National Library of Energy BETA

Sample records for grid-connected distributed pv

  1. Modular Cascaded H-Bridge Multilevel PV Inverter with Distributed MPPT for Grid-Connected Applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Bailu; Hang, Lijun; Mei, Jun; Riley, Cameron; Tolbert, Leon M.; Ozpineci, Burak

    2014-09-04

    This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking (MPPT) control scheme is applied to both single-phase and three-phase multilevel inverters, which allows the independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is alsomore » proposed. An experimental three-phase 7-level cascaded H-bridge inverter has been built utilizing 9 H-bridge modules (3 modules per phase). Each H-bridge module is connected to a 185 W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach.« less

  2. Modular Cascaded H-Bridge Multilevel PV Inverter with Distributed MPPT for Grid-Connected Applications

    SciTech Connect (OSTI)

    Xiao, Bailu; Hang, Lijun; Mei, Jun; Riley, Cameron; Tolbert, Leon M.; Ozpineci, Burak

    2014-09-04

    This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking (MPPT) control scheme is applied to both single-phase and three-phase multilevel inverters, which allows the independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is also proposed. An experimental three-phase 7-level cascaded H-bridge inverter has been built utilizing 9 H-bridge modules (3 modules per phase). Each H-bridge module is connected to a 185 W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach.

  3. Electricity storage for grid-connected household dwellings with PV panels

    SciTech Connect (OSTI)

    Mulder, Grietus; Six, Daan; Ridder, Fjo De

    2010-07-15

    Classically electricity storage for PV panels is mostly designed for stand-alone applications. In contrast, we focus in this article on houses connected to the grid with a small-scale storage to store a part of the solar power for postponed consumption within the day or the next days. In this way the house owner becomes less dependent on the grid and does only pay for the net shortage of his energy production. Local storage solutions pave the way for many new applications like omitting over-voltage of the line and bridging periods of power-line black-out. Since 2009 using self-consumption of PV energy is publicly encouraged in Germany, which can be realised by electric storage. This paper develops methods to determine the optimal storage size for grid-connected dwellings with PV panels. From measurements in houses we were able to establish calculation rules for sizing the storage. Two situations for electricity storage are covered: - the storage system is an optimum to cover most of the electricity needs; - it is an optimum for covering the peak power need of a dwelling. After these calculation rules a second step is needed to determine the size of the real battery. The article treats the aspects that should be taken into consideration before buying a specific battery like lead-acid and lithium-ion batteries. (author)

  4. Market Transformation Pathways for Grid-Connected Rooftop Solar PV in Minnesota

    SciTech Connect (OSTI)

    Abbey, Ross; Ross, Brian

    2013-06-03

    This report presents the market and policy findings of the Minnesota Solar Challenge program. The report draws on information collected from state agencies, local government units, solar industry participants, rooftop photovoltaic (PV) adopters (sometimes called customer-generators), state and national experts, the Commerce distributed generation stakeholder process, and the numerous reports and data sets referenced herein.

  5. Hourly Simulation of Grid-Connected PV Systems Using Realistic Building Loads (Preprint)

    SciTech Connect (OSTI)

    Balcomb, J.D.; Hayter, S.J.; Weaver, N.L.

    2001-02-27

    This is one of two companion papers that describe the ENERGY-10 PV design tool computer simulation program. The other paper is titled ''ENERGY-10 Photovoltaics: A New Capability.'' Whereas this paper focuses on the PV aspects of the program, the companion paper focuses on the implementation method. The case study in this paper is a commercial building application, whereas the case study in the companion paper is a residential application with an entirely different building load characteristic. Together they provide a balanced view.

  6. High Penetration, Grid Connected Photovoltaic Technology Codes and Standards: Preprint

    SciTech Connect (OSTI)

    Basso, T. S.

    2008-05-01

    This paper reports the interim status in identifying and reviewing photovoltaic (PV) codes and standards (C&S) and related electrical activities for grid-connected, high-penetration PV systems with a focus on U.S. electric utility distribution grid interconnection.

  7. Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications

    SciTech Connect (OSTI)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-02-01

    Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on (1) The utilization of a large area factory assembled PV panel, and (2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District{close_quote}s Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems. {copyright} {ital 1997 American Institute of Physics.}

  8. Grid integrated distributed PV (GridPV).

    SciTech Connect (OSTI)

    Reno, Matthew J.; Coogan, Kyle

    2013-08-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  9. Modeling Distribution Connected PV and Interconnection Study...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ramping Events on Distribution Voltage Regulation Equipment Matthew J. Reno 1,2 , Kyle ... PV variability and the system voltage regulation equipment. The impact of PV ...

  10. PV distribution system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    distribution system - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ...

  11. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and how to implement them): The Institute of Electrical and Electronics Engineers (IEEE) has written a standard that addresses all grid-connected distributed generation...

  12. Development of a low-cost integrated 20-kW-AC solar tracking subarray for grid-connected PV power system applications. Final technical report

    SciTech Connect (OSTI)

    Stern, M.; Duran, G.; Fourer, G.; Mackamul, K.; Whalen, W.; Loo, M. van; West, R.

    1998-06-01

    This report chronicles Utility Power Group's (UPG) successful two-year Photovoltaic Manufacturing Technology (PVMaT) Phase 4A1 work effort which began in July, 1995. During this period, UPG completed design, fabrication, testing and demonstration of a modular and fully integrated 15-kW-ac, solar tracking PV power system sub-array. The two key and innovative components which were developed are a Modular Panel which optimizes factory assembly of PV modules into a large area, field-deployable, structurally-integrated PV panel, and an Integrated Power Processing Unit which combines all dc and ac power collection, conversion and control functions within a single, field-deployable structurally-integrated electrical enclosure. These two key sub-array elements, when combined with a number of other electrical, mechanical, and structural components, create a low-cost and high-performance PV power system. This system, or sub-array, can be deployed in individual units, or paralleled with any number of other sub-arrays, to construct multi-megawatt P fields. 21 figs.

  13. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy

    SciTech Connect (OSTI)

    Mellit, Adel; Pavan, Alessandro Massi

    2010-05-15

    Forecasting of solar irradiance is in general significant for planning the operations of power plants which convert renewable energies into electricity. In particular, the possibility to predict the solar irradiance (up to 24 h or even more) can became - with reference to the Grid Connected Photovoltaic Plants (GCPV) - fundamental in making power dispatching plans and - with reference to stand alone and hybrid systems - also a useful reference for improving the control algorithms of charge controllers. In this paper, a practical method for solar irradiance forecast using artificial neural network (ANN) is presented. The proposed Multilayer Perceptron MLP-model makes it possible to forecast the solar irradiance on a base of 24 h using the present values of the mean daily solar irradiance and air temperature. An experimental database of solar irradiance and air temperature data (from July 1st 2008 to May 23rd 2009 and from November 23rd 2009 to January 24th 2010) has been used. The database has been collected in Trieste (latitude 45 40'N, longitude 13 46'E), Italy. In order to check the generalization capability of the MLP-forecaster, a K-fold cross-validation was carried out. The results indicate that the proposed model performs well, while the correlation coefficient is in the range 98-99% for sunny days and 94-96% for cloudy days. As an application, the comparison between the forecasted one and the energy produced by the GCPV plant installed on the rooftop of the municipality of Trieste shows the goodness of the proposed model. (author)

  14. Geothermal/Grid Connection | Open Energy Information

    Open Energy Info (EERE)

    GeothermalGrid Connection < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection...

  15. Distributed PV Adoption in Maine Through 2021

    SciTech Connect (OSTI)

    Gagnon, Pieter; Sigrin, Ben

    2015-11-06

    NREL has used its dSolar (distributed solar) model to generate low-medium-high estimates of distributed PV adoption in Maine through 2021. This presentation gives a high-level overview of the model and modeling results.

  16. Improving Data Transparency for the Distributed PV Interconnection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transparency for the Distributed PV Page 1 of 21 Interconnection Process Emergent ... The topic for today is: Improving Data Transparency for the Distributed PV Interconnection ...

  17. Grid Integrated Distributed PV (GridPV) Version 2.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Coogan, Kyle

    2014-12-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  18. Distributed PV Permitting and Inspection Processes

    SciTech Connect (OSTI)

    Solar Energy Technologies Office

    2010-08-03

    This presentation summarizes case studies of the time and cost involved in the distributed PV permitting and inspection process in three Solar America Cities, Austin, Portland, and Salt Lake City.

  19. Distributed PV Permitting and Inspection Processes

    Broader source: Energy.gov [DOE]

    This presentation summarizes case studies of the time and cost involved in the distributed PV permitting and inspection process in three Solar America Cities, Austin, Portland, and Salt Lake City.

  20. Ota City : characterizing output variability from 553 homes with residential PV systems on a distribution feeder.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Miyamoto, Yusuke; Nakashima, Eichi; Lave, Matthew

    2011-11-01

    This report describes in-depth analysis of photovoltaic (PV) output variability in a high-penetration residential PV installation in the Pal Town neighborhood of Ota City, Japan. Pal Town is a unique test bed of high-penetration PV deployment. A total of 553 homes (approximately 80% of the neighborhood) have grid-connected PV totaling over 2 MW, and all are on a common distribution line. Power output at each house and irradiance at several locations were measured once per second in 2006 and 2007. Analysis of the Ota City data allowed for detailed characterization of distributed PV output variability and a better understanding of how variability scales spatially and temporally. For a highly variable test day, extreme power ramp rates (defined as the 99th percentile) were found to initially decrease with an increase in the number of houses at all timescales, but the reduction became negligible after a certain number of houses. Wavelet analysis resolved the variability reduction due to geographic diversity at various timescales, and the effect of geographic smoothing was found to be much more significant at shorter timescales.

  1. Grid Connected Functionalities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    research, development and deployment of critical building-grid transactional frameworks. View the Presentation 2015 BTO Peer Review Presentation - Grid Connected ...

  2. High Resolution PV Power Modeling for Distribution Circuit Analysis

    SciTech Connect (OSTI)

    Norris, B. L.; Dise, J. H.

    2013-09-01

    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  3. NREL Releases High-Penetration PV Handbook for Distribution Engineers |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Integration | NREL Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable

  4. NREL Releases High-Penetration PV Handbook for Distribution Engineers |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Modernization | NREL Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable solar

  5. Public Meeting: Physical Characterization of Smart and Grid-Connected...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and ...

  6. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Environmental Management (EM)

    Grid-Connected Renewable Energy Systems Grid-Connected Renewable Energy Systems When connecting a home energy system to the electric grid, research and consider equipment required...

  7. Integration Technology for PHEV-Grid-Connectivity, with Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards Integration Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards 2010...

  8. Ukiah Utilities- PV Buydown Program

    Broader source: Energy.gov [DOE]

    Through Ukiah Utilities’ PV Buydown Program, residential and commercial customers are eligible for a $1.40-per-watt AC rebate on qualifying grid-connected PV systems up to a maximum system size of...

  9. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    Anderson, K.; Coddington, M.; Burman, K.; Hayter, S.; Kroposki, B.; Watson, A.

    2009-12-01

    This study describes technical assistance provided by NREL to help New York City and Con Edison improve the interconnection of distributed PV systems on a secondary network distribution system.

  10. Why Do Electricity Policy and Competitive Markets Fail to Use Advanced PV Systems to Improve Distribution Power Quality?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McHenry, Mark P.; Johnson, Jay; Hightower, Mike

    2016-01-01

    The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. We discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less

  11. Distributed PV Interconnection Screening Procedures and Online Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed PV Interconnection Screening Procedures and Online Tools" Joel Dickinson with Salt River Project Solar Initiatives Group August 27, 2014 2 Speakers Joel Dickinson Sr. Engineer Salt River Project Kristen Ardani Solar Analyst National Renewable Energy Laboratory (DGIC moderator) August 27th, 2014 Joel Dickinson, P.E. Sr. Engineer Solar Initiatives Distributed PV Interconnection Screening and Online Tools Salt River Project  Established in 1903 after Theodore Roosevelt signed

  12. Enhanced Modeling and Monitoring Tools for Distributed PV Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Modeling and Monitoring Tools for Distributed PV Interconnection Page 1 of 27 Kristen Ardani, Rick Thompson, Mark Rawson, David Pinney Page 1 of 27 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us today for the DG Interconnection Collaborative's informational webinar. The focus of today's presentation will be on enhanced modeling and monitoring tools for distributed PV interconnection. We have a guest speaker from Green Tech Media (GTM) today, Rick Thompson. So

  13. Optimal Solar PV Arrays Integration for Distributed Generation

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Li, Xueping

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  14. Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices

    SciTech Connect (OSTI)

    2012-01-25

    Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’s new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.

  15. Maine Project Launches First Grid-Connected Offshore Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. May 31, 2013 - 11:00am Addthis ...

  16. United States Launches First Grid-Connected Offshore Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States Launches First Grid-Connected Offshore Wind Turbine United States Launches First Grid-Connected Offshore Wind Turbine August 22, 2013 - 12:00am Addthis Leveraging an ...

  17. Integrating PV in Distributed Grids: Solutions and Technologies Workshop |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Integration | NREL Integrating PV in Distributed Grids: Solutions and Technologies Workshop In October 2015, NREL's Energy Systems Integration team hosted a workshop on ways to safely integrate more photovoltaics (PV) onto the grid. The workshop was held at the Energy Systems Integration Facility. Presenters from industry, vendors, academia, NREL, and the U.S. Department of Energy participated in the workshops, bringing a broad perspective to the discussions. Below are

  18. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    K. Anderson; M. Coddington; K. Burman; S. Hayter; B. Kroposki; and A. Watson

    2009-11-30

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to ???¢????????networks???¢??????? in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline

  19. City of Healdsburg- PV Incentive Program

    Broader source: Energy.gov [DOE]

    Through the City of Healdsburg's PV Buy-down Program, residential and commercial customers are eligible for rebate on qualifying grid-connected PV systems. In keeping with SB1, (the California...

  20. Performance Parameters for Grid-Connected PV Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    derate and NOCT values instead of typical values. INFLUENCE OF WEATHER Variations in solar radiation and ambient temperature from month-to-month and year-to-year influence the...

  1. NY-Sun PV Incentive Program (Residential and Small Business)...

    Broader source: Energy.gov (indexed) [DOE]

    NY-Sun CommercialIndustrial Incentive program that offers incentives for grid connected PV systems larger than 200 KW. The New York State Energy Research and Development...

  2. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect (OSTI)

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating

  3. Mitigation Measures for Distributed PV Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigation Measures for Distributed Interconnection" Michael Coddington with National Renewable Energy Laboratory and Robert Broderick with Sandia National Laboratories July 9, 2014 2 Speakers Michael Coddington Principal Investigator Distributed Grid Integration NREL Robert Broderick Technical Lead Distributed Grid Integration Programs Sandia National Laboratories Kristen Ardani Solar Analyst, (today's moderator) NREL 3 INTERCONNECTION, SCREENING & MITIGATION PRACTICES OF 21 UTILITIES

  4. Understanding the Benefits of Dispersed Grid-Connected Photovoltaics: From Avoiding the Next Major Outage to Taming Wholesale Power Markets

    SciTech Connect (OSTI)

    Letendre, Steven E.; Perez, Richard

    2006-07-15

    Thanks to new solar resource assessment techniques using cloud cover data available from geostationary satellites, it is apparent that grid-connected PV installations can serve to enhance electric grid reliability, preventing or hastening recovery from major power outages and serving to mitigate extreme price spikes in wholesale energy markets. (author)

  5. Distributed PV Interconnection: Recent Analysis Findings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Make Smart Solar Decisions Distributed Solar Interconnection: Challenges and Best ... 50, Arizona: 54, Colorado: 63, New York: 68 New Jersey: 90 System Size Mean Median Std. ...

  6. High-Penetration PV Integration Handbook for Distribution Engineers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 High-Penetration PV Integration Handbook for Distribution Engineers Rich Seguin, Jeremy Woyak, David Costyk, and Josh Hambrick Electrical Distribution Design Barry Mather National

  7. PVUSA experience with power conversion for grid-connected photovoltaic systems

    SciTech Connect (OSTI)

    Stolte, W.

    1995-11-01

    The Photovoltaics for Utility Scale Application (PVUSA) project was established to demonstrate photovoltaic (PV) systems in grid-connected utility applications. One of PVUSA`s key objectives is to evaluate the performance, reliability, and cost of the PV balance of system (BOS). Power conditioning units (PCUs) are the interface between the dc PV arrays and the ac utility lines, and have proved to be the most critical element in grid-connected PV systems. There are five different models of PCUs at PVUSA`s Davis and Kerman sites. This report describes the design, testing, performance characteristics, and maintenance history of each of these PCUs. PVUSA required PCUs in the power range 25 kW to 500 kW which could operate automatically and reliably under changing conditions of sunlight and changing conditions on the utility grid. Although a number of manufacturers can provide PCUs in this power range, none of these PCUs have been produced in sufficient quantity to allow refinement of a particular model into the highly reliable unit needed for long-term, unattended operation. Factory tests were useful but limited by the inability to test under full power and changing power conditions. The inability to completely test PCUs at the factory resulted in difficulty during startup, field testing, and subsequent operation. PVUSA has made significant progress in understanding the requirements for PCUs in grid-connected PV applications and improving field performance. This record of PVUSA`s experience with a variety of PCUs is intended to help utilities and their suppliers identify and retain the good performance characteristics of PCUs, and to make improvements where necessary to meet the needs of utilities.

  8. Public Meeting: Physical Characterization of Grid-Connected Commercial And

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Building End-Use Equipment And Appliances | Department of Energy Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances The documents below are the agenda for the public meeting (held July 11, 2014) on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances,

  9. Public Meeting: Physical Characterization of Smart and Grid-Connected

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial and Residential Building End-Use Equipment and Appliances | Department of Energy Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and

  10. Grid-Connected Renewable Energy Systems Case Studies | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Grid-Connected Renewable Energy Systems Case Studies AgencyCompany Organization: World Bank Sector: Energy Topics:...

  11. Grid-Connected Renewable Energy Generation Toolkit-Wind | Open...

    Open Energy Info (EERE)

    Agency for International Development Sector: Energy Focus Area: Wind Resource Type: Training materials Website: www.energytoolbox.orggcremod6index.shtml Grid-Connected...

  12. Grid-Connected Renewable Energy Generation Toolkit-Solar | Open...

    Open Energy Info (EERE)

    Agency for International Development Sector: Energy Focus Area: Solar Resource Type: Training materials Website: www.energytoolbox.orggcremod5index.shtml Grid-Connected...

  13. Grid-Connected Renewable Energy Generation Toolkit-Geothermal...

    Open Energy Info (EERE)

    for International Development Sector: Energy Focus Area: Geothermal Resource Type: Training materials Website: www.energytoolbox.orggcremod3index.shtml Grid-Connected...

  14. Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric...

    Open Energy Info (EERE)

    United States Agency for International Development Sector: Energy Resource Type: Training materials Website: www.energytoolbox.orggcremod4index.shtml Grid-Connected...

  15. Grid-Connected Renewable Energy Generation Toolkit-Biomass |...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Grid-Connected Renewable Energy Generation Toolkit-Biomass AgencyCompany Organization: United States Agency for...

  16. Modeling Grid-Connected Hybrid Electric Vehicles Using ADVISOR

    SciTech Connect (OSTI)

    Markel, T.; Wipke, K.

    2001-01-01

    Presents an electric utility grid-connected energy management strategy for a parallel hybrid electric vehicle using ADVISOR, a modeling tool.

  17. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Environmental Management (EM)

    Grid-Connected Renewable Energy Systems When connecting a home energy system to the electric ... your needs, eliminating the expense of electricity storage devices like batteries. ...

  18. Distributed PV Interconnection Recent Analysis Findings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Analysis Findings Page 1 of 18 Kristen Ardani, Miriam Makhyoun Page 1 of 18 [Speaker: Kristen Ardani] Cover Slide: Good afternoon, everyone. Thank you for joining the Distributed Generation Interconnection Collaborative informational webinar. Today, we are kicking off 2015 with a joint presentation from SEPA and NREL, in which each will discuss recent research and analysis findings related to interconnection. Slide 2: So really, the purpose of today's meeting is to hear recent research

  19. Distributed Power Electronics for PV Systems (Presentation)

    SciTech Connect (OSTI)

    Deline, C.

    2011-12-01

    An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

  20. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

  1. High-Penetration PV Integration Handbook for Distribution Engineers

    SciTech Connect (OSTI)

    Seguin, Rich; Woyak, Jeremy; Costyk, David; Hambrick, Josh; Mather, Barry

    2016-01-01

    This handbook has been developed as part of a five-year research project which began in 2010. The National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed together to analyze the impacts of high-penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to leverage the experience that SCE and the project team would gain during the significant installation of 500 MW of commercial scale PV systems (1-5 MW typically) starting in 2010 and completing in 2015 within SCE’s service territory through a program approved by the California Public Utility Commission (CPUC).

  2. Distributed PV Interconnection Screening Procedures and Online Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Screening Procedures and Online Tools Page 1 of 9 Kristen Ardani, Joel Dickinson, Max Berger, David Crowell, Jeff Dickinson, Kelly Webster Page 1 of 9 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us today for the DG Interconnection Collaborative. My name is Kristen Ardani,I'm an analyst here at NREL and the lead facilitator of the DGIC. We are fortunate today to have speakers Joel Dickinson of Salt River Project. We are going to discuss distributed PV interconnection

  3. Enhanced Modeling and Monitoring Tools for Distributed PV Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Modeling and Monitoring Tools for Distributed PV Interconnection" Mark Rawson, Sacramento Municipal Utility District and David Pinney, National Rural Electric Cooperative Association with introductory remarks by Rick Thompson, Greentech Media May 28, 2014 2 Purpose of Today's Meeting * Foster stakeholder collaboration and awareness o Learn about Green Tech Media's (GTM) new Grid Edge Initiative, Rick Thompson, GTM * Hear an example of how a municipal utility is planning for solar

  4. Experimental comparison of PV-smoothing controllers using distributed generators

    SciTech Connect (OSTI)

    Johnson, Jay Dean; Ellis, Abraham; Denda, Atsushi; Morino, Kimio; Hawkins, John N.; Arellano, Brian; Shinji, Takao; Ogata, Takao; Tadokoro, Masayuki

    2014-02-01

    The power output variability of photovoltaic systems can affect local electrical grids in locations with high renewable energy penetrations or weak distribution or transmission systems. In those rare cases, quick controllable generators (e.g., energy storage systems) or loads can counteract the destabilizing effects by compensating for the power fluctuations. Previously, control algorithms for coordinated and uncoordinated operation of a small natural gas engine-generator (genset) and a battery for smoothing PV plant output were optimized using MATLAB/Simulink simulations. The simulations demonstrated that a traditional generation resource such as a natural gas genset in combination with a battery would smooth the photovoltaic output while using a smaller battery state of charge (SOC) range and extending the life of the battery. This paper reports on the experimental implementation of the coordinated and uncoordinated controllers to verify the simulations and determine the differences in the controllers. The experiments were performed with the PNM PV and energy storage Prosperity site and a gas engine-generator located at the Aperture Center at Mesa Del Sol in Albuquerque, New Mexico. Two field demonstrations were performed to compare the different PV smoothing control algorithms: (1) implementing the coordinated and uncoordinated controls while switching off a subsection of the PV array at precise times on successive clear days, and (2) comparing the results of the battery and genset outputs for the coordinated control on a high variability day with simulations of the coordinated and uncoordinated controls. It was found that for certain PV power profiles the SOC range of the battery may be larger with the coordinated control, but the total amp-hours through the battery-which approximates battery wear-will always be smaller with the coordinated control.

  5. A grid-connected photovoltaic power conversion system with single-phase multilevel inverter

    SciTech Connect (OSTI)

    Beser, Ersoy; Arifoglu, Birol; Camur, Sabri; Beser, Esra Kandemir

    2010-12-15

    This paper presents a grid-connected photovoltaic (PV) power conversion system based on a single-phase multilevel inverter. The proposed system fundamentally consists of PV arrays and a single-phase multilevel inverter structure. First, configuration and structural parts of the PV assisted inverter system are introduced in detail. To produce reference output voltage waves, a simple switching strategy based on calculating switching angles is improved. By calculated switching angles, the reference signal is produced as a multilevel shaped output voltage wave. The control algorithm and operational principles of the proposed system are explained. Operating PV arrays in the same load condition is a considerable point; therefore a simulation study is performed to arrange the PV arrays. After determining the number and connection types of the PV arrays, the system is configured through the arrangement of the PV arrays. The validity of the proposed system is verified through simulations and experimental study. The results demonstrate that the system can achieve lower total harmonic distortion (THD) on the output voltage and load current, and it is capable of operating synchronous and transferring power values having different characteristic to the grid. Hence, it is suitable to use the proposed configuration as a PV power conversion system in various applications. (author)

  6. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid-Connected Renewable Energy Systems Grid-Connected Renewable Energy Systems When connecting a home energy system to the electric grid, research and consider equipment required as well as your power provider’s requirements and agreements. | Photo courtesy of Solar Design Associates, Inc. When connecting a home energy system to the electric grid, research and consider equipment required as well as your power provider's requirements and agreements. | Photo courtesy of Solar Design

  7. Distributed PV Adoption - Sensitivity to Market Factors (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed PV Adoption - Sensitivity to Market Factors Pieter Gagnon, Ben Sigrin National Renewable Energy Laboratory February 2016 NREL/PR-6A20-65984 Executive Summary 3 Executive Summary (1/2) * NREL's dSolar model was used to explore sensitivity of distributed PV (DGPV) deployment to three market factors-technology cost, future net metering policy, and a hypothetical carbon fee. * Modeling PV costs at 25% less than the reference scenario from 2020 onward resulted in ~35% more cumulative

  8. Enhanced Modeling and Monitoring Tools for Distributed PV Interconnect...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Advanced Inverters Grid Design + Operation Solar Forecasting Where is it optimal to site ... are approaching PV integration limits, how do we prioritize and assess grid upgrade costs? ...

  9. GROWDERS Demonstration of Grid Connected Electricity Systems...

    Open Energy Info (EERE)

    2011 References EU Smart Grid Projects Map1 Overview The GROWDERS project (Grid Reliability and Operability with Distributed Generation using Flexible Storage) investigates...

