving/idling...

  6. Holiday Food Drive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community Programs Office (505) 665-4400 Email Get Expertise Helping feed Northern New Mexico families During the Laboratory's 2015 Annual Food Drive, employees and subcontract...

  7. Variable Frequency Drives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marketing Toolkit The Benefits of Variable Frequency Drives (VFDs) VFDs help adjust motor speeds to match loads and improve efficiency while conserving energy. The benefits...

  8. Chapter 18: Variable Frequency Drive Evaluation Protocol

    SciTech Connect (OSTI)

    Romberger, J.

    2014-11-01

    An adjustable-speed drive (ASD) includes all devices that vary the speed of a rotating load, including those that vary the motor speed and linkage devices that allow constant motor speed while varying the load speed. The Variable Frequency Drive Evaluation Protocol presented here addresses evaluation issues for variable-frequency drives (VFDs) installed on commercial and industrial motor-driven centrifugal fans and pumps for which torque varies with speed. Constant torque load applications, such as those for positive displacement pumps, are not covered by this protocol. Other ASD devices, such as magnetic drive, eddy current drives, variable belt sheave drives, or direct current motor variable voltage drives, are also not addressed. The VFD is by far the most common type of ASD hardware. With VFD speed control on a centrifugal fan or pump motor, energy use follows the affinity laws, which state that the motor electricity demand is a cubic relationship to speed under ideal conditions. Therefore, if the motor runs at 75% speed, the motor demand will ideally be reduced to 42% of full load power; however, with other losses it is about 49% of full load power.

  9. Piezoelectric drive circuit

    DOE Patents [OSTI]

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  10. Piezoelectric drive circuit

    DOE Patents [OSTI]

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  11. Watch Energy Secretary Moniz Test Drive the Toyota Mirai

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department posted a video of ‪Secretary Ernest Moniz driving the Toyota Mirai, the first fuel cell electric vehicle (FCEV) for sale in the United States.

  12. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    extremely receptive to expanding the use of the sub-meter data to drive decision making. ... Amp meter used at a Trenton, Michigan, plant to gather data on electrical usage. Courtesy ...

  13. Bagdad Plant Raymond J. Polinski 585 Silicon Drive General Manager

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bagdad Plant Raymond J. Polinski 585 Silicon Drive General Manager Leechburg, PA 15656 Grain-Oriented Electrical Steel e-mail: Raymond.Polinski@ATImetals.com E. Below are Allegheny ...

  14. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  15. NREL: Transportation Research - Hybrid Electric Fleet Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an energy storage system, and an electric motor to achieve a combination of emissions, ... This collected energy is used to propel the vehicle during normal drive cycles. The ...

  16. Save Electricity and Fuel | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    use, purchase efficient products, save money on your electric bills, and buy or ... Learn about the following topics: Saving money on gas Buying and driving fuel efficient ...

  17. Funding Opportunity: Next Generation Electric Machines: Megawatt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    speed, direct drive, megawatt (MW) class electric motors for efficiency and power density improvements in three primary areas: (1) chemical and petroleum refining industries; (2) ...

  18. Traction Drive Systems Breakout

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Traction Drive Systems Breakout John M. Miller, PhD, PE, F.IEEE, F.SAE Oak Ridge National Laboratory Facilitator July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies ...

  19. US DRIVE Driving Research and Innovation for Vehicle Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US DRIVE Fuel Pathway Integration Technical Team Roadmap Hydrogen Program Goal-Setting Methodologies Report to Congress US DRIVE Hydrogen Production Technical Team Roadmap

  20. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  1. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  2. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  3. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  4. Holiday Gift Drive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gift Drive Holiday Gift Drive Every year, Laboratory employees help fulfill the holiday wishes of children and seniors in our communities. In 2015, our employees donated more than 1,200 gifts to 23 nonprofit organizations to help Northern New Mexico children, senior citizens, and families have a brighter holiday season. May 7, 2015 Every holiday season, employees of Los Alamos National Laboratory donate and distribute gifts to families in need throughout Northern New Mexico. Contacts Annual Food

  5. Performance Parameters for Grid-Connected PV Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    derate and NOCT values instead of typical values. INFLUENCE OF WEATHER Variations in solar radiation and ambient temperature from month-to-month and year-to-year influence the...

  6. Public Meeting: Physical Characterization of Grid-Connected Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The first presentation is the welcome presentation by Roland Risser, the director of the ... - Welcome and Introduction (R. Risser) Presentations - Scope and Draft ...

  7. Final Report- Hawaii's Clean Energy Transformation and Grid Connection

    Broader source: Energy.gov [DOE]

    Awardee: Hawaii Department of Business, Economic Development, and TourismLocation: Honolulu, HISubprogram: Soft CostsFunding Program: Solar Projects to Reduce Market Barriers and Non-Hardware...

  8. High-efficiency grid-connected photovoltaic module integrated...

    Office of Scientific and Technical Information (OSTI)

    step-up DC-DC converter and a single-phase full-bridge DC-AC inverter. An active-clamping flyback converter with a voltage-doubler rectifier is proposed for the step-up ...

  9. EV Everywhere: Maximizing Electric Cars' Range in Extreme Temperatures

    Broader source: Energy.gov [DOE]

    As with conventional vehicles, the efficiency and all-electric driving range of plug-in electric vehicles (also known as electric cars or EVs) varies substantially based on driving conditions and habits. Using the economy mode, avoiding hard braking, using accessories wisely, and observing the speed limit will help EV drivers maximize their all-electric range.

  10. Fact #798: September 23, 2013 Plug-in Hybrid Vehicle Driving Range

    Broader source: Energy.gov [DOE]

    For the 2013 model year (MY) there are four plug-in hybrid electric vehicles (PHEVs) available to consumers. PHEVs offer a limited amount of all-electric driving range that is drawn from a plug and...

  11. Electric turbocompound control system

    DOE Patents [OSTI]

    Algrain, Marcelo C.

    2007-02-13

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  12. Renewable Electric Plant Information System user interface manual: Paradox 7 Runtime for Windows

    SciTech Connect (OSTI)

    1996-11-01

    The Renewable Electric Plant Information System (REPiS) is a comprehensive database with detailed information on grid-connected renewable electric plants in the US. The current version, REPiS3 beta, was developed in Paradox for Windows. The user interface (UI) was developed to facilitate easy access to information in the database, without the need to have, or know how to use, Paradox for Windows. The UI is designed to provide quick responses to commonly requested sorts of the database. A quick perusal of this manual will familiarize one with the functions of the UI and will make use of the system easier. There are six parts to this manual: (1) Quick Start: Instructions for Users Familiar with Database Applications; (2) Getting Started: The Installation Process; (3) Choosing the Appropriate Report; (4) Using the User Interface; (5) Troubleshooting; (6) Appendices A and B.

  13. Aggregated Purchasing and Workplace Charging Can Drive EV Market Growth |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Aggregated Purchasing and Workplace Charging Can Drive EV Market Growth Aggregated Purchasing and Workplace Charging Can Drive EV Market Growth November 24, 2014 - 11:06am Addthis Secretary of Energy Ernest Moniz with the utility industry's first plug-in electric hybrid drivetrain Class 5 bucket truck at the White House event on November 18, 2014. The truck, which is owned by Pacific Gas and Electric (PG&E), features up to 40 miles of all-electric range and

  14. NEUTRONIC REACTOR CONTROL ROD DRIVE APPARATUS

    DOE Patents [OSTI]

    Oakes, L.C.; Walker, C.S.

