National Library of Energy BETA

Sample records for grid stability advanced

  1. Advanced Grid Integration (AGI) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mission » Advanced Grid Integration (AGI) Advanced Grid Integration (AGI) Advanced Grid Integration (AGI) The Advanced Grid Integration (AGI) Division leads the federal government's efforts to accelerate modernization of the U.S. electric power grid. By enabling the two-way flow of electricity and information, a Smart Grid will increase the reliability, efficiency, and security of electric transmission, distribution, and use. A modern grid provides the foundation for a strong economy by

  2. Grid Integration & Advanced Inverters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration & Advanced Inverters - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  3. Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC...

    Energy Savers [EERE]

    Electric Grid Integration - Advanced Concepts (SEGIS-AC) Funding Opportunity Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC) Funding Opportunity Through the Solar ...

  4. Solar Energy Grid Integration Systems-Advanced Concepts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Solar Energy Grid Integration Systems-Advanced Concepts Solar Energy Grid Integration Systems-Advanced Concepts On September 1, 2011, DOE announced 25.9 ...

  5. 2014 Advanced Grid Modeling Program Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Grid Modeling Program Peer Review 2014 Advanced Grid Modeling Program Peer Review The Office of Electricity Delivery and Energy Reliability held a peer review of the Advanced Grid Modeling Program on June 17-18, 2014 in Alexandria, VA. The Advanced Grid Modeling Research Program leverages scientific research in mathematics for application to power system models and software tools. More than 17 projects were presented at the 2014 Advanced Grid Modeling Peer Review. The agenda is provided

  6. 2014 Advanced Grid Modeling Peer Review Presentations - Day One Afternoon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Session | Department of Energy Afternoon Session 2014 Advanced Grid Modeling Peer Review Presentations - Day One Afternoon Session The Office of Electricity Delivery and Energy Reliability held a peer review of the Advanced Grid Modeling Program on June 17-18, 2014 in Alexandria, VA. The Advanced Grid Modeling Research Program leverages scientific research in mathematics for application to power system models and software tools. More than 17 projects were presented at the 2014 Advanced Grid

  7. 2014 Advanced Grid Modeling Peer Review Presentations - Day One Morning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Session | Department of Energy Morning Session 2014 Advanced Grid Modeling Peer Review Presentations - Day One Morning Session The Office of Electricity Delivery and Energy Reliability held a peer review of the Advanced Grid Modeling Program on June 17-18, 2014 in Alexandria, VA. The Advanced Grid Modeling Research Program leverages scientific research in mathematics for application to power system models and software tools. More than 17 projects were presented at the 2014 Advanced Grid

  8. 2014 Advanced Grid Modeling Peer Review Presentations - Day Two Afternoon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Session | Department of Energy Afternoon Session 2014 Advanced Grid Modeling Peer Review Presentations - Day Two Afternoon Session The Office of Electricity Delivery and Energy Reliability held a peer review of the Advanced Grid Modeling Program on June 17-18, 2014 in Alexandria, VA. The Advanced Grid Modeling Research Program leverages scientific research in mathematics for application to power system models and software tools. More than 17 projects were presented at the 2014 Advanced Grid

  9. 2014 Advanced Grid Modeling Peer Review Presentations - Day Two Morning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Session | Department of Energy Morning Session 2014 Advanced Grid Modeling Peer Review Presentations - Day Two Morning Session The Office of Electricity Delivery and Energy Reliability held a peer review of the Advanced Grid Modeling Program on June 17-18, 2014 in Alexandria, VA. The Advanced Grid Modeling Research Program leverages scientific research in mathematics for application to power system models and software tools. More than 17 projects were presented at the 2014 Advanced Grid

  10. 2014 Advanced Grid Modeling Program Peer Review Presentations Now Available

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Advanced Grid Modeling Program Peer Review Presentations Now Available 2014 Advanced Grid Modeling Program Peer Review Presentations Now Available July 10, 2014 - 6:01pm Addthis The Office of Electricity Delivery and Energy Reliability held a peer review of the Advanced Grid Modeling Program on June 17-18, 2014 in Alexandria, VA. The Advanced Grid Modeling Research Program leverages scientific research in mathematics for application to power system models and software

  11. Maturity Model for Advancing Smart Grid Interoperability

    SciTech Connect (OSTI)

    Knight, Mark; Widergren, Steven E.; Mater, J.; Montgomery, Austin

    2013-10-28

    AbstractInteroperability is about the properties of devices and systems to connect and work properly. Advancing interoperability eases integration and maintenance of the resulting interconnection. This leads to faster integration, lower labor and component costs, predictability of projects and the resulting performance, and evolutionary paths for upgrade. When specifications are shared and standardized, competition and novel solutions can bring new value streams to the community of stakeholders involved. Advancing interoperability involves reaching agreement for how things join at their interfaces. The quality of the agreements and the alignment of parties involved in the agreement present challenges that are best met with process improvement techniques. The GridWise Architecture Council (GWAC) sponsored by the United States Department of Energy is supporting an effort to use concepts from capability maturity models used in the software industry to advance interoperability of smart grid technology. An interoperability maturity model has been drafted and experience is being gained through trials on various types of projects and community efforts. This paper describes the value and objectives of maturity models, the nature of the interoperability maturity model and how it compares with other maturity models, and experiences gained with its use.

  12. 2014 Advanced Grid Modeling Program Peer Review Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    leverages scientific research in mathematics for application to power system models and software tools. 17 projects were presented at the 2014 Advanced Grid Modeling Peer Review. ...

  13. 2014 Advanced Grid Modeling Peer Review Presentations - Day One...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Grid Modeling Research Program leverages scientific research in mathematics for application to power system models and software tools. More than 17 projects were ...

  14. Smart Grid Week: New Project in Oregon Helping Advance the Grid of the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future | Department of Energy New Project in Oregon Helping Advance the Grid of the Future Smart Grid Week: New Project in Oregon Helping Advance the Grid of the Future June 7, 2013 - 2:07pm Addthis Rows of battery racks at Portland General Electric’s Salem Smart Power Center in Salem, Ore. PGE is a participant in the Battelle-led Pacific Northwest Smart Grid Demonstration Project, which will use the center’s 5-megawatt energy storage system to test several smart grid technologies

  15. Advancing Visibility of Grid Operations to Improve Reliability | Department

    Energy Savers [EERE]

    of Energy Visibility of Grid Operations to Improve Reliability Advancing Visibility of Grid Operations to Improve Reliability June 6, 2014 - 1:30pm Addthis David Ortiz David Ortiz Deputy Assistant Secretary, Energy Infrastructure Modeling and Analysis The nation's electricity transmission system, which consists of three grids (one in the West, one in the East, and one in Texas), is one of the biggest and most complex machines ever constructed. Commonly referred to as "the grid", it

  16. DOE Explores Potential of Wind Power to Stabilize Electric Grids

    Broader source: Energy.gov [DOE]

    A team at DOE's National Renewable Energy Laboratory is exploring the capability of wind energy to stabilize the nation's electrical grid when conventional power plants shut down. A 1.5 megawatt wind turbine, connected to a cutting edge grid simulator, is being tested at the National Wind Technology Center.

  17. ARPA-E: Advancing the Electric Grid

    SciTech Connect (OSTI)

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2014-02-24

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  18. ARPA-E: Advancing the Electric Grid

    ScienceCinema (OSTI)

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2014-03-13

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  19. Advanced Modeling Grid Research Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development » Advanced Modeling Grid Research Program Advanced Modeling Grid Research Program The electric power industry has undergone extensive changes over the past several decades and become substantially more complex, dynamic, and uncertain, as new market rules, regulatory policies, and technologies have been adopted. The availability of more detailed data about system conditions from devices, such as phasor measurement units (PMUs) for wide area visibility and advanced meter

  20. Technology Advances Needed for Photovoltaics to Achieve Widespread Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Price Parity | Department of Energy Technology Advances Needed for Photovoltaics to Achieve Widespread Grid Price Parity Technology Advances Needed for Photovoltaics to Achieve Widespread Grid Price Parity Abstract: To quantify the potential value of technological advances to the photovoltaics (PV) sector, this paper examines the impact of changes to key PV systems parameters on the levelized cost of energy (LCOE). The parameters selected include module manufacturing cost, efficiency,

  1. Renewable source controls for grid stability.

    SciTech Connect (OSTI)

    Byrne, Raymond Harry; Elliott, Ryan Thomas; Neely, Jason C.; Silva Monroy, Cesar Augusto; Schoenwald, David Alan; Grant, Lisa

    2012-12-01

    The goal of this study was to evaluate the small signal and transient stability of the Western Electric- ity Coordinating Council (WECC) under high penetrations of renewable energy, and to identify control technologies that would improve the system performance. The WECC is the regional entity responsible for coordinating and promoting bulk electric system reliability in the Western Interconnection. Transient stability is the ability of the power system to maintain synchronism after a large disturbance while small signal stability is the ability of the power system to maintain synchronism after a small disturbance. Tran- sient stability analysis usually focuses on the relative rotor angle between synchronous machines compared to some stability margin. For this study we employed generator speed relative to system speed as a metric for assessing transient stability. In addition, we evaluated the system transient response using the system frequency nadir, which provides an assessment of the adequacy of the primary frequency control reserves. Small signal stability analysis typically identi es the eigenvalues or modes of the system in response to a disturbance. For this study we developed mode shape maps for the di erent scenarios. Prony analysis was applied to generator speed after a 1.4 GW, 0.5 second, brake insertion at various locations. Six di erent WECC base cases were analyzed, including the 2022 light spring case which meets the renewable portfolio standards. Because of the di culty in identifying the cause and e ect relationship in large power system models with di erent scenarios, several simulations were run on a 7-bus, 5-generator system to isolate the e ects of di erent con gurations. Based on the results of the study, for a large power system like the WECC, incorporating frequency droop into wind/solar systems provides a larger bene t to system transient response than replacing the lost inertia with synthetic inertia. From a small signal stability perspective, the increase in renewable penetration results in subtle changes to the system modes. In gen- eral, mode frequencies increase slightly, and mode shapes remain similar. The system frequency nadir for the 2022 light spring case was slightly lower than the other cases, largely because of the reduced system inertia. However, the nadir is still well above the minimum load shedding frequency of 59.5 Hz. Finally, several discrepancies were identi ed between actual and reported wind penetration, and additional work on wind/solar modeling is required to increase the delity of the WECC models.

  2. High-Performance Computing for Advanced Smart Grid Applications

    SciTech Connect (OSTI)

    Huang, Zhenyu; Chen, Yousu

    2012-07-06

    The power grid is becoming far more complex as a result of the grid evolution meeting an information revolution. Due to the penetration of smart grid technologies, the grid is evolving as an unprecedented speed and the information infrastructure is fundamentally improved with a large number of smart meters and sensors that produce several orders of magnitude larger amounts of data. How to pull data in, perform analysis, and put information out in a real-time manner is a fundamental challenge in smart grid operation and planning. The future power grid requires high performance computing to be one of the foundational technologies in developing the algorithms and tools for the significantly increased complexity. New techniques and computational capabilities are required to meet the demands for higher reliability and better asset utilization, including advanced algorithms and computing hardware for large-scale modeling, simulation, and analysis. This chapter summarizes the computational challenges in smart grid and the need for high performance computing, and present examples of how high performance computing might be used for future smart grid operation and planning.

  3. Department of Energy Announces $8.5 Million to Advance Solar Energy Grid Integration Systems

    Broader source: Energy.gov [DOE]

    Stage III awards through DOE's Sandia National Laboratories to help advance solar energy deployment and grid reliability

  4. Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2015: Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers Advanced Oxidation & Stabilization of PAN-Based Carbon ...

  5. Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers Vehicle Technologies Office Merit Review 2015: Advanced ...

  6. Category:Smart Grid Projects - Advanced Metering Infrastructure...

    Open Energy Info (EERE)

    Central Maine Power Company Smart Grid Project Cheyenne Light, Fuel and Power Company Smart Grid Project City of Fulton, Missouri Smart Grid Project City of Glendale Water and...

  7. US Recovery Act Smart Grid Projects - Advanced Metering Infrastructure...

    Open Energy Info (EERE)

    Municipal Light Department Smart Grid Project Marblehead Massachusetts 1,346,175 2,692,350 Navajo Tribal Utility Association Smart Grid Project Ft. Defiance Arizona...

  8. Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Vehicle Technologies Office Merit Review 2015: Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers Advanced Oxidation & ...

  9. EERE-Funded Project Aims to Stabilize the Energy Grid | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy EERE-Funded Project Aims to Stabilize the Energy Grid EERE-Funded Project Aims to Stabilize the Energy Grid April 9, 2013 - 12:00am Addthis With EERE support, AE Solar Energy is demonstrating and commercializing a set of new technologies that can increase the stability, reliability, and functionality of the electricity grid-€improvements that are becoming more essential as more solar energy systems come online. The company's projects include the following: Creating a method to

  10. Advancing Smart Grid Interoperability and Implementing NIST's Interoperability Roadmap

    SciTech Connect (OSTI)

    Basso,T.; DeBlasio, R.

    2010-04-01

    The IEEE American National Standards project P2030TM addressing smart grid interoperability and the IEEE 1547 series of standards addressing distributed resources interconnection with the grid have been identified in priority action plans in the Report to NIST on the Smart Grid Interoperability Standards Roadmap. This paper presents the status of the IEEE P2030 development, the IEEE 1547 series of standards publications and drafts, and provides insight on systems integration and grid infrastructure. The P2030 and 1547 series of standards are sponsored by IEEE Standards Coordinating Committee 21.

  11. 2014 Advanced Grid Modeling Peer Review Presentations - Day One...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Alberto Del Rosso, EPRI PDF icon Dynamic Paradigm for Grid Operations - Henry Huang, PNNL PDF icon Development of Dynamic Models & Tools for Interconnection-wide ...

  12. The prospects for magnetohydrodynamic stability in advanced tokamak regimes

    SciTech Connect (OSTI)

    Manickam, J.; Chance, M.S.; Jardin, S.C.; Kessel, C.; Monticello, D.; Pomphrey, N.; Reiman, A.; Wang, C.; Zakharov, L.E. )

    1994-05-01

    Stability analysis of advanced regime tokamaks is presented. Here advanced regimes are defined to include configurations where the ratio of the bootstrap current, [ital I][sub BS], to the total plasma current, [ital I][sub [ital p

  13. Advanced Platform for Development and Evaluation of Grid Interconnecti...

    Office of Scientific and Technical Information (OSTI)

    the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1. The architecture and test sequencing of this evaluation tool, along with a ...

  14. Advanced Platform for Development and Evaluation of Grid Interconnecti...

    Office of Scientific and Technical Information (OSTI)

    This paper, presented at the IEEE Green Technologies Conference 2013, describes a Grid ... standard conformance of an ICS according to the procedures in IEEE Std 1547.1 (TM). ...

  15. Advanced Grid Modeling Program Peer Review June 17-18, 2014

    Broader source: Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability will hold a peer review of the Advanced Grid Modeling Program on June 17-18, 2014, at the Hilton Alexandria Old Town in Alexandria, VA.

  16. Solar Electric Grid Integration- Advanced Concepts (SEGIS-AC) Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Solar Electric Grid Integration – Advanced Concepts (SEGIS-AC) program, DOE is funding solar projects that are targeting ways to develop power electronics and build smarter, more...

  17. 2014 Advanced Grid Modeling Peer Review Presentations - Day Two...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The afternoon presentations from Day Two of the Peer Review are below: PDF icon Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control -Naresh Acharya, GE ...

  18. An Advanced Platform for Development and Evaluation of Grid Interconne...

    Office of Scientific and Technical Information (OSTI)

    bi-directional power flow, advanced metering, and improved communications is gaining attention and being implemented by many electric utilities. In support of this shifting...

  19. Advancing the State of the Grid in Tennessee | Department of Energy

    Energy Savers [EERE]

    the State of the Grid in Tennessee Advancing the State of the Grid in Tennessee October 20, 2014 - 12:06pm Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability Today, I joined the Electric Power Board (EPB) of Chattanooga and DOE's Oak Ridge National Laboratory (ORNL), as well as Congressional and local dignitaries and members of the Tennessee community, for the launch of an exciting new partnership that is designed to

  20. PROJECT PROFILE: Stabilizing the Power System in 2035 and Beyond: Evolving from Grid-Following to Grid-Forming Distributed Inverter Controllers (SuNLaMP)

    Broader source: Energy.gov [DOE]

    Adding large amounts of photovoltaic (PV) solar energy onto the grid creates significant challenges for future grid operations, since the electric power grid currently operates with rotational inertia from fossil fuel-driven machines. However, PV inverters are power-electronic devices with no inherent inertia. This project will develop a suite of inverter controllers to ensure the long-term viability of electric power grid infrastructure and address the large reductions in system-wide inertia with high penetrations of PV. These grid-forming inverter controllers will allow each inverter to act as a controllable voltage source that dynamically adjusts its output to ensure system-level stability, synchronization, and voltage regulation.

  1. Using Micro-Synchrophasor Data for Advanced Distribution Grid Planning and Operations Analysis

    SciTech Connect (OSTI)

    Stewart, Emma; Kiliccote, Sila; McParland, Charles; Roberts, Ciaran

    2014-07-01

    This report reviews the potential for distribution-grid phase-angle data that will be available from new micro-synchrophasors (µPMUs) to be utilized in existing distribution-grid planning and operations analysis. This data could augment the current diagnostic capabilities of grid analysis software, used in both planning and operations for applications such as fault location, and provide data for more accurate modeling of the distribution system. µPMUs are new distribution-grid sensors that will advance measurement and diagnostic capabilities and provide improved visibility of the distribution grid, enabling analysis of the grid’s increasingly complex loads that include features such as large volumes of distributed generation. Large volumes of DG leads to concerns on continued reliable operation of the grid, due to changing power flow characteristics and active generation, with its own protection and control capabilities. Using µPMU data on change in voltage phase angle between two points in conjunction with new and existing distribution-grid planning and operational tools is expected to enable model validation, state estimation, fault location, and renewable resource/load characterization. Our findings include: data measurement is outstripping the processing capabilities of planning and operational tools; not every tool can visualize a voltage phase-angle measurement to the degree of accuracy measured by advanced sensors, and the degree of accuracy in measurement required for the distribution grid is not defined; solving methods cannot handle the high volumes of data generated by modern sensors, so new models and solving methods (such as graph trace analysis) are needed; standardization of sensor-data communications platforms in planning and applications tools would allow integration of different vendors’ sensors and advanced measurement devices. In addition, data from advanced sources such as µPMUs could be used to validate models to improve/ensure accuracy, providing information on normally estimated values such as underground conductor impedance, and characterization of complex loads. Although the input of high-fidelity data to existing tools will be challenging, µPMU data on phase angle (as well as other data from advanced sensors) will be useful for basic operational decisions that are based on a trend of changing data.

  2. Secretary Chu Announces More than $57 Million in Recovery Act Funding to Advance Smart Grid Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE also announces the release of a new smart grid report and the development of a smart grid clearinghouse

  3. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants Vahan Gevorgian and Barbara O'Neill National Renewable Energy Laboratory Technical Report NREL/TP-5D00-65368 January 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

  4. Foundational Report Series. Advanced Distribution management Systems for Grid Modernization (Importance of DMS for Distribution Grid Modernization)

    SciTech Connect (OSTI)

    Wang, Jianhui

    2015-09-01

    Grid modernization is transforming the operation and management of electric distribution systems from manual, paper-driven business processes to electronic, computer-assisted decisionmaking. At the center of this business transformation is the distribution management system (DMS), which provides a foundation from which optimal levels of performance can be achieved in an increasingly complex business and operating environment. Electric distribution utilities are facing many new challenges that are dramatically increasing the complexity of operating and managing the electric distribution system: growing customer expectations for service reliability and power quality, pressure to achieve better efficiency and utilization of existing distribution system assets, and reduction of greenhouse gas emissions by accommodating high penetration levels of distributed generating resources powered by renewable energy sources (wind, solar, etc.). Recent “storm of the century” events in the northeastern United States and the lengthy power outages and customer hardships that followed have greatly elevated the need to make power delivery systems more resilient to major storm events and to provide a more effective electric utility response during such regional power grid emergencies. Despite these newly emerging challenges for electric distribution system operators, only a small percentage of electric utilities have actually implemented a DMS. This paper discusses reasons why a DMS is needed and why the DMS may emerge as a mission-critical system that will soon be considered essential as electric utilities roll out their grid modernization strategies.