  10. November 18 PSERC Webinar: Quantifying and Mitigating the Impacts of PV in Distribution Systems

    Broader source: Energy.gov [DOE]

    The DOE-funded Power Systems Engineering Research Center (PSERC) is offering a free public webinar presenting a simulation-based investigation of PV impacts on distribution systems and discussing a new approach for volt-VAR optimization with reactive power capabilities of PV inverters.

  11. Field Demonstration of Using Advanced PV Inverter Functionality to Mitigate the Impacts of High-Penetration PV Grid Integration on the Distribution System

    SciTech Connect (OSTI)

    Mather, Barry; Gebeyehu, Araya

    2015-06-14

    This paper describes a field demonstration that was completed to show the ability of currently installed PV inverters to implement advanced PV inverter functionality and that such functionality was effective at reducing the voltage-related PV impacts of high-penetration PV integration. A distribution circuit was instrumented and then tested for a two week period using off-unity power factor operation. Specifically, an inductive power factor of -0.95 was demonstrated. The results show that the PV inverters were capable of such operation and that the use of off-unity power factor operation was highly effective at reducing the voltage-related impacts of the PV systems interconnected to the circuits used in the demonstration. The impacts of using off-unity power factor operation - resulting in additional reactive current flow on the distribution circuit - are also presented and analyzed.

  12. Three-Phase Modular Cascaded H-Bridge Multilevel Inverter with Individual MPPT for Grid-Connected Photovoltaic Systems

    SciTech Connect (OSTI)

    Xiao, Bailu; Hang, Lijun; Riley, Cameron; Tolbert, Leon M; Ozpineci, Burak

    2013-01-01

    A three-phase modular cascaded H-bridge multilevel inverter for a grid-connected photovoltaic (PV) system is presented in this paper. To maximize the solar energy extraction of each PV string, an individual maximum power point tracking (MPPT) control scheme is applied, which allows the independent control of each dc-link voltage. PV mismatches may introduce unbalanced power supplied to the three-phase system. To solve this issue, a control scheme with modulation compensation is proposed. The three-phase modular cascaded multilevel inverter prototype has been built. Each H-bridge is connected to a 185 W solar panel. Simulation and experimental results are presented to validate the proposed ideas.

  13. Technologies for the new millennium: Photovoltaics as a distributed resource

    SciTech Connect (OSTI)

    Kroposki, B.; DeBlasio, R.

    2000-03-22

    Photovoltaics (PV) is emerging as an important distributed resource. PV gives both the benefits of a distributed resource and a clean power source. Because PV can be installed at both residential and commercial locations, it can be used to reduce peak demand when its output is properly matched with power demand. It can also improve asset utilization by requiring less large capital generation spending and delaying some equipment replacement. With the price of some grid-connected PV systems expected to reach $3/W in the next 5 years, PV will become an economical option for distributed power generation. One of the most important aspects of establishing PV as a distributed resource is standardizing the requirements for grid connection. IEEE Standards Coordinating Committee (SCC) 21 has recently published IEEE Std 929 ''Recommend Practice for Utility Interface of Photovoltaic Systems.'' This recommended practice details power quality, safety, and protection requirements for connection to the utility grid. This paper describes what types of PV systems are available, what the benefits are for PV systems, and what the interconnection issues and solutions are for using PV as a distributed resource.

  14. EERE Success Story-United States Launches First Grid-Connected...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States Launches First Grid-Connected Offshore Wind Turbine EERE Success Story-United States Launches First Grid-Connected Offshore Wind Turbine August 22, 2013 - 12:00am ...

  15. Mongolia-GTZ Energy Efficiency within the Grid-Connected Energy...

    Open Energy Info (EERE)

    Energy Efficiency within the Grid-Connected Energy Supply Jump to: navigation, search Logo: Mongolia-GTZ Energy Efficiency within the Grid-Connected Energy Supply Name Mongolia-GTZ...

  16. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect (OSTI)

    Schauder, C.

    2014-03-01

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  17. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV FOR ELECTRICITY SYSTEM RESILIENCY POLICY AND REGULATORY CONSIDERATIONS ABSTRACT Distributed solar photovoltaic (PV) systems have the potential to supply electricity during grid outages resulting from extreme weather or other emergency situations. As such, distributed PV can signifcantly increase the resiliency of the electricity system. In order to take advantage of this capability, however, the PV systems must be designed with resiliency in mind and combined with other technologies, such as

  18. PV Ramping in a Distributed Generation Environment: A Study Using Solar Measurements; Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Keller, J.

    2012-06-01

    Variability in Photovoltaic (PV) generation resulting from variability in the solar radiation over the PV arrays is a topic of continuing concern for those involved with integrating renewables onto existing electrical grids. The island of Lanai, Hawaii is an extreme example of the challenges that integrators will face due to the fact that it is a small standalone grid. One way to study this problem is to take high-resolution solar measurements in multiple locations and model simultaneous PV production for various sizes at those locations. The National Renewable Energy Laboratory (NREL) collected high-resolution solar data at four locations on the island where proposed PV plants will be deployed in the near future. This data set provides unique insight into how the solar radiation may vary between points that are proximal in distance, but diverse in weather, due to the formation of orographic clouds in the center of the island. Using information about each proposed PV plant size, power output was created at high resolution. The team analyzed this output to understand power production ramps at individual locations and the effects of aggregating the production from all four locations. Hawaii is a unique environment, with extremely variable events occurring on a daily basis. This study provided an excellent opportunity for understanding potential worst-case scenarios for PV ramping. This paper provides an introduction to the datasets that NREL collected over a year and a comprehensive analysis of PV variability in a distributed generation scenario.

  19. Subsystem engineering and development of grid-connected photovoltaic systems

    SciTech Connect (OSTI)

    Burgess, E.L.; Post, H.N.; Key, T.S.

    1982-01-01

    The experience gained in fielding residential and intermediate sized photovoltaic application experiments is summarized. This experience is used to guide the engineering and development of array and power conditioning subsystems for grid-connected photovoltaic systems. A major consideration in this development effort is cost. Through innovative engineering, using a modular building block approach for the array subsystem, it is now possible to construct array fields, in moderate quantities, for about $52/m/sup 2/ excluding the photovoltaic modules. Similarly, results of power conditioning subsystem development indicate a projected cost of about $0.25/W/sub p/ for advanced units with conversion efficiencies in excess of 90%.

  20. High Penetration of Photovoltaic (PV) Systems into the Distribution Grid, Workshop Report, February 24-25, 2009

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    Outcomes from the EERE Solar Energy Technologies Program workshop on high penetration of photovoltaic (PV) systems into the distribution grid, Feb. 24-25, 2009, Ontario, Calif.

  1. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    SciTech Connect (OSTI)

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken

    2010-12-15

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)

  2. Future of Grid-Tied PV Business Models: What Will Happen When PV Penetration on the Distribution Grid is Significant? Preprint

    SciTech Connect (OSTI)

    Graham, S.; Katofsky, R.; Frantzis, L.; Sawyer, H.; Margolis, R.

    2008-05-01

    Eventually, distributed PV will become a more significant part of the generation mix. When this happens, it is expected that utilities will have to take on a more active role in the placement, operation and control of these systems. There are operational complexities and concerns of revenue erosion that will drive utilities into greater involvement of distributed PV and will create new business models. This report summarizes work done by Navigant Consulting Inc. for the National Renewable Energy Laboratory as part of the Department of Energy's work on Renewable System Integration. The objective of the work was to better understand the structure of these future business models and the research, development and demonstration (RD&D) required to support their deployment. This report describes potential future PV business models in terms of combinations of utility ownership and control of the PV assets, and the various relationships between end-users and third-party owners.

  3. Study and Development of Anti-Islanding Control for Grid-Connected Inverters

    SciTech Connect (OSTI)

    Ye, Z.; Walling, R.; Garces, L.; Zhou, R.; Li, L.; Wang, T.

    2004-05-01

    This is a report on the development of anti-islanding control for grid-connected inverters from distributed generation sources. Islanding occurs when a distributed generation source continues to provide electricity to a portion of the utility grid after the utility experiences a disruption in service. Since the utility no longer controls this part of the distribution system, islanding can pose problems for utility personnel safety, power quality, equipment damage, and restoration of service. This report proposes a new family of anti-islanding schemes that meet IEEE 1547 interconnection standards, that can detect all disruptions in service, have minimum power-quality impact, require low-cost implementation, work for multiple distributed generators, and work for any multi-phase inverters. It also provides design guidelines for the schemes, and evaluates and validates the proposed schemes for practical applications.

  4. Analysis of the Impacts of Distribution-Connected PV Using High-Speed Data Sets: Preprint

    SciTech Connect (OSTI)

    Bank, J.; Mather, B.

    2013-03-01

    This paper, presented at the IEEE Green Technologies Conference 2013, utilizes information from high resolution data acquisition systems developed at the National Renewable Energy Laboratory and deployed on a high-penetration PV distribution system to analyze the variability of different electrical parameters. High-resolution solar irradiance data is also available in the same area which is used to characterize the available resource and how it affects the electrical characteristics of the study circuit. This paper takes a data-driven look at the variability caused by load and compares those results against times when significant PV production is present. Comparisons between the variability in system load and the variability of distributed PV generation are made.

  5. Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project July 24, 2012 - 1:12pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Today, Energy Secretary Steven Chu recognized the nation's first commercial, grid-connected tidal energy project off the coast of Eastport, Maine. Leveraging a $10 million investment from the Energy Department, Ocean Renewable Power Company (ORPC)

  6. EERE Success Story-United States Launches First Grid-Connected Offshore

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Turbine | Department of Energy United States Launches First Grid-Connected Offshore Wind Turbine EERE Success Story-United States Launches First Grid-Connected Offshore Wind Turbine August 22, 2013 - 12:00am Addthis Leveraging an EERE investment, the University of Maine deployed the nation's first grid-connected offshore floating wind turbine prototype off the coast of Castine, Maine. The university and its project partners conducted extensive design, engineering, and testing of

  7. Improving Data Transparency for the Distributed PV Interconnection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... - 06May15 - v11.pptx 21 Privileged and Confidential Work Product - Limited Distribution ... Borrego Solar Systems, Inc. Private & Confidential MA Interconnection Performance ...

  8. GAP analysis towards a design qualification standard development for grid-connected photovoltaic inverters.

    SciTech Connect (OSTI)

    Tamizhmani, Govindasamy; Granata, Jennifer E.; Maracas, George; Ayyanar, Raja; Marinella, Matthew; Venkataramanan, Sai Balasubramanian Alampoondi

    2011-06-01

    A dedicated design qualification standard for PV inverters does not exist. Development of a well-accepted design qualification standard, specifically for PV inverters will significantly improve the reliability and performance of inverters. The existing standards for PV inverters such as ANSI/UL 1741 and IEC 62109-1 primarily focus on safety of PV inverters. The IEC 62093 discusses inverter qualification but it includes all the BOS components. There are other general standards for distributed generators including the IEEE 1547 series of standards which cover major concerns like utility integration but they are not dedicated to PV inverters and are not written from a design qualification point of view. In this paper some of the potential requirements for a design qualification standard for PV inverters are addressed. The missing links in existing PV inverter related standards are identified and with the IEC 62093 as a guideline, the possible inclusions in the framework for a dedicated design qualification standard of PV inverter are discussed. Some of the key missing links are related to electric stress tests. Hence, a method to adapt the existing surge withstand test standards for use in design qualification standard of PV inverter is presented.

  9. Improving Data Transparency for the Distributed PV Interconnection Process: Emergent Utility Practices and State Requirements Transcript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transparency for the Distributed PV Page 1 of 21 Interconnection Process Emergent Utility Practices and State Requirements Kristen Adrani, Emerson Reiter, Joslyn Sato, Michael Conway Page 1 of 21 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us for today's quarterly meeting of the Distributed Generation Interconnection Collaborative, or the DGIC. My name is Kristen Ardani. I'm a solar analyst here at NREL and I'll be moderating today's discussion. The topic for today

  10. Tools for Enhanced Grid Operation and Optimized PV Penetration Utilizing Highly Distributed Sensor Data.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Peppanen, Jouni; Seuss, John; Lave, Matthew Samuel; Broderick, Robert Joseph; Grijalva, Santiago

    2015-11-01

    Increasing number s of PV on distribution systems are creating more grid impacts , but it also provides more opportunities for measurement, sensing, and control of the grid in a distributed fashion. This report demonstrates three software tools for characterizing and controlling distribution feeders by utilizing large numbers of highly distributed current, voltage , and irradiance sensors. Instructions and a user manual is presented for each tool. First, the tool for distribution system secondary circuit parameter estimation is presented. This tool allows studying distribution system parameter estimation accuracy with user-selected active power, reactive power, and voltage measurements and measurement error levels. Second, the tool for multi-objective inverter control is shown. Various PV inverter control strategies can be selected to objectively compare their impact on the feeder. Third, the tool for energy storage for PV ramp rate smoothing is presented. The tool allows the user to select different storage characteristics (power and energy ratings) and control types (local vs. centralized) to study the tradeoffs between state-of-charge (SOC) management and the amount of ramp rate smoothing.

  11. DOE Publishes Notice of Public Meeting for Smart Grid-connected Buildings

    Broader source: Energy.gov [DOE]

    The physical characterization of smart and grid-connected commercial and residential buildings end-use equipment and appliances, including but not limited to processes and metrics for measurement, identification of grid and building services, and identification of values and benefits of grid connectivity.

  12. Distribution system model calibration with big data from AMI and PV inverters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.; Grijalva, Santiago

    2016-03-03

    Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less

  13. Performance Modeling and Testing of Distributed Electronics in PV Systems; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Deline, C.

    2015-03-18

    Computer modeling is able to predict the performance of distributed power electronics (microinverters, power optimizers) in PV systems. However, details about partial shade and other mismatch must be known in order to give the model accurate information to go on. This talk will describe recent updates in NREL’s System Advisor Model program to model partial shading losses with and without distributed power electronics, along with experimental validation results. Computer modeling is able to predict the performance of distributed power electronics (microinverters, power optimizers) in PV systems. However, details about partial shade and other mismatch must be known in order to give the model accurate information to go on. This talk will describe recent updates in NREL’s System Advisor Model program to model partial shading losses.

  14. Strategic Sequencing for State Distributed PV Policies: A Quantitative Analysis of Policy Impacts and Interactions

    SciTech Connect (OSTI)

    Doris, E.; Krasko, V.A.

    2012-10-01

    State and local policymakers show increasing interest in spurring the development of customer-sited distributed generation (DG), in particular solar photovoltaic (PV) markets. Prompted by that interest, this analysis examines the use of state policy as a tool to support the development of a robust private investment market. This analysis builds on previous studies that focus on government subsidies to reduce installation costs of individual projects and provides an evaluation of the impacts of policies on stimulating private market development.

  15. Improving Data Transparency for the Distributed PV Interconnection Process: Emergent Utility Practices and State Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 3, 2015 "Improving Data Transparency for the Distributed PV Interconnection Process: Emergent Utility Practices and State Requirements" Joslyn Sato, Hawaiian Electric Companies Michael Conway, Borrego Solar Systems, Inc. Kristen Ardani and Emerson Reiter, National Renewable Energy Laboratory (NREL) 2 Purpose of Today's Meeting * Learn how data reporting requirements for interconnection vary across States, how tracking and data reporting for interconnection requests is evolving

  16. The Value of Distributed Solar Electric Generation to San Antonio

    SciTech Connect (OSTI)

    Jones, Nic; Norris, Ben; Meyer, Lisa

    2013-02-14

    This report presents an analysis of value provided by grid-connected, distributed PV in San Antonio from a utility perspective. The study quantified six value components, summarized in Table ES- 1. These components represent the benefits that accrue to the utility, CPS Energy, in accepting solar onto the grid. This analysis does not treat the compensation of value, policy objectives, or cost-effectiveness from the retail consumer perspective.

  17. A High Power Density DC-DC Converter for Distributed PV Architectures

    SciTech Connect (OSTI)

    Mohammed S. Agamy; Song Chi; Ahmed Elasser; Maja Harfman-Todorovic; Yan Jiang; Frank Mueller; Fengfeng Tao

    2012-06-01

    In order to maximize solar energy harvesting capabilities, power converters have to be designed for high efficiency and good MPPT and voltage/current performance. When many converters are used in distributed systems, power density also becomes an important factor as it allows for simpler system integration. In this paper a high power density string dc-dc converter suitable for distributed medium to large scale PV installation is presented. A simple partial power processing topology, implemented with all silicon carbide devices provides high efficiency as well as high power density. A 3.5kW, 100kHz converter is designed and tested to verify the proposed methods.

  18. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-03-30

    Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.

  19. Multi-Objective Advanced Inverter Controls to Dispatch the Real and Reactive Power of Many Distributed PV Systems.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Lave, Matthew Samuel; Broderick, Robert Joseph; Seuss, John; Grijalva, Santiago

    2016-01-01

    The research presented in this report compares several real - time control strategies for the power output of a large number of PV distributed throughout a large distribution feeder circuit. Both real and reactive power controls are considered with the goal of minimizing network over - voltage violations caused by large amounts of PV generation. Several control strategies are considered under various assumptions regarding the existence and latency of a communication network. The control parameters are adjusted to maximize the effectiveness of each control. The controls are then compared based on their ability to achieve multiple objectiv es. These objectives include minimizing the total number of voltage violations , minimizing the total amount of PV energy curtailed or reactive power generated, and maximizing the fairness of any control action among all PV systems . The controls are simulat ed on the OpenDSS platform using time series load and spatially - distributed irradiance data.

  20. Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid-Connected Enhanced Geothermal System April 12, 2013 - 12:00pm Addthis WASHINGTON -- As part of the Obama Administration's all-of-the-above energy strategy, the Energy ...

  1. EERE Success Story-Nevada Deploys Grid-Connected Electricity from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal Systems | Department of Energy Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems EERE Success Story-Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems May 16, 2013 - 12:00am Addthis The Southeast Propane Autogas Development Program, an $8.6 million Clean Cities Recovery Act project, finished bringing 1,200 propane vehicles and 11 new stations to support them to the road in October 2013. The Virginia Department of Mines,

  2. Homeowners Guide to Financing a Grid-Connected Solar Electric System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Brochure), Solar Energy Technologies Program (SETP) | Department of Energy Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure), Solar Energy Technologies Program (SETP) Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure), Solar Energy Technologies Program (SETP) This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house. 48969.pdf

  3. Formulating a simplified equivalent representation of distribution circuits for PV impact studies.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Broderick, Robert Joseph; Grijalva, Santiago

    2013-04-01

    With an increasing number of Distributed Generation (DG) being connected on the distribution system, a method for simplifying the complexity of the distribution system to an equivalent representation of the feeder is advantageous for streamlining the interconnection study process. The general characteristics of the system can be retained while reducing the modeling effort required. This report presents a method of simplifying feeders to only specified buses-of-interest. These buses-of-interest can be potential PV interconnection locations or buses where engineers want to verify a certain power quality. The equations and methodology are presented with mathematical proofs of the equivalence of the circuit reduction method. An example 15-bus feeder is shown with the parameters and intermediate example reduction steps to simplify the circuit to 4 buses. The reduced feeder is simulated using PowerWorld Simulator to validate that those buses operate with the same characteristics as the original circuit. Validation of the method is also performed for snapshot and time-series simulations with variable load and solar energy output data to validate the equivalent performance of the reduced circuit with the interconnection of PV.

  4. Net Metering and Market Feedback Loops: Exploring the Impact of Retail Rate Design on Distributed PV Deployment

    SciTech Connect (OSTI)

    Darghouth, Naïm R.; Wiser, Ryan; Barbose, Galen; Mills, Andrew

    2015-01-13

    The substantial increase in deployment of customer-sited solar photovoltaics (PV) in the United States has been driven by a combination of steeply declining costs, financing innovations, and supportive policies. Among those supportive policies is net metering, which in most states effectively allows customers to receive compensation for distributed PV generation at the full retail electricity price. The current design of retail electricity rates and the presence of net metering have elicited concerns that the possible under-recovery of fixed utility costs from PV system owners may lead to a feedback loop of increasing retail prices that accelerate PV adoption and further rate increases. However, a separate and opposing feedback loop could offset this effect: increased PV deployment may lead to a shift in the timing of peak-period electricity prices that could reduce the bill savings received under net metering where time-varying retail electricity rates are used, thereby dampening further PV adoption. In this paper, we examine the impacts of these two competing feedback dynamics on U.S. distributed PV deployment through 2050 for both residential and commercial customers, across states. Our results indicate that, at the aggregate national level, the two feedback effects nearly offset one another and therefore produce a modest net effect, although their magnitude and direction vary by customer segment and by state. We also model aggregate PV deployment trends under various rate designs and net-metering rules, accounting for feedback dynamics. Our results demonstrate that future adoption of distributed PV is highly sensitive to retail rate structures. Whereas flat, time-invariant rates with net metering lead to higher aggregate national deployment levels than the current mix of rate structures (+5% in 2050), rate structures with higher monthly fixed customer charges or PV compensation at levels lower than the full retail rate can dramatically erode aggregate customer

  5. Minnesota Power- Solar-Electric (PV) Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a maximum award of $20,000 per customer or 60% installed costs per customer. This...

  6. First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maine | Department of Energy First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine October 1, 2013 - 12:33pm Addthis This is an excerpt from the Third Quarter 2013 edition of the Wind Program R&D Newsletter. A 65-foot tall, 20-kilowatt wind turbine with a white rotor and a yellow tower on a floating platform in the ocean. Castine, Maine - On May 31, 2013, the University of Maine's

  7. Compatibility Study of Protective Relaying in a Grid-Connected Fuel Cell

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-04-15

    addressed other important and timely issues. For instance, the study includes an evaluation of the effectiveness of the fuel cell's synthesized relay protection scheme relative to the recently issued IEEE 1547 interconnection standard. Together, these activities should serve to reduce the number of unknowns pertaining to unconventional protective circuits, to the benefit of DG manufacturers, vendors, prospective and current users of DG, and electricity suppliers/distributors. Although more grid-connect fuel cell interruptions were encountered in this study than originally anticipated, and the investigation and findings became quite complex, every effort was made to clearly summarize the interconnection causes and issues throughout the report and especially in the summary found in Sect. 4. ORNL's funding of this study is sponsored equally by (1) the Department of Energy's (DOE's) Office of Distributed Energy Resources and (2) the Distributed Generation Technologies program of the Tennessee Valley Authority (TVA).

  8. Real Power and Reactive Power Control of a Three-Phase Single-Stage-PV System and PV voltage Stability

    SciTech Connect (OSTI)

    Li, Huijuan; Xu, Yan; Adhikari, Sarina; Rizy, D Tom; Li, Fangxing; Irminger, Philip

    2012-01-01

    Grid-connected photovoltaic (PV) systems with power electronic interfaces can provide both real and reactive power to meet power system needs with appropriate control algorithms. This paper presents the control algorithm design for a three-phase single-stage grid-connected PV inverter to achieve either maximum power point tracking (MPPT) or a certain amount of real power injection, as well as the voltage/var control. The switching between MPPT control mode and a certain amount of real power control mode is automatic and seamless. Without the DC-to-DC booster stage, PV DC voltage stability is an important issue in the control design especially when the PV inverter is operating at maximum power point (MPP) with voltage/var control. The PV DC voltage collapse phenomenon and its reason are discussed. The method based on dynamic correction of the PV inverter output is proposed to ensure PV DC voltage stability. Simulation results of the single-stage PV system during system disturbances and fast solar irradiation changes confirm that the proposed control algorithm for single-stage PV inverters can provide appropriate real and reactive power services and ensure PV DC voltage stability during dynamic system operation and atmospheric conditions.

  9. System and method for design and optimization of grid connected photovoltaic power plant with multiple photovoltaic module technologies

    DOE Patents [OSTI]

    Thomas, Bex George; Elasser, Ahmed; Bollapragada, Srinivas; Galbraith, Anthony William; Agamy, Mohammed; Garifullin, Maxim Valeryevich

    2016-03-29

    A system and method of using one or more DC-DC/DC-AC converters and/or alternative devices allows strings of multiple module technologies to coexist within the same PV power plant. A computing (optimization) framework estimates the percentage allocation of PV power plant capacity to selected PV module technologies. The framework and its supporting components considers irradiation, temperature, spectral profiles, cost and other practical constraints to achieve the lowest levelized cost of electricity, maximum output and minimum system cost. The system and method can function using any device enabling distributed maximum power point tracking at the module, string or combiner level.

  10. A High Efficiency DC-DC Converter Topology Suitable for Distributed Large Commercial and Utility Scale PV Systems

    SciTech Connect (OSTI)

    Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Steigerwald, Robert L; Sabate, Juan A; Chi, Song; McCann, Adam J; Zhang, Li; Mueller, Frank

    2012-09-01

    In this paper a DC-DC power converter for distributed photovoltaic plant architectures is presented. The proposed converter has the advantages of simplicity, high efficiency, and low cost. High efficiency is achieved by having a portion of the input PV power directly fed forward to the output without being processed by the converter. The operation of this converter also allows for a simplified maximum power point tracker design using fewer measurements

  11. ENERGY-10 PV: Photovoltaics, A New Capability (Preprint)

    SciTech Connect (OSTI)

    Balcomb, J.D.; Hayter, S.J.; Weaver, N.L.

    2001-02-16

    This is one of two companion papers that describe the ENERGY-10 PV design-tool computer simulation program. The other paper is titled ''Hourly Simulation of Grid-Connected PV Systems Using Realistic Building Loads.'' While this paper focuses on the implementation method, the companion paper focuses on the PV aspects of the program. The case study in this paper is a residential building application, whereas the case study in the companion paper is a commercial application with an entirely different building load characteristic. Together, they provide a balanced view.

  12. July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Office of Energy Efficiency and Renewable Energy (EERE)

    These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

  13. Generation PV Inc | Open Energy Information

    Open Energy Info (EERE)

    PV Inc Jump to: navigation, search Name: Generation PV Inc. Place: Markham, Ontario, Canada Zip: L6E 1A9 Sector: Wind energy Product: Ontario-based Generation PV distributes and...

