National Library of Energy BETA

Sample records for grid-connected distributed pv

  1. Remote performance check and automated failure identification for grid-connected PV systems

    E-Print Network [OSTI]

    Heinemann, Detlev

    Remote performance check and automated failure identification for grid-connected PV systems cloudy skies. This determines the quality of the PV simulation and finally the period of time, satellite data, PVSAT-2 1. Introduction Failure-free operation of grid-connected photovoltaic (PV) systems

  2. QUALIFIED FORECAST OF ENSEMBLE POWER PRODUCTION BY SPATIALLY DISPERSED GRID-CONNECTED PV SYSTEMS

    E-Print Network [OSTI]

    Heinemann, Detlev

    , Energy Meteorology Group, D-26111 Oldenburg, Germany, elke.lorenz@uni-oldenburg.de + UniversityQUALIFIED FORECAST OF ENSEMBLE POWER PRODUCTION BY SPATIALLY DISPERSED GRID- CONNECTED PV SYSTEMS Schneider° * University of Oldenburg, Institute of Physics, Energy and Semiconductor Research Laboratory

  3. Environmental impacts of large-scale grid-connected ground-mounted PV installations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Environmental impacts of large-scale grid-connected ground-mounted PV installations Antoine Beylota-scale ground-mounted PV installations by considering a life-cycle approach. The methodology is based. Mobile PV installations with dual-axis trackers show the largest impact potential on ecosystem quality

  4. FAILURE DETECTION ROUTINE FOR GRID CONNECTED PV SYSTEMS AS PART OF THE PVSAT-2 PROJECT

    E-Print Network [OSTI]

    Heinemann, Detlev

    FAILURE DETECTION ROUTINE FOR GRID CONNECTED PV SYSTEMS AS PART OF THE PVSAT-2 PROJECT S. Stettler1.stettler@enecolo.ch, tel. +41 44 994 9001, fax. +41 44 994 9005 ABSTRACT: Identification of energy losses in PV systems up automatically analysing the performance of PV systems and, in case of a malfunction, determining possible causes

  5. Monitoring and analysis of two grid connected PV systems Michael BRESSAN* Valrie DUPE**, Bruno JAMMES**, Thierry TALBERT*, Corinne ALONSO**

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Monitoring and analysis of two grid connected PV systems Michael BRESSAN* Valérie DUPE**, Bruno, avenue du Colonel Roche 66100, Perpignan, France BP 54200 31031 Toulouse cedex 4 5.2 PV System and monitored for fault detection ad predictive reliability. The first PV grid, is at CNRS-PROMES laboratory

  6. OFF-SHORE WIND AND GRID-CONNECTED PV: HIGH PENETRATION PEAK SHAVING FOR NEW YORK CITY

    E-Print Network [OSTI]

    Perez, Richard R.

    OFF-SHORE WIND AND GRID-CONNECTED PV: HIGH PENETRATION PEAK SHAVING FOR NEW YORK CITY Richard Perez-shore wind and PV generation using the city of New York as a test case. While wind generation is not known one year's worth of hourly site & time-specific data including electrical demand PV and off-shore wind

  7. FORECAST OF ENSEMBLE POWER PRODUCTION BY GRID-CONNECTED PV SYSTEMS Elke Lorenz*, Detlev Heinemann*, Hashini Wickramarathne*, Hans Georg Beyer +

    E-Print Network [OSTI]

    Heinemann, Detlev

    of Physics, Energy and Semiconductor Research Laboratory, Energy Meteorology Group, 26111 Oldenburg, GermanyH, Spicherer Straße 48, D-86157 Augsburg, Germany ABSTRACT: The contribution of power production by PV systemsFORECAST OF ENSEMBLE POWER PRODUCTION BY GRID-CONNECTED PV SYSTEMS Elke Lorenz*, Detlev Heinemann

  8. Electricity storage for grid-connected household dwellings with PV panels

    SciTech Connect (OSTI)

    Mulder, Grietus; Six, Daan; Ridder, Fjo De

    2010-07-15

    Classically electricity storage for PV panels is mostly designed for stand-alone applications. In contrast, we focus in this article on houses connected to the grid with a small-scale storage to store a part of the solar power for postponed consumption within the day or the next days. In this way the house owner becomes less dependent on the grid and does only pay for the net shortage of his energy production. Local storage solutions pave the way for many new applications like omitting over-voltage of the line and bridging periods of power-line black-out. Since 2009 using self-consumption of PV energy is publicly encouraged in Germany, which can be realised by electric storage. This paper develops methods to determine the optimal storage size for grid-connected dwellings with PV panels. From measurements in houses we were able to establish calculation rules for sizing the storage. Two situations for electricity storage are covered: - the storage system is an optimum to cover most of the electricity needs; - it is an optimum for covering the peak power need of a dwelling. After these calculation rules a second step is needed to determine the size of the real battery. The article treats the aspects that should be taken into consideration before buying a specific battery like lead-acid and lithium-ion batteries. (author)

  9. Aalborg Universitet Economic Power Dispatch of Distributed Generators in a Grid-Connected Microgrid

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Aalborg Universitet Economic Power Dispatch of Distributed Generators in a Grid-Connected Microgrid., & Vasquez, J. C. (2015). Economic Power Dispatch of Distributed Generators in a Grid-Connected Microgrid-Connected Microgrid Adriana C. Luna, Nelson L. Diaz, Fabio Andrade, Mois`es Graells§, Josep M. Guerrero, and Juan C

  10. PVGIS approach for assessing the performances of the first PV grid-connected power plant in Morocco

    E-Print Network [OSTI]

    Barhdadi, Abdelfettah

    2012-01-01

    In this paper, we apply the PVGIS method for estimating the performance of the first grid-connected PV micro-power plant in Morocco. PVGIS approach provides analysis and assessment of in-site solar energy resources and predicts with good accuracy the potential of PV systems in term of electricity production. We find that annual total power generation of the micro-power is slightly higher than that initially expected at the installation stage and actually measured. The yearly predicted and measured power production values agree to about 2 %. However, individual monthly production can have larger discrepancy.

  11. Abstract--This paper deals with the design of a nonlinear con-troller for single-phase grid-connected photovoltaic (PV) systems

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    -connected photovoltaic (PV) systems to maintain the current injected into the grid in phase with grid voltage. This paper also deals with the stability of internal dynamics of PV systems which is a basic requirement in atmospheric conditions. Index Terms--DC link voltage, grid current, grid-connected PV system, maximum power

  12. Market Transformation Pathways for Grid-Connected Rooftop Solar PV in Minnesota

    SciTech Connect (OSTI)

    Abbey, Ross; Ross, Brian

    2013-06-03

    This report presents the market and policy findings of the Minnesota Solar Challenge program. The report draws on information collected from state agencies, local government units, solar industry participants, rooftop photovoltaic (PV) adopters (sometimes called customer-generators), state and national experts, the Commerce distributed generation stakeholder process, and the numerous reports and data sets referenced herein.

  13. Utility Grid-Connected Distributed Power Systems National Solar Energy Conference

    E-Print Network [OSTI]

    capacity and energy benefits. The Solar Buildings Program provides design assistance and incentivesUtility Grid-Connected Distributed Power Systems National Solar Energy Conference ASES Solar 96-effective in these applications by about the year 2000. In the first three years, SMUD has installed over 340 residential

  14. Blanc, I., Beloin-Saint-Pierre, D., Payet, J., Jacquin, P., Adra, N., Mayer, D., Espace-PV: key sensitive parameters for environmental impacts of grid-connected PV systems with LCA , In Proceedings of the 23rd

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Blanc, I., Beloin-Saint-Pierre, D., Payet, J., Jacquin, P., Adra, N., Mayer, D., « Espace-PV: key sensitive parameters for environmental impacts of grid-connected PV systems with LCA », In Proceedings-936338-24-8, pp. 3779-3781. DOI: 10.4229/23rdEUPVSEC2008-6DV.5.9 ESPACE-PV: KEY SENSITIVE PARAMETERS

  15. Battery Management for Grid-Connected PV Systems with a Battery

    E-Print Network [OSTI]

    Pedram, Massoud

    -connected systems, Photovoltaic power, Electricity bill 1. INTRODUCTION The number and capacity of photovoltaic (PV}@usc.edu ABSTRACT Photovoltaic (PV) power generation systems are one of the most promising renewable power sources into account the limited battery capacity, power converter efficiency, battery's internal re- sistance and rate

  16. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01

    Power characteristics of PV ensembles: experiences from theproduction of 100 grid connected PV systems distributed overHoff and R. Perez, "Modeling PV Fleet Output Variability,"

  17. Hourly Simulation of Grid-Connected PV Systems Using Realistic Building Loads (Preprint)

    SciTech Connect (OSTI)

    Balcomb, J.D.; Hayter, S.J.; Weaver, N.L.

    2001-02-27

    This is one of two companion papers that describe the ENERGY-10 PV design tool computer simulation program. The other paper is titled ''ENERGY-10 Photovoltaics: A New Capability.'' Whereas this paper focuses on the PV aspects of the program, the companion paper focuses on the implementation method. The case study in this paper is a commercial building application, whereas the case study in the companion paper is a residential application with an entirely different building load characteristic. Together they provide a balanced view.

  18. High Penetration, Grid Connected Photovoltaic Technology Codes and Standards: Preprint

    SciTech Connect (OSTI)

    Basso, T. S.

    2008-05-01

    This paper reports the interim status in identifying and reviewing photovoltaic (PV) codes and standards (C&S) and related electrical activities for grid-connected, high-penetration PV systems with a focus on U.S. electric utility distribution grid interconnection.

  19. Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications

    SciTech Connect (OSTI)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-02-01

    Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on (1) The utilization of a large area factory assembled PV panel, and (2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District{close_quote}s Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems. {copyright} {ital 1997 American Institute of Physics.}

  20. The inverter is a major component of photovoltaic (PV) systems either autonomous or grid connected. It affects the

    E-Print Network [OSTI]

    Oregon, University of

    ABSTRACT The inverter is a major component of photovoltaic (PV) systems either autonomous or grid. INTRODUCTION For any grid tied photovoltaic (PV) system, the inverter is the essential piece of equipment. The inverter affects the overall performance of the photovoltaic (PV) systems and problems concerning inverters

  1. Grid integrated distributed PV (GridPV).

    SciTech Connect (OSTI)

    Reno, Matthew J.; Coogan, Kyle

    2013-08-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  2. Optimal Design of Grid-Connected PEV Charging Systems With Integrated Distributed Resources

    E-Print Network [OSTI]

    Perreault, David J.

    The penetration of plug-in electric vehicles and renewable distributed generation is expected to increase over the next few decades. Large scale unregulated deployment of either technology can have a detrimental impact on ...

  3. Development of a low-cost integrated 20-kW-AC solar tracking subarray for grid-connected PV power system applications. Final technical report

    SciTech Connect (OSTI)

    Stern, M.; Duran, G.; Fourer, G.; Mackamul, K.; Whalen, W.; Loo, M. van; West, R.

    1998-06-01

    This report chronicles Utility Power Group's (UPG) successful two-year Photovoltaic Manufacturing Technology (PVMaT) Phase 4A1 work effort which began in July, 1995. During this period, UPG completed design, fabrication, testing and demonstration of a modular and fully integrated 15-kW-ac, solar tracking PV power system sub-array. The two key and innovative components which were developed are a Modular Panel which optimizes factory assembly of PV modules into a large area, field-deployable, structurally-integrated PV panel, and an Integrated Power Processing Unit which combines all dc and ac power collection, conversion and control functions within a single, field-deployable structurally-integrated electrical enclosure. These two key sub-array elements, when combined with a number of other electrical, mechanical, and structural components, create a low-cost and high-performance PV power system. This system, or sub-array, can be deployed in individual units, or paralleled with any number of other sub-arrays, to construct multi-megawatt P fields. 21 figs.

  4. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy

    SciTech Connect (OSTI)

    Mellit, Adel; Pavan, Alessandro Massi

    2010-05-15

    Forecasting of solar irradiance is in general significant for planning the operations of power plants which convert renewable energies into electricity. In particular, the possibility to predict the solar irradiance (up to 24 h or even more) can became - with reference to the Grid Connected Photovoltaic Plants (GCPV) - fundamental in making power dispatching plans and - with reference to stand alone and hybrid systems - also a useful reference for improving the control algorithms of charge controllers. In this paper, a practical method for solar irradiance forecast using artificial neural network (ANN) is presented. The proposed Multilayer Perceptron MLP-model makes it possible to forecast the solar irradiance on a base of 24 h using the present values of the mean daily solar irradiance and air temperature. An experimental database of solar irradiance and air temperature data (from July 1st 2008 to May 23rd 2009 and from November 23rd 2009 to January 24th 2010) has been used. The database has been collected in Trieste (latitude 45 40'N, longitude 13 46'E), Italy. In order to check the generalization capability of the MLP-forecaster, a K-fold cross-validation was carried out. The results indicate that the proposed model performs well, while the correlation coefficient is in the range 98-99% for sunny days and 94-96% for cloudy days. As an application, the comparison between the forecasted one and the energy produced by the GCPV plant installed on the rooftop of the municipality of Trieste shows the goodness of the proposed model. (author)

  5. GROWDERS Demonstration of Grid Connected Electricity Systems...

    Open Energy Info (EERE)

    GROWDERS Demonstration of Grid Connected Electricity Systems (Smart Grid Project) (Spain) Jump to: navigation, search Project Name GROWDERS Demonstration of Grid Connected...

  6. Development of New Three-Level Current-Source Inverter for Grid Connected Photovoltaic System

    E-Print Network [OSTI]

    Fujimoto, Hiroshi

    Development of New Three-Level Current-Source Inverter for Grid Connected Photovoltaic System and inverter, and its feasibility on grid connected photovoltaic system application. Using this new topology photovoltaic system 1. INTRODUCTION Solid state inverters allow to put photovoltaic (PV) systems into the power

  7. Grid Integrated Distributed PV (GridPV) Version 2.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Coogan, Kyle

    2014-12-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  8. Distributed PV Permitting and Inspection Processes

    Broader source: Energy.gov [DOE]

    This presentation summarizes case studies of the time and cost involved in the distributed PV permitting and inspection process in three Solar America Cities, Austin, Portland, and Salt Lake City.

  9. Ota City : characterizing output variability from 553 homes with residential PV systems on a distribution feeder.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Miyamoto, Yusuke; Nakashima, Eichi; Lave, Matthew

    2011-11-01

    This report describes in-depth analysis of photovoltaic (PV) output variability in a high-penetration residential PV installation in the Pal Town neighborhood of Ota City, Japan. Pal Town is a unique test bed of high-penetration PV deployment. A total of 553 homes (approximately 80% of the neighborhood) have grid-connected PV totaling over 2 MW, and all are on a common distribution line. Power output at each house and irradiance at several locations were measured once per second in 2006 and 2007. Analysis of the Ota City data allowed for detailed characterization of distributed PV output variability and a better understanding of how variability scales spatially and temporally. For a highly variable test day, extreme power ramp rates (defined as the 99th percentile) were found to initially decrease with an increase in the number of houses at all timescales, but the reduction became negligible after a certain number of houses. Wavelet analysis resolved the variability reduction due to geographic diversity at various timescales, and the effect of geographic smoothing was found to be much more significant at shorter timescales.

  10. 564 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 4, OCTOBER 2012 Dynamic Stability of Three-Phase Grid-Connected

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    564 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 4, OCTOBER 2012 Dynamic Stability of Three-Phase Grid-Connected Photovoltaic System Using Zero Dynamic Design Approach M. A. Mahmud, Student Member of the dynamic response of a three-phase grid-connected photovoltaic (PV) system. To control the grid cur- rent

  11. Physical Effects of Distributed PV Generation on California's Distribution System

    E-Print Network [OSTI]

    Cohen, Michael A

    2015-01-01

    Deployment of high-penetration photovoltaic (PV) power is expected to have a range of effects -- both positive and negative -- on the distribution grid. The magnitude of these effects may vary greatly depending upon feeder topology, climate, PV penetration level, and other factors. In this paper we present a simulation study of eight representative distribution feeders in three California climates at PV penetration levels up to 100\\%, supported by a unique database of distributed PV generation data that enables us to capture the impact of PV variability on feeder voltage and voltage regulating equipment. When comparing the influence of feeder location (i.e. climate) versus feeder type on outcomes, we find that location more strongly influences the incidence of reverse power flow, reductions in peak loading and the presence of voltage excursions. On the other hand, we find that feeder characteristics more strongly influence the magnitude of loss reduction and changes in voltage regulator operations. We find th...

  12. Distribution System Analysis Tools for Studying High Penetration of PV

    E-Print Network [OSTI]

    Distribution System Analysis Tools for Studying High Penetration of PV with Grid Support Features Electric Energy System #12;#12;Distribution System Analysis Tools for Studying High Penetration of PV project titled "Distribution System Analysis Tools for Studying High Penetration of PV with Grid Support

  13. Enabling Broad Adoption of Distributed PV-storage systems Via Supervisory Planning & Control

    E-Print Network [OSTI]

    DeForest, Nicholas

    2014-01-01

    of distributed PV-storage systems via supervisory planning &of distributed PV-storage systems via supervisory planning &control for PV-storage systems increases the annual energy

  14. Dynamic Interactions of PV units in Low Volatge Distribution Systems

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Dynamic Interactions of PV units in Low Volatge Distribution Systems M. J. Hossain, J. Lu Griffith. Abstract--Photovoltaic (PV) units along with other distributed energy resources (DERs) are located close, robust control, stability. I. Introduction The integration level of PV units in low and medium voltage

  15. High Resolution PV Power Modeling for Distribution Circuit Analysis

    SciTech Connect (OSTI)

    Norris, B. L.; Dise, J. H.

    2013-09-01

    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  16. Quantitative Measurements of Xanthomonas Oryzae pv. Oryzae Distribution in Rice Using Fluorescent-Labeling

    E-Print Network [OSTI]

    Nozue, Kazunari; Park, Chang-Jin; Ronald, Pamela C

    2011-01-01

    of Xanthomonas Oryzae pv. Oryzae Distribution in Rice Usingstrains of Xanthomonas oryzae pv. oryzae (Xoo), the casualKeywords Xanthomonas oryzae pv. oryzae, GFP, Oryza sativa .

  17. Ukiah Utilities- PV Buydown Program

    Broader source: Energy.gov [DOE]

    Through Ukiah Utilities’ PV Buydown Program, residential and commercial customers are eligible for a $1.40-per-watt AC rebate on qualifying grid-connected PV systems up to a maximum system size of...

  18. Integration Technology for PHEV-Grid-Connectivity, with Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards Integration Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards 2010...

  19. Public Meeting: Physical Characterization of Smart and Grid-Connected...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and...

  20. Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal...

    Office of Environmental Management (EM)

    Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems May 16, 2013 - 12:00am Addthis...

  1. Strategic Sequencing for State Distributed PV Policies: A Quantitative...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in spurring the development of customer-sited distributed generation (DG), in particular solar photovoltaic (PV) markets. Prompted by that interest, this analysis examines the use...

  2. Distributed and Decentralized Control of Residential Energy Systems Incorporating Battery Storage

    E-Print Network [OSTI]

    Knobloch,Jürgen

    --The recent rapid uptake of residential solar photo- voltaic (PV) installations provides many challenges photovoltaic (PV) distributed gen- eration. Over 70% of the 70 GW installed PV capacity in the European Union to the residential customer. For grid- connected installations, intermittent generation as well as large amounts

  3. Storage Size Determination for Grid-Connected Photovoltaic Systems

    E-Print Network [OSTI]

    Ru, Yu; Martinez, Sonia

    2011-01-01

    In this paper, we study the problem of determining the size of battery storage used in grid-connected photovoltaic (PV) systems. In our setting, electricity is generated from PV and is used to supply the demand from loads. Excess electricity generated from the PV can be stored in a battery to be used later on, and electricity must be purchased from the electric grid if the PV generation and battery discharging cannot meet the demand. The objective is to minimize the electricity purchase from the electric grid while at the same time choosing an appropriate battery size. More specifically, we want to find a unique critical value (denoted as $E_{max}^c$) of the battery size such that the cost of electricity purchase remains the same if the battery size is larger than or equal to $E_{max}^c$, and the cost is strictly larger if the battery size is smaller than $E_{max}^c$. We propose an upper bound on $E_{max}^c$, and show that the upper bound is achievable for certain scenarios. For the case with ideal PV generat...

  4. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim

    2010-01-01

    distributed photovoltaics (PV) adoption. 1 Though specificfor supporting distributed PV adoption. 11 Though specificin distributed PV, which could thwart broader adoption. Many

  5. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    Anderson, K.; Coddington, M.; Burman, K.; Hayter, S.; Kroposki, B.; Watson, A.

    2009-12-01

    This study describes technical assistance provided by NREL to help New York City and Con Edison improve the interconnection of distributed PV systems on a secondary network distribution system.

  6. Enabling Broad Adoption of Distributed PV-storage systems Via Supervisory Planning & Control

    E-Print Network [OSTI]

    DeForest, Nicholas

    2014-01-01

    impact of wide-spread PV adoption for utilities, by creatingEnabling broad adoption of distributed PV-storage systemsEnabling broad adoption of distributed PV-storage systems

  7. Summary Review of Advanced Inverter Technologies for Residential PV Systems

    E-Print Network [OSTI]

    Summary Review of Advanced Inverter Technologies for Residential PV Systems This report summarizes current and emerging standards for residential PV systems and identifies the status of emerging inverter................................................................................................ 7 3. Grid-Connected PV inverters available in US

  8. City of Healdsburg- PV Incentive Program

    Broader source: Energy.gov [DOE]

    Through the City of Healdsburg's PV Buy-down Program, residential and commercial customers are eligible for rebate on qualifying grid-connected PV systems. In keeping with SB1, (the California...

  9. United States Launches First Grid-Connected Offshore Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States Launches First Grid-Connected Offshore Wind Turbine United States Launches First Grid-Connected Offshore Wind Turbine August 22, 2013 - 12:00am Addthis Leveraging an...

  10. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid-Connected Renewable Energy Systems Grid-Connected Renewable Energy Systems July 7, 2015 - 8:21pm Addthis When connecting a home energy system to the electric grid, research...

  11. Optimal Solar PV Arrays Integration for Distributed Generation

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Li, Xueping

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  12. Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices

    SciTech Connect (OSTI)

    2012-01-25

    Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’s new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.

  13. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    K. Anderson; M. Coddington; K. Burman; S. Hayter; B. Kroposki; and A. Watson

    2009-11-30

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to ���¢��������networks���¢������� in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1���¢��������PV Deployment Analysis for New York City���¢��������we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2���¢��������A Briefing for Policy Makers on Connecting PV to a Network Grid���¢��������presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3���¢��������Technical Review of Concerns and Solutions to PV Interconnection in New Y

  14. Understanding the Benefits of Dispersed Grid-Connected Photovoltaics: From Avoiding the Next Major Outage to Taming Wholesale Power Markets

    SciTech Connect (OSTI)

    Letendre, Steven E.; Perez, Richard

    2006-07-15

    Thanks to new solar resource assessment techniques using cloud cover data available from geostationary satellites, it is apparent that grid-connected PV installations can serve to enhance electric grid reliability, preventing or hastening recovery from major power outages and serving to mitigate extreme price spikes in wholesale energy markets. (author)

  15. Prospects for grid-connected solar PV in Kenya

    E-Print Network [OSTI]

    Rose, Amy Michelle

    2013-01-01

    Kenya's electric power system is heavily reliant on hydropower, leaving it vulnerable during recurring droughts. Supply shortfalls are currently met through the use of expensive leased diesel generation. Therefore, plans ...

  16. Performance Parameters for Grid-Connected PV Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeer ReviewRadiationAward at SmallNational Renewable

  17. Geothermal/Grid Connection | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore TechnologiesAssessment InsettingGrid Connection <

  18. Geothermal/Grid Connection | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages Recent ChangesInformationGeothermal/Grid Connection

  19. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect (OSTI)

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

  20. Exploring the Economic Value of EPAct 2005's PV Tax Credits

    E-Print Network [OSTI]

    Bolinger, Mark A

    2010-01-01

    to support a greater number PV systems at the reduced grantEconomic Value of EPAct 2005’s PV Tax Credits Mark Bolingerfor grid-connected photovoltaics (PV) in the US has grown

  1. Exploring the Economic Value of EPAct 2005's PV Tax Credits

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Ing, Edwin

    2006-01-01

    Exploring the Economic Value of EPAct 2005’s PV Tax CreditsEconomic Value of EPAct 2005’s PV Tax Credits Mark Bolingerfor grid-connected photovoltaics (PV) in the US has grown

  2. United States Launches First Grid-Connected Offshore Wind Turbine...

    Broader source: Energy.gov (indexed) [DOE]

    an EERE investment, the University of Maine deployed the nation's first grid-connected offshore floating wind turbine prototype off the coast of Castine, Maine. The university...

  3. First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project...

    Office of Science (SC) Website

    First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project in North America Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR...

  4. Public Meeting: Physical Characterization of Grid-Connected Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (K. Lynn) More Documents & Publications Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and...

  5. Robust control strategy for PV system integration in distribution systems M.J. Hossain a,

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Robust control strategy for PV system integration in distribution systems M.J. Hossain a, , T t s " Robust control provides flexible photovoltaic (PV) accommodations. " A robust PV control can significantly enhance the penetration level. " The change in volatile PV generations is considered

  6. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

  7. Energy Management Problems Under Uncertainties for Grid-Connected Microgrids

    E-Print Network [OSTI]

    Zhang, Wei

    1 Energy Management Problems Under Uncertainties for Grid-Connected Microgrids : a Chance prob- lems under uncertainties for a grid-connected microgrid. The problems are motivated by practical microgrid problems such as peak power shaving and frequency regulation. The problems require constraints

  8. Distributed Power Electronics for PV Systems (Presentation)

    SciTech Connect (OSTI)

    Deline, C.

    2011-12-01

    An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

  9. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim R.

    2012-01-01

    would be the least-cost option, across PV-to-load ratios,the overall cost-effectiveness of distributed PV for anthe value or cost-effectiveness of distributed PV from the

  10. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim R.