  5. Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon lm006_warren_2011_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers Advanced Oxidation & Stabilization

  6. Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon lm_04_paulauskas.pdf More Documents & Publications Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers Vehicle Technologies Office Merit Review 2015: Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers Advanced Oxidation & Stabilization

  7. Industry Perspectives on Advanced Inverters for U.S. Solar Photovoltaic Systems. Grid Benefits, Deployment Challenges, and Emerging Solutions

    SciTech Connect (OSTI)

    Reiter, Emerson; Ardani, Kristen; Margolis, Robert; Edge, Ryan

    2015-09-01

    To clarify current utility strategies and other considerations related to advanced inverter deployment, we interviewed 20 representatives from 11 leading organizations closely involved with advanced inverter pilot testing, protocols, and implementation. Included were representatives from seven utilities, a regional transmission operator, an inverter manufacturer, a leading solar developer, and a consortium for grid codes and standards. Interview data represent geographically the advanced inverter activities identified in SEPA's prior survey results--most interviewed utilities serve California, Arizona, and Hawaii, though we also interviewed others from the Northeast, Mid-Atlantic, and Southeast.

  8. Accelerating development of advanced inverters : evaluation of anti-islanding schemes with grid support functions and preliminary laboratory demonstration.

    SciTech Connect (OSTI)

    Neely, Jason C.; Gonzalez, Sigifredo; Ropp, Michael; Schutz, Dustin

    2013-11-01

    The high penetration of utility interconnected photovoltaic (PV) systems is causing heightened concern over the effect that variable renewable generation will have on the electrical power system (EPS). These concerns have initiated the need to amend the utility interconnection standard to allow advanced inverter control functionalities that provide: (1) reactive power control for voltage support, (2) real power control for frequency support and (3) better tolerance of grid disturbances. These capabilities are aimed at minimizing the negative impact distributed PV systems may have on EPS voltage and frequency. Unfortunately, these advanced control functions may interfere with island detection schemes, and further development of advanced inverter functions requires a study of the effect of advanced functions on the efficacy of antiislanding schemes employed in industry. This report summarizes the analytical, simulation and experimental work to study interactions between advanced inverter functions and anti-islanding schemes being employed in distributed PV systems.

  9. Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm006_paulauskas_2012_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers Vehicle Technologies Office Merit Review 2014: Advanced Oxidation & Stabiliza

  10. Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon lm006_paulauskas_2010_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers Vehicle Technologies Office Merit Review 2014: Advanced Oxidation &

  11. Industry Perspectives on Advanced Inverters for U.S. Solar Photovoltaic Systems: Grid Benefits, Deployment Challenges, and Emerging Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Perspectives on Advanced Inverters for U.S. Solar Photovoltaic Systems: Grid Benefits, Deployment Challenges, and Emerging Solutions Emerson Reiter, Kristen Ardani, and Robert Margolis National Renewable Energy Laboratory Ryan Edge Solar Electric Power Association Technical Report NREL/TP-7A40-65063 September 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This

  12. Grid Architecture

    Broader source: Energy.gov (indexed) [DOE]

    ... Physical and financial exchanges between these separately regulated entities may involve ... 4.21 Architectural Insight 7 In the chaos theory view of grid stability, the seeds of wide ...

  13. Smart Grid Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Smart-grid features include demand-response capabilities, advanced controls, DER integration, increased situational awareness, smart metering, advancement of ancillary services, ...

  14. Probability-Based Software for Grid Optimization: Improved Power System Operations Using Advanced Stochastic Optimization

    SciTech Connect (OSTI)

    2012-02-24

    GENI Project: Sandia National Laboratories is working with several commercial and university partners to develop software for market management systems (MMSs) that enable greater use of renewable energy sources throughout the grid. MMSs are used to securely and optimally determine which energy resources should be used to service energy demand across the country. Contributions of electricity to the grid from renewable energy sources such as wind and solar are intermittent, introducing complications for MMSs, which have trouble accommodating the multiple sources of price and supply uncertainties associated with bringing these new types of energy into the grid. Sandia’s software will bring a new, probability-based formulation to account for these uncertainties. By factoring in various probability scenarios for electricity production from renewable energy sources in real time, Sandia’s formula can reduce the risk of inefficient electricity transmission, save ratepayers money, conserve power, and support the future use of renewable energy.

  15. A Multi-layer, Data-driven Advanced Reasoning Tool for Intelligent Data Mining and Analysis for Smart Grids

    SciTech Connect (OSTI)

    Lu, Ning; Du, Pengwei; Greitzer, Frank L.; Guo, Xinxin; Hohimer, Ryan E.; Pomiak, Yekaterina G.

    2012-12-31

    This paper presents the multi-layer, data-driven advanced reasoning tool (M-DART), a proof-of-principle decision support tool for improved power system operation. M-DART will cross-correlate and examine different data sources to assess anomalies, infer root causes, and anneal data into actionable information. By performing higher-level reasoning “triage” of diverse data sources, M-DART focuses on early detection of emerging power system events and identifies highest priority actions for the human decision maker. M-DART represents a significant advancement over today’s grid monitoring technologies that apply offline analyses to derive model-based guidelines for online real-time operations and use isolated data processing mechanisms focusing on individual data domains. The development of the M-DART will bridge these gaps by reasoning about results obtained from multiple data sources that are enabled by the smart grid infrastructure. This hybrid approach integrates a knowledge base that is trained offline but tuned online to capture model-based relationships while revealing complex causal relationships among data from different domains.

  16. Advanced Inverter Functions to Support High Levels of Distributed Solar: Policy and Regulatory Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    This paper explains how advanced inverter functions (sometimes called 'smart inverters') contribute to the integration of high levels of solar PV generation onto the electrical grid and covers the contributions of advanced functions to maintaining grid stability. Policy and regulatory considerations associated with the deployment of advanced inverter functions are also introduced.

  17. Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop: Part III -- Grid Interconnection System Evaluator: Preprint

    SciTech Connect (OSTI)

    Lundstrom, B.; Shirazi, M.; Coddington, M.; Kroposki, B.

    2013-01-01

    This paper, presented at the IEEE Green Technologies Conference 2013, describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1 (TM). The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through the use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.

  18. Buildings-to-Grid Technical Opportunities: From the Buildings Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BUILDINGS-TO-GRID TECHNICAL OPPORTUNITIES From the Buildings Perspective 1 Sila Kiliccote and Mary Ann Piette, Lawrence Berkeley National Laboratory Mahabir Bhandari, Oak Ridge National Laboratory Technological advances in demand response and energy efficiency have increased the utility of residential and commercial buildings for owner and operators. Yet buildings still lack the capacity to adapt to both internal and external changes, such as occupant needs or grid stability concerns. Basic

  19. Grid Certificates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Certificates Grid Certificates Grid certificates allow you to access NERSC (and other Grid enabled computing facilities) via grid interfaces. Grid certificates are credentials that must be initialized for use with grid tools. Once a certificate is initialized it is automatically used by the grid tools to authenticate the user to the grid resource. Getting a Short Lived NERSC CA Certificate The NERSC Online CA now offers a quick and painless way to obtain grid certificates. You can obtain a

  20. SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  1. Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  2. Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  3. Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  4. Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  5. Grid Modernization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  6. Design, synthesis, and stability of organic glasses for advanced optical applications

    SciTech Connect (OSTI)

    Chen, S.H.; Shi, H.; Mastrangelo, J.C.; Blanton, T.N.

    1995-12-31

    Organic materials have been actively pursued in recent years for various advanced optical applications based on active and passive device concepts. Polymeric materials are unique in their ability to form glassy films or fibers with good morphological stability, whereas low molar mass counterparts are characterized by relative case of processing. To take advantage of the inherent merits of these two distinctive classes of materials, a novel molecular design concept is formulated in which functional moieties are chemically bonded to excluded-volume cores, resulting in amorphous or liquid crystalline glasses. A series of model compounds have been synthesized based on mesogenic and NLO moieties attached to cyclohexane and bicyclooctene rings. Morphological stability has also characterized in terms of crystallization velocity as a function of temperature. It is concluded that stereochemistry plays a critical role in the ability to vitrify and that low molar mass systems can be as morphologically stable as typical slowly crystallizing polymers, e.g. polystyrene.

  7. Guest Editorial Introduction to the Special Issue on 'Advanced Signal Processing Techniques and Telecommunications Network Infrastructures for Smart Grid Analysis, Monitoring, and Management'

    SciTech Connect (OSTI)

    Bracale, Antonio; Barros, Julio; Cacciapuoti, Angela Sara; Chang, Gary; Dall'Anese, Emiliano

    2015-06-10

    Electrical power systems are undergoing a radical change in structure, components, and operational paradigms, and are progressively approaching the new concept of smart grids (SGs). Future power distribution systems will be characterized by the simultaneous presence of various distributed resources, such as renewable energy systems (i.e., photovoltaic power plant and wind farms), storage systems, and controllable/non-controllable loads. Control and optimization architectures will enable network-wide coordination of these grid components in order to improve system efficiency and reliability and to limit greenhouse gas emissions. In this context, the energy flows will be bidirectional from large power plants to end users and vice versa; producers and consumers will continuously interact at different voltage levels to determine in advance the requests of loads and to adapt the production and demand for electricity flexibly and efficiently also taking into account the presence of storage systems.

  8. Guest Editorial Introduction to the Special Issue on 'Advanced Signal Processing Techniques and Telecommunications Network Infrastructures for Smart Grid Analysis, Monitoring, and Management'

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bracale, Antonio; Barros, Julio; Cacciapuoti, Angela Sara; Chang, Gary; Dall'Anese, Emiliano

    2015-06-10

    Electrical power systems are undergoing a radical change in structure, components, and operational paradigms, and are progressively approaching the new concept of smart grids (SGs). Future power distribution systems will be characterized by the simultaneous presence of various distributed resources, such as renewable energy systems (i.e., photovoltaic power plant and wind farms), storage systems, and controllable/non-controllable loads. Control and optimization architectures will enable network-wide coordination of these grid components in order to improve system efficiency and reliability and to limit greenhouse gas emissions. In this context, the energy flows will be bidirectional from large power plants to end users andmore » vice versa; producers and consumers will continuously interact at different voltage levels to determine in advance the requests of loads and to adapt the production and demand for electricity flexibly and efficiently also taking into account the presence of storage systems.« less

  9. Overview of advanced technologies for stabilization of {sup 238}Pu-contaminated waste

    SciTech Connect (OSTI)

    Ramsey, K.B.; Foltyn, E.M.; Heslop, J.M.

    1998-02-01

    This paper presents an overview of potential technologies for stabilization of {sup 238}Pu-contaminated waste. Los Alamos National Laboratory (LANL) has processed {sup 238}PuO{sub 2} fuel into heat sources for space and terrestrial uses for the past several decades. The 88-year half-life of {sup 238}Pu and thermal power of approximately 0.6 watts/gram make this isotope ideal for missions requiring many years of dependable service in inaccessible locations. However, the same characteristic which makes {sup 238}Pu attractive for heat source applications, the high Curie content (17 Ci/gram versus 0.06 Ci/gram for 239{sup Pu}), makes disposal of {sup 238}Pu-contaminated waste difficult. Specifically, the thermal load limit on drums destined for transport to the Waste Isolation Pilot Plant (WIPP), 0.23 gram per drum for combustible waste, is impossible to meet for nearly all {sup 238}Pu-contaminated glovebox waste. Use of advanced waste treatment technologies including Molten Salt Oxidation (MSO) and aqueous chemical separation will eliminate the combustible matrix from {sup 238}Pu-contaminated waste and recover kilogram quantities of {sup 238}PuO{sub 2} from the waste stream. A conceptual design of these advanced waste treatment technologies will be presented.

  10. Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

    2011-02-01

    Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

  11. Buildings-to-Grid Technical Opportunities: From the Grid Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BUILDING-TO-GRID TECHNICAL OPPORTUNITIES From the Grid Perspective 1 Ben Kroposki, National Renewable Energy Laboratory Rob Pratt, Pacific Northwest National Laboratory To successfully operate and deliver its promise of a seamlessly integrated buildings-grid infrastructure, a transactive energy ecosystem requires new approaches to planning and operating the power grid. These approaches include technological advances in the area of standards, measurements, control strategy, and theories so that

  12. SGIP Smart Grid Interoperabilty Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SGIP Smart Grid Interoperability Panel Building2Grid Integration Dave Hardin David Holmberg ∗ The SGIP was explicitly established to support NIST in fulfilling its responsibilities pursuant to the Energy Independence and Security Act of 2007 ("EISA"). SGIP 1.0: NIST-funded, SGIP 2.0: Member-funded ∗ SGIP's mission is to provide a framework for coordinating all Smart Grid stakeholders in an effort to accelerate standards harmonization and advance the Interoperability of Smart Grid

  13. Vehicle Technologies Office Merit Review 2014: Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  14. Vehicle Technologies Office Merit Review 2015: Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  15. Grid Integration

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

  16. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... MODERN GRID S T R A T E G Y AMI Demand Response Distribution Management Systems Advanced OMS Distribution Automation Micro-grids Interface with RTO's Dynamic Ratings Wide area ...

  17. NREL: Distributed Grid Integration - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Photo of a man in safety glasses working with laboratory equipment. NREL's distributed grid integration researchers conduct testing and evaluation at the one-of-a-kind Energy Systems Integration Facility. NREL researchers work on advanced approaches to grid interconnection and control technologies, energy management, and grid support applications by performing testing, data visualization, modeling and analysis, and developing standards and codes. Through these efforts, NREL helps

  18. SMART GRID:

    Energy Savers [EERE]

    SMART GRID: an introduction. Exploring the imperative of revitalizing America's electric infrastructure. How a smarter grid works as an enabling engine for our economy, our environment and our future. prepared for the U.S. Department of Energy by Litos Strategic Communication under contract No. DE-AC26-04NT41817, Subtask 560.01.04 the SMART GRID: an introduction. the SMART GRID: an introduction. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United

  19. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Advanced Components Sensing and Measurement Decision Support Smart meters Smart sensors Demand Response DG dispatch Distribution automation Micro-grids Markets Work force ...

  20. NREL Smart Grid Projects

    SciTech Connect (OSTI)

    Hambrick, J.

    2012-01-01

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  1. Category:Smart Grid Projects | Open Energy Information

    Open Energy Info (EERE)

    con":"","text":"AdvancedSystemsofEfficientUseofElectricalEnergySURE(SmartGridProject)" title"Advanced Systems of Efficient Use of Electrical...

  2. Smart Grid Investments Improve Grid Reliability, Resilience,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) ...

  3. Technology Advances Needed for Photovoltaics to Achieve Widespread...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advances Needed for Photovoltaics to Achieve Widespread Grid Price Parity Technology Advances Needed for Photovoltaics to Achieve Widespread Grid Price Parity Abstract:...

  4. Elforsk Smart grid programme (Smart Grid Project) | Open Energy...

    Open Energy Info (EERE)

    in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Transmission Smart Grid Projects - Grid Automation Distribution Smart Grid Projects...

  5. Electrical vehicles impacts on the grids (Smart Grid Project...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Home application Smart Grid Projects - Customer...

  6. smart grid | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart grid smart-grid.jpg The U.S. electric power grid provides electricity to over three hundred million people every day. This electricity powers some of the most advanced technologies in the world but is surprisingly delivered through a mostly aging, outmoded and over-stressed network. A need exists for greater consumer participation, greater reliability and power quality, and affordability-all critical components for the stable, secure electric power grid of the future. Currently, NETL is

  7. Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid

    SciTech Connect (OSTI)

    Chertkov, Michael; Bent, Russell W.; Backhaus, Scott N.

    2012-07-10

    Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.

  8. Smart Grid Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  9. Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  10. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Transmission Grid Integration Transmission Grid...

  11. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Distribution Grid Integration Distribution Grid...

  12. Zeolite Y adsorbents with high vapor uptake capacity and robust cycling stability for potential applications in advanced adsorption heat pumps

    SciTech Connect (OSTI)

    Li, XS; Narayanan, S; Michaelis, VK; Ong, TC; Keeler, EG; Kim, H; Mckay, IS; Griffin, RG; Wang, EN

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg, Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the lab-scale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N-2 sorption, Al-27/Si-29 MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N-2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications. (C) 2014 Elsevier Inc. All rights reserved.

  13. Smart Grid Animation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Animation Smart Grid Animation

  14. Customer Value Proposition Smart Grid (KEL) (Smart Grid Project...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  15. NSTAR Smart Grid Pilot

    SciTech Connect (OSTI)

    Rabari, Anil; Fadipe, Oloruntomi

    2014-03-31

    NSTAR Electric & Gas Corporation (“the Company”, or “NSTAR”) developed and implemented a Smart Grid pilot program beginning in 2010 to demonstrate the viability of leveraging existing automated meter reading (“AMR”) deployments to provide much of the Smart Grid functionality of advanced metering infrastructure (“AMI”), but without the large capital investment that AMI rollouts typically entail. In particular, a central objective of the Smart Energy Pilot was to enable residential dynamic pricing (time-of-use “TOU” and critical peak rates and rebates) and two-way direct load control (“DLC”) by continually capturing AMR meter data transmissions and communicating through customer-sited broadband connections in conjunction with a standardsbased home area network (“HAN”). The pilot was supported by the U.S. Department of Energy’s (“DOE”) through the Smart Grid Demonstration program. NSTAR was very pleased to not only receive the funding support from DOE, but the guidance and support of the DOE throughout the pilot. NSTAR is also pleased to report to the DOE that it was able to execute and deliver a successful pilot on time and on budget. NSTAR looks for future opportunities to work with the DOE and others in future smart grid projects.

  16. Smart Grid Demonstration Project

    SciTech Connect (OSTI)

    Miller, Craig; Carroll, Paul; Bell, Abigail

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and posted for universal access at www.nreca.coop/smartgrid. This research is available for widespread distribution to both cooperative members and non-members. These reports are listed in Table 1.2. Interoperability: The deliverable in this area was the advancement of the MultiSpeak™ interoperability standard from version 4.0 to version 5.0, and improvement in the MultiSpeak™ documentation to include more than 100 use cases. This deliverable substantially expanded the scope and usability of MultiSpeak, ™ the most widely deployed utility interoperability standard, now in use by more than 900 utilities. MultiSpeak™ documentation can be accessed only at www.multispeak.org. Cyber Security: NRECA’s starting point was to develop cyber security tools that incorporated succinct guidance on best practices. The deliverables were: cyber security extensions to MultiSpeak,™ which allow more security message exchanges; a Guide to Developing a Cyber Security and Risk Mitigation Plan; a Cyber Security Risk Mitigation Checklist; a Cyber Security Plan Template that co-ops can use to create their own cyber security plans; and Security Questions for Smart Grid Vendors.

  17. GENI: Grid Hardware and Software

    SciTech Connect (OSTI)

    2012-01-09

    GENI Project: The 15 projects in ARPA-E’s GENI program, short for “Green Electricity Network Integration,” aim to modernize the way electricity is transmitted in the U.S. through advances in hardware and software for the electric grid. These advances will improve the efficiency and reliability of electricity transmission, increase the amount of renewable energy the grid can utilize, and provide energy suppliers and consumers with greater control over their power flows in order to better manage peak power demand and cost.

  18. NREL: Transmission Grid Integration - Grid Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powertrains at the Duke Energy Electric Grid Research, Innovation & Development Center in North Charleston, South Carolina September 17-18, 2014. NWTC Controllable Grid Interface...

  19. FINAL REPORT - CENTER FOR GRID MODERNIZATION

    SciTech Connect (OSTI)

    Markiewicz, Daniel R

    2008-06-30

    The objective of the CGM was to develop high-priority grid modernization technologies in advanced sensors, communications, controls and smart systems to enable use of real-time or near real-time information for monitoring, analyzing and managing distribution and transmission grid conditions. The key strategic approach to carry out individual CGM research and development (R&D) projects was through partnerships, primarily with the GridApp Consortium utility members.