  14. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

    2011-06-01

    Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

  15. Final Report- High Penetration Solar PV Deployment Sunshine State Solar Grid Initiative

    Broader source: Energy.gov [DOE]

    Florida State University’s Center for Advanced Power Systems and partners in the Sunshine State Solar Grid Initiative (SUNGRIN) have completed a five-year effort aimed at enabling effective integration of high penetration levels of grid-connected solar PV generation.

  16. Smart Energy Management and Control for Fuel Cell Based Micro-Grid Connected Neighborhoods

    SciTech Connect (OSTI)

    Dr. Mohammad S. Alam

    2006-03-15

    Fuel cell power generation promises to be an efficient, pollution-free, reliable power source in both large scale and small scale, remote applications. DOE formed the Solid State Energy Conversion Alliance with the intention of breaking one of the last barriers remaining for cost effective fuel cell power generation. The Alliance’s goal is to produce a core solid-state fuel cell module at a cost of no more than $400 per kilowatt and ready for commercial application by 2010. With their inherently high, 60-70% conversion efficiencies, significantly reduced carbon dioxide emissions, and negligible emissions of other pollutants, fuel cells will be the obvious choice for a broad variety of commercial and residential applications when their cost effectiveness is improved. In a research program funded by the Department of Energy, the research team has been investigating smart fuel cell-operated residential micro-grid communities. This research has focused on using smart control systems in conjunction with fuel cell power plants, with the goal to reduce energy consumption, reduce demand peaks and still meet the energy requirements of any household in a micro-grid community environment. In Phases I and II, a SEMaC was developed and extended to a micro-grid community. In addition, an optimal configuration was determined for a single fuel cell power plant supplying power to a ten-home micro-grid community. In Phase III, the plan is to expand this work to fuel cell based micro-grid connected neighborhoods (mini-grid). The economic implications of hydrogen cogeneration will be investigated. These efforts are consistent with DOE’s mission to decentralize domestic electric power generation and to accelerate the onset of the hydrogen economy. A major challenge facing the routine implementation and use of a fuel cell based mini-grid is the varying electrical demand of the individual micro-grids, and, therefore, analyzing these issues is vital. Efforts are needed to determine

  17. GridPV Toolbox

    Energy Science and Technology Software Center (OSTI)

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feedermore » on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.« less

  18. GridPV Toolbox

    SciTech Connect (OSTI)

    Broderick, Robert; Quiroz, Jimmy; Grijalva, Santiago; Reno, Matthew; Coogan, Kyle

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.

  19. Performance of a grid connected residential photovoltaic system with energy storage

    SciTech Connect (OSTI)

    Palomino, G.E. [SRP, Phoenix, AZ (United States); Wiles, J. [Southwest Technology Development Institute, Las Cruces, NM (United States); Stevens, J. [Sandia National Labs., Albuquerque, NM (United States); Goodman, F. [EPRI, Palo Alto, CA (United States)

    1997-11-01

    In 1995, Salt River Project (SRP), a public power utility located in Phoenix, Arizona, collaborated with the Electric Power Research Institute (EPRI) and Sandia National Laboratories (Sandia) to initiate a photovoltaic (PV) power system with battery energy storage to match PV output with residential customer peak energy demand periods. The PV power system, a 2.4kW PV array with 25.2kWh of energy storage, was designed and installed by Southwest Technology Development Institute (SWTDI) at an SRP-owned facility, known as the Chandler Research House during August 1995. This paper presents an overview of the system design, operation and performance. 3 refs., 2 figs., 2 tabs.

  20. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6733 Unlimited Release Printed August 2013 Grid Integrated Distributed PV (GridPV) Matthew J. Reno, Kyle Coogan Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE -AC04-94AL85000. Approved for

  1. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    141 Unlimited Release Printed November 2014 Grid Integrated Distributed PV (GridPV) Version 2 Matthew J. Reno, Kyle Coogan Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Effect of Component Failures on Economics of Distributed Photovoltaic Systems

    SciTech Connect (OSTI)

    Lubin, Barry T.

    2012-02-02

    both. Some societal benefits associated with financial benefits to the utility of having a distributed generation capacity that is not fossil-fuel based have been included into the economic models. Also included and quantified in the models are several benefits to society more generally: job creation and some estimates of benefits from avoiding greenhouse emissions. PV system failures result in a lowering of the economic values of a grid-connected system, but this turned out to be a surprisingly small effect on the overall economics. The most significant benefit noted resulted from including the societal benefits accrued to the utility. This provided a marked increase in the valuations of the array and made the overall value proposition a financially attractive one, in that net present values exceeded installation costs. These results indicate that the Department of Energy and state regulatory bodies should consider focusing on societal benefits that create economic value for the utility, confirm these quantitative values, and work to have them accepted by the utilities and reflected in the rate structures for power obtained from grid-connected arrays. Understanding and applying the economic benefits evident in this work can significantly improve the business case for grid-connected PV installations. This work also indicates that the societal benefits to the population are real and defensible, but not nearly as easy to justify in a business case as are the benefits that accrue directly to the utility.

  3. Accuracy and Validation of Measured and Modeled Data for Distributed PV Interconnection and Control

    SciTech Connect (OSTI)

    Stewart, Emma; Kiliccote, Sila; Arnold, Daniel; von Meier, Alexandra; Arghandeh, R.

    2015-07-27

    The distribution grid is changing to become an active resource with complex modeling needs. The new active distribution grid will, within the next ten years, contain a complex mix of load, generation, storage and automated resources all operating with different objectives on different time scales from each other and requiring detailed analysis. Electrical analysis tools that are used to perform capacity and stability studies have been used for transmission system planning for many years. In these tools, the distribution grid was considered a load and its details and physical components were not modeled. The increase in measured data sources can be utilized for better modeling, but also control of distributed energy resources (DER). The utilization of these sources and advanced modeling tools will require data management, and knowledgeable users. Each of these measurement and modeling devices have accuracy constraints, which will ultimately define their future ability to be planned and controlled. This paper discusses the importance of measured data accuracy for inverter control, interconnection and planning tools and proposes ranges of control accuracy needed to satisfy all concerns based on the present grid infrastructure.

  4. Comparative Study of Standards for Grid-Connected Wind Power Plant in China and the U.S.

    SciTech Connect (OSTI)

    Gao, Wenzhong; Tian, Tian; Muljadi, Eduard; Zhang, Yincheng; Miller, Mackay; Wang, Weisheng; Wang, Jing

    2015-10-06

    The rapid deployment of wind power has made grid integration and operational issues focal points in industry discussions and research. Compliance with grid connection standards for wind power plants (WPP) is crucial to ensuring the safe and stable operation of the electric power grid. The standards for grid-connected WPPs in China and the United States are compared in this paper to facilitate further improvements to the standards and enhance the development of wind power equipment. Detailed analyses in power quality, low-voltage ride-through capability, active power control, reactive power control, voltage control, and wind power forecasting are provided to enhance the understanding of grid codes in the two largest markets of wind power.

  5. Policy Building Blocks: Helping Policymakers Determine Policy Staging for the Development of Distributed PV Markets: Preprint

    SciTech Connect (OSTI)

    Doris, E.

    2012-04-01

    There is a growing body of qualitative and a limited body of quantitative literature supporting the common assertion that policy drives development of clean energy resources. Recent work in this area indicates that the impact of policy depends on policy type, length of time in place, and economic and social contexts of implementation. This work aims to inform policymakers about the impact of different policy types and to assist in the staging of those policies to maximize individual policy effectiveness and development of the market. To do so, this paper provides a framework for policy development to support the market for distributed photovoltaic systems. Next steps include mathematical validation of the framework and development of specific policy pathways given state economic and resource contexts.

  6. 2014-04-30 Public Meeting Presentation Slides: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  7. 2014-04-30 Public Meeting Agenda: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    This document is the agenda for the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting being held on April 30, 2014.

  8. Agenda for Public Meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    Download the agenda below for the July 11 Public Meeting on the Physical Characterization of Grid-Connected Commercial and  Residential Buildings End-Use Equipment and Appliances.

  9. Development of a Dispatchable PV Peak Shainv System. PV: Bonus Program - Phase 1 Report. Volume 1

    SciTech Connect (OSTI)

    1995-10-01

    This report summarizes the work performed by Delmarva Power and Light and its subcontractors in Phase 1 of the US Department of Energy's PV:BONUS Program. The purpose of the program is to develop products and systems for buildings which utilize photovoltaic (N) technology. Beginning with a cooperative research effort with the University of Delaware's Center for Energy and Environmental Policy Research Delmarva Power developed and demonstrated the concept of Dispatchable PV Peak Shaving. This concept and the system which resulted horn the development work are unique from other grid-connected PV systems because it combines a PV, battery energy storage, power conversion and control technologies into an integrated package. Phase 1 began in July 1993 with the installation of a test and demonstration system at Delmarva's Northern Division General Office building near Newark, Delaware. Following initial testing throughout the summer and fall of 1993, significant modifications were made under an amendment to the DOE contract. Work on Phase 1 concluded in the early spring of 1995. Significant progress towards the goal of commercializing the system was made during Phase 1, and is summarized. Based on progress in Phase 1, a proposal to continue the work in Phase 2 was submitted to the US DOE in May 1995. A contract amendment and providing funds for the Phase 2 work is expected in July 1995.

  10. Photovoltaic Regional Testing Center (PV RTC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Sandia Will Host PV Bankability Workshop at Solar Power International (SPI) 2013 Computational Modeling & Simulation, Distribution Grid Integration, Energy, Facilities, Grid ...

  11. Sandia Energy - PV Value

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Value Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation PV Value PV ValueTara Camacho-Lopez2015-06-12T20:36:38+00:0...

  12. PV Value®

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... For appraisers, the inputs specific to PV in the Residential Green and Energy Efficient Addendum can be used as inputs to PV Value. Valuing a PV system is done using an income ...

  13. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting behind-the-meter distributed PV generation power production within a region ... This project is expected to reduce the costs of integrating higher penetrations of PV into ...

  14. Supported PV module assembly

    DOE Patents [OSTI]

    Mascolo, Gianluigi; Taggart, David F.; Botkin, Jonathan D.; Edgett, Christopher S.

    2013-10-15

    A supported PV assembly may include a PV module comprising a PV panel and PV module supports including module supports having a support surface supporting the module, a module registration member engaging the PV module to properly position the PV module on the module support, and a mounting element. In some embodiments the PV module registration members engage only the external surfaces of the PV modules at the corners. In some embodiments the assembly includes a wind deflector with ballast secured to a least one of the PV module supports and the wind deflector. An array of the assemblies can be secured to one another at their corners to prevent horizontal separation of the adjacent corners while permitting the PV modules to flex relative to one another so to permit the array of PV modules to follow a contour of the support surface.

  15. SunShot Solar PV | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar PV SunShot Solar PV

  16. Magnitude and Variability of Controllable Charge Capacity Provided by Grid Connected Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    Scoffield, Don R; Smart, John; Salisbury, Shawn

    2015-03-01

    As market penetration of plug-in electric vehicles (PEV) increases over time, the number of PEVs charging on the electric grid will also increase. As the number of PEVs increases, their ability to collectively impact the grid increases. The idea of a large body of PEVs connected to the grid presents an intriguing possibility. If utilities can control PEV charging, it is possible that PEVs could act as a distributed resource to provide grid services. The technology required to control charging is available for modern PEVs. However, a system for wide-spread implementation of controllable charging, including robust communication between vehicles and utilities, is not currently present. Therefore, the value of controllable charging must be assessed and weighed against the cost of building and operating such as system. In order to grasp the value of PEV charge control to the utility, the following must be understood: 1. The amount of controllable energy and power capacity available to the utility 2. The variability of the controllable capacity from day to day and as the number of PEVs in the market increases.

  17. Sunergie PV | Open Energy Information

    Open Energy Info (EERE)

    Sunergie PV Jump to: navigation, search Name: Sunergie PV Place: Perpignan, France Zip: 66000 Product: Perpignan-based project developer. References: Sunergie PV1 This article is...

  18. Exploring the Economic Value of EPAct 2005's PV Tax Credits

    SciTech Connect (OSTI)

    Bolinger, Mark A; Wiser, Ryan; Ing, Edwin

    2009-08-01

    This CESA - LBNL Case Study examines how much economic value do new and expanded federal tax credits really provide to PV system purchasers, and what implications might they hold for state/utility PV grant programs. The report begins with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. The report concludes with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs. The market for grid-connected photovoltaics (PV) in the US has grown dramatically in recent years, driven in large part by PV grant or 'buy-down' programs in California, New Jersey, and many other states. The recent announcement of a new 11-year, $3.2 billion PV program in California suggests that state policy will continue to drive even faster growth over the next decade. Federal policy has also played a role, primarily by providing commercial PV systems access to tax benefits, including accelerated depreciation (5-year MACRS schedule) and a business energy investment tax credit (ITC). Since the signing of the Energy Policy Act of 2005 (EPAct) on August 8, the federal government has begun to play a much more significant role in supporting both commercial and residential PV systems. Specifically, EPAct increased the federal ITC for commercial PV systems from 10% to 30% of system costs, and also created a new 30% ITC (capped at $2000) for residential solar systems. Both changes went into effect on January 1, 2006, for an initial period of two years, and in late 2006 were extended for an additional year. Unless extended further, the new residential ITC will expire, and the 30% commercial ITC will revert back to 10%, on January 1, 2009. How much economic value do these new and

  19. April 30 Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014. The first document includes the first presentation from the meeting: DOE Vision and Objectives. The second document includes all other presentations from the meeting: Terminology and Definitions; End-User and Grid Services; Physical Characterization Framework; Value, Benefits & Metrics.

  20. Energy 101: Solar PV

    SciTech Connect (OSTI)

    2011-01-01

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  1. Energy 101: Solar PV

    Broader source: Energy.gov [DOE]

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power...

  2. Energy 101: Solar PV

    ScienceCinema (OSTI)

    None

    2013-05-29

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  3. Sandia Energy - PV Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Publications PV PublicationsTara Camacho-Lopez2016-01-05T23:50:37+00:00 Recent...

  4. NREL: Photovoltaics Research - NREL Releases High-Penetration PV Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Distribution Engineers Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable solar

  5. Conergy PV | Open Energy Information

    Open Energy Info (EERE)

    Conergy PV Jump to: navigation, search Name: Conergy PV Place: Germany Product: A holding company that was formed to group all Conergy AG's PV activities. References: Conergy PV1...

  6. PV Value | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Value PV Value PV Value is a web-based tool that calculates the energy production value for a residential or commercial photovoltaic (PV) system. The tool is Uniform Standards ...

  7. Stabilized PV system

    DOE Patents [OSTI]

    Dinwoodie, Thomas L.

    2002-12-17

    A stabilized PV system comprises an array of photovoltaic (PV) assemblies mounted to a support surface. Each PV assembly comprises a PV module and a support assembly securing the PV module to a position overlying the support surface. The array of modules is circumscribed by a continuous, belt-like perimeter assembly. Cross strapping, extending above, below or through the array, or some combination of above, below and through the array, secures a first position along the perimeter assembly to at least a second position along the perimeter assembly thereby stabilizing the array against wind uplift forces. The first and second positions may be on opposite sides on the array.

  8. Lessons Learned with Early PV Plant Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lessons Learned with Early PV Plant Integration" Elsa Gonzalez, Rachel Sall, Frankie Greco and David Narang with Arizona Public Service Company June 12, 2014 2 Speakers Frankie Greco Distribution Interconnection Team Arizona Public Service Company Elsa Gonzales Distribution Operations Engineer Arizona Public Service Company David Narang Senior Engineer Arizona Public Service Company Rachel Sall Arizona Public Service Company Lessons Learned with Early PV Plant Integration Elsa Gonzalez

  9. European American Solar Deployment Conference (PV Rollout), 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rd European American Solar Deployment Conference (PV Rollout), 2013 PV Distribution Interconnection Study Analysis Matthew J. Reno, Robert J. Broderick, Jimmy E. Quiroz, Santiago Grijalva 777 Atlantic Dr. NW, Atlanta, GA 30332, USA Phone: 505-620-6560 E-Mail: matthew.reno@gatech.edu Introduction Deployment of distributed PV systems is increasing rapidly. High penetration scenarios, which are becoming increasingly common, have the potential to affect the distribution feeder equipment [1] and the

  10. Fire resistant PV shingle assembly

    DOE Patents [OSTI]

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  11. GridPV Toolbox Version 2 Now Available

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... GridPV Toolbox Version 2 Now Available HomeDistribution Grid Integration, News, ...

  12. Sandia Energy - Tutorial on PV System Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tutorial on PV System Modeling Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Modeling & Analysis Tutorial on PV System Modeling Tutorial on PV...

  13. Solar PV Incentive Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Program (greater than 50 kW) * LIPA Solar Pioneer (homeowner) & Solar Entrepreneur (business - up to 50 kW) Research & Development collaborations on BOS cost ...

  14. PV Research & Development Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... for investors, which translates into a high cost of capital for PV project investments. ...

  15. PV Value®

    Broader source: Energy.gov [DOE]

    PV Value® is a free solar PV Valuation tool that answers the question of "How much is solar PV worth" and is compliant with the Uniform Standards of Professional Appraisal Practice. It is available for and being used by real estate appraisers, realtors, homeowners, commercial building owners, home builders, solar installers, green raters, insurance companies, and mortgage lenders in all 50 states along with D.C. and Puerto Rico. PV Value® allows for the calculation of both the cost and income approach to value and was endorsed by the largest appraiser trade organization, the "Appraisal Institute," as an innovative approach to valuing solar assets.

  16. PV Reliability & Performance Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability & Performance Model - Sandia Energy Energy Search Icon Sandia Home Locations ... Twitter Google + Vimeo GovDelivery SlideShare PV Reliability & Performance Model Home...

  17. The Impact of Retail Rate Structures on the Economics ofCustomer-Sited PV: A Study of Commercial Installations inCalifornia

    SciTech Connect (OSTI)

    Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

    2007-06-01

    We analyze the impact of retail rate design on the economics of grid-connected commercial photovoltaic (PV) systems in California. The analysis is based on 15-minute interval building load and PV production data for 24 commercial PV installations in California, spanning a diverse set of building load shapes and geographic locations. We derive the annual bill savings per kWh generated for each PV system, under each of 21 distinct retail rates currently offered by the five largest utilities in California. We identify and explain variation in the value of bill savings attributable to differences in the structure of demand and energy charges across rates, as well as variation attributable to other factors, such as the size of the PV system relative to building load, the specific shape of the PV production profile, and the customer load profile. We also identify the optimal rate for each customer, among those rates offered as alternatives to one another, and show how the decision is driven in large measure by the size of the PV system relative to building load. The findings reported here may be of value to regulators and utilities responsible for designing retail rates, as well as to customers and PV retailers who have a need to estimate the prospective bill savings of PV systems.

  18. New Berkeley Lab Report Tracks a Decade of PV Installed Cost Trends

    SciTech Connect (OSTI)

    Barbose, Galen; Peterman, Carla; Wiser, Ryan

    2009-04-15

    Installations of PV systems have been expanding at a rapid pace in recent years. In the United States, the market for PV is driven by national, state, and local government incentives, including upfront cash rebates, production-based incentives, requirements that electricity suppliers purchase a certain amount of solar energy, and Federal and state tax benefits. These programs are, in part, motivated by the popular appeal of solar energy and by the positive attributes of PV - e.g., modest environmental impacts, avoidance of fuel price risks, coincidence with peak electrical demand, and the location of PV at the point of use. Given the relatively high cost of PV, however, a key goal of these policies is to encourage cost reductions over time. Therefore, as policy incentives have become more significant and as PV deployment has accelerated, so too has the desire to track the installed cost of PV systems over time, by system characteristics, by system location, and by component. A new Lawrence Berkeley National Laboratory report, 'Tracking the Sun: The Installed Cost of Photovoltaics in the U.S. from 1998-2007', helps to fill this need by summarizing trends in the installed cost (i.e., the cost paid by the system owner) of grid-connected PV systems in the U.S. The report is based on an analysis of project-level cost data from nearly 37,000 residential and non-residential PV systems completed from 1998-2007 and installed on the utility-customer-side of the meter. These systems total 363 MW, equal to 76% of all grid-connected PV capacity installed in the U.S. through 2007, representing the most comprehensive data source available on the installed cost of PV in the United States. The data were obtained from administrators of PV incentive programs around the country, who typically collect installed cost data for systems receiving incentives. A total of 16 programs, spanning 12 states, ultimately provided data for the study. Reflecting the broader geographical trends in the

  19. Updating Technical Screens for PV Interconnection: Preprint

    SciTech Connect (OSTI)

    Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

    2012-08-01

    Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

  20. Sandian Presents on PV Failure Analysis at European PV Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator ...

  1. Sandia Energy - PV Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Modeling & Analysis Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Modeling & Analysis PV Modeling & AnalysisTara Camacho-Lopez2015-05-11T20:03...

  2. PV Systems | Open Energy Information

    Open Energy Info (EERE)

    PV Systems Place: Wales, United Kingdom Zip: CF15 7JD Product: Welsh building integrated PV (BIPV) company References: PV Systems1 This article is a stub. You can help OpenEI by...

  3. Sunshine PV | Open Energy Information

    Open Energy Info (EERE)

    PV Place: Taiwan Sector: Solar Product: Taiwan-based subsidiary of Solartech Energy and thin-film PV module supplier. References: Sunshine PV1 This article is a stub. You can...

  4. PV_LIB Toolbox

    Energy Science and Technology Software Center (OSTI)

    2012-09-11

    While an organized source of reference information on PV performance modeling is certainly valuable, there is nothing to match the availability of actual examples of modeling algorithms being used in practice. To meet this need, Sandia has developed a PV performance modeling toolbox (PV_LIB) for Matlab. It contains a set of well-documented, open source functions and example scripts showing the functions being used in practical examples. This toolbox is meant to help make the multi-stepmore » process of modeling a PV system more transparent and provide the means for model users to validate and understand the models they use and or develop. It is fully integrated into Matlab’s help and documentation utilities. The PV_LIB Toolbox provides more than 30 functions that are sorted into four categories« less

  5. Ambiental PV | Open Energy Information

    Open Energy Info (EERE)

    Ambiental PV Jump to: navigation, search Name: Ambiental PV Place: Bahia, Brazil Zip: 40140-380 Sector: Carbon Product: Bahia-based carbon consultancy firm. References: Ambiental...

  6. Smart Grid Ready PV Inverters with Utility Communication | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Smart Grid Ready PV Inverters with Utility Communication Smart Grid Ready PV Inverters with Utility Communication EPRI logo.jpg -- This project is inactive -- Electric Power Research Institute (EPRI) will develop, implement, and demonstrate smart-grid ready inverters with grid support functionality and required communication links to capture the full value of distributed photovoltaic (PV). APPROACH epri segis summary poster.png This project will develop, implement, and demonstrate

  7. Exploring the Economic Value of EPAct 2005's PV Tax Credits

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Ing, Edwin

    2006-03-28

    The market for grid-connected photovoltaics (PV) in the US has grown dramatically in recent years, driven in large part by PV grant or ''buy-down'' programs in California, New Jersey, and many other states. The recent announcement of a new 11-year, $3.2 billion PV program in California suggests that state policy will continue to drive even faster growth over the next decade. Federal policy has also played a role, primarily by providing commercial PV systems access to tax benefits, including accelerated depreciation (5-year MACRS schedule) and a business energy investment tax credit (ITC). With the signing of the Energy Policy Act of 2005 (EPAct) on August 8, the federal government is poised to play a much more significant future role in supporting both commercial and residential PV systems. Specifically, EPAct increased the federal ITC for commercial PV systems from 10% to 30% of system costs, and also created a new 30% ITC (capped at $2000) for residential solar systems. Both changes went into effect on January 1, 2006, and--absent an extension (for which the solar industry has already begun lobbying)--will last for a period of two years: the new residential ITC will expire, and the 30% commercial ITC will revert back to 10%, on January 1, 2008. How much economic value do these new and expanded federal tax credits really provide to PV system purchasers? And what implications might they hold for state/utility PV grant programs? Using a generic (i.e., non-state-specific) cash flow model, this report explores these questions. We begin with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. We conclude with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state

  8. Jiangxi Solar PV Corp JSPV aka Solar PV Corporation | Open Energy...

    Open Energy Info (EERE)

    Solar PV Corp JSPV aka Solar PV Corporation Jump to: navigation, search Name: Jiangxi Solar PV Corp (JSPV, aka Solar PV Corporation ) Place: Xinyu, Jiangxi Province, China Zip:...

  9. PV Value | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Value PV Value PV Value Sandia National Laboratories has developed a prospective model of determining the value of PV. Sandia uses an income capitalization approach, which considers the present value of future energy production to determine the remaining value of a PV system. An online tool developed by Energy Sense Finance, has been released to the public. https://www.pvvalue.com/ PV Value (332.15 KB) More Documents & Publications PV Value® Reduce Risk, Increase Clean Energy: How States

  10. Sandia/EPRI PV Symposium - Save the Date!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia/EPRI PV Symposium - Save the Date! Save the Date! Sandia/EPRI 2014 PV Systems Symposium (May 5-7, 2014) May 5-6 at the Biltmore Hotel in Santa Clara, CA May 7 at EPRI Headquarters in Palo Alto, CA Sandia National Laboratories and the Electric Power Research Institute (EPRI) are delighted to host this symposium on technical issues related to PV systems and technologies. Core areas of focus will include PV performance modeling, distribution hosting capacity and screening methods, component

  11. Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint

    SciTech Connect (OSTI)

    Mather, B.; Neal, R.