    1959-12-15

    ABS>A suspension mechanism between a vertically movable nuclear reactor control rod and a rod extension, which also provides information for the operator or an automatic control signal, is described. A spring connects the rod extension to a drive shift. The extension of the spring indicates whether (1) the rod is at rest on the reactor, (2) the rod and extension are suspended, or (3) the extension alone is suspended, the spring controlling a 3-position electrical switch.

  15. Improving Motor and Drive System Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SOURCEBOOK FOR INDUSTRY ADVANCED MANUFACTURING OFFICE Improving Motor and Drive System Performance DISCLAIMER This publication was prepared by the Washington State University Energy Program and the National Renewable Energy Laboratory for the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. Neither the United States, DOE, the Copper Development Association, the Washington State University Energy Program, National Electrical Manufacturers Association, nor any of their

  16. Ceramic vane drive joint

    DOE Patents [OSTI]

    Smale, Charles H.

    1981-01-01

    A variable geometry gas turbine has an array of ceramic composition vanes positioned by an actuating ring coupled through a plurality of circumferentially spaced turbine vane levers to the outer end of a metallic vane drive shaft at each of the ceramic vanes. Each of the ceramic vanes has an end slot of bow tie configuration including flared end segments and a center slot therebetween. Each of the vane drive shafts has a cross head with ends thereof spaced with respect to the sides of the end slot to define clearance for free expansion of the cross head with respect to the vane and the cross head being configured to uniformly distribute drive loads across bearing surfaces of the vane slot.

  17. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...

  18. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  19. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  20. DrivePy

    Energy Science and Technology Software Center (OSTI)

    2014-08-30

    DrivePy is physics-based drivetrain model that sizes drivetrain components based on aerodynamic and operational loads for use in a systems engineering model. It also calculates costs based on empirical data collected by NREL's National Wind Technology Center.

  1. Hybrid and Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  2. Simulation of the instantaneous free piston Stirling engine-electrical load interaction

    SciTech Connect (OSTI)

    Mehdizadeh, N.S.; Stouffs, P.

    1998-07-01

    In this paper the authors consider a gamma type free piston engine (that is, a configuration with a power piston cylinder and a separate displacer cylinder) with the MARTINI configuration (that is, with a free piston but a kinematically driven displacer). In the modeled engine, the displacer is driven by an electrical motor and there are two symmetrical, free, power pistons. This configuration ensures a complete balancing of the engine. The free pistons bear the moving parts of the linear electric alternators. This engine may be considered for solar to electrical energy conversion for land or space applications, for instance. A dynamic simulation of this engine has been developed using a decoupled analysis. The motion equation of the free piston induces a strong coupling between the electrical load and the thermodynamics inside the free piston Stirling engine. From the thermodynamics point of view, the piston-displacer phase lag is an important parameter. It is shown that if the electrical circuit elements (R-L-C) are constants, the phase lag between the free pistons and displacer motions is far from the optimum. However this phase lag can be controlled by means of a variable electrical resistance. For both cases of stand-alone engine with an independent electrical load, or grid-connected engine, it is shown how one can in a very simple way multiply the net electrical power by a factor 4 to 10 and the efficiency by a factor 1.25 to 2 without any engine geometry modification.

  3. EERE Success Story—Michigan, Missouri: Innovative Mobile Exhibits Bring Electric Vehicles to Students and Public

    Broader source: Energy.gov [DOE]

    EERE has supported two innovative projects bringing hands-on education on electric drive vehicles to students.

  4. Michigan, Missouri: Innovative Mobile Exhibits Bring Electric Vehicles to Students and Public

    Broader source: Energy.gov [DOE]

    EERE has supported two innovative projects bringing hands-on education on electric drive vehicles to students.

  5. US DRIVE Electrochemical Energy Storage Technical Team Roadmap | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Electrochemical Energy Storage Technical Team Roadmap US DRIVE Electrochemical Energy Storage Technical Team Roadmap This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes

  6. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  7. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  8. Vehicle Technologies Office Merit Review 2016: Development of Radically Enhanced alnico Magnets (DREaM) for Traction Drive Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Ames at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Electric Drive Systems

  9. Blood Drive | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blood Drive Date: 06082016 - 10:00 Location: 205 TASF Event Type: Laboratory Unite American Red Cross Blood Drive Please sign up in 311 TASF to donate and volunteer Or make an ...

  10. COAXIAL CONTROL ROD DRIVE MECHANISM FOR NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Fox, R.J.; Oakes, L.C.

    1959-04-14

    A drive mechanism is presented for the control rod or a nuclear reactor. In this device the control rod is coupled to a drive shaft which extends coaxially through the rotor of an electric motor for relative rotation with respect thereto. A gear reduction mehanism is coupled between the rotor and the drive shaft to convert the rotary motion of the motor into linear motion of the shaft with a comparatively great reduction in speed, thereby providing relatively glow linear movement of the shaft and control rod for control purposes.

  11. Base drive circuit for a four-terminal power Darlington

    DOE Patents [OSTI]

    Lee, Fred C.; Carter, Roy A.

    1983-01-01

    A high power switching circuit which utilizes a four-terminal Darlington transistor block to improve switching speed, particularly in rapid turn-off. Two independent reverse drive currents are utilized during turn off in order to expel the minority carriers of the Darlington pair at their own charge sweep-out rate. The reverse drive current may be provided by a current transformer, the secondary of which is tapped to the base terminal of the power stage of the Darlington block. In one application, the switching circuit is used in each power switching element in a chopper-inverter drive of an electric vehicle propulsion system.

  12. Drive Diagnostic Filter Wheel Control

    Energy Science and Technology Software Center (OSTI)

    2007-07-17

    DrD Filter Wheel Control is National Instrument's Labview software that drives a Drive Diagnostic filter wheel. The software can drive the filter wheel between each end limit, detect the positive and negative limit and each home position and post the stepper motot values to an Excel spreadsheet. The software can also be used to cycle the assembly between the end limits.

  13. Drive alignment pays maintenance dividends

    SciTech Connect (OSTI)

    Fedder, R.

    2008-12-15

    Proper alignment of the motor and gear drive on conveying and processing equipment will result in longer bearing and coupling life, along with lower maintenance costs. Selecting an alignment free drive package instead of a traditional foot mounted drive and motor is a major advancement toward these goals. 4 photos.

  14. NREL: Transportation Research - Power Electronics and Electric Machines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Electronics and Electric Machines A photo of a researcher using testing equipment in a lab. NREL R&D is making wide-scale adoption of electric-drive vehicles more feasible by developing technologies and components with superior reliability, efficiency, and durability, while dramatically decreasing costs. Photo by Dennis Schroeder, NREL NREL's power electronics and electric machines research focuses on systems for electric-drive vehicles (EDVs) that control the flow of electricity

  15. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  16. Base drive circuit

    DOE Patents [OSTI]

    Lange, A.C.