  20. Experimental Characterization of a Grid-Loss Event on a 2.5-MW Dynamometer Using Advanced Operational Modal Analysis: Preprint

    SciTech Connect (OSTI)

    Helsen, J.; Weijtjens, W.; Guo, Y.; Keller, J.; McNiff, B.; Devriendt, C.; Guillaume, P.

    2015-02-01

    This paper experimentally investigates a worst case grid loss event conducted on the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) drivetrain mounted on the 2.5MW NREL dynamic nacelle test-rig. The GRC drivetrain has a directly grid-coupled, fixed speed asynchronous generator. The main goal is the assessment of the dynamic content driving this particular assess the dynamic content of the high-speed stage of the GRC gearbox. In addition to external accelerometers, high frequency sampled measurements of strain gauges were used to assess torque fluctuations and bending moments both at the nacelle main shaft and gearbox high-speed shaft (HSS) through the entire duration of the event. Modal analysis was conducted using a polyreference Least Squares Complex Frequency-domain (pLSCF) modal identification estimator. The event driving the torsional resonance was identified. Moreover, the pLSCF estimator identified main drivetrain resonances based on a combination of acceleration and strain measurements. Without external action during the grid-loss event, a mode shape characterized by counter phase rotation of the rotor and generator rotor determined by the drivetrain flexibility and rotor inertias was the main driver of the event. This behavior resulted in significant torque oscillations with large amplitude negative torque periods. Based on tooth strain measurements of the HSS pinion, this work showed that at each zero-crossing, the teeth lost contact and came into contact with the backside flank. In addition, dynamic nontorque loads between the gearbox and generator at the HSS played an important role, as indicated by strain gauge-measurements.

  1. Eprice (Smart Grid Project) (Switzerland) | Open Energy Information

    Open Energy Info (EERE)

    map Period Feb 2010 Feb 2013 References EU Smart Grid Projects Map1 Overview This project proposes an advanced ICT and control framework for ancillary services (reserve...

  2. Eprice (Smart Grid Project) (Italy) | Open Energy Information

    Open Energy Info (EERE)

    map Period Feb 2010 Feb 2013 References EU Smart Grid Projects Map1 Overview This project proposes an advanced ICT and control framework for ancillary services (reserve...

  3. The Boeing Company Smart Grid Demonstration Project | Open Energy...

    Open Energy Info (EERE)

    Overview Demonstrate an advanced Smart Grid software technology with military-grade cybersecurity for improving regional transmission system planning and operation. The project...

  4. Municipal Utilities' Investment in Smart Grid Technologies Improves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are mid-sized cities that implemented grid modernization activities in multiple areas including advanced metering infrastructure, distribution automation, and customer systems. ...

  5. Buildings-to-Grid Technical Opportunities: From the Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings-to-Grid Technical Opportunities: From the Buildings Perspective Technological advances in demand response and energy efficiency have increased the utility of residential ...

  6. Basis for the US Modern Grid Strategy - A Changing World

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cusp of upgrading our electric grid with some major investments in Advanced Metering Infrastructure, distributed generation, wind turbine farms, and a few Demand Response programs. ...

  7. West Virginia Smart Grid Implementation Plan (WV SGIP) Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... discussed, considering AMI (Advanced Metering Infrastructure), little or no DR (Demand Response) in place (none using smart meters), consumers questioning value of Smart Grid ...

  8. DOE Announces New Projects to Modernize America's Electric Grid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... New decision support tools for integrated planning and operation of distributed energy technologies, such as solar, demand response, and smart consumer appliances. Advances in grid ...

  9. POWER GRID RELIABILITY AND SECURITY

    SciTech Connect (OSTI)

    Bose, Anjan; Venkatasubramanian, Vaithianathan; Hauser, Carl; Bakken, David; Anderson, David; Zhao, Chuanlin; Liu, Dong; Yang, Tao; Meng, Ming; Zhang, Lin; Ning, Jiawei; Tashman, Zaid

    2014-09-30

    This project has led to the development of a real-time simulation platform for electric power grids called Grid Simulator or GridSim for simulating the dynamic and information network interactions of large- scale power systems. The platform consists of physical models of power system components including synchronous generators, loads and control, which are simulated using a modified commercial power simulator namely Transient Stability Analysis Tool (TSAT) [1] together with data cleanup components, as well as an emulated substation level and wide-area power analysis components. The platform also includes realistic representations of communication network middleware that can emulate the real-time information flow back and forth between substations and control centers in wide-area power systems. The platform has been validated on a realistic 6000-bus model of the western American power system. The simulator GridSim developed in this project is the first of its kind in its ability to simulate real-time response of large-scale power grids, and serves as a cost effective real-time stability and control simulation platform for power industry.

  10. Modeling investigation of the stability and irradiation-induced evolution of nanoscale precipitates in advanced structural materials

    SciTech Connect (OSTI)

    Wirth, Brian

    2015-04-08

    Materials used in extremely hostile environment such as nuclear reactors are subject to a high flux of neutron irradiation, and thus vast concentrations of vacancy and interstitial point defects are produced because of collisions of energetic neutrons with host lattice atoms. The fate of these defects depends on various reaction mechanisms which occur immediately following the displacement cascade evolution and during the longer-time kinetically dominated evolution such as annihilation, recombination, clustering or trapping at sinks of vacancies, interstitials and their clusters. The long-range diffusional transport and evolution of point defects and self-defect clusters drive a microstructural and microchemical evolution that are known to produce degradation of mechanical properties including the creep rate, yield strength, ductility, or fracture toughness, and correspondingly affect material serviceability and lifetimes in nuclear applications. Therefore, a detailed understanding of microstructural evolution in materials at different time and length scales is of significant importance. The primary objective of this work is to utilize a hierarchical computational modeling approach i) to evaluate the potential for nanoscale precipitates to enhance point defect recombination rates and thereby the self-healing ability of advanced structural materials, and ii) to evaluate the stability and irradiation-induced evolution of such nanoscale precipitates resulting from enhanced point defect transport to and annihilation at precipitate interfaces. This project will utilize, and as necessary develop, computational materials modeling techniques within a hierarchical computational modeling approach, principally including molecular dynamics, kinetic Monte Carlo and spatially-dependent cluster dynamics modeling, to particular, the interfacial structure of embedded nanoscale precipitates will be evaluated by electronic- and atomic-scale modeling methods, and the efficiency of the validated interfaces for trapping point defects will next be evaluated by atomic-scale modeling (e.g., determining the sink strength of the precipitates), addressing key questions related to the optimal interface characteristics to attract point defects and enhance their recombination. Kinetic models will also be developed to simulate microstructural evolution of the nanoscale features and irradiation produced defect clusters, and compared with observed microstructural changes.

  11. Now Available: Smart Grid Investments Improve Grid Reliability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and ...

  12. Comments of National Grid to the Smart Grid RFI | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Grid's Response to the Department of Energy Smart Grid RFI: Addressing Policy and Logistical Challenges of Smart Grid Implementation PDF icon National Grid's comments More ...

  13. Sandia Energy - Grid Modernization Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Modernization Consortium Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Renewable Energy Integration Grid Modernization...

  14. Grid-based Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid-based Production Grid-based Production PDSF is a Tier 2 site for ALICE and as such has the infrastructure in place to run automated grid-based ALICE production jobs. The main...

  15. National Transmission Grid Study

    Office of Environmental Management (EM)

    Grid Study U.S. Department of Energy The Honorable Spencer Abraham Secretary of Energy May 2002 ii National Transmission Grid Study National Transmission Grid Study i ii National Transmission Grid Study National Transmission Grid Study iii How This Study Was Conducted The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures

  16. GridOPTICS(TM): A Design for Plug-and-Play Smart Grid Software Architecture

    SciTech Connect (OSTI)

    Gorton, Ian; Liu, Yan; Yin, Jian

    2012-06-03

    As the smart grid becomes reality, software architectures for integrating legacy systems with new innovative approaches for grid management are needed. These architectures must exhibit flexibility, extensibility, interoperability and scalability. In this position paper, we describe our preliminary work to design such an architecture, known as GridOPTICS, that will enable the deployment and integration of new software tools in smart grid operations. Our preliminary design is based upon use cases from PNNLs Future Power Grid Initiative, which is a developing a collection of advanced software technologies for smart grid management and control. We describe the motivations for GridOPTICS, and the preliminary design that we are currently prototyping for several distinct use cases.

  17. Distribution Grid Integration

    Broader source: Energy.gov [DOE]

    The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

  18. The Role of Microgrids in Helping to Advance the Nation's Energy System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Smart Grid » The Role of Microgrids in Helping to Advance the Nation's Energy System The Role of Microgrids in Helping to Advance the Nation's Energy System Microgrids are localized grids that can disconnect from the traditional grid to operate autonomously and help mitigate grid disturbances to strengthen grid resilience. Microgrids are localized grids that can disconnect from the traditional grid to operate autonomously and help mitigate grid disturbances to

  19. Reports on Initial Results of Smart Grid Investment Grant Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (December 2012) | Department of Energy Reports on Initial Results of Smart Grid Investment Grant Projects (December 2012) Reports on Initial Results of Smart Grid Investment Grant Projects (December 2012) DOE is implementing the Smart Grid Investment Grant (SGIG) program under the American Recovery and Reinvestment Act of 2009. The SGIG program involves 99 projects that are deploying smart grid technologies, tools, and techniques for electric transmission, distribution, advanced metering,

  20. Renewable Energy and a Smart Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy and a Smart Grid Renewable Energy and a Smart Grid A diagram of how smarter technologies enable more reliable, renewable energy sources to be integrated onto our electrical grid. PDF icon OE_Smart_Grid_Talking_Points.pdf More Documents & Publications QER - Comment of Edison Electric Institute (EEI) 1 Quadrennial Energy Review: Scope, Goals, Vision, Approach, Outreach Computational Advances in Applied Energy

  1. 2010 U.S. Smart Grid Vendor Ecosystem Report on the companies and market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    dynamics shaping the current U.S. smart grid landscape | Department of Energy U.S. Smart Grid Vendor Ecosystem Report on the companies and market dynamics shaping the current U.S. smart grid landscape 2010 U.S. Smart Grid Vendor Ecosystem Report on the companies and market dynamics shaping the current U.S. smart grid landscape The Smart Grid vendor ecosystem is an increasingly interdependent web of companies. Vendors of Advanced Metering Infrastructure (AMI) products (meters, communication

  2. Eprice (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Transmission Smart Grid Projects - Grid Automation Distribution...

  3. Smart Grid Tools and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tools and Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  4. Grid Modernization Lab Consortium (GMLC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Consortium (GMLC) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  5. Smart Grid Status and Metrics Report Appendices

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

    2014-07-01

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

  6. Parallel grid population

    DOE Patents [OSTI]

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  7. Grid Interaction Tech Team, and International Smart Grid Collaboration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Team, and International Smart Grid Collaboration Grid Interaction Tech Team, and International Smart Grid Collaboration 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  8. Smart Grid Consortium, Response of New York State Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consortium, Response of New York State Smart Grid Addressing Policy and Logistical Challenges Smart Grid Consortium, Response of New York State Smart Grid Addressing Policy and ...

  9. gridFTP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gridFTP gridFTP Currently only the archive.nersc.gov system is capable of handling GridFTP transfers to HPSS. It accomplishes this by using a special GSI enabled pftp server. Data transfers are multi-threaded but are handled with a single FTP server. Improvements are planned for the future. The pftp server handling GridFTP transfers is garchive.nersc.gov. GridFTP clients must authenticate/transfer to this server to send data to archive.nersc.gov. There are numerous GridFTP clients available that

  10. NWTC Transmission and Grid Integration (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    The rapid growth of alternative power sources, especially wind power, is creating challenges that affect the existing electric grid. To keep up with this rapid growth, researchers in the Transmission and Grid Integration Group provide scientific, engineering, and analytical expertise to help advance alternative energy and accelerate its integration into the nation's electrical grid. For example, we evaluate U.S. wind energy resources and collect and analyze data about the impact of wind development on the electrical grid. Researchers in the Transmission and Grid Integration Group offer assistance to utility industry partners in the following integration areas.

  11. Smart Grid | Open Energy Information

    Open Energy Info (EERE)

    Recovery Act Smart Grid Projects Data Collected from the US Recovery Act Smart Grid Investment Grant Projects US Recovery Act Smart Grid Investment Grant Projects (98) The Smart...

  12. Grid Partners | Open Energy Information

    Open Energy Info (EERE)

    Grid Partners Jump to: navigation, search Name: Grid Partners Place: Los Angeles, California Zip: 90025 Product: String representation "GRID Partners i ... duct selection." is too...

  13. DG Demonet Smart LV Grid (Smart Grid Project) | Open Energy Informatio...

    Open Energy Info (EERE)

    Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Integrated System Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Smart Meter and AMI...

  14. Fuel rod support grid

    DOE Patents [OSTI]

    Downs, Robert E.; Schwallie, Ambrose L.

    1985-01-01

    A grid for the support of nuclear fuel rods arranged in a triangular array. The grid is formed by concentric rings of strap joined by radially arranged web sections.

  15. Dynamic Power Grid Simulation

    Energy Science and Technology Software Center (OSTI)

    2015-09-14

    GridDyn is a part of power grid simulation toolkit. The code is designed using modern object oriented C++ methods utilizing C++11 and recent Boost libraries to ensure compatibility with multiple operating systems and environments.

  16. Method of grid generation

    DOE Patents [OSTI]

    Barnette, Daniel W.

    2002-01-01

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  17. Grid Software and Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services Grid Software and Services Overview Grid computing can include a broad range of technologies. At NERSC we are interested in new computational and data-centric services which enhance the productivity of science teams. The grid infrastructure we support (described below) can be used to manage jobs and data in ways that are otherwise difficult from the comamnd line. Grid services enable remote job management, file transfer and distributed computing workflows through the Globus Toolkit. Web

  18. Smart Grid System Report

    Energy Savers [EERE]

    August 2014 2014 Smart Grid System Report Report to Congress August 2014 United States Department of Energy Washington, DC 20585 Department of Energy | August 2014 THIS PAGE INTENTIONALLY LEFT BLANK 2014 Smart Grid System Report Department of Energy | August 2014 Message from the Assistant Secretary Office of Electricity Delivery and Energy Reliability I am pleased to present the 2014 Smart Grid System Report, which is intended to provide an update on the status of smart grid deployment

  19. Address (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Integrated System Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  20. EDISON (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Smart Meter and AMI...

  1. Advanced Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  2. Advanced Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  3. Advanced Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  4. Smart Grid Primer (Smart Grid Books) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Educational Resources » Smart Grid Primer (Smart Grid Books) Smart Grid Primer (Smart Grid Books) Smart Grid Primer (Smart Grid Books) The Smart Grid: An Introduction, prepared 2008, is a publication sponsored by DOE's Office of Electricity Delivery and Energy Reliability that explores - in layman's terms - the nature, challenges, opportunities and necessity of Smart Grid implementation. Additional books, released in 2009, target the interests of specific stakeholder groups: Consumer Advocates,

  5. Fact Sheet: Advanced Implementation of Energy Storage Technologies...

    Energy Savers [EERE]

    Advanced Implementation of Energy Storage Technologies - Community Energy Storage for Grid Support (August 2013) Fact Sheet: Advanced Implementation of Energy Storage Technologies ...

  6. Flywheel Project Escalates Grid Efficiency | Department of Energy

    Office of Environmental Management (EM)

    Flywheel Project Escalates Grid Efficiency Flywheel Project Escalates Grid Efficiency August 9, 2010 - 1:18pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What does this project do? It's estimated to create 60 jobs in New York and Massachusetts (where Beacon Power is headquartered) and help bring clean technologies to market by improving the stability and reliability of the state's electric grid. More good news for New

  7. Western Grid Can Handle High Renewables in Challenging Conditions

    SciTech Connect (OSTI)

    2015-11-01

    Fact sheet outlining the key findings of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3). NREL and GE find that with good system planning, sound engineering practices, and commercially available technologies, the Western grid can maintain reliability and stability during the crucial first minute after grid disturbances with high penetrations of wind and solar power.

  8. Understanding The Smart Grid

    SciTech Connect (OSTI)

    2007-11-15

    The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology providers involved in the Smart Grid and provides profiles on them including contact information, company overviews, technology reviews, and key Smart Grid activities.

  9. College Fights Energy Rate Hikes with 'Grid Positive' Plan

    Broader source: Energy.gov [DOE]

    Find out how a community college in California is stabilizing their budget by becoming "grid-positive" (selling energy back to the state) by installing an array of solar panels, covering walkways and carports across its campus.

  10. Secretary Chu Announces $620 Million for Smart Grid Demonstration and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Projects | Department of Energy $620 Million for Smart Grid Demonstration and Energy Storage Projects Secretary Chu Announces $620 Million for Smart Grid Demonstration and Energy Storage Projects November 24, 2009 - 12:00am Addthis COLUMBUS, OHIO - At an event in Columbus, Ohio this afternoon, Secretary Chu announced that the Department of Energy is awarding $620 million for projects around the country to demonstrate advanced Smart Grid technologies and integrated systems that

  11. Energy Department Announces Funding to Improve Grid Resiliency and Climate

    Energy Savers [EERE]

    Preparedness | Department of Energy Announces Funding to Improve Grid Resiliency and Climate Preparedness Energy Department Announces Funding to Improve Grid Resiliency and Climate Preparedness December 5, 2014 - 2:06pm Addthis WASHINGTON - The Energy Department's Office of Electricity Delivery and Energy Reliability announced that it is making up to $3.5 million in funding available for communities to deploy smart grid tools and technologies to advance climate preparedness and resiliency of

  12. Energy Department Offers Funding to Improve the Electric Grid | Department

    Energy Savers [EERE]

    of Energy Department Offers Funding to Improve the Electric Grid Energy Department Offers Funding to Improve the Electric Grid February 12, 2014 - 12:00am Addthis The Energy Department on February 7 announced that it is offering up to $7 million in funding to advance the design of technologies that will help communities become more adaptive and prepared for power outages caused by severe weather and other events. Microgrids are localized grids that are normally connected to the more

  13. Smart Grid 2010 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 Peer Review Smart Grid 2010 Peer Review The U.S. Department of Energy's Smart Grid Program conducted the 2010 Peer Review November 2 - 4, 2010 in Golden, CO. The forum provides an opportunity to learn about the latest innovations and integration activities, and the agenda reflected exciting advancements in the field of smart grid technology. Presentations are available through the individual session links. The agenda is available below. Presentations Day One Morning Session Afternoon

  14. Smart Grid Projects Are Improving Performance and Helping Consumers Better

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manage their Energy Use | Department of Energy Projects Are Improving Performance and Helping Consumers Better Manage their Energy Use Smart Grid Projects Are Improving Performance and Helping Consumers Better Manage their Energy Use November 14, 2014 - 5:07pm Addthis Hank Kenchington Hank Kenchington Deputy Assistant Secretary, Advanced Grid Integration After nearly five years, the 131 smart grid projects funded through the 2009 Recovery Act are nearing completion and the results are

  15. Smart-Grid Ready PV Inverter with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancement of PV system capabilities, communication systems and open standards, operations center visibility and management, and optimized coordination of smart PV inverters with existing distribution control devices. Smart-Grid Ready PV Inverter With Utility Communication BRIAN SEAL / ELECTRIC POWER RESEARCH INSTITUTE The proposed project will develop, implement, and demonstrate smart-grid ready inverters with grid support functionality and required utility communication links to capture the

  16. Smart Grid System Report (July 2009) - Annex | Department of Energy

    Energy Savers [EERE]

    System Report (July 2009) - Annex Smart Grid System Report (July 2009) - Annex This annex presents papers covering each of the 20 metrics identified in Section 2.1 of the 2009 Smart Grid System Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone. The list of metrics is derived from the material developed at the Smart Grid Implementation Workshop. The objective of the metric development process was to distill the

  17. 2010 U.S. Smart Grid Vendor Ecosystem

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 2010 U.S. Smart Grid Vendor Ecosystem Report on the companies and market dynamics shaping the current U.S. smart grid landscape The Cleantech Group www.cleantech.com Principal Authors Greg Neichin David Cheng Contributing Authors Sheeraz Haji Josh Gould Debjit Mukerji David Hague 2 Table of Contents Page I. Introduction .............................................................................. 3 In-Depth Market Analysis II. Advanced Metering

  18. 2010 U.S. Smart Grid Vendor Ecosystem

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 U.S. Smart Grid Vendor Ecosystem Report on the companies and market dynamics shaping the current U.S. smart grid landscape The Cleantech Group www.cleantech.com Principal Authors Greg Neichin David Cheng Contributing Authors Sheeraz Haji Josh Gould Debjit Mukerji David Hague 2 Table of Contents Page I. Introduction .............................................................................. 3 In-Depth Market Analysis II. Advanced Metering

  19. East Penn Manufacturing Co. Smart Grid Demonstration Project...

    Open Energy Info (EERE)

    Demonstrate the economic and technical viability of a 3MW grid-scale, advanced energy storage system using the lead-carbon UltraBattery technology to regulate frequency and...