    2012-08-01

    Southern California Edison (SCE) is well into a five-year project to install a total of 500 MW of distributed photovoltaic (PV) energy within its utility service territory. Typical installations to date are 1-3 MW peak rooftop PV systems that interconnect to medium-voltage urban distribution circuits or larger (5 MW peak) ground-mounted systems that connect to medium-voltage rural distribution circuits. Some of the PV system interconnections have resulted in distribution circuits that have a significant amount of PV generation compared to customer load, resulting in high-penetration PV integration scenarios. The National Renewable Energy Laboratory (NREL) and SCE have assembled a team of distribution modeling, resource assessment, and PV inverter technology experts in order to investigate a few of the high-penetration PV distribution circuits. Currently, the distribution circuits being studied include an urban circuit with a PV penetration of approximately 46% and a rural circuit with a PV penetration of approximately 60%. In both cases, power flow on the circuit reverses direction, compared to traditional circuit operation, during periods of high PV power production and low circuit loading. Research efforts during year two of the five-year project were focused on modeling the distribution system level impacts of high-penetration PV integrations, the development and installation of distribution circuit data acquisition equipment appropriate for quantifying the impacts of high-penetration PV integrations, and investigating high-penetration PV impact mitigation strategies. This paper outlines these research efforts and discusses the following activities in more detail: the development of a quasi-static time-series test feeder for evaluating high-penetration PV integration modeling tools; the advanced inverter functions being investigated for deployment in the project's field demonstration and a power hardware-in-loop test of a 500-kW PV inverter implementing a

  12. Teksun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name: Teksun PV Manufacturing Inc Address: 401 Congress Ave Place: Austin, Texas Zip:...

  13. Jinzhou Boyang PV Technology | Open Energy Information

    Open Energy Info (EERE)

    Boyang PV Technology Place: Jinzhou, Liaoning Province, China Product: China-based PV product manufacturer. It is also engaged in the design and installation of PV power...

  14. The Open PV Project | Open Energy Information

    Open Energy Info (EERE)

    The Open PV Project (Redirected from Open PV) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Open PV Project AgencyCompany Organization: National Renewable Energy...

  15. Hunan Huayuan PV | Open Energy Information

    Open Energy Info (EERE)

    Huayuan PV Jump to: navigation, search Name: Hunan Huayuan PV Place: Hunan Province, China Product: State-owned PV wafer maker based in China's Hunan Province. References: Hunan...

  16. Open PV Project: Unlocking PV Installation Data (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This brochure summarizes the Open PV Project, a collaborative effort of government, industry, and the public to compile a comprehensive database of PV installations in the United States. The brochure outlines the purpose and history of the project as well as the main capabilities and benefits of the online Open PV tool. The brochure also introduces how features of the tool are used, and it describes the sources and characteristics of Open PV's data and data collection processes.

  17. Large-Scale PV Integration Study

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  18. Dynamic Model Validation of PV Inverters Under Short-Circuit Conditions: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Bravo, R.; Gevorgian, V.

    2013-03-01

    Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of photovoltaic deployment. Residential and commercial rooftop installations are connected to the distribution network; large-scale installation PV power plants (PVPs) have benefited from tax incentives and the low cost of PV modules. As the level penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. NREL has developed a PV inverter dynamic model in PSCAD/EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations -- symmetrical and unsymmetrical -- were performed in the laboratory. We compare the simulation results with the bench test results.

  19. Sandia Energy - PV Systems Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Reliability Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Systems Reliability PV Systems ReliabilityCoryne Tasca2015-05-08T03:40:54+00:00...

  20. PV Trackers | Open Energy Information

    Open Energy Info (EERE)

    Trackers Jump to: navigation, search Name: PV Trackers Product: Designer of dual axis trackers References: PV Trackers1 This article is a stub. You can help OpenEI by expanding...

  1. Kenmos PV | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Kenmos PV Place: Tainan, Taiwan Sector: Solar Product: Solar business unit of Kenmos Technology which was set up in Sep 2007, to produce thin film PV...

  2. Sandia Energy - PV Program Disclaimer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Program Disclaimersspope2015-03-23T21:15:29+00:00 PV Program Disclaimer The Photovoltaic Projects at Sandia National Laboratories support the development and deployment of...

  3. NREL: Solar Research - NREL Releases High-Penetration PV Handbook for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Engineers Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable solar

  4. Delta PV Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    PV Pvt Ltd Jump to: navigation, search Name: Delta PV Pvt Ltd Place: India Product: Focused on PV cells and modules. References: Delta PV Pvt Ltd1 This article is a stub. You can...

  5. Solar PV and Glare Factsheet

    Broader source: Energy.gov [DOE]

    A common misconception about solar photovoltaic (PV) panels is that they inherently cause or create "too much" glare, posing a nuisance to neighbors and a safety risk for pilots. While solar PV systems can produce glare, light absorption - rather than reflection - is central to the function of solar PV panels. This fact sheet describes the basic issues surrounding glare from solar PV panels, the new Federal Aviation Administration guidance, and the implications for local governments.

  6. Microsoft Word - 2016 PV Systems Symposium - Save the Date v6.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia/EPRI PV Symposium - Save the Date! Save the Date and Call for Abstracts Sandia-EPRI 2016 PV Systems Symposium May 9-11 th at the Biltmore Hotel in Santa Clara, CA Sandia National Laboratories (SNL) and the Electric Power Research Institute (EPRI) are delighted to host this symposium on the technical challenges and opportunities related to solar photovoltaic (PV) systems and technologies. Core areas of focus will include PV performance modeling, distribution hosting capacity and screening

  7. Modeling and Analysis of High-Penetration PV in California | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Modeling and Analysis of High-Penetration PV in California Modeling and Analysis of High-Penetration PV in California NREL logo.jpg The NREL project team will utilize field verification to improve the ability to model and understand the impacts of high-penetration PV on electric utility systems and develop solutions to ease high-penetration PV deployments. The team will develop and verify advanced modeling and simulation methods for distribution system planning and operations; define

  8. 2015 PV Module Reliability Workshop

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory hosts an annual Photovoltaic (PV) Module Reliability Workshop so that solar technology experts can share information leading to the improvement of PV module reliability. Improvements to module reliability reduce the cost of solar electricity and promotes investor confidence in the technology—both critical goals for moving PV technologies deeper into the electricity marketplace.

  9. Testing for PV Reliability (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Bansal, S.

    2014-09-01

    The DOE SUNSHOT workshop is seeking input from the community about PV reliability and how the DOE might address gaps in understanding. This presentation describes the types of testing that are needed for PV reliability and introduces a discussion to identify gaps in our understanding of PV reliability testing.

  10. Integrating High Penetrations of PV into Southern California

    SciTech Connect (OSTI)

    Kroposki, B.; Mather, B.; Hasper-Tuttle, J.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

    2011-01-01

    California regulators recently approved a plan proposed by Southern California Edison (SCE) to install 500 MW of distributed photovoltaic (PV) energy in its utility service territory over the next 5 years. The installations will include 250 MW of utility-owned solar and 250 MW of independently owned solar. SCE expects that the majority of these systems will be commercial-scale rooftop PV systems connected at various points in the distribution system. Each of the SCE rooftop PV systems will typically have a rating of 1-3 MW. To understand the impact of high-penetration PV on the distribution grid, the National Renewable Energy Laboratory (NREL) and SCE brought together a team of experts in resource assessment, distribution modeling, and planning to help analyze the impacts of adding high penetration of PV into the distribution system. Through modeling and simulation, laboratory testing, and field demonstrations, the team will address the issues identified in the analysis by fully examining the challenges, developing solutions, and transitioning those solutions to the field for large-scale deployment. This paper gives an update on the project and discusses technical results of integrating a large number of distributed PV systems into the grid.

  11. EPRI-Sandia PV Systems Symposium - PV Distribution Systems Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rule 21 Process Tom Bialek, Sempra Energy IEEE1547a and 1547.1a Aminul Huque, EPRI Screening ... 12:15 PM Working Lunch Interconnection Standards in California: A Regulatory Approach to ...

  12. PV Hourly Simulation Tool

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple general building characteristics and usage information to calculate the energy and cost benefits of solar PV. This tool conducts and complex hourly simulation of solar PV based primarily on the area available on the rooftop. It uses a simplified efficiency calculation method and real panel characteristics. It includes a detailed rate structure to account for time-of-use rates, on-peak and off-peak pricing, and multiple rate seasons. This tool includes themore » option for advanced system design inputs if they are known. This tool calculates energy savings, demand reduction, cost savings, incentives and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  13. 2015 PV Systems Symposium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Systems Symposium - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  14. Habdank PV Montagesysteme GmbH Co KG Habdank PV Mounting Systems...

    Open Energy Info (EERE)

    Germany Zip: 73037 Product: Germany-based manufacturer of mounting systems for PV installations. References: Habdank PV-Montagesysteme GmbH & Co KG Habdank PV Mounting...

  15. Microsoft Word - 2016 PV Systems Symposium - Save the Date v6...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the following topics: o Solar Resource Data Sources and ... satellite and ground based datasets, will be reviewed. ... PV, such as distributed energy resource management ...

  16. Kauai Island Utility Co-op (KIUC) PV integration study.

    SciTech Connect (OSTI)

    Ellis, Abraham; Mousseau, Tom

    2011-08-01

    This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

  17. Characterizing Shading Losses on Partially Shaded PV Systems (Presentation)

    SciTech Connect (OSTI)

    Deline, C.

    2010-09-23

    Presentation on shaded PV power loss, practical issues with modeling shaded PV, and methods of implementing partially shaded PV modeling.

  18. Jinzhou Prime Solar PV Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    PV Technology Co Ltd Jump to: navigation, search Name: Jinzhou Prime Solar PV Technology Co Ltd Place: China Product: The company produces pv cell and develops pv project....

  19. PV Validation and Bankability Workshop

    Broader source: Energy.gov [DOE]

    This document summarizes the information given on Aug. 29, 2011, on the survey results of the PV Validation and Bankability Workshop on Aug. 31, 2011.

  20. Evaluating Rooftop Strength for PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... ActivitiesBalance of Systems and Soft CostsEvaluating Rooftop Strength for PV ...

  1. PV Crystalox Solar AG formerly PV Silicon AG | Open Energy Information

    Open Energy Info (EERE)

    PV Crystalox Solar AG formerly PV Silicon AG Jump to: navigation, search Name: PV Crystalox Solar AG (formerly PV Silicon AG) Place: Abingdon, England, United Kingdom Zip: OX14 4SE...

  2. BeyondPV Co Ltd Bayang Solar PV | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd (Bayang Solar PV) Place: Tainan, Taiwan Zip: 70955 Product: BeyondPV is an a-Si thin-film silicon PV maker based in southern Taiwan. References: BeyondPV Co Ltd (Bayang...

  3. NREL, SolarCity Complete Experimental Evaluation of PV Inverter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios | Energy Systems Integration | NREL NREL, SolarCity Complete Experimental Evaluation of PV Inverter Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios First known work using actual hardware to examine scenarios with multiple solar photovoltaic inverters connected to multiple different points on the grid July 26, 2016 Distributed energy resources (DERs) such as solar photovoltaic (PV)

  4. NREL, SolarCity Complete Experimental Evaluation of PV Inverter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios | Grid Modernization | NREL NREL, SolarCity Complete Experimental Evaluation of PV Inverter Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios First known work using actual hardware to examine scenarios with multiple solar photovoltaic inverters connected to multiple different points on the grid July 26, 2016 Distributed energy resources (DERs) such as solar photovoltaic (PV) systems have

  5. Interband cascade (IC) photovoltaic (PV) architecture for PV devices

    SciTech Connect (OSTI)

    Yang, Rui Q.; Tian, Zhaobing; Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.; Klem, John F.

    2015-10-20

    A photovoltaic (PV) device, comprising a PV interband cascade (IC) stage, wherein the IC PV stage comprises an absorption region with a band gap, the absorption region configured to absorb photons, an intraband transport region configured to act as a hole barrier, and an interband tunneling region configured to act as an electron barrier. An IC PV architecture for a photovoltaic device, the IC PV architecture comprising an absorption region, an intraband transport region coupled to the absorption region, and an interband tunneling region coupled to the intraband transport region and to the adjacent absorption region, wherein the absorption region, the intraband transport region, and the interband tunneling region are positioned such that electrons will flow from the absorption region to the intraband transport region to the interband tunneling region.

  6. PV Nano Cell | Open Energy Information

    Open Energy Info (EERE)

    Cell Jump to: navigation, search Name: PV Nano Cell Place: Israel Product: Israel-based firm focused on PV nano cell technology. References: PV Nano Cell1 This article is a stub....

  7. Gansu PV Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Gansu PV Co Ltd Jump to: navigation, search Name: Gansu PV Co Ltd Place: Lanzhou, Gansu Province, China Zip: 730000 Sector: Solar Product: Gansu PV Co Ltd is active in...

  8. All Solar PV | Open Energy Information

    Open Energy Info (EERE)

    Solar PV Jump to: navigation, search Logo: All Solar PV Name: All Solar PV Address: 1407-4-105 Century East,Daliushu Road Place: Beijing, China Sector: Solar Product: Solar Energy...

  9. PV World Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    World Co Ltd Jump to: navigation, search Name: PV World Co Ltd Place: Singapore Product: Singapore-based PV module manufacturer. References: PV World Co Ltd1 This article is a...

  10. Tokyo Electron PV | Open Energy Information

    Open Energy Info (EERE)

    PV Jump to: navigation, search Name: Tokyo Electron PV Place: Nirasaki City, Yamanashi, Japan Product: Japanese electronics giants Tokyo Electron and Sharp have announced their...

  11. Zhonghuite PV Technology Co | Open Energy Information

    Open Energy Info (EERE)

    Zhonghuite PV Technology Co Jump to: navigation, search Name: Zhonghuite PV Technology Co Place: Jiangxi Province, China Sector: Solar Product: Jiangxi-based solar project...

  12. PV Solar Planet | Open Energy Information

    Open Energy Info (EERE)

    Solar Planet Jump to: navigation, search Logo: PV Solar Planet Name: PV Solar Planet Address: 5856 S. Garland Way Place: Littleton, Colorado Zip: 80123 Region: Rockies Area Sector:...

  13. Sandia Energy - Evaluating Rooftop Strength for PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluating Rooftop Strength for PV Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Evaluating Rooftop Strength for PV Evaluating Rooftop Strength for...

  14. Transforming PV Installations toward Dispatchable, Schedulable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of a PV plant under transient cloud conditions, without requiring irradiance forecasting. ... reduces high penetration PV integration costs, and will reduce certification costs for ...

  15. WINDExchange: Distributed Wind

    Wind Powering America (EERE)

    Distributed Wind Photo of a small wind turbine next to a farm house with a colorful sunset in the background. The distributed wind market includes wind turbines and projects of many sizes, from small wind turbines less than 1 kilowatt (kW) to multi-megawatt wind farms. The term "distributed wind" describes off-grid or grid-connected wind turbines at homes, farms and ranches, businesses, public and industrial facilities, and other sites. The turbines can provide all of the power used at

  16. Impacts of High Penetration of PV with Energy Storage at Flagstaff Arizona

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Impacts of High Penetration of PV with Energy Storage at Flagstaff Arizona Impacts of High Penetration of PV with Energy Storage at Flagstaff Arizona aps-logo.gif --This project is inactive -- The project team, led by Arizona Public Service, will evaluate the impacts of high penetrations of distributed PV and energy storage on a dedicated feeder to identify the technical and operational modifications that could be deployed in future feeder designs. APPROACH Models

  17. 3-Port Single-Stage PV & Battery Converter Improves Efficiency and Cost in Combined PV/Battery Systems

    SciTech Connect (OSTI)

    Bundschuh, Paul

    2013-03-23

    Due to impressive cost reductions in recent years, photovoltaic (PV) generation is now able to produce electricity at highly competitive prices, but PV’s inherent intermittency reduces the potential value of this energy. The integration of battery storage with PV will be transformational by increasing the value of solar. Utility scale systems will benefit by firming intermittency including PV ramp smoothing, grid support and load shifting, allowing PV to compete directly with conventional generation. For distributed grid-tied PV adding storage will reduce peak demand utility charges, as well as providing backup power during power grid failures. The largest long term impact of combined PV and battery systems may be for delivering reliable off-grid power to the billions of individuals globally without access to conventional power grids, or for billions more that suffer from daily power outages. PV module costs no longer dominate installed PV system costs. Balance-of-System (BOS) costs including the PV inverter and installation now contribute the majority of installed system costs. Battery costs are also dropping faster than installation and battery power converter systems. In each of these separate systems power converters have become a bottleneck for efficiency, cost and reliability. These bottlenecks are compounded in hybrid power conversion systems that combine separate PV and battery converters. Hybrid power conversion systems have required multiple power converters hardware units and multiple power conversion steps adding to efficiency losses, product and installation costs, and reliability issues. Ideal Power Converters has developed and patented a completely new theory of operation for electronic power converters using its indirect EnergyPacket Switching™ topology. It has established successful power converter products for both PV and battery systems, and its 3-Port Hybrid Converter is the first product to exploit the topology’s capability for the

  18. NREL/SCE High-Penetration PV Integration Project: Report on Field Demonstration of Advanced Inverter Functionality in Fontana, CA

    SciTech Connect (OSTI)

    Mather, B.

    2014-08-01

    The National Renewable Energy Laboratory/Southern California Edison High-Penetration PV Integration Project is (1) researching the distribution system level impacts of high-penetration photovoltaic (PV) integration, (2) determining mitigation methods to reduce or eliminate those impacts, and (3) seeking to demonstrate these mitigation methods on actual high-penetration PV distribution circuits. This report describes a field demonstration completed during the fall of 2013 on the Fontana, California, study circuit, which includes a total of 4.5 MW of interconnected utility-scale rooftop PV systems. The demonstration included operating a 2-MW PV system at an off-unity power factor that had been determined during previously completed distribution system modeling and PV impact assessment analyses. Data on the distribution circuit and PV system operations were collected during the 2-week demonstration period. This demonstration reinforces the findings of previous laboratory testing that showed that utility-scale PV inverters are capable of operating at off-unity power factor to mitigate PV impacts; however, because of difficulties setting and retaining PV inverter power factor set points during the field demonstration, it was not possible to demonstrate the effectiveness of off-unity power factor operation to mitigate the voltage impacts of high-penetration PV integration. Lessons learned from this field demonstration are presented to inform future field demonstration efforts.

  19. Turlock Irrigation District- PV Rebate

    Broader source: Energy.gov [DOE]

    Turlock Irrigation District (TID) offers an incentive program to their customers who install solar photovoltaic (PV) systems. In keeping with the terms of the California Solar Initiative, the inc...

  20. PV | OpenEI Community

    Open Energy Info (EERE)

    this new 550 MW PV Solar Plant in Southern California is the latest feather in DOE's cap. Read more about it on Breaking Energy or checkout the info page from the California...

  1. Rooftop Solar PV & Firefighter Safety

    Broader source: Energy.gov [DOE]

    Solar photovoltaic (PV) installations have experienced significant growth in recent years. Due to technological innovations and cost reductions, solar energy is a viable option for an increasing number of residences and businesses across the United States. Rooftop solar is considered safe – to date there has been no documented case of death from the electric shock, chemical burn or conventional fire caused by a solar panel; however, as more buildings install rooftop solar systems, the likelihood increases that fires will occur on buildings with solar, making it critical for firefighters to receive comprehensive solar education and training. This SolarOPs fact sheet gives a brief overview of typical solar PV installations, addresses the major hazards and risks to firefighters, discusses fire safety in Germany (the country with the most installed solar PV per capita), and suggests recommendations and resources to ensure that first responders are prepared to fight fires on homes and buildings with rooftop solar PV.

  2. NREL: Photovoltaics Research - PV News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV News The National Renewable Energy Laboratory Photovoltaic (PV) Research Program highlights latest research and news accomplishments from the laboratory on this page. Subscribe to the RSS feed RSS . Learn about RSS. July 22, 2016 NREL's Kurtz, Tegen Honored for Clean Energy Leadership The U.S. Clean Energy Education & Empowerment (C3E) program has honored Sarah Kurtz and Suzanne Tegen of the Energy Department's National Renewable Energy Laboratory (NREL) for their leadership and

  3. PV module mounting method and mounting assembly

    DOE Patents [OSTI]

    Lenox, Carl J.S.; Johnson, Kurt M.

    2013-04-23

    A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.

  4. Pressure-equalizing PV assembly and method

    DOE Patents [OSTI]

    Dinwoodie, Thomas L.

    2004-10-26

    Each PV assembly of an array of PV assemblies comprises a base, a PV module and a support assembly securing the PV module to a position overlying the upper surface of the base. Vents are formed through the base. A pressure equalization path extends from the outer surface of the PV module, past the PV module, to and through at least one of the vents, and to the lower surface of the base to help reduce wind uplift forces on the PV assembly. The PV assemblies may be interengaged, such as by interengaging the bases of adjacent PV assemblies. The base may include a main portion and a cover and the bases of adjacent PV assemblies may be interengaged by securing the covers of adjacent bases together.

  5. PSCAD Modules Representing PV Generator

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2013-08-01

    Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

  6. Connecticut Rooftop Solar PV Permitting Guide

    Broader source: Energy.gov [DOE]

    The Connecticut Rooftop Solar PV Permitting Guide is a compilation of best practices and resources for solar PV permitting. The guide includes a summary of current codes and regulations affecting solar PV, best practices for streamlining the municipal permitting process, and tools to assist municipalities in creating a streamlined permit process for residential solar PV. Resources include a solar PV permit application, a structural review worksheet, an inspection checklist, and a model solar zoning ordinance.

  7. Consumer's Guide: Get Your Power from the Sun

    DOE R&D Accomplishments [OSTI]

    Starrs, T.; Wenger, H.

    2003-12-01

    Photovoltaics; PV; Grid-Connected; Net Metering; Solar Electricity; Consumer Guides; Solar Energy - Photovoltaics

  8. Distributed PV Interconnection Screening Procedures and Online...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of merchant plants or plants interconnecting to our grid just to sell into the grid. ... And actually maybe just following up on the harmonic issues that you mentioned a question ...

  9. Distributed PV Interconnection Screening Procedures and Online...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Third largest public power utility in the nation ... Site Plan 3-Line Drawing Solar Contract ... interconnection and easements if needed ...

  10. Distributed PV Interconnection Recent Analysis Findings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... After all, there are many touch points that the applications have to go through: metering ... more streamlined, including the use of smart meters for the remote meter programming ...

  11. Mitigation Measures for Distributed PV Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... demand response 3 * Overvoltage due to faults 2 * Multiple inverter stability 1 * Harmonics 1 * Relay desensitization 1 * Exporting power through network protectors 1 16 ...

  12. Distributed PV Interconnection: Recent Analysis Findings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 21, 2015 "NREL and SEPA Recent Analysis Findings" Miriam Makhyoun, Solar Electric Power Association (SEPA) Kristen Ardani, National Renewable Energy Laboratory (NREL) 2 Purpose of Today's Meeting * Hear results from SEPA's recent survey of utility interconnection practices. o SEPA finds that utilities confront common challenges as they move towards more streamlined interconnection application processing. * Hear NREL results of forthcoming DGIC data collection and analysis,

  13. Mitigation Measures for Distributed PV Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigation Action Plans (MAP) and Related Documents Mitigation Action Plans (MAP) and Related Documents Mitigation Action Plans are documents DOE prepares in accordance with DOE NEPA regulations (10 CFR 1021.331) that describes the plan for implementing commitments made in a DOE environmental impact statement and its associated record of decision, or, when appropriate, an EA or FONSI, to mitigate adverse environmental impacts associated with an action. If you have any trouble finding a specific

  14. Mitigation Measures for Distributed PV Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... It's based on voltage class. It's based on how close you are to the substation source, and ... off of the bus - low side bus of the substation transformer, assuming that you have the ...

  15. Partial Shading in Monolithic Thin Film PV Modules: Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design Presented at the PV Module ...

  16. Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants Presented at the PV Module ...

  17. Beijing Sunpu Solar PV Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 100083 Sector: Solar Product: Manufacturers of PV-powered street lights, inverters and other solar PV systems. References: Beijing Sunpu Solar PV Technology Co Ltd1...

  18. China and India PV Reliability-NREL Cooperation | Open Energy...

    Open Energy Info (EERE)

    PV Reliability-NREL Cooperation Jump to: navigation, search Logo: China and India PV Reliability under the Asia Pacific Partnership Name China and India PV Reliability under the...

  19. Energy 101: Solar PV | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar PV Energy 101: Solar PV Addthis Description Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses. Text Version Below is the text version for the Energy 101: Solar PV video. The video opens with "Energy 101: Solar PV." This is followed by a timelapse shot of a city skyline as day turns to night. All right, we all know

  20. Comparison of Pyranometers vs. PV Reference Cells for Evaluation of PV Array Performance

    SciTech Connect (OSTI)

    Dunn, L.; Gostein, M.; Emery, K.

    2012-09-01

    As the photovoltaics (PV) industry has grown, the need for accurately monitoring the solar resource of PV power plants has increased. Historically, the PV industry has relied on thermopile pyranometers for irradiance measurements, and a large body of historical irradiance data taken with pyranometers exists. However, interest in PV reference devices is increasing. In this paper, we discuss why PV reference devices are better suited for PV applications, and estimate the typical uncertainties in irradiance measurements made with both pyranometers and PV reference devices. We assert that the quantity of interest in monitoring a PV power plant is the equivalent irradiance under the IEC 60904-3 reference solar spectrum that would produce the same electrical response in the PV array as the incident solar radiation. For PV-plant monitoring applications, we find the uncertainties in irradiance measurements of this type to be on the order of +/-5% for thermopile pyranometers and +/-2.4% for PV reference devices.

  1. PV Powered Inc | Open Energy Information

    Open Energy Info (EERE)

    PV Powered Inc Place: Bend, Oregon Zip: 97702 Product: Oregon-based manufacturer of inverters for PV systems. Coordinates: 44.05766, -121.315549 Show Map Loading map......

  2. Webinar: Evaluating Roof Structures for Solar PV

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of Connecticut's Structural Review Worksheet for Residential Rooftop Solar PV Systems. The webinar explains how the worksheet should be used and common concerns with wind and dead loads for rooftop solar PV.

  3. PV Controls Utility-Scale Demonstration Project

    SciTech Connect (OSTI)

    O'Neill, Barbara; Gevorgian, Vahan

    2015-10-14

    This presentation provides a high-level overview of the utility-scale PV controls demonstration project.