    2012-01-01

    greater support for PV adoption among high usage customers.customer adoption of distributed photovoltaics (PV), but hasadoption. In the long-run, however, large differences in the compensation provided for distributed PV

  11. Experimental comparison of PV-smoothing controllers using distributed generators

    SciTech Connect (OSTI)

    Johnson, Jay Dean; Ellis, Abraham; Denda, Atsushi; Morino, Kimio; Hawkins, John N.; Arellano, Brian; Shinji, Takao; Ogata, Takao; Tadokoro, Masayuki

    2014-02-01

    The power output variability of photovoltaic systems can affect local electrical grids in locations with high renewable energy penetrations or weak distribution or transmission systems. In those rare cases, quick controllable generators (e.g., energy storage systems) or loads can counteract the destabilizing effects by compensating for the power fluctuations. Previously, control algorithms for coordinated and uncoordinated operation of a small natural gas engine-generator (genset) and a battery for smoothing PV plant output were optimized using MATLAB/Simulink simulations. The simulations demonstrated that a traditional generation resource such as a natural gas genset in combination with a battery would smooth the photovoltaic output while using a smaller battery state of charge (SOC) range and extending the life of the battery. This paper reports on the experimental implementation of the coordinated and uncoordinated controllers to verify the simulations and determine the differences in the controllers. The experiments were performed with the PNM PV and energy storage Prosperity site and a gas engine-generator located at the Aperture Center at Mesa Del Sol in Albuquerque, New Mexico. Two field demonstrations were performed to compare the different PV smoothing control algorithms: (1) implementing the coordinated and uncoordinated controls while switching off a subsection of the PV array at precise times on successive clear days, and (2) comparing the results of the battery and genset outputs for the coordinated control on a high variability day with simulations of the coordinated and uncoordinated controls. It was found that for certain PV power profiles the SOC range of the battery may be larger with the coordinated control, but the total amp-hours through the battery-which approximates battery wear-will always be smaller with the coordinated control.

  12. Designing PV Incentive Programs to Promote Performance: A Review of Current Practice in the U.S.

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2008-01-01

    with Large-scale Implementation of Domestic PV Systems andwith Large PV Systems on Buildings in Japan. Progress inPerformance of Grid-connected PV Systems on Buildings in

  13. PV Interconnection Risk Analysis through Distribution System Impact Signatures and Feeder Zones

    E-Print Network [OSTI]

    PV Interconnection Risk Analysis through Distribution System Impact Signatures and Feeder Zones Grid Integration Sandia National Laboratories Albuquerque, NM, USA Abstract-- High penetrations of PV reliability problems. In order to improve the interconnection study process, the use of feeder zones and PV

  14. IDENTIFICATION OF A GENERAL MODEL FOR THE MPP PERFORMANCE OF PV-MODULES FOR THE APPLICATION IN A PROCEDURE FOR THE PERFORMANCE CHECK

    E-Print Network [OSTI]

    Heinemann, Detlev

    IDENTIFICATION OF A GENERAL MODEL FOR THE MPP PERFORMANCE OF PV-MODULES FOR THE APPLICATION. ABSTRACT: To assure the maximal energy yield of grid connected PV systems, system faults have of this model for the application to grid connected PV systems using cSi, aSi and CIS modules is demonstrated. 1

  15. Three-Phase Modular Cascaded H-Bridge Multilevel Inverter with Individual MPPT for Grid-Connected Photovoltaic Systems

    SciTech Connect (OSTI)

    Xiao, Bailu [ORNL; Hang, Lijun [ORNL; Riley, Cameron [University of Tennessee, Knoxville (UTK); Tolbert, Leon M [ORNL; Ozpineci, Burak [ORNL

    2013-01-01

    A three-phase modular cascaded H-bridge multilevel inverter for a grid-connected photovoltaic (PV) system is presented in this paper. To maximize the solar energy extraction of each PV string, an individual maximum power point tracking (MPPT) control scheme is applied, which allows the independent control of each dc-link voltage. PV mismatches may introduce unbalanced power supplied to the three-phase system. To solve this issue, a control scheme with modulation compensation is proposed. The three-phase modular cascaded multilevel inverter prototype has been built. Each H-bridge is connected to a 185 W solar panel. Simulation and experimental results are presented to validate the proposed ideas.

  16. Performance and Analysis of Photovoltaic (PV)Technologies

    E-Print Network [OSTI]

    Performance and Analysis of Photovoltaic (PV)Technologies at Selected Sites This report presents performance data from grid-connected PV systems located on Hawai`i Island, Maui, and O`ahu. Data was collected from PV systems produced by different manufacturers using a variety of technologies. The report

  17. Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System April 12, 2013 - 12:00pm...

  18. Meeting the New CARB ZEV Mandate Requirements: Grid-Connected Hybrids and City EVs

    E-Print Network [OSTI]

    Burke, Andrew

    2001-01-01

    gov Erin Kassoy Arthur D. Little 10061 Bubb Road Cupertino,15, 2001 Erin Kassoy Arthur D. Little Both Grid Connected

  19. Aalborg Universitet Generation-Side Power Scheduling in a Grid-Connected DC Microgrid

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Aalborg Universitet Generation-Side Power Scheduling in a Grid-Connected DC Microgrid Hernández). Generation-Side Power Scheduling in a Grid-Connected DC Microgrid. In IEEE ICDCM 2015. IEEE. General rights.aau.dk on: juli 04, 2015 #12;Generation-Side Power Scheduling in a Grid-Connected DC Microgrid Adriana C

  20. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim

    2010-01-01

    Inc. 2009. Distributed Renewable Energy Operating ImpactsDistributed PV for Residential Customers in California Prepared for the Office of Energy Efficiency and Renewable Energy

  1. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    Grid-connected photovoltaic systems with battery storagesfor grid-connected photovoltaic systems, IEEE Transactionshybrid photovoltaic and battery energy storage system, IEEE

  2. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect (OSTI)

    Schauder, C.

    2014-03-01

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  3. PV Ramping in a Distributed Generation Environment: A Study Using Solar Measurements; Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Keller, J.

    2012-06-01

    Variability in Photovoltaic (PV) generation resulting from variability in the solar radiation over the PV arrays is a topic of continuing concern for those involved with integrating renewables onto existing electrical grids. The island of Lanai, Hawaii is an extreme example of the challenges that integrators will face due to the fact that it is a small standalone grid. One way to study this problem is to take high-resolution solar measurements in multiple locations and model simultaneous PV production for various sizes at those locations. The National Renewable Energy Laboratory (NREL) collected high-resolution solar data at four locations on the island where proposed PV plants will be deployed in the near future. This data set provides unique insight into how the solar radiation may vary between points that are proximal in distance, but diverse in weather, due to the formation of orographic clouds in the center of the island. Using information about each proposed PV plant size, power output was created at high resolution. The team analyzed this output to understand power production ramps at individual locations and the effects of aggregating the production from all four locations. Hawaii is a unique environment, with extremely variable events occurring on a daily basis. This study provided an excellent opportunity for understanding potential worst-case scenarios for PV ramping. This paper provides an introduction to the datasets that NREL collected over a year and a comprehensive analysis of PV variability in a distributed generation scenario.

  4. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    SciTech Connect (OSTI)

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken

    2010-12-15

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)

  5. High Penetration of Photovoltaic (PV) Systems into the Distribution Grid, Workshop Report, February 24-25, 2009

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    Outcomes from the EERE Solar Energy Technologies Program workshop on high penetration of photovoltaic (PV) systems into the distribution grid, Feb. 24-25, 2009, Ontario, Calif.

  6. Future of Grid-Tied PV Business Models: What Will Happen When PV Penetration on the Distribution Grid is Significant? Preprint

    SciTech Connect (OSTI)

    Graham, S.; Katofsky, R.; Frantzis, L.; Sawyer, H.; Margolis, R.

    2008-05-01

    Eventually, distributed PV will become a more significant part of the generation mix. When this happens, it is expected that utilities will have to take on a more active role in the placement, operation and control of these systems. There are operational complexities and concerns of revenue erosion that will drive utilities into greater involvement of distributed PV and will create new business models. This report summarizes work done by Navigant Consulting Inc. for the National Renewable Energy Laboratory as part of the Department of Energy's work on Renewable System Integration. The objective of the work was to better understand the structure of these future business models and the research, development and demonstration (RD&D) required to support their deployment. This report describes potential future PV business models in terms of combinations of utility ownership and control of the PV assets, and the various relationships between end-users and third-party owners.

  7. DOE Publishes Notice of Public Meeting for Smart Grid-connected...

    Broader source: Energy.gov (indexed) [DOE]

    of the meeting will be: Discuss issues concerning the physical characterization of smart and grid-connected commercial and residential buildings end-use equipment and...

  8. Analysis of the Impacts of Distribution-Connected PV Using High-Speed Data Sets: Preprint

    SciTech Connect (OSTI)

    Bank, J.; Mather, B.

    2013-03-01

    This paper, presented at the IEEE Green Technologies Conference 2013, utilizes information from high resolution data acquisition systems developed at the National Renewable Energy Laboratory and deployed on a high-penetration PV distribution system to analyze the variability of different electrical parameters. High-resolution solar irradiance data is also available in the same area which is used to characterize the available resource and how it affects the electrical characteristics of the study circuit. This paper takes a data-driven look at the variability caused by load and compares those results against times when significant PV production is present. Comparisons between the variability in system load and the variability of distributed PV generation are made.

  9. EVALUATION OF PV GENERATION CAPICITY CREDIT FORECAST ON DAY-AHEAD UTILITY MARKETS

    E-Print Network [OSTI]

    Perez, Richard R.

    EVALUATION OF PV GENERATION CAPICITY CREDIT FORECAST ON DAY-AHEAD UTILITY MARKETS Richard Perez predict the effective capacity of grid-connected PV power plants. The predicted and actual utility peak load reduction performance of PV power plants are compared for two case studies: ConEdison in New York

  10. IEEE TRANSACTIONS ON POWER ELECTRONICS 1 A Hybrid Power Control Concept for PV Inverters with Reduced

    E-Print Network [OSTI]

    Kerekes, Tamas

    IEEE TRANSACTIONS ON POWER ELECTRONICS 1 Letters A Hybrid Power Control Concept for PV Inverters- cept for grid-connected Photovoltaic (PV) inverters. The control strategy is based on either a Maximum on the instantaneous available power from the PV panels. The essence of the proposed concept lies in the selection

  11. INTELLIGENT PERFORMANCE CHECK OF PV SYSTEM OPERATION BASED ON SATELLITE DATA

    E-Print Network [OSTI]

    Heinemann, Detlev

    INTELLIGENT PERFORMANCE CHECK OF PV SYSTEM OPERATION BASED ON SATELLITE DATA A. Drews* , J. Betcke of a fully automated service for performance check and error detection for photovoltaic (PV) systems by daily surveillance. Malfunctions of a grid-connected PV system, e.g. drop out of single module strings

  12. Aalborg Universitet Stored Energy Balance for Distributed PV-Based Active Generators in an AC Microgrid

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Microgrid Aldana, Nelson Leonardo Diaz; Wu, Dan; Dragicevic, Tomislav; Quintero, Juan Carlos Vasquez). Stored Energy Balance for Distributed PV-Based Active Generators in an AC Microgrid. In Proceedings Microgrid Nelson L. Diaz, Dan Wu, Tomislav Dragicevic, Juan C. Vasquez, and Josep M. Guerrero Abstract

  13. The Value of Distributed Solar Electric Generation to San Antonio

    SciTech Connect (OSTI)

    Jones, Nic; Norris, Ben; Meyer, Lisa

    2013-02-14

    This report presents an analysis of value provided by grid-connected, distributed PV in San Antonio from a utility perspective. The study quantified six value components, summarized in Table ES- 1. These components represent the benefits that accrue to the utility, CPS Energy, in accepting solar onto the grid. This analysis does not treat the compensation of value, policy objectives, or cost-effectiveness from the retail consumer perspective.

  14. Aalborg Universitet Control System interaction in the VSC-HVDC Grid Connected Offshore Wind Power

    E-Print Network [OSTI]

    Bak, Claus Leth

    Aalborg Universitet Control System interaction in the VSC-HVDC Grid Connected Offshore Wind Power-HVDC Grid Connected Offshore Wind Power Plant. In Proceedings of the Cigré Symposium 2015. CIGRE. General Offshore Wind Power Plant Jakob Glasdam1,2 , Lukasz Hubert Kocewiak1 , Jesper Hjerrild1 , Claus Leth Bak2 1

  15. Grid-Connected Marine Current Generation System Power Smoothing Control Using Supercapacitors

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Grid-Connected Marine Current Generation System Power Smoothing Control Using Supercapacitors fluctuations in the generator power. This paper deals with power smoothing control of grid connected MCT system a smoothed grid-injected power in case of swell disturbances. Index Terms-Marine current turbine, power

  16. Power control of a wind farm with active stall wind turbines and AC grid connection

    E-Print Network [OSTI]

    Power control of a wind farm with active stall wind turbines and AC grid connection Anca D. Hansen1 on the wind farm level. The ability of active stall wind farms with AC grid connection to regulate the power, is therefore directed towards optimising the integration of large wind farms within the electrical power grid

  17. Strategic Sequencing for State Distributed PV Policies: A Quantitative Analysis of Policy Impacts and Interactions

    SciTech Connect (OSTI)

    Doris, E.; Krasko, V.A.

    2012-10-01

    State and local policymakers show increasing interest in spurring the development of customer-sited distributed generation (DG), in particular solar photovoltaic (PV) markets. Prompted by that interest, this analysis examines the use of state policy as a tool to support the development of a robust private investment market. This analysis builds on previous studies that focus on government subsidies to reduce installation costs of individual projects and provides an evaluation of the impacts of policies on stimulating private market development.

  18. Lifetime-dependent Battery Usage Optimization for Grid-Connected Residential Systems

    E-Print Network [OSTI]

    Simunic, Tajana

    utility energy prices. Our approach enables us determine the true operational cost and lifetimeLifetime-dependent Battery Usage Optimization for Grid-Connected Residential Systems Jagannathan Venkatesh# , Shengbo Chen* , Peerapol Tinnakornsrisuphap*, Tajana Simunic Rosing# # University of California

  19. An economic analysis of grid-connected residential solar photovoltaic power systems

    E-Print Network [OSTI]

    Carpenter, Paul R.

    The question of the utility grid-connected residential market for photovoltaics is examined from a user-ownership perspective. The price is calculated at which the user would be economically indifferent between

  20. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-03-30

    Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.

  1. Formulating a simplified equivalent representation of distribution circuits for PV impact studies.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Broderick, Robert Joseph; Grijalva, Santiago

    2013-04-01

    With an increasing number of Distributed Generation (DG) being connected on the distribution system, a method for simplifying the complexity of the distribution system to an equivalent representation of the feeder is advantageous for streamlining the interconnection study process. The general characteristics of the system can be retained while reducing the modeling effort required. This report presents a method of simplifying feeders to only specified buses-of-interest. These buses-of-interest can be potential PV interconnection locations or buses where engineers want to verify a certain power quality. The equations and methodology are presented with mathematical proofs of the equivalence of the circuit reduction method. An example 15-bus feeder is shown with the parameters and intermediate example reduction steps to simplify the circuit to 4 buses. The reduced feeder is simulated using PowerWorld Simulator to validate that those buses operate with the same characteristics as the original circuit. Validation of the method is also performed for snapshot and time-series simulations with variable load and solar energy output data to validate the equivalent performance of the reduced circuit with the interconnection of PV.

  2. Minnesota Power- Solar-Electric (PV) Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a maximum award of $20,000 per customer or 60% installed costs per customer. This...

  3. Real Power and Reactive Power Control of a Three-Phase Single-Stage-PV System and PV voltage Stability

    SciTech Connect (OSTI)

    Li, Huijuan; Xu, Yan; Adhikari, Sarina; Rizy, D Tom; Li, Fangxing; Irminger, Philip

    2012-01-01

    Grid-connected photovoltaic (PV) systems with power electronic interfaces can provide both real and reactive power to meet power system needs with appropriate control algorithms. This paper presents the control algorithm design for a three-phase single-stage grid-connected PV inverter to achieve either maximum power point tracking (MPPT) or a certain amount of real power injection, as well as the voltage/var control. The switching between MPPT control mode and a certain amount of real power control mode is automatic and seamless. Without the DC-to-DC booster stage, PV DC voltage stability is an important issue in the control design especially when the PV inverter is operating at maximum power point (MPP) with voltage/var control. The PV DC voltage collapse phenomenon and its reason are discussed. The method based on dynamic correction of the PV inverter output is proposed to ensure PV DC voltage stability. Simulation results of the single-stage PV system during system disturbances and fast solar irradiation changes confirm that the proposed control algorithm for single-stage PV inverters can provide appropriate real and reactive power services and ensure PV DC voltage stability during dynamic system operation and atmospheric conditions.

  4. Compatibility Study of Protective Relaying in a Grid-Connected Fuel Cell

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-04-15

    A 200-kW fuel cell produced by International Fuel Cells (IFC), a United Technologies Company, began operation at the National Transportation Research Center (NTRC) in early June 2003. The NTRC is a joint Oak Ridge National laboratory (ORNL) and University of Tennessee research facility located in Knoxville, Tennessee. This research activity investigated the protective relaying functions of this fully commercialized fuel cell power plant, which uses ''synthesized'' protective relays. The project's goal is to characterize the compatibility between the fuel cell's interconnection protection system and the local distribution system or electric power system (EPS). ORNL, with assistance from the Electric Power Research Institute-Power Electronics Applications Center (EPRI-PEAC) in Knoxville, Tennessee, monitored and characterized the system compatibility over a period of 6 months. Distribution utility engineers are distrustful of or simply uncomfortable with the protective relaying and hardware provided as part of distributed generation (DG) plants. Part of this mistrust is due to the fact that utilities generally rely on hardware from certain manufacturers whose reliability is well established based on performance over many years or even decades. Another source of concern is the fact that fuel cells and other types of DG do not use conventional relays but, instead, the protective functions of conventional relays are simulated by digital circuits in the distributed generator's grid interface control unit. Furthermore, the testing and validation of internal protection circuits of DG are difficult to accomplish and can be changed by the vendor at any time. This study investigated and documented the safety and protective relaying present in the IFC fuel cell, collected data on the operation of the fuel cell, recorded event data during EPS disturbances, and assessed the compatibility of the synthesized protective circuits and the local distribution system. The project also addressed other important and timely issues. For instance, the study includes an evaluation of the effectiveness of the fuel cell's synthesized relay protection scheme relative to the recently issued IEEE 1547 interconnection standard. Together, these activities should serve to reduce the number of unknowns pertaining to unconventional protective circuits, to the benefit of DG manufacturers, vendors, prospective and current users of DG, and electricity suppliers/distributors. Although more grid-connect fuel cell interruptions were encountered in this study than originally anticipated, and the investigation and findings became quite complex, every effort was made to clearly summarize the interconnection causes and issues throughout the report and especially in the summary found in Sect. 4. ORNL's funding of this study is sponsored equally by (1) the Department of Energy's (DOE's) Office of Distributed Energy Resources and (2) the Distributed Generation Technologies program of the Tennessee Valley Authority (TVA).

  5. Reactive power control of grid-connected wind farm based on adaptive dynamic programming

    E-Print Network [OSTI]

    He, Haibo

    Reactive power control of grid-connected wind farm based on adaptive dynamic programming Yufei Tang and integration with the grid. This controller can effectively dampen the oscillation of the wind farm system under grid fault. In general, there are mainly three kinds of wind power generators: squirrel

  6. Modeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter

    E-Print Network [OSTI]

    Bak, Claus Leth

    of power converter are important issues todays as the grid is becoming much more power electronics filtering and resonance damping methods are studied in islanded micro- grid application to reduceModeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter based

  7. Power Smoothing Control in a Grid-Connected Marine Current Turbine System for Compensating

    E-Print Network [OSTI]

    Boyer, Edmond

    Power Smoothing Control in a Grid-Connected Marine Current Turbine System for Compensating Swell speed may lead to strong fluctuations in the power extracted by a marine current turbine (MCT). During disturbances. Index Terms--Marine current turbine, power fluctuation, swell effect, power smoothing control

  8. Evaluation of Reactive Power Control Capabilities of Residential PV in an Unbalanced Distribution Feeder

    E-Print Network [OSTI]

    and the overall effectiveness of each solution in realistic feeder states. Index Terms -- photovoltaic systems, reactive power control, voltage control, particle swarm optimization. I. INTRODUCTION Photovoltaic (PV PV is to use the spare reactive power capacity of their grid-tie inverters collectively to benefit

  9. ENERGY-10 PV: Photovoltaics, A New Capability (Preprint)

    SciTech Connect (OSTI)

    Balcomb, J.D.; Hayter, S.J.; Weaver, N.L.

    2001-02-16

    This is one of two companion papers that describe the ENERGY-10 PV design-tool computer simulation program. The other paper is titled ''Hourly Simulation of Grid-Connected PV Systems Using Realistic Building Loads.'' While this paper focuses on the implementation method, the companion paper focuses on the PV aspects of the program. The case study in this paper is a residential building application, whereas the case study in the companion paper is a commercial application with an entirely different building load characteristic. Together, they provide a balanced view.

  10. Impact of distributed generation of solar photovoltaic (PV) generation on the Massachusetts transmission system

    E-Print Network [OSTI]

    Simhadri, Arvind

    2015-01-01

    After reaching 250 megawatt direct current (MW dc) of solar photovoltaic (PV) generation installed in Massachusetts (MA) in 2013, four years ahead of schedule, Governor Deval Patrick in May of 2013 announced an increase ...

  11. A High Efficiency DC-DC Converter Topology Suitable for Distributed Large Commercial and Utility Scale PV Systems

    SciTech Connect (OSTI)

    Mohammed S. Agamy; Maja Harfman-Todorovic; Ahmed Elasser; Robert L. Steigerwald; Juan A. Sabate; Song Chi; Adam J. McCann; Li Zhang; Frank Mueller

    2012-09-01

    In this paper a DC-DC power converter for distributed photovoltaic plant architectures is presented. The proposed converter has the advantages of simplicity, high efficiency, and low cost. High efficiency is achieved by having a portion of the input PV power directly fed forward to the output without being processed by the converter. The operation of this converter also allows for a simplified maximum power point tracker design using fewer measurements

  12. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    G. Corey, Energy Storage for the Electricity Grid: Benefitsthe energy storage dispatch schedule for a grid-connected,energy storage technologies as a means to integrate renewable energy resources into electric grids

  13. July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Broader source: Energy.gov [DOE]

    These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

  14. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim R.

    2012-01-01

    Rate Structures on Real PV Systems. Preprint, Nationaland the Economics of Solar PV: Could Mandatory Time- of-UsePricing Beneficial to Solar PV in New York City? Prepared

  15. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim

    2010-01-01

    Rate Structures on Real PV Systems. NREL/CP-670-42923.Pricing Beneficial to Solar PV in New York City? PreparedSubstantial Benefit of Solar PV. ” The Electricity Journal,

  16. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

    2011-06-01

    Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

  17. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim

    2010-01-01

    which TOU Rate is Least Cost PV-to-Load Ratio PGE (N=118)which TOU Rate is Least Cost PV-to-Load Ratio South facingfor which TOU rate is Least Cost PV-to-Load Ratio PV-to-Load

  18. Smart Energy Management and Control for Fuel Cell Based Micro-Grid Connected Neighborhoods

    SciTech Connect (OSTI)

    Dr. Mohammad S. Alam

    2006-03-15

    Fuel cell power generation promises to be an efficient, pollution-free, reliable power source in both large scale and small scale, remote applications. DOE formed the Solid State Energy Conversion Alliance with the intention of breaking one of the last barriers remaining for cost effective fuel cell power generation. The Alliance’s goal is to produce a core solid-state fuel cell module at a cost of no more than $400 per kilowatt and ready for commercial application by 2010. With their inherently high, 60-70% conversion efficiencies, significantly reduced carbon dioxide emissions, and negligible emissions of other pollutants, fuel cells will be the obvious choice for a broad variety of commercial and residential applications when their cost effectiveness is improved. In a research program funded by the Department of Energy, the research team has been investigating smart fuel cell-operated residential micro-grid communities. This research has focused on using smart control systems in conjunction with fuel cell power plants, with the goal to reduce energy consumption, reduce demand peaks and still meet the energy requirements of any household in a micro-grid community environment. In Phases I and II, a SEMaC was developed and extended to a micro-grid community. In addition, an optimal configuration was determined for a single fuel cell power plant supplying power to a ten-home micro-grid community. In Phase III, the plan is to expand this work to fuel cell based micro-grid connected neighborhoods (mini-grid). The economic implications of hydrogen cogeneration will be investigated. These efforts are consistent with DOE’s mission to decentralize domestic electric power generation and to accelerate the onset of the hydrogen economy. A major challenge facing the routine implementation and use of a fuel cell based mini-grid is the varying electrical demand of the individual micro-grids, and, therefore, analyzing these issues is vital. Efforts are needed to determine the most appropriate means of implementing micro-grids and the costs and processes involved with their extended operation. With the development and availability of fuel cell based stand-alone power plants, an electrical mini-grid, encompassing several connected residential neighborhoods, has become a viable concept. A primary objective of this project is to define the parameters of an economically efficient fuel cell based mini-grid. Since pure hydrogen is not economically available in sufficient quantities at the present time, the use of reforming technology to produce and store excess hydrogen will also be investigated. From a broader perspective, the factors that bear upon the feasibility of fuel cell based micro-grid connected neighborhoods are similar to those pertaining to the electrification of a small town with a localized power generating station containing several conventional generating units. In the conventional case, the town or locality would also be connected to the larger grid system of the utility company. Therefore, in the case of the fuel cell based micro-grid connected neighborhoods, this option should also be available. The objectives of this research project are: To demonstrate that smart energy management of a fuel cell based micro-grid connected neighborhood can be efficient and cost-effective;To define the most economical micro-grid configuration; and, To determine how residential micro-grid connected fuel cell(s) can contribute to America's hydrogen energy future.

  19. Agenda for Public Meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    Download the agenda below for the July 11 Public Meeting on the Physical Characterization of Grid-Connected Commercial and  Residential Buildings End-Use Equipment and Appliances.

  20. Analyzing and simulating the variability of solar irradiance and solar PV powerplants

    E-Print Network [OSTI]

    Lave, Matthew S.

    2012-01-01

    Analysis of Distributed PV, American Solar Energy Society,Simulating the Reduction in PV Powerplant Variability due to8] T. Hoff, R. Perez, Modeling PV Fleet Output Variability,

  1. Effect of Component Failures on Economics of Distributed Photovoltaic Systems

    SciTech Connect (OSTI)

    Lubin, Barry T.