  20. Running Grid Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    support job submission via Grid interfaces. Remote job submission is based on Globus GRAM. Jobs can be submitted either to the fork jobmanager (default) which will fork and...

  1. Challenges facing production grids

    SciTech Connect (OSTI)

    Pordes, Ruth; /Fermilab

    2007-06-01

    Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

  2. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Sandia's larger portfolio of renewable energy technology programs (Wind, Solar Power, Geothermal, and Energy Systems Analysis). Transmission Grid Integration The goal of...

  3. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This paper identifies opportunities for identifying and sharing best practices and lessons learned, leading to a more efficient and effective Smart Grid transition that will...

  4. Adaptive Energy Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control of a Flexible, Adaptive Energy Grid "%"&%'&"&()*+%,-.-"(&*"0.-"+.-1&.,2-"+2&01&"%"&3.-,.-"+%.4&"&5.67822& 9"-+%&3.(,"14&:.-&+82&;%+2&+"+2'&<2,"-+(2+&.:&2-...

  5. Grid Conected Functionality

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by public engagement with industry and other stakeholders, which support and inform future research, development and deployment of critical building-grid transactional frameworks. ...

  6. Building the Distribution Grid

    Broader source: Energy.gov (indexed) [DOE]

    2013 * Industry leader in renewable energy procurement, electric transportation, demand response, energy efficiency and Smart Grid * Significant system investments 2014 - 2017 ...

  7. Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Carbide Thyristors Read More Permalink ECIS-Princeton Power Systems, Inc.: Demand Response Inverter DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, ...

  8. 2010 U.S. Smart Grid Vendor Ecosystem Report on the companies...

    Energy Savers [EERE]

    The Smart Grid vendor ecosystem is an increasingly interdependent web of companies. Vendors of Advanced Metering Infrastructure (AMI) products (meters, communication units, and ...

  9. Microsoft Word - Modern Grid Benefits_Final_v1_0.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... In addition, effective consumer interfaces will allow the incorporation of demand response and real-time load management as an active factor in grid operations. And advanced ...

  10. AVTA: Vehicle to EVSE Smart Grid Communications Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy AVTA: Vehicle to EVSE Smart Grid Communications Report AVTA: Vehicle to EVSE Smart Grid Communications Report The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from

  11. EV-Smart Grid Interoperability Center | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EV-Smart Grid Interoperability Center The EV-Interoperability Center at Argonne offers state-of-the art tools to advance charging interoperability and global harmonization for electric vehicles. The EV-Interoperability Center at Argonne offers state-of-the art tools to advance charging interoperability and global harmonization for electric vehicles. Argonne is home to the U.S. Department of Energy's new Electric Vehicle (EV) Smart Grid Interoperability Center. The Center plays a key role in

  12. Smart Grid: Transforming the Electric System

    SciTech Connect (OSTI)

    Widergren, Steven E.

    2010-04-13

    This paper introduces smart grid concepts, summarizes the status of current smart grid related efforts, and explains smart grid priorities.

  13. Buildings-to-Grid Technical Opportunities: From the Grid Perspective |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Grid Perspective Buildings-to-Grid Technical Opportunities: From the Grid Perspective To successfully operate and deliver its promise of a seamlessly integrated buildings-grid infrastructure, a transactive energy ecosystem requires new approaches to planning and operating the power grid. This report outlines the nature of the power grid, lists challenges and barriers to the implementation of a transactive energy ecosystem, and provides concept solutions to current

  14. Smart Grid Week: Working to Modernize the Nation's Electric Grid |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Working to Modernize the Nation's Electric Grid Smart Grid Week: Working to Modernize the Nation's Electric Grid June 3, 2013 - 11:00am Addthis Introducing Smart Grid Week. | Photo courtesy of Pacific Northwest National Laboratory. Introducing Smart Grid Week. | Photo courtesy of Pacific Northwest National Laboratory. Erin R. Pierce Erin R. Pierce Former Digital Communications Specialist, Office of Public Affairs Learn More about the Smart Grid Visit smartgrid.gov for

  15. GAD (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Projects in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Integrated System Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  16. OpenEI Community - Smart Grid

    Open Energy Info (EERE)

    p> http:en.openei.orgcommunityblogwhat-do-you-know-about-gridcomments black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  17. High-Power Zinc-Air Energy Storage: Enhanced Metal-Air Energy Storage System with Advanced Grid-Interoperable Power Electronics Enabling Scalability and Ultra-Low Cost

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: Fluidic is developing a low-cost, rechargeable, high-power module for Zinc-air batteries that will be used to store renewable energy. Zinc-air batteries are traditionally found in small, non-rechargeable devices like hearing aids because they are well-suited to delivering low levels of power for long periods of time. Historically, Zinc-air batteries have not been as useful for applications which require periodic bursts of power, like on the electrical grid. Fluidic hopes to fill this need by combining the high energy, low cost, and long run-time of a Zinc-air battery with new chemistry providing high power, high efficiency, and fast response. The battery module could allow large grid-storage batteries to provide much more power on very short demandthe most costly kind of power for utilitiesand with much more versatile performance.

  18. EcoGrid EU (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    EU (Smart Grid Project) Jump to: navigation, search Project Name EcoGrid EU Country Denmark Headquarters Location Bornholm, Denmark Coordinates 55.160427, 14.866884 Loading...

  19. Grid regulation services for energy storage devices based on grid frequency

    DOE Patents [OSTI]

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  20. Grid regulation services for energy storage devices based on grid frequency

    DOE Patents [OSTI]

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2014-04-15

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  1. Open Science Grid at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Science Grid Open Science Grid at NERSC NERSC provides computing to Open Science Grid (OSG) users through a special allocation. OSG Users must submit an OSG new user request...

  2. 2012 Advanced Applications Research & Development Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid PMU Data - Ning Zhou, PNNL PDF icon 2012 Advanced Applications R&D Peer Review - IEEE-IEC Harmonization - Ken Martin, EPG PDF icon 2012 Advanced Applications R&D Peer Review ...

  3. Grid Architecture | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Architecture Grid Architecture This report describes the discipline of grid architecture and shows how it has been adapted from the combination of system architecture, network theory, and control engineering to apply to the issues of grid modernization. It shows how grid architecture aids in managing complexity, supports stakeholder communication about the grid, supplies methods to identify gaps and constraints, and provides the ability to compare architectural choices analytically. This

  4. Grid Net | Open Energy Information

    Open Energy Info (EERE)

    Grid Net Jump to: navigation, search Name: Grid Net Address: 340 Brannan St Place: San Francisco, California Zip: 94107 Region: Bay Area Sector: Efficiency Product: Sells open,...

  5. SGIP Smart Grid Interoperabilty Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle to Grid Distributed Renewables, Generation & Storage Wireless Comm - 02 Energy Storage Interconnect - 07 Distribution Grid Mgmt - 08 Standard DR & DER Signals - 09 Map IEEE ...

  6. Quantifying Fl Value of Hydro in Transmission Grid | Department of Energy

    Energy Savers [EERE]

    Quantifying Fl Value of Hydro in Transmission Grid Quantifying Fl Value of Hydro in Transmission Grid Quantifying Fl Value of Hydro in Transmission Grid Office presentation icon 72_hydro_grid_services_epri_key.ppt More Documents & Publications Enviro effects of hydrokinetic turbines on fish Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value

  7. Demonstration project Smart Charging (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Integrated System Smart Grid Projects - Home...

  8. EMPORA 1 + 2 EMobile Power Austria (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Integrated System Smart Grid Projects - Specific...

  9. Belgium east loop active network management (Smart Grid Project...

    Open Energy Info (EERE)

    Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Grid Automation Transmission...

  10. Transmission Grid Integration

    Broader source: Energy.gov [DOE]

    The levels of solar energy penetration envisioned by the DOE SunShot Initiative must be interconnected effectively onto the transmission grid. This interconnection requires an in-depth...

  11. Grid Data Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2. uberftp UberFTP provides a rich interactive client for GridFTP. It mimics standard ftp clients in behavior, along with providing some additional features. To initialize your...

  12. gridFTP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GSI enabled pftp server. Data transfers are multi-threaded but are handled with a single FTP server. Improvements are planned for the future. The pftp server handling GridFTP...

  13. Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  14. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sharing Smart Grid Experiences through Performance Feedback March 31, 2011 DOE/NETL- DE-FE0004001 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Sharing Smart Grid Experiences through Performance Feedback v1.0 Page ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

  15. Random array grid collimator

    DOE Patents [OSTI]

    Fenimore, E.E.

    1980-08-22

    A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  16. Now Available: Smart Grid Investments Improve Grid Reliability, Resilience,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Storm Responses (November 2014) | Department of Energy Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) December 8, 2014 - 2:35pm Addthis Smart grid technologies are helping utilities to speed outage restoration following major storm events, reduce the total number of affected customers, and improve overall service

  17. GRIDS: Grid-Scale Rampable Intermittent Dispatchable Storage

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: The 12 projects that comprise ARPA-Es GRIDS Project, short for Grid-Scale Rampable Intermittent Dispatchable Storage, are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.

  18. Grid Interaction Tech Team, and International Smart Grid Collaboration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Team, and International Smart Grid Collaboration Grid Interaction Tech Team, and International Smart Grid Collaboration 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss067_hardy_2012_o.pdf More Documents & Publications Grid Connectivity Research, Development & Demonstration Projects Grid Interaction Tech Team Codes and Standards to Support Vehicle Electrification

  19. Impact of network topology on synchrony of oscillatory power grids

    SciTech Connect (OSTI)

    Rohden, Martin; Sorge, Andreas; Witthaut, Dirk; Timme, Marc; Faculty of Physics, Georg August Universitt Gttingen, Gttingen

    2014-03-15

    Replacing conventional power sources by renewable sources in current power grids drastically alters their structure and functionality. In particular, power generation in the resulting grid will be far more decentralized, with a distinctly different topology. Here, we analyze the impact of grid topologies on spontaneous synchronization, considering regular, random, and small-world topologies and focusing on the influence of decentralization. We model the consumers and sources of the power grid as second order oscillators. First, we analyze the global dynamics of the simplest non-trivial (two-node) network that exhibit a synchronous (normal operation) state, a limit cycle (power outage), and coexistence of both. Second, we estimate stability thresholds for the collective dynamics of small network motifs, in particular, star-like networks and regular grid motifs. For larger networks, we numerically investigate decentralization scenarios finding that decentralization itself may support power grids in exhibiting a stable state for lower transmission line capacities. Decentralization may thus be beneficial for power grids, regardless of the details of their resulting topology. Regular grids show a specific sharper transition not found for random or small-world grids.

  20. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Troxell, Wade

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  1. grid history | OpenEI Community

    Open Energy Info (EERE)

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  2. electricity grid | OpenEI Community

    Open Energy Info (EERE)

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  3. future grid | OpenEI Community

    Open Energy Info (EERE)

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  4. Smart Grid | OpenEI Community

    Open Energy Info (EERE)

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  5. GridLAB-D/SG

    Energy Science and Technology Software Center (OSTI)

    2011-08-30

    GridLAB-D is a new power system simulation tool that provides valuable information to users who design and operate electric power transmission and distribution systems, and to utilities that wish to take advantage of the latest smart grid technology. This special release of GridLAB-D was developed to study the proposed Smart Grid technology that is used by Battelle Memorial Institute in the AEP gridSMART demonstration project in Northeast Columbus, Ohio.

  6. Grid Integration | Department of Energy

    Energy Savers [EERE]

    You are here Home » Research & Development » Grid Integration Grid Integration Grid Integration The Wind Program works with electric grid operators, utilities, regulators, and industry to create new strategies for incorporating increasing amounts of wind energy into the power system while maintaining economic and reliable operation of the grid. Utilities have been increasingly deploying wind power to provide larger portions of electricity generation. However, many utilities also express

  7. Interactive Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Educational Resources » Interactive Grid Interactive Grid Each time you flick a light switch or press a power button, you enjoy the benefits of the nation's incredible electric grid. The grid is a complex network of people and machinery working around the clock to produce and deliver electricity to millions of homes across the nation. The electric grid works so well, Americans often think about it only when they receive their electric bills, or in those rare instances when there is a power

  8. Cybersecurity and the Smarter Grid

    Office of Environmental Management (EM)

    Cybersecurity and the Smarter Grid Reliability remains a fundamental principle of grid modernization efforts, but in today's world, reliability requires cybersecurity. This article discusses energy sector partnerships that are designing cybersecurity into the smart grid with the vision of surviving a cyber-incident while sustaining critical energy delivery functions. Carol Hawk and Akhlesh Kaushiva I. The Power Grid: Beyond Smart The power grid is already smart, if ''smart'' can describe an

  9. shared Smart Grid Investment Grant

    Broader source: Energy.gov (indexed) [DOE]

    Under the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy and the electricity industry have jointly invested about $7.9 billion in 99 cost- shared Smart Grid Investment Grant projects and about $1.6 billion in 32 Smart Grid Demonstration Program projects to modernize the electric grid, strengthen cyber security, improve interoperability, and collect an unprecedented level of data on smart grid and customer operations. The Smart Grid Experience: Applying Results,

  10. Grid Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Grid Integration Grid Integration Grid Integration The Wind Program works with electric grid operators, utilities, regulators, and industry to create new strategies for incorporating increasing amounts of wind energy into the power system while maintaining economic and reliable operation of the grid. Utilities have been increasingly deploying wind power to provide larger portions of electricity generation. However, many utilities also express concerns about wind

  11. NREL: Transmission Grid Integration - NREL and Partners Demonstrate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First-of-a-Kind Use of Utility-Scale PV for Ancillary Services and Partners Demonstrate First-of-a-Kind Use of Utility-Scale PV for Ancillary Services Demonstration project shows utility-scale photovoltaic plants that incorporate "grid-friendly" controls can contribute to grid stability and reliability. January 28, 2016 While utility-scale solar photovoltaic (PV) power plants are being increasingly deployed across the country, some believe higher penetrations of PV technologies may

  12. ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical

    Energy Savers [EERE]

    Challenges | Department of Energy ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges The American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc. (ASHRAE), founded in 1894, is an international organization of over 50,000 members. ASHRAE fulfills its mission of advancing heating, ventilation, air conditioning and refrigeration to serve humanity and promote a

  13. Comments on Smart Grid data access | Department of Energy

    Office of Environmental Management (EM)

    on Smart Grid data access Comments on Smart Grid data access AARP, NASUCA, NCLC, Consumers Union and Public Citizen just released, "The Need for Essential Consumer Protections: Smart Metering Proposals and the Move to Time-Based Pricing." This white paper covers a range of issues including previous smart meter pilot programs, full costs associated with advanced meters and related infrastructure, and impacts of dynamic pricing on vulnerable customer groups. The paper includes 7

  14. GridPV Toolbox

    Energy Science and Technology Software Center (OSTI)

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feedermore » on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.« less

  15. Smart Grid Investments Improve Grid Reliability, Resilience, and Storm

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Responses (November 2014) | Department of Energy Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart grid technologies are helping utilities to speed outage restoration following major storm events, reduce the total number of affected customers, and improve overall service reliability to reduce customer losses from power disruptions. This report presents

  16. NREL: Distributed Grid Integration - Solar Distributed Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Solar Distributed Grid Integration Projects Photo of a man working on a solar photovoltaic array outdoors. NREL's solar distributed grid integration research finds solutions to enable greater penetration of solar electricity on the power grid. Photo by Dennis Schroeder, NREL Energy System Basics Video Series Learn the essential facts on energy systems in this six-part video series sponsored by the DOE SunShot Initiative and hosted by Dr. Ravel Ammerman. NREL provides grid

  17. NREL: Distributed Grid Integration - Vehicle-to-Grid Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle-to-Grid Project NREL engineers test and analyze electrical vehicle charging and discharging to the electric grid, known as Vehicle-to-Grid (V2G). Testing is conducted at NREL's Distributed Energy Resources Test Facility, where researchers connect, instrument, and test V2G platforms. NREL provides calibrated, high-resolution data acquisition, grid simulation, and 240 volt alternating current residential transformer connect-ability for real world analysis. NREL is currently working with

  18. Smart Grid Savings and Grid Integration of Renewables in Idaho

    Energy Savers [EERE]

    1 Smart Grid Savings and Grid Integration of Renewables in Idaho Idaho Power Company (IPC) serves more than 495,000 customers in southern Idaho and eastern Oregon. IPC is vertically-integrated and manages power generation, transmission, distribution, and demand-side resources. Faced with grid modernization challenges from new wind power capacity, rising summer peak demands, and aging electricity delivery infrastructure, IPC's Smart Grid Investment Grant (SGIG) project is multi-faceted and

  19. APEC Smart Grid Initiative

    SciTech Connect (OSTI)

    Bloyd, Cary N.

    2012-03-01

    This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

  20. Unlocking the smart grid

    SciTech Connect (OSTI)

    Rokach, Joshua Z.

    2010-10-15

    The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)

  1. June 13, 2011: Building the 21st Century Grid | Department of Energy

    Energy Savers [EERE]

    3, 2011: Building the 21st Century Grid June 13, 2011: Building the 21st Century Grid June 13, 2011: Building the 21st Century Grid Secretary Chu participates in an event at the White House on "Building the 21st Century Grid." At the event, the Administration announces a number of new public- and private-sector initiatives designed to accelerate the modernization of the Nation's electric infrastructure, bolster electric-grid innovation, and advance a clean energy economy, in part by

  2. Center for Advanced Power Systems CAPS | Open Energy Information

    Open Energy Info (EERE)

    Focused on advanced power system technologies with emphasis on the needs of the future naval ship power systems and electricity supply grid of the US. References: Center for...

  3. Advanced Materials and Devices for Stationary Electrical Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (e.g., the distributed grid and electric vehicles), and the projected increase in renewable energy sources. Advanced Materials and Devices for Stationary Electrical Energy...

  4. DOE Awards $63 Million to Advance Clean Energy Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Awards 63 Million to Advance Clean Energy Commercialization DOE Awards 63 Million to ... grids, three for next-generation nuclear power, and three for cleaner fossil energy. ...

  5. Sandia Energy - Smart Grid Tools and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Tools and Technology Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Renewable Energy Integration Smart Grid Tools and...

  6. smart grid publications | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Smart Grid ARRA Microgrid Projects PP-8.7MB (April 2009) Government and Military Smart Grids and Microgrids Symposium Sharing Smart Grid Experiences Through Performance Feedback ...

  7. Smart Grid Resources | Open Energy Information

    Open Energy Info (EERE)

    Grid Resources Jump to: navigation, search Us.jpg US Resources The Smart Grid: An Introduction US Department of Energy Smart Grid Information Clearinghouse EIA Smartgrid.gov...

  8. GridZone | Open Energy Information

    Open Energy Info (EERE)

    search Name: GridZone Sector: Efficiency, Services, Transmission Technology: Smart Grid, Energy Storage, Energy Security ParentHolding Organization: GridZone Limited Company...