  4. The Open PV Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Open PV Project The Open PV Project The Open PV Project is a collaborative effort between government, industry, and the public that is compiling a comprehensive database of photovoltaic (PV) installation data for the United States. Data for the project is voluntarily contributed from a variety of sources including utilities, installers, and the general public. The data collected is actively maintained by the contributors and are always changing to provide an evolving, up-to-date snapshot of

  5. Evaluating Rooftop Strength for PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluating Rooftop Strength for PV - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  6. Heritage Park Facilities PV Project

    SciTech Connect (OSTI)

    Hobaica, Mark

    2013-09-26

    Project Objective: To procure a photovoltaic array (PV) system which will generate approximately 256kW of power to be used for the operations of the Aquatic Complex and the adjacent Senior Facility at the Heritage Park. This project complies with the EERE’s work and objectives by promoting the development and deployment of an energy system that will provide current and future generations with clean, efficient, affordable, and reliable energy.

  7. PV Validation and Bankability Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Validation and Bankability Workshop What if?? * This is a reality: A subsidy-free solar electricity infrastructure with an LCOE of 5-6 c/kWh without subsidies * Jobs and Competitiveness: Innovation that ensures the U.S. leads the way on clean energy, supporting new jobs and opportunities for Americans * National Energy Security: Independence from fossil fuel and increased national security * Healthy Environment: Huge carbon reduction and cleaner air ... Imagine a World... * Introducing

  8. US Solar Distributing | Open Energy Information

    Open Energy Info (EERE)

    Distributing Place: California Product: California-based distributor of PV modules, inverters, mounting systems and accessories. References: US Solar Distributing1 This article...

  9. PV output smoothing with energy storage.

    SciTech Connect (OSTI)

    Ellis, Abraham; Schoenwald, David Alan

    2012-03-01

    This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

  10. Transforming PV Installations toward Dispatchable, Schedulable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutions | Department of Energy Transforming PV Installations toward Dispatchable, Schedulable Energy Solutions Transforming PV Installations toward Dispatchable, Schedulable Energy Solutions Advanced Energy logo.png -- This project is inactive -- Advanced Energy (AE) will address three important needs in the further deployment of photovoltaic (PV) systems: 1) demonstrating and commercializing a new anti-islanding method utilizing Phasor Measurement Units (PMUs), 2) demonstrating a set of

  11. CPS Energy- Solar PV Rebate Program

    Broader source: Energy.gov [DOE]

    CPS Energy, San Antonio's municipal utility, offers rebates to customers who install solar photovoltaic (PV) systems on their homes, schools, or businesses. There are four rebate "tiers" available...

  12. National solar technology roadmap: Concentrator PV

    SciTech Connect (OSTI)

    Friedman, Dan

    2007-06-01

    This roadmap addresses high-concentration (>10x) photovoltaic (PV) systems, incorporating high-efficiency III-V or silicon cells, trackers, and reflective or refractive optics.

  13. Riverside Public Utilities - Residential PV Incentive Program...

    Broader source: Energy.gov (indexed) [DOE]

    Riverside Public Utilities Website http:www.riversideca.govutilitiesresi-pv-incentive.asp State California Program Type Rebate Program Rebate Amount 0.50 per watt...

  14. Selecting Solar: Insights into Residential Photovoltaic (PV)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation Carolyn Davidson and Robert Margolis National Renewable Energy Laboratory Technical Report NREL...

  15. The Open PV Project | Open Energy Information

    Open Energy Info (EERE)

    Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online...

  16. The Open PV Project | Open Energy Information

    Open Energy Info (EERE)

    National Renewable Energy Laboratory Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online calculator,...

  17. ASTM PV INSTALLATON COMMISSIONING, OPERATIONS & MAINTENNCE (ICOMP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASTM PV INSTALLATON COMMISSIONING, OPERATIONS & MAINTENNCE (ICOMP) STANDARD PRACTICE ... which maps out the intent of the standard including incorporations of existing ...

  18. Ensuring Quality of PV Modules: Preprint

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Hacke, P.; Kempe, M.; Sample, T.; Yamamichi, M.; Kondo, M.; Doi, T.; Otani, K.; Amano, J.

    2011-07-01

    Photovoltaic (PV) customers need to have confidence in the PV modules they purchase. Currently, no test can quantify a module's lifetime with confidence, but stress tests are routinely used to differentiate PV product designs. We suggest that the industry would be strengthened by using the wisdom of the community to develop a single set of tests that will help customers quantify confidence in PV products. This paper evaluates the need for quality assurance (QA) standards and suggests a path for creating these. Two types of standards are needed: 1) QA of the module design and 2) QA of the manufacturing process.

  19. PV Validation and Bankability Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Validation and Bankability Workshop August 31, 2011 Survey Results As of August 29, 2011 List of Questions * What is your market sector? * From product development through product launch, data must be collected at each step. If the Department of Energy can identify funds to provide some type of 3rd party validation/verification effort/study, what would be your priority for that effort? * What scale of module/system data is of interest and of use in making decisions in your market sector? *

  20. Utility Participation in the Rooftop Solar PV Market Transcript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Participation in the Rooftop Solar PV Market Page 1 of 21 Kristen Ardani, Jurstin Orkney, Marc Romito Page 1 of 21 [Speaker: Kristen Ardani] Slide 1: Good afternoon, everyone. Thank you for joining the Distributed Generation Interconnection Collaborative Monthly Informational Webinar. My name is Kristen Ardani, and I'm an analyst here at NREL and the moderator for the DGIC. So today, we are kicking off 2016 with a joint presentation from two Arizona utilities that have implemented

  1. pv_mapper_091713.mp3 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pv_mapper_091713.mp3 pv_mapper_091713.mp3 pv_mapper_091713.mp3 pv_mapper_091713.mp3 (42.07 MB) More Documents & Publications PVMapper: A Tool for Energy Siting Final Report - Development of an Open Source Utility-Scale Solar Project Siting Tool transcript_pv_mapper.doc

  2. Raising the Bar for Quality PV Modules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Raising the Bar for Quality PV Modules Raising the Bar for Quality PV Modules October 30, 2014 - 4:58pm Addthis As photovoltaics (PV) markets expand across the United States the...

  3. TekSun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    TekSun PV Manufacturing Inc Jump to: navigation, search Name: TekSun PV Manufacturing Inc Place: Austin, Texas Zip: 78701 Product: US-based installer of PV systems; rportedly...

  4. Nvision.Energy - Pernik Solar PV plant | Open Energy Information

    Open Energy Info (EERE)

    Energy - Pernik Solar PV plant Jump to: navigation, search Name Nvision.Energy - Pernik Solar PV plant Facility Nvision.Solar - Pernik Solar PV Plant Sector Solar Facility Type...

  5. Inner Mongolia Zhonghuan PV Materials Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    PV Materials Co Ltd Jump to: navigation, search Name: Inner Mongolia Zhonghuan PV Materials Co Ltd Place: Inner Mongolia Autonomous Region, China Product: China-based PV ingot and...

  6. Jiangsu Zongyi PV Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Name: Jiangsu Zongyi PV Co Ltd Place: Jiangsu Province, China Product: Nantong-based thin-film PV cell producer. References: Jiangsu Zongyi PV Co Ltd1 This article is a...

  7. Draft Transcript on Municipal PV Systems

    Broader source: Energy.gov [DOE]

    Webinar on navigating the legal, tax, and finance issues associated with the installation of Municipal PV Systems. The following agenda was developed based on Pat Boylston's experience assisting municipalities with their PV projects and the requests for information that the Solar America City technical team leads have received from many of the 25 Solar America Cities since the April 2008 meeting in Tucson.

  8. Solar PV Permitting and Safety Training Webinar

    Broader source: Energy.gov [DOE]

    This webinar provides training on two permitting resources for municipal inspectors; a prescriptive process for building inspectors and a guidance document for permitting for PV for electrical inspectors. The webinar also runs through a number of key code articles in Massachusetts 2014 electrical code and examines a variety of safety hazards commonly found during or after solar PV installations.

  9. Potential Induced Degradation (PID) Tests for Commercially Available PV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modules | Department of Energy Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps4_aist_doi.pdf (971.23 KB) More Documents & Publications EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 PID-free C-Si PV Module Using Novel Chemically-Tempered Glass Agenda for the PV Module

  10. Sandia Co-Organizing 6th PV Performance & Monitoring Workshop...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ... Hydrogen Production Market Transformation Fuel Cells ... for PV Grid Integration PV Modeling ...

  11. Baseline and Target Values for PV Forecasts: Toward Improved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting ... Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting Jie ...

  12. Ningxia Yinxing Energy PV Power Equipment Manufacturing Co Ltd...

    Open Energy Info (EERE)

    Yinxing Energy PV Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Ningxia Yinxing Energy PV Power Equipment Manufacturing Co Ltd Place: Yinchuan, Ningxia...

  13. PV Validation and Bankability Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Validation and Bankability Workshop PV Validation and Bankability Workshop This presentation summarizes the information given by DOE during the Photovoltaic Validation and...

  14. Suzhou Shenglong PV Tech Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shenglong PV Tech Co Ltd Jump to: navigation, search Name: Suzhou Shenglong PV-Tech Co Ltd Place: Zhangjiagang City, Jiangsu Province, China Zip: 215612 Product: Chinese ingot,...

  15. Smart-Grid Ready PV Inverter with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancement of PV system capabilities, communication systems and open standards, ... Smart-Grid Ready PV Inverter With Utility Communication BRIAN SEAL ELECTRIC POWER ...

  16. Nvision.Solar - Ravnishte Solar PV Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar - Ravnishte Solar PV Plant Jump to: navigation, search Name Nvision.Solar - Ravnishte Solar PV Plant Facility Ravishte roof and facade mounted solar power plant Sector Solar...

  17. Inner Mongolia Dunan PV power | Open Energy Information

    Open Energy Info (EERE)

    Dunan PV power Jump to: navigation, search Name: Inner Mongolia Dunan PV power Place: Inner Mongolia Autonomous Region, China Sector: Solar Product: Inner Mongolia-based solar...

  18. Linkage to Previous International PV Module QA Task Force Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Linkage to Previous International PV Module QA Task Force Workshops: Proposal for Rating System Linkage to Previous International PV Module QA Task Force Workshops: Proposal for ...

  19. Department of Veterans Affairs, FONSI - Rooftop solar PV power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rooftop solar PV power at Calverton National Cemetery Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton National Cemetery An Environmental Assessment (EA) ...

  20. Training on PV Systems: Design, Construction, Operation and Maintenanc...

    Open Energy Info (EERE)

    on PV Systems: Design, Construction, Operation and Maintenance Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Training on PV Systems: Design, Construction, Operation...

  1. Zhejiang Cineng PV Science Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Cineng PV Science Technology Co Ltd Jump to: navigation, search Name: Zhejiang Cineng PV Science & Technology Co Ltd Place: Cixi, Zhejiang Province, China Sector: Solar Product: A...

  2. Statistical and Domain Analytics Applied to PV Module Lifetime...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science ...

  3. Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open...

    Open Energy Info (EERE)

    Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name: Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place: New Britain, Connecticut Zip: 6051...

  4. Arima Photovoltaic And Optical Corp Arima PV | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaic And Optical Corp Arima PV Jump to: navigation, search Name: Arima Photovoltaic And Optical Corp (Arima PV) Place: Taipei, Taiwan Product: Once a maker of computers,...

  5. BIOHAUS PV Handels GmbH | Open Energy Information

    Open Energy Info (EERE)

    GmbH Jump to: navigation, search Name: BIOHAUS PV Handels GmbH Place: Paderborn, Germany Zip: 33100 Product: Distributor of Isofoton PV products in Germany. Coordinates:...

  6. Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Kauai, Hawaii: ... This study looks at the technical feasibility of generating power with PV arrays. PDF icon ...

  7. Grid Connectivity Research, Development & Demonstration Projects

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Geothermal/Grid Connection | Open Energy Information

    Open Energy Info (EERE)

    Transmission Lines How a Geothermal Power Plant Works (Simple) Western Renewable Energy Zones (WREZ) Reports Geothermal Regulations and Permitting for Transmission Siting...

  9. Terawatt Challenge for Thin-Film PV

    SciTech Connect (OSTI)

    Zweibel, K.

    2005-08-01

    The evolution of PV into one of the world's largest industries is not going to happen without major unforeseen problems. However, this study attempts to address the obvious ones, so that we can put aside the mythology of PV (for example, that it is only ''boutique power'' or that one must pave the world with it to be useful) and get on with changing the world's energy infrastructure. With the years of rapid market growth now under way in PV, the author is sure this will not be the last effort to understand the real potential and pitfalls of meeting the Challenge.

  10. transcript_pv_mapper.doc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    transcript_pv_mapper.doc transcript_pv_mapper.doc transcript_pv_mapper.doc transcript_pv_mapper.doc (74.5 KB) More Documents & Publications PVMapper: A Tool for Energy Siting transcript_jedi_model.doc 2009 National Electric Transmission Congestion Study - San Francisco Workshop

  11. Solar Works! In Seattle: Introduction to Solar Electric (PV)

    Broader source: Energy.gov [DOE]

    Presentation slides from residential PV workshop. Also covers general solar resource assessment, siting and financial incentives.

  12. Merced Irrigation District- PV Buydown Program

    Broader source: Energy.gov [DOE]

    Merced Irrigation District (MID) offers its residential, commercial and non-profit customers a rebate for installing solar electric photovoltaic (PV) systems on their homes and offices. For 2015,...

  13. City of Lompoc Utilities- PV Rebate Program

    Broader source: Energy.gov [DOE]

    City of Lompoc Utilities provides rebates to its electric customers who purchase and install photovoltaic (PV) systems. The rebate is $1.00 per watt-AC. The incentive amount may not exceed 50% the...

  14. NanoPV Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Place: Ewing, New Jersey Zip: 8618 Product: A New Jersey-based thin film PV cell producer and technology provider. Coordinates: 36.638474, -83.428453 Show Map...

  15. Kansas City Power & Light- Solar PV Rebates

    Broader source: Energy.gov [DOE]

    Note: On March 9, 2016, KCP&L received approval to cease PV rebate payments under this program when a total of $36.5 million in payments have been made, which is expected to occur within the...

  16. Austin Energy- Commercial Solar PV Incentive Program

    Broader source: Energy.gov [DOE]

    In order to qualify for this program, PV modules must be new and be listed on the California Energy Commission's Go Solar web site. In addition, all solar panels must have a 20-year manufacturer ...

  17. Plumas-Sierra REC- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Plumas-Sierra REC offers an incentive for its customers to install photovoltaic (PV) systems on homes and businesses. Rebates are available for qualifying systems between one kilowatt (kW) and 25...

  18. Sandia Energy - PV Reliability & Performance Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15-06-01T20:13:00+00:00 This Web Demo model is a simplified "player" version of the Photovoltaic Reliability Performance Model (PV-RPM) currently in development at Sandia National...

  19. Solar Energy International Solar PV 101 Training

    Broader source: Energy.gov [DOE]

    Solar Energy International is offering a five-day training that provides an overview of the three basic PV system applications, primarily focusing on grid-direct systems. The goal of the course is...

  20. pv land use | OpenEI Community

    Open Energy Info (EERE)

    pv land use Home Rosborne318's picture Submitted by Rosborne318(5) Member 2 December, 2013 - 11:06 Request for Information Renewable Energy GenerationProduction Shreveport Airport...

  1. SMUD- PV Residential Retrofit Buy-Down

    Broader source: Energy.gov [DOE]

    The incentive can be paid directly to the customer or the installer. PV equipment listed on the CEC Approved Equipment list is eligible for incentives: http://www.gosolarcalifornia.org/equipment...

  2. PV Module Reliability Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its PV module reliability research. The scope and core competencies and capabilities are discussed and recent publications are listed.

  3. Nord Distribution Solaire | Open Energy Information

    Open Energy Info (EERE)

    Solaire Jump to: navigation, search Name: Nord Distribution Solaire Place: Roubaix, France Zip: 59100 Sector: Solar Product: An installation company for solar passive and PV...

  4. PROJECT PROFILE: Visualization and Analytics of Distribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For high penetration of distributed energy resources (DER) like solar, electric power grid operators and planners must be able to incorporate large datasets from photovoltaic (PV) ...

  5. PV System Energy Evaluation Method (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2014-01-01

    This presentation describes a comparison of the "predicted" energy (based on historical weather data) with the "expected" energy (based on the measured weather data) to determine whether a PV system is performing as modeled in order to verify the accuracy of a model. A key factor in defining this energy test is determining the test boundary so that weather variations are not inadvertently included in what is considered to be PV system performance.

  6. Solar PV Incentive Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Incentive Programs Solar PV Incentive Programs This presentation summarizes the information discussed by NYSERDA during the Best Practices in the Design of Utility Solar Programs Webinar on September 27, 2012. utility_design_nyserda_mace.pdf (378.85 KB) More Documents & Publications Best Practices in the Design of Utility Solar Programs NYSERDA's CHP Program Guide, 2010 NYSERDA's RPS Customer Sited Tier Fuel Cell Program

  7. Using CAD software to simulate PV energy yield - The case of product integrated photovoltaic operated under indoor solar irradiation

    SciTech Connect (OSTI)

    Reich, N.H.; van Sark, W.G.J.H.M.; Turkenburg, W.C.; Sinke, W.C.

    2010-08-15

    In this paper, we show that photovoltaic (PV) energy yields can be simulated using standard rendering and ray-tracing features of Computer Aided Design (CAD) software. To this end, three-dimensional (3-D) sceneries are ray-traced in CAD. The PV power output is then modeled by translating irradiance intensity data of rendered images back into numerical data. To ensure accurate results, the solar irradiation data used as input is compared to numerical data obtained from rendered images, showing excellent agreement. As expected, also ray-tracing precision in the CAD software proves to be very high. To demonstrate PV energy yield simulations using this innovative concept, solar radiation time course data of a few days was modeled in 3-D to simulate distributions of irradiance incident on flat, single- and double-bend shapes and a PV powered computer mouse located on a window sill. Comparisons of measured to simulated PV output of the mouse show that also in practice, simulation accuracies can be very high. Theoretically, this concept has great potential, as it can be adapted to suit a wide range of solar energy applications, such as sun-tracking and concentrator systems, Building Integrated PV (BIPV) or Product Integrated PV (PIPV). However, graphical user interfaces of 'CAD-PV' software tools are not yet available. (author)

  8. High-Penetration PV Deployment in the Arizona Public Service System, Phase 1 Update: Preprint

    SciTech Connect (OSTI)

    Hambrick, J.; Narang, D.

    2012-06-01

    In an effort to better understand the impacts of high penetrations of photovoltaic generators on distribution systems, Arizona Public Service and its partners have begun work on a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale photovoltaics (PV). Building upon the APS Community Power Project -- Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. This paper continues from a paper presented at the 2011 IEEE PVSC conference that introduces the project and describes some of the preliminary consideration, as well as project plans and early results. This paper gives a status update of the project and presents selected results from Phase 2 of the project. It discusses baseline feeder modeling, load allocation, data acquisition, utility-scale PV integration, preliminary model validation, and plans for future phases.

  9. Low Cost High Concentration PV Systems for Utility Power Generation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low Cost High Concentration PV Systems for Utility Power Generation An overview of the Low Cost High Concentration PV Systems for Utility Power Generation project to transition Amonix's concentrating photovoltaic (PV) systems from low-volume to high-volume production. Low Cost High Concentration PV Systems for Utility Power Generation (972.55 KB) More Documents & Publications Solar America Initiative Low Cost High Concentration PV Systems for Utility Power

  10. PROJECT PROFILE: Reducing PV Performance Uncertainty by Accurately

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quantifying the "PV Resource" | Department of Energy Reducing PV Performance Uncertainty by Accurately Quantifying the "PV Resource" PROJECT PROFILE: Reducing PV Performance Uncertainty by Accurately Quantifying the "PV Resource" Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $2,500,000 The procedures used today for prediction of the solar resource available to

  11. Sandia National Laboratories Briefing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specifications for Advanced PV Inverters: Functions, Settings, and Communications Jay Johnson Photovoltaics and Distributed Systems Integration Department pv.sandia.gov Outline  The context  Total installed capacity of PV is growing fast  Aiming for 12 GW of grid-connected renewable energy in CA by 2020!  Large growth expected in distribution systems  New problems  Voltage & frequency control  Protection and disturbance recovery  System stability  Advanced

  12. Utility Participation in the Rooftop Solar PV Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Participation in the Rooftop Solar PV Market DG Interconnection Collaborative (DGIC) January 21, 2016 Justin Orkney Program Manager of Distributed Generation Tucson Electric Power (TEP) Marc Romito Manager Arizona Public Service 2 Logistics * Participants are joined in listen-only mode. * Use the Q&A panel to ask questions during the webinar. We will have a few minutes of Q&A between each presentation and group discussion at the very end.  To ask a question: o Click Q&A

  13. Overview of the Distributed Generation Interconnection Collaborative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 17, 2013 Overview presentation for group call, 1:00-2:30EST 2 October 21,2013 NREL and EPRI facilitated workshop of electric utilities, PV developers, PUCs, and other stakeholders to discuss the formulation of a collaborative effort focused on distributed PV interconnection: - Data and informational gaps/needs - Persistent challenges - Replicable innovation - Informed decision making and planning for anticipated rise in distributed PV interconnection Based on stakeholder input and

  14. DOE High Performance Concentrator PV Project

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2005-08-01

    Much in demand are next-generation photovoltaic (PV) technologies that can be used economically to make a large-scale impact on world electricity production. The U.S. Department of Energy (DOE) initiated the High-Performance Photovoltaic (HiPerf PV) Project to substantially increase the viability of PV for cost-competitive applications so that PV can contribute significantly to both our energy supply and environment. To accomplish such results, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices with the goal of enabling progress of high-efficiency technologies toward commercial-prototype products. We will describe the details of the subcontractor and in-house progress in exploring and accelerating pathways of III-V multijunction concentrator solar cells and systems toward their long-term goals. By 2020, we anticipate that this project will have demonstrated 33% system efficiency and a system price of $1.00/Wp for concentrator PV systems using III-V multijunction solar cells with efficiencies over 41%.

  15. PV performance modeling workshop summary report.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Tasca, Coryne Adelle; Cameron, Christopher P.

    2011-05-01

    During the development of a solar photovoltaic (PV) energy project, predicting expected energy production from a system is a key part of understanding system value. System energy production is a function of the system design and location, the mounting configuration, the power conversion system, and the module technology, as well as the solar resource. Even if all other variables are held constant, annual energy yield (kWh/kWp) will vary among module technologies because of differences in response to low-light levels and temperature. A number of PV system performance models have been developed and are in use, but little has been published on validation of these models or the accuracy and uncertainty of their output. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a PV Performance Modeling Workshop in Albuquerque, New Mexico, September 22-23, 2010. The workshop was intended to address the current state of PV system models, develop a path forward for establishing best practices on PV system performance modeling, and set the stage for standardization of testing and validation procedures for models and input parameters. This report summarizes discussions and presentations from the workshop, as well as examines opportunities for collaborative efforts to develop objective comparisons between models and across sites and applications.

  16. Sustained utility implementation of photovoltaics. TEAM-UP pre-cursor project, 1994-1995, final report

    SciTech Connect (OSTI)

    Osborn, D.E.; Collier, D.; Miller, K.; Jonas, T.; Gerlach, P.

    1998-05-01

    Sacramento Municipal Utility District (SMUD) is a leader in utility grid-connected applications of PVs with the world`s largest distributed PV power system. SMUD is continuing its ambitious sustained, orderly development (SOD) commercialization effort of the grid-connected, utility PV market. This program us aimed at developing the experience needed to successfully integrate PV as distributed generation into the utility system, develop market and long-term business strategies and to stimulate the collaborative processes needed to accelerate the cost-reductions necessary for PV to be cost-competitive in these applications by about the year 2002. This report documents the progress made in the 1994/1995 SMUD PV Program under this contract and the PV projects partially supported by this contract.

  17. Sustained utility implementation of photovoltaics. Final report

    SciTech Connect (OSTI)

    Osborn, D.E.

    1998-05-01

    SMUD is a leader in utility grid-connected applications of PVs with the world`s largest distributed PV power system. SMUD is continuing its ambitious sustained, orderly development (SOD) commercialization effort of the grid-connected, utility PV market. This program is aimed at developing the experience needed to successfully integrate PV as distributed generation into the utility system, develop market and long-term business strategies and to stimulate the collaborative processes needed to accelerate the cost-reductions necessary for PV to be cost-competitive in these applications by about the year 2002. This report documents the progress made in the 1994/1995 SMUD PV Program under this contract and the PV projects partially supported by this contract. This contract has been considered a Pre-cursor to the TEAM-UP program implemented the following year.

  18. Photovoltaic Performance and Reliability Database: A Gateway to Experimental Data Monitoring Projects for PV at the Florida Solar Energy Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This site is the gateway to experimental data monitoring projects for photovoltaic (PV) at the Florida Solar Energy Center. The website and the database were designed to facilitate and standardize the processes for archiving, analyzing and accessing data collected from dozens of operational PV systems and test facilities monitored by FSEC's Photovoltaics and Distributed Generation Division. [copied from http://www.fsec.ucf.edu/en/research/photovoltaics/data_monitoring/index.htm

  19. A State-Level Comparison of Processes and Timelines for Distributed Photovoltaic Interconnection in the United States

    SciTech Connect (OSTI)

    Ardani, K.; Davidson, C.; Margolis, R.; Nobler, E.

    2015-01-01

    This report presents results from an analysis of distributed photovoltaic (PV) interconnection and deployment processes in the United States.

  20. Real time PV manufacturing diagnostic system

    SciTech Connect (OSTI)

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  1. Investigating Temperature Effects on PV Arrays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schmidt Unit Title: Circuits and Electricity Subject: Physics Lesson Title: Investigating Temperature Effects on PV Arrays Grade Level(s): 11/12 Date(s): July 18, 2014 Lesson Length: 1 Class Period (65 minutes) * Learning Goal(s) [What should students know, understand, or be able to do as a result of this lab or activity.] Students will be able to measure current and voltage using a Multimeter. Students will be able to calculate the power of a PV array using voltage and current. Students will

  2. Updating Interconnection Screens for PV System Integration

    SciTech Connect (OSTI)

    Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

    2012-02-01

    This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

  3. International PV QA Task Force's Proposed Comparative Rating System for PV Modules: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J.; Kurtz, S.

    2014-10-01

    The International PV Quality Assurance Task Force is developing a rating system that provides comparative information about the relative durability of PV modules. Development of accelerated stress tests that can provide such comparative information is seen as a major step toward being able to predict PV module service life. This paper will provide details of the ongoing effort to determine the format of such an overall module rating system. The latest proposal is based on using three distinct climate zones as defined in IEC 60721-2-1 for two different mounting systems. Specific stresses beyond those used in the qualification tests are being developed for each of the selected climate zones.