    1995-04-04

    An improved base drive circuit having a level shifter for providing bistable input signals to a pair of non-linear delays. The non-linear delays provide gate control to a corresponding pair of field effect transistors through a corresponding pair of buffer components. The non-linear delays provide delayed turn-on for each of the field effect transistors while an associated pair of transistors shunt the non-linear delays during turn-off of the associated field effect transistor. 2 figures.

  17. Base drive circuit

    DOE Patents [OSTI]

    Lange, Arnold C.

    1995-01-01

    An improved base drive circuit (10) having a level shifter (24) for providing bistable input signals to a pair of non-linear delays (30, 32). The non-linear delays (30, 32) provide gate control to a corresponding pair of field effect transistors (100, 106) through a corresponding pair of buffer components (88, 94). The non-linear delays (30, 32) provide delayed turn-on for each of the field effect transistors (100, 106) while an associated pair of transistors (72, 80) shunt the non-linear delays (30, 32) during turn-off of the associated field effect transistor (100, 106).

  18. eGallon: Understanding the Cost of Driving EVs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    eGallon: Understanding the Cost of Driving EVs eGallon: Understanding the Cost of Driving EVs For most drivers, a trip to the fuel pump is an easy reminder of the day-to-day cost of gasoline or diesel fuel. But for electric vehicle (EV) drivers, who typically charge their car at home, there isn't a similar measurement to determine the cost of driving on electricity. To help both current and potential EV drivers better understand the cost of driving an EV, the Energy Department created the

  19. VIA Motors electric vehicle platform | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VIA Motors electric vehicle platform VIA Motors electric vehicle platform extended range electric vehicle technologies VIA Motors electric vehicle platform (1.1 MB) More Documents & Publications QTR Ex Parte Communications Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB) Advanced Engine Trends, Challenges and Opportunities

  20. EV Everywhere: Maximizing Electric Cars' Range in Extreme Temperatures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicles (also known as electric cars or EVs) varies based on a number of factors, including driver habits, driving conditions, and temperature, such as hot or cold weather. ...

  1. Power Charging and Supply System for Electric Vehicles - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DescriptionThe technology integrates the battery-charging function into the electrical motor drive system. By using only the onboard inverter and motor without adding any inductors ...

  2. Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.; Pesaran, A.; Smith, K.

    2013-07-01

    This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

  3. Rotary drive mechanism

    SciTech Connect (OSTI)

    Kenderdine, E.W.

    1991-10-08

    This patent describes a rotary drive mechanism which includes a rotary solenoid having a stator and multi-poled rotor. A moving member rotates with the rotor and is biased by a biasing device. The biasing device causes a further rotational movement after rotation by the rotary solenoid. Thus, energization of the rotary solenoid moves the member in one direction to one position and biases the biasing device against the member. Subsequently, de- energization of the rotary solenoid causes the biasing device to move the member in the same direction to another position from where the moving member is again movable by energization and de-energization of the rotary solenoid. Preferably, the moving member is a multi-lobed cam having the same number of lobes as the rotor has poles. An anti- overdrive device is also preferably provided for preventing overdrive in the forward direction or a reverse rotation of the moving member and for precisely aligning the moving member.

  4. Rotary drive mechanism

    DOE Patents [OSTI]

    Kenderdine, Eugene W. (Albuquerque, NM)

    1991-01-01

    A rotary drive mechanism includes a rotary solenoid having a stator and multi-poled rotor. A moving member rotates with the rotor and is biased by a biasing device. The biasing device causes a further rotational movement after rotation by the rotary solenoid. Thus, energization of the rotary solenoid moves the member in one direction to one position and biases the biasing device against the member. Subsequently, de-energization of the rotary solenoid causes the biasing device to move the member in the same direction to another position from where the moving member is again movable by energization and de-energization of the rotary solenoid. Preferably, the moving member is a multi-lobed cam having the same number of lobes as the rotor has poles. An anti-overdrive device is also preferably provided for preventing overdrive in the forward direction or a reverse rotation of the moving member and for precisely aligning the moving member.

  5. Designing Effective Incentives to Drive Residential Retrofit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incentives to Drive Residential Retrofit Program Participation Designing Effective Incentives to Drive Residential Retrofit Program Participation This webinar covered retrofit ...

  6. Next Generation Environmentally Friendly Driving Feedback Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmentally Friendly Driving Feedback Systems Research and Development Next Generation Environmentally Friendly Driving Feedback Systems Research and Development 2012 DOE ...

  7. School supply drive winding down

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School Supply Drive Winding Down Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit School supply drive winding down The drive is collecting materials for schools throughout Northern New Mexico and will be distributed by the Lab and Self Help, Inc. August 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Notebooks,

  8. Sequenced drive for rotary valves

    DOE Patents [OSTI]

    Mittell, Larry C.

    1981-01-01

    A sequenced drive for rotary valves which provides the benefits of applying rotary and linear motions to the movable sealing element of the valve. The sequenced drive provides a close approximation of linear motion while engaging or disengaging the movable element with the seat minimizing wear and damage due to scrubbing action. The rotary motion of the drive swings the movable element out of the flowpath thus eliminating obstruction to flow through the valve.

  9. Back to School Drive 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Back to School Drive 2016 Back to School Drive 2016 - now through July 20 Each year, Laboratory employees donate shoes, school supplies and backpacks for Northern New Mexico students as they start the new school year. September 16, 2013 Back pack with school supplies and shoes In 2015, more than 800 elementary and middle-school students received backpacks filled with school supplies. Additionally, $4,000 was given to purchase school supplies from Dollars 4 Schools. Contact Giving Drives Janelle

  10. U.S. DRIVE Partnership Releases Accomplishments Report

    Broader source: Energy.gov [DOE]

    The U.S. DRIVE Partnership has released its 2014 Accomplishments Report, which includes significant technical accomplishments in advanced combustion and emission control, electrical and electronics, electrochemical energy storage, fuel cells, materials, vehicle systems analysis, codes and standards, hydrogen storage, grid interaction, fuel pathway integration, hydrogen delivery, and hydrogen production.

  11. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program (VTP) | Department of Energy Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options. 52723.pdf (1.06 MB) More Documents & Publications Sample Employee Newsletter Articles for Plug-In Electric

  12. Distribution Drive | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Distribution Drive Place: Dallas, Texas Zip: 75205 Product: Biodiesel fuel distributor. Coordinates: 32.778155, -96.795404 Show Map Loading map......

  13. Test Drive: Honda FCX Clarity

    Broader source: Energy.gov [DOE]

    A member of the Energy Empowers team takes the Honda FCX Clarity for a drive outside the U.S. Department of Energy in Washington, D.C.

  14. Electric Vehicles

    Broader source: Energy.gov [DOE]

    This album contains a variety of all-electric, plug-in hybrid electric and fuel cell electric vehicles. For a full list of all electric vehicles visit the EV Everywhere website.

  15. Axial gap rotating electrical machine

    DOE Patents [OSTI]

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  16. 2012 National Electricity Forum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Electric Transmission Congestion Study Workshop - December 15, 2011 Sheraton San Diego Hotel & Marina, 1380 Harbor Island Drive, San Diego, California 92101 Agenda 8:00 am - 9:00 am Registration 9:00 am - 9:15 am DOE Welcome and Presentation David Meyer, US Department of Energy, Session Moderator 9:15 am - 10:30 am Panel I - Regulators * Rebecca D. Wagner, Commissioner, Nevada Public Utilities Commission * Charles Hains, Chief Counsel, Arizona Corporation Commission * Keith D.