  9. Smart Grid Photos | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system. Smart Grid radio 8 of 12 Smart Grid radio Field programmable gate array (FPGA) technologies to develop improved software-defined radios for the smart grid Smart...

  10. Smart Grid | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Argonne researchers are working to create new, more powerful technology for ... Researchers will use an ARPA-E award to construct data sets to model electric grids ...

  11. Grid Innovation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Innovation Chicago city lights at dusk Chicago city lights at dusk Dramatic changes are under way in grid technologies that will have huge impacts on the operation and...

  12. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Renewable Energy, Systems Analysis, Systems Engineering,...

  13. Environmental Impact of Smart Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Smart Grid January 10, 2011 2 Agenda * Review of Paper - Introduction - Key Areas of Impact - Findings - Conclusions - Recommended Topics for Further Research 3 3 Introduction Provide background for the current state of environmental impact of Smart Grid * Summarize key components of criteria pollutants from electricity and transportation sectors * Define the Smart Grid and how it can be used to reduce pollutants * Evaluate impact from Smart Grid on reducing pollutants through: -

  14. Easy Street (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Integrated System Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  15. CET2001 Customer Led Network Revolution (Smart Grid Project)...

    Open Energy Info (EERE)

    in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Home application Smart Grid Projects - Customer...

  16. Stockholm Royal seaport prestudy phase (Smart Grid Project) ...

    Open Energy Info (EERE)

    in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Integrated System Smart Grid Projects - Home...

  17. Grid Interaction Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Grid Interaction Technical Team (GITT) is to support a transition scenario to large scale grid-connected vehicle charging with transformational technology, proof of concept and information dissemination. The GITT facilitates technical coordination and collaboration between vehicle-grid connectivity and communication activities among U.S. DRIVE government and industry partners.

  18. GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical Challenges GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical Challenges The GridWise Alliance ...

  19. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    SciTech Connect (OSTI)

    2012-02-08

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

  20. Smart Grid | OpenEI Community

    Open Energy Info (EERE)

    all rely on it but what do you really know about our electricity grid? Tags: black out, brown out, bulk power system, electricity grid, future grid, grid history, security, Smart...

  1. To Begin the World Anew: Smart Grids and the Need for a Comprehensive U.S. Energy Policy

    SciTech Connect (OSTI)

    Foster, Nikolas AF

    2011-12-01

    The United States is in the midst of a monumental transformation of its electric power grid. Advances in information and communication technologies and grid measurement and control devices have initiated the transition toward a more resilient, sustainable and efficient future power grid. Deployment of these technologies is being driven by policies encouraging the shift to a greener grid, incorporating clean and low carbon energy; as well as rising consumer demand for smarter ways to use existing resources.

  2. Providing Grid Flexibility in

    Energy Savers [EERE]

    Providing Grid Flexibility in Wyoming and Montana Introduction Powder River Energy Corporation (PRECorp) is an electric cooperative serving approximately 11,900 customers in a 16,200 square-mile area of rural Wyoming and Montana. PRECorp's customers frequently experience harsh weather conditions. Severe weather conditions in PRECorp's rural and remote service territory present unique challenges in providing reliable electric service to PRECorp's customers. PRECorp's customers include coal mining

  3. Smart Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Smart Grid Rows of battery racks at the <a href="/node/657906">Salem Smart Power Center</a> in Salem, Oregon. The Battelle-led Pacific Northwest Smart Grid Demonstration Project, will use the center’s 5-megawatt energy storage system to test several smart grid technologies and approaches. | Photo courtesy of Portland General Electric. Rows of battery racks at the Salem Smart Power Center in Salem, Oregon. The Battelle-led Pacific Northwest Smart Grid

  4. Sandia Energy Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efforts-during-recent-houston-press-conferencefeed 0 Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments http:energy.sandia.gov...

  5. Sandia Energy SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efforts-during-recent-houston-press-conferencefeed 0 Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments http:energy.sandia.gov...

  6. EAC Recommendations on Grid Modernization: ARRA Accomplishments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Modernization: ARRA Accomplishments and Recommendations for Moving Forward EAC Recommendations on Grid Modernization: ARRA Accomplishments and Recommendations for Moving...

  7. Considerations for sensitivity analysis, uncertainty quantification, and data assimilation for grid-to-rod fretting

    SciTech Connect (OSTI)

    Michael Pernice

    2012-10-01

    Grid-to-rod fretting is the leading cause of fuel failures in pressurized water reactors, and is one of the challenge problems being addressed by the Consortium for Advanced Simulation of Light Water Reactors to guide its efforts to develop a virtual reactor environment. Prior and current efforts in modeling and simulation of grid-to-rod fretting are discussed. Sources of uncertainty in grid-to-rod fretting are also described.

  8. 2010 Smart Grid Peer Review Day One Morning Presentations | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Morning Presentations 2010 Smart Grid Peer Review Day One Morning Presentations The U.S. Department of Energy's Smart Grid Program conducted the 2010 Peer Review November 2 - 4, 2010 in Golden, CO. The forum provides an opportunity to learn about the latest innovations and integration activities, and the agenda reflected exciting advancements in the field of smart grid technology. The morning presentations from Day One of the Peer Review are below: PDF icon SG 2010 Peer Review -

  9. 2010 Smart Grid Peer Review Day Two Afternoon Presentations | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Two Afternoon Presentations 2010 Smart Grid Peer Review Day Two Afternoon Presentations The U.S. Department of Energy's Smart Grid Program conducted the 2010 Peer Review November 2 - 4, 2010 in Golden, CO. The forum provides an opportunity to learn about the latest innovations and integration activities, and the agenda reflected exciting advancements in the field of smart grid technology. The morning presentations from Day Two of the Peer Review are below: PDF icon SG 2010 Peer Review

  10. 2010 Smart Grid Peer Review Day Two Morning Presentations | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Morning Presentations 2010 Smart Grid Peer Review Day Two Morning Presentations The U.S. Department of Energy's Smart Grid Program conducted the 2010 Peer Review November 2 - 4, 2010 in Golden, CO. The forum provides an opportunity to learn about the latest innovations and integration activities, and the agenda reflected exciting advancements in the field of smart grid technology. The morning presentations from Day Two of the Peer Review are below: PDF icon SG 2010 Peer Review -

  11. Buildings-to-Grid Meeting Summaries & Presentations | Department of Energy

    Office of Environmental Management (EM)

    Buildings-to-Grid » Buildings-to-Grid Meeting Summaries & Presentations Buildings-to-Grid Meeting Summaries & Presentations July 23, 2015 Technical Meeting: Software Framework for Transactive Energy: VOLTTRON(tm) 2015 On July 23 and 24, 2015, BTO held technical meetings graciously hosted by the Virginia Tech Advanced Research Institute on a Software Framework for Transactive Energy: VOLTTRON(tm). March 11, 2015 Technical Meeting: Buildings Interoperability Vision BTO held a technical

  12. Energy Systems Integration: NREL + Advanced Energy (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-02-01

    This fact sheet describes the collaboration between NREL and Advanced Energy Industries at the ESIF to test its advanced photovoltaic inverter technology with the ESIF's power hardware-in-the-loop system and megawatt-scale grid simulators.

  13. The Modern Grid Strategy THE TRANSMISSION SMART GRID IMPERATIVE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modern Grid Strategy THE TRANSMISSION SMART GRID IMPERATIVE Developed for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability by the National Energy Technology Laboratory September 2009 Office of Electricity Delivery and Energy Reliability Transmission Smart Grid Imperative 1 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

  14. 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NC State University PDF icon 2012 SG Peer Review - Day 2 Panel Discussion: Matt ... Subsector Failure Scenarios into a Risk Assessment Methodology (December 2013) Smart Grid: ...

  15. Smart Grid Investments Improve Grid reliability, Resilience and...

    Broader source: Energy.gov (indexed) [DOE]

    ... Using Smart Grid Technologies to Modernize Distribution Infrastructure in New York, August 2014 x. Automated Demand Response Benefits California Utilities and Commercial & ...

  16. Grid Client Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Client Tools Grid Client Tools Using OSG and Globus client software You can either run the OSG/Globus client software directly on the NERSC systems via "modules" or by downloading it to your workstation. On your workstation: Download and install the OSG client software. Then run the following to setup your environment: % . $INSTALL_DIR/setup.sh or % source $INSTALL_DIR/setup.csh On NERSC Compute Systems: Use the module command to load the OSG or Globus toolkit. Where possible, you

  17. TASMANIAN Sparse Grids Module

    Energy Science and Technology Software Center (OSTI)

    2013-09-20

    Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library thatmore » provides a command line interface via text files ad a MATLAB interface via the command line tool.« less

  18. The advanced microgrid. Integration and interoperability

    SciTech Connect (OSTI)

    Bower, Ward Isaac; Ton, Dan T.; Guttromson, Ross; Glover, Steven F; Stamp, Jason Edwin; Bhatnagar, Dhruv; Reilly, Jim

    2014-02-01

    This white paper focuses on "advanced microgrids," but sections do, out of necessity, reference today's commercially available systems and installations in order to clearly distinguish the differences and advances. Advanced microgrids have been identified as being a necessary part of the modern electrical grid through a two DOE microgrid workshops, the National Institute of Standards and Technology, Smart Grid Interoperability Panel and other related sources. With their grid-interconnectivity advantages, advanced microgrids will improve system energy efficiency and reliability and provide enabling technologies for grid-independence to end-user sites. One popular definition that has been evolved and is used in multiple references is that a microgrid is a group of interconnected loads and distributed-energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode. Further, an advanced microgrid can then be loosely defined as a dynamic microgrid.

  19. Prepares Overset Grids for Processing

    Energy Science and Technology Software Center (OSTI)

    1998-04-22

    Many large and complex computational problems require multiple, structured, generically overlapped (overset) grids to obtain numerical solutions in a timely manner. BREAKUP significantly reduces required compute times by preparing overset grids for processing on massively parallel computers. BREAKUP subdivides the original grids for use on a user-specified number of parallel processors. Grid-to-grid and intragrid communications are maintained in the parallel environment via connectivity tables generated by BREAKUP. The subgrids are formed to be statically loadmore » balanced and to incur a minimum of communication between the subgrids. When the output of BREAKUP is submitted to an appropriately modified flow solver, subgrid solutions will be updated simultaneously. This contrasts to the much less efficient solution method of updating each original grid sequentially as done in the past.« less

  20. Voices of Experience | Insights into Advanced Distribution Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems (February 2015) | Department of Energy Experience | Insights into Advanced Distribution Management Systems (February 2015) Voices of Experience | Insights into Advanced Distribution Management Systems (February 2015) The American Recovery and Reinvestment Act (ARRA) of 2009 spurred investments in smart grid technology and programs at utilities across the country. The Smart Grid Investment Grant program and Smart Grid Demonstration projects that it funded provided unprecedented

  1. Fact Sheet: Advanced Implementation of Energy Storage Technologies -

    Energy Savers [EERE]

    Community Energy Storage for Grid Support (August 2013) | Department of Energy Advanced Implementation of Energy Storage Technologies - Community Energy Storage for Grid Support (August 2013) Fact Sheet: Advanced Implementation of Energy Storage Technologies - Community Energy Storage for Grid Support (August 2013) Detroit Edison (DTE) will design, build, and demonstrate Community Energy Storage (CES) systems in their service territory. The CES is designed to improve electricity service to

  2. Fact Sheet: Advanced Implementation of Energy Storage Technologies -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Energy Storage for Grid Support (August 2013) | Department of Energy Advanced Implementation of Energy Storage Technologies - Community Energy Storage for Grid Support (August 2013) Fact Sheet: Advanced Implementation of Energy Storage Technologies - Community Energy Storage for Grid Support (August 2013) Detroit Edison (DTE) will design, build, and demonstrate Community Energy Storage (CES) systems in their service territory. The CES is designed to improve electricity service to

  3. Innovative Distributed Power Grid Interconnection and Control Systems: Final Report, December 11, 2000 - August 30, 2005

    SciTech Connect (OSTI)

    DePodesta, K.; Birlingmair, D.; West, R.

    2006-03-01

    The contract goal was to further advance distributed generation in the marketplace by making installations more cost-effective and compatible with existing systems. This was achieved by developing innovative grid interconnection and control systems.

  4. NREL: Distributed Grid Integration - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Photo of two men in safety glasses working with electric equipment in a laboratory. NREL's distributed grid integration projects develop and test technologies, systems, and methods to interconnect variable renewable energy with the electric power grid. NREL's distributed energy projects support the integration of new technologies into the electric power grid. This work involves industry, academia, other national laboratories, and various standards organizations. Learn more about our

  5. Electrolysis on an Island Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis on an Island Grid Mitch Ewan Hydrogen Systems Program Manager Hawaii Natural Energy Institute School of Ocean Earth Science and Technology University of Hawaii at Manoa 28 February 2014 High Percentages of As-Available Renewable Resources Creates Problems for Grid Systems 1300MW 75MW 5MW 200MW  Good renewable resource mix;  High electricity costs; and  Grid issues.  Provide unique opportunity for validation and deployment of new renewable and enabling technologies. 200MW

  6. The Economics of Micro Grids

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security Energy Resiliency Go Electric The Economics of Micro Grids SPIDERS Industry Day August 27, 2015 1 Go Electric: Who We Are Lisa Laughner Founder, President & CEO Tony Soverns Engineering Director Alex Creviston Chief Engineer Mechanical Systems Go Electric Anderson, Indiana 2 Go Electric: What We Do Go Electric Our Role in SPIDERS Phase III: Delivered: * 500kW LYNC(tm) UPS * 1500kW Diesel Generators * Micro Grid Control & Integration Micro Grid in a Box * Provides Uninterruptible

  7. Smart Grid Enabled EVSE

    SciTech Connect (OSTI)

    None, None

    2014-10-15

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  8. Technical and Economic Assessment of Off-grid, Mini-grid and...

    Open Energy Info (EERE)

    and Economic Assessment of Off-grid, Mini-grid and Grid Electrification Technologies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technical and Economic Assessment of...

  9. Consumer to Grid (C2G) (Smart Grid Project) (Schwarzach, Austria...

    Open Energy Info (EERE)

    Consumer to Grid (C2G) (Smart Grid Project) (Schwarzach, Austria) Jump to: navigation, search Project Name Consumer to Grid (C2G) Country Austria Headquarters Location Schwarzach,...

  10. Consumer to Grid (C2G) (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Consumer to Grid (C2G) (Smart Grid Project) Jump to: navigation, search Project Name Consumer to Grid (C2G) Country Austria Headquarters Location Salzburg, Austria Coordinates...

  11. Consumer to Grid (C2G) (Smart Grid Project) (Hallein, Austria...

    Open Energy Info (EERE)

    Consumer to Grid (C2G) (Smart Grid Project) (Hallein, Austria) Jump to: navigation, search Project Name Consumer to Grid (C2G) Country Austria Headquarters Location Hallein,...

  12. smart grid | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart grid Accelerating the transition to a Smart Grid in the United States through the development of implementation strategies and tools. Click to start The Modern Grid Strategy Video Click on the graphic above to start the Modern Grid Strategy video. NETL Smart Grid Initiatives Summary The National Energy Technology Laboratory is involved in a variety of smart grid and modern grid activities on behalf of the DOE Office of Electricity Delivery and Energy Reliability (OE), DOE Office of Energy

  13. Electricity Advisory Committee Smart Grid Subcommittee

    Office of Environmental Management (EM)

    Electricity Advisory Committee Smart Grid Subcommittee Update to the 2008 EAC Report Smart Grid: Enabler of the New Energy Economy Report Recommendations May 10, 2011 Recommendations from the 2008 EAC Smart Grid Report (http://www.oe.energy.gov/DocumentsandMedia/final-smart-grid-report.pdf) 1. Create a Smart Grid Program office within DOE. Update: Completed. DOE's Office of Electricity Delivery and Energy Reliability (OE) has an active Smart Grid Program, which includes the Smart Grid Investment

  14. In the OSTI Collections: Keeping Power Grids Stable | OSTI, US Dept of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Office of Scientific and Technical Information Keeping Power Grids Stable (plus, an update on the Mars Science Laboratory "Curiosity" and its ChemCam) The Relation of Grid Stability to the "Smart Grid" Concept Update: the Mars Science Laboratory's ChemCam References Additional References Research Organizations Reports Available through OSTI's SciTech Connect Figure 1. The Continental U.S. power transmission grid consists of about 300,000 km of lines operated by

  15. Smart Grid Interoperability Maturity Model Beta Version

    SciTech Connect (OSTI)

    Widergren, Steven E.; Drummond, R.; Giroti, Tony; Houseman, Doug; Knight, Mark; Levinson, Alex; longcore, Wayne; Lowe, Randy; Mater, J.; Oliver, Terry V.; Slack, Phil; Tolk, Andreas; Montgomery, Austin

    2011-12-02

    The GridWise Architecture Council was formed by the U.S. Department of Energy to promote and enable interoperability among the many entities that interact with the electric power system. This balanced team of industry representatives proposes principles for the development of interoperability concepts and standards. The Council provides industry guidance and tools that make it an available resource for smart grid implementations. In the spirit of advancing interoperability of an ecosystem of smart grid devices and systems, this document presents a model for evaluating the maturity of the artifacts and processes that specify the agreement of parties to collaborate across an information exchange interface. You are expected to have a solid understanding of large, complex system integration concepts and experience in dealing with software component interoperation. Those without this technical background should read the Executive Summary for a description of the purpose and contents of the document. Other documents, such as checklists, guides, and whitepapers, exist for targeted purposes and audiences. Please see the www.gridwiseac.org website for more products of the Council that may be of interest to you.

  16. Smart-Grid Security Issues

    SciTech Connect (OSTI)

    Khurana, Himanshu; Hadley, Mark D.; Lu, Ning; Frincke, Deborah A.

    2010-01-29

    TITLE: Smart-Grid Security Issues (Editorial Material, English) IEEE SECURITY & PRIVACY 8 (1). JAN-FEB 2010. p.81-85 IEEE COMPUTER SOC, LOS ALAMITOS

  17. Buildings to Grid Technical Meeting

    SciTech Connect (OSTI)

    none,

    2012-12-01

    A meeting book created for the Buildings to Grid Technical Meeting that includes speaker and attendee bios, as well as white papers and discussion questions.

  18. Getting Our Grid Report Card

    Broader source: Energy.gov [DOE]

    Overwhelming turnout at peer reviews shows the growing recognition that a modern grid is integral to developing a clean energy economy.

  19. 2014 Modern Power Grid Video

    SciTech Connect (OSTI)

    2014-06-02

    A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

  20. 2014 Modern Power Grid Video

    ScienceCinema (OSTI)

    None

    2014-07-22

    A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

  1. National Grid | Open Energy Information

    Open Energy Info (EERE)

    MA Website: www.nationalgrid.com References: National Grid Website1 EIA Form 861 Data Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

  2. Environmental Impact of Smart Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pollutants * Evaluate impact from Smart Grid on reducing pollutants through: - Demand Response - Electric Vehicles - Demand Side Management - Renewables and Distributed Energy ...