  4. Jiangsu Tianbao PV Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tianbao PV Energy Co Ltd Jump to: navigation, search Name: Jiangsu Tianbao PV Energy Co Ltd Place: Yizheng, Jiangsu Province, China Product: Reportedly planning to have 25MW of...

  5. Breakout Session: Getting in the Loop: PV Hardware Recycling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Getting in the Loop: PV Hardware Recycling and Sustainability Breakout Session: Getting in the Loop: PV Hardware Recycling and Sustainability May 21, 2014 6:30PM to 7:30PM PDT ...

  6. Breakout Session: A Look Ahead: PV Manufacturing in 10 Years

    Broader source: Energy.gov [DOE]

    The global PV manufacturing landscape has undergone significant changes in the past decade, from geographic and economic changes in the supply chain to a significant increase in PV module...

  7. Masdar PV GmbH | Open Energy Information

    Open Energy Info (EERE)

    Masdar PV GmbH Place: Germany Product: Germany-based manufacturer of thin film photovoltaic products and solutions References: Masdar PV GmbH1 This article is a stub. You...

  8. NREL Releases Report Describing Guidelines for PV Manufacturer Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assurance - News Releases | NREL Releases Report Describing Guidelines for PV Manufacturer Quality Assurance International task force aims to toughen standards, ensure reliability of PV technologies April 14, 2015 The Energy Department's National Renewable Energy Laboratory (NREL) has released an updated proposal that will establish an international quality standard for photovoltaic (PV) module manufacturing. The document is intended for immediate use by PV manufacturers when producing

  9. Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps2_epfl_galliano.pdf (448.66 KB) More Documents & Publications Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Hail Impact Testing on Crystalline Si Modules with Flexible Packaging

  10. PV Performance and Reliability Validation Capabilities at Sandia National Laboratories

    Broader source: Energy.gov [DOE]

    This presenation summarizes the information discussed by Sandia National Laboratories at the PV Manufacturing Workshop, March 25, 2011.

  11. PV Performance and Reliability Validation Capabilities at Sandia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance and Reliability Validation Capabilities at Sandia National Laboratories PV Performance and Reliability Validation Capabilities at Sandia National Laboratories This ...

  12. National solar technology roadmap: Film-silicon PV

    SciTech Connect (OSTI)

    Keyes, Brian

    2007-06-01

    Silicon photovoltaic (PV) technologies are addressed in two different technology roadmaps: Film-Silicon PV and Wafer-Silicon PV. This Film-Silicon PV roadmap applies to all silicon-film technologies that rely on a supporting substrate such as glass, polymer, aluminum, stainless steel, or metallurgical-grade silicon. Such devices typically use amorphous, nanocrystalline, fine-grained polycrystalline, or epitaxial silicon layers that are 1–20 μm thick.

  13. Statistical and Domain Analytics Applied to PV Module Lifetime and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Degradation Science | Department of Energy Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps2_casewestern_bruckman.pdf (6.77 MB) More Documents & Publications Literature Review of the Effects of UV Exposure on PV Modules Failure Rates from Certification Testing to UL

  14. TRNSYS HYBRID wind diesel PV simulator

    SciTech Connect (OSTI)

    Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J.

    1996-12-31

    The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.

  15. Solar Photovoltaic (PV) System Permit Application Checklist

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Permit Application Checklist is intended to be used as a best management practice when establishing local government requirements for residential and commercial solar photovoltaic (PV) system permits. Local governments may modify this checklist to accommodate their local ordinances, code requirements, and permit procedures.

  16. PV Solar Site Assessment (Milwaukee High School)

    Broader source: Energy.gov [DOE]

    The purpose of this assessment is to provide site-specific information on how a solar electric (also referred to as a photovoltaic, or PV) system would perform at your location, including information on estimated physical size, rated output, energy production, costs, financial incentives and mounting options. Site assessors are required to present unbiased information and may not recommend contractors or products.

  17. Final Technical Report: PV Fault Detection Tool.

    SciTech Connect (OSTI)

    King, Bruce Hardison; Jones, Christian Birk

    2015-12-01

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  18. Performance of Mismatched PV Systems With Submodule Integrated Converters

    SciTech Connect (OSTI)

    Olalla, C; Deline, C; Maksimovic, D

    2014-01-01

    Mismatch power losses in photovoltaic (PV) systems can be reduced by the use of distributed power electronics at the module or submodule level. This paper presents an experimentally validated numerical model that can be used to predict power production with distributed maximum power point tracking (DMPPT) down to the cell level. The model allows the investigations of different DMPPT architectures, as well as the impact of conversion efficiencies and power constraints. Results are presented for annual simulations of three representative partial shading scenarios and two scenarios where mismatches are due to aging over a period of 25 years. It is shown that DMPPT solutions that are based on submodule integrated converters offer 6.9-11.1% improvements in annual energy yield relative to a baseline centralized MPPT scenario.

  19. Role of Polycrystalline Thin-Film PV Technologies in Competitive PV Module Markets: Preprint

    SciTech Connect (OSTI)

    von Roedern, B.; Ullal, H. S.

    2008-05-01

    This paper discusses the developments in thin-film PV technologies and provides an outlook on future commercial module efficiencies achievable based on today's knowledge about champion cell performance.

  20. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    SciTech Connect (OSTI)

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  1. Microsoft Word - Mpublic666_090605110615

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEVELOPMENT NEEDS FOR INTEGRATED GRID-CONNECTED PV SYSTEMS AND ELECTRIC ENERGY STORAGE Charles ... technologies in the context of PV system integration, addressing applications, ...

  2. PV_LIB Toolbox v. 1.3

    SciTech Connect (OSTI)

    2015-12-09

    PV_LIB comprises a library of Matlab? code for modeling photovoltaic (PV) systems. Included are functions to compute solar position and to estimate irradiance in the PV system’s plane of array, cell temperature, PV module electrical output, and conversion from DC to AC power. Also included are functions that aid in determining parameters for module performance models from module characterization testing. PV_LIB is open source code primarily intended for research and academic purposes. All algorithms are documented in openly available literature with the appropriate references included in comments within the code.

  3. PV_LIB Toolbox v. 1.3

    Energy Science and Technology Software Center (OSTI)

    2015-12-09

    PV_LIB comprises a library of Matlab? code for modeling photovoltaic (PV) systems. Included are functions to compute solar position and to estimate irradiance in the PV system’s plane of array, cell temperature, PV module electrical output, and conversion from DC to AC power. Also included are functions that aid in determining parameters for module performance models from module characterization testing. PV_LIB is open source code primarily intended for research and academic purposes. All algorithms aremore » documented in openly available literature with the appropriate references included in comments within the code.« less

  4. Advanced Photovoltaic Inverter Functionality using 500 kW Power Hardware-in-Loop Complete System Laboratory Testing: Preprint

    SciTech Connect (OSTI)

    Mather, B. A.; Kromer, M. A.; Casey, L.

    2013-01-01

    With the increasing penetration of distribution connected photovoltaic (PV) systems, more and more PV developers and utilities are interested in easing future PV interconnection concerns by mitigating some of the impacts of PV integration using advanced PV inverter controls and functions. This paper describes the testing of a 500 kW PV inverter using Power Hardware-in-Loop (PHIL) testing techniques. The test setup is described and the results from testing the inverter in advanced functionality modes, not commonly used in currently interconnected PV systems, are presented. PV inverter operation under PHIL evaluation that emulated both the DC PV array connection and the AC distribution level grid connection are shown for constant power factor (PF) and constant reactive power (VAr) control modes. The evaluation of these modes was completed under varying degrees of modeled PV variability.

  5. Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint

    SciTech Connect (OSTI)

    Hoke, A.; Butler, R.; Hambrick, J.; Kroposki, B.

    2012-07-01

    This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ANSI Range A and that feeder currents stay within the ranges determined by overcurrent protection devices. Simulations were run in GridLAB-D using hourly time steps over a year with randomized load profiles based on utility data and typical meteorological year weather data. For 86% of the cases simulated, maximum PV penetration was at least 30% of peak load.

  6. Cascaded Microinverter PV System for Reduced Cost

    SciTech Connect (OSTI)

    Bellus, Daniel R.; Ely, Jeffrey A.

    2013-04-29

    In this project, a team led by Delphi will develop and demonstrate a novel cascaded photovoltaic (PV) inverter architecture using advanced components. This approach will reduce the cost and improve the performance of medium and large-sized PV systems. The overall project objective is to develop, build, and test a modular 11-level cascaded three-phase inverter building block for photovoltaic applications and to develop and analyze the associated commercialization plan. The system will be designed to utilize photovoltaic panels and will supply power to the electric grid at 208 VAC, 60 Hz 3-phase. With the proposed topology, three inverters, each with an embedded controller, will monitor and control each of the cascade sections, reducing costs associated with extra control boards. This report details the final disposition on this project.

  7. Sandia Rooftop PV Structural Report Webinar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rooftop PV Structural Report Webinar - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  8. Lessons Learned with Early PV Plant Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lessons Learned with Early PV Plant Integration Page 1 of 23 Kristen Ardani (NREL), Elsa Gonzales (Arizona Public Service Company), Rachel Sall (Arizona Public Service Company), Frankie Greco (Arizona Public Service Company), David Narang (Arizona Public Service Company) Page 1 of 23 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us today for the DG Interconnection Collaborative informational webinar. Today we have speakers from Arizona Public Service Company, who will

  9. 5th PV Performance Modeling Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    th PV Performance Modeling Workshop - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  10. The reliability and stability of multijunction amorphous silicon PV modules

    SciTech Connect (OSTI)

    Carlson, D.E.

    1995-11-01

    Solarex is developing a manufacturing process for the commercial production of 8 ft{sup 2} multijunction amorphous silicon (a-Si) PV modules starting in 1996. The device structure used in these multijunction modules is: glass/textured tin oxide/p-i-n/p-i-n/ZnO/Al/EVA/Tedlar where the back junction of the tandem structure contains an amorphous silicon germanium alloy. As an interim step, 4 ft{sup 2} multijunction modules have been fabricated in a pilot production mode over the last several months. The distribution of initial conversion efficiencies for an engineering run of 67 modules (4 ft{sup 2}) is shown. Measurements recently performed at NREL indicate that the actual efficiencies are about 5% higher than those shown, and thus exhibit an average initial conversion efficiency of about 9.5%. The data indicates that the process is relatively robust since there were no modules with initial efficiencies less than 7.5%.

  11. Interconnection Assessment Methodology and Cost Benefit Analysis for High-Penetration PV Deployment in the Arizona Public Service System

    SciTech Connect (OSTI)

    Baggu, Murali; Giraldez, Julieta; Harris, Tom; Brunhart-Lupo, Nicholas; Lisell, Lars; Narang, David

    2015-06-14

    In an effort to better understand the impacts of high penetrations of photovoltaic (PV) generators on distribution systems, Arizona Public Service and its partners completed a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale PV. Building upon the APS Community Power Project-Flagstaff Pilot, this project investigates the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes and large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters were designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models are being developed to analyze the impacts of PV on distribution circuit protection systems (including coordination and anti-islanding), predict voltage regulation and phase balance issues, and develop volt/VAr control schemes. This paper continues from a paper presented at the 2014 IEEE PVSC conference that described feeder model evaluation and high penetration advanced scenario analysis, specifically feeder reconfiguration. This paper presents results from Phase 5 of the project. Specifically, the paper discusses tool automation; interconnection assessment methodology and cost benefit analysis.

  12. Enhanced Modeling and Monitoring Tools for Distributed PV Interconnect...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... anything from smart metering, AMI infrastructure, to the transformers and recloser switching, whatever of the plethora of technologies that are on the physical architecture. ...

  13. Strategic Sequencing for State Distributed PV Policies: Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    report finds that through strategic policy implementation, governments can successfully support renewable energy even in times when funding is limited. p r o g r a m o v e r v i e ...

  14. Interconnecting PV on NYC's Secondary Network Distribution System

    Office of Energy Efficiency and Renewable Energy (EERE)

    To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report.

  15. Integrating Solar PV in Utility System Operations

    SciTech Connect (OSTI)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved

  16. Utility Regulation and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Implementing a range of alternative utility-rate reforms could minimize solar value losses at increasing levels of distributed PV penetration (see Barbose et al. 2016). In conjunction with the technical issues described above, the connections between distributed PV and electric distribution systems hinge on utility business models and regulations. As PV deployment has leapt forward and presaged a truly significant solar contribution, however, it has become clear that utilities’ traditional treatment of distributed PV cannot be taken for granted—nor can the future value and deployment of distributed PV. At the heart of this issue is net energy metering (NEM). Under NEM, PV owners can sell to a utility the electricity they generate but cannot consume on site, often at full retail rates. This widespread policy has helped drive the rapid growth of distributed PV, but the success has raised concerns about the potential for higher electricity rates and cost-shifting to non-solar customers, reduced utility shareholder profitability, reduced utility earnings opportunities, and inefficient resource allocation. The resulting reform efforts have revolved largely around changing NEM rules and retail rate structures. Most of the reforms to date address NEM concerns by reducing the benefits provided to distributed PV customers and thus constraining PV deployment. A new analysis estimates that eliminating NEM nationwide, by compensating exports of PV electricity at wholesale rather than retail rates would cut cumulative distributed PV deployment by 20% in 2050 compared with a continuation of current policies. This would slow the PV cost reductions that arise from larger scale and market certainty. It could also thwart achievement of the SunShot deployment goals even if the initiative’s cost targets are achieved. This undesirable prospect is stimulating the development of alternative reform strategies that address concerns about distributed PV compensation without

  17. Utility Regulation and Business Model Reforms for Advancing the Financial Impacts of Distributed Solar on Utilities

    Broader source: Energy.gov [DOE]

    Implementing a range of alternative utility-rate reforms could minimize solar value losses at increasing levels of distributed PV penetration (see Barbose et al. 2016). In conjunction with the technical issues described above, the connections between distributed PV and electric distribution systems hinge on utility business models and regulations. As PV deployment has leapt forward and presaged a truly significant solar contribution, however, it has become clear that utilities’ traditional treatment of distributed PV cannot be taken for granted—nor can the future value and deployment of distributed PV. At the heart of this issue is net energy metering (NEM). Under NEM, PV owners can sell to a utility the electricity they generate but cannot consume on site, often at full retail rates. This widespread policy has helped drive the rapid growth of distributed PV, but the success has raised concerns about the potential for higher electricity rates and cost-shifting to non-solar customers, reduced utility shareholder profitability, reduced utility earnings opportunities, and inefficient resource allocation. The resulting reform efforts have revolved largely around changing NEM rules and retail rate structures. Most of the reforms to date address NEM concerns by reducing the benefits provided to distributed PV customers and thus constraining PV deployment. A new analysis estimates that eliminating NEM nationwide, by compensating exports of PV electricity at wholesale rather than retail rates would cut cumulative distributed PV deployment by 20% in 2050 compared with a continuation of current policies. This would slow the PV cost reductions that arise from larger scale and market certainty. It could also thwart achievement of the SunShot deployment goals even if the initiative’s cost targets are achieved. This undesirable prospect is stimulating the development of alternative reform strategies that address concerns about distributed PV compensation without

  18. Distribution:

    Office of Legacy Management (LM)

    JAN26 19% Distribution: OR00 Attn: h.H.M.Roth DFMusser ITMM MMMann INS JCRyan FIw(2) Hsixele SRGustavson, Document rocm Formal file i+a@mmm bav@ ~@esiaw*cp Suppl. file 'Br & Div rf's s/health (lic.only) UNITED STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAB MATERIAL LICENSE pursuant to the Atomic Energy Act of 1954 and Title 10, Code of Federal Regulations, Chapter 1, P&t 70, "Special Nuclear Material Reg)llatiqm," a license is hereby issued a$hortztng the licensee to rekeive

  19. NREL Helps Establish New PV Quality Standards for Manufacturers - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Helps Establish New PV Quality Standards for Manufacturers February 8, 2016 Working with partners around the world, researchers at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have completed five years of work toward helping establish an international quality standard for manufacturing photovoltaic (PV) modules. PV manufacturers will use the new standard to increase the level of confidence investors, utilities, and consumers have in solar panel

  20. PROJECT PROFILE: Performance Models and Standards for Bifacial PV Module

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Performance Models and Standards for Bifacial PV Module Technologies PROJECT PROFILE: Performance Models and Standards for Bifacial PV Module Technologies Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: Sandia National Laboratories, Albuquerque, NM Amount Awarded: $3,000,000 Bifacial PV modules absorb sunlight and produce electricity from both the front and back sides of the module and can take advantage of light reflected from a

  1. SunShot Presentation PV Module Reliabity Workshop Opening Session |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Presentation PV Module Reliabity Workshop Opening Session SunShot Presentation PV Module Reliabity Workshop Opening Session This PowerPoint slide deck was originally presented at the opening session of the 2013 NREL PV Module Reliability Workshop on Feb. 26-27, 2013 in Golden, CO. It provides an overview of the DOE SunShot initiative, discusses systems integration and technology validation activities, and highlighted the goals and key agenda items for the workshop.

  2. Präsentation Bernhard Gatzka PV*SOL Expert

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculation in PV*SOL Expert Bernhard Gatzka Valentin Software, Germany Presented at the 2013 Sandia PV Performance Modeling Workshop Santa Clara, CA. May 1-2, 2013 Published by Sandia National Laboratories with the Permission of the Author. * Horizon, Near and Inter Row Shading * Method of Calculation * PV Module Model  Software Development of Design, Simulation and Modeling tools for Photovoltaic and Solar Heating Systems  Established 1988  40 employees (of which over 50% are

  3. Impact and Detection of Pyranometer Failure on PV Performance | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Impact and Detection of Pyranometer Failure on PV Performance Impact and Detection of Pyranometer Failure on PV Performance Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps1_nrel_jordan.pdf (1.24 MB) More Documents & Publications Experimental and Modeling Investigation of Radionuclide Interaction and Transport in Representative Geologic Media Brine Migration Experimental Studies for Salt Repositories Performance Assessment of

  4. NREL/SCE High Penetration PV Integration Project: FY13 Annual Report

    SciTech Connect (OSTI)

    Mather, B. A.; Shah, S.; Norris, B. L.; Dise, J. H.; Yu, L.; Paradis, D.; Katiraei, F.; Seguin, R.; Costyk, D.; Woyak, J.; Jung, J.; Russell, K.; Broadwater, R.

    2014-06-01

    In 2010, the National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed to analyze the impacts of high penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to benefit from the experience that SCE and the project team would gain during the installation of 500 megawatts (MW) of utility-scale PV systems (with 1-5 MW typical ratings) starting in 2010 and completing in 2015 within SCE's service territory through a program approved by the California Public Utility Commission (CPUC). This report provides the findings of the research completed under the project to date.

  5. Smart-Grid Ready PV Inverters with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTEGRATION Smart-Grid Ready PV Inverters with Utility Communication Electric Power Research Institute Brian Seal, Tom Key, Aminul Huque, Lindsey Rogers Technical Contact Brian ...

  6. Zhangjiagang Sunlink PV Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Province, China Zip: 215600 Product: Specialises in developing, manufacturing and marketing of crystalline silicon PV products. Coordinates: 31.950001, 120.449997 Show Map...

  7. Stichting Triodos PV Partners defunct | Open Energy Information

    Open Energy Info (EERE)

    22209 Product: Stichting Triodos PV Partners, a JV Triodos Bank Group, Environmental Enterprises Assistance Fund, & Global Transition Consulting, was wound up and the management of...

  8. Water Impacts of High Solar PV Electricity Penetration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Impacts of High Solar PV Electricity Penetration Jordan Macknick and Stuart Cohen National Renewable Energy Laboratory (NREL) Technical Report NRELTP-6A20-63011 September...

  9. PROJECT PROFILE: Reducing PV Performance Uncertainty by Accurately...

    Broader source: Energy.gov (indexed) [DOE]

    data when compared to the results from current methods, thereby leading to a reduced price of solar electricity and increasing the expected return on investment of PV projects.

  10. An Analysis of Residential PV System Price Differences between...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential photovoltaic (PV) systems were twice as expensive in the United States as in ... Tracking the Sun VIII: The Installed Price of Residential and Non-Residential Photovoltaic ...

  11. Overcoming Structural Engineering Barriers to PV Permits and...

    Office of Scientific and Technical Information (OSTI)

    Title: Overcoming Structural Engineering Barriers to PV Permits and Installations. Abstract not provided. Authors: Dwyer, Stephen F. ; Harper, Alan Publication Date: 2010-02-01 ...

  12. PvXchange GmbH | Open Energy Information

    Open Energy Info (EERE)

    Berlin, Germany Zip: 10963 Sector: Services Product: A German platform for PV module spot trades. Also provides data on spot prices and offers consulting services. Coordinates:...

  13. NREL: Performance and Reliability R&D - PV Module Reliability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Reliability R&D Photovoltaics Research Performance Reliability R and D Printable Version PV Module Reliability Workshop NREL hosts an annual Photovoltaic Module...

  14. Final Report- High Penetration Solar PV Deployment Sunshine State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Along with models and data, at least 70 supporting MATLAB functions have been developed and made available, with complete documentation. High Penetration Solar PV Deployment ...

  15. Instrumentation for Evaluating PV System Performance Losses from Snow: Preprint

    SciTech Connect (OSTI)

    Marion, B.; Rodriguez, J.; Pruett, J.

    2009-04-01

    Describes the use of a pyranometer with a heater and a digital camera to determine losses related to snow for PV systems located at National Renewable Energy Laboratory.

  16. Solar America Initiative (SAI) PV Technology Incubator Program: Preprint

    SciTech Connect (OSTI)

    Keyes, B.; Symko-Davies, M.; Mitchell, R.; Ullal H.; von Roedern, B.; Greene, L.; Stephens, S.

    2008-05-01

    The SAI PV Technology Incubator Program is designed to accelerate technologies/prodesses that have successfully demonstrated a proof-of-concept/process in a laboratory.

  17. PROJECT PROFILE: Improving PV performance Estimates in the System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This project will improve the forecasting of lifetime PV system performance as well as operations and maintenance costs by incorporating the Photovoltaic Reliability and ...

  18. Global Solar Photovoltaic (PV) Installation Market to be Propelled...

    Open Energy Info (EERE)

    Global Solar Photovoltaic (PV) Installation Market to be Propelled by Greater Concerns over Carbon Footprint Home > Groups > Renewable Energy RFPs John55364's picture Submitted by...

  19. Weathering Performance of PV Backsheets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated Laboratory Tests Using Simultaneous UV, Temperature, and Moisture for PV ... Sheet, Noryl PPE Sheet-Back Sheet Test Procedure for UV Weathering Resistance of Backsheet

  20. Sandia to host PV Bankability workshop at Solar Power International...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    host PV Bankability workshop at Solar Power International (SPI) 2013 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & ...

  1. Sandia Energy - Photovoltaic (PV) Regional Test Center (RTC)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live Home Renewable Energy Energy Partnership News SunShot News & Events Photovoltaic Solar National Solar Thermal Test...

  2. Siemens PV Technology now Konarka | Open Energy Information

    Open Energy Info (EERE)

    Siemens PV Technology (now Konarka) Place: Germany Product: Formerly the organic photovoltaic research operations of Siemens, which became part of Konarka Technologies on...

  3. NREL Mesa Top PV System | Open Energy Information

    Open Energy Info (EERE)

    PV System Facility National Renewable Energy Laboratory Sector Solar Facility Type Photovoltaic Owner SunEdison Solar Developer SunEdison Solar Energy Purchaser National Renewable...

  4. Overview of the PV Module Model in PVWatts (Presentation)

    SciTech Connect (OSTI)

    Marion, B.

    2010-09-22

    Overview of the PV module model. PVWatts module power estimates were compared with those using the Sandia model for three modules and data sets.

  5. PV QA Task Group #2: Thermal and Mechanical Fatigue Including...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Rating System Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Accelerated Stress Testing, Qualification Testing, HAST, Field Experience

  6. NREL: Photovoltaics Research - NREL Hosts PV Module Reliability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability Workshop for Industry March 1, 2016 Nearly 200 researchers from more than 100 companies and representing 16 countries attended the 7th annual PV Module Reliability ...

  7. NREL: Performance and Reliability R&D - PV Module Reliability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Module Reliability Workshop NREL hosts an annual Photovoltaic Module Reliability Workshop (PVMRW) so that solar technology experts can share information leading to the ...

  8. NREL: Solar Research - NREL Hosts PV Module Reliability Workshop...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability Workshop for Industry March 1, 2016 Nearly 200 researchers from more than 100 companies and representing 16 countries attended the 7th annual PV Module Reliability ...

  9. NREL/SCE High Penetration PV Integration Project: FY13 Annual Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL/SCE High Penetration PV Integration Project: FY13 Annual Report Barry A. Mather National Renewable Energy Laboratory Sunil Shah Southern California Edison Benjamin L. Norris and John H. Dise Clean Power Research Li Yu, Dominic Paradis, and Farid Katiraei Quanta Technology Richard Seguin, David Costyk, Jeremy Woyak, Jaesung Jung, Kevin Russell, and Robert Broadwater Electrical Distribution Design, Inc. Technical Report NREL/TP-5D00-61269 June 2014 NREL is a national laboratory of the U.S.

  10. Technology and Climate Trends in PV Module Degradation: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.

    2012-10-01

    To sustain the commercial success of photovoltaic (PV) technology it is vital to know how power output decreases with time. Unfortunately, it can take years to accurately measure the long-term degradation of new products, but past experience on older products can provide a basis for prediction of degradation rates of new products. An extensive search resulted in more than 2000 reported degradation rates with more than 1100 reported rates that include some or all IV parameters. In this paper we discuss how the details of the degradation data give clues about the degradation mechanisms and how they depend on technology and climate zones as well as how they affect current and voltage differently. The largest contributor to maximum power decline for crystalline Si technologies is short circuit current (or maximum current) degradation and to a lesser degree loss in fill factor. Thin-film technologies are characterized by a much higher contribution from fill factor particularly for humid climates. Crystalline Si technologies in hot & humid climates also display a higher probability to show a mixture of losses (not just short circuit current losses) compared to other climates. The distribution for the module I-V parameters (electrical mismatch) was found to change with field exposure. The distributions not only widened but also developed a tail at the lower end, skewing the distribution.