    2012-02-02

    This report describes an applied research program to assess the realistic costs of grid connected photovoltaic (PV) installations. A Board of Advisors was assembled that included management from the regional electric power utilities, as well as other participants from companies that work in the electric power industry. Although the program started with the intention of addressing effective load carrying capacity (ELCC) for utility-owned photovoltaic installations, results from the literature study and recommendations from the Board of Advisors led investigators to the conclusion that obtaining effective data for this analysis would be difficult, if not impossible. The effort was then re-focused on assessing the realistic costs and economic valuations of grid-connected PV installations. The 17 kW PV installation on the University of Hartford's Lincoln Theater was used as one source of actual data. The change in objective required a more technically oriented group. The re-organized working group (changes made due to the need for more technically oriented participants) made site visits to medium-sized PV installations in Connecticut with the objective of developing sources of operating histories. An extensive literature review helped to focus efforts in several technical and economic subjects. The objective of determining the consequences of component failures on both generation and economic returns required three analyses. The first was a Monte-Carlo-based simulation model for failure occurrences and the resulting downtime. Published failure data, though limited, was used to verify the results. A second model was developed to predict the reduction in or loss of electrical generation related to the downtime due to these failures. Finally, a comprehensive economic analysis, including these failures, was developed to determine realistic net present values of installed PV arrays. Two types of societal benefits were explored, with quantitative valuations developed for both. Some societal benefits associated with financial benefits to the utility of having a distributed generation capacity that is not fossil-fuel based have been included into the economic models. Also included and quantified in the models are several benefits to society more generally: job creation and some estimates of benefits from avoiding greenhouse emissions. PV system failures result in a lowering of the economic values of a grid-connected system, but this turned out to be a surprisingly small effect on the overall economics. The most significant benefit noted resulted from including the societal benefits accrued to the utility. This provided a marked increase in the valuations of the array and made the overall value proposition a financially attractive one, in that net present values exceeded installation costs. These results indicate that the Department of Energy and state regulatory bodies should consider focusing on societal benefits that create economic value for the utility, confirm these quantitative values, and work to have them accepted by the utilities and reflected in the rate structures for power obtained from grid-connected arrays. Understanding and applying the economic benefits evident in this work can significantly improve the business case for grid-connected PV installations. This work also indicates that the societal benefits to the population are real and defensible, but not nearly as easy to justify in a business case as are the benefits that accrue directly to the utility.

  2. The Economic Value of PV and Net Metering to Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim

    2010-01-01

    distributed photovoltaics (PV) adoption. Though specificadoption. In the long-run, however, this variation in the value of PV

  3. Utility Scale Wind Turbines on a Grid Connected Island Mohit Dua, Anthony L. Rogers, James F. Manwell,

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Utility Scale Wind Turbines on a Grid Connected Island Mohit Dua, Anthony L. Rogers, James F utility scale wind turbines on Fox Islands, located 12 miles from the coast of Maine in the United States of electricity itself. Three locations are analyzed in detail as potential sites for wind turbine installations

  4. Performance of a grid connected residential photovoltaic system with energy storage

    SciTech Connect (OSTI)

    Palomino, G.E. [SRP, Phoenix, AZ (United States); Wiles, J. [Southwest Technology Development Institute, Las Cruces, NM (United States); Stevens, J. [Sandia National Labs., Albuquerque, NM (United States); Goodman, F. [EPRI, Palo Alto, CA (United States)

    1997-11-01

    In 1995, Salt River Project (SRP), a public power utility located in Phoenix, Arizona, collaborated with the Electric Power Research Institute (EPRI) and Sandia National Laboratories (Sandia) to initiate a photovoltaic (PV) power system with battery energy storage to match PV output with residential customer peak energy demand periods. The PV power system, a 2.4kW PV array with 25.2kWh of energy storage, was designed and installed by Southwest Technology Development Institute (SWTDI) at an SRP-owned facility, known as the Chandler Research House during August 1995. This paper presents an overview of the system design, operation and performance. 3 refs., 2 figs., 2 tabs.

  5. PV Value®

    Office of Energy Efficiency and Renewable Energy (EERE)

    PV Value® is a free solar PV Valuation tool that answers the question of "How much is solar PV worth" and is compliant with the Uniform Standards of Professional Appraisal Practice. It is available for and being used by real estate appraisers, realtors, homeowners, commercial building owners, home builders, solar installers, green raters, insurance companies, and mortgage lenders in all 50 states along with D.C. and Puerto Rico. PV Value® allows for the calculation of both the cost and income approach to value and was endorsed by the largest appraiser trade organization, the "Appraisal Institute," as an innovative approach to valuing solar assets.

  6. Smart-Grid Ready PV Inverter with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    standards, operations center visibility and management, and optimized coordination of smart PV inverters with existing distribution control devices. Smart-Grid Ready PV Inverter...

  7. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim R.

    2012-01-01

    Margolis, R. , 2004. Are Photovoltaic Systems Worth More toeconomics of commercial photovoltaic systems in California.produced by photovoltaic (PV) system owners. 1 Though

  8. PVSAT-2: RESULTS OF FIELD TEST OF THE SATELLITE-BASED PV SYSTEM PERFORMANCE CHECK A.C. de Keizer1

    E-Print Network [OSTI]

    Heinemann, Detlev

    . of Electrical Engineering, University of Applied Sciences (FH) Magdeburg-Stendal, 39114 Magdeburg, Germany, ABSTRACT: Within the EU funded project PVSAT-2 an automated performance check for grid-connected PV systems information. The uncertainty in the simulated energy yield can be high for cloudy weather situations

  9. Jeremy&N.&Munday&&University&of&Maryland&April&2015& High&efficiency&PV&for&distributed&generaEon&

    E-Print Network [OSTI]

    Zeng, Ning

    ?& PV& CPV& Wind& Hydro& Geo& Bio& Fossil/Nuclear& 80%&renewables&possible!& 2050& #12;Jeremy&standard&& solar&cell&(33.5%)& Input&Energy&(100%)& 7.3%&Loss& New&concepts&in&PV&to&improve&Cost/Wa^& Commercial*of*Maryland* ECE,*IREAP* Fossil/Nuclear& Hydro& What&will&electricity&generaEon&look&like&in&2050?& 2012& #12

  10. Optimal Inverter VAR Control in Distribution Systems with High PV Penetration

    E-Print Network [OSTI]

    Low, Steven H.

    and the net benefits, taking into account the additional cost of inverter losses when operating at non the substation. Index Terms--Distribution systems, volt/var control, DC/AC inverter, optimal power flow

  11. Quantitative Measurements of Xanthomonas Oryzae pv. Oryzae Distribution in Rice Using Fluorescent-Labeling

    E-Print Network [OSTI]

    Nozue, Kazunari; Park, Chang-Jin; Ronald, Pamela C

    2011-01-01

    gfp distribution at the point of entry 4 days after smearis presumably at the point of entry of the bacterial cells.Xoo spread at the point of entry of broken trichomes,

  12. Optimal Control of a Grid-Connected Hybrid Electrical Energy Storage System for Homes

    E-Print Network [OSTI]

    Pedram, Massoud

    with the introduction of dynamic electricity energy pricing models since electricity consumers can use their PV function and the energy storage capacity limitation, the control algorithm for a residential EES system period under a general electricity energy price function. The proposed algorithm is based on dynamic

  13. 2014-04-30 Public Meeting Agenda: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    This document is the agenda for the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting being held on April 30, 2014.

  14. 2014-04-30 Public Meeting Presentation Slides: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  15. Policy Building Blocks: Helping Policymakers Determine Policy Staging for the Development of Distributed PV Markets: Preprint

    SciTech Connect (OSTI)

    Doris, E.

    2012-04-01

    There is a growing body of qualitative and a limited body of quantitative literature supporting the common assertion that policy drives development of clean energy resources. Recent work in this area indicates that the impact of policy depends on policy type, length of time in place, and economic and social contexts of implementation. This work aims to inform policymakers about the impact of different policy types and to assist in the staging of those policies to maximize individual policy effectiveness and development of the market. To do so, this paper provides a framework for policy development to support the market for distributed photovoltaic systems. Next steps include mathematical validation of the framework and development of specific policy pathways given state economic and resource contexts.

  16. INTEGRATION OF PV IN DEMAND RESPONSE

    E-Print Network [OSTI]

    Perez, Richard R.

    INTEGRATION OF PV IN DEMAND RESPONSE PROGRAMS Prepared by Richard Perez et al. NREL subcontract the case that distributed PV generation deserves a substantial portion of the credit allotted to demand response programs. This is because PV generation acts as a catalyst to demand response, markedly enhancing

  17. Fsica V 2014 NOTURNO Cdigo Nome PV-1 PV-2 PV-3 PV-4 PV-5 PV-6 P-1 P-2 Mdia Freq. SUB

    E-Print Network [OSTI]

    Ribas, Roberto Vicençotto

    Física V ­ 2014 NOTURNO Código Nome PV-1 PV-2 PV-3 PV-4 PV-5 PV-6 P-1 P-2 Média Freq. SUB 5484455

  18. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    4 show PV+ system power flows, battery charge state and netPV+ system power flows (a,b,c), the battery charge state (d,reverse power flow (i.e. the battery is charging from the

  19. Optimal Inverter VAR Control in Distribution Systems with High PV Penetration

    E-Print Network [OSTI]

    Farivar, Masoud; Clarke, Christopher; Low, Steven

    2011-01-01

    The intent of the study detailed in this paper is to demonstrate the benefits of inverter var control on a fast timescale to mitigate rapid and large voltage fluctuations due to the high penetration of photovoltaic generation and the resulting reverse power flow. Our approach is to formulate the volt/var control as a radial optimal power flow (OPF) problem to minimize line losses and energy consumption, subject to constraints on voltage magnitudes. An efficient solution to the radial OPF problem is presented and used to study the structure of optimal inverter var injection and the net benefits, taking into account the additional cost of inverter losses when operating at non-unity power factor. This paper will illustrate how, depending on the circuit topology and its loading condition, the inverter's optimal reactive power injection is not necessarily monotone with respect to their real power output. The results are demonstrated on a distribution feeder on the Southern California Edison system that has a very ...

  20. Development of a Dispatchable PV Peak Shainv System. PV: Bonus Program - Phase 1 Report. Volume 1

    SciTech Connect (OSTI)

    1995-10-01

    This report summarizes the work performed by Delmarva Power and Light and its subcontractors in Phase 1 of the US Department of Energy's PV:BONUS Program. The purpose of the program is to develop products and systems for buildings which utilize photovoltaic (N) technology. Beginning with a cooperative research effort with the University of Delaware's Center for Energy and Environmental Policy Research Delmarva Power developed and demonstrated the concept of Dispatchable PV Peak Shaving. This concept and the system which resulted horn the development work are unique from other grid-connected PV systems because it combines a PV, battery energy storage, power conversion and control technologies into an integrated package. Phase 1 began in July 1993 with the installation of a test and demonstration system at Delmarva's Northern Division General Office building near Newark, Delaware. Following initial testing throughout the summer and fall of 1993, significant modifications were made under an amendment to the DOE contract. Work on Phase 1 concluded in the early spring of 1995. Significant progress towards the goal of commercializing the system was made during Phase 1, and is summarized. Based on progress in Phase 1, a proposal to continue the work in Phase 2 was submitted to the US DOE in May 1995. A contract amendment and providing funds for the Phase 2 work is expected in July 1995.

  1. Sandia Energy - PV Value®

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and PV industry sales staff. For appraisers, the inputs specific to PV in the Residential Green and Energy Efficient Addendum can be used as inputs to PV Value. Valuing a PV...

  2. The Economic Value of PV and Net Metering to Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim

    2010-01-01

    for which TOU Rate is Least Cost PV Penetration Level PG&E (Monthly Netting costs from distributed PV generally suggestsavoided T&D capacity costs from distributed PV have derived

  3. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    photovoltaic systems with battery storages control based onconnected, photovoltaic-battery storage systems A. Nottrott,combined photovoltaic-battery storage system (PV+ system).

  4. Distributed Control of Residential Energy Systems using a Market Maker

    E-Print Network [OSTI]

    Knobloch,Jürgen

    .weller}@newcastle.edu.au) Abstract: The recent rapid uptake of residential solar photovoltaic (PV) installations provides many. In Australia, for example, the National Electricity Market (NEM) has seen estimated installed capacity rise company to the residential customer. In particular, for grid-connected installations, intermittent

  5. EXECUTIVE SUMMARY: RETHINKING STANDBY & FIXED COST CHARGES REGULATORY & RATE DESIGN PATHWAYS TO DEEPER SOLAR PV COST

    E-Print Network [OSTI]

    PV technology, however, PV-specific charges will negatively impact the solar PV cost reduction goals TO DEEPER SOLAR PV COST REDUCTIONS The Current Terrain In recent years, electric utilities have experienced business models almost exclusively to the rapid growth of distributed solar PV. This focus has led

  6. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full report (1.6 mb) Appendix ACohenPV FOR

  7. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 10, OCTOBER 2010 3431 A Universal Grid-Connected Fuel-Cell Inverter for

    E-Print Network [OSTI]

    Mazumder, Sudip K.

    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 10, OCTOBER 2010 3431 A Universal Grid--This paper describes a universal fuel-cell-based grid- connected inverter design with digital. The critical design issues focus on the impact and optimization of transformer leakage inductance with regard

  8. Supported PV module assembly

    SciTech Connect (OSTI)

    Mascolo, Gianluigi; Taggart, David F.; Botkin, Jonathan D.; Edgett, Christopher S.

    2013-10-15

    A supported PV assembly may include a PV module comprising a PV panel and PV module supports including module supports having a support surface supporting the module, a module registration member engaging the PV module to properly position the PV module on the module support, and a mounting element. In some embodiments the PV module registration members engage only the external surfaces of the PV modules at the corners. In some embodiments the assembly includes a wind deflector with ballast secured to a least one of the PV module supports and the wind deflector. An array of the assemblies can be secured to one another at their corners to prevent horizontal separation of the adjacent corners while permitting the PV modules to flex relative to one another so to permit the array of PV modules to follow a contour of the support surface.

  9. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    PV systems using storage and controls, Solar Energy 81(7) (of solar and load forecasting in demand side energy storageEnergy storage, Forecasting, Optimal scheduling, Solar power

  10. Exploring the Economic Value of EPAct 2005's PV Tax Credits

    SciTech Connect (OSTI)

    Bolinger, Mark A; Wiser, Ryan; Ing, Edwin

    2009-08-01

    This CESA - LBNL Case Study examines how much economic value do new and expanded federal tax credits really provide to PV system purchasers, and what implications might they hold for state/utility PV grant programs. The report begins with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. The report concludes with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs. The market for grid-connected photovoltaics (PV) in the US has grown dramatically in recent years, driven in large part by PV grant or 'buy-down' programs in California, New Jersey, and many other states. The recent announcement of a new 11-year, $3.2 billion PV program in California suggests that state policy will continue to drive even faster growth over the next decade. Federal policy has also played a role, primarily by providing commercial PV systems access to tax benefits, including accelerated depreciation (5-year MACRS schedule) and a business energy investment tax credit (ITC). Since the signing of the Energy Policy Act of 2005 (EPAct) on August 8, the federal government has begun to play a much more significant role in supporting both commercial and residential PV systems. Specifically, EPAct increased the federal ITC for commercial PV systems from 10% to 30% of system costs, and also created a new 30% ITC (capped at $2000) for residential solar systems. Both changes went into effect on January 1, 2006, for an initial period of two years, and in late 2006 were extended for an additional year. Unless extended further, the new residential ITC will expire, and the 30% commercial ITC will revert back to 10%, on January 1, 2009. How much economic value do these new and expanded federal tax credits really provide to PV system purchasers? And what implications might they hold for state/utility PV grant programs? Using a generic (i.e., non-state-specific) cash flow model, this report explores these questions.1 We begin with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. We conclude with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs.

  11. Report on PV Test Sites and Test Prepared for the

    E-Print Network [OSTI]

    Report on PV Test Sites and Test Protocols Prepared for the U.S. Department of Energy Office`i Distributed Energy Resource Technologies for Energy Security Revised Task 8 Deliverable PV Test Sites and Test. #12;1 Report on PV Test Sites and Test Protocols Table of Contents 1. Introduction

  12. April 30 Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014. The first document includes the first presentation from the meeting: DOE Vision and Objectives. The second document includes all other presentations from the meeting: Terminology and Definitions; End-User and Grid Services; Physical Characterization Framework; Value, Benefits & Metrics.

  13. Energy 101: Solar PV

    SciTech Connect (OSTI)

    2011-01-01

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  14. Energy 101: Solar PV

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power...

  15. Energy 101: Solar PV

    ScienceCinema (OSTI)

    None

    2013-05-29

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  16. Sandia Energy - Sandia Will Host PV Bankability Workshop at Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Will Host PV Bankability Workshop at Solar Power International (SPI) 2013 Home Renewable Energy Energy Facilities Grid Integration Partnership News Distribution Grid Integration...

  17. Stabilized PV system

    DOE Patents [OSTI]

    Dinwoodie, Thomas L. (Piedmont, CA)

    2002-12-17

    A stabilized PV system comprises an array of photovoltaic (PV) assemblies mounted to a support surface. Each PV assembly comprises a PV module and a support assembly securing the PV module to a position overlying the support surface. The array of modules is circumscribed by a continuous, belt-like perimeter assembly. Cross strapping, extending above, below or through the array, or some combination of above, below and through the array, secures a first position along the perimeter assembly to at least a second position along the perimeter assembly thereby stabilizing the array against wind uplift forces. The first and second positions may be on opposite sides on the array.

  18. Multiple Jets as PV Staircases: The Phillips Effect and the Resilience of Eddy-Transport Barriers

    E-Print Network [OSTI]

    Cambridge, University of

    Multiple Jets as PV Staircases: The Phillips Effect and the Resilience of Eddy-Transport Barriers D 2007) ABSTRACT A review is given that focuses on why the sideways mixing of potential vorticity (PV. PV mixing often produces a sideways layering or banding of the PV distribution and therefore

  19. Fire resistant PV shingle assembly

    SciTech Connect (OSTI)

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  20. The Impact of Retail Rate Structures on the Economics ofCustomer-Sited PV: A Study of Commercial Installations inCalifornia

    SciTech Connect (OSTI)

    Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

    2007-06-01

    We analyze the impact of retail rate design on the economics of grid-connected commercial photovoltaic (PV) systems in California. The analysis is based on 15-minute interval building load and PV production data for 24 commercial PV installations in California, spanning a diverse set of building load shapes and geographic locations. We derive the annual bill savings per kWh generated for each PV system, under each of 21 distinct retail rates currently offered by the five largest utilities in California. We identify and explain variation in the value of bill savings attributable to differences in the structure of demand and energy charges across rates, as well as variation attributable to other factors, such as the size of the PV system relative to building load, the specific shape of the PV production profile, and the customer load profile. We also identify the optimal rate for each customer, among those rates offered as alternatives to one another, and show how the decision is driven in large measure by the size of the PV system relative to building load. The findings reported here may be of value to regulators and utilities responsible for designing retail rates, as well as to customers and PV retailers who have a need to estimate the prospective bill savings of PV systems.

  1. New Berkeley Lab Report Tracks a Decade of PV Installed Cost Trends

    SciTech Connect (OSTI)

    Barbose, Galen; Peterman, Carla; Wiser, Ryan

    2009-04-15

    Installations of PV systems have been expanding at a rapid pace in recent years. In the United States, the market for PV is driven by national, state, and local government incentives, including upfront cash rebates, production-based incentives, requirements that electricity suppliers purchase a certain amount of solar energy, and Federal and state tax benefits. These programs are, in part, motivated by the popular appeal of solar energy and by the positive attributes of PV - e.g., modest environmental impacts, avoidance of fuel price risks, coincidence with peak electrical demand, and the location of PV at the point of use. Given the relatively high cost of PV, however, a key goal of these policies is to encourage cost reductions over time. Therefore, as policy incentives have become more significant and as PV deployment has accelerated, so too has the desire to track the installed cost of PV systems over time, by system characteristics, by system location, and by component. A new Lawrence Berkeley National Laboratory report, 'Tracking the Sun: The Installed Cost of Photovoltaics in the U.S. from 1998-2007', helps to fill this need by summarizing trends in the installed cost (i.e., the cost paid by the system owner) of grid-connected PV systems in the U.S. The report is based on an analysis of project-level cost data from nearly 37,000 residential and non-residential PV systems completed from 1998-2007 and installed on the utility-customer-side of the meter. These systems total 363 MW, equal to 76% of all grid-connected PV capacity installed in the U.S. through 2007, representing the most comprehensive data source available on the installed cost of PV in the United States. The data were obtained from administrators of PV incentive programs around the country, who typically collect installed cost data for systems receiving incentives. A total of 16 programs, spanning 12 states, ultimately provided data for the study. Reflecting the broader geographical trends in the U.S. PV market, the vast majority of the systems in the data sample are located in California (83%, by capacity) and New Jersey (12%), The remaining systems are located in Arizona, Connecticut, Illinois, Massachusetts, Maryland, Minnesota, New York, Oregon, Pennsylvania, and Wisconsin. The PV systems in the dataset range in size from 100 W to 1.3 MW, almost 90% of which are smaller than 10 kW. This article briefly summarizes some of the key findings from the Berkeley Lab study (the full report can be downloaded at http://eetd.lbl.gov/ea/emp/re-pubs.html). The article begins by summarizing trends related to the installed cost of PV systems prior to receipt of any financial incentives, and then discusses how changes in incentive levels over time and variation across states have impacted the net installed cost of PV to the customer, after receipt of incentives. Note that all cost and incentive data are presented in real 2007 dollars (2007$), and all capacity and dollars-perwatt ($/W) data are presented in terms of rated module power output under Standard Test Conditions (DC-STC).

  2. Updating Technical Screens for PV Interconnection: Preprint

    SciTech Connect (OSTI)

    Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

    2012-08-01

    Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

  3. PV PLANNER A DESIGN AND

    E-Print Network [OSTI]

    Delaware, University of

    PV PLANNER A DESIGN AND ANALYSIS TOOL FOR BUILDING INTEGRATED SOLAR ELECTRIC SYSTEMS FINAL Center for Energy and Environmental Policy University of Delaware December 2006 #12;#12;PV...............................................................................................................................1 1.2 PV Planner: An Overview

  4. Electricity Rate Structures and the Economics of Solar PV: Could Mandatory Time-of-Use Rates Undermine California’s Solar Photovoltaic Subsidies?

    E-Print Network [OSTI]

    Borenstein, Severin

    2007-01-01

    distribution of possible solar PV costs, so for about halfbelow the range of solar PV costs. . e g a r e v a n o , r eare data on the cost of installing solar PV systems because

  5. Interline Photovoltaic (I-PV) power system - A novel concept of power flow control and management

    E-Print Network [OSTI]

    Khadkikar, Vinod

    This paper presents a new system configuration for a large-scale Photovoltaic (PV) power system with multi-line transmission/distribution networks. A PV power plant is reconfigured in a way that two adjacent power system ...

  6. Research of PV Application on

    E-Print Network [OSTI]

    Netoff, Theoden

    Research of PV Application on UMore Park Community Design Arch 8563:Getting Blow the Surface Xiaoyu Liu #12;Getting Blow Surface: PV opportunity on the UMore Park 2 Research of PV application on U More community on the aspect of PV application. There are four parts in this report: (1) Introduction of UMore

  7. Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint

    SciTech Connect (OSTI)

    Mather, B.; Neal, R.

    2012-08-01

    Southern California Edison (SCE) is well into a five-year project to install a total of 500 MW of distributed photovoltaic (PV) energy within its utility service territory. Typical installations to date are 1-3 MW peak rooftop PV systems that interconnect to medium-voltage urban distribution circuits or larger (5 MW peak) ground-mounted systems that connect to medium-voltage rural distribution circuits. Some of the PV system interconnections have resulted in distribution circuits that have a significant amount of PV generation compared to customer load, resulting in high-penetration PV integration scenarios. The National Renewable Energy Laboratory (NREL) and SCE have assembled a team of distribution modeling, resource assessment, and PV inverter technology experts in order to investigate a few of the high-penetration PV distribution circuits. Currently, the distribution circuits being studied include an urban circuit with a PV penetration of approximately 46% and a rural circuit with a PV penetration of approximately 60%. In both cases, power flow on the circuit reverses direction, compared to traditional circuit operation, during periods of high PV power production and low circuit loading. Research efforts during year two of the five-year project were focused on modeling the distribution system level impacts of high-penetration PV integrations, the development and installation of distribution circuit data acquisition equipment appropriate for quantifying the impacts of high-penetration PV integrations, and investigating high-penetration PV impact mitigation strategies. This paper outlines these research efforts and discusses the following activities in more detail: the development of a quasi-static time-series test feeder for evaluating high-penetration PV integration modeling tools; the advanced inverter functions being investigated for deployment in the project's field demonstration and a power hardware-in-loop test of a 500-kW PV inverter implementing a limited set of advanced inverter functions.

  8. Panel: Microgrid Research and Field Testing IEEE PES General Meeting, 24-28 June 2007, Tampa, FL 1 In general, a microgrid can operate in both the grid-connected

    E-Print Network [OSTI]

    Panel: Microgrid Research and Field Testing IEEE PES General Meeting, 24-28 June 2007, Tampa, FL 1 Abstract In general, a microgrid can operate in both the grid-connected mode and the islanded mode where the microgrid is interfaced to the main power system by a fast semiconductor switch called static switch, (SS

  9. Dynamic Model Validation of PV Inverters Under Short-Circuit Conditions: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Bravo, R.; Gevorgian, V.

    2013-03-01

    Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of photovoltaic deployment. Residential and commercial rooftop installations are connected to the distribution network; large-scale installation PV power plants (PVPs) have benefited from tax incentives and the low cost of PV modules. As the level penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. NREL has developed a PV inverter dynamic model in PSCAD/EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations -- symmetrical and unsymmetrical -- were performed in the laboratory. We compare the simulation results with the bench test results.