  17. Traction Drive Systems Breakout Group

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TRACTION DRIVE SYSTEM BREAKOUT GROUP EV Everywhere Workshop July 24, 2012 Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * 1 - What is the material cost floor to meet the $4/kW (AER300) & $15/kW (AER100)? * 2 - Consolidation of power module technologies will help meet cost targets * 3 - Don't overlook profit motive in value chain * 4 - Today's HEV systems drive EV traction drive systems because of manufacturing base Barriers

  18. Magnetic compression laser driving circuit

    DOE Patents [OSTI]

    Ball, Don G.; Birx, Dan; Cook, Edward G.

    1993-01-01

    A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 Kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 Kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.

  19. Magnetic compression laser driving circuit

    DOE Patents [OSTI]

    Ball, D.G.; Birx, D.; Cook, E.G.

    1993-01-05

    A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.

  20. Anomalous - viscosity current drive

    DOE Patents [OSTI]

    Stix, Thomas H.; Ono, Masayuki

    1988-01-01

    An apparatus and method for maintaining a steady-state current in a toroidal magnetically confined plasma. An electric current is generated in an edge region at or near the outermost good magnetic surface of the toroidal plasma. The edge current is generated in a direction parallel to the flow of current in the main plasma and such that its current density is greater than the average density of the main plasma current. The current flow in the edge region is maintained in a direction parallel to the main current for a period of one or two of its characteristic decay times. Current from the edge region will penetrate radially into the plasma and augment the main plasma current through the mechanism of anomalous viscosity. In another aspect of the invention, current flow driven between a cathode and an anode is used to establish a start-up plasma current. The plasma-current channel is magnetically detached from the electrodes, leaving a plasma magnetically insulated from contact with any material obstructions including the cathode and anode.

  1. EV Everywhere: Electric Car Safety, Maintenance, and Battery Life |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electric Vehicle Basics » EV Everywhere: Electric Car Safety, Maintenance, and Battery Life EV Everywhere: Electric Car Safety, Maintenance, and Battery Life EV Everywhere: Electric Car Safety, Maintenance, and Battery Life Plug-in electric vehicles (also known as electric cars or EVs) are as safe and easy to maintain as conventional vehicles. While driving conditions and habits will impact vehicle operation and vehicle range, some best practices can help you maximize

  2. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon apearravt028boan2010...

  3. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5.3L gasoline engine Battery Pack Manufacturer EnerDel Model Type I EV Pack (A306) Chemistry Li-ion Cathode Mixed Oxide (Modified NMC) Anode Amorphous Hard Carbon Configuration 4 ...

  4. Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es099_pesaran_2011_p.pdf (1.5 MB) More Documents & Publications Overview of Computer-Aided Engineering of Batteries (CAEBAT) and Introduction to Multi-Scale, Multi-Dimensional (MSMD) Modeling of Lithium-Ion Batteries Battery Thermal Modeling and Testing Progress of Computer-Aided Engineering of Batteries (CAEBAT)

  5. Development and Implementation of Degree Programs in Electric Drive Vehicle

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy describes the first design of a refrigerator condenser using the Sandia Cooler, i.e. air-bearing supported rotating heat-sink impeller. The project included baseline performance testing of a residential refrigerator, analysis, and design development of a Sandia Cooler condenser assembly including a spiral channel baseplate, and performance measurement and validation of this condenser system as incorporated into the residential refrigerator. Comparable performance was

  6. Electric Drive Component Manufacturing Facilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    6_ape_bokas_2012_p.pdf (1.36

    3_ape_tuttle_2011_p.pdf (1.11 MB

  7. Electric Drive Vehicle Level Control Development Under Various Thermal

    Broader source: Energy.gov (indexed) [DOE]

    Conditions | Department of Energy vss070_kim_2012_o.pdf (1.63 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Vehicle Level Model and Control Development and Validation Under Various Thermal Conditions Vehicle Technologies Office Merit Review 2015: Fuel Displacement Potential of Advanced Technologies under Different Thermal Conditions Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth)

  8. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Advanced Electric Drive Vehicle Education Program: CSU Ventures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon tiarravt033caille2010o...

  10. Vehicle Technologies Office Merit Review 2016: Drive Electric Orlando

    Broader source: Energy.gov [DOE]

    Presentation given by Florida Department of Agriculture and Consumer Services/Office of Energy at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review...

  11. Advanced Electric Drive Vehicle Education Program: CSU Ventures

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Advanced Electric Drive Vehicle Education Program: CSU Ventures

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  13. Electric Drive and Advanced Battery and Components Testbed (EDAB)

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Electric Drive and Advanced Battery and Components Testbed (EDAB)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. NREL: Transportation Research - Helping Electric-Drive Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was to test the resulting materials to see if they met DARPA's goal to increase the conductance of the TIM layers to one watt per square millimeter per degree Kelvin or more --...

  16. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  17. Electric Drive Vehicle Level Control Development Under Various...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office Merit Review 2015: Fuel Displacement Potential of Advanced Technologies under Different Thermal Conditions Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth)

  18. Electric Drive and Advanced Battery and Components Testbed (EDAB)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Feb 25 2013 Description / Specification Vehicle Configuration Series PHEV Traction Motor UQM 145 kW / single-speed gearbox APU UQM 145 kW / 5.3L gasoline engine Battery Pack Manufacturer EnerDel Model Type I EV Pack (A306) Chemistry Li-ion Cathode Mixed Oxide (Modified NMC) Anode Amorphous Hard Carbon Configuration 4 parallel strings of 96 cells Rated Capacity (Ah) 70 Nominal Voltage (V) 345 Pack mass (kg) 285 Cooling Type Passive (sealed enclosure) ESS Reference Performance Testing Results

  19. Electric Drive and Advanced Battery and Components Testbed (EDAB)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 2012 through June 6 2013 Description / Specification Vehicle Configuration Series PHEV Traction Motor UQM 145 kW / single-speed gearbox APU UQM 145 kW / 5.3L gasoline engine Battery Pack Manufacturer EnerDel Model Type I EV Pack (A306) Chemistry Li-ion Cathode Mixed Oxide (Modified NMC) Anode Amorphous Hard Carbon Configuration 4 parallel strings of 96 cells Rated Capacity (Ah) 70 Nominal Voltage (V) 345 Pack mass (kg) 285 Cooling Type Passive (sealed enclosure) ESS Reference Performance

  20. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motor UQM 145 kW single-speed gearbox APU UQM 145 kW 5.3L gasoline engine Battery Pack Manufacturer EnerDel Model Type I EV Pack (A306) Chemistry Li-ion Cathode Mixed ...

  1. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 25, 2013 Description Specification Vehicle Configuration Series PHEV Traction Motor UQM 145 kW single-speed gearbox APU UQM 145 kW 5.3L gasoline engine Battery Pack ...

  2. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 5th 2012 Description Specification Vehicle Configuration Series PHEV Traction Motor UQM 145 kW single-speed gearbox APU UQM 145 kW 5.3L gasoline engine Battery Pack ...