  3. Smart Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Smart Grid Smart Grid "Smart grid" generally refers to a class of technology people are using to bring utility electricity delivery systems into the 21st century, using computer-based remote control and automation. These systems are made possible by two-way communication technology and computer processing that has been used for decades in other industries. They are beginning to be used on electricity networks, from the power plants and wind farms all the way to the consumers

  4. Secure Interoperable Open Smart Grid Demonstration Project

    SciTech Connect (OSTI)

    Magee, Thoman

    2014-12-31

    The Consolidated Edison, Inc., of New York (Con Edison) Secure Interoperable Open Smart Grid Demonstration Project (SGDP), sponsored by the United States (US) Department of Energy (DOE), demonstrated that the reliability, efficiency, and flexibility of the grid can be improved through a combination of enhanced monitoring and control capabilities using systems and resources that interoperate within a secure services framework. The project demonstrated the capability to shift, balance, and reduce load where and when needed in response to system contingencies or emergencies by leveraging controllable field assets. The range of field assets includes curtailable customer loads, distributed generation (DG), battery storage, electric vehicle (EV) charging stations, building management systems (BMS), home area networks (HANs), high-voltage monitoring, and advanced metering infrastructure (AMI). The SGDP enables the seamless integration and control of these field assets through a common, cyber-secure, interoperable control platform, which integrates a number of existing legacy control and data systems, as well as new smart grid (SG) systems and applications. By integrating advanced technologies for monitoring and control, the SGDP helps target and reduce peak load growth, improves the reliability and efficiency of Con Edison’s grid, and increases the ability to accommodate the growing use of distributed resources. Con Edison is dedicated to lowering costs, improving reliability and customer service, and reducing its impact on the environment for its customers. These objectives also align with the policy objectives of New York State as a whole. To help meet these objectives, Con Edison’s long-term vision for the distribution grid relies on the successful integration and control of a growing penetration of distributed resources, including demand response (DR) resources, battery storage units, and DG. For example, Con Edison is expecting significant long-term growth of DG. The SGDP enables the efficient, flexible integration of these disparate resources and lays the architectural foundations for future scalability. Con Edison assembled an SGDP team of more than 16 different project partners, including technology vendors, and participating organizations, and the Con Edison team provided overall guidance and project management. Project team members are listed in Table 1-1.

  5. AVTA: GE Smart Grid Capable AC Level 2 Testing Results | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy GE Smart Grid Capable AC Level 2 Testing Results AVTA: GE Smart Grid Capable AC Level 2 Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing

  6. Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control

    SciTech Connect (OSTI)

    Acharya, Naresh; Baone, Chaitanya; Veda, Santosh; Dai, Jing; Chaudhuri, Nilanjan; Leonardi, Bruno; Sanches-Gasca, Juan; Diao, Ruisheng; Wu, Di; Huang, Zhenyu; Zhang, Yu; Jin, Shuangshuang; Zheng, Bin; Chen, Yousu

    2014-12-31

    Power grid planning and operation decisions are made based on simulation of the dynamic behavior of the system. Enabling substantial energy savings while increasing the reliability of the aging North American power grid through improved utilization of existing transmission assets hinges on the adoption of wide-area measurement systems (WAMS) for power system stabilization. However, adoption of WAMS alone will not suffice if the power system is to reach its full entitlement in stability and reliability. It is necessary to enhance predictability with "faster than real-time" dynamic simulations that will enable the dynamic stability margins, proactive real-time control, and improve grid resiliency to fast time-scale phenomena such as cascading network failures. Present-day dynamic simulations are performed only during offline planning studies, considering only worst case conditions such as summer peak, winter peak days, etc. With widespread deployment of renewable generation, controllable loads, energy storage devices and plug-in hybrid electric vehicles expected in the near future and greater integration of cyber infrastructure (communications, computation and control), monitoring and controlling the dynamic performance of the grid in real-time would become increasingly important. The state-of-the-art dynamic simulation tools have limited computational speed and are not suitable for real-time applications, given the large set of contingency conditions to be evaluated. These tools are optimized for best performance of single-processor computers, but the simulation is still several times slower than real-time due to its computational complexity. With recent significant advances in numerical methods and computational hardware, the expectations have been rising towards more efficient and faster techniques to be implemented in power system simulators. This is a natural expectation, given that the core solution algorithms of most commercial simulators were developed decades ago, when High Performance Computing (HPC) resources were not commonly available.

  7. End-use load control for power system dynamic stability enhancement

    SciTech Connect (OSTI)

    Dagle, J.E.; Winiarski, D.W.; Donnelly, M.K.

    1997-02-01

    Faced with the prospect of increasing utilization of the transmission and distribution infrastructure without significant upgrade, the domestic electric power utility industry is investing heavily in technologies to improve network dynamic performance through a program loosely referred to as Flexible AC Transmission System (FACTS). Devices exploiting recent advances in power electronics are being installed in the power system to offset the need to construct new transmission lines. These devices collectively represent investment potential of several billion dollars over the next decade. A similar development, designed to curtail the peak loads and thus defer new transmission, distribution, and generation investment, falls under a category of technologies referred to as demand side management (DSM). A subset of broader conservation measures, DSM acts directly on the load to reduce peak consumption. DSM techniques include direct load control, in which a utility has the ability to curtail specific loads as conditions warrant. A novel approach has been conceived by Pacific Northwest National Laboratory (PNNL) to combine the objectives of FACTS and the technologies inherent in DSM to provide a distributed power system dynamic controller. This technology has the potential to dramatically offset major investments in FACTS devices by using direct load control to achieve dynamic stability objectives. The potential value of distributed versus centralized grid modulation has been examined by simulating the western power grid under extreme loading conditions. In these simulations, a scenario is analyzed in which active grid stabilization enables power imports into the southern California region to be increased several hundred megawatts beyond present limitations. Modeling results show distributed load control is up to 30 percent more effective than traditional centralized control schemes in achieving grid stability.

  8. TTU Advanced Doppler Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TTU Advanced Doppler Radar - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  9. Advanced Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Source - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  10. Advanced Bit Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bit Development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  11. Advanced Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page 2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  12. Advanced Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  13. Fluidic: Grid-Scale Batteries for Wind and Solar | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fluidic: Grid-Scale Batteries for Wind and Solar Fluidic: Grid-Scale Batteries for Wind and Solar February 27, 2013 - 5:42pm Addthis Andrew Gumbiner Contractor, Advanced Research Projects Agency-Energy. FLUIDIC: Metal Air Recharged from DOE ARPA-E on Vimeo. Our nation's modern electric grid is limited in its ability to store excess energy for on-demand power. As a result, electricity must be generated on a constant basis to perfectly match demand. Grid-scale storage technologies have the

  14. The Open Science Grid

    SciTech Connect (OSTI)

    Pordes, Ruth; Kramer, Bill; Olson, Doug; Livny, Miron; Roy, Alain; Avery, Paul; Blackburn, Kent; Wenaus, Torre; Wurthwein, Frank; Gardner, Rob; Wilde, Mike; /Chicago U. /Indiana U.

    2007-06-01

    The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. OSG provides support for and evolution of the infrastructure through activities that cover operations, security, software, troubleshooting, addition of new capabilities, and support for existing and engagement with new communities. The OSG SciDAC-2 project provides specific activities to manage and evolve the distributed infrastructure and support its use. The innovative aspects of the project are the maintenance and performance of a collaborative (shared & common) petascale national facility over tens of autonomous computing sites, for many hundreds of users, transferring terabytes of data a day, executing tens of thousands of jobs a day, and providing robust and usable resources for scientific groups of all types and sizes. More information can be found at the OSG web site: www.opensciencegrid.org.

  15. BeAware (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Other Additional Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  16. NREL: Distributed Grid Integration - Energy System Basics Video...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Part 1: Electricity Grid Overview Part 2: Electricity Grid: Traditional Generation Technologies Part 3: Electricity Grid: Transmission Systems Part 4: Electricity Grid: Substation...

  17. Data Exchange (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Missing content Broken link Other Additional Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Transmission...

  18. DG Demonetz Validierung (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Missing content Broken link Other Additional Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution...

  19. Public Service Company of New Mexico Smart Grid Demonstration...

    Open Energy Info (EERE)

    Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in United States Stubs Smart Grid Demonstration Projects Smart Grid Projects - Energy Storage Demonstrations...

  20. Amber Kinetics, Inc. Smart Grid Demonstration Project | Open...

    Open Energy Info (EERE)

    Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in United States Smart Grid Demonstration Projects Smart Grid Projects - Energy Storage Demonstrations...

  1. City of Painesville Smart Grid Demonstration Project | Open Energy...

    Open Energy Info (EERE)

    Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in United States Stubs Smart Grid Demonstration Projects Smart Grid Projects - Energy Storage Demonstrations...

  2. Grid Storage and the Energy Frontier Research Centers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

  3. Category:Smart Grid Projects - Electric Transmission Systems...

    Open Energy Info (EERE)

    Carolinas, LLC Smart Grid Project E Entergy Services, Inc. Smart Grid Project I ISO New England, Incorporated Smart Grid Project M Midwest Energy Inc. Smart Grid Project...

  4. NREL + SolarCity: Maximizing Solar Power on Electrical Grids

    SciTech Connect (OSTI)

    Hannegan, Bryan; Hanley, Ryan; Symko-Davies, Martha

    2015-06-03

    Learn how NREL is partnering with SolarCity to study how to better integrate rooftop solar onto the grid. The work includes collaboration with the Hawaiian Electric Companies (HECO) to analyze high-penetration solar scenarios using advanced modeling and inverter testing at the Energy Systems Integration Facility (ESIF) on NREL’s campus. Results to date have been so promising that HECO has more than doubled the amount of rooftop solar it allows on its grid, showing utilities across the country that distributed solar is not a liability for reliability—and can even be an asset.

  5. CABINET IN YOUR COMMUNITY: Grid Modernization Fact Sheet | Department of

    Energy Savers [EERE]

    Energy CABINET IN YOUR COMMUNITY: Grid Modernization Fact Sheet CABINET IN YOUR COMMUNITY: Grid Modernization Fact Sheet January 14, 2016 - 4:11pm Addthis In the days immediately following the State of the Union, Cabinet officials are embarking on the "State of the Union: Cabinet In Your Community" road tour to engage Americans in small towns, big cities and Indian country about the advancements the Administration has made on the most important issues facing the American people, as

  6. Advanced Application Development Program Information | Department of Energy

    Energy Savers [EERE]

    Application Development Program Information Advanced Application Development Program Information Summary of the Tranmission Reliability program's Advanced Applications Research and Development activity area. This program develops and demonstrates tools to monitor and control the grid with advanced analysis, visualization, and situational awareness tools. PDF icon Advanced Applications Development Program Factsheet.pdf More Documents & Publications EAC Recommendations for DOE Action Regarding

  7. PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.

    SciTech Connect (OSTI)

    Robinett, Rush D., III; Kukolich, Keith; Wilson, David Gerald; Schenkman, Benjamin L.

    2010-06-01

    This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

  8. Grid2Home | Open Energy Information

    Open Energy Info (EERE)

    Grid2Home Jump to: navigation, search Name: Grid2Home Place: Campbell, California Product: Smart grid company based in California. Coordinates: 33.14919, -95.951444 Show Map...

  9. Power Grid Optimization | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that have heightened attention on the reliability and functionality of electric grids. ... See how a grid works in Smarter Technology for a Smart Grid. You Might Also Like lightning ...

  10. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid - What's so Smart About It? An Educational Forum on Smart Grids Joe Miller - Modern Grid Strategy Team June 24, 2008 1 Conducted by the National Energy Technology ...

  11. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... MODERN GRID S T R A T E G Y 28 Smart Grid Key Technology Areas Smart meters Smart sensors Demand Response DG dispatch Distribution automation Micro-grids Markets Work force ...

  12. The Development of an INL Capability for High Temperature Flow, Heat Transfer, and Thermal Energy Storage with Applications in Advanced Small Modular Reactors, High Temperature Heat Exchangers, Hybrid Energy Systems, and Dynamic Grid Energy Storage C

    SciTech Connect (OSTI)

    Xiaodong Sun; Xiaoqin Zhang; Inhun Kim; James O'Brien; Piyush Sabharwall

    2014-10-01

    The overall goal of this project is to support Idaho National Laboratory in developing a new advanced high temperature multi fluid multi loop test facility that is aimed at investigating fluid flow and heat transfer, material corrosion, heat exchanger characteristics and instrumentation performance, among others, for nuclear applications. Specifically, preliminary research has been performed at The Ohio State University in the following areas: 1. A review of fluoride molten salts characteristics in thermal, corrosive, and compatibility performances. A recommendation for a salt selection is provided. Material candidates for both molten salt and helium flow loop have been identified. 2. A conceptual facility design that satisfies the multi loop (two coolant loops [i.e., fluoride molten salts and helium]) multi purpose (two operation modes [i.e., forced and natural circulation]) requirements. Schematic models are presented. The thermal hydraulic performances in a preliminary printed circuit heat exchanger (PCHE) design have been estimated. 3. An introduction of computational methods and models for pipe heat loss analysis and cases studies. Recommendations on insulation material selection have been provided. 4. An analysis of pipe pressure rating and sizing. Preliminary recommendations on pipe size selection have been provided. 5. A review of molten fluoride salt preparation and chemistry control. An introduction to the experience from the Molten Salt Reactor Experiment at Oak Ridge National Laboratory has been provided. 6. A review of some instruments and components to be used in the facility. Flowmeters and Grayloc connectors have been included. This report primarily presents the conclusions drawn from the extensive review of literatures in material selections and the facility design progress at the current stage. It provides some useful guidelines in insulation material and pipe size selection, as well as an introductory review of facility process and components.

  13. National Smart Water Grid

    SciTech Connect (OSTI)

    Beaulieu, R A

    2009-07-13

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US-Mexico border; and decreased eutrophication (excessive plant growth and decay) in the Gulf of Mexico to name a few. The National Smart Water Grid{trademark} will pay for itself in a single major flood event.

  14. Opening Remarks, Grid Integration Initiative Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lynn Grid Integration Initiative Hydrogen Energy Storage for Grid Integration and Transportation Services May 14, 2014 2 Other DOE? 2 The GTT is a DOE inter-office work group established in April 2011 by the Undersecretary of Energy to: - Coordinate and leverage DOE grid resources and activities - Identify pathways to enable grid modernization - Develop a long-term strategic vision of the U.S. electricity grid Value to the DOE * Holistic systems perspective * Align internal grid activities *

  15. GridOPTICS Software System

    Energy Science and Technology Software Center (OSTI)

    2014-02-24

    GridOPTICS Software System (GOSS) is a middleware that facilitates creation of new, modular and flexible operational and planning platforms that can meet the challenges of the next generation power grid. GOSS enables Department of Energy, power system utilities, and vendors to build better tools faster. GOSS makes it possible to integrate Future Power Grid Initiative software products/prototypes into existing power grid software systems, including the PNNL PowerNet and EIOC environments. GOSS is designed to allowmore » power grid applications developed for different underlying software platforms installed in different utilities to communicate with ease. This can be done in compliance with existing security and data sharing policies between the utilities. GOSS not only supports one-to-one data transfer between applications, but also publisher/subscriber scheme. To support interoperability requirements of future EMS, GOSS is designed for CIM compliance. In addition to this, it supports authentication and authorization capabilities to protect the system from cyber threats. In summary, the contributions of the GOSS middleware are as follows: • A platform to support future EMS development. • A middleware that promotes interoperability between power grid applications. • A distributed architecture that separates data sources from power grid applications. • Support for data exchange with either one-to-one or publisher/subscriber interfaces. • An authentication and authorization scheme for limiting the access to data between utilities.« less

  16. Tribal Renewable Energy Foundational Course: Electricity Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Grid Basics Tribal Renewable Energy Foundational Course: Electricity Grid Basics Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar...

  17. Reciprocating Engines in Support of Grid Modernization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Reciprocating Engines Lean Burn Rich Burn GE (Waukesha, Jenbacher), ... Grid Services - CAISO Grid Service Description NG Recips Frequency Regulation >500kW, max ...

  18. Geothermal/Grid Connection | Open Energy Information

    Open Energy Info (EERE)

    GeothermalGrid Connection < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection...

  19. National Grid Generation, LLC | Open Energy Information

    Open Energy Info (EERE)

    Grid Generation, LLC Jump to: navigation, search Name: National Grid Generation, LLC Place: New York Service Territory: Massachusetts, New Hampshire, New York, Rhode Island Phone...

  20. Vestas State Grid JV | Open Energy Information

    Open Energy Info (EERE)

    State Grid JV Jump to: navigation, search Name: Vestas & State Grid JV Place: Beijing, Beijing Municipality, China Sector: Wind energy Product: China-based JV to coordinate the...

  1. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MGS is an "Independent Broker" for the Smart Grid Office of Electricity Delivery and ... 2-way power flow into operations Micro-grids and dynamic islanding Adaptive protective ...

  2. Networks, smart grids: new model for synchronization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May Networks, smart grids: new model for synchronization Networks, smart grids: new model for synchronization Researchers developed a surprisingly simple mathematical model that ...

  3. NREL: Transportation Research - Electric Vehicle Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of building energy systems, utility grids, renewable energy sources, and ... to enable PEV communication with the smart grid and to create opportunities for ...

  4. The Green Grid | Open Energy Information

    Open Energy Info (EERE)

    Grid Jump to: navigation, search Name: The Green Grid Place: Oregon Zip: 97006 Sector: Efficiency Product: Oregan-based consortium that seeks to improve energy efficiency in data...

  5. smart grid technologies | OpenEI Community

    Open Energy Info (EERE)

    and discussion of smart grid technologies, tools, and techniques. The Smart Grid Investment Grant (SGIG) program is authorized by the Energy Independence and Security Act of...

  6. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structuring the Smart Grid Framework: Application of Complex Systems Engineering Joe Miller - DOE NETL Modern Grid Team Lead Committee on Science, Engineering, and Public Policy...

  7. AMIS (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    map Period Jan 2005 - Jun 2012 References EU Smart Grid Projects Map1 Overview Automation of metering and customer processes, further automation of grid components, creation...

  8. GROWDERS Demonstration of Grid Connected Electricity Systems...

    Open Energy Info (EERE)

    2011 References EU Smart Grid Projects Map1 Overview The GROWDERS project (Grid Reliability and Operability with Distributed Generation using Flexible Storage) investigates...

  9. Waukesha Electric Systems Smart Grid Demonstration Project |...

    Open Energy Info (EERE)

    transformer, lower power consumption through reduction of losses, and increase the reliability of the electrical grid. References ARRA Smart Grid Demonstration Projects...

  10. Smarter Grid Solutions | Open Energy Information

    Open Energy Info (EERE)

    Smarter Grid Solutions Jump to: navigation, search Name: Smarter Grid Solutions Place: United Kingdom Product: String representation "The SGS technol ... the technology." is too...

  11. Secure Smart Grid Association | Open Energy Information

    Open Energy Info (EERE)

    Smart Grid Association Jump to: navigation, search Name: Secure Smart Grid Association Address: 2374 S Josephine St Place: Denver, Colorado Zip: 80210 Region: Rockies Area Number...

  12. Smart Grid Computational Tool | Open Energy Information

    Open Energy Info (EERE)

    project benefits. The Smart Grid Computational Tool employs the benefit analysis methodology that DOE uses to evaluate the Recovery Act smart grid projects. How it works: The...

  13. Grid Integration of Offshore Windparks (Smart Grid Project) ...

    Open Energy Info (EERE)

    Jun 2011 References EU Smart Grid Projects Map1 Overview With the WCMS the scattered wind farms have been combined in to a cluster and the control room of the relevant network...

  14. Buildings-to-Grid Technical Opportunities: From the Grid Perspective

    SciTech Connect (OSTI)

    Kropski, Ben; Pratt, Rob

    2014-03-28

    This paper outlines the nature of the power grid, lists challenges and barriers to the implementation of a transactive energy ecosystem, and provides concept solutions to current technological impediments.

  15. National transmission grid study

    SciTech Connect (OSTI)

    Abraham, Spencer

    2003-05-31

    The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE’s Policy Office Electricity Modeling System (POEMS). DOE’s analysis, presented in Section 2, confirms the central role of the nation’s transmission system in lowering costs to consumers through increased trade. More importantly, DOE’s analysis also confirms the results of previous studies, which show that transmission bottlenecks and related transmission system market practices are adding hundreds of millions of dollars to consumers’ electricity bills each year. A more detailed technical overview of the use of POEMS is provided in Appendix A. DOE led an extensive, open, public input process and heard a wide range of comments and recommendations that have all been considered.1 More than 150 participants registered for three public workshops held in Detroit, MI (September 24, 2001); Atlanta, GA (September 26, 2001); and Phoenix, AZ (September 28, 2001).

  16. Vehicle to Micro-Grid: Leveraging Existing Assets for Reliable Energy Management (Poster)

    SciTech Connect (OSTI)

    Simpson, M.; Markel, T.; O'Keefe, M.