  10. RETI Phase 1B Final Report Update NET SHORT RECALCULATION AND NEW PV ASSUMPTIONS

    E-Print Network [OSTI]

    RETI Phase 1B Final Report Update NET SHORT RECALCULATION AND NEW PV ASSUMPTIONS With Revisions distributed photovoltaic (PV) installations in the Report is unclear and perhaps misleading. At the direction-generation is required. The CEC forecast assumed that 1,082 GWh will be self-generated by consumers from new PV

  11. SOLAR ENERGY (conditionally accepted 1/2010) QUANTIFYING PV POWER OUTPUT VARIABILITY

    E-Print Network [OSTI]

    Perez, Richard R.

    SOLAR ENERGY (conditionally accepted 1/2010) QUANTIFYING PV POWER OUTPUT VARIABILITY Thomas E power output variability from a fleet of photovoltaic (PV) systems, ranging from a single central station to a set of distributed PV systems. The approach demonstrates that the relative power output

  12. BATTERY-POWERED, ELECTRIC-DRIVE VEHICLES PROVIDING BUFFER STORAGE FOR PV CAPACITY VALUE

    E-Print Network [OSTI]

    Perez, Richard R.

    BATTERY-POWERED, ELECTRIC-DRIVE VEHICLES PROVIDING BUFFER STORAGE FOR PV CAPACITY VALUE Steven applications, batteries can serve to provide firm peak-shaving for distributed PV installations. To date, however, the use of batteries from parked electric- drive vehicles (EDV) to provide buffer storage for PV

  13. APPLICATION OF THE pV3 COPROCESSING VISUALIZATION ENVIRONMENT TO 3D UNSTRUCTURED MESH CALCULATIONS

    E-Print Network [OSTI]

    Peraire, Jaime

    APPLICATION OF THE pV3 CO­PROCESSING VISUALIZATION ENVIRONMENT TO 3­D UNSTRUCTURED MESH Moffett Field, CA 94035 barth@nas.nasa.gov (415) 604­6740 Introduction The pV3 visualization system­domain. The Visualization System pV3[2] is a complete distributed CFD­style visualization package. It is new, but builds

  14. Large-Scale PV Integration Study

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  15. Open PV Project: Unlocking PV Installation Data (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This brochure summarizes the Open PV Project, a collaborative effort of government, industry, and the public to compile a comprehensive database of PV installations in the United States. The brochure outlines the purpose and history of the project as well as the main capabilities and benefits of the online Open PV tool. The brochure also introduces how features of the tool are used, and it describes the sources and characteristics of Open PV's data and data collection processes.

  16. 1464 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 3, SEPTEMBER 2013 Distributed Optimal Power Flow

    E-Print Network [OSTI]

    Giannakis, Georgios

    --Distributed optimization, distribution feeders, microgrids, optimal power flow, semidefinite relaxation. I. INTRODUCTION MICROGRIDS are portions of a power distribution net- work located downstream of the distribution substation) and energy storage devices [1]. A microgrid can operate in either grid-connected, islanded, or hybrid modes

  17. Sandia Energy - PV Systems Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Systems Reliability PV Systems ReliabilityCoryne Tasca2015-05-08T03:40:54+00:00 Sandia...

  18. Solar PV and Glare Factsheet

    Broader source: Energy.gov [DOE]

    A common misconception about solar photovoltaic (PV) panels is that they inherently cause or create "too much" glare, posing a nuisance to neighbors and a safety risk for pilots. While solar PV systems can produce glare, light absorption - rather than reflection - is central to the function of solar PV panels. This fact sheet describes the basic issues surrounding glare from solar PV panels, the new Federal Aviation Administration guidance, and the implications for local governments.

  19. Testing for PV Reliability (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Bansal, S.

    2014-09-01

    The DOE SUNSHOT workshop is seeking input from the community about PV reliability and how the DOE might address gaps in understanding. This presentation describes the types of testing that are needed for PV reliability and introduces a discussion to identify gaps in our understanding of PV reliability testing.

  20. Aalborg Universitet Multiagent Based Distributed Control for State-of-Charge Balance of Distributed

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    generations, energy storage systems and may operate in both grid-connected and islanded modes [1]. MG concept Energy Storage in DC microgrids Li, Chendan; Dragicevic, Tomislav; Garcia Plaza, Manuel; Andrade, Fabio for State-of-Charge Balance of Distributed Energy Storage in DC microgrids. In Proceedings of the 40th

  1. SAPC Best Practices in PV System Installation: Version 1.0, March...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Authority Sydney Roberts, SouthFace Benjamin Shih, Moody's Chris Sommerfeld, Sunrun Jeff Spies, Quick Mount PV Josh Sturtevant, Distributed Sun Teresa W. Zhang, PhD,...

  2. Analyzing and simulating the variability of solar irradiance and solar PV powerplants

    E-Print Network [OSTI]

    Lave, Matthew S.

    2012-01-01

    Distributed PV, American Solar Energy Society, Denver, CO,of distance, Submitted to Solar Energy, (2011). [8] T. Hoff,Variability, Submitted to Solar Energy, (2011). [9] J.

  3. Kauai Island Utility Co-op (KIUC) PV integration study.

    SciTech Connect (OSTI)

    Ellis, Abraham; Mousseau, Tom

    2011-08-01

    This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

  4. Characterizing Shading Losses on Partially Shaded PV Systems (Presentation)

    SciTech Connect (OSTI)

    Deline, C.

    2010-09-23

    Presentation on shaded PV power loss, practical issues with modeling shaded PV, and methods of implementing partially shaded PV modeling.

  5. Berkeley Program Offers New Option for Financing Residential PV Systems

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    Vehicle for Residential PV Installations: Opportunities andfor Financing Residential PV Systems Mark Bolinger, Lawrencefor residential photovoltaic (PV) systems. Though financing

  6. Full Steam Ahead for PV in US Homes?

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    Full Steam Ahead for PV in US Homes? Mark Bolinger, Galenutility-scale photovoltaic (PV) installations in the yearsimplications for PV rebate program administrators, PV system

  7. Outdoor PV Degradation Comparison

    SciTech Connect (OSTI)

    Jordan, D. C.; Smith, R. M.; Osterwald, C. R.; Gelak, E.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output; may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined; accurately. At the Performance and Energy Rating Testbed (PERT) at the Outdoor Test Facility (OTF) at the; National Renewable Energy Laboratory (NREL) more than 40 modules from more than 10 different manufacturers; were compared for their long-term outdoor stability. Because it can accommodate a large variety of modules in a; limited footprint the PERT system is ideally suited to compare modules side-by-side under the same conditions.

  8. Sandia Energy - PV Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNew CREWOnline Abstracts andPV

  9. Abstract--A scalable multi-agent paradigm is presented for control of distributed energy resources to achieve higher

    E-Print Network [OSTI]

    Tolbert, Leon M.

    1 Abstract-- A scalable multi-agent paradigm is presented for control of distributed energy these new distributed energy resources (DER) and providing new ancillary services that can improve or to reduce system operation costs. Power electronics have not only made grid connection of distributed energy

  10. Power Flow Analysis Algorithm for Islanded LV Microgrids Including Distributed Generator Units with

    E-Print Network [OSTI]

    Chaudhary, Sanjay

    Power Flow Analysis Algorithm for Islanded LV Microgrids Including Distributed Generator Units power system. Being able to operate in both grid-connected and islanded mode, a microgrid manages and controls distributed energy resources, energy storage systems and loads, most of them are power electronic

  11. 3-Port Single-Stage PV & Battery Converter Improves Efficiency and Cost in Combined PV/Battery Systems

    SciTech Connect (OSTI)

    Bundschuh, Paul

    2013-03-23

    Due to impressive cost reductions in recent years, photovoltaic (PV) generation is now able to produce electricity at highly competitive prices, but PV’s inherent intermittency reduces the potential value of this energy. The integration of battery storage with PV will be transformational by increasing the value of solar. Utility scale systems will benefit by firming intermittency including PV ramp smoothing, grid support and load shifting, allowing PV to compete directly with conventional generation. For distributed grid-tied PV adding storage will reduce peak demand utility charges, as well as providing backup power during power grid failures. The largest long term impact of combined PV and battery systems may be for delivering reliable off-grid power to the billions of individuals globally without access to conventional power grids, or for billions more that suffer from daily power outages. PV module costs no longer dominate installed PV system costs. Balance-of-System (BOS) costs including the PV inverter and installation now contribute the majority of installed system costs. Battery costs are also dropping faster than installation and battery power converter systems. In each of these separate systems power converters have become a bottleneck for efficiency, cost and reliability. These bottlenecks are compounded in hybrid power conversion systems that combine separate PV and battery converters. Hybrid power conversion systems have required multiple power converters hardware units and multiple power conversion steps adding to efficiency losses, product and installation costs, and reliability issues. Ideal Power Converters has developed and patented a completely new theory of operation for electronic power converters using its indirect EnergyPacket Switching™ topology. It has established successful power converter products for both PV and battery systems, and its 3-Port Hybrid Converter is the first product to exploit the topology’s capability for the industry’s first single-stage multi-port hybrid power converter. This unique low cost approach eliminates the hybrid power conversion bottlenecks when integrating batteries into PV systems. As result this product will significantly accelerate market adoption of these systems.

  12. NREL/SCE High-Penetration PV Integration Project: Report on Field Demonstration of Advanced Inverter Functionality in Fontana, CA

    SciTech Connect (OSTI)

    Mather, B.

    2014-08-01

    The National Renewable Energy Laboratory/Southern California Edison High-Penetration PV Integration Project is (1) researching the distribution system level impacts of high-penetration photovoltaic (PV) integration, (2) determining mitigation methods to reduce or eliminate those impacts, and (3) seeking to demonstrate these mitigation methods on actual high-penetration PV distribution circuits. This report describes a field demonstration completed during the fall of 2013 on the Fontana, California, study circuit, which includes a total of 4.5 MW of interconnected utility-scale rooftop PV systems. The demonstration included operating a 2-MW PV system at an off-unity power factor that had been determined during previously completed distribution system modeling and PV impact assessment analyses. Data on the distribution circuit and PV system operations were collected during the 2-week demonstration period. This demonstration reinforces the findings of previous laboratory testing that showed that utility-scale PV inverters are capable of operating at off-unity power factor to mitigate PV impacts; however, because of difficulties setting and retaining PV inverter power factor set points during the field demonstration, it was not possible to demonstrate the effectiveness of off-unity power factor operation to mitigate the voltage impacts of high-penetration PV integration. Lessons learned from this field demonstration are presented to inform future field demonstration efforts.

  13. PV ENERGY ROI Tracks Efficiency Gains

    E-Print Network [OSTI]

    PV ENERGY ROI Tracks Efficiency Gains the state of PV today E nergy payback time (EPBT) is the time it takes for a photovoltaic (PV) system to produce all the energy used through- out its life cycle. A short, current com- mercial PV technologies "pay back" the energy used in only six months to two years (depending

  14. Rooftop Solar PV & Firefighter Safety

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar photovoltaic (PV) installations have experienced significant growth in recent years. Due to technological innovations and cost reductions, solar energy is a viable option for an increasing number of residences and businesses across the United States. Rooftop solar is considered safe – to date there has been no documented case of death from the electric shock, chemical burn or conventional fire caused by a solar panel; however, as more buildings install rooftop solar systems, the likelihood increases that fires will occur on buildings with solar, making it critical for firefighters to receive comprehensive solar education and training. This SolarOPs fact sheet gives a brief overview of typical solar PV installations, addresses the major hazards and risks to firefighters, discusses fire safety in Germany (the country with the most installed solar PV per capita), and suggests recommendations and resources to ensure that first responders are prepared to fight fires on homes and buildings with rooftop solar PV.

  15. Turlock Irrigation District- PV Rebate

    Office of Energy Efficiency and Renewable Energy (EERE)

    Turlock Irrigation District (TID) offers an incentive program to their customers who install solar photovoltaic (PV) systems. In keeping with the terms of the California Solar Initiative, the inc...

  16. Scenes for Chancellors Report- PV 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Syringopeptin (syp) and syringomycin (syr) are major necrosis-inducing lipodepsipeptide phytotoxins produced by P. syringae pv. syringae. This report demonstrates that syringopeptin production is activated by plant signal ...

  17. Construction of Ag Building- PV 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Pseudomonas syringae pv. syringae strain B728a (P.s.s. B728a) is an economically significant plant pathogen that is capable of successful epiphytic colonization of leaf surfaces. Although the virulence factors associated ...

  18. Pressure-equalizing PV assembly and method

    DOE Patents [OSTI]

    Dinwoodie, Thomas L.

    2004-10-26

    Each PV assembly of an array of PV assemblies comprises a base, a PV module and a support assembly securing the PV module to a position overlying the upper surface of the base. Vents are formed through the base. A pressure equalization path extends from the outer surface of the PV module, past the PV module, to and through at least one of the vents, and to the lower surface of the base to help reduce wind uplift forces on the PV assembly. The PV assemblies may be interengaged, such as by interengaging the bases of adjacent PV assemblies. The base may include a main portion and a cover and the bases of adjacent PV assemblies may be interengaged by securing the covers of adjacent bases together.

  19. PV module mounting method and mounting assembly

    DOE Patents [OSTI]

    Lenox, Carl J.S.; Johnson, Kurt M.

    2013-04-23

    A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.

  20. Connecticut Rooftop Solar PV Permitting Guide

    Broader source: Energy.gov [DOE]

    The Connecticut Rooftop Solar PV Permitting Guide is a compilation of best practices and resources for solar PV permitting. The guide includes a summary of current codes and regulations affecting solar PV, best practices for streamlining the municipal permitting process, and tools to assist municipalities in creating a streamlined permit process for residential solar PV. Resources include a solar PV permit application, a structural review worksheet, an inspection checklist, and a model solar zoning ordinance.

  1. PSCAD Modules Representing PV Generator

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2013-08-01

    Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

  2. pahwa@ksu.edu Holonic Multi-agent Control of Power Distribution Systems of the Future

    E-Print Network [OSTI]

    Singh, Gurdip

    SUMMARY Power distribution systems (PDS) of the future will have homes with smart meters to monitor energy consumption, on-site grid-connected solar or wind generation, battery storage, and plug-in vehicles. The feeders will have advanced power electronic switching devices to control the system, sensors at strategic

  3. Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01

    Install Quality Photovoltaic Systems. ESource Technicalof 900 Individual Photovoltaic Systems in Sacramento. ”in Grid-Connected Photovoltaic Systems. Prepared for the

  4. PV technology differences and discrepancies in modelling between...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sensitivity and limitations of present and alternative PV models The sensitivity and limitations of present and alternative PV models Steve Ransome - Independent PV Consultant,...

  5. Federal Tax Incentives for PV: Potential Implications for Program Design

    E-Print Network [OSTI]

    Wiser, Ryan; Bolinger, Mark

    2006-01-01

    Forthcoming. “EPAct 2005’s PV Tax Credits: What Are TheyAssumptions • Installed PV system costs exhibit economies ofFederal Tax Incentives for PV Potential Implications for

  6. Smart Grid Inverters for High-Penetration PV Applications

    E-Print Network [OSTI]

    Smart Grid Inverters for High- Penetration PV Applications Hawai`i Natural Energy Institute of recognized energy industry leaders working to develop enhanced capability smart inverters and to demonstrate by deploying and evaluating smart inverters on operating utility distribution feeders in two locations

  7. Comparison of Pyranometers vs. PV Reference Cells for Evaluation of PV Array Performance

    SciTech Connect (OSTI)

    Dunn, L.; Gostein, M.; Emery, K.

    2012-09-01

    As the photovoltaics (PV) industry has grown, the need for accurately monitoring the solar resource of PV power plants has increased. Historically, the PV industry has relied on thermopile pyranometers for irradiance measurements, and a large body of historical irradiance data taken with pyranometers exists. However, interest in PV reference devices is increasing. In this paper, we discuss why PV reference devices are better suited for PV applications, and estimate the typical uncertainties in irradiance measurements made with both pyranometers and PV reference devices. We assert that the quantity of interest in monitoring a PV power plant is the equivalent irradiance under the IEC 60904-3 reference solar spectrum that would produce the same electrical response in the PV array as the incident solar radiation. For PV-plant monitoring applications, we find the uncertainties in irradiance measurements of this type to be on the order of +/-5% for thermopile pyranometers and +/-2.4% for PV reference devices.

  8. Analyzing and simulating the variability of solar irradiance and solar PV powerplants

    E-Print Network [OSTI]

    Lave, Matthew S.

    2012-01-01

    System Impacts of Solar Variabiltiy and InterconnectionDistributed PV, American Solar Energy Society, Denver, CO,http://www1.eere.energy.gov/solar/sunshot/vision_study.html,

  9. Analyzing and simulating the variability of solar irradiance and solar PV powerplants

    E-Print Network [OSTI]

    Lave, Matthew S.

    2012-01-01

    Distributed PV, American Solar Energy Society, Denver, CO,turbidity coefficient, Solar Energy, 73 (2002) 151-157. [17]at the UC San Diego solar energy testbed, Solar Energy, [19

  10. Webinar: Evaluating Roof Structures for Solar PV

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar provides an overview of Connecticut's Structural Review Worksheet for Residential Rooftop Solar PV Systems. The webinar explains how the worksheet should be used and common concerns with wind and dead loads for rooftop solar PV.

  11. PV prospects: thinPV prospects: thin--film cellsfilm cells Si cell costs

    E-Print Network [OSTI]

    Pulfrey, David L.

    1 PV prospects: thinPV prospects: thin--film cellsfilm cells LECTURE 8 · Si cell costs · optimizing://www.solarbuzz.com/Moduleprices.htm #12;6 Cost of PV modulesCost of PV modules The lowest retail price for a multicrystalline silicon

  12. PV Fact Sheets Argument B1Some people state that "The external costs of PV electricity

    E-Print Network [OSTI]

    PV Fact Sheets Argument B1Some people state that "The external costs of PV electricity is much shows the external costs for current PV systems at Southern and Central European locations in addition to other costs". For current PV installations in South-Europe the external costs are about 0.15 per k

  13. November 21, 2000 PV Lesson Plan 3 PV Array Generating Electricity

    E-Print Network [OSTI]

    Oregon, University of

    November 21, 2000 PV Lesson Plan 3 ­ PV Array Generating Electricity Prepared for the Oregon in Arrays: Solar Cells Generating Electricity Lesson Plan Content: In this lesson, students will learn about electricity. Objectives: Students will learn to use a tool called PV WATTS to calculate the output of PV

  14. PV Controls Utility-Scale Demonstration Project

    SciTech Connect (OSTI)

    O'Neill, Barbara; Gevorgian, Vahan

    2015-10-14

    This presentation provides a high-level overview of the utility-scale PV controls demonstration project.

  15. PV Odds & Ends by John Wiles

    E-Print Network [OSTI]

    Johnson, Eric E.

    PV Odds & Ends by John Wiles Sponsored by the U.S. Department of Energy There are two primary wiring methods for connecting PV modules together--using exposed single-conductor cables, and using conduits. Each dictates a different grounding method, but in either case, PV modules must always

  16. Solar Resource and PV Systems Performance

    E-Print Network [OSTI]

    Solar Resource and PV Systems Performance at Selected Test Sites Prepared for the U.S. Department Subtask 11.1 Deliverables 2 and 4: Report on Solar Resource and PV Systems Performance at Selected Test agency thereof. #12;1 Solar Resource and PV Systems Performance at Selected Test Sites Contents 1

  17. PV-Modultechnik am ISFH Marc Kntges

    E-Print Network [OSTI]

    1 PV-Modultechnik am ISFH Marc Köntges Entwicklung Messen Prüfen Forschung 90°C #12;2 Aufbau eines. Schulte-Huxel, et al., IEEE J-PV, DOI: 10.1109/JPHOTOV.2012.2208096, 2012 Prozess bringt ganze in PV-Modullaminaten 90°C #12;Lichtsimulation Zellgap · Streulicht aus Zellzwischenraum wird teilweise

  18. Distributed generation

    SciTech Connect (OSTI)

    Ness, E.

    1999-09-02

    Distributed generation, locating electricity generators close to the point of consumption, provides some unique benefits to power companies and customers that are not available from centralized electricity generation. Photovoltaic (PV) technology is well suited to distributed applications and can, especially in concert with other distributed resources, provide a very close match to the customer demand for electricity, at a significantly lower cost than the alternatives. In addition to augmenting power from central-station generating plants, incorporating PV systems enables electric utilities to optimize the utilization of existing transmission and distribution.

  19. How sharp are PV measures?

    E-Print Network [OSTI]

    A. Jencova; S. Pulmannova

    2007-01-11

    Properties of sharp observables (normalized PV measures) in relation to smearing by a Markov kernel are studied. It is shown that for a sharp observable $P$ defined on a standard Borel space, and an arbitrary observable $M$, the following properties are equivalent: (a) the range of $P$ is contained in the range of $M$; (b) $P$ is a function of $M$; (c) $P$ is a smearing of $M$.

  20. Aalborg Universitet The Integration and Control of Multifunctional Stationary PV-Battery Systems in Smart

    E-Print Network [OSTI]

    Berning, Torsten

    in Smart Distribution Grid Khan, Mohammad Rezwan; Mulder, Grietus ; Van Mierlo, Joeri ; Kær, Søren Knudsen of Multifunctional Stationary PV-Battery Systems in Smart Distribution Grid. In Proceedings of the 28th European-BATTERY SYSTEMS IN SMART DISTRIBUTION GRID Mohammad Rezwan Khan1,*, Grietus Mulder2 , Joeri Van Mierlo3 , Søren

  1. PV output smoothing with energy storage.

    SciTech Connect (OSTI)

    Ellis, Abraham; Schoenwald, David Alan

    2012-03-01

    This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

  2. Presented at the 21th European Photovoltaic Solar Energy Conference, Dresden, Germany, 4-8 September 2006

    E-Print Network [OSTI]

    -8 September 2006 A COST AND ENVIRONMENTAL IMPACT COMPARISON OF GRID-CONNECTED ROOFTOP AND GROUND-BASED PV for roof-top and ground-based crystalline silicon PV systems by using environmental and cost life cycle, small grid-connected PV systems, large grid-connected PV systems 1 INTRODUCTION In cost

  3. NRELs PV Tools on the Web: Open PV Project

    Energy Savers [EERE]

    NREL's PV Tools on the Web: The OpenPV Project NREL TAP Webinar Ted Quinby March 24, 2010 National Renewable Energy Laboratory Innovation for Our Energy Future Overview National...

  4. National solar technology roadmap: Concentrator PV

    SciTech Connect (OSTI)

    Friedman, Dan

    2007-06-01

    This roadmap addresses high-concentration (>10x) photovoltaic (PV) systems, incorporating high-efficiency III-V or silicon cells, trackers, and reflective or refractive optics.

  5. Integrating Solar PV in Utility System Operations

    E-Print Network [OSTI]

    Mills, A.

    2014-01-01

    costs with constant nuclear in the high-PV scenario partly because of the large decrease in curtailment of renewable energy,

  6. Integrating Solar PV in Utility System Operations

    E-Print Network [OSTI]

    Mills, A.

    2014-01-01

    2007a, “Evaluating the Limits of Solar Photovoltaics (PV) infor Short-Term Variability of Solar Power. Lawrence Berkeleyand Medium Term Operational Solar Radiation Forecasts in the

  7. Updating Interconnection Screens for PV System Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abraham Ellis, Roger Hill Sandia National Laboratories Tom Key, Kristen Nicole, Jeff Smith Electric Power Research Institute Updating Interconnection Screens for PV System...

  8. CPS Energy- Solar PV Rebate Program

    Broader source: Energy.gov [DOE]

    CPS Energy, San Antonio's municipal utility, offers rebates to customers who install solar photovoltaic (PV) systems on their homes, schools, or businesses. There are four rebate "tiers" available...

  9. Ensuring Quality of PV Modules: Preprint

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Hacke, P.; Kempe, M.; Sample, T.; Yamamichi, M.; Kondo, M.; Doi, T.; Otani, K.; Amano, J.

    2011-07-01

    Photovoltaic (PV) customers need to have confidence in the PV modules they purchase. Currently, no test can quantify a module's lifetime with confidence, but stress tests are routinely used to differentiate PV product designs. We suggest that the industry would be strengthened by using the wisdom of the community to develop a single set of tests that will help customers quantify confidence in PV products. This paper evaluates the need for quality assurance (QA) standards and suggests a path for creating these. Two types of standards are needed: 1) QA of the module design and 2) QA of the manufacturing process.

  10. PV AND GRID RELIABILITY: AVAILABILITY OF PV POWER DURING CAPACITY SHORTFALLS

    E-Print Network [OSTI]

    Perez, Richard R.

    PV AND GRID RELIABILITY: AVAILABILITY OF PV POWER DURING CAPACITY SHORTFALLS Richard Perez events caused by high, localized demand and inability for the grid operators to deliver local power at photovoltaic (PV) power availability during major summer 1999-2000 power outages in the United States. We

  11. PV Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3 of Mason County Jump to:EiwaSwedenPV

  12. Kailun PV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro JumpHuari Silicon MaterialJuncoKSKKailun PV Jump to:

  13. NREL: Photovoltaics Research - PV News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12Working withPhoto of1855JohnScienceNancyNewsPV

  14. Sandia Energy - PV Program Disclaimer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNew CREWOnline Abstracts andPV ModelingProgram

  15. Berkeley Program Offers New Option for Financing Residential PV Systems

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    financing does not reduce the high up-front cost of PV, byto PV owners, including long- term, fixed-cost, attractivecost over some portion of the system’s life, financing can certainly make PV

  16. Federal Tax Incentives for PV: Potential Implications for Program Design

    E-Print Network [OSTI]

    Wiser, Ryan; Bolinger, Mark

    2006-01-01

    encourage demand for PV and value/cost/tax-efficiency of PBIAssumptions • Installed PV system costs exhibit economies ofPV above historical (pre-EPAct) levels • Recent increase in module costs (

  17. Solar PV Permitting and Safety Training Webinar

    Broader source: Energy.gov [DOE]

    This webinar provides training on two permitting resources for municipal inspectors; a prescriptive process for building inspectors and a guidance document for permitting for PV for electrical inspectors. The webinar also runs through a number of key code articles in Massachusetts 2014 electrical code and examines a variety of safety hazards commonly found during or after solar PV installations.

  18. Draft Transcript on Municipal PV Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Webinar on navigating the legal, tax, and finance issues associated with the installation of Municipal PV Systems. The following agenda was developed based on Pat Boylston's experience assisting municipalities with their PV projects and the requests for information that the Solar America City technical team leads have received from many of the 25 Solar America Cities since the April 2008 meeting in Tucson.