  3. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 24th 2012 Description Specification Vehicle Configuration Series PHEV Traction Motor UQM 145 kW single-speed gearbox APU UQM 145 kW 5.3L gasoline engine Battery Pack ...

  4. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 17, 2012 Description Specification Vehicle Configuration Series PHEV Traction Motor UQM 145 kW single-speed gearbox APU UQM 145 kW 5.3L gasoline engine Battery Pack ...

  5. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Description Specification Vehicle Configuration Series PHEV Traction Motor UQM 145 kW single-speed gearbox APU UQM 145 kW 5.3L gasoline engine Battery Pack Manufacturer ...

  6. Battery and Electric Drive Manufacturing Distribution Map - American...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Distribution Map - American Recovery and Reinvestment Act funding Battery ... and their components and to expand battery recycling capacity 500 million in grants ...

  7. Advanced Electric Drive Vehicle Education Program: CSU Ventures...

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt033ticaille2011p

  8. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt028apeboan2012

  9. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt028apeboan2011

  10. Advanced Electric Drive Vehicle Education Program: CSU Ventures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt033ticaille2012o

  11. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. FY2015 Electric Drive Technologies Annual Progress Report (Technical...

    Office of Scientific and Technical Information (OSTI)

    of tomorrow's automobiles will function as a unified system to improve fuel efficiency. ... Country of Publication: United States Language: English Subject: 33 ADVANCED PROPULSION ...

  13. Fact #797: September 16, 2013 Driving Ranges for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    offered for the 2013 model year (MY). The Tesla Model S has the longest range of any EV ... These data may not directly match the vehicle manufacturer's stated range. The Tesla Model ...

  14. Advanced Electric Drive Vehicle Education Program: CSU Ventures

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  15. Computer-Aided Engineering for Electric Drive Vehicle Batteries...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of Computer-Aided Engineering of Batteries (CAEBAT) and Introduction to Multi-Scale, Multi-Dimensional (MSMD) Modeling of Lithium-Ion Batteries Battery Thermal Modeling ...

  16. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Test Drive EIA's New Interactive Electricity Data Browser | Department of

    Broader source: Energy.gov (indexed) [DOE]

    BROADER PERSPECTIVE Technology advances needed for photovoltaics to achieve widespread grid price parity Rebecca Jones-Albertus 1 * , David Feldman 2 , Ran Fu 2 , Kelsey Horowitz 2 and Michael Woodhouse 2 * 1 The United States Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office, Washington, DC, USA 2 The National Renewable Energy Laboratory, Strategic Energy Analysis Center, Golden, CO, USA ABSTRACT To quantify the potential value of

  18. US Electric Drive Manufacturing Center | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    US Department of Energy's Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment Public Information for Convening Interviews I. What are the substantive issues DOE seeks to address? Strategies for grouping various basic models for purposes of certification; Identification of non-efficiency attributes, which do not impact the measured consumption of the equipment as tested by DOE's test procedure; The information that

  19. US Electric Drive Manufacturing Center | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt021_ape_gieseking_2011_p.pdf (672.55 KB

  20. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  1. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Broader source: Energy.gov (indexed) [DOE]

    15, 2012 Project ID : VSS043 This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 Overview Project Start Date: Oct 2009 ...

  2. EV Everywhere Grand Challenge - Electric Drive (Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and representatives from the following organizations: Ames Laboratory Argonne National Laboratory Booz Allen Hamilton Booz Allen Hamilton ARPA-E Chrysler Group LLC Cree, Inc. ...

  3. FY 2014 Annual Progress Report - Electric Drive Technology Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... M.J. Kramer, and D.J. Smith, "Atomic- 18. scale Chemical Imaging and Quantification of Metallic Alloy Structures by Energy-Dispersive X-ray Spectroscopy," Nature.com...

  4. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  5. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  7. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Electrical Motor Drive Apparatus and Method - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substantially reduces the bus capacitance and thus inverter volume and cost Reduce battery losses and improves battery operating conditions by eliminating battery ripple current ...

  9. NREL Team Investigates Secondary Uses for Electric Drive Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li-ion batteries could lead to consumers obtaining a cost credit for the remaining value of a used battery, potentially offsetting a portion of the initial cost to the EV buyer. ...

  10. ARM - SGP Rural Driving Hazards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rural Driving Hazards SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Rural Driving Hazards The rural location of the Southern Great Plains (SGP) site facilities requires that visitors travel on

  11. Direct drive field actuator motors

    DOE Patents [OSTI]

    Grahn, Allen R.

    1998-01-01

    A positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  12. Direct drive field actuator motors

    DOE Patents [OSTI]

    Grahn, A.R.

    1998-03-10

    A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

  13. Mechanical drive for blood pump

    DOE Patents [OSTI]

    Bifano, N.J.; Pouchot, W.D.

    1975-07-29

    This patent relates to a highly efficient blood pump to be used as a replacement for a ventricle of the human heart to restore people disabled by heart disease. The mechanical drive of the present invention is designed to operate in conjunction with a thermoelectric converter power source. The mechanical drive system essentially converts the output of a rotary power into pulsatile motion so that the power demand from the thermoelectric converter remains essentially constant while the blood pump output is pulsed. (auth)

  14. Low backlash direct drive actuator

    DOE Patents [OSTI]

    Kuklo, T.C.

    1994-10-25

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw. 10 figs.

  15. Low backlash direct drive actuator

    DOE Patents [OSTI]

    Kuklo, Thomas C. (Oakland, CA)

    1994-01-01

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw.

  16. Driving Green com | Open Energy Information

    Open Energy Info (EERE)

    Driving Green com Jump to: navigation, search Name: Driving Green.com Place: Melbourne, Florida Zip: 32904 Sector: Vehicles Product: Driving green.com is a website that allows...

  17. April Blood Drive Announcement | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April Blood Drive Announcement April Blood Drive Announcement The next American Red Cross Blood Drive will take place Tuesday, April 12th from 10 a.m.-4 p.m. in CEBAF Center, Room ...

  18. Hybrid electric vehicle power management system

    SciTech Connect (OSTI)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  19. Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Broader source: Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  20. Off-Grid or Stand-Alone Renewable Energy Systems | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy systems Grid-connected home energy systems Small solar electric systems Small wind electric systems Microhydropower systems Hybrid wind and solar electric systems...

  1. Vehicle drive module having improved EMI shielding

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.

    2006-11-28

    EMI shielding in an electric vehicle drive is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  2. Vehicle drive module having improved cooling configuration

    DOE Patents [OSTI]

    Radosevich, Lawrence D.; Meyer, Andreas A.; Kannenberg, Daniel G.; Kaishian, Steven C.; Beihoff, Bruce C.