    2010-12-01

    Fort Carson, a United States Army installation located south of Colorado Springs, Colorado, is seeking to be a net-zero energy facility. As part of this initiative, the base will be constructing a micro-grid that ties to various forms of renewable energy. To reduce petroleum consumption, Fort Carson is considering grid-connected vehicles (GCVs) such as pure electric trucks to replace some of its on-base truck fleet. As the availability and affordability of distributed renewable energy generation options increase, so will the GCV options (currently, three all-electric trucks are available on the GSA schedule). The presence of GCVs on-base opens up the possibility to utilize these vehicles to provide stability to the base micro-grid. This poster summarizes work to estimate the potential impacts of three electric vehicle grid interactions between the electric truck fleet and the Fort Carson micro-grid: 1) full-power charging without management, 2) full-power charging capability controlled by the local grid authority, and 3) full-power charge and discharge capability controlled by the local grid authority. We found that even at relatively small adoption rates, the control of electric vehicle charging at Fort Carson will aid in regulation of variable renewable generation loads and help stabilize the micro-grid.

  17. The Modern Grid Strategy THE TRANSMISSION SMART GRID IMPERATIVE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... With 21st-century technological advances paving the way, many regulators have stressed this initial focus on advanced metering infrastructure (AMI) and demand response (DR). Unlike ...

  18. Department of Energy, Duke Energy and EPRI Partner to Test Advanced Energy Technologies for Utilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Partnership with the Department's Advanced Research Agency Aims to Commercialize Technologies that can Lower Customers' Energy Costs and Strengthen the Electric Grid

  19. Reinventing the National Power Grid

    Broader source: Energy.gov [DOE]

    America’s power grid – while reliable today – needs a 21st century facelift, not only to accommodate the nation’s unfolding economic and security needs, but to achieve U.S. clean energy goals for a...

  20. Instrumentation, Controls, and Human-Machine Interface Technology Development Roadmap in Support of Grid Appropriate Reactors

    SciTech Connect (OSTI)

    Holcomb, David Eugene [ORNL] [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Kisner, Roger A [ORNL] [ORNL; O'Hara, John [Brookhaven National Laboratory (BNL)] [Brookhaven National Laboratory (BNL); Quinn, Edward L. [Longenecker & Associates] [Longenecker & Associates; Miller, Don W. [Ohio State University] [Ohio State University

    2009-01-01

    Grid Appropriate Reactors (GARs) are a component of the U.S. Department of Energy s (DOE s) Global Nuclear Energy Partnership (GNEP) program. GARs have smaller output power (<~600 MWe), than those intended for deployment on large, tightly coupled grids. This smaller size is important in avoiding grid destabilization, which can result from having a large fraction of a grid s electrical generation supplied by a single source. GARs are envisioned to be deployed worldwide often in locations without extensive nuclear power experience. DOE recently sponsored the creation of an Instrumentation, Controls, and Human-Machine Interface (ICHMI) technology development roadmap emphasizing the specific characteristics of GARs [1]. This roadmapping effort builds upon and focuses the recently developed, more general nuclear energy ICHMI technology development roadmap [2]. The combination of the smaller plant size, smaller grids, and deployment in locations without extensive prior nuclear power experience presents particular infrastructure, regulation, design, operational, and safeguards challenges for effective GAR deployment. ICHMI technologies are central to efficient GAR operation and as such are a dimension of each of these challenges. Further, while the particular ICHMI technologies to be developed would be useful at larger power plants, they are not high-priority development items at the larger plants. For example, grid transient resilience would be a useful feature for any reactor/grid combination and indeed would have limited some recent blackout events. However, most large reactors have limited passive cooling features. Large plants with active safety response features will likely preserve trip preferential grid transient response. This contrasts sharply with GARs featuring passive shutdown cooling, which can safely support grid stability during large grid transients. ICHMI technologies ranging from alternative control algorithms to simplified human-interface system designs are key to enabling GARs to respond properly and thereby stabilize the grid during transients.

  1. Northeast Energy Efficiency Partnerships: Advanced Lighting Controls |

    Energy Savers [EERE]

    Department of Energy Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Credit: Northeast Energy Efficiency Partnerships Credit: Northeast Energy Efficiency Partnerships Lead Performer: Northeast Energy Efficiency Partnerships, Lexington, MA Partners: Burlington Electric Department, Cape Light Compact, Connecticut Light and Power, Efficiency Vermont, National Grid, NSTAR Electric and Gas, NYSERDA, PSEG -

  2. Smart Wire Grid: Resisting Expectations

    ScienceCinema (OSTI)

    Ramsay, Stewart; Lowe, DeJim

    2014-04-09

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  3. Parallel Power Grid Simulation Toolkit

    Energy Science and Technology Software Center (OSTI)

    2015-09-14

    ParGrid is a 'wrapper' that integrates a coupled Power Grid Simulation toolkit consisting of a library to manage the synchronization and communication of independent simulations. The included library code in ParGid, named FSKIT, is intended to support the coupling multiple continuous and discrete even parallel simulations. The code is designed using modern object oriented C++ methods utilizing C++11 and current Boost libraries to ensure compatibility with multiple operating systems and environments.

  4. Reinventing Batteries for Grid Storage

    ScienceCinema (OSTI)

    Banerjee, Sanjoy

    2013-05-29

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  5. Reinventing Batteries for Grid Storage

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2012-01-01

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  6. Smart Wire Grid: Resisting Expectations

    SciTech Connect (OSTI)

    Ramsay, Stewart; Lowe, DeJim

    2014-03-03

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  7. Sandwhiched Orb/Grid Heat Exchanger | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandwhiched Orb/Grid Heat Exchanger The design basis of the heat exchanger is that the most efficient geometrical shape to thermally stabilize during exposure to heat or to neutron exposure is a sphere. This invention incorporates the preferential geometry of the sphere into the structure of heat exchangers to maximize the surface area for cooling purposes. No.: M-881 Inventor(s): Michael J Duco

  8. The Smart Grid: An Introduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid: An Introduction The Smart Grid: An Introduction The Smart Grid: An Introduction. How a smarter grid works as an enabling engine for our economy, our environment and our future. PDF icon The Smart Grid: An Introduction More Documents & Publications SMART GRID: an introduction. WHAT THE SMART GRID MEANS TO AMERICANS HOW THE SMART GRID PROMOTES A GREENER FUTURE.

  9. Establishment of Grid Modernization Laboratory Consortium - Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Establishment of Grid Modernization Laboratory Consortium - Testing NetworkEstablishment of Grid Modernization Laboratory Consortium - Testing Network Establishment of Grid Modernization Laboratory Consortium - Testing Network Establishment of Grid Modernization Laboratory Consortium - Testing Network The U.S. Department of Energy launched the GMLC in November 2014. The consortium, a strategic partnership between DOE headquarters and the national laboratories, brings together leading experts and

  10. Grid Connected Functionalities | Department of Energy

    Office of Environmental Management (EM)

    Grid Connected Functionalities Grid Connected Functionalities Lead Performer: National Renewable Energy Laboratory (NREL) Objective The objective of Grid Connected Functionality is to develop planning and establish strategic directions, along with supporting framework documents vetted by public engagement with industry and other stakeholders, which support and inform future research, development and deployment of critical building-grid transactional frameworks. View the Presentation PDF icon

  11. Software-Based Challenges of Developing the Future Distribution Grid

    SciTech Connect (OSTI)

    Stewart, Emma; Kiliccote, Sila; McParland, Charles

    2014-06-01

    The software that the utility industry currently uses may be insufficient to analyze the distribution grid as it rapidly modernizes to include active resources such as distributed generation, switch and voltage control, automation, and increasingly complex loads. Although planners and operators have traditionally viewed the distribution grid as a passive load, utilities and consultants increasingly need enhanced analysis that incorporates active distribution grid loads in order to ensure grid reliability. Numerous commercial and open-source tools are available for analyzing distribution grid systems. These tools vary in complexity from providing basic load-flow and capacity analysis under steady-state conditions to time-series analysis and even geographical representations of dynamic and transient events. The need for each type of analysis is not well understood in the industry, nor are the reasons that distribution analysis requires different techniques and tools both from those now available and from those used for transmission analysis. In addition, there is limited understanding of basic capability of the tools and how they should be practically applied to the evolving distribution system. The study reviews the features and state of the art capability of current tools, including usability and visualization, basic analysis functionality, advanced analysis including inverters, and renewable generation and load modeling. We also discuss the need for each type of distribution grid system analysis. In addition to reviewing basic functionality current models, we discuss dynamics and transient simulation in detail and draw conclusions about existing software?s ability to address the needs of the future distribution grid as well as the barriers to modernization of the distribution grid that are posed by the current state of software and model development. Among our conclusions are that accuracy, data transfer, and data processing abilities are key to future distribution grid modeling, and measured data sources are a key missing element . Modeling tools need to be calibrated based on measured grid data to validate their output in varied conditions such as high renewables penetration and rapidly changing topology. In addition, establishing a standardized data modeling format would enable users to transfer data among tools to take advantage of different analysis features. ?

  12. National Grid Deep Energy Retrofit Pilot

    SciTech Connect (OSTI)

    Neuhauser, K.

    2012-03-01

    Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance. Evaluation of strategies is structured around the critical control functions of water, airflow, vapor flow, and thermal control. The aim of the research project is to develop guidance that could serve as a foundation for wider adoption of high performance, 'deep' retrofit work. The project will identify risk factors endemic to advanced retrofit in the context of the general building type, configuration and vintage encountered in the National Grid DER Pilot. Results for the test homes are based on observation and performance testing of recently completed projects. Additional observation would be needed to fully gauge long-term energy performance, durability, and occupant comfort.

  13. The Open Science Grid status and architecture

    SciTech Connect (OSTI)

    Pordes, Ruth; Petravick, Don; Kramer, Bill; Olsen, James D.; Livny, Miron; Roy, Gordon A.; Avery, Paul Ralph; Blackburn, Kent; Wenaus, Torre J.; Wuerthwein, Frank K.; Foster, Ian; /Chicago U. /Indiana U.

    2007-09-01

    The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. The OSG project[1] is funded by the National Science Foundation and the Department of Energy Scientific Discovery through Advanced Computing program. The OSG project provides specific activities for the operation and evolution of the common infrastructure. The US ATLAS and US CMS collaborations contribute to and depend on OSG as the US infrastructure contributing to the World Wide LHC Computing Grid on which the LHC experiments distribute and analyze their data. Other stakeholders include the STAR RHIC experiment, the Laser Interferometer Gravitational-Wave Observatory (LIGO), the Dark Energy Survey (DES) and several Fermilab Tevatron experiments- CDF, D0, MiniBoone etc. The OSG implementation architecture brings a pragmatic approach to enabling vertically integrated community specific distributed systems over a common horizontal set of shared resources and services. More information can be found at the OSG web site: www.opensciencegrid.org.

  14. Smart Grid e-Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Smart Grid Task Force Smart Grid e-Forum Smart Grid e-Forum DOE conducted a series of Smart Grid E-Forums to discuss various issues surrounding Smart Grid including ...

  15. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FERC - NARUC Smart Grid Collaborative Meeting Joe Miller - Modern Grid Strategy Team July 23, 2008 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Today's topics Smart Grid Background What is the Smart Grid? Some closing thoughts Questions 3 MODERN GRID S T R A T E G Y Smart Grid Background 4 Office of

  16. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid - What's so Smart About It? An Educational Forum on Smart Grids Joe Miller - Modern Grid Strategy Team June 24, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Agenda What is the Smart Grid? EISA 2007 Highlights DOE Activities Questions MODERN GRID S T R A T E G Y What is the Smart Grid? 4

  17. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid: Features, Benefits and Costs Illinois Smart Grid Initiative Joe Miller - Modern Grid Strategy Team July 8, 2008 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Today's topics Why modernize the grid? What is the Smart Grid? What is the value proposition? Questions 3 MODERN GRID S T R A T E G Y Why modernize

  18. Smart Grid Communications Security Project, U.S. Department of Energy

    SciTech Connect (OSTI)

    Barnes, Frank

    2012-09-01

    There were four groups that worked on this project in different areas related to Smart Girds and Security. They included faculty and students from electric computer and energy engineering, law, business and sociology. The results of the work are summarized in a verity of reports, papers and thesis. A major report to the Governor of Colorado’s energy office with contributions from all the groups working on this project is given bellow. Smart Grid Deployment in Colorado: Challenges and Opportunities, Report to Colorado Governor’s Energy Office and Colorado Smart Grid Task Force(2010) (Kevin Doran, Frank Barnes, and Puneet Pasrich, eds.) This report includes information on the state of the grid cyber security, privacy, energy storage and grid stability, workforce development, consumer behavior with respect to the smart grid and safety issues.

  19. Smart Grid Information Clearinghouse (SGIC)

    SciTech Connect (OSTI)

    Rahman, Saifur

    2014-08-31

    Since the Energy Independence and Security Act of 2007 was enacted, there has been a large number of websites that discusses smart grid and relevant information, including those from government, academia, industry, private sector and regulatory. These websites collect information independently. Therefore, smart grid information was quite scattered and dispersed. The objective of this work was to develop, populate, manage and maintain the public Smart Grid Information Clearinghouse (SGIC) web portal. The information in the SGIC website is comprehensive that includes smart grid information, research & development, demonstration projects, technical standards, costs & benefit analyses, business cases, legislation, policy & regulation, and other information on lesson learned and best practices. The content in the SGIC website is logically grouped to allow easily browse, search and sort. In addition to providing the browse and search feature, the SGIC web portal also allow users to share their smart grid information with others though our online content submission platform. The Clearinghouse web portal, therefore, serves as the first stop shop for smart grid information that collects smart grid information in a non-bias, non-promotional manner and can provide a missing link from information sources to end users and better serve users’ needs. The web portal is available at www.sgiclearinghouse.org. This report summarizes the work performed during the course of the project (September 2009 – August 2014). Section 2.0 lists SGIC Advisory Committee and User Group members. Section 3.0 discusses SGIC information architecture and web-based database application functionalities. Section 4.0 summarizes SGIC features and functionalities, including its search, browse and sort capabilities, web portal social networking, online content submission platform and security measures implemented. Section 5.0 discusses SGIC web portal contents, including smart grid 101, smart grid projects, deployment experience (i.e., use cases, lessons learned, cost-benefit analyses and business cases), in-depth information (i.e., standards, technology, cyber security, legislation, education and training and demand response), as well as international information. Section 6.0 summarizes SGIC statistics from the launch of the portal on July 07, 2010 to August 31, 2014. Section 7.0 summarizes publicly available information as a result of this work.

  20. NREL: Energy Systems Integration - Advanced Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Energy Photo of a large gray inverter connected to numerous power cords. 500-kilowatt Advanced Energy inverter at the ESIF PSIL. Photo by Dennis Schroeder, NREL As the first industry partner to use the ESIF, Advanced Energy Industries is using the ESIF's Power Systems Integration Laboratory (PSIL) to test its new solar photovoltaic (PV) inverter technology with the facility's hardware-in-the-loop system and megawatt-scale grid simulators. Solar inverters are responsible for a number of

  1. Inverter for interfacing advanced energy sources to a utility grid

    DOE Patents [OSTI]

    Steigerwald, Robert L. (Scotia, NY)

    1984-01-01

    A transistor is operated in the PWM mode such that a hlaf sine wave of current is delivered first to one-half of a distribution transformer and then the other as determined by steering thyristors operated at the fundamental sinusoidal frequency. Power to the transistor is supplied by a dc source such as a solar array and the power is converted such that a sinusoidal current is injected into a utility at near unity power factor.

  2. An Advanced Platform for Development and Evaluation of Grid Interconne...

    Office of Scientific and Technical Information (OSTI)

    Report," Paris, 2012. 2 US Energy Information Administration, "International Energy Outlook 2011," 2011. 3 Underwriters Laboratories, "UL 1741: Inverters, Converters,...

  3. Human Factors Evaluation of Advanced Electric Power Grid Visualization Tools

    SciTech Connect (OSTI)

    Greitzer, Frank L.; Dauenhauer, Peter M.; Wierks, Tamara G.; Podmore, Robin

    2009-04-01

    This report describes initial human factors evaluation of four visualization tools (Graphical Contingency Analysis, Force Directed Graphs, Phasor State Estimator and Mode Meter/ Mode Shapes) developed by PNNL, and proposed test plans that may be implemented to evaluate their utility in scenario-based experiments.

  4. Foundational Report Series: Advanced Distribution Management Systems for Grid Modernization

    SciTech Connect (OSTI)

    Wang, Jianhui

    2015-09-01

    This report describes the application functions for distribution management systems (DMS). The application functions are those surveyed by the IEEE Power and Energy Society’s Task Force on Distribution Management Systems. The description of each DMS application includes functional requirements and the key features and characteristics in current and future deployments, as well as a summary of the major benefits provided by each function to stakeholders — from customers to shareholders. Due consideration is paid to the fact that the realizable benefits of each function may differ by type of utility, whether investor-owned, cooperative, or municipal. This report is sufficient to define the functional requirements of each application for system procurement (request-for-proposal [RFP]) purposes and for developing preliminary high-level use cases for those functions. However, it should not be considered a design document that will enable a vendor or software developer to design and build actual DMS applications.

  5. Argonne National Laboratory Advanced Grid Resilience Capabilities- Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Risk Predictions for the 2015 Hurricane Season DOE-NASEO Webinar on Forecasting Energy Infrastructure Risk for the 2015 Hurricane Season June 23, 2015 Office of Electricity Delivery and Energy Reliability US Department of Energy What is a normal Hurricane Season ?  NOAA classifies 13 of the 20 seasons since 1995 as above normal, with eight being very active (i.e., hyperactive defined by ACE > 165% of median). - Only three seasons since 1995 were below normal (1997, 2009, and 2013). - The

  6. 2014 Advanced Grid Modeling Peer Review Presentations - Day Two...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Two Morning Session The Office of Electricity Delivery and Energy Reliability held ... ANL PDF icon Chance-constrained OPF and Unit Commitment -- Incorporating High-Performance ...

  7. Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are targeting ways to develop power electronics and build smarter, more interactive ... protocols, and that maintain or reduce the costs of power electronics to 0.10 per watt. ...

  8. 2014 WIND POWER PROGRAM PEER REVIEW-ADVANCED GRID INTEGRATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    30% combined wind and solar targets and informing stakeholders about the operational ... an international forum for exchange of knowledge - Recommend methods and guidelines * 15 ...

  9. Advanced Platform for Development and Evaluation of Grid Interconnecti...

    Office of Scientific and Technical Information (OSTI)

    of an ICS according to the procedures in IEEE Std 1547.1TM. The architecture and test ... Resource Relation: Conference: Presented at the IEEE Green Technologies Conference, 4-5 ...

  10. Smart Grid Week: New Project in Oregon Helping Advance the Grid...

    Broader source: Energy.gov (indexed) [DOE]

    The Salem Power Center is part of a highly reliable, localized power zone called a microgrid that will enable about 500 southeast Salem customers to tap into a power reserve...

  11. Grids: The Top Ten Questions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schopf, Jennifer M.; Nitzberg, Bill

    2002-01-01

    The design and implementation of a national computing system and data grid has become a reachable goal from both the computer science and computational science point of view. A distributed infrastructure capable of sophisticated computational functions can bring many benefits to scientific work, but poses many challenges, both technical and socio-political. Technical challenges include having basic software tools, higher-level services, functioning and pervasive security, and standards, while socio-political issues include building a user community, adding incentives for sites to be part of a user-centric environment, and educating funding sources about the needs of this community. This paper details the areasmore » relating to Grid research that we feel still need to be addressed to fully leverage the advantages of the Grid.« less

  12. Consumer to Grid (C2G) (Smart Grid Project) (Austria) | Open...

    Open Energy Info (EERE)

    Consumer to Grid (C2G) (Smart Grid Project) (Austria) Jump to: navigation, search Project Name Consumer to Grid (C2G) Country Austria Coordinates 47.516232, 14.550072 Loading...

  13. Consumer to Grid (C2G) (Smart Grid Project) (Hallein, Austria...

    Open Energy Info (EERE)

    Consumer to Grid (C2G) (Smart Grid Project) (Hallein, Austria) (2) Jump to: navigation, search Project Name Consumer to Grid (C2G) Country Austria Headquarters Location Hallein,...