  19. An Analysis of Residential PV System Price Differences between...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV System Price Differences between the United States and Germany Residential photovoltaic (PV) systems were twice as expensive in the United States as in Germany (median of...

  20. Full Steam Ahead for PV in US Homes?

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    state, local, and utility rebate programs targeting solar –implications for PV rebate program administrators, PV systemReduce the Size of the Rebates They Provide Without

  1. SunShot Presentation PV Module Reliabity Workshop Opening Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation PV Module Reliabity Workshop Opening Session SunShot Presentation PV Module Reliabity Workshop Opening Session This PowerPoint slide deck was originally presented at...

  2. Low Cost High Concentration PV Systems for Utility Power Generation...

    Broader source: Energy.gov (indexed) [DOE]

    Residential and Utility Solar Power Generating Systems SunPower,Low Cost Thin Film Building-Integrated PV Systems Low Cost High Concentration PV Systems for Utility Power...

  3. Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential This study looks at the technical...

  4. Department of Veterans Affairs, FONSI - Rooftop solar PV power...

    Energy Savers [EERE]

    Rooftop solar PV power at Calverton National Cemetery Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton National Cemetery An Environmental Assessment (EA)...

  5. PV Performance and Reliability Validation Capabilities at Sandia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Performance and Reliability Validation Capabilities at Sandia National Laboratories PV Performance and Reliability Validation Capabilities at Sandia National Laboratories This...

  6. THE IMPACT OF CITY-LEVEL PERMITTING PROCESSES ON RESIDENTIAL PV INSTALLATION PRICES AND DEVELOPMENT TIMES

    E-Print Network [OSTI]

    Dong, Changgui

    2014-01-01

    The installed price of photovoltaic (PV) systems hasprice and development time of residential photovoltaic (PV)

  7. Grid Connectivity Research, Development & Demonstration Projects

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Grid Connected Functionalities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergyGetDepartment of|GreenerGrid ApplicationsGrid

  9. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    cost data for grid-connected, customer-sited PV installations in the Unites States from a number of solar

  10. Using CAD software to simulate PV energy yield - The case of product integrated photovoltaic operated under indoor solar irradiation

    SciTech Connect (OSTI)

    Reich, N.H.; van Sark, W.G.J.H.M.; Turkenburg, W.C.; Sinke, W.C.

    2010-08-15

    In this paper, we show that photovoltaic (PV) energy yields can be simulated using standard rendering and ray-tracing features of Computer Aided Design (CAD) software. To this end, three-dimensional (3-D) sceneries are ray-traced in CAD. The PV power output is then modeled by translating irradiance intensity data of rendered images back into numerical data. To ensure accurate results, the solar irradiation data used as input is compared to numerical data obtained from rendered images, showing excellent agreement. As expected, also ray-tracing precision in the CAD software proves to be very high. To demonstrate PV energy yield simulations using this innovative concept, solar radiation time course data of a few days was modeled in 3-D to simulate distributions of irradiance incident on flat, single- and double-bend shapes and a PV powered computer mouse located on a window sill. Comparisons of measured to simulated PV output of the mouse show that also in practice, simulation accuracies can be very high. Theoretically, this concept has great potential, as it can be adapted to suit a wide range of solar energy applications, such as sun-tracking and concentrator systems, Building Integrated PV (BIPV) or Product Integrated PV (PIPV). However, graphical user interfaces of 'CAD-PV' software tools are not yet available. (author)

  11. Terawatt Challenge for Thin-Film PV

    SciTech Connect (OSTI)

    Zweibel, K.

    2005-08-01

    The evolution of PV into one of the world's largest industries is not going to happen without major unforeseen problems. However, this study attempts to address the obvious ones, so that we can put aside the mythology of PV (for example, that it is only ''boutique power'' or that one must pave the world with it to be useful) and get on with changing the world's energy infrastructure. With the years of rapid market growth now under way in PV, the author is sure this will not be the last effort to understand the real potential and pitfalls of meeting the Challenge.

  12. (Eigen Phoneme Space (Phoneme Vector : PV)

    E-Print Network [OSTI]

    Takiguchi, Tetsuya

    ) (Phoneme Vector : PV) Fig. 1 (EPS) /a/ /i/ · · · PCA (EPS) 2.2 PCA PCA i Si Si = 1 N N t=1 (xi t - ¯xi )(xi (6) #12;Fig. 2 Phoneme Vector (PV) extraction (6) yt (Q×M) yt PCA y t y t = V T (yt - ¯y) (7) V = [1 , 2 , · · · , R ] R Fig. 2 3 3.1 DCT PCA MFCC PCA PV 32 16 32 (Q) 5 21 2 ATR A-SET 2,620 54 HMM 1

  13. High-Penetration PV Deployment in the Arizona Public Service System, Phase 1 Update: Preprint

    SciTech Connect (OSTI)

    Hambrick, J.; Narang, D.

    2012-06-01

    In an effort to better understand the impacts of high penetrations of photovoltaic generators on distribution systems, Arizona Public Service and its partners have begun work on a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale photovoltaics (PV). Building upon the APS Community Power Project -- Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. This paper continues from a paper presented at the 2011 IEEE PVSC conference that introduces the project and describes some of the preliminary consideration, as well as project plans and early results. This paper gives a status update of the project and presents selected results from Phase 2 of the project. It discusses baseline feeder modeling, load allocation, data acquisition, utility-scale PV integration, preliminary model validation, and plans for future phases.

  14. Measured Performance of California Buydown Program Residential PV Systems

    E-Print Network [OSTI]

    Measured Performance of California Buydown Program Residential PV Systems Kurt Scheuermann a proposal to monitor in-field performance of photovoltaic (PV) and hybrid PV/small wind systems funded collected from fourteen PV systems from mid-February through September, 2000. In December 2000 and January

  15. Solar Works! In Seattle: Introduction to Solar Electric (PV)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation slides from residential PV workshop. Also covers general solar resource assessment, siting and financial incentives.

  16. Energy 101: Solar PV | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on www.youtube.com, or enable JavaScript if it is disabled in your browser. Description Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun...

  17. Sandia Energy - Evaluating Rooftop Strength for PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for PVcwdd2015-09-30T16:55:16+00:00 Confirming the Strength of Residential Roof Structures for Solar Installations Test Setup Photo Test Setup The solar photovoltaic (PV)...

  18. City of Lompoc Utilities- PV Rebate Program

    Broader source: Energy.gov [DOE]

    City of Lompoc Utilities provides rebates to its electric customers who purchase and install photovoltaic (PV) systems. The rebate is $1.00 per watt-AC. The incentive amount may not exceed 50% the...

  19. PV Module Reliability Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its PV module reliability research. The scope and core competencies and capabilities are discussed and recent publications are listed.

  20. PV1 model verification and validation

    E-Print Network [OSTI]

    Fuller, Frank H.

    1981-01-01

    The purpose of this document is 1) to describe, in detail, the theoretic foundation on which PV1 is based, 2) indicate the manner in which its theoretical foundation has been translated into a practical, useful tool for ...

  1. Sandia Energy - PV Reliability & Performance Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model PV Reliability & Performance ModelTara Camacho-Lopez2015-06-01T20:13:00+00:00 This Web Demo model is a simplified "player" version of the Photovoltaic Reliability Performance...

  2. Solar Energy International Solar PV 101 Training

    Broader source: Energy.gov [DOE]

    Solar Energy International is offering a five-day training that provides an overview of the three basic PV system applications, primarily focusing on grid-direct systems. The goal of the course is...

  3. Austin Energy- Commercial Solar PV Incentive Program

    Broader source: Energy.gov [DOE]

    In order to qualify for this program, PV modules must be new and be listed on the California Energy Commission's Go Solar web site. In addition, all solar panels must have a 20-year manufacturer ...

  4. Merced Irrigation District- PV Buydown Program

    Broader source: Energy.gov [DOE]

    Merced Irrigation District (MID) offers its residential, commercial and non-profit customers a rebate for installing solar electric photovoltaic (PV) systems on their homes and offices. For 2015,...

  5. Plumas-Sierra REC- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Plumas-Sierra REC offers an incentive for its customers to install photovoltaic (PV) systems on homes and businesses. Rebates are available for qualifying systems between one kilowatt (kW) and 25...

  6. SMUD- PV Residential Retrofit Buy-Down

    Broader source: Energy.gov [DOE]

    The incentive can be paid directly to the customer or the installer. PV equipment listed on the CEC Approved Equipment list is eligible for incentives: http://www.gosolarcalifornia.org/equipment...

  7. PV System Energy Evaluation Method (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2014-01-01

    This presentation describes a comparison of the "predicted" energy (based on historical weather data) with the "expected" energy (based on the measured weather data) to determine whether a PV system is performing as modeled in order to verify the accuracy of a model. A key factor in defining this energy test is determining the test boundary so that weather variations are not inadvertently included in what is considered to be PV system performance.

  8. Power losses in PV arrays due to variations in the I-V characteristics of PV modules

    E-Print Network [OSTI]

    Heinemann, Detlev

    Power losses in PV arrays due to variations in the I-V characteristics of PV modules Wolfgang Damm-V characteristics of the 36 individual modules of a PV generator at the University of Oldenburg were measured the basis for the calculations of the mismatch losses due to series and parallel connection of PV modules

  9. A State-Level Comparison of Processes and Timelines for Distributed Photovoltaic Interconnection in the United States

    SciTech Connect (OSTI)

    Ardani, K.; Davidson, C.; Margolis, R.; Nobler, E.

    2015-01-01

    This report presents results from an analysis of distributed photovoltaic (PV) interconnection and deployment processes in the United States.

  10. Electricity Rate Structures and the Economics of Solar PV: Could Mandatory Time-of-Use Rates Undermine California’s Solar Photovoltaic Subsidies?

    E-Print Network [OSTI]

    Borenstein, Severin

    2007-01-01

    the Twenty- Sixth IEEE Photovoltaic Specialists Conference,T. and R. Margolis. “Are Photovoltaic Systems Worth More toLarge Grid- Connected Photovoltaic Systems in California and

  11. Photovoltaic Performance and Reliability Database: A Gateway to Experimental Data Monitoring Projects for PV at the Florida Solar Energy Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This site is the gateway to experimental data monitoring projects for photovoltaic (PV) at the Florida Solar Energy Center. The website and the database were designed to facilitate and standardize the processes for archiving, analyzing and accessing data collected from dozens of operational PV systems and test facilities monitored by FSEC's Photovoltaics and Distributed Generation Division. [copied from http://www.fsec.ucf.edu/en/research/photovoltaics/data_monitoring/index.htm

  12. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections

    E-Print Network [OSTI]

    Feldman, David

    2014-01-01

    Utility-Scale Photovoltaic (PV) System Prices in the Unitedphotovoltaic (PV) systems has soared in recent years, driven by declining PV prices

  13. Do PV Systems Increase Residential Selling Prices If So, How Can Practitioners Estimate This Increase?

    E-Print Network [OSTI]

    Hoen, Ben

    2013-01-01

    underlying net installation costs for PV systems between newfrom electricity cost savings after PV system installationannual electricity cost savings associated with PV they are

  14. Holdover inoculum of Pseudomonas syringae pv. alisalensis from broccoli raab causes disease in subsequent plantings

    E-Print Network [OSTI]

    Cintas, N A; Koike, S T; Bunch, R A; Bull, C T

    2006-01-01

    by Pseudomonas syringae pv. alisalensis in California. Plantof Pseudo- monas syringae pv. alisalensis. (Abstr. ) Phyto-2004. Pseudomonas syringae pv. alisalensis and Pseudomonas

  15. An efficient method for visualization and growth of fluorescent Xanthomonas oryzae pv. oryzae in planta.

    E-Print Network [OSTI]

    Han, Sang-Wook; Park, Chang-Jin; Lee, Sang-Won; Ronald, Pamela C

    2008-01-01

    Background Xanthomonas oryzae pv. oryzae, a yellow-pigmentedsativa L. ) plants. X. oryzae pv. oryzae infection can causetropical Asia [1]. X. oryzae pv. oryzae infects rice leaves

  16. Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01

    Dan. 2006. Best Practices in PV Rebate Programs: Helpingprogram staff. Designing PV Incentive Programs to PromoteGroup), Mike Taylor Designing PV Incentive Programs to

  17. Designing PV Incentive Programs to Promote Performance: A Review of Current Practice

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2007-01-01

    DESIGNING PV INCENTIVE PROGRAMS TO PROMOTE SYSTEMcustomer-sited photovoltaic (PV) systems, provided throughface to ensuring that their PV systems perform well, and the

  18. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections

    E-Print Network [OSTI]

    Feldman, David

    2014-01-01

    all. Super monocrystalline PV modules are currently the mostBloomberg New Energy Finance. PV Market Outlook, Q1 2012 (Solar Photovoltaic Industry: Solar PV industry outlook and

  19. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01

    Model (WVM) for Solar PV Power Plants Matthew Lave, Jansimulating solar photovoltaic (PV) power plant output giventhe power output of a solar photovoltaic (PV) plant was

  20. Sandia Energy - PV Arc-Fault and Ground Fault Detection and Mitigation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Systems Reliability PV Arc-Fault and Ground Fault Detection and Mitigation Program PV...

  1. Dark Shadows

    E-Print Network [OSTI]

    Mills, Andrew

    2012-01-01

    of Grid-Connected Photovoltaic Systems. IEEE Journal ofand member of the Photovoltaic Systems and Grid integrationphotovoltaic (PV) plants. The workshop brought together utilities, PV system

  2. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ; Lai, Jih-Sheng This paper presents a high-efficiency grid-connected photovoltaic (PV) module integrated converter (MIC) system with reduced PV current variation. The...

  3. DOE High Performance Concentrator PV Project

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2005-08-01

    Much in demand are next-generation photovoltaic (PV) technologies that can be used economically to make a large-scale impact on world electricity production. The U.S. Department of Energy (DOE) initiated the High-Performance Photovoltaic (HiPerf PV) Project to substantially increase the viability of PV for cost-competitive applications so that PV can contribute significantly to both our energy supply and environment. To accomplish such results, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices with the goal of enabling progress of high-efficiency technologies toward commercial-prototype products. We will describe the details of the subcontractor and in-house progress in exploring and accelerating pathways of III-V multijunction concentrator solar cells and systems toward their long-term goals. By 2020, we anticipate that this project will have demonstrated 33% system efficiency and a system price of $1.00/Wp for concentrator PV systems using III-V multijunction solar cells with efficiencies over 41%.

  4. PV performance modeling workshop summary report.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Tasca, Coryne Adelle (SRA International, Inc., Fairfax, VA); Cameron, Christopher P.

    2011-05-01

    During the development of a solar photovoltaic (PV) energy project, predicting expected energy production from a system is a key part of understanding system value. System energy production is a function of the system design and location, the mounting configuration, the power conversion system, and the module technology, as well as the solar resource. Even if all other variables are held constant, annual energy yield (kWh/kWp) will vary among module technologies because of differences in response to low-light levels and temperature. A number of PV system performance models have been developed and are in use, but little has been published on validation of these models or the accuracy and uncertainty of their output. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a PV Performance Modeling Workshop in Albuquerque, New Mexico, September 22-23, 2010. The workshop was intended to address the current state of PV system models, develop a path forward for establishing best practices on PV system performance modeling, and set the stage for standardization of testing and validation procedures for models and input parameters. This report summarizes discussions and presentations from the workshop, as well as examines opportunities for collaborative efforts to develop objective comparisons between models and across sites and applications.

  5. Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions

    E-Print Network [OSTI]

    Becker, Sarah; Andresen, Gorm B; Zeyer, Timo; Schramm, Stefan; Greiner, Martin; Jacobson, Mark Z

    2014-01-01

    Wind and solar PV generation data for the entire contiguous US are calculated, on the basis of 32 years of weather data with temporal resolution of one hour and spatial resolution of 40x40km$^2$, assuming site-suitability-based as well as stochastic wind and solar PV capacity distributions throughout the country. These data are used to investigate a fully renewable electricity system, resting primarily upon wind and solar PV power. We find that the seasonal optimal mix of wind and solar PV comes at around 80% solar PV share, owing to the US summer load peak. By picking this mix, long-term storage requirements can be more than halved compared to a wind only mix. The daily optimal mix lies at about 80% wind share due to the nightly gap in solar PV production. Picking this mix instead of solar only reduces backup energy needs by about 50%. Furthermore, we calculate shifts in FERC (Federal Energy Regulatory Commission)-level LCOE (Levelized Costs Of Electricity) for wind and solar PV due to their differing resour...

  6. Advanced Photovoltaic Inverter Functionality using 500 kW Power Hardware-in-Loop Complete System Laboratory Testing: Preprint

    SciTech Connect (OSTI)

    Mather, B. A.; Kromer, M. A.; Casey, L.

    2013-01-01

    With the increasing penetration of distribution connected photovoltaic (PV) systems, more and more PV developers and utilities are interested in easing future PV interconnection concerns by mitigating some of the impacts of PV integration using advanced PV inverter controls and functions. This paper describes the testing of a 500 kW PV inverter using Power Hardware-in-Loop (PHIL) testing techniques. The test setup is described and the results from testing the inverter in advanced functionality modes, not commonly used in currently interconnected PV systems, are presented. PV inverter operation under PHIL evaluation that emulated both the DC PV array connection and the AC distribution level grid connection are shown for constant power factor (PF) and constant reactive power (VAr) control modes. The evaluation of these modes was completed under varying degrees of modeled PV variability.

  7. Updating Interconnection Screens for PV System Integration

    SciTech Connect (OSTI)

    Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

    2012-02-01

    This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

  8. International PV QA Task Force's Proposed Comparative Rating System for PV Modules: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J.; Kurtz, S.

    2014-10-01

    The International PV Quality Assurance Task Force is developing a rating system that provides comparative information about the relative durability of PV modules. Development of accelerated stress tests that can provide such comparative information is seen as a major step toward being able to predict PV module service life. This paper will provide details of the ongoing effort to determine the format of such an overall module rating system. The latest proposal is based on using three distinct climate zones as defined in IEC 60721-2-1 for two different mounting systems. Specific stresses beyond those used in the qualification tests are being developed for each of the selected climate zones.

  9. U.S. Aims for Zero-Energy: Support for PV on New Homes

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01

    solar photovoltaic (PV) adoption, new homes have a number ofenergy funds for encouraging PV adoption in new, market-ratePV as an option is that PV adoption is contingent on each

  10. Breakout Session: A Look Ahead: PV Manufacturing in 10 Years

    Broader source: Energy.gov [DOE]

    The global PV manufacturing landscape has undergone significant changes in the past decade, from geographic and economic changes in the supply chain to a significant increase in PV module...

  11. Energy Efficiency First, Zero Energy Ready Homes, and Solar PV...

    Office of Environmental Management (EM)

    Energy Efficiency First, Zero Energy Ready Homes, and Solar PV Updates Energy Efficiency First, Zero Energy Ready Homes, and Solar PV Updates April 29, 2015 11:00AM to 12:30PM MDT...

  12. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term

    E-Print Network [OSTI]

    Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections November 2012 #12;Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections David Feldman1 , Galen Barbose2........................................................................................................................................... 1 2. Historical and Recent Reported Prices

  13. Performance of Mismatched PV Systems With Submodule Integrated Converters

    SciTech Connect (OSTI)

    Olalla, C; Deline, C; Maksimovic, D

    2014-01-01

    Mismatch power losses in photovoltaic (PV) systems can be reduced by the use of distributed power electronics at the module or submodule level. This paper presents an experimentally validated numerical model that can be used to predict power production with distributed maximum power point tracking (DMPPT) down to the cell level. The model allows the investigations of different DMPPT architectures, as well as the impact of conversion efficiencies and power constraints. Results are presented for annual simulations of three representative partial shading scenarios and two scenarios where mismatches are due to aging over a period of 25 years. It is shown that DMPPT solutions that are based on submodule integrated converters offer 6.9-11.1% improvements in annual energy yield relative to a baseline centralized MPPT scenario.

  14. Berkeley Program Offers New Option for Financing Residential PV Systems

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    Clean Energy States Alliance, titled “Property Tax Assessments as a Finance Vehicle for Residential PV Installations: Opportunities and Potential

  15. Personeelsvereniging Technische Universiteit Eindhoven DOE MEE met de PV !!

    E-Print Network [OSTI]

    Franssen, Michael

    Personeelsvereniging Technische Universiteit Eindhoven DOE MEE met de PV !! Eindhoven 12 maart 2012 Het bestuur van de PV is dringend op zoek naar verjonging en nieuwe invulling van de volgende rollen Aanspreekpunt voor activiteiten Exacte invulling van de functie, mogelijk in duo, in overleg met het PV bestuur

  16. Informations et rservations : ce.pv-holidays.com

    E-Print Network [OSTI]

    Arleo, Angelo

    Informations et réservations : ce.pv-holidays.com * Offre valable pour tout séjour de 7 nuits détails sur ce.pv-holidays.com. Offre valable sur l'hébergement seul (hors frais de dossier, prestations cumulable avec votre remise partenaire, toute offre promotionnelle ou réductions. PV-CPDistribution, Société

  17. Results from measurements on the PV-VENT systems

    E-Print Network [OSTI]

    Results from measurements on the PV-VENT systems at Lundebjerg Solar Energy Centre Denmark Danish from measurements on the PV-VENT systems at Lundebjerg Søren Østergaard Jensen Solar Energy Centre with (Jensen, 2000a) Solar Energy Centre Denmark's (Danish Technological Institute) measuring work in the PV

  18. A GUIDE TO PHOTOVOLTAIC (PV) SYSTEM DESIGN AND INSTALLATION

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION A GUIDE TO PHOTOVOLTAIC (PV) SYSTEM DESIGN AND INSTALLATION JUNE 2001 500-01-020 CONSULTANTREPORT Gray Davis, Governor #12;PV Installation Guide June 2001 Page 1 A GUIDE TO PHOTOVOLTAIC (PV) SYSTEM DESIGN AND INSTALLATION Prepared for: California Energy Commission Energy Technology

  19. Experience Curves and Solar PV Fred Heutte, Senior Policy Associate

    E-Print Network [OSTI]

    resources costs as being ranges rather than fixed values. It is evident that the question of future solar PV for transmission expansion. Consequently, the future estimated cost projection for solar PV has been a point for solar PV should be dramatically changed "downward" going forward (i.e., significantly less of a cost

  20. Aalborg Universitet Remote and Centralized Monitoring of PV Power Plants

    E-Print Network [OSTI]

    Sera, Dezso

    Aalborg Universitet Remote and Centralized Monitoring of PV Power Plants Kopacz, Csaba; Spataru., & Kerekes, T. (2014). Remote and Centralized Monitoring of PV Power Plants. In Proceedings of the 14th from vbn.aau.dk on: juli 04, 2015 #12;Remote and Centralized Monitoring of PV Power Plants Csaba Kopacz

  1. Standardizing Appraisals for PV Installations Geoffrey T. Klise1

    E-Print Network [OSTI]

    Standardizing Appraisals for PV Installations Geoffrey T. Klise1 , Jamie L. Johnson2 , and Sandra K Gorda, FL, 33980, USA 3 Adomatis Appraisal Services, Punta Gorda, FL, 33951, USA ABSTRACT -- As PV to value the PV system as part of a property sale or re-finance. Proper valuation techniques as applied

  2. Performance Studies of PV: an Onthefly Modelchecker for

    E-Print Network [OSTI]

    Performance Studies of PV: an On­the­fly Model­checker for LTL­X Featuring Selective Caching 2001 Abstract We present an enumerative model­checker PV that uses a new partial order reduction al as with selective state caching very straightfor­ ward. We present a thorough evaluation of PV in terms of several

  3. SUPPLEMENTARY METHODS Strategies for microbial opsin expression in PV

    E-Print Network [OSTI]

    Schnitzer, Mark

    SUPPLEMENTARY METHODS Strategies for microbial opsin expression in PV::Cre mice. The simplest approach for microbial opsin expression in PV::Cre mice takes advantage of a cassette consisting of three) that can be excised by Cre recombinase in those PV neurons that express Cre. This approach has been used

  4. Modelling PV Deployment: A Tool Developed at CEEP to

    E-Print Network [OSTI]

    Delaware, University of

    Modelling PV Deployment: A Tool Developed at CEEP to Explore the Delaware Market Energy-3098 Website: http://ceep.udel.edu #12;Modeling PV Deployment: A Tool Developed at CEEP to Explore the Delaware..............................................................................................................................2 3. CEEP's Solar PV Diffusion Model Overview

  5. PV MODULE PERFORMANCE AFTER 30 YEARS WITHOUT WASHING Frank Vignola

    E-Print Network [OSTI]

    Oregon, University of

    1 PV MODULE PERFORMANCE AFTER 30 YEARS WITHOUT WASHING Frank Vignola Josh Peterson Rich Kessler of a Solarex 40 watt mono crystalline PV module is examined after 30 years in use without washing. After photovoltaic (PV) modules? As the mod- ules are often on roof tops or situated out of the way, it often takes

  6. VADE-MECUM DE LA VORTICITE POTENTIELLE Dfinition (PV) P=

    E-Print Network [OSTI]

    Legras, Bernard

    VADE-MECUM DE LA VORTICITE POTENTIELLE Définition (PV) P= rot u2 Unité 1PVU = 106 K kg1 m2 s1 Pour les mouvements inviscides et adiabatiques, la PV est conservée pour chaque particule. Forme 102 s1 . La PV croît en magnitude vers les pôles. Ceci est dû à la croissance de |f| vers les pôles

  7. pV3 Programmer's Guide Client Side & Concentrator Programming

    E-Print Network [OSTI]

    Peraire, Jaime

    pV3 Programmer's Guide Rev. 2.05 Client Side & Concentrator Programming Bob Haimes Massachusetts.I.T., and USER agrees to preserve same. 2 #12;Contents 1 Introduction 6 2 pV3 in the Message Passing Environment 7 2.1 Using PVM Message Passing with the Simulation . . . . . . . . . . . . . . . . . . . . 7 2.2 pV

  8. Role of Polycrystalline Thin-Film PV Technologies in Competitive PV Module Markets: Preprint

    SciTech Connect (OSTI)

    von Roedern, B.; Ullal, H. S.

    2008-05-01

    This paper discusses the developments in thin-film PV technologies and provides an outlook on future commercial module efficiencies achievable based on today's knowledge about champion cell performance.