    2007-02-13

    An electric vehicle drive includes a thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. Power electronic circuits are thermally matched, such as between component layers and between the circuits and the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  3. In-line drivetrain and four wheel drive work machine using same

    DOE Patents [OSTI]

    Hoff, Brian

    2008-08-05

    A four wheel drive articulated mine loader is powered by a fuel cell and propelled by a single electric motor. The drivetrain has the first axle, second axle, and motor arranged in series on the work machine chassis. Torque is carried from the electric motor to the back differential via a pinion meshed with the ring gear of the back differential. A second pinion oriented in an opposite direction away from the ring gear is coupled to a drive shaft to transfer torque from the ring gear to the differential of the front axle. Thus, the ring gear of the back differential acts both to receive torque from the motor and to transfer torque to the forward axle. The in-line drive configuration includes a single electric motor and a single reduction gear to power the four wheel drive mine loader.

  4. Marketing & Driving Demand: Social Media Tools & Strategies ...

    Office of Environmental Management (EM)

    Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text Version) Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text...

  5. Driving Accountability for Program Performance Using Measured...

    Energy Savers [EERE]

    Driving Accountability for Program Performance Using Measured Energy Savings (201) Better Buildings Residential Network Peer Exchange Call Series: Driving Accountability for ...

  6. Cone Drive Operations Inc | Open Energy Information

    Open Energy Info (EERE)

    enveloping worm gear technology. The company supplies azimuth and elevation drives for solar tracking applications. References: Cone Drive Operations Inc1 This article is a...

  7. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January ...

  8. Simple Electric Vehicle Simulation

    Energy Science and Technology Software Center (OSTI)

    1993-07-29

    SIMPLEV2.0 is an electric vehicle simulation code which can be used with any IBM compatible personal computer. This general purpose simulation program is useful for performing parametric studies of electric and series hybrid electric vehicle performance on user input driving cycles.. The program is run interactively and guides the user through all of the necessary inputs. Driveline components and the traction battery are described and defined by ASCII files which may be customized by themore » user. Scaling of these components is also possible. Detailed simulation results are plotted on the PC monitor and may also be printed on a printer attached to the PC.« less

  9. Study of Advantages of PM Drive Motor with Selectable Windings for HEVs

    SciTech Connect (OSTI)

    Otaduy, Pedro J; Hsu, John S; Adams, Donald J

    2007-11-01

    The gains in efficiency and reduction in battery costs that can be achieved by changing the effective number of stator turns in an electric motor are demonstrated by simulating the performance of an electric vehicle on a set of eight standard driving cycles.

  10. Direct Fusion Drive for a Human Mars Orbital Mission

    SciTech Connect (OSTI)

    Paluszek, Michael; Pajer, Gary; Razin, Yosef; Slonaker, James; Cohen, Samuel; Feder, Russ; Griffin, Kevin; Walsh, Matthew

    2014-08-01

    The Direct Fusion Drive (DFD) is a nuclear fusion engine that produces both thrust and electric power. It employs a field reversed configuration with an odd-parity rotating magnetic field heating system to heat the plasma to fusion temperatures. The engine uses deuterium and helium-3 as fuel and additional deuterium that is heated in the scrape-off layer for thrust augmentation. In this way variable exhaust velocity and thrust is obtained.

  11. Partnerships Drive New Transportation Solutions - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Return to Search Partnerships Drive New Transportation Solutions National Renewable Energy Laboratory Success Story Details Partner Location Agreement Type Publication Date General Motors (GM), Chrysler, and Ford USA Other October 23, 2014 Summary Hybrid car sales have taken off in recent years, with a fuel-sipping combination of electric- and gas-powered technologies that simultaneously deliver energy efficiency, low emissions, and strong performance. The

  12. MULTIPLE DIFFERENTIAL ROTARY MECHANICAL DRIVE

    DOE Patents [OSTI]

    Smits, R.G.

    1964-01-28

    This patent relates to a mechanism suitable for such applications as driving two spaced-apart spools which carry a roll film strip under conditions where the film movement must be rapidly started, stopped, and reversed while maintaining a constant tension on the film. The basic drive is provided by a variable speed, reversible rnotor coupled to both spools through a first differential mechanism and driving both spools in the same direction. A second motor, providing a constant torque, is connected to the two spools through a second differential mechanism and is coupled to impart torque to one spool in a first direction anid to the other spool in the reverse direction thus applying a constant tension to the film passing over the two spools irrespective of the speed or direction of rotation thereof. (AEC)

  13. Drive reconfiguration mechanism for tracked robotic vehicle

    DOE Patents [OSTI]

    Willis, W. David

    2000-01-01

    Drive reconfiguration apparatus for changing the configuration of a drive unit with respect to a vehicle body may comprise a guide system associated with the vehicle body and the drive unit which allows the drive unit to rotate about a center of rotation that is located at about a point where the drive unit contacts the surface being traversed. An actuator mounted to the vehicle body and connected to the drive unit rotates the drive unit about the center of rotation between a first position and a second position.

  14. Electrical and Electronics Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The Electrical and Electronics Technical Team’s (EETT's) mission is to enable cost-effective, smaller, lighter, and efficient power electronics and electric motors for electric traction drive systems (ETDSs) while maintaining performance of internal combustion engine (ICE)-based vehicles. The EETT also identifies technology gaps, establishes R&D targets, develops a roadmap to achieve technical targets and goals, and evaluates the R&D progress toward meeting the established R&D targets and goals.

  15. Anomalous-viscosity current drive

    DOE Patents [OSTI]

    Stix, T.H.; Ono, M.

    1986-04-25

    The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.

  16. Hydromechanical transmission with hydrodynamic drive

    DOE Patents [OSTI]

    Orshansky, Jr., deceased, Elias; Weseloh, William E.

    1979-01-01

    This transmission has a first planetary gear assembly having first input means connected to an input shaft, first output means, and first reaction means, and a second planetary gear assembly having second input means connected to the first input means, second output means, and second reaction means connected directly to the first reaction means by a reaction shaft. First clutch means, when engaged, connect the first output means to an output shaft in a high driving range. A hydrodynamic drive is used; for example, a torque converter, which may or may not have a stationary case, has a pump connected to the second output means, a stator grounded by an overrunning clutch to the case, and a turbine connected to an output member, and may be used in a starting phase. Alternatively, a fluid coupling or other type of hydrodynamic drive may be used. Second clutch means, when engaged, for connecting the output member to the output shaft in a low driving range. A variable-displacement hydraulic unit is mechanically connected to the input shaft, and a fixed-displacement hydraulic unit is mechanically connected to the reaction shaft. The hydraulic units are hydraulically connected together so that when one operates as a pump the other acts as a motor, and vice versa. Both clutch means are connected to the output shaft through a forward-reverse shift arrangement. It is possible to lock out the torque converter after the starting phase is over.