  11. Technology and Climate Trends in PV Module Degradation (Presentation)

    SciTech Connect (OSTI)

    Jordan, D.; Wohlgemuth, J.; Kurtz, S.

    2012-10-01

    To sustain the commercial success of photovoltaic (PV) technology it is vital to know how power output decreases with time. Unfortunately, it can take years to accurately measure the long-term degradation of new products, but past experience on older products can provide a basis for prediction of degradation rates of new products. An extensive search resulted in more than 2000 reported degradation rates with more than 1100 reported rates that include some or all IV parameters. In this presentation we discuss how the details of the degradation data give clues about the degradation mechanisms and how they depend on technology and climate zones as well as how they affect current and voltage differently. The largest contributor to maximum power decline for crystalline Si technologies is short circuit current (or maximum current) degradation and to a lesser degree loss in fill factor. Thin-film technologies are characterized by a much higher contribution from fill factor particularly for humid climates. Crystalline Si technologies in hot & humid climates also display a higher probability to show a mixture of losses (not just short circuit current losses) compared to other climates. The distribution for the module I-V parameters (electrical mismatch) was found to change with field exposure. The distributions not only widened but also developed a tail at the lower end, skewing the distribution.

  12. Comparison of a Recurrent Neural Network PV System Model with a Traditional Component-Based PV System Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Recurrent Neural Network PV System Model with a Traditional Component-Based PV System Model Daniel Riley, Sandia National Laboratories, Albuquerque, New Mexico, USA | Ganesh K. Venayagamoorthy, Missouri University of Science and Technology, Rolla, Missouri, USA Abstract Traditional PV system modeling approaches require system components to be tested in order to determine performance parameters. In some cases, system owners may wish to predict system performance, but lack the parameters

  13. Grid-tied PV battery systems.

    SciTech Connect (OSTI)

    Barrett, Keith Phillip; Gonzalez, Sigifredo; Hund, Thomas D.

    2010-09-01

    Grid tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time interval. On a clear day the solar irradiance power curve is offset by about 1h, while on a variable cloudy day the inverter output power curve will be smoothed based on the average solar irradiance. Test results demonstrate that this smoothing algorithm works very well. Battery state of charge was more difficult to manage because of the variable system inefficiencies. Testing continued for 30-days and established consistent operational performance for extended periods of time under a wide variety of resource conditions. Both battery technologies from Exide (Absolyte) and East Penn (ALABC Advanced) proved to cycle well at a Partial state of charge over the time interval tested.

  14. Sacramento Municipal Utility District PV and Smart Grid Pilot at Anatolia

    SciTech Connect (OSTI)

    Rawson, Mark; Sanchez, Eddie Paul

    2013-12-30

    Under DE-FOA-0000085 High Penetration Solar Deployment, the U. S. Department of Energy funded agreements with SMUD and Navigant Consulting, SunPower, GridPoint, the National Renewable Energy Laboratory, and the California Energy Commission for this pilot demonstration project. Funding was $5,962,409.00. Cost share of $500,000 was also provided by the California Energy Commission. The project has strategic implications for SMUD, other utilities and the PV and energy-storage industries in business and resource planning, technology deployment and asset management. These implications include: -At this point, no dominant business models have emerged and the industry is open for new ideas. -Demonstrated two business models for using distributed PV and energy storage, and brainstormed several dozen more, each with different pros and cons for SMUD, its customers and the industry. -Energy storage can be used to manage high penetrations of PV and mitigate potential issues such as reverse power flow, voltage control violations, power quality issues, increased wear and tear on utility equipment, and system wide power supply issues. - Smart meters are another tool utilities can use to manage high penetrations of PV. The necessary equipment and protocols exist, and the next step is to determine how to integrate the functionality with utility programs and what level of utility control is required. - Time-of-use rates for the residential customers who hosted energy storage systems did not cause a significant change in energy usage patterns. However, the rates we used were not optimized for PV and energy storage. Opportunities exist for utilities to develop new structures.

  15. Identification and Characterization of Performance Limiting Regions in Poly-Si Wafers Used for PV Cells: Preprint

    SciTech Connect (OSTI)

    Guthrey, H.; Gorman, B.; Al-Jassim, M.

    2011-07-01

    As demand for silicon photovoltaic (PV) material increases, so does the need for cost-effective feedstock and production methods that will allow enhanced penetration of silicon PV into the total energy market. The focus on cost minimization for production of polycrystalline silicon (poly-Si) PV has led to relaxed feedstock purity requirements, which has also introduced undesirable characteristics into cast poly-Si PV wafers. To produce cells with the highest possible conversion efficiencies, it is crucial to understand how reduced purity requirements and defects that are introduced through the casting process can impair minority carrier properties in poly-Si PV cells. This is only possible by using multiple characterization techniques that give macro-scale information (such as the spatial distribution of performance-limiting regions), as well as micro and nano-scale information about the structural and chemical nature of such performance-limiting regions. This study demonstrates the usefulness of combining multiple techniques to analyze performance-limiting regions in the poly-Si wafers that are used for PV cells. This is done by first identifying performance-limiting regions using macro-scale techniques including photoluminescence (PL) imaging, microwave photoconductive decay (uPCD), and reflectometry), then using smaller-scale techniques such as scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), cathodoluminescence (CL), and transmission electron microscopy (TEM) to understand the nature of such regions. This analysis shows that structural defects as well as metallic impurities are present in performance-limiting regions, which together act to decrease conversion efficiencies in poly-Si PV cells.

  16. Final Technical Report - Photovoltaics for You (PV4You) Program

    SciTech Connect (OSTI)

    Weissman, J. M.; Sherwood, L.; Pulaski, J.; Cook, C.; Kalland, S.; Haynes, J.

    2005-08-14

    In September 2000, the Interstate Renewable Energy Council (IREC) began its 5-year work on contract # DE-FGO3-00SF22116, the Photovoltaics for You (PV4You) Project. The objective was to develop and distribute information on photovoltaics and to educate key stakeholder groups including state government agencies, local government offices, consumer representative agencies, school officials and students, and Million Solar Roofs Partnerships. In addition, the project was to identify barriers to the deployment of photovoltaics and implement strategies to overcome them. Information dissemination and education was accomplished by publishing newsletters; creating a base of information, guides, and models on the www.irecusa.org and the www.millionsolarroofs.org web sites; convening workshops and seminars; engaging multiple stakeholders; and widening the solar network to include new consumers and decision makers. Two major web sites were maintained throughout the project cycle. The www.irecusa.org web site housed dedicated pages for Connecting to the Grid, Schools Going Solar, Community Outreach, and Certification & Training. The www.millionsolarroofs.org web site was created to serve the MSR Partnerships with news, interviews, key documents, and resource material. Through the course of this grant, the Interstate Renewable Energy Council has been supporting the Department of Energy's solar energy program goals by providing the Department with expertise services for their network of city, state, and community stakeholders. IREC has been the leading force at the state and federal levels regarding net metering and interconnection policy for photovoltaic systems. The principal goal and benefit of the interconnection and net metering work is to lower both barriers and cost for the installation of PV. IREC typically plays a leadership role among small generator stakeholders and has come to be relied upon for its expertise by industry and regulators. IREC also took a leadership

  17. A methodology for technical and financial assessment of distributed generation in the US

    SciTech Connect (OSTI)

    Curtiss, P.; Kreider, J.; Cohen, D.

    1999-07-01

    Traditionally, distributed power generation technologies have been considered to help reduce or eliminate the need for grid-connected electricity. It has been difficult, however, to assess the economic benefits of such technologies due to a lack of computer tools and data related to operating characteristics. This paper discusses a method for performing such as assessment based on electrical and thermal building loads, existing utility rate structures, standard economic parameters, tangible benefits from distributed resource and T and D benefits, and different control techniques. The paper concludes with an example showing the dependency of the internal rate of return on some of the input parameters.

  18. U.S. Department of Energy PV Roadmaps | Open Energy Information

    Open Energy Info (EERE)

    PV Roadmaps Jump to: navigation, search Logo: U.S. Department of Energy PV Roadmaps Name U.S. Department of Energy PV Roadmaps AgencyCompany Organization United States Department...

  19. Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal Stress Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal Stress Presented at the PV Module ...

  20. Impact of residential PV adoption on Retail Electricity Rates

    SciTech Connect (OSTI)

    Cai, DWH; Adlakha, S; Low, SH; De Martini, P; Chandy, KM

    2013-11-01

    The price of electricity supplied from home rooftop photo voltaic (PV) solar cells has fallen below the retail price of grid electricity in some areas. A number of residential households have an economic incentive to install rooftop PV systems and reduce their purchases of electricity from the grid. A significant portion of the costs incurred by utility companies are fixed costs which must be recovered even as consumption falls. Electricity rates must increase in order for utility companies to recover fixed costs from shrinking sales bases. Increasing rates will, in turn, result in even more economic incentives for customers to adopt rooftop PV. In this paper, we model this feedback between PV adoption and electricity rates and study its impact on future PV penetration and net-metering costs. We find that the most important parameter that determines whether this feedback has an effect is the fraction of customers who adopt PV in any year based solely on the money saved by doing so in that year, independent of the uncertainties of future years. These uncertainties include possible changes in rate structures such as the introduction of connection charges, the possibility of PV prices dropping significantly in the future, possible changes in tax incentives, and confidence in the reliability and maintainability of PV. (C) 2013 Elsevier Ltd. All rights reserved.

  1. Status of High Performance PV: Polycrystalline Thin-Film Tandems

    SciTech Connect (OSTI)

    Symko-Davies, M.

    2005-02-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

  2. Innovations in Wind and Solar PV Financing

    SciTech Connect (OSTI)

    Cory, K.; Coughlin, J.; Jenkin, T.; Pater, J.; Swezey, B.

    2008-02-01

    There is growing national interest in renewable energy development based on the economic, environmental, and security benefits that these resources provide. Historically, greater development of our domestic renewable energy resources has faced a number of hurdles, primarily related to cost, regulation, and financing. With the recent sustained increase in the costs and associated volatility of fossil fuels, the economics of renewable energy technologies have become increasingly attractive to investors, both large and small. As a result, new entrants are investing in renewable energy and new business models are emerging. This study surveys some of the current issues related to wind and solar photovoltaic (PV) energy project financing in the electric power industry, and identifies both barriers to and opportunities for increased investment.

  3. Analytical Improvements in PV Degradation Rate Determination

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

  4. SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Sustainable and Holistic Integration of Energy Storage and Solar PV (SHINES) program develops and demonstrates integrated photovoltaic (PV) and energy storage solutions that are scalable,...

  5. Utility Scale PV Perspective on SunShot Progress and Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Scale PV Perspective on SunShot Progress and Opportunities Utility Scale PV Perspective on SunShot Progress and Opportunities These slides correspond to a presentation ...

  6. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects...

    Office of Environmental Management (EM)

    The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects Data courtesy of National Renewable Energy...

  7. Linkage to Previous International PV Module QA Task Force Workshops; Proposal for Rating System (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Sample, T.; Yamamichi, M.; Kondo, M.

    2013-05-01

    This presentation gives the historical background of the creation of the International PV QA Task Force as an introduction to the PV Module Reliability Workshop.

  8. Notice of Intent to Issue Funding Opportunity for Integrated PV and Energy Storage Systems

    Broader source: Energy.gov [DOE]

    As solar power plants proliferate, the variability and uncertainty of the solar resource poses challenges for integrating PV with electric power systems at both the distribution and bulk system levels. In response to these challenges, the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) has issued a notice of intent (NOI) to release the SunShot Sustainable and Holistic IntegratioN of Energy storage and Solar (SHINES) funding opportunity. SHINES will enable the holistic design, development, and widespread sustainable deployment of low-cost, flexible, and reliable energy storage solutions, and will strive to successfully integrate these solutions into PV power plants. SHINES projects can also focus on demand response and load management to achieve target metrics.

  9. Lessons Learned with Early PV Plant Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Build new distribution line * Build new substation * AlternativeRisk Analysis ... and Distribution Power Flow Results, Substation Capacity and System Protective Devices, ...

  10. PV Validation and Bankability Workshop: San Jose, California

    SciTech Connect (OSTI)

    Granata, J.; Howard, J.

    2011-12-01

    This report is a collaboration between Sandia National Laboratories, the National Renewable Energy Laboratory, and the Florida Solar Energy Center (FSEC). The report provides feedback from the U.S. Department of Energy's (DOE) Solar Program PV Validation and Bankability Workshop in San Jose, California on August 31, 2011. It focuses on the current state of PV in the United States, private funding to fund U.S. PV industry growth, roles and functions of the regional test center program, and ways to improve the current validation and bankability practices.

  11. Identifying Critical Pathways to High-Performance PV: Preprint

    SciTech Connect (OSTI)

    Symko-Davies, M.; Noufi, R.; Kurtz, S.

    2002-05-01

    This conference paper describes the High-Performance Photovoltaic (HiPerf PV)Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment in the 21st century. To accomplish this, the NCPV directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. Details of the subcontractor and in-house progress will be described toward identifying critical pathways of 25% polycrystalline thin-film tandem cells and developing multijunction concentrator modules to 33%.

  12. Final Report- Transforming PV installations toward dispatchable, schedulable energy solutions

    Office of Energy Efficiency and Renewable Energy (EERE)

    Awardee: AE Solar EnergyLocation: Bend, ORSubprogram: Systems IntegrationFunding Program: SEGIS-ACProject: Transforming PV installations toward dispatchable, schedulable energy solutionsPrincipal...

  13. PV Technologies India Ltd Moser Baer Solar Plc | Open Energy...

    Open Energy Info (EERE)

    India Ltd Moser Baer Solar Plc Jump to: navigation, search Name: PV Technologies India Ltd (Moser Baer Solar Plc) Place: New Delhi, Delhi (NCT), India Zip: 110020 Product: One of...

  14. Taunton Municipal Lighting Plant- Residential PV Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Customers of Taunton Municipal Lighting Plant (TMLP) may be eligible for a $1.50/watt rebate on solar photovoltaic (PV) installations, up to a maximum rebate of $4,500. The system must be installed...

  15. City of Shasta Lake Electric Utility- PV Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    City of Shasta Lake Electric Utility is providing rebates to their customers for the purchase of photovoltaic (PV) systems. The rebate levels will decrease annually over the life of the program. ...

  16. Agenda for the PV Module Reliability Workshop, February 26 -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PID Failure of c-Si and Thin-Film Modules and Possible Correlation with Leakage Currents Comparing Accelerated Testing and Outdoor Exposure Study on PID Resistance of HIT PV ...

  17. AEP Texas Central Company - SMART Source Solar PV Rebate Program...

    Broader source: Energy.gov (indexed) [DOE]

    from the date of installation. PV modules must be new and certified to UL 1703, and inverters must be new and certified to UL 1741. All installations must be performed service...

  18. Utility Participation in the Rooftop Solar PV Market Transcript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... systems that we're installing are identical to grid ... reducing the impact of cost shift from solar to non-solar customers ... 3.5 megawatts of PV panels and hundreds of ...

  19. Instrumentation for Evaluating PV System Performance Losses from Snow

    SciTech Connect (OSTI)

    Marion, B.; Rodriguez, J.; Pruett, J.

    2009-01-01

    When designing a photovoltaic (PV) system for northern climates, the prospective installation should be evaluated with respect to the potentially detrimental effects of snow preventing solar radiation from reaching the PV cells. The extent to which snow impacts performance is difficult to determine because snow events also increase the uncertainty of the solar radiation measurement, and the presence of snow needs to be distinguished from other events that can affect performance. This paper describes two instruments useful for evaluating PV system performance losses from the presence of snow: (1) a pyranometer with a heater to prevent buildup of ice and snow, and (2) a digital camera for remote retrieval of images to determine the presence of snow on the PV array.

  20. Impact of Soiling and Pollution on PV Generation Performance

    Office of Energy Efficiency and Renewable Energy (EERE)

    This 5-page technical letter addresses air pollution effects on PV performance by quantifying, based on a literature search, the average annual loss due to soiling, the impact of cleaning, and a recommended cleaning schedule.

  1. Tucson's Solar Experience: Developing PV with RFPs and PPAs

    Broader source: Energy.gov [DOE]

    This presentation was given January 15, 2013, by Bruce Plenk, Solar Coordinator for the City of Tucson, Arizona, as part of the CommRE Developing PV Projects With RFPs and PPAs webinar.

  2. Full Steam Ahead for PV in US Homes?

    SciTech Connect (OSTI)

    Bolinger, Mark A; Barbose, Galen; Wiser, Ryan

    2009-01-15

    In October 2008, the United States Congress extended both the residential and commercial solar investment tax credits (ITCs) for an unprecedented eight years, lifted the $2,000 cap on the residential credit, removed the prohibition on utility use of the commercial credit, and eliminated restrictions on the use of both credits in conjunction with the Alternative Minimum Tax. These significant changes, which apply to systems placed in service on or after January 1, 2009, will increase the value of the solar credits for residential system owners in particular, and are likely--in conjunction with state, local, and utility rebate programs targeting solar--to spur significant growth in residential, commercial, and utility-scale photovoltaic (PV) installations in the years ahead. This article focuses specifically on the residential credit, describing three areas in which removal of the $2,000 cap on the residential ITC will have significant implications for PV rebate program administrators, PV system owners, and the PV industry.

  3. Accuracy of Outdoor PV Module Temperature Monitoring Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13ps1univljubjanovec.pdf More Documents & Publications QA TG5 UV, ...

  4. Yangrui PV Technology Fujian Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    (Fujian) Co Ltd Place: Fujian Province, China Product: Involved in the production of a-Si thin-film cells using a turnkey technology supplier. References: Yangrui PV Technology...

  5. Giant Leap Forward Toward Quality Assurance of PV Modules (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Sample, T.; Yamamichi, M.

    2012-03-01

    The presentation describes the composition of and motivation for the International PV QA Task Force, then describes the presentations and discussion that occurred at the workshop on Feb. 29th, 2012.

  6. U.S. PV-Suitable Rooftop Resources

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Phillips, Caleb; Melius, Jenny

    2016-06-14

    This dataset contains zipcode resolution estimates of suitable area on small (1,000-5,000 m^2), medium (5,000-10,000 m^2) and large (>10,000 m^2) buildings' rooftops for PV deployment.

  7. NREL: Photovoltaics Research - Solar PV Recycling Identified as Untapped

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business Opportunity Solar PV Recycling Identified as Untapped Business Opportunity June 27, 2016 A new report, End-of-Life Management: Solar Photovoltaic Panels, highlights that recycling or repurposing solar PV panels at the end of their roughly 30-year lifetime can unlock a large stock of raw materials and other valuable components. The report, co-authored by NREL, the International Renewable Energy Agency (IRENA) and the International Energy Agency's Photovoltaic Power Systems Programme

  8. Device Tosses Out Unusable PV Wafers - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Device Tosses Out Unusable PV Wafers January 11, 2013 Photo of a scientist in safety glasses using tweezers to hold a rectangular gray silicon wafer. He is about to load it into a large silver-metallic instrument. Enlarge image NREL postdoctoral scientist Rene Rivero readies a wafer for the Silicon Photovoltaic Wafer Screening System. Credit: Dennis Schroeder Silicon wafers destined to become photovoltaic (PV) cells can take a bruising through assembly lines, as they are oxidized, annealed,

  9. Time-dependent first-principles approaches to PV materials

    SciTech Connect (OSTI)

    Miyamoto, Yoshiyuki

    2013-12-10

    Computational scheme for designing photovoltaic (PV) materials is presented. First-principles electron dynamics of photo-excitation and subsequent electron-hole splitting is performed based on the time-dependent density functional theory. Photo-induced enhancement of dipole moment was observed in a polar crystal and a donor-acceptor molecular pair. These experiences will pave a way to design PV material from first-principles simulations.

  10. PV Module Intraconnect Thermomechanical Durability Damage Prediction Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Module Intraconnect Thermomechanical Durability Damage Prediction Model PV Module Intraconnect Thermomechanical Durability Damage Prediction Model Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps2_dow_gaston.pdf (1.26 MB) More Documents & Publications FY2015 Status Report: CIRFT Testing of High-Burnup Used Nuclear Fuel Rods from Pressurized Water Reactor and BWR Environments 2014 Propulsion Materials R&D Annual

  11. DOE-LPO-MiniReport_PV_v10

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy's Loan Programs O ce (LPO) was instrumental in launching the utility-scale photovoltaic (PV) solar industry in the United States. In 2009, there was not a single PV solar facility larger than 100 megawatts (MW) operating in the United States. Despite growing demand for this clean, renewable energy source, developers faced challenges securing the financing necessary to build these large projects. LPO stepped in to address this market barrier by providing more than $4.6

  12. Microgrid-Ready Solar PV; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-01

    Designing new solar projects to be 'microgrid-ready' enables the U.S. DoD, other federal agencies, and the private sector to plan future microgrid initiatives to utilize solar PV as a generating resource. This fact sheet provides background information with suggested language for several up-front considerations that can be added to a solar project procurement or request for proposal (RFP) that will help ensure that PV systems are built for future microgrid connection.

  13. Understanding the Temperature and Humidity Environment Inside a PV Module

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Presentation), NREL (National Renewable Energy Laboratory) | Department of Energy Understanding the Temperature and Humidity Environment Inside a PV Module (Presentation), NREL (National Renewable Energy Laboratory) Understanding the Temperature and Humidity Environment Inside a PV Module (Presentation), NREL (National Renewable Energy Laboratory) This PowerPoint presentation was originally given by Michael Kempe of NREL in February 2013 detailing a project funded by the SunShot Initiative.

  14. Integrating Solar PV into Energy Services Performance Contracts: Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Local Governments Nationwide | Department of Energy Integrating Solar PV into Energy Services Performance Contracts: Options for Local Governments Nationwide Integrating Solar PV into Energy Services Performance Contracts: Options for Local Governments Nationwide The guide contains several helpful resources, including a comprehensive list of the economic, operational, resilience, and sustainability-related benefits of entering into a performance contract and using that contract to invest

  15. PV Derived Data for Predicting Performance; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Marion, Bill

    2015-09-14

    A method is described for providing solar irradiance data for modeling PV performance by using measured PV performance data and back-solving for the unknown direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI), which can then be used to model the performance of PV systems of any size, PV array tilt, or PV array azimuth orientation. Ideally situated for using the performance data from PV modules with micro-inverters, the PV module operating current is used to determine the global tilted irradiance (GTI), and a separation model is then used to determine the DNI and DHI from the GTI.

  16. Continuing Developments in PV Risk Management: Strategies, Solutions, and Implications

    SciTech Connect (OSTI)

    Lowder, T.; Mendelsohn, M.; Speer, B.; Hill, R.

    2013-02-01

    As the PV industry matures, successful risk management practices will become more imperative to ensure investor confidence, control costs, and facilitate further growth. This report discusses several key aspects of risk management during the commercial- and utility-scale project life cycle, from identification of risks, to the process of mitigating and allocating those risks among project parties, to transferring those risks through insurance. The report also explores novel techniques in PV risk management, options to offload risks onto the capital markets, and innovative insurance policies (namely warranty policies) that address risks unique to the PV sector. One of the major justifications for robust risk management in the PV industry is the cost-reduction opportunities it affords. If the PV industry can demonstrate the capability to successfully manage its risks, thereby inspiring confidence in financiers, it may be able to obtain a lower cost of capital in future transactions. A lower cost of capital translates to a lower cost of energy, which will in turn enhance PV?s competitiveness at a time when it will have to rely less on subsidies to support its market penetration.

  17. How Can We Make PV Modules Safer?: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J. H.; Kurtz, S. R.

    2012-06-01

    Safety is a prime concern for the photovoltaics (PV) industry. As a technology deployed on residential and commercial buildings, it is critical that PV not cause damage to the buildings nor harm the occupants. Many of the PV systems on buildings are of sufficiently high voltage (300 to 600 Volts dc) that they may present potential hazards. These PV systems must be safe in terms of mechanical damage (nothing falls on someone), shock hazard (no risk of electrical shock when touching an exposed circuit element), and fire (the modules neither cause nor promote a fire). The present safety standards (IEC 61730 and UL 1703) do a good job of providing for design rules and test requirements for mechanical, shock, and spread of flame dangers. However, neither standard addresses the issue of electrical arcing within a module that can cause a fire. To make PV modules, they must be designed, built, and installed with an emphasis on minimizing the potential for open circuits and ground faults. This paper provides recommendations on redundant connection designs, robust mounting methods, and changes to the safety standards to yield safer PV modules.

  18. Performance evaluation of stand alone hybrid PV-wind generator

    SciTech Connect (OSTI)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  19. Lightweight PV Inverters: Dual Bi-Directional IGBTs Modules Enables Breakthrough PV Inverter Using Current Modulation Topology

    SciTech Connect (OSTI)

    2012-01-30

    Solar ADEPT Project: PV inverters convert DC power generated by modules into usable AC power. IPCs initial 30kW 94lb. PV inverter reduces the weight of comparable 30kW PV inverters by 90%reducing the cost of materials, manufacturing, shipping, and installation. With ARPA-E support, new bi-directional silicon power switches will be developed, commercialized, and utilized in IPCs next-generation PV inverter. With these components, IPC will produce 100kW inverters that weight less than 100lb., reducing the weight of conventional 3,000lb. 100kW inverters by more than 95%. The new power switches will cut IPCs $/W manufacturing cost in half, as well as further reduce indirect shipping and installation costs.