  9. Solar Photovoltaic (PV) System Permit Application Checklist

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Permit Application Checklist is intended to be used as a best management practice when establishing local government requirements for residential and commercial solar photovoltaic (PV) system permits. Local governments may modify this checklist to accommodate their local ordinances, code requirements, and permit procedures.

  10. Transforming PV Installations Toward Dispatchable, Schedulable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    B C N A B C N A B C N A B C N Ai n Bi n Ci n Aout Bout Cout A B C N A B C N Transforming PV insTallaTions Toward disPaTchable, schedulable energy soluTions MIChAEl MIllS-PrICE,...

  11. Analysis and Design of Smart PV Module 

    E-Print Network [OSTI]

    Mazumdar, Poornima

    2012-12-10

    the individual dc-dc converters and control the output AC voltages directly, thus becoming a true plug and power energy system. Such a concept is ideal for curved surfaces such as building integrated PV (BIPV) system applications where gradients of insolation...

  12. PV Solar Site Assessment (Milwaukee High School)

    Broader source: Energy.gov [DOE]

    The purpose of this assessment is to provide site-specific information on how a solar electric (also referred to as a photovoltaic, or PV) system would perform at your location, including information on estimated physical size, rated output, energy production, costs, financial incentives and mounting options. Site assessors are required to present unbiased information and may not recommend contractors or products.

  13. 2 IAEI NEWS September . October 2011 www.iaei.org perspectives on pv

    E-Print Network [OSTI]

    Johnson, Eric E.

    2 IAEI NEWS September . October 2011 www.iaei.org perspectives on pv www.iaei.org September . October 2011 IAEI NEWS 3 perspectives on pv P hotovoltaic (PV) power systems have PV modules and PV arrays will be supplied to local loads and to the con- nected utility grid. There are two areas of PV systems that deserve

  14. Mathematical Modeling for CostMathematical Modeling for Cost Optimization of PV RecyclingOptimization of PV Recycling

    E-Print Network [OSTI]

    Bergman, Keren

    Mathematical Modeling for CostMathematical Modeling for Cost Optimization of PV Recycling of plants Capital costs to open up a recycling center 4 #12;Time Horizon for PV Recycling Infrastructure 5 cost $189K System optimal cost $1079K 11 #12;PV Recycling ­Cost Optimization 1. Where is the optimized

  15. The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS Systems

    E-Print Network [OSTI]

    The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS WA 6150 Abstract This paper focuses on pv/diesel/battery hybrid RAPS systems meeting loads above 50 kWh. INTRODUCTION A diesel hybrid system, incorporating a battery and inverter, can often provide power at a lower

  16. Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint

    SciTech Connect (OSTI)

    Hoke, A.; Butler, R.; Hambrick, J.; Kroposki, B.

    2012-07-01

    This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ANSI Range A and that feeder currents stay within the ranges determined by overcurrent protection devices. Simulations were run in GridLAB-D using hourly time steps over a year with randomized load profiles based on utility data and typical meteorological year weather data. For 86% of the cases simulated, maximum PV penetration was at least 30% of peak load.

  17. On the pure virtual braid group $PV_3$

    E-Print Network [OSTI]

    Bardakov, V G; Vershinin, V V; Wu, J

    2009-01-01

    In this article, we investigate various properties of the pure virtual braid group PV_3. From its canonical presentation, we obtain a free product decomposition of PV_3. As a consequence, we show that PV_3 is residually torsion free nilpotent, which implies that the set of finite type invariants in the sense of Goussarov-Polyak-Viro is complete for virtual pure braids with three strands. Moreover we prove that the presentation of PV_3 is aspherical. Finally we determine the cohomology ring and the associated graded Lie algebra of PV_3.

  18. The reliability and stability of multijunction amorphous silicon PV modules

    SciTech Connect (OSTI)

    Carlson, D.E.

    1995-11-01

    Solarex is developing a manufacturing process for the commercial production of 8 ft{sup 2} multijunction amorphous silicon (a-Si) PV modules starting in 1996. The device structure used in these multijunction modules is: glass/textured tin oxide/p-i-n/p-i-n/ZnO/Al/EVA/Tedlar where the back junction of the tandem structure contains an amorphous silicon germanium alloy. As an interim step, 4 ft{sup 2} multijunction modules have been fabricated in a pilot production mode over the last several months. The distribution of initial conversion efficiencies for an engineering run of 67 modules (4 ft{sup 2}) is shown. Measurements recently performed at NREL indicate that the actual efficiencies are about 5% higher than those shown, and thus exhibit an average initial conversion efficiency of about 9.5%. The data indicates that the process is relatively robust since there were no modules with initial efficiencies less than 7.5%.

  19. Materials Testing for PV Module Encapsulation

    SciTech Connect (OSTI)

    Jorgensen, G.; Terwilliger, K.; Glick, S.; Pern, J.; McMahon, T.

    2003-05-01

    Important physical properties of materials used in PV module packaging are presented. High-moisture-barrier, high-resistivity, adhesion-promoting coatings on polyethyl-ene terephthalate (PET) films have been fabricated and characterized for use in PV module application and com-pared to standard polymer backsheet materials. Ethylene vinyl acetate (EVA) and an encapsulant replacement for EVA are studied for their water vapor transmission rate (WVTR) and adhesion properties. WVTR, at test conditions up to 85C/100% relative humidity (RH), and adhesion val-ues are measured before and after filtered xenon arc lamp ultraviolet (UV) exposure and damp heat exposure at 85C/85% RH. Water ingress is quantified by weight gain and embedded humidity sensors.

  20. Cascaded Microinverter PV System for Reduced Cost

    SciTech Connect (OSTI)

    Bellus, Daniel R.; Ely, Jeffrey A.

    2013-04-29

    In this project, a team led by Delphi will develop and demonstrate a novel cascaded photovoltaic (PV) inverter architecture using advanced components. This approach will reduce the cost and improve the performance of medium and large-sized PV systems. The overall project objective is to develop, build, and test a modular 11-level cascaded three-phase inverter building block for photovoltaic applications and to develop and analyze the associated commercialization plan. The system will be designed to utilize photovoltaic panels and will supply power to the electric grid at 208 VAC, 60 Hz 3-phase. With the proposed topology, three inverters, each with an embedded controller, will monitor and control each of the cascade sections, reducing costs associated with extra control boards. This report details the final disposition on this project.

  1. NREL/SCE High Penetration PV Integration Project: FY13 Annual Report

    SciTech Connect (OSTI)

    Mather, B. A.; Shah, S.; Norris, B. L.; Dise, J. H.; Yu, L.; Paradis, D.; Katiraei, F.; Seguin, R.; Costyk, D.; Woyak, J.; Jung, J.; Russell, K.; Broadwater, R.

    2014-06-01

    In 2010, the National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed to analyze the impacts of high penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to benefit from the experience that SCE and the project team would gain during the installation of 500 megawatts (MW) of utility-scale PV systems (with 1-5 MW typical ratings) starting in 2010 and completing in 2015 within SCE's service territory through a program approved by the California Public Utility Commission (CPUC). This report provides the findings of the research completed under the project to date.

  2. A two-genome microarray for the rice pathogens Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola and its use in the discovery of a difference in their regulation of hrp genes.

    E-Print Network [OSTI]

    2008-01-01

    of Xanthomonas oryzae pv. oryzae hrp Genes in XOM2, a Novelin Xanthomonas oryzae pv. oryzae. Journal of bacteriologyrice by Xanthomonas oryzae pv. oryzicola. Mol Plant-Microbe

  3. Optimal Dispatch of Photovoltaic Inverters in Residential Distribution Systems

    E-Print Network [OSTI]

    Giannakis, Georgios

    Optimal Dispatch of Photovoltaic Inverters in Residential Distribution Systems Emiliano Dall. The increased penetration of roof-top photovoltaic (PV) systems has highlighted pressing needs to address power--Distribution networks, inverter control, optimal power flow (OPF), photovoltaic (PV) systems, sparsity, voltage

  4. Extensions of models of PV Jan Kraj'icek \\Lambda

    E-Print Network [OSTI]

    Krajíèek, Jan

    Extensions of models of PV Jan Kraj'iŸcek \\Lambda Mathematical Institute and Institute of Computer Science Academy of Sciences of the Czech Republic Abstract We prove that certain models of PV in which NP 6` P=poly have a \\Pi b 1 ­elementary extension to a model of (PV and) NP 6` coNP=poly. If S2 proves

  5. Interconnecting PV on NYC's Secondary Network Distribution System

    Office of Energy Efficiency and Renewable Energy (EERE)

    To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report.

  6. Modeling Distribution Connected PV and Interconnection Study Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMission Mission Missionof

  7. Power Systems Engineering Research Center Modeling, Analysis and Deployment of High PV

    E-Print Network [OSTI]

    Van Veen, Barry D.

    Power Systems Engineering Research Center Modeling, Analysis and Deployment of High PV Penetration with field measurements. The model corresponds to an actual PV and DAS installation by Arizona Public Service and about 125 rooftop residential PV systems and two large scale PV systems. The total installed PV capacity

  8. The following contribution was presented at the 28. European PV Solar Energy Conference and Exhibition

    E-Print Network [OSTI]

    The following contribution was presented at the 28. European PV Solar Energy Conference, Paris, France, 30th Sep. -3rd Oct. 2013, 4DO.2.1 1 IMPACT OF TRANSPORTATION ON SILICON WAFER-BASED PV: Before a PV module is integrated into a PV system it has to be handled and transported. This part of a PV

  9. Keywords: Photovoltaic System, fault-tolerance, recon-figurable PV panel

    E-Print Network [OSTI]

    Pedram, Massoud

    1 Keywords: Photovoltaic System, fault-tolerance, recon- figurable PV panel Photovoltaic (PV and the advancement of PV device technologies. PV systems have been widely deployed in electric vehicles, homes, power plants, and satellites. The output power of a PV cell (also called solar cell) is dependent on the solar

  10. Technology and Climate Trends in PV Module Degradation: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.

    2012-10-01

    To sustain the commercial success of photovoltaic (PV) technology it is vital to know how power output decreases with time. Unfortunately, it can take years to accurately measure the long-term degradation of new products, but past experience on older products can provide a basis for prediction of degradation rates of new products. An extensive search resulted in more than 2000 reported degradation rates with more than 1100 reported rates that include some or all IV parameters. In this paper we discuss how the details of the degradation data give clues about the degradation mechanisms and how they depend on technology and climate zones as well as how they affect current and voltage differently. The largest contributor to maximum power decline for crystalline Si technologies is short circuit current (or maximum current) degradation and to a lesser degree loss in fill factor. Thin-film technologies are characterized by a much higher contribution from fill factor particularly for humid climates. Crystalline Si technologies in hot & humid climates also display a higher probability to show a mixture of losses (not just short circuit current losses) compared to other climates. The distribution for the module I-V parameters (electrical mismatch) was found to change with field exposure. The distributions not only widened but also developed a tail at the lower end, skewing the distribution.

  11. Technology and Climate Trends in PV Module Degradation (Presentation)

    SciTech Connect (OSTI)

    Jordan, D.; Wohlgemuth, J.; Kurtz, S.

    2012-10-01

    To sustain the commercial success of photovoltaic (PV) technology it is vital to know how power output decreases with time. Unfortunately, it can take years to accurately measure the long-term degradation of new products, but past experience on older products can provide a basis for prediction of degradation rates of new products. An extensive search resulted in more than 2000 reported degradation rates with more than 1100 reported rates that include some or all IV parameters. In this presentation we discuss how the details of the degradation data give clues about the degradation mechanisms and how they depend on technology and climate zones as well as how they affect current and voltage differently. The largest contributor to maximum power decline for crystalline Si technologies is short circuit current (or maximum current) degradation and to a lesser degree loss in fill factor. Thin-film technologies are characterized by a much higher contribution from fill factor particularly for humid climates. Crystalline Si technologies in hot & humid climates also display a higher probability to show a mixture of losses (not just short circuit current losses) compared to other climates. The distribution for the module I-V parameters (electrical mismatch) was found to change with field exposure. The distributions not only widened but also developed a tail at the lower end, skewing the distribution.

  12. Global Solar Photovoltaic (PV) Installation Market to be Propelled...

    Open Energy Info (EERE)

    Global Solar Photovoltaic (PV) Installation Market to be Propelled by Greater Concerns over Carbon Footprint Home > Groups > Renewable Energy RFPs John55364's picture Submitted by...

  13. Transforming PV Installations toward Dispatchable, Schedulable Energy Solutions

    Office of Energy Efficiency and Renewable Energy (EERE)

    Advanced Energy (AE) will address three important needs in the further deployment of photovoltaic (PV) systems: 1) demonstrating and commercializing a new anti-islanding method utilizing Phasor...

  14. Smart-Grid Ready PV Inverters with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTEGRATION Smart-Grid Ready PV Inverters with Utility Communication Electric Power Research Institute Brian Seal, Tom Key, Aminul Huque, Lindsey Rogers Technical Contact Brian...

  15. Instrumentation for Evaluating PV System Performance Losses from Snow: Preprint

    SciTech Connect (OSTI)

    Marion, B.; Rodriguez, J.; Pruett, J.

    2009-04-01

    Describes the use of a pyranometer with a heater and a digital camera to determine losses related to snow for PV systems located at National Renewable Energy Laboratory.

  16. NREL: News - NREL Releases Report Describing Guidelines for PV...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version News Release NR-1615 NREL Releases Report Describing Guidelines for PV Manufacturer Quality Assurance International task force aims to toughen standards,...

  17. NREL: News - NREL Supports China PV Investment and Financing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newsroom Bookmark and Share Printable Version News Release NR-2115 NREL Supports China PV Investment and Financing Alliance to Open Capital for Solar Deployment May 14, 2015 The...

  18. High?Penetration PV with Advanced Power Conditioning Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Virginia Polytechnic Institute and State University (VT) is evaluating the impacts of high photovoltaic (PV) penetration and methods to manage any impacts with improved power conditioning equipment.

  19. Solar America Initiative (SAI) PV Technology Incubator Program: Preprint

    SciTech Connect (OSTI)

    Keyes, B.; Symko-Davies, M.; Mitchell, R.; Ullal H.; von Roedern, B.; Greene, L.; Stephens, S.

    2008-05-01

    The SAI PV Technology Incubator Program is designed to accelerate technologies/prodesses that have successfully demonstrated a proof-of-concept/process in a laboratory.

  20. Water Impacts of High Solar PV Electricity Penetration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Impacts of High Solar PV Electricity Penetration Jordan Macknick and Stuart Cohen National Renewable Energy Laboratory (NREL) Technical Report NRELTP-6A20-63011 September...

  1. Estimating Rooftop Suitability for PV: A Review of Methods, Patents...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For researchers looking to understand the market potential of rooftop-installed photovoltaics (PV) in particular, understanding the amount and characteristics of rooftop space...

  2. Sandia Energy - PV Performance Modeling Collaborative's New and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling & Simulation Solar Newsletter Photovoltaic Systems Evaluation Laboratory (PSEL) PV Performance Modeling Collaborative's New and Improved Website Is Launched Previous Next...

  3. Sandia Energy - Sandia to host PV Bankability workshop at Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    host PV Bankability workshop at Solar Power International (SPI) 2013 Home Renewable Energy Energy Events Workshops News & Events Solar Conferences Seminars & Conferences Sandia to...

  4. NREL Supports China PV Investment and Financing Alliance to Open...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supports China PV Investment and Financing Alliance to Open Capital for Solar Deployment May 14, 2015 The Energy Department's National Renewable Energy Laboratory (NREL) and the...

  5. Maricopa Assn. of Governments - PV and Solar Domestic Water Heating...

    Broader source: Energy.gov (indexed) [DOE]

    necessary electricalbuilding permits for residential (single-family) and commercial PV systems. These procedures are a part of the MAG Building Code Standards. The standards...

  6. PV Arc Fault Detector Challenges Due to Module Frequency Response...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This poster does not contain any proprietary or confidential information. Introduction PV system arc faults have led to a number of rooftop fires which have caused significant...

  7. Sacramento Municipal Utility District PV and Smart Grid Pilot at Anatolia

    SciTech Connect (OSTI)

    Rawson, Mark; Sanchez, Eddie Paul

    2013-12-30

    Under DE-FOA-0000085 High Penetration Solar Deployment, the U. S. Department of Energy funded agreements with SMUD and Navigant Consulting, SunPower, GridPoint, the National Renewable Energy Laboratory, and the California Energy Commission for this pilot demonstration project. Funding was $5,962,409.00. Cost share of $500,000 was also provided by the California Energy Commission. The project has strategic implications for SMUD, other utilities and the PV and energy-storage industries in business and resource planning, technology deployment and asset management. These implications include: -At this point, no dominant business models have emerged and the industry is open for new ideas. -Demonstrated two business models for using distributed PV and energy storage, and brainstormed several dozen more, each with different pros and cons for SMUD, its customers and the industry. -Energy storage can be used to manage high penetrations of PV and mitigate potential issues such as reverse power flow, voltage control violations, power quality issues, increased wear and tear on utility equipment, and system wide power supply issues. - Smart meters are another tool utilities can use to manage high penetrations of PV. The necessary equipment and protocols exist, and the next step is to determine how to integrate the functionality with utility programs and what level of utility control is required. - Time-of-use rates for the residential customers who hosted energy storage systems did not cause a significant change in energy usage patterns. However, the rates we used were not optimized for PV and energy storage. Opportunities exist for utilities to develop new structures.

  8. Zhonghuite PV Technology Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County,Zena, New York:ShuqimengZhonghuite PV

  9. Integrating Solar PV in Utility System Operations

    SciTech Connect (OSTI)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved relative to DA forecasts, but still imperfect. Finally, we represent decisions within the operating hour by schedulers and transmission system operators as real-time (RT) balancing. We simulate the DA and HA scheduling processes with a detailed unit-commitment (UC) and economic dispatch (ED) optimization model. This model creates a least-cost dispatch and commitment plan for the conventional generating units using forecasts and reserve requirements as inputs. We consider only the generation units and load of the utility in this analysis; we do not consider opportunities to trade power with neighboring utilities. We also do not consider provision of reserves from renewables or from demand-side options. We estimate dynamic reserve requirements in order to meet reliability requirements in the RT operations, considering the uncertainty and variability in load, solar PV, and wind resources. Balancing reserve requirements are based on the 2.5th and 97.5th percentile of 1-min deviations from the HA schedule in a previous year. We then simulate RT deployment of balancing reserves using a separate minute-by-minute simulation of deviations from the HA schedules in the operating year. In the simulations we assume that balancing reserves can be fully deployed in 10 min. The minute-by-minute deviations account for HA forecasting errors and the actual variability of the load, wind, and solar generation. Using these minute-by-minute deviations and deployment of balancing reserves, we evaluate the impact of PV on system reliability through the calculation of the standard reliability metric called Control Performance Standard 2 (CPS2). Broadly speaking, the CPS2 score measures the percentage of 10-min periods in which a balancing area is able to balance supply and demand within a specific threshold. Compliance with the North American Electric Reliability Corporation (NERC) reliability standards requires that the CPS2 score must exceed 90% (i.e., the balancing area must maintain adequate balance for 90% of the 10-min periods). The combination of representing DA forecast errors in the

  10. Hunan Huayuan PV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen RiverScoring ToolHuaihua Power Group Co Ltd Jump to:PV

  11. Teksun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberI PLLC JumpJumpTecnosignalTeksun PV

  12. Tokyo Electron PV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation PolicyTinna Group Jump to:Tokuyama CorporationPV Jump

  13. Solar PV Incentive Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy SmoothEquipment CertificationSolarSoft CostsPV

  14. The Open PV Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternational Affairs,Department of Energy The FinalThisTheThe Open PV Project

  15. All Solar PV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.EnergyWoodenDateSA JumpSolar PV Jump to: navigation,

  16. Gansu PV Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTL Solar JumpNetworkingGAOHGWTianjinJieyuanPV Co Ltd

  17. Generation PV Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTL SolarGate Solar Jump to:GenDriveMining ActPV Inc

  18. Sandia Energy - PV Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNew CREWOnline Abstracts andPV Modeling &

  19. Sandia Energy - PV Value®

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNew CREWOnline AbstractsSystems ReliabilityPV

  20. Identification and Characterization of Performance Limiting Regions in Poly-Si Wafers Used for PV Cells: Preprint

    SciTech Connect (OSTI)

    Guthrey, H.; Gorman, B.; Al-Jassim, M.

    2011-07-01

    As demand for silicon photovoltaic (PV) material increases, so does the need for cost-effective feedstock and production methods that will allow enhanced penetration of silicon PV into the total energy market. The focus on cost minimization for production of polycrystalline silicon (poly-Si) PV has led to relaxed feedstock purity requirements, which has also introduced undesirable characteristics into cast poly-Si PV wafers. To produce cells with the highest possible conversion efficiencies, it is crucial to understand how reduced purity requirements and defects that are introduced through the casting process can impair minority carrier properties in poly-Si PV cells. This is only possible by using multiple characterization techniques that give macro-scale information (such as the spatial distribution of performance-limiting regions), as well as micro and nano-scale information about the structural and chemical nature of such performance-limiting regions. This study demonstrates the usefulness of combining multiple techniques to analyze performance-limiting regions in the poly-Si wafers that are used for PV cells. This is done by first identifying performance-limiting regions using macro-scale techniques including photoluminescence (PL) imaging, microwave photoconductive decay (uPCD), and reflectometry), then using smaller-scale techniques such as scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), cathodoluminescence (CL), and transmission electron microscopy (TEM) to understand the nature of such regions. This analysis shows that structural defects as well as metallic impurities are present in performance-limiting regions, which together act to decrease conversion efficiencies in poly-Si PV cells.

  1. Realisation of the full potential of PV Extract of report from workgroup 4 in EU's PV Technology Platform by Peter Ahm.

    E-Print Network [OSTI]

    Realisation of the full potential of PV Extract of report from workgroup 4 in EU's PV Technology. Realisation of the full potential of PV as an important and integral part of our energy supply to those that use it. There is thus an imperative to facilitate and promote education on PV

  2. Analyzing and simulating the variability of solar irradiance and solar PV powerplants

    E-Print Network [OSTI]

    Lave, Matthew S.

    2012-01-01

    We appreciate funding from the DOE High Solar PV PenetrationWe appreciate funding from the DOE High Solar PV PenetrationWe appreciate funding from the DOE High Solar PV Penetration

  3. Comparison Between TRNSYS Software Simulation and PV F-Chart Program on Photovoltaic System 

    E-Print Network [OSTI]

    Haberl, J. S.; Baltazar, J. C.; Mao, C.

    2012-01-01

    This report covers the comparisons of Photovoltaic System by TRNSYS simulation and PV F-Chart program to test TRNSYS simulation accuracy. The report starts with the Photovoltaic (PV) (PV) System introduction in Section one which is followed...

  4. Step-Stress Accelerated Degradation Testing (SSADT) for Photovoltaic (PV) Devices and Cells (Presentation)

    SciTech Connect (OSTI)

    Lee, J.; Elmore, R.; Suh, C.; Jones, W.

    2010-10-01

    Presentation on step-stress accelerated degradation testing (SSADT) for photovoltaics (PV). Developed are a step-stress degradation test (SSADT) for PV reliability tests and a lifetime prediction model for PV products.

  5. City of Anaheim This page outlines solar PV incentives, financing mechanisms, permitting process, and

    E-Print Network [OSTI]

    City of Anaheim This page outlines solar PV incentives, financing mechanisms, permitting process Apply for local permits Install your PV system Arrange for your PV system to be interconnected to your

  6. U.S. Aims for Zero-Energy: Support for PV on New Homes

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01

    Approved Figure 1. Relative Cost of PV on New, Market-Rateretrofits. The higher cost of PV on individual or smallables Buy-Dow n Program: Cost of PV on New Homes Compared to

  7. New Berkeley Lab Report Tracks a Decade of PV Installed Cost Trends

    E-Print Network [OSTI]

    Barbose, Galen

    2009-01-01

    Tracks a Decade of PV Installed Cost Trends Galen Barbose,in total average PV installed costs since 1998 appears to beNew York) exempted PV hardware costs from state sales tax

  8. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01

    for peaking or base load generation and PV cost. The paper1) the break-even cost of PV is unacceptably high unless PVlarge scale PV inverters due to the cost of energy storage

  9. Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01

    Empirical Investigation of PV Cost Trends, and Implicationspart of the cost of supporting residential PV to the federal56% of the installed cost of a commercial PV system, 12 are

  10. Ectopic expression of rice Xa21 overcomes developmentally controlled resistance to Xanthomonas oryzae pv. oryzae.

    E-Print Network [OSTI]

    2010-01-01

    of Xanthomonas oryzae pv. oryzae AvrXa21 and implicationsto Xanthomonas oryzae pv. oryzae Chang-Jin Park a , Sang-Wonreceptor XA21 Xanthomonas oryzae pv. oryzae a b s t r a c t

  11. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A.

    E-Print Network [OSTI]

    2008-01-01

    relationships among X. oryzae pv. oryzae (Xoo) strains PXO99MAFF311018, and X. oryzae pv. oryzicola (Xoc) strain BLS256biology of Xanthomonas oryzae pv. oryzae and approaches to

  12. U.S. Aims for Zero-Energy: Support for PV on New Homes

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01

    Figure 1. Relative Cost of PV on New, Market-Rate Homesfor Zero-Energy: Support for PV on New Homes Galen Barbose,segment for solar photovoltaic (PV) adoption, new homes have

  13. New Berkeley Lab Report Tracks a Decade of PV Installed Cost Trends

    E-Print Network [OSTI]

    Barbose, Galen

    2009-01-01

    Thus, even if large commercial PV installations continue tojoined by utility-scale PV), the removal of the cap on theLab Report Tracks a Decade of PV Installed Cost Trends Galen

  14. BRST Invariant PV Regularization of SUSY Yang-Mills and SUGRA

    E-Print Network [OSTI]

    Gaillard, Mary K

    2012-01-01

    September 2011 BRST Invariant PV Regularization of SUSYemployer. ii BRST INVARIANT PV REGULARIZATION OF SUSY YANG-a number of years on Pauli-Villars (PV) regu- larization of

  15. Do PV Systems Increase Residential Selling Prices If So, How Can Practitioners Estimate This Increase?

    E-Print Network [OSTI]

    Hoen, Ben

    2013-01-01

    No. DE-AC02-05CH11231. Do PV Systems Increase Residentialimpacts of photovoltaic (PV) energy systems on home salesthat existing homes with PV systems sold for a premium over

  16. Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01

    Shaking Up the Residential PV Market: Implications of Recentfor commercial photovoltaic (PV) systems from 10% to 30% of2005’s solar tax credits on PV system owners, in light of

  17. The Economic Value of PV and Net Metering to Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim

    2010-01-01

    a Substantial Benefit of Solar PV”, The Electricity Journal,2008. MRW & Associates. “Solar PV and Retail Rate Design”,The Economic Value of PV and Net Metering to Residential

  18. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01

    100] A Study of Dispersed PV Generation on the PSO Systempaper .pdf [148] Solar PV Carousel Trackers For BuildingBOS in an Optimized 3.5 MW PV installation Maon, J. et al.