  17. Why Do Electricity Policy and Competitive Markets Fail to Use Advanced PV Systems to Improve Distribution Power Quality?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McHenry, Mark P.; Johnson, Jay; Hightower, Mike

    2016-01-01

    The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. We discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less

  18. EERE Success Story—Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Broader source: Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  19. Hybrid and Plug-In Electric Vehicles (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: * Hybrid electric vehicles (HEVs) * Plug-in hybrid electric vehicles (PHEVs) * All-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions. Hybrid Electric Vehicles HEVs are powered by an internal combustion engine (ICE) and by an electric motor that uses energy stored

  20. How Would You Use a Neighborhood Electric Vehicle? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Neighborhood Electric Vehicle? How Would You Use a Neighborhood Electric Vehicle? October 8, 2009 - 4:22pm Addthis This week, John discussed hybrid electric vehicles and neighborhood electric vehicles. We know many of you are driving hybrid electric vehicles, but what do you think about neighborhood electric vehicles? How would you use a neighborhood electric vehicle? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for

  1. A Framework for Organizing Current and Future Electric Utility Regulatory and Business Models

    SciTech Connect (OSTI)

    Satchwell, Andrew; Cappers, Peter; Schwartz, Lisa C.; Fadrhonc, Emily Martin

    2015-06-01

    Many regulators, utilities, customer groups, and other stakeholders are reevaluating existing regulatory models and the roles and financial implications for electric utilities in the context of today’s environment of increasing distributed energy resource (DER) penetrations, forecasts of significant T&D investment, and relatively flat or negative utility sales growth. When this is coupled with predictions about fewer grid-connected customers (i.e., customer defection), there is growing concern about the potential for serious negative impacts on the regulated utility business model. Among states engaged in these issues, the range of topics under consideration is broad. Most of these states are considering whether approaches that have been applied historically to mitigate the impacts of previous “disruptions” to the regulated utility business model (e.g., energy efficiency) as well as to align utility financial interests with increased adoption of such “disruptive technologies” (e.g., shareholder incentive mechanisms, lost revenue mechanisms) are appropriate and effective in the present context. A handful of states are presently considering more fundamental changes to regulatory models and the role of regulated utilities in the ownership, management, and operation of electric delivery systems (e.g., New York “Reforming the Energy Vision” proceeding).

  2. EV Everywhere Workshop: Electric Motors and Critical Materials Breakout Group Report

    Broader source: Energy.gov [DOE]

    Presentation given at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

  3. Policy Overview and Options for Maximizing the Role of Policy in Geothermal Electricity Development

    Broader source: Energy.gov [DOE]

    This report explores the effectiveness of the historical and current body of policies in terms of increased geothermal electricity development. Insights are provided into future policies that may drive the market to optimize development of available geothermal electricity resources.

  4. Advanced Power Electronics and Electric Motors (APEEM) R&D Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting ape00arogers2013o.pdf (2.77 MB) More Documents & Publications Advanced Power Electronics and Electric Motors (APEEM) R&D Program Overview Electric Drive Status and ...

  5. Study Released on the Potential of Plug-In Hybrid Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics Celebrate National Drive Electric Week with ways to make your all-electric or plug-in hybrid cars even greener | Photo courtesy of Dennis Schroeder, National Renewable ...

  6. X-Ray Microscopy Reveals How Crystal Mechanics Drive Battery Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Microscopy Reveals How Crystal Mechanics Drive Battery Performance X-Ray Microscopy Reveals How Crystal Mechanics Drive Battery Performance Print Wednesday, 28 October 2015 00:00 Rechargeable lithium-ion batteries power most portable electronics and are becoming more widely used in large-scale applications like electric vehicles. Scientists have long observed that lithium iron phosphate nanoparticles are one of the best performing battery electrode materials, able to repeatedly charge and

  7. Connector Issues in Reliability | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PHEV-Grid-Connectivity, with Support for SAE Electrical Standards Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

  8. GenDrive Limited | Open Energy Information

    Open Energy Info (EERE)

    GenDrive Limited Jump to: navigation, search Name: GenDrive Limited Place: Cambridge, United Kingdom Zip: CB23 3GY Sector: Renewable Energy, Solar, Wind energy Product: Developing...

  9. Eco Drive Capital Partners | Open Energy Information

    Open Energy Info (EERE)

    Capital Partners Jump to: navigation, search Name: Eco-Drive Capital Partners Place: New York Product: New York-based Eco-Drive is a European-American investment consortium,...

  10. NexxtDrive | Open Energy Information

    Open Energy Info (EERE)

    NexxtDrive Jump to: navigation, search Name: NexxtDrive Place: London, England, United Kingdom Zip: WC2N 5HR Product: London-based firm developing electro-mechanical technologies...

  11. SE Drive Technik | Open Energy Information

    Open Energy Info (EERE)

    Drive Technik Jump to: navigation, search Name: SE Drive Technik Place: Bochum, Germany Zip: 44791 Product: Germany-based R&D subsidiary of Indian turbine maker Suzlon. References:...

  12. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  13. Hybrid Braking System for Non-Drive Axles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Braking System for Non-Drive Axles Hybrid Braking System for Non-Drive Axles A hybrid braking system is designed to conserve diesel fuel (or alternative fuels) by using regenerative braking, which extends hybrid technology to non-drive axles. p-17_rini.pdf (124.05 KB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer AVTA: Full-Size Electric Vehicle Specifications and Test Procedures SuperTruck … Development

  14. Electric vehicle system for charging and supplying electrical power

    DOE Patents [OSTI]

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  15. Indianapolis Offers a Lesson on Driving Demand

    Broader source: Energy.gov [DOE]

    Successful program managers know that understanding the factors that drive homeowners to make upgrades is critical to the widespread adoption of energy efficiency. What better place to learn about driving demand for upgrades than in Indianapolis, America's most famous driving city?

  16. NREL: Transportation Research - NREL to Offer Fuel Cell Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Offer Fuel Cell Electric Vehicle Ride and Drive at Sustainable Smart Home Opening on July 9 July 7, 2016 The National Renewable Energy Laboratory (NREL) will showcase several ...

  17. NREL: Learning - Plug-In Hybrid Electric Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Credit: Keith Wipke Image of the cutaway top view of a passenger vehicle showing the drive train that contains an electric motor and a small internal combustion engine side by side ...

  18. New Hampshire Electric Co-Op - Large Business Energy Solutions...

    Broader source: Energy.gov (indexed) [DOE]

    Speed Drives: 1,050 - 4,400 Custom: lesser of 35% of the total installed cost or buy down to 1 year pay Summary New Hampshire Electric Co-Op offers incentives for its large...

  19. Plug-In Electric Vehicle Handbook for Consumers

    SciTech Connect (OSTI)

    2015-02-09

    This handbook is designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  20. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2015-02-01

    This handbook is designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  1. Route-Based Control of Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Gonder, J. D.

    2008-01-01

    Today's hybrid electric vehicle controls cannot always provide maximum fuel savings over all drive cycles. Route-based controls could improve HEV fuel efficiency by 2%-4% and help save nearly 6.5 million gallons of fuel annually.

  2. Base drive and overlap protection circuit

    DOE Patents [OSTI]

    Gritter, David J.

    1983-01-01

    An inverter (34) which provides power to an A. C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A. C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A. C. machine is optimized. The control circuit includes a microcomputer and memory element which receive various parametric inputs and calculate optimized machine control data signals therefrom. The control data is asynchronously loaded into the inverter through an intermediate buffer (38). A base drive and overlap protection circuit is included to insure that both transistors of a complimentary pair are not conducting at the same time. In its preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack (32) and a three-phase induction motor (18).

  3. Testing of a direct drive generator for wind turbines

    SciTech Connect (OSTI)

    Sondergaard, L.M.