  20. EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_htv_fraunhofer_dietrich.pdf (612.23 KB) More Documents & Publications PID-free C-Si PV Module Using Novel Chemically-Tempered Glass Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Characterization of Dynamic Loads on Solar Modules with Respect to Fracture of Solar

  1. EERE Success Story-Raising the Bar for Quality PV Modules | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Raising the Bar for Quality PV Modules EERE Success Story-Raising the Bar for Quality PV Modules October 30, 2014 - 4:58pm Addthis As photovoltaics (PV) markets expand across the United States the manufacture of safe, reliable, and high-quality PV modules is critical to achieve cost competitive solar energy. Since the development and codification of testing standards for PV modules requires a lengthy multiyear process, Department of Energy's SunShot Initiative and National Renewable

  2. All-AC, building integrated PV system for mass deployment of residential PV systems

    SciTech Connect (OSTI)

    Kevin Cammack; Joe Augenbraun; Dan Sun

    2011-05-17

    Project Objective: Solar Red is developing novel PV installation methods and system designs that lower costs dramatically and allow seamless integration into the structure of any sloped roof using existing construction tools and processes. The overall objective of this project is to address the greatest barriers to massive adoption of residential and small commercial rooftop solar scalability of installation and total cost of ownership - by moving Solar Reds snap-in/snap-out PV installation method from the pre-prototype design phase to the development and construction of a deployed prototype system. Financial Summary: ? Funded through ARRA, DOE and Match Funding ? Original Project Budget: $229,310 o DOE/ARRA Funding: $150,000 o Match Funding: $79,310 ? Actual Cost: $216,598 o DOE/ARRA Funding: $150,000 o Match Funding: $120,087 Project Summary: Develop snap-in/snap-out mounting system for low-cost, thin-film solar panels Lower installation cost Lower sales costs Lower training/expertise barriers

  3. Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    of Community Counseling Services. Clean Cities Helps Nonprofit Cut Fuel Costs with Propane Green Means Go for Hybrid and Alternative Fuel Taxis Project Overview Positive...

  4. Controlling of grid connected photovoltaic lighting system with fuzzy logic

    SciTech Connect (OSTI)

    Saglam, Safak; Ekren, Nazmi; Erdal, Hasan

    2010-02-15

    In this study, DC electrical energy produced by photovoltaic panels is converted to AC electrical energy and an indoor area is illuminated using this energy. System is controlled by fuzzy logic algorithm controller designed with 16 rules. Energy is supplied from accumulator which is charged by photovoltaic panels if its energy would be sufficient otherwise it is supplied from grid. During the 1-week usage period at the semester time, 1.968 kWh energy is used from grid but designed system used 0.542 kWh energy from photovoltaic panels at the experiments. Energy saving is determined by calculations and measurements for one education year period (9 months) 70.848 kWh. (author)

  5. Public Meeting: Physical Characterization of Grid-Connected Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The first presentation is the welcome presentation by Roland Risser, the director of the ... - Welcome and Introduction (R. Risser) Presentations - Scope and Draft ...

  6. EERE Success Story-Nevada Deploys Grid-Connected Electricity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 16, 2013 - 12:00am Addthis The Southeast Propane Autogas Development Program, an 8.6 million Clean Cities Recovery Act project, finished bringing 1,200 propane vehicles and 11 ...

  7. Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal...

    Office of Environmental Management (EM)

    freedom of mobility and energy security, while lowering costs and reducing impacts on the environment. Addthis Related Articles Nationwide: Southeast Propane Autogas Development...

  8. First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project...

    Office of Science (SC) Website

    ORPC's TidGen(tm) turbine generator unit. R&D Opportunity Advanced water power technologies include devices capable of extracting electrical power from waves, water currents, and ...

  9. Final Report- Hawaii's Clean Energy Transformation and Grid Connection

    Broader source: Energy.gov [DOE]

    Awardee: Hawaii Department of Business, Economic Development, and TourismLocation: Honolulu, HISubprogram: Soft CostsFunding Program: Solar Projects to Reduce Market Barriers and Non-Hardware...

  10. High-efficiency grid-connected photovoltaic module integrated...

    Office of Scientific and Technical Information (OSTI)

    step-up DC-DC converter and a single-phase full-bridge DC-AC inverter. An active-clamping flyback converter with a voltage-doubler rectifier is proposed for the step-up ...

  11. Transatlantic Workshop on Electric Vehicles and Grid Connectivity

    Broader source: Energy.gov [DOE]

    The U.S.-EU Energy Council convened equipment suppliers and manufacturers, utilities, policymakers, standards organizations, and government agencies to discuss mutually beneficial near-term actions to accelerate the introduction of electric vehicles to the market.

  12. NREL: Technology Deployment - Distributed Generation Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaborative Distributed Generation Interconnection Collaborative Become a Member DGIC members are included in quarterly informational meetings and discussions related to distributed PV interconnection practices, research, and innovation. For more information, contact Kristen Ardani. Subscribe to DGIC Updates Learn about upcoming webinars and other DGIC announcements. NREL facilitates the Distributed Generation Interconnection Collaborative (DGIC) with support from the Smart Electric Power

  13. Economic analysis of PV hybrid power system: Pinnacles National Monument

    SciTech Connect (OSTI)

    Rosenthal, A.; Durand, S.; Thomas, M.; Post, H.

    1997-11-01

    PV hybrid electric power systems can offer an economically competitive alternative to engine generator (genset) systems in many off-grid applications. Besides the obvious `green` advantages of producing less noise and emissions, the PV hybrid can, in some cases, offer a lower life-cycle cost (LCC) then the genset. This paper evaluates the LCC of the 9.6 kWp PV hybrid power system installed by the National Park Services (NPS) at Pinnacles National Monument, CA. NPS motivation for installation of this hybrid was not based on economics, but rather the need to replace two aging diesel gensets with an alternative that would be quieter, fuel efficient, and more in keeping with new NPS emphasis on sustainable design and operations. In fact, economic analysis shows a lower 20-year LCC for the installed PV hybrid than for simple replacement of the two gensets. The analysis projects are net savings by the PV hybrid system of $83,561 and over 162,000 gallons of propane when compared with the genset-only system. This net savings is independent of the costs associated with environmental emissions. The effects of including emissions costs, according to NPS guidelines, is also discussed. 5 refs., 2 figs., 3 tabs.

  14. Geographic smoothing of solar PV: Results from Gujarat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Klima, Kelly; Apt, Jay

    2015-09-24

    We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log–log domain at high frequencies f,more » ranging from f-1.23 to f-1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a f-1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an f-1.76 spectrum. Furthermore, this suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.« less

  15. PV Cell and Module Calibration Activities at NREL

    SciTech Connect (OSTI)

    Emery, K.; Anderberg, A.; Kiehl, J.; Mack, C.; Moriarty, T.; Ottoson, L.; Rummel, S.

    2005-11-01

    The performance of PV cells and modules with respect to standard reference conditions is a key indicator of progress of a given technology. This task provides the U.S. terrestrial PV community with the most accurate measurements that are technically possible in a timely fashion. The international module certification and accreditation program PVGap requires certification laboratories to maintain their calibration traceability path to groups like this one. The politics of a "world record" efficiency requires that an independent laboratory perform these measurements for credibility. Most manufacturers base their module peak watt rating upon standards and reference cells calibrated under this task. This task has been involved in reconciling disputes between manufacturers and their cell suppliers in terms of expected versus actual performance. This task has also served as a resource to the PV community for consultation on solar simulation, current versus voltage measurement instrumentation, measurement procedures and measurement artifacts.

  16. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    SciTech Connect (OSTI)

    Enbar, Nadav; Weng, Dean; Klise, Geoffrey Taylor

    2015-12-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives on current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefi t the industry at-large.

  17. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    SciTech Connect (OSTI)

    Enbar, Nadav; Weng, Dean; Klise, Geoffrey Taylor

    2016-01-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives on current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefit the industry at-large.

  18. The importance of hybrid PV-building integration

    SciTech Connect (OSTI)

    Posnansky, M.; Gnos, S.; Coonen, S.

    1994-12-31

    An extensive utilization of photovoltaics for future electricity generation and for hybrid generation of electricity and thermal energy is possible, when PV-panels are designed to become a part of the building envelope itself. Large areas are available, since roofs and facades are perfectly suited for solar energy conversion. Atlantis Energy Ltd. has developed special PV-generators which fulfill at the same time the functions and requirements of conventional building elements. In the context of different R and D projects funded by the Swiss government to implement a series of typical building integrated photovoltaic systems, Atlantis Energy Ltd was entrusted to design and build various hybrid building integrated PV-power plants, four of which are described in this paper.

  19. Recent developments in high-efficiency PV cells

    SciTech Connect (OSTI)

    Deb, S.

    2000-05-22

    Enormous progress has been made in recent years on a number of photovoltaic (PV) materials and devices in terms of conversion efficiencies. Ultrahigh-efficiency (>30{percent}) PV cells have been fabricated from gallium arsenide (GaAs) and its ternary alloys such as gallium indium phosphide (GaInP{sub 2}). The high-efficiency GaAs-based solar cells are being produced on a commercial scale, particularly for space applications. Efficiencies in the range of 18{percent} to 24{percent} have been achieved in traditional silicon-based devices fabricated from both multicrystalline and single-crystal materials. Major advances in efficiency have also been made on various thin-film solar cells based on amorphous silicon (aSi:H), copper gallium indium diselenide (CIGS), and cadmium telluride materials. This paper gives a brief overview of the recent progress in PV cell efficiencies based on these materials and devices.

  20. Resiliency: Planning Ahead for Disasters - Continuum Magazine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    operating standards require grid-connected solar PV systems automatically disconnect from the grid during a power outage to protect utility workers and grid integrity on restart. ...

  1. Soltech | Open Energy Information

    Open Energy Info (EERE)

    search Name: Soltech Place: Hoegaarden, Belgium Zip: B-3320 Product: Soltech, a spin-off of IMEC, assembles and commercialises PV modules (stand alone or grid-connected)...

  2. Modular Power Converters for PV Applications

    SciTech Connect (OSTI)

    Ozpineci, Burak; Tolbert, Leon M

    2012-05-01

    This report describes technical opportunities to serve as parts of a technological roadmap for Shoals Technologies Group in power electronics for PV applications. There are many different power converter circuits that can be used for solar inverter applications. The present applications do not take advantage of the potential for using common modules. We envision that the development of a power electronics module could enable higher reliability by being durable and flexible. Modules would have fault current limiting features and detection circuits such that they can limit the current through the module from external faults and can identify and isolate internal faults such that the remaining modules can continue to operate with only minimal disturbance to the utility or customer. Development of a reliable, efficient, low-cost, power electronics module will be a key enabling technology for harnessing more power from solar panels and enable plug and play operation. Power electronics for computer power supplies, communication equipment, and transportation have all targeted reliability and modularity as key requirements and have begun concerted efforts to replace monolithic components with collections of common smart modules. This is happening on several levels including (1) device level with intelligent control, (2) functional module level, and (3) system module. This same effort is needed in power electronics for solar applications. Development of modular units will result in standard power electronic converters that will have a lower installed and operating cost for the overall system. These units will lead to increased adaptability and flexibility of solar inverters. Incorporating autonomous fault current limiting and reconfiguration capabilities into the modules and having redundant modules will lead to a durable converter that can withstand the rigors of solar power generation for more than 30 years. Our vision for the technology roadmap is that there is no need

  3. Toward integrated PV panels and power electronics using printing technologies

    SciTech Connect (OSTI)

    Ababei, Cristinel; Yuvarajan, Subbaraya; Schulz, Douglas L.

    2010-07-15

    In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

  4. Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation

    SciTech Connect (OSTI)

    Davidson, Carolyn; Margolis, Robert

    2015-10-01

    Before investing in a system, a prospective PV customer must not only have initial concept 'buy in,' but also be able to evaluate the tradeoffs associated with different system parameters. Prospective customers might need to evaluate disparate costs for each system attribute by comparing multiple bids. The difficulty of making such an evaluation with limited information can create a cognitive barrier to proceeding with the investment. This analysis leverages recently available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  5. Final Report- 1366 Project Silicon: Reclaiming US Silicon PV Leadership

    Office of Energy Efficiency and Renewable Energy (EERE)

    1366 Technologies’ Project Silicon addresses two of the major goals of the DOE’s PV Manufacturing Initiative Part 2 program: 1) How to reclaim a strong silicon PV manufacturing presence and; 2) How to lower the levelized cost of electricity (“LCOE”) for solar to $0.05-$0.07/kWh, enabling wide-scale U.S. market adoption. To achieve these two goals, US companies must commercialize disruptive, high-value technologies that are capable of rapid scaling, defensible from foreign competition, and suited for US manufacturing. These are the aims of 1366 Technologies Direct Wafer ™ process.

  6. Outdoor PV Module Degradation of Current-Voltage Parameters: Preprint

    SciTech Connect (OSTI)

    Smith, R. M.; Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    Photovoltaic (PV) module degradation rate analysis quantifies the loss of PV power output over time and is useful for estimating the impact of degradation on the cost of energy. An understanding of the degradation of all current-voltage (I-V) parameters helps to determine the cause of the degradation and also gives useful information for the design of the system. This study reports on data collected from 12 distinct mono- and poly-crystalline modules deployed at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Most modules investigated showed < 0.5%/year decrease in maximum power due to short-circuit current decline.

  7. Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Newark, Delaware) - JCAP Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop (Newark, Delaware) Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop (Newark, Delaware) Mon, Mar 7, 2016 11:30am 11:30 Tue, Mar 8, 2016 12:30pm 12:30 University of Delaware Newark, Delaware Frances Houle, "Solar Fuels Systems Research in the Joint Center for Artificial Photosynthesis" March 6 80th Annual Conference of the DPG & DPG Spring Meeting

  8. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. • Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. • Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. • Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind’s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level

  9. Berkeley Program Offers New Option for Financing Residential PV Systems

    SciTech Connect (OSTI)

    Bolinger, Mark A

    2008-07-06

    Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy-efficiency improvements and often featuring low interest rates, longer terms and no-hassle application requirements. Historically, these loan programs have had mixed success (particularly for PV), for a variety of reasons, including a historical lack of homeowner interest in PV, a lack of program awareness, a reduced appeal in a low-interest-rate environment, and a tendency for early PV adopters to be wealthy and not in need of financing. Some of these barriers have begun to fade. Most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates. The passage of the Energy Policy Act of 2005 (EPAct 2005), however, introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from a number of U.S cities concerning a new type of PV financing program. Led by the city of Berkeley, Calif., these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax assessments, rather than a more

  10. Impact of SolarSmart Subdivisions on SMUD's Distribution System

    SciTech Connect (OSTI)

    McNutt, P.; Hambrick, J.; Keesee, M.; Brown, D.

    2009-07-01

    This study analyzes the distribution impacts of high penetrations of grid-integrated renewable energy systems, specifically photovoltaic (PV) equipped SolarSmart Homes found in the Anatolia III Residential Community.

  11. Emerging Issues and Challenges with Integrating High Levels of Solar into the Distribution System

    Broader source: Energy.gov [DOE]

    Wide use of advanced inverters could double the electricity-distribution system’s hosting capacity for distributed PV at low costs—from about 170 GW to 350 GW (see Palmintier et al. 2016). At the distribution system level, increased variable generation due to high penetrations of distributed PV (typically rooftop and smaller ground-mounted systems) could challenge the management of distribution voltage, potentially increase wear and tear on electromechanical utility equipment, and complicate the configuration of circuit-breakers and other protection systems—all of which could increase costs, limit further PV deployment, or both. However, improved analysis of distribution system hosting capacity—the amount of distributed PV that can be interconnected without changing the existing infrastructure or prematurely wearing out equipment—has overturned previous rule-of-thumb assumptions such as the idea that distributed PV penetrations higher than 15% require detailed impact studies. For example, new analysis suggests that the hosting capacity for distributed PV could rise from approximately 170 GW using traditional inverters to about 350 GW with the use of advanced inverters for voltage management, and it could be even higher using accessible and low-cost strategies such as careful siting of PV systems within a distribution feeder and additional minor changes in distribution operations. Also critical to facilitating distributed PV deployment is the improvement of interconnection processes, associated standards and codes, and compensation mechanisms so they embrace PV’s contributions to system-wide operations. Ultimately SunShot-level PV deployment will require unprecedented coordination of the historically separate distribution and transmission systems along with incorporation of energy storage and “virtual storage,” which exploits improved management of electric vehicle charging, building energy systems, and other large loads. Additional analysis and

  12. DOE Request for Information (RFI) DE-FOA-0000153 PV Manufacturing Initiative: Summary Report, February 2010

    SciTech Connect (OSTI)

    Not Available

    2010-02-01

    This document sums up results of the PV Manufacturing Request for Information (RFI), DE-FOA-0000153, which supports the PV Manufacturing Initiative, launched by DOE Solar Energy Technologies Program.

  13. Why Are Resiential PV Prices in Germany So Much Lower Than in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Why Are Resiential PV Prices in Germany So Much Lower Than in the United States? Why Are Resiential PV Prices in Germany So Much Lower Than in the United States? The U.S. ...

  14. Final Report - Integration of Behind-the-Meter PV Fleet Forecasts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Final Report - Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System ...

  15. Climatically Diverse Data Set for Flat-Plate PV Module Model Validations (Presentation)

    SciTech Connect (OSTI)

    Marion, B.

    2013-05-01

    Photovoltaic (PV) module I-V curves were measured at Florida, Colorado, and Oregon locations to provide data for the validation and development of models used for predicting the performance of PV modules.

  16. Breakout Session: Getting in the Loop: PV Hardware Recycling and Sustainability

    Broader source: Energy.gov [DOE]

    As PV system installations continue to ramp up across the United States, the process for handling used and expired PV modules in the next  20-30 years would benefit from serious planning and...

  17. Delamination Failures in Long-Term Field Aged PV Modules from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delamination Failures in Long-Term Field Aged PV Modules from Point of View of Encapsulant Delamination Failures in Long-Term Field Aged PV Modules from Point of View of ...

  18. China Sunergy Co Ltd CEEG Nanjing PV Tech Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Sunergy Co Ltd CEEG Nanjing PV Tech Co Ltd Jump to: navigation, search Name: China Sunergy Co Ltd (CEEG Nanjing PV-Tech Co Ltd) Place: Nanjing, Jiangsu Province, China Zip: 211100...

  19. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects Data courtesy of National Renewable Energy Lab. Chart

  20. Video: O&M Best Practices for Small-Scale PV Systems Success Story |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy O&M Best Practices for Small-Scale PV Systems Success Story Video: O&M Best Practices for Small-Scale PV Systems Success Story See how the Federal Energy Management Program's eTraining course, O&M Best Practices for Small-Scale PV Systems, helped federal energy and facility management professionals complete successful photovoltaics (PV) projects

  1. Demonstrating Reliability of 3M Ultra-Barrier Film for Flexible PV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Demonstrating Reliability of 3M Ultra-Barrier Film for Flexible PV Applications Demonstrating Reliability of 3M Ultra-Barrier Film for Flexible PV Applications Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps5_3m_nachtigal.pdf (936.72 KB) More Documents & Publications OLED Stakeholder Report Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Comparing Accelerated

  2. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations | Department of Energy Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean Power Research logo.jpg This project will address the need for a more accurate approach to forecasting net utility load by taking into consideration the contribution of customer-sited PV energy generation. Tasks within the project are designed to integrate novel PV power

  3. A Comparison of Key PV Backsheet and Module Properties from Fielded Module

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exposures and Accelerated Test Conditions | Department of Energy A Comparison of Key PV Backsheet and Module Properties from Fielded Module Exposures and Accelerated Test Conditions A Comparison of Key PV Backsheet and Module Properties from Fielded Module Exposures and Accelerated Test Conditions Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps5_dupont_gambogi.pdf (781.38 KB) More Documents & Publications Agenda for the PV Module

  4. A Multi-Perspective Approach to PV Module Reliability and Degradation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A Multi-Perspective Approach to PV Module Reliability and Degradation A Multi-Perspective Approach to PV Module Reliability and Degradation Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps2_bnl_colli.pdf (2.86 MB) More Documents & Publications Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado DOE-STD-1628-2013 State Energy Advisory Board October 2012 Meeting

  5. PV technology differences and discrepancies in modelling between simulation programs and measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sensitivity and limitations of present and alternative PV models The sensitivity and limitations of present and alternative PV models Steve Ransome - Independent PV Consultant, SRCL, UK Juergen Sutterlueti - TEL Solar, Switzerland Sandia PV Modelling Workshop; Santa Clara, USA 1 st May 2013 Published by Sandia National Laboratories with the permission of the author * Many recent independent outdoor studies find <±5% kWh/kWp (with different rankings between technologies) there's less kWh/kWp

  6. Literature Review of the Effects of UV Exposure on PV Modules | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Literature Review of the Effects of UV Exposure on PV Modules Literature Review of the Effects of UV Exposure on PV Modules This PowerPoint presentation, originally presented at the NREL 2013 PV Module Reliability Workshop on Feb. 26-27, 2013 in Denver, CO, presents the literature review of the effects of prolonged UV exposure of PV modules, with a particular emphasis on UV exposure testing using artificial light sources, including fluorescent, Xenon, and metal halide lamps.

  7. Rethinking Standby & Fixed Cost Charges: Regulatory & Rate Design Pathways to Deeper Solar PV Cost Reductions

    Office of Energy Efficiency and Renewable Energy (EERE)

    While solar PV's impact on utilities has been frequently discussed the past year, little attention has been paid to the potentially impact posed by solar PV-specific rate designs (often informally referred to as solar "fees" or "taxes") upon non-hardware "soft" cost reductions. In fact, applying some rate designs to solar PV customers could potentially have a large impact on the economics of PV systems.

  8. PV QA Task Group #2: Thermal and Mechanical Fatigue Including Vibration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy QA Task Group #2: Thermal and Mechanical Fatigue Including Vibration PV QA Task Group #2: Thermal and Mechanical Fatigue Including Vibration Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_tmf_taskgroup2.pdf (500.28 KB) More Documents & Publications Linkage to Previous International PV Module QA Task Force Workshops: Proposal for Rating System Agenda for the PV Module Reliability Workshop, February 26 - 27 2013,

  9. Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps1_purdue_dongaonkar.pdf (2.37 MB) More Documents & Publications Advanced Combustion Modeling with STAR-CD using Transient Flemelet Models: TIF and TPV Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden,

  10. Summary of the 3rd International PV Module Quality Assurance Forum |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Summary of the 3rd International PV Module Quality Assurance Forum Summary of the 3rd International PV Module Quality Assurance Forum Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps3_pvtec_saito.pdf (586.08 KB) More Documents & Publications Overview of Progress in Thermoelectric Power Generation Technologies in Japan Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Overview of

  11. Third-Party Financing and Power Purchase Agreements for Public Sector PV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects | Department of Energy Third-Party Financing and Power Purchase Agreements for Public Sector PV Projects Third-Party Financing and Power Purchase Agreements for Public Sector PV Projects Introductory presentation on the third party PPA model for public sector PV. Date May 2009 Topic Solar Basics & Educating Consumers Financing, Incentives & Market Analysis Subprogram Soft Costs Author National Renewable Energy Laboratory may_27th_ppa_for_pv_webinar_jason_coughlin_nrel.ppt

  12. Video: O&M Best Practices for Small-Scale PV Systems Success Story |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Video: O&M Best Practices for Small-Scale PV Systems Success Story Video: O&M Best Practices for Small-Scale PV Systems Success Story See how the Federal Energy Management Program's eTraining course, O&M Best Practices for Small-Scale PV Systems, helped federal energy and facility management professionals complete successful photovoltaics (PV) projects.

  13. Opportunities and Challenges for Power Electronics in PV Modules (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Deline, C.; Wohlgemuth, J.; Marion, B.; Granata, J.

    2011-02-01

    The presentation describes the value of adding DC converters and other power electronics to modules to improve their output even when shading or bad cells would otherwise decrease the module output. The presentation was part of a workshop sponsored by ARPA-E exploring the opportunities for power electronics to support PV applications.

  14. Silicon Oxynitride Thin Film Barriers for PV Packaging (Poster)

    SciTech Connect (OSTI)

    del Cueto, J. A.; Glick, S. H.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2006-10-03

    Dielectric, adhesion-promoting, moisture barriers comprised of silicon oxynitride thin film materials (SiOxNy with various material stoichiometric compositions x,y) were applied to: 1) bare and pre-coated soda-lime silicate glass (coated with transparent conductive oxide SnO2:F and/or aluminum), and polymer substrates (polyethylene terephthalate, PET, or polyethylene napthalate, PEN); plus 2) pre- deposited photovoltaic (PV) cells and mini-modules consisting of amorphous silicon (a-Si) and copper indium gallium diselenide (CIGS) thin-film PV technologies. We used plasma enhanced chemical vapor deposition (PECVD) process with dilute silane, nitrogen, and nitrous oxide/oxygen gas mixtures in a low-power (< or = 10 milliW per cm2) RF discharge at ~ 0.2 Torr pressure, and low substrate temperatures < or = 100(degrees)C, over deposition areas ~ 1000 cm2. Barrier properties of the resulting PV cells and coated-glass packaging structures were studied with subsequent stressing in damp-heat exposure at 85(degrees)C/85% RH. Preliminary results on PV cells and coated glass indicate the palpable benefits of the barriers in mitigating moisture intrusion and degradation of the underlying structures using SiOxNy coatings with thicknesses in the range of 100-200 nm.

  15. PV Systems Reliability Final Technical Report: Ground Fault Detection

    SciTech Connect (OSTI)

    Lavrova, Olga; Flicker, Jack David; Johnson, Jay

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  16. Selecting Solar. Insights into Residential Photovoltaic (PV) Quote Variation

    SciTech Connect (OSTI)

    Davidson, Carolyn; Margolis, Robert

    2015-10-01

    This analysis leverages available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  17. Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)

    SciTech Connect (OSTI)

    Gessert, T. A.

    2010-09-01

    Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

  18. Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)

    SciTech Connect (OSTI)

    Goodrich, A. C.; Woodhouse, M.; James, T.

    2011-02-01

    EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

  19. DOE Request for Information (RFI) DE-FOA-0000153 PV Manufacturing Initiative

    SciTech Connect (OSTI)

    none,

    2010-02-01

    This draft report summarizes the results of the U.S. Department of Energy PV Manufacturing Request for Information (RFI), DE-FOA-0000153, that was released in September 2009. The PV Manufacturing Initiative is intended to help facilitate the development of a strong PV manufacturing industry in the United States.

  20. Going Solar in Record Time with Plug-and-Play PV | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Going Solar in Record Time with Plug-and-Play PV Going Solar in Record Time with Plug-and-Play PV April 24, 2012 - 6:10pm Addthis A plug-and-play PV system is envisioned as a...