  19. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01

    63  Off?Grid (Stand?Alone) PV Power System not well established. OFF-GRID (STAND-ALONE) PV POWER SYSTEMvariability characteristics of off-grid PV power systems and

  20. Oxynitride Thin Film Barriers for PV Packaging

    SciTech Connect (OSTI)

    Glick, S. H.; delCueto, J. A.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2005-11-01

    Dielectric thin-film barrier and adhesion-promoting layers consisting of silicon oxynitride materials (SiOxNy, with various stoichiometry) were investigated. For process development, films were applied to glass (TCO, conductive SnO2:F; or soda-lime), polymer (PET, polyethylene terephthalate), aluminized soda-lime glass, or PV cell (a-Si, CIGS) substrates. Design strategy employed de-minimus hazard criteria to facilitate industrial adoption and reduce implementation costs for PV manufacturers or suppliers. A restricted process window was explored using dilute compressed gases (3% silane, 14% nitrous oxide, 23% oxygen) in nitrogen (or former mixtures, and 11.45% oxygen mix in helium and/or 99.999% helium dilution) with a worst-case flammable and non-corrosive hazard classification. Method employed low radio frequency (RF) power, less than or equal to 3 milliwatts per cm2, and low substrate temperatures, less than or equal to 100 deg C, over deposition areas less than or equal to 1000 cm2. Select material properties for barrier film thickness (profilometer), composition (XPS/FTIR), optical (refractive index, %T and %R), mechanical peel strength and WVTR barrier performance are presented.

  1. Grid-tied PV battery systems.

    SciTech Connect (OSTI)

    Barrett, Keith Phillip; Gonzalez, Sigifredo; Hund, Thomas D.

    2010-09-01

    Grid tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time interval. On a clear day the solar irradiance power curve is offset by about 1h, while on a variable cloudy day the inverter output power curve will be smoothed based on the average solar irradiance. Test results demonstrate that this smoothing algorithm works very well. Battery state of charge was more difficult to manage because of the variable system inefficiencies. Testing continued for 30-days and established consistent operational performance for extended periods of time under a wide variety of resource conditions. Both battery technologies from Exide (Absolyte) and East Penn (ALABC Advanced) proved to cycle well at a Partial state of charge over the time interval tested.

  2. Final Technical Report - Photovoltaics for You (PV4You) Program

    SciTech Connect (OSTI)

    Weissman, J.M.; Sherwood, L.; Pulaski, J.; Cook, C.; Kalland, S.; Haynes, J.

    2005-08-14

    In September 2000, the Interstate Renewable Energy Council (IREC) began its 5-year work on contract # DE-FGO3-00SF22116, the Photovoltaics for You (PV4You) Project. The objective was to develop and distribute information on photovoltaics and to educate key stakeholder groups including state government agencies, local government offices, consumer representative agencies, school officials and students, and Million Solar Roofs Partnerships. In addition, the project was to identify barriers to the deployment of photovoltaics and implement strategies to overcome them. Information dissemination and education was accomplished by publishing newsletters; creating a base of information, guides, and models on the www.irecusa.org and the www.millionsolarroofs.org web sites; convening workshops and seminars; engaging multiple stakeholders; and widening the solar network to include new consumers and decision makers. Two major web sites were maintained throughout the project cycle. The www.irecusa.org web site housed dedicated pages for Connecting to the Grid, Schools Going Solar, Community Outreach, and Certification & Training. The www.millionsolarroofs.org web site was created to serve the MSR Partnerships with news, interviews, key documents, and resource material. Through the course of this grant, the Interstate Renewable Energy Council has been supporting the Department of Energy?s solar energy program goals by providing the Department with expertise services for their network of city, state, and community stakeholders. IREC has been the leading force at the state and federal levels regarding net metering and interconnection policy for photovoltaic systems. The principal goal and benefit of the interconnection and net metering work is to lower both barriers and cost for the installation of PV. IREC typically plays a leadership role among small generator stakeholders and has come to be relied upon for its expertise by industry and regulators. IREC also took a leadership position in developing quality and competency standards for solar professionals and for training programs ? critical components to bring the solar industry into step with other recognized craft labor forces. IREC?s objective was to provide consumer assurances and assist the states and the solar industry in building a strong and qualified workforce. IREC?s Schools Going Solar Clearinghouse provided channels of information to educate students, teachers, parents and the community at large about the benefits of solar energy. Solar school projects enhance science and math education while creating an initial entry market for domestic PV. And, IREC?s community and outreach network got the right information out to capture the interest and met the needs of different audiences and reached groups that weren?t traditionally part of the solar community. IREC?s PV4You project was effective because it resulted in reduced costs through easier interconnection and better net metering agreements and by raising the competency standards for solar practitioners. The project provided ways to eliminate barriers and constraints by providing technical assistance, offering model agreements based on industry consensus that were used by state and local decision makers. And, the project increased public acceptance by providing information, news and guidelines for different audiences.

  3. Impact of residential PV adoption on Retail Electricity Rates

    SciTech Connect (OSTI)

    Cai, DWH; Adlakha, S; Low, SH; De Martini, P; Chandy, KM

    2013-11-01

    The price of electricity supplied from home rooftop photo voltaic (PV) solar cells has fallen below the retail price of grid electricity in some areas. A number of residential households have an economic incentive to install rooftop PV systems and reduce their purchases of electricity from the grid. A significant portion of the costs incurred by utility companies are fixed costs which must be recovered even as consumption falls. Electricity rates must increase in order for utility companies to recover fixed costs from shrinking sales bases. Increasing rates will, in turn, result in even more economic incentives for customers to adopt rooftop PV. In this paper, we model this feedback between PV adoption and electricity rates and study its impact on future PV penetration and net-metering costs. We find that the most important parameter that determines whether this feedback has an effect is the fraction of customers who adopt PV in any year based solely on the money saved by doing so in that year, independent of the uncertainties of future years. These uncertainties include possible changes in rate structures such as the introduction of connection charges, the possibility of PV prices dropping significantly in the future, possible changes in tax incentives, and confidence in the reliability and maintainability of PV. (C) 2013 Elsevier Ltd. All rights reserved.

  4. The PV Song As first performed at the Cambridge GEFD

    E-Print Network [OSTI]

    Cambridge, University of

    The PV Song As first performed at the Cambridge GEFD Summer School, Friday 22 Sept 2006 RevisedLennon-McCartney-Nielsen-Wagner-McIntyre Lyrics by Nick Hall and John Thuburn The PV Song First performed at the Cambridge GEFD Summer School

  5. Encouraging PV Adoption in New Market-Rate Residential Construction: A Critical Review of Program Experiences to Date

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01

    ENCOURAGING PV ADOPTION IN NEW MARKET-RATE RESIDENTIALAs a market segment for PV adoption, new homes have a numberPV as an option is that PV adoption then becomes contingent

  6. Aalborg Universitet Energy Management System with Equalization Algorithm for Distributed Energy

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Aalborg Universitet Energy Management System with Equalization Algorithm for Distributed Energy for Distributed Energy Storage Systems in PV-Active Generator Based Low Voltage DC Microgrids. In IEEE ICDCM 2015 for Distributed Energy Storage Systems in PV-Active Generator Based Low Voltage DC Microgrids Nelson L. D

  7. Notice of Intent to Issue Funding Opportunity for Integrated PV and Energy Storage Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    As solar power plants proliferate, the variability and uncertainty of the solar resource poses challenges for integrating PV with electric power systems at both the distribution and bulk system levels. In response to these challenges, the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) has issued a notice of intent (NOI) to release the SunShot Sustainable and Holistic IntegratioN of Energy storage and Solar (SHINES) funding opportunity. SHINES will enable the holistic design, development, and widespread sustainable deployment of low-cost, flexible, and reliable energy storage solutions, and will strive to successfully integrate these solutions into PV power plants. SHINES projects can also focus on demand response and load management to achieve target metrics.

  8. Status of High Performance PV: Polycrystalline Thin-Film Tandems

    SciTech Connect (OSTI)

    Symko-Davies, M.

    2005-02-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

  9. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01

    Model (WVM) for Solar PV Power Plants Matthew Lave, Jansolar photovoltaic (PV) power plant output given a singleproduce a simulated power plant output. The WVM is validated

  10. Analyzing and simulating the variability of solar irradiance and solar PV powerplants

    E-Print Network [OSTI]

    Lave, Matthew S.

    2012-01-01

    Models of diffuse solar radiation, Renew Energ, 33 (2008) [solar irradiance for analyzing areally- totalized PV systems, Sol Energsolar irradiance for analyzing areally- totalized PV systems, Sol Energ

  11. Utility Scale PV Perspective on SunShot Progress and Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Scale PV Perspective on SunShot Progress and Opportunities Utility Scale PV Perspective on SunShot Progress and Opportunities These slides correspond to a presentation...

  12. Linkage to Previous International PV Module QA Task Force Workshops; Proposal for Rating System (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Sample, T.; Yamamichi, M.; Kondo, M.

    2013-05-01

    This presentation gives the historical background of the creation of the International PV QA Task Force as an introduction to the PV Module Reliability Workshop.

  13. Pseudomonas syringae pv. syringae Uses Proteasome Inhibitor Syringolin A to Colonize from Wound Infection

    E-Print Network [OSTI]

    Pseudomonas syringae pv. syringae Uses Proteasome Inhibitor Syringolin A to Colonize from Wound syringae pv. syringae Uses Proteasome Inhibitor Syringolin A to Colonize from Wound Infection Sites. PLo

  14. Distributed Algorithms for Control of Demand Response and Distributed Energy Resources

    E-Print Network [OSTI]

    Liberzon, Daniel

    Distributed Algorithms for Control of Demand Response and Distributed Energy Resources Alejandro D algorithms for control and coordination of loads and distributed energy resources (DERs) in distribution) integration of distributed energy resources (DERs), e.g., photovoltaics (PV); and iii) new storage

  15. Analytical Improvements in PV Degradation Rate Determination

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

  16. Innovations in Wind and Solar PV Financing

    SciTech Connect (OSTI)

    Cory, K.; Coughlin, J.; Jenkin, T.; Pater, J.; Swezey, B.

    2008-02-01

    There is growing national interest in renewable energy development based on the economic, environmental, and security benefits that these resources provide. Historically, greater development of our domestic renewable energy resources has faced a number of hurdles, primarily related to cost, regulation, and financing. With the recent sustained increase in the costs and associated volatility of fossil fuels, the economics of renewable energy technologies have become increasingly attractive to investors, both large and small. As a result, new entrants are investing in renewable energy and new business models are emerging. This study surveys some of the current issues related to wind and solar photovoltaic (PV) energy project financing in the electric power industry, and identifies both barriers to and opportunities for increased investment.

  17. Agent-Based Simulation of Distribution Systems with High Penetration of Photovoltaic Generation

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    1 Agent-Based Simulation of Distribution Systems with High Penetration of Photovoltaic Generation- tems, photovoltaic generation, power distribution, power system economics, smart grids. I. INTRODUCTION study of electric distribution systems with high penetration of photovoltaic (PV) panels within

  18. PV Validation and Bankability Workshop: San Jose, California

    SciTech Connect (OSTI)

    Granata, J.; Howard, J.

    2011-12-01

    This report is a collaboration between Sandia National Laboratories, the National Renewable Energy Laboratory, and the Florida Solar Energy Center (FSEC). The report provides feedback from the U.S. Department of Energy's (DOE) Solar Program PV Validation and Bankability Workshop in San Jose, California on August 31, 2011. It focuses on the current state of PV in the United States, private funding to fund U.S. PV industry growth, roles and functions of the regional test center program, and ways to improve the current validation and bankability practices.

  19. Identifying Critical Pathways to High-Performance PV: Preprint

    SciTech Connect (OSTI)

    Symko-Davies, M.; Noufi, R.; Kurtz, S.

    2002-05-01

    This conference paper describes the High-Performance Photovoltaic (HiPerf PV)Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment in the 21st century. To accomplish this, the NCPV directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. Details of the subcontractor and in-house progress will be described toward identifying critical pathways of 25% polycrystalline thin-film tandem cells and developing multijunction concentrator modules to 33%.

  20. Rooftop Solar Potential Distributed Solar Power in NW

    E-Print Network [OSTI]

    6/19/2013 1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 in 2012 4 #12;6/19/2013 3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow

  1. Rooftop Solar Potential Distributed Solar Power in NW

    E-Print Network [OSTI]

    1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 Renewables;3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow at annual rate of 13% and solar thermal

  2. 66 IAEI NEWS September.October 2004 www.iaei.org PERSPECTIVES ON PV

    E-Print Network [OSTI]

    Johnson, Eric E.

    66 IAEI NEWS September.October 2004 www.iaei.org PERSPECTIVES ON PV A t first glance, the obvious answer is: Photovol- taic (PV) systems are no different from other electrical power systems critical is grounding PV systems? Let us examine the various features of PV systems that relate

  3. 80 IAEI NEWS May . June 2012 www.iaei.org Microinverters and ac Pv Modules

    E-Print Network [OSTI]

    Johnson, Eric E.

    80 IAEI NEWS May . June 2012 www.iaei.org Microinverters and ac Pv Modules M icroinverters and AC PV modules are becom- ing very common in residential and small commercial PV systems. See photos 1 and 2. They have even been used in PV systems rated at 60 kW and above. They have some common features

  4. 28 IAEI NEWS May.June 2005 www.iaei.org PERSPECTIVES ON PV

    E-Print Network [OSTI]

    Johnson, Eric E.

    28 IAEI NEWS May.June 2005 www.iaei.org PERSPECTIVES ON PV #12;www.iaei.org May.June 2005 IAEI NEWS 29 PERSPECTIVES ON PV I nspectors are more and more frequently faced with permitting or inspecting PV-qualified people are installing many excellent, code-compliant PV systems, others are designing and installing

  5. 18 IAEI NEWS November.December 2004 www.iaei.org PERSPECTIVES ON PV

    E-Print Network [OSTI]

    Johnson, Eric E.

    18 IAEI NEWS November.December 2004 www.iaei.org PERSPECTIVES ON PV Photo 1. Framed PV modules A series of articles on photovoltaic (PV) power systems and the National Electrical Code by John Wiles Stalking the Elusive and Somewhat Strange PV System #12;www.iaei.org November.December 2004 IAEI NEWS 19

  6. 12 IAEI NEWS July.August 2004 www.iaei.org PERSPECTIVES ON PV

    E-Print Network [OSTI]

    Johnson, Eric E.

    12 IAEI NEWS July.August 2004 www.iaei.org PERSPECTIVES ON PV A series of articles on photovoltaic (PV) power systems and the National Electrical Code Single Conductor Exposed Cables! Not In My or commercial PV installation. Yes, PV systems have some unusual wiring meth- ods allowed by the Code. However

  7. PV i Undervisningen EFP 33033-0174 Version 02 2 PA Energy A/S

    E-Print Network [OSTI]

    PV i Undervisningen EFP 33033-0174 Version 02 2 PA Energy A/S Bilag 7.6 European Survey of PV Education and Training #12;PV i Undervisningen EFP 33033-0174 Version 02 3 PA Energy A/S European Survey of PV Education and Training Med den voksende interesse for og relevans af vedvarende

  8. Do PV Systems Increase Residential Selling Prices If So, How Can Practitioners Estimate This Increase?

    E-Print Network [OSTI]

    Hoen, Ben

    2013-01-01

    of Photovoltaic Energy Systems on Residential Selling Pricesof photovoltaic (PV) energy systems on home sales prices.

  9. CREATING DYNAMIC EQUIVALENT PV CIRCUIT MODELS WITH IMPEDANCE SPECTROSCOPY FOR ARC FAULT MODELING

    E-Print Network [OSTI]

    CREATING DYNAMIC EQUIVALENT PV CIRCUIT MODELS WITH IMPEDANCE SPECTROSCOPY FOR ARC FAULT MODELING ® (NEC® ) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc of the arcing frequencies through PV components despite the potential for modules and other PV components

  10. Modeling and Simulation of Solar PV Arrays under Changing Illumination Conditions

    E-Print Network [OSTI]

    Lehman, Brad

    Modeling and Simulation of Solar PV Arrays under Changing Illumination Conditions Dzung D Nguyen shadows (a passing cloud) on the output power of solar PV arrays. Each solar array is composed of a matrix of a shaded solar PV array as well as the PV output power. The model is also able to simulate and compute

  11. PV-PPV: Parameter Variability Aware, Automatically Extracted, Nonlinear Time-Shifted Oscillator Macromodels

    E-Print Network [OSTI]

    Roychowdhury, Jaijeet

    Impact of residential PV adoption on Retail Electricity Rates Desmond W.H. Cai a,n , Sachin Adlakha of Technology, 1200 E. California Blvd., Pasadena, CA 91106, USA H I G H L I G H T S Households who install PV to adopt PV. We find that this feedback has significant impact on PV uptake only in later years. Utility

  12. Parametric Study of PV Arc-Fault Generation Methods and Analysis of Conducted DC Spectrum

    E-Print Network [OSTI]

    Parametric Study of PV Arc-Fault Generation Methods and Analysis of Conducted DC Spectrum Jay photovoltaic (PV) direct current (DC) arc- fault detectors use the frequency content of the PV system to detect by different PV arcs in the field. In this investigation, we (a) discuss the differences in establishing

  13. PV Derived Data for Predicting Performance; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Marion, Bill

    2015-09-14

    A method is described for providing solar irradiance data for modeling PV performance by using measured PV performance data and back-solving for the unknown direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI), which can then be used to model the performance of PV systems of any size, PV array tilt, or PV array azimuth orientation. Ideally situated for using the performance data from PV modules with micro-inverters, the PV module operating current is used to determine the global tilted irradiance (GTI), and a separation model is then used to determine the DNI and DHI from the GTI.

  14. Full Steam Ahead for PV in US Homes?

    SciTech Connect (OSTI)

    Bolinger, Mark A; Barbose, Galen; Wiser, Ryan

    2009-01-15

    In October 2008, the United States Congress extended both the residential and commercial solar investment tax credits (ITCs) for an unprecedented eight years, lifted the $2,000 cap on the residential credit, removed the prohibition on utility use of the commercial credit, and eliminated restrictions on the use of both credits in conjunction with the Alternative Minimum Tax. These significant changes, which apply to systems placed in service on or after January 1, 2009, will increase the value of the solar credits for residential system owners in particular, and are likely--in conjunction with state, local, and utility rebate programs targeting solar--to spur significant growth in residential, commercial, and utility-scale photovoltaic (PV) installations in the years ahead. This article focuses specifically on the residential credit, describing three areas in which removal of the $2,000 cap on the residential ITC will have significant implications for PV rebate program administrators, PV system owners, and the PV industry.

  15. City of Shasta Lake Electric Utility- PV Rebate Program

    Broader source: Energy.gov [DOE]

    City of Shasta Lake Electric Utility is providing rebates to their customers for the purchase of photovoltaic (PV) systems. The rebate levels will decrease annually over the life of the program. ...

  16. Instrumentation for Evaluating PV System Performance Losses from Snow

    SciTech Connect (OSTI)

    Marion, B.; Rodriguez, J.; Pruett, J.

    2009-01-01

    When designing a photovoltaic (PV) system for northern climates, the prospective installation should be evaluated with respect to the potentially detrimental effects of snow preventing solar radiation from reaching the PV cells. The extent to which snow impacts performance is difficult to determine because snow events also increase the uncertainty of the solar radiation measurement, and the presence of snow needs to be distinguished from other events that can affect performance. This paper describes two instruments useful for evaluating PV system performance losses from the presence of snow: (1) a pyranometer with a heater to prevent buildup of ice and snow, and (2) a digital camera for remote retrieval of images to determine the presence of snow on the PV array.

  17. AEP SWEPCO - SMART Source Solar PV Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Amount Residential: 1.50watt DC Non-residential: 1.20watt DC Provider Smart Source PV Program Southwestern Electric Power Company (SWEPCO) offers rebates to customers that...

  18. Giant Leap Forward Toward Quality Assurance of PV Modules (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Sample, T.; Yamamichi, M.

    2012-03-01

    The presentation describes the composition of and motivation for the International PV QA Task Force, then describes the presentations and discussion that occurred at the workshop on Feb. 29th, 2012.

  19. Integrating Solar PV into Energy Services Performance Contracts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    can use performance contracts to finance the purchase of a commercial-scale rooftop PV system with limited to no upfront cost, and a series of suggested best practices for...

  20. Taunton Municipal Lighting Plant- Residential PV Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Customers of Taunton Municipal Lighting Plant (TMLP) may be eligible for a $1.50/watt rebate on solar photovoltaic (PV) installations, up to a maximum rebate of $4,500. The system must be installed...

  1. Loan Guarantees for Three California PV Solar Plants Expected...

    Broader source: Energy.gov (indexed) [DOE]

    Tempe, Arizona, is sponsoring all three projects and will supply them with Cd-Te thin film solar PV modules -- also known as solar panels -- from a new Mesa, Arizona,...

  2. Impact of Soiling and Pollution on PV Generation Performance

    Broader source: Energy.gov [DOE]

    This 5-page technical letter addresses air pollution effects on PV performance by quantifying, based on a literature search, the average annual loss due to soiling, the impact of cleaning, and a recommended cleaning schedule.

  3. DOE-LPO-MiniReport_PV_v10

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fastest growing sector of the solar industry. Today, utility-scale PV solar has the capacity to produce more than 8,100 MW of electricity - which is enough clean energy to power...

  4. Tucson's Solar Experience: Developing PV with RFPs and PPAs

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was given January 15, 2013, by Bruce Plenk, Solar Coordinator for the City of Tucson, Arizona, as part of the CommRE Developing PV Projects With RFPs and PPAs webinar.

  5. Plug and Play Solar PV for American Homes

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Fraunhofer Center for Sustainable Energy Systems (CSE) will develop a new plug-and-play PV system that self-checks for proper installation and safety and communicates with the local utility and...

  6. Time-dependent first-principles approaches to PV materials

    SciTech Connect (OSTI)

    Miyamoto, Yoshiyuki

    2013-12-10

    Computational scheme for designing photovoltaic (PV) materials is presented. First-principles electron dynamics of photo-excitation and subsequent electron-hole splitting is performed based on the time-dependent density functional theory. Photo-induced enhancement of dipole moment was observed in a polar crystal and a donor-acceptor molecular pair. These experiences will pave a way to design PV material from first-principles simulations.

  7. Microgrid-Ready Solar PV; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-01

    Designing new solar projects to be 'microgrid-ready' enables the U.S. DoD, other federal agencies, and the private sector to plan future microgrid initiatives to utilize solar PV as a generating resource. This fact sheet provides background information with suggested language for several up-front considerations that can be added to a solar project procurement or request for proposal (RFP) that will help ensure that PV systems are built for future microgrid connection.

  8. Zero Student Design Competition Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Center, Zero Energy Homes: www.fsec.ucf.eduenresearchbuildingszeroenergy NREL, PVWatts A Performance Calculator for Grid-Connected PV Systems: pvwatts.nrel.gov NREL,...

  9. Nonlinear Predictive Energy Management of Residential Buildings with Photovoltaics & Batteries

    E-Print Network [OSTI]

    Sun, Chao; Sun, Fengchun; Moura, Scott J

    2015-01-01

    for grid-connected photovoltaic systems,” IEEE Transactionswith a rooftop photovoltaic (PV) system and second-lifeconnected, photovoltaic- battery storage systems,” Renewable

  10. Third-Party Finance for Commercial Photovoltaic Systems: The Rise of the PPA

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    Economics of Commercial Photovoltaic Systems in California,Finance for Commercial Photovoltaic Systems: The Rise of theof grid-connected photovoltaic (PV) systems in the United

  11. Continuing Developments in PV Risk Management: Strategies, Solutions, and Implications

    SciTech Connect (OSTI)

    Lowder, T.; Mendelsohn, M.; Speer, B.; Hill, R.

    2013-02-01

    As the PV industry matures, successful risk management practices will become more imperative to ensure investor confidence, control costs, and facilitate further growth. This report discusses several key aspects of risk management during the commercial- and utility-scale project life cycle, from identification of risks, to the process of mitigating and allocating those risks among project parties, to transferring those risks through insurance. The report also explores novel techniques in PV risk management, options to offload risks onto the capital markets, and innovative insurance policies (namely warranty policies) that address risks unique to the PV sector. One of the major justifications for robust risk management in the PV industry is the cost-reduction opportunities it affords. If the PV industry can demonstrate the capability to successfully manage its risks, thereby inspiring confidence in financiers, it may be able to obtain a lower cost of capital in future transactions. A lower cost of capital translates to a lower cost of energy, which will in turn enhance PV?s competitiveness at a time when it will have to rely less on subsidies to support its market penetration.

  12. How Can We Make PV Modules Safer?: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J. H.; Kurtz, S. R.

    2012-06-01

    Safety is a prime concern for the photovoltaics (PV) industry. As a technology deployed on residential and commercial buildings, it is critical that PV not cause damage to the buildings nor harm the occupants. Many of the PV systems on buildings are of sufficiently high voltage (300 to 600 Volts dc) that they may present potential hazards. These PV systems must be safe in terms of mechanical damage (nothing falls on someone), shock hazard (no risk of electrical shock when touching an exposed circuit element), and fire (the modules neither cause nor promote a fire). The present safety standards (IEC 61730 and UL 1703) do a good job of providing for design rules and test requirements for mechanical, shock, and spread of flame dangers. However, neither standard addresses the issue of electrical arcing within a module that can cause a fire. To make PV modules, they must be designed, built, and installed with an emphasis on minimizing the potential for open circuits and ground faults. This paper provides recommendations on redundant connection designs, robust mounting methods, and changes to the safety standards to yield safer PV modules.