    1996-12-31

    The normal drive train of a wind turbine consists a gearbox and a 4 to 8 poles asynchronous generator. The gearbox is an expensive and unreliable components and this paper deals with testing of a direct drive synchronous generator for a gearless wind turbine. The Danish company Belt Electric has constructed and manufactured a 27 kW prototype radial flux PM-generator (DD600). They have used cheap hard ferrite magnets in the rotor of this PM-generator. This generator has been tested at Riso and the test results are investigated and analyzed in this paper. The tests have been done with three different load types (1: resistance; 2: diode rectifier, DC-capacitor, resistance; 3: AC-capacitor, diode rectifier, DC-capacitor, resistance). 1 ref., 9 figs., 5 tabs.

  4. Electric Vehicle Safety Training for Emergency Responders | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Presentation given at the EV Everywhere Grand Challenge … Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL. 7b_electric_motors-and_critical_materials_ed.pdf (154.22 KB) More Documents & Publications EV Everywhere Workshop: Power Electronics and Thermal Management Breakout Session Report EV Everywhere Workshop: Electric Motors and Critical Materials Breakout Group Report EV Everywhere - Charge to Breakout Sessions

  5. Vehicle Technologies Office: Electric Motors Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle Technologies Office: Electric Motors Research and Development Vehicle Technologies Office: Electric Motors Research and Development To reach the EV Everywhere Grand Challenge goal, the Vehicle Technologies Office (VTO) is supporting research and development (R&D) to improve motors in hybrid and plug-in electric vehicles, with a particular focus on reducing the use of rare earth materials currently used for permanent magnet-based motors. In an electric drive

  6. AVTA: 2014 Smart Electric Drive Coupe All-Electric Vehicle Testing Reports

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  7. Small Businesses Helping Drive Economy: Clean Energy, Clean Sites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Businesses Helping Drive Economy: Clean Energy, Clean Sites Small Businesses Helping Drive Economy: Clean Energy, Clean Sites A memo on small businesses helping drive the economy: ...

  8. DOE Tour of Zero Floorplans: Hickory Drive by Glastonbury Housesmith...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hickory Drive by Glastonbury Housesmith DOE Tour of Zero Floorplans: Hickory Drive by Glastonbury Housesmith DOE Tour of Zero Floorplans: Hickory Drive by Glastonbury Housesmith...

  9. Vehicle Technologies Office: U.S. DRIVE 2015 Technical Accomplishments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. DRIVE 2015 Technical Accomplishments Report Vehicle Technologies Office: U.S. DRIVE 2015 Technical Accomplishments Report The U.S. DRIVE 2015 Highlights of Technical ...

  10. Vehicle Technologies Office: US DRIVE Materials Technical Team...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US DRIVE Materials Technical Team Roadmap Vehicle Technologies Office: US DRIVE Materials Technical Team Roadmap The Materials Technical Team (MTT) of the U.S. DRIVE Partnership ...

  11. Electrical Engineer

    Broader source: Energy.gov [DOE]

    Transmission Field Services is responsible for field switching operation and maintenance of Bonneville Power Administration's high-voltage electrical transmission system to provide safe, reliable,...

  12. Electrical Safety

    Office of Environmental Management (EM)

    Handbook that was originally issued in 1998, and revised in 2004. DOE handbooks are ... the National Fire Protection Association (NFPA) 70, the National Electrical Code (NEC), ...

  13. US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability Partnership Plan | Department of Energy Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan This document describes the vision, mission, scope, and governing policies of the U.S. DRIVE Partnership ("Partnership"). Dated July 2016. U S DRIVE Partnership Plan - July 2016.pdf (400.46 KB) More Documents &

  14. Roles of electricity: Electric steelmaking

    SciTech Connect (OSTI)

    Burwell, C.C.

    1986-07-01

    Electric steel production from scrap metal continues to grow both in total quantity and in market share. The economics of electric-steel production in general, and of electric minimills in particular, seem clearly established. The trend towards electric steelmaking provides significant economic and competitive advantages for producers and important overall economic, environmental, and energy advantages for the United States at large. Conversion to electric steelmaking offers up to a 4-to-1 advantage in terms of the overall energy used to produce a ton of steel, and s similar savings in energy cost for the producer. The amount of old scrap used to produce a ton of steel has doubled since 1967 because of the use of electric furnaces.

  15. Clean Cities Drive Vol 3 Issue 3 - Summer 1996

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    I to the sixth issue of the U.S. I I Department of Energy's [DOE) Clean Cities Drive. Each issue of the newsletter will bring you valuable information from the Clean Cities pro- I 1 gram to help you succeed in putting more alternative fuel vehicles ( A M ) 11 onto our roads. If you have a story to ( I tell, a p i h r e to share, or information of interest to Clean Cities participants, 1 1 please call h e Clean Cities Hotline at 1 -800-CCITIES. 1 1 5 Journal: An Electric Vehicle Road Trip

  16. Electric machine

    DOE Patents [OSTI]

    El-Refaie, Ayman Mohamed Fawzi; Reddy, Patel Bhageerath

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  17. eGallon and Electric Vehicle Sales: The Big Picture | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    eGallon and Electric Vehicle Sales: The Big Picture eGallon and Electric Vehicle Sales: The Big Picture August 19, 2013 - 8:30am Addthis eGallon: Compare the costs of driving with electricity What is eGallon? It is the cost of fueling a vehicle with electricity compared to a similar vehicle that runs on gasoline. Did you know? On average, it costs about half as much to drive an electric vehicle. Find out how much it costs to fuel an electric vehicle in your state regular gasoline 0 6 4 1 0 3 * 0

  18. An Inverter Packaging Scheme for an Integrated Segmented Traction Drive System

    SciTech Connect (OSTI)

    Su, Gui-Jia; Tang, Lixin; Ayers, Curtis William; Wiles, Randy H

    2013-01-01

    The standard voltage source inverter (VSI), widely used in electric vehicle/hybrid electric vehicle (EV/HEV) traction drives, requires a bulky dc bus capacitor to absorb the large switching ripple currents and prevent them from shortening the battery s life. The dc bus capacitor presents a significant barrier to meeting inverter cost, volume, and weight requirements for mass production of affordable EVs/HEVs. The large ripple currents become even more problematic for the film capacitors (the capacitor technology of choice for EVs/HEVs) in high temperature environments as their ripple current handling capability decreases rapidly with rising temperatures. It is shown in previous work that segmenting the VSI based traction drive system can significantly decrease the ripple currents and thus the size of the dc bus capacitor. This paper presents an integrated packaging scheme to reduce the system cost of a segmented traction drive.

  19. Electrical connector

    DOE Patents [OSTI]

    Dilliner, Jennifer L.; Baker, Thomas M.; Akasam, Sivaprasad; Hoff, Brian D.

    2006-11-21

    An electrical connector includes a female component having one or more receptacles, a first test receptacle, and a second test receptacle. The electrical connector also includes a male component having one or more terminals configured to engage the one or more receptacles, a first test pin configured to engage the first test receptacle, and a second test pin configured to engage the second test receptacle. The first test receptacle is electrically connected to the second test receptacle, and at least one of the first test pin and the second test pin is shorter in length than the one or more terminals.

  20. High Efficiency Driving Electronics for General Illumination...

    Office of Scientific and Technical Information (OSTI)

    Driving Electronics for General Illumination LED Luminaires Upadhyay, Anand 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION New generation of standalone LED driver platforms...