  13. Lightweight PV Inverters: Dual Bi-Directional IGBTs Modules Enables Breakthrough PV Inverter Using Current Modulation Topology

    SciTech Connect (OSTI)

    2012-01-30

    Solar ADEPT Project: PV inverters convert DC power generated by modules into usable AC power. IPC’s initial 30kW 94lb. PV inverter reduces the weight of comparable 30kW PV inverters by 90%—reducing the cost of materials, manufacturing, shipping, and installation. With ARPA-E support, new bi-directional silicon power switches will be developed, commercialized, and utilized in IPC’s next-generation PV inverter. With these components, IPC will produce 100kW inverters that weight less than 100lb., reducing the weight of conventional 3,000lb. 100kW inverters by more than 95%. The new power switches will cut IPC’s $/W manufacturing cost in half, as well as further reduce indirect shipping and installation costs.

  14. Flat Plate PV Module Eligibility Listing Procedure Updated 6/2/14 Senate Bill 1 (SB1) defines the solar incentive programs for California, and flat plate PV

    E-Print Network [OSTI]

    Flat Plate PV Module Eligibility Listing Procedure Updated 6/2/14 Senate Bill 1 (SB1) defines the solar incentive programs for California, and flat plate PV modules 1 must be listed on the SB1 for adding PV modules to the SB1 list is as follows: 1 . Data submitted to the Energy Commission

  15. Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae.

    E-Print Network [OSTI]

    Bart, Rebecca S; Chern, Mawsheng; Vega-Sánchez, Miguel E; Canlas, Patrick; Ronald, Pamela C

    2010-01-01

    Immunity to Xanthomonas oryzae pv. oryzae Rebecca S. Bartpathogen, Xanthomonas oryzae pv. oryzae (Xoo), constitutiveagainst Xanthomonas oryzae pv. oryzae in Rice. Molecular

  16. The Xanthomonas oryzae pv. oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence.

    E-Print Network [OSTI]

    2008-01-01

    against Xanthomonas oryzae pv. oryzae in Korea. Kor. J.the Xanthomonas campestris pv. campestris lipopolysaccharidein Xanthomonas oryzae pv. oryzae re- quired for AvrXa21

  17. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

  18. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and power quality, contracts (which may require liability insurance), and metering and rates. While renewable energy systems are capable of powering houses and small businesses...

  19. Controlling of grid connected photovoltaic lighting system with fuzzy logic

    SciTech Connect (OSTI)

    Saglam, Safak; Ekren, Nazmi; Erdal, Hasan

    2010-02-15

    In this study, DC electrical energy produced by photovoltaic panels is converted to AC electrical energy and an indoor area is illuminated using this energy. System is controlled by fuzzy logic algorithm controller designed with 16 rules. Energy is supplied from accumulator which is charged by photovoltaic panels if its energy would be sufficient otherwise it is supplied from grid. During the 1-week usage period at the semester time, 1.968 kWh energy is used from grid but designed system used 0.542 kWh energy from photovoltaic panels at the experiments. Energy saving is determined by calculations and measurements for one education year period (9 months) 70.848 kWh. (author)

  20. Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to:Resources JumpStrategyEnergy Information

  1. GROWDERS Demonstration of Grid Connected Electricity Systems (Smart Grid

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistarFuelCellsEtcSilicon

  2. Public Meeting: Physical Characterization of Grid-Connected Commercial And

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7, 2011 | DepartmentFunds for2002 |Buildings

  3. Public Meeting: Physical Characterization of Smart and Grid-Connected

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7, 2011 | DepartmentFunds for2002 |BuildingsCommercial

  4. Grid-Connected Renewable Energy Systems Case Studies | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectricHydroLegal Documents JumpInformation

  5. Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports byGeothermalDepartment ofNevada -- SEP,|

  6. Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department ofDepartmentNaturalEnergy| Department ofSummary of|

  7. Grid-Connected Renewable Energy Systems | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSC

  8. Transatlantic Workshop on Electric Vehicles and Grid Connectivity |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|inWestMayBuildingTheEasements30, 2008:|WithEnergy

  9. Grid-Connected Renewable Energy Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWindUpcomingcanGrid Integration The Wind Program works

  10. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContracting Oversight Committee on Homeland

  11. United States Launches First Grid-Connected Offshore Wind Turbine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950 Timeline ofTurkeyProgramDepartment of Energy

  12. High Penetration Solar Distributed Generation Study on Oahu ...

    Office of Environmental Management (EM)

    on Oahu High Penetration Solar Distributed Generation Study on Oahu The rooftop solar PV on Hawai'i's Mauna Lani Bay Hotel generates 75 kW of electricity. Photo from...

  13. Impact of SolarSmart Subdivisions on SMUD's Distribution System

    SciTech Connect (OSTI)

    McNutt, P.; Hambrick, J.; Keesee, M.; Brown, D.

    2009-07-01

    This study analyzes the distribution impacts of high penetrations of grid-integrated renewable energy systems, specifically photovoltaic (PV) equipped SolarSmart Homes found in the Anatolia III Residential Community.

  14. PV Cell and Module Calibration Activities at NREL

    SciTech Connect (OSTI)

    Emery, K.; Anderberg, A.; Kiehl, J.; Mack, C.; Moriarty, T.; Ottoson, L.; Rummel, S.

    2005-11-01

    The performance of PV cells and modules with respect to standard reference conditions is a key indicator of progress of a given technology. This task provides the U.S. terrestrial PV community with the most accurate measurements that are technically possible in a timely fashion. The international module certification and accreditation program PVGap requires certification laboratories to maintain their calibration traceability path to groups like this one. The politics of a "world record" efficiency requires that an independent laboratory perform these measurements for credibility. Most manufacturers base their module peak watt rating upon standards and reference cells calibrated under this task. This task has been involved in reconciling disputes between manufacturers and their cell suppliers in terms of expected versus actual performance. This task has also served as a resource to the PV community for consultation on solar simulation, current versus voltage measurement instrumentation, measurement procedures and measurement artifacts.

  15. Recent developments in high-efficiency PV cells

    SciTech Connect (OSTI)

    Deb, S.

    2000-05-22

    Enormous progress has been made in recent years on a number of photovoltaic (PV) materials and devices in terms of conversion efficiencies. Ultrahigh-efficiency (>30{percent}) PV cells have been fabricated from gallium arsenide (GaAs) and its ternary alloys such as gallium indium phosphide (GaInP{sub 2}). The high-efficiency GaAs-based solar cells are being produced on a commercial scale, particularly for space applications. Efficiencies in the range of 18{percent} to 24{percent} have been achieved in traditional silicon-based devices fabricated from both multicrystalline and single-crystal materials. Major advances in efficiency have also been made on various thin-film solar cells based on amorphous silicon (aSi:H), copper gallium indium diselenide (CIGS), and cadmium telluride materials. This paper gives a brief overview of the recent progress in PV cell efficiencies based on these materials and devices.

  16. Encouraging PV Adoption in New Market-Rate Residential Construction: A Critical Review of Program Experiences to Date

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01

    retrofits. The higher cost of PV on individual or smallcan easily roll the cost of the PV system into theiral. analyzed project cost data for PV systems funded through

  17. Marker-exchange mutagenesis and complementation strategies for the Gram-negative bacteria Xanthomonas oryzae pv. oryzae.

    E-Print Network [OSTI]

    Lee, Sang-Won; Ronald, P C

    2006-01-01

    of a Xanthomonas oryzae pv. oryzae flagellar operon region2002) The Xanthomonas oryzae pv. lozengeoryzae raxP and raxQsystem in xanthomonas oryzae pv. oryzae required for AvrXa21

  18. Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogen Xanthomonas oryzae pv. oryzae.

    E-Print Network [OSTI]

    2010-01-01

    system in Xanthomonas oryzae pv. oryzae required for AvrXa212002). The Xanthomonas oryzae pv. lozengeoryzae raxP andPf1 against Xanthomo- nas oryzae pv. oryzae in rice leaves.

  19. Encouraging PV Adoption in New Market-Rate Residential Construction: A Critical Review of Program Experiences to Date

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01

    ENCOURAGING PV ADOPTION IN NEW MARKET-RATE RESIDENTIALdeployment of photovoltaics (PV) in new, market-rate homes,the new home market for PV. feature in new developments

  20. Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogen Xanthomonas oryzae pv. oryzae

    E-Print Network [OSTI]

    2010-01-01

    system in Xanthomonas oryzae pv. oryzae required for AvrXa212002). The Xanthomonas oryzae pv. lozengeoryzae raxP andPf1 against Xanthomo- nas oryzae pv. oryzae in rice leaves.

  1. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resulting data Modeling and analyzing short-term PV variability Developing PV system models for grid planning and interconnection studies Evaluating related PV system...

  2. Testing of Packaging Materials for Improved PV Module Reliability

    SciTech Connect (OSTI)

    Jorgensen, G. J.; Terwilliger, K. M.; Kempe, M. D.; McMahon, T. J.

    2005-02-01

    A number of candidate alternative encapsulant and soft backsheet materials have been evaluated in terms of their suitability for photovoltaic (PV) module packaging applications. Relevant properties, including interfacial adhesion and moisture transport, have been measured as a function of damp-heat (85 C/85% relative humidity) exposure. Based on these tests, promising new encapsulants with improved properties have been identified. Backsheets prepared by industry and at NREL have been found to provide varying levels of moisture ingress protection. To achieve significantly improved products, further development of these candidates is ongoing. The relative effectiveness of various packaging strategies to protect PV devices has also been investigated.

  3. Building-integrated PV -- Analysis and US market potential

    SciTech Connect (OSTI)

    Frantzis, L.; Hill, S.; Teagan, P.; Friedman, D. [Arthur D. Little, Inc., Cambridge, MA (United States)

    1994-12-31

    Arthur D Little, Inc., in conjunction with Solar Design Associates, conducted a study for the US Department of Energy (DOE), Office of Building Technologies (OBT) to determine the market potential for building-integrated photovoltaics (BIPV). This study defines BIPV as two types of applications: (1) where the PV modules are an integral part of the building, often serving as the exterior weathering skin, and (2) the PV modules are mounted on the existing building exterior. Both of these systems are fully integrated with the energy usage of the building and have potential for significant market penetration in the US.

  4. Outdoor PV Module Degradation of Current-Voltage Parameters: Preprint

    SciTech Connect (OSTI)

    Smith, R. M.; Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    Photovoltaic (PV) module degradation rate analysis quantifies the loss of PV power output over time and is useful for estimating the impact of degradation on the cost of energy. An understanding of the degradation of all current-voltage (I-V) parameters helps to determine the cause of the degradation and also gives useful information for the design of the system. This study reports on data collected from 12 distinct mono- and poly-crystalline modules deployed at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Most modules investigated showed < 0.5%/year decrease in maximum power due to short-circuit current decline.

  5. Toward integrated PV panels and power electronics using printing technologies

    SciTech Connect (OSTI)

    Ababei, Cristinel; Yuvarajan, Subbaraya; Schulz, Douglas L.

    2010-07-15

    In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

  6. Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation

    SciTech Connect (OSTI)

    Davidson, Carolyn; Margolis, Robert

    2015-10-01

    Before investing in a system, a prospective PV customer must not only have initial concept 'buy in,' but also be able to evaluate the tradeoffs associated with different system parameters. Prospective customers might need to evaluate disparate costs for each system attribute by comparing multiple bids. The difficulty of making such an evaluation with limited information can create a cognitive barrier to proceeding with the investment. This analysis leverages recently available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  7. Modular Power Converters for PV Applications

    SciTech Connect (OSTI)

    Ozpineci, Burak; Tolbert, Leon M

    2012-05-01

    This report describes technical opportunities to serve as parts of a technological roadmap for Shoals Technologies Group in power electronics for PV applications. There are many different power converter circuits that can be used for solar inverter applications. The present applications do not take advantage of the potential for using common modules. We envision that the development of a power electronics module could enable higher reliability by being durable and flexible. Modules would have fault current limiting features and detection circuits such that they can limit the current through the module from external faults and can identify and isolate internal faults such that the remaining modules can continue to operate with only minimal disturbance to the utility or customer. Development of a reliable, efficient, low-cost, power electronics module will be a key enabling technology for harnessing more power from solar panels and enable plug and play operation. Power electronics for computer power supplies, communication equipment, and transportation have all targeted reliability and modularity as key requirements and have begun concerted efforts to replace monolithic components with collections of common smart modules. This is happening on several levels including (1) device level with intelligent control, (2) functional module level, and (3) system module. This same effort is needed in power electronics for solar applications. Development of modular units will result in standard power electronic converters that will have a lower installed and operating cost for the overall system. These units will lead to increased adaptability and flexibility of solar inverters. Incorporating autonomous fault current limiting and reconfiguration capabilities into the modules and having redundant modules will lead to a durable converter that can withstand the rigors of solar power generation for more than 30 years. Our vision for the technology roadmap is that there is no need for detailed design of new power converters for each new application or installation. One set of modules and controllers can be pre-developed and the only design question would be how many modules need to be in series or parallel for the specific power requirement. Then, a designer can put the modules together and add the intelligent reconfigurable controller. The controller determines how many modules are connected, but it might also ask for user input for the specific application during setup. The modules include protection against faults and can reset it, if necessary. In case of a power device failure, the controller reconfigures itself to continue limited operation until repair which might be as simple as taking the faulty module out and inserting a new module. The result is cost savings in design, maintenance, repair, and a grid that is more reliable and available. This concept would be a perfect fit for the recently announced funding opportunity announcement (DE-FOA-0000653) on Plug and Play Photovoltaics.

  8. Analyzing and simulating the variability of solar irradiance and solar PV powerplants

    E-Print Network [OSTI]

    Lave, Matthew S.

    2012-01-01

    the limits of solar photovoltaics (PV) in traditionalpenetrations of solar photovoltaics (PV) into an electricSolar Radiation Climatology in the Design of Photovoltaic Systems, Practical Handbook of Photovoltaics:

  9. Breakout Session: Getting in the Loop: PV Hardware Recycling and Sustainability

    Broader source: Energy.gov [DOE]

    As PV system installations continue to ramp up across the United States, the process for handling used and expired PV modules in the next  20-30 years would benefit from serious planning and...

  10. Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01

    credit. Case Studies of State Support for Renewable EnergyPV Market Case Studies of State Support for Renewable EnergyPV Market Case Studies of State Support for Renewable Energy

  11. Characterization of the Pseudomonas syringae pv. tomato AvrRpt2 protein: demonstration of secretion and

    E-Print Network [OSTI]

    Characterization of the Pseudomonas syringae pv. tomato AvrRpt2 protein: demonstration of secretion Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) expressing avrRpt2 is speci®cally recognized

  12. Comparative Genomics of Multiple Strains of Pseudomonas cannabina pv. alisalensis, a Potential

    E-Print Network [OSTI]

    Dangl, Jeff

    Comparative Genomics of Multiple Strains of Pseudomonas cannabina pv. alisalensis, a Potential cannabina pv. alisalensis, a Potential Model Pathogen of Both Monocots and Dicots. PLoS ONE 8(3): e59366

  13. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01

    significant growth in the solar market beyond the 2,300 MWthe concentrated solar PV market. The proven flat panels leading market success in the installation of solar PV

  14. DOE Request for Information (RFI) DE-FOA-0000153 PV Manufacturing Initiative: Summary Report, February 2010

    SciTech Connect (OSTI)

    Not Available

    2010-02-01

    This document sums up results of the PV Manufacturing Request for Information (RFI), DE-FOA-0000153, which supports the PV Manufacturing Initiative, launched by DOE Solar Energy Technologies Program.

  15. Interline photovoltaic (I-PV) power plants for voltage unbalance compensation

    E-Print Network [OSTI]

    Moawwad, Ahmed

    This paper proposes a stationary-frame control method for voltage unbalance compensation using Interline Photovoltaic (I-PV) power system. I-PV power systems are controlled to compensate voltage unbalance autonomously. The ...

  16. Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01

    pay for a PV system’s solar renewable energy certificates (Efficiency and Renewable Energy, Solar Energy Technologiessolar Shaking Up the Residential PV Market Case Studies of State Support for Renewable

  17. Resonance in Optimal Perturbation Evolution. Part II: Effects of a Nonzero Mean PV Gradient

    E-Print Network [OSTI]

    de Vries, Hylke

    Resonance in Optimal Perturbation Evolution. Part II: Effects of a Nonzero Mean PV Gradient H. DE (PV) perturbations and the surface edge wave plays a key role in the surface dynamics (e.g. De Vries

  18. September 16 ESTAP Webinar: Optimizing the Benefits of a PV with...

    Office of Environmental Management (EM)

    6 ESTAP Webinar: Optimizing the Benefits of a PV with Battery Storage System September 16 ESTAP Webinar: Optimizing the Benefits of a PV with Battery Storage System August 30, 2013...

  19. Failure and Degradation Modes of PV Modules in a Hot Dry Climate...

    Office of Environmental Management (EM)

    Failure and Degradation Modes of PV Modules in a Hot Dry Climate: Results After 12 to 26 Years of Field Exposure Failure and Degradation Modes of PV Modules in a Hot Dry Climate:...

  20. Analyzing the Stability ofAnalyzing the Stability of --Carotene and PVCarotene and PV--1919

    E-Print Network [OSTI]

    Petta, Jason

    Analyzing the Stability ofAnalyzing the Stability of --Carotene and PVCarotene and PV--1919 nanoparticles #12;Goals of Second ProjectGoals of Second Project Study of PVStudy of PV--1919 --Determine

  1. Climatically Diverse Data Set for Flat-Plate PV Module Model Validations (Presentation)

    SciTech Connect (OSTI)

    Marion, B.

    2013-05-01

    Photovoltaic (PV) module I-V curves were measured at Florida, Colorado, and Oregon locations to provide data for the validation and development of models used for predicting the performance of PV modules.

  2. Berkeley Program Offers New Option for Financing Residential PV Systems

    SciTech Connect (OSTI)

    Bolinger, Mark A

    2008-07-06

    Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy-efficiency improvements and often featuring low interest rates, longer terms and no-hassle application requirements. Historically, these loan programs have had mixed success (particularly for PV), for a variety of reasons, including a historical lack of homeowner interest in PV, a lack of program awareness, a reduced appeal in a low-interest-rate environment, and a tendency for early PV adopters to be wealthy and not in need of financing. Some of these barriers have begun to fade. Most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates. The passage of the Energy Policy Act of 2005 (EPAct 2005), however, introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from a number of U.S cities concerning a new type of PV financing program. Led by the city of Berkeley, Calif., these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax assessments, rather than a more-traditional credit vehicle, to recover both system and administrative costs. This approach has a number of features that should appeal to PV owners, including long-term, fixed-cost, attractive financing; loans that are tied to the tax capacity of the property rather than to the owner's credit standing; a repayment obligation that transfers along with the sale of the property; and a potential ability to deduct the repayment obligation from federal taxable income as part of the local property tax deduction. For these reasons, Berkeley's program, which was first announced on October 23, 2007, has received considerable nationwide attention in both the trade and general press. Since the announcement, cities from throughout California and the broader U.S. have expressed keen interest in the possibility of replicating this type of program. In California alone, the cities of Santa Cruz, Santa Monica and Palm Desert are all reportedly considering similar programs, while the city of San Francisco has recently announced its own program, portions of which closely parallel Berkeley's approach. In addition, a bill (AB 811) that would authorize all cities in California, not just charter cities like Berkeley, to create this type of program was approved by the California General Assembly on January 29 and is currently under consideration in the State Senate. A similar bill in Colorado (HB 1350) was signed into law on May 28. Elsewhere, the city of Tucson, Arizona has also considered this financing approach.

  3. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect (OSTI)

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  4. Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)

    SciTech Connect (OSTI)

    Gessert, T. A.

    2010-09-01

    Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

  5. The Economic Value of PV and Net Metering to Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim

    2010-01-01

    The Market Value and Cost of Solar Photovoltaic ElectricityTransmission Cost is a Substantial Benefit of Solar PV”, The

  6. Rethinking Standby & Fixed Cost Charges: Regulatory & Rate Design Pathways to Deeper Solar PV Cost Reductions

    Broader source: Energy.gov [DOE]

    While solar PV's impact on utilities has been frequently discussed the past year, little attention has been paid to the potentially impact posed by solar PV-specific rate designs (often informally referred to as solar "fees" or "taxes") upon non-hardware "soft" cost reductions. In fact, applying some rate designs to solar PV customers could potentially have a large impact on the economics of PV systems.

  7. Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01

    Solar Rebate Program Solar & Small Wind Incentive ProgramSolar Electric and Wind Program (Small PV Program) **

  8. Regolamento_Meccanica_L3-PV-POLIMI.doc UNIVERSIT DEGLI STUDI DI PAVIA

    E-Print Network [OSTI]

    Segatti, Antonio

    Regolamento_Meccanica_L3-PV-POLIMI.doc UNIVERSITÃ? DEGLI STUDI DI PAVIA FACOLTÃ? di Ingegneria Classe

  9. A methodology for optimal sizing of autonomous hybrid PV/wind system

    E-Print Network [OSTI]

    Boyer, Edmond

    A methodology for optimal sizing of autonomous hybrid PV/wind system S. Diaf 1* , D. Diaf2 , M paper presents a methodology to perform the optimal sizing of an autonomous hybrid PV/wind system system reliability requirements, with the lowest value of levelised cost of energy. Modelling a hybrid PV/wind

  10. 78 IAEI NEWS September.October 2006 www.iaei.org penetrating pv questions from inspectors

    E-Print Network [OSTI]

    Johnson, Eric E.

    78 IAEI NEWS September.October 2006 www.iaei.org penetrating pv questions from inspectors B ased several calls and e-mails a week and sometimes several calls a day from inspectors looking at PV plans or inspecting PV systems. The questions that they pose are always challenging because most of the inspectors

  11. agronomie: agriculture and environment Dtection d'Erwinia chrysanthemi pv dianthicola

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    agronomie: agriculture and environment Détection d'Erwinia chrysanthemi pv dianthicola par le test — L'indexage des boutures d'œillet vis-à-vis d'Erwinia chrysanthemi pv dianthicola (Ech son exploitation à grande échelle sont discutés sur le plan technique. Erwinia chrysanthemi pv

  12. QUANTIFYING RESIDENTIAL PV ECONOMICS IN THE US PAYBACK vs. CASH FLOW

    E-Print Network [OSTI]

    Perez, Richard R.

    QUANTIFYING RESIDENTIAL PV ECONOMICS IN THE US --- PAYBACK vs. CASH FLOW DETERMINATION OF FAIR by prospective PV owners. Contrasting this measure with another financial gauge -- life-cycle cash flow -- the paper discusses why payback may not be the most appropriate measure for residential PV applications

  13. 80 IAEI NEWS March.April 2008 www.iaei.org COMMON PV CODE VIOLATIONS

    E-Print Network [OSTI]

    Johnson, Eric E.

    80 IAEI NEWS March.April 2008 www.iaei.org COMMON PV CODE VIOLATIONS by John Wiles A s we move into 2008, the PV industry continues to grow by leaps and bounds. New module and inverter manufacturers are entering the industry, and the number of individuals and organizations install- ing PV systems is growing

  14. PUBLISHED VERSION Workshop on performance variations in H ion sources 2012: PV H12

    E-Print Network [OSTI]

    PUBLISHED VERSION Workshop on performance variations in H ion sources 2012: PV H12 M. P. Stockli, D://dx.doi.org/10.1063/1.4792832 #12;Workshop on performance variations in H ion sources 2012: PV H12 M. P. Stockli Sources 2012: PV H- 120F * M. P. Stocklia , D. Fairclothb , W. Krausc , A. Andod , D. S. Bollingere , S

  15. Evidence for Interhemispheric Processing of Inputs From the Hands in Human S2 and PV

    E-Print Network [OSTI]

    Krubitzer, Leah A.

    Evidence for Interhemispheric Processing of Inputs From the Hands in Human S2 and PV ELIZABETH S2 and PV. J Neurophysiol 85: 2236­2244, 2001. In the present investigation, we identified cortical somatosensory (S2) and the parietal ventral (PV) areas, was significantly larger for bilateral stimulation than

  16. TOWARDS A MEANINGFUL STANDARD FOR PV ARRAY INSTALLATION IN AUSTRALIA. T. Spooner O. Arteaga M. Calais

    E-Print Network [OSTI]

    TOWARDS A MEANINGFUL STANDARD FOR PV ARRAY INSTALLATION IN AUSTRALIA. T. Spooner O. Arteaga M@eng.murdoch.edu.au ABSTRACT: Photovoltaic (PV) arrays have been installed for many years in a very wide range of applications of a standard for PV array installation. This paper discusses important safety issues with respect to the design

  17. VALIDATION OF PV PERFORMANCE MODELS USING SATELLITE-BASED IRRADIANCE MEASUREMENTS: A CASE STUDY

    E-Print Network [OSTI]

    Perez, Richard R.

    VALIDATION OF PV PERFORMANCE MODELS USING SATELLITE-BASED IRRADIANCE MEASUREMENTS: A CASE STUDY Clean Power Research Kirkland, WA e-mail: aparkins@cleanpower.com ABSTRACT Photovoltaic (PV) system and existing PV systems under a wide variety of environmental conditions. Ground based meteorological

  18. Aalborg Universitet Stability Analysis for Isolated AC Microgrids Based on PV-Active Generators

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Aalborg Universitet Stability Analysis for Isolated AC Microgrids Based on PV-Active Generators for Isolated AC Microgrids Based on PV-Active Generators. In Proceedings of the 2015 IEEE Energy Conversion.aau.dk on: november 29, 2015 #12;Stability Analysis for Isolated AC Microgrids Based on PV-Active Generators

  19. Why Are Residential PV Prices in Germany So Much Lower Than in the United States?

    E-Print Network [OSTI]

    .S. installers, to collect data on residential PV soft costs ­ Comprehensively reviewed public and private consultant data relevant to the cost structure of residential PV in Germany · Focus is the preWhy Are Residential PV Prices in Germany So Much Lower Than in the United States? A Scoping

  20. DOE Request for Information (RFI) DE-FOA-0000153 PV Manufacturing Initiative

    SciTech Connect (OSTI)

    none,

    2010-02-01

    This draft report summarizes the results of the U.S. Department of Energy PV Manufacturing Request for Information (RFI), DE-FOA-0000153, that was released in September 2009. The PV Manufacturing Initiative is intended to help facilitate the development of a strong PV manufacturing industry in the United States.