  14. Grid Integration and the Carrying Capacity of the U.S. Grid to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the U.S. Grid to Incorporate Variable Renewable Energy Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy This report ...

  15. Convectively cooled electrical grid structure

    DOE Patents [OSTI]

    Paterson, J.A.; Koehler, G.W.

    1980-11-10

    Undesirable distortions of electrical grid conductors from thermal cycling are minimized and related problems such as unwanted thermionic emission and structural failure from overheating are avoided by providing for a flow of fluid coolant within each conductor. The conductors are secured at each end to separate flexible support elements which accommodate to individual longitudinal expansion and contraction of each conductor while resisting lateral displacements, the coolant flow preferably being directed into and out of each conductor through passages in the flexible support elements. The grid may have a modular or divided construction which facilitates manufacture and repairs.

  16. GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical

    Energy Savers [EERE]

    Challenges | Department of Energy GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical Challenges GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical Challenges The GridWise Alliance is a coalition of over 150 companies, organizations, and academic institutions advocating for a smart grid for a more sustainable future. We are consensus-driven and technology neutral and do not advocate for specific platforms or technologies, but, rather, for policies that will

  17. DOE Provides up to $51.8 Million to Modernize the U.S. Electric Grid

    Office of Environmental Management (EM)

    System. June 27, 2007 | Department of Energy Provides up to $51.8 Million to Modernize the U.S. Electric Grid System. June 27, 2007 DOE Provides up to $51.8 Million to Modernize the U.S. Electric Grid System. June 27, 2007 U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will provide up to $51.8 million for five cost-shared projects that will help accelerate much-needed modernization of our Nation's electricity grid. This research will advance the

  18. Smart Grid Newsletter …TheRegulators Role in Grid ModernizationŽ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... one-fifth (20%) of the cost of qualifying Smart Grid investments. Stakeholders should consider these opportunities as they move forward with their plans to modernize their grids. ...

  19. Smart Grid Newsletter …TheRegulators Role in Grid ModernizationŽ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... aimed at the utility side of the Smart Grid providing the increased information ... Vehicles and various types of micro-grids), and it is deeply integrated with a ...

  20. Smart Grid Newsletter ? The Regulators Role in Grid Modernization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Title: "The Regulator's Role in Grid Modernization" Sponsor: The Modern Grid Strategy is a DOE-funded project conducted by the National Energy Technology Laboratory Leadership from...

  1. G4V Grid for Vehicles (Smart Grid Project) (Portugal) | Open...

    Open Energy Info (EERE)

    on the grid infrastructure and a visionary "road map" for the year 2020 and beyond. References "EU Smart Grid Projects Map" Retrieved from "http:en.openei.orgw...

  2. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Wabash Valley Power Joe Miller - Modern Grid Strategy Team July 15, 2008 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Today's topics Smart Grid background Why modernize the grid? What is the Smart Grid? What is the value proposition? How do we get there? What are some of the barriers? Questions 3 MODERN

  3. Membrane stabilizer

    DOE Patents [OSTI]

    Mingenbach, William A. (P.O. Box 49, Taos, NM 87571)

    1988-01-01

    A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material.

  4. Energy Systems Integration: NREL + Advanced Energy (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADVANCED ENERGY Solar inverter manufacturer Advanced Energy Industries is using the ESIF's Power Systems Integration Laboratory (PSIL) to test its advanced photovoltaic (PV) inverter technology with the ESIF's power hardware-in-the-loop system and megawatt- scale grid simulators. Solar inverters are responsible for a number of critical functions within a solar PV system, including converting the direct current output into alternating current for the grid. Advanced Energy's inverter will help

  5. NREL: Transmission Grid Integration - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Want updates about future transmission grid integration webinars and publications? Join our mailing list. NREL has an extensive collection of publications related to transmission integration research. Explore the resources below to learn more. Selected Project Publications Read selected publications related to these transmission integration projects: Western Wind and Solar Integration Study Eastern Renewable Generation Integration Study Oahu Wind Integration and Transmission Study

  6. Munge Uid ?N? Grid Emporium

    Energy Science and Technology Software Center (OSTI)

    2004-04-02

    MUNGE (Munge Uid ?N? Grid Emporium) is a service for creating and validating credentials in order to allow a process to securely authenticate the UID and GID of another local or remote process within an administrative domain. Clients can create and validate these credentials without the use of root privileges or reserved ports.

  7. Distributed Smart Grid Asset Control Strategies for Providing Ancillary Services

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Zhang, Wei; Lian, Jianming; Marinovici, Laurentiu D.; Moya, Christian; Dagle, Jeffery E.

    2013-10-30

    With large-scale plans to integrate renewable generation driven mainly by state-level renewable portfolio requirements, more resources will be needed to compensate for the uncertainty and variability associated with intermittent generation resources. Distributed assets can be used to mitigate the concerns associated with renewable energy resources and to keep costs down. Under such conditions, performing primary frequency control using only supply-side resources becomes not only prohibitively expensive but also technically difficult. It is therefore important to explore how a sufficient proportion of the loads could assume a routine role in primary frequency control to maintain the stability of the system at an acceptable cost. The main objective of this project is to develop a novel hierarchical distributed framework for frequency based load control. The framework involves two decision layers. The top decision layer determines the optimal gain for aggregated loads for each load bus. The gains are computed using decentralized robust control methods, and will be broadcast to the corresponding participating loads every control period. The second layer consists of a large number of heterogeneous devices, which switch probabilistically during contingencies so that aggregated power change matches the desired amount according to the most recently received gains. The simulation results show great potential to enable systematic design of demand-side primary frequency control with stability guarantees on the overall power system. The proposed design systematically accounts for the interactions between the total load response and bulk power system frequency dynamics. It also guarantees frequency stability under a wide range of time varying operating conditions. The local device-level load response rules fully respect the device constraints (such as temperature setpoint, compressor time delays of HVACs, or arrival and departure of the deferrable loads), which are crucial for implementing real load control programs. The promise of autonomous, Grid Friendly response by smart appliances in the form of under-frequency load shedding was demonstrated in the GridWise Olympic Peninsula Demonstration in 2006. Each controller monitored the power grid voltage signal and requested that electrical load be shed by its appliance whenever electric power-grid frequency fell below 59.95 Hz. The controllers and their appliances responded reliably to each shallow under-frequency event, which was an average of one event per day and shed their loads for the durations of these events. Another objective of this project was to perform extensive simulation studies to investigate the impact of a population of Grid Friendly Appliances (GFAs) on the bulk power system frequency stability. The GFAs considered in this report are represented as demonstration units with water heaters individually modeled.

  8. Smart Grid Investment Grant Program - Progress Report (October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Investment Grant Program - Progress Report (October 2013) Smart Grid Investment Grant Program - Progress Report (October 2013) The Smart Grid Investment Grant (SGIG)...

  9. Category:Smart Grid Projects - Equipment Manufacturing | Open...

    Open Energy Info (EERE)

    Smart Grid Projects - Equipment Manufacturing Jump to: navigation, search Smart Grid Projects - Equipment Manufacturing category. Pages in category "Smart Grid Projects - Equipment...

  10. Sandia Energy - Solar Energy Grid Integration Systems (SEGIS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Grid Integration Systems (SEGIS) Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Solar Energy Grid Integration Systems...

  11. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid ...

  12. Category:Smart Grid Investment Grant Projects | Open Energy Informatio...

    Open Energy Info (EERE)

    Smart Grid Investment Grant Projects Jump to: navigation, search Smart Grid Investment Grant Projects Pages in category "Smart Grid Investment Grant Projects" The following 98...

  13. Category:Smart Grid Projects - Energy Storage Demonstrations...

    Open Energy Info (EERE)

    Smart Grid Projects - Energy Storage Demonstrations Jump to: navigation, search Smart Grid Energy Storage Demonstration Projects category. Pages in category "Smart Grid Projects -...

  14. US Recovery Act Smart Grid Demonstration Projects | Open Energy...

    Open Energy Info (EERE)

    wikiCityofPainesvilleSmartGridDemonstrationProject" title"City of Painesville Smart Grid Demonstration Project">City of Painesville Smart Grid Demonstration Project<...

  15. US Recovery Act Smart Grid Projects - Customer Systems | Open...

    Open Energy Info (EERE)

    href"wikiCityofTallahasseeSmartGridProject" title"City of Tallahassee Smart Grid Project">City of Tallahassee Smart Grid Project","title":"City of...

  16. US Recovery Act Smart Grid Regional Demonstration Projects |...

    Open Energy Info (EERE)

    CompanySmartGridDemonstrationProject" title"Kansas City Power & Light Company Smart Grid Demonstration Project">Kansas City Power & Light Company Smart Grid...

  17. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Environmental Management (EM)

    Grid-Connected Renewable Energy Systems Grid-Connected Renewable Energy Systems When connecting a home energy system to the electric grid, research and consider equipment required...

  18. Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Okaloosa Gas District Smart Grid RFI: Addressing Policy and ...

  19. Technical Assistance to ISO's and Grid Operators For Loads Providing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance to ISO's and Grid Operators For Loads Providing Ancillary Services To Enhance Grid Reliability Technical Assistance to ISO's and Grid Operators For Loads ...

  20. Grid Friendly(tm) Charger Controller - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... developed at PNNL, that protects the electrical grid during high grid stress ... This sensitivity to grid stress may be critical in preventing power outages. Benefits ...

  1. GridWise Transactive Energy Framework (DRAFT Version)

    SciTech Connect (OSTI)

    Melton, Ronald B.

    2013-11-06

    Over the past decade, the use of demand response and other flexible distributed resources for market efficiency and grid reliability has grown dramatically. Federal and state policy objectives point to an important role for customers loads, generation and storage in the management of an increasingly unpredictable power system. As we consider the need to substantially scale the use of flexible distributed energy resources, there has been growing attention to the need to address not only the economics, but also the control system implications to ensure grid reliability. This has led to a focus on an area of activity called Transactive Energy. Transactive Energy refers to the combination of economic and control techniques to improve grid reliability and efficiency. These techniques may also be used to optimize operations within a customers facility. The Department of Energy has supported the GridWise Architecture Council (the Council) in developing a conceptual framework that can be used in developing architectures, and designing solutions related to transactive energy. The goal of this effort is to encourage and facilitate collaboration among the many stakeholders involved in the transformation of the power system and thereby advance the practical implementation of transactive energy.

  2. An integrated security framework for GOSS power grid analytics platform

    SciTech Connect (OSTI)

    Gibson, Tara D.; Ciraci, Selim; Sharma, Poorva; Allwardt, Craig H.; Rice, Mark J.; Akyol, Bora A.

    2014-06-23

    In power grid operations, security is an essential component for any middleware platform. Security protects data against unwanted access as well as cyber attacks. GridOpticsTM Software System (GOSS) is an open source power grid analytics platform that facilitates ease of access between applications and data sources and promotes development of advanced analytical applications. GOSS contains an API that abstracts many of the difficulties in connecting to various heterogeneous data sources. A number of applications and data sources have already been implemented to demonstrate functionality and ease of use. A security framework has been implemented which leverages widely accepted, robust JavaTM security tools in a way such that they can be interchanged as needed. This framework supports the complex fine-grained, access control rules identified for the diverse data sources already in GOSS. Performance and reliability are also important considerations in any power grid architecture. An evaluation is done to determine the overhead cost caused by security within GOSS and ensure minimal impact to performance.

  3. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management 6 MODERN GRID S T R A T E G Y What's the Value Proposition? Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y Who are the...

  4. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MODERN GRID S T R A T E G Y The Grid Is aging, outmoded, stressed Aging 70% of transmission lines are 25 years or older 70% of transformers are 25 years or older 60% of...

  5. National Grid EnergyWise Financing program

    Broader source: Energy.gov [DOE]

    National Grid offers 0% financing to its customers to install energy efficient heating equipment in Rhode Island homes. Only residential customers of National Grid (electric or gas) with 1-4 unit...

  6. Vids4Grids- Controls, Connectors & Surge Protectors

    Broader source: Energy.gov [DOE]

    Modernizing our grid means exciting new devices in the power sector. Find out how new lighting controls, connectors and surge protection will bring out electric grid to the next level.

  7. Cybersecurity and the Smarter Grid (October 2014)

    Broader source: Energy.gov [DOE]

    An article by OE’s Carol Hawk and Akhlesh Kaushiva in The Electricity Journal discusses cybersecurity for the power grid and how DOE and the energy sector are partnering to keep the smart grid reliable and secure.

  8. Market Update: New England Islanded Grids

    Broader source: Energy.gov [DOE]

    Join the Islanded Grid Resource Center (IGRC) for our upcoming webinar highlighting the islanded grid communities along the New England coast that are exploring their options for reducing high...

  9. Smart Grid Status and Metrics Report

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Weimar, Mark R.; Kirkham, Harold

    2014-07-01

    To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. It measures 21 metrics to provide insight into the grid’s capacity to embody these characteristics. This report looks across a spectrum of smart grid concerns to measure the status of smart grid deployment and impacts.

  10. Securing the Nation's Grid | Department of Energy

    Energy Savers [EERE]

    Securing the Nation's Grid Securing the Nation's Grid February 13, 2014 - 5:55pm Addthis Titilayo Ogunyale Titilayo Ogunyale Special Assistant to the Assistant Secretary for the Office of Electricity Delivery and Energy Reliability Our electric grid is undergoing a major transformation, with $4.5 billion in Recovery Act funds being used to help catalyze the adoption of smart technologies and systems designed to increase the electric grid's flexibility, reliability, efficiency, affordability, and

  11. Piloting the Smart Grid | Open Energy Information

    Open Energy Info (EERE)

    Equivalent URI: cleanenergysolutions.orgcontentpiloting-smart-grid Language: English Policies: "Deployment Programs,Regulations,Financial Incentives" is not in...

  12. INFOGRAPHIC: Understanding the Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Understanding the Grid INFOGRAPHIC: Understanding the Grid November 17, 2014 - 2:05pm Addthis Our #GridWeek infographic shows how electricity is generated, transmitted and distributed for use in our homes. | Graphic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. Our #GridWeek infographic shows how electricity is generated, transmitted and distributed for use in our homes. | Graphic by Sarah Gerrity, Energy Department. Sarah Gerrity Sarah Gerrity Former

  13. SmartGrid Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SmartGrid Information SmartGrid Information Smart Grid Information This web page provides information and resources on several policy issues critical to the continued development of the Smart Grid, as identified in reports released by the Department of Energy's Office of the General Counsel (links to the reports are provided below). The reports set forth policy recommendations on issues including smart meter data access and privacy, priority of service, wireless spectrum, and network

  14. Multiprocessor computer overset grid method and apparatus

    DOE Patents [OSTI]

    Barnette, Daniel W.; Ober, Curtis C.

    2003-01-01

    A multiprocessor computer overset grid method and apparatus comprises associating points in each overset grid with processors and using mapped interpolation transformations to communicate intermediate values between processors assigned base and target points of the interpolation transformations. The method allows a multiprocessor computer to operate with effective load balance on overset grid applications.

  15. Membrane stabilizer

    DOE Patents [OSTI]

    Mingenbach, W.A.

    1988-02-09

    A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material. 10 figs.

  16. advanced wind-farm research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind-farm research - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  17. Defense Advanced Research Projects Agency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Research Projects Agency - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  18. Consortium for Advanced Battery Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Simulation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  19. Hydrogen Materials Advanced Research Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Advanced Research Consortium - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  20. Marine Hydrokinetic Advanced Materials program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrokinetic Advanced Materials program - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  1. Advanced Scientific Computing Research (ASCR)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ASCR) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  2. Vehicle to Grid Demonstration Project

    SciTech Connect (OSTI)

    Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

    2010-12-31

    This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

  3. Grid Cyber Vulnerability & Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyber Vulnerability & Assessments - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  4. Environmental Impacts of Smart Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Impacts of Smart Grid January 10, 2011 DOE/NETL-2010/1428 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use

  5. NREL: Transmission Grid Integration - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, and then type your message below. When you are finished, click the "Send Message" button. NOTE: If you enter your email address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Transmission Grid Integration Home Issues Projects Research Staff Working with Us Publications Webinars Data & Resources News Did you find what you needed? Yes 1 No 0

  6. Feedback" An Article for Smart Grid News The Smart Grid Transition-Getting Started

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sharing Smart Grid Experiences through Performance Feedback" An Article for Smart Grid News The Smart Grid Transition-Getting Started We are on the ground floor of a Smart Grid transition that is leading us out of a centralized, information- limited infrastructure into an intelligent, modernized electric system. Simply put, our aim is to achieve a smarter grid, one that is merged with ubiquitous information and communication technologies that support a balance of centralized and distributed

  7. Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate

    Energy Savers [EERE]

    Variable Renewable Energy | Department of Energy Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy This report summarizes the challenges to integrating increasing amounts of variable renewable energy (RE), identifies emerging practices in power system planning and operation that can facilitate grid integration, and proposes a unifying

  8. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modern Grid Wisconsin Public Utility Institute and UW Energy Institute Joe Miller, Steve Pullins, Steve Bossart - Modern Grid Team April 29, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y Today's Objectives To share our views on several Modern Grid concepts: What is the Modern Grid Strategy? What is the

  9. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What is the Smart Grid? Illinois Smart Grid Initiative Joe Miller - Modern Grid Strategy Team June 3, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 What is the role of the MGS? Define a vision for the Modern Grid Reach out to stakeholders to gain consensus Assist in the identification and resolution of

  10. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PSC Missouri - Utility Meeting Joe Miller, Steve Pullins - Modern Grid Team January 9, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y Agenda Topics What is the Modern Grid Strategy? What is the Modern Grid? Why do we need to modernize the grid? What are some of the benefits? How do we achieve a Modern

  11. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joe Miller - Modern Grid Team October 6, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Agenda The Smart Grid - a refresher "Push" drivers - a case for action "Pull" drivers - Smart Grid opportunities Some Smart Grid impacts Office of Electricity Delivery and Energy Reliability MODERN

  12. Spacer grid assembly and locking mechanism

    DOE Patents [OSTI]

    Snyder, Jr., Harold J. (Rancho Santa Fe, CA); Veca, Anthony R. (San Diego, CA); Donck, Harry A. (San Diego, CA)

    1982-01-01

    A spacer grid assembly is disclosed for retaining a plurality of fuel rods in substantially parallel spaced relation, the spacer grids being formed with rhombic openings defining contact means for engaging from one to four fuel rods arranged in each opening, the spacer grids being of symmetric configuration with their rhombic openings being asymmetrically offset to permit inversion and relative rotation of the similar spacer grids for improved support of the fuel rods. An improved locking mechanism includes tie bars having chordal surfaces to facilitate their installation in slotted circular openings of the spacer grids, the tie rods being rotatable into locking engagement with the slotted openings.

  13. The BNL Smarter Grid Research Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BNL Smarter Grid Research Strategy: Plans and Status Brookhaven National Laboratory Dr. Gerald Stokes, Global & Regional Solutions STEAB October 10,2012 Building the Smarter Grid R&D Vision  The heart of BNL's approach to grid R&D for a Smarter Grid is begins with a geospatially referenced model with access to historical and real time data and measurements.  Next, as a federal enclave, BNL has the ability to perform certain experiments and test new equipment on its grid prior

  14. Building the International Lattice Data Grid

    SciTech Connect (OSTI)

    Mark G. Beckett, Paul Coddington, Blint Jo, Chris M. Maynard, Dirk Pleiter, Osamu Tatebe, Tomoteru Yoshie

    2011-06-01

    We present the International Lattice Data Grid (ILDG), a loosely federated grid-of-grids for sharing data from Lattice Quantum Chromodynamics (LQCD) simulations. The ILDG comprises of metadata, file-format and web-service standards, which can be used to wrap regional data-grid interfaces, allowing seamless access to catalogues and data in a diverse set of collaborating regional grids. We discuss the technological underpinnings of the ILDG, primarily the metadata and the middleware, and offer a critique of its various aspects with the hindsight of the design work and the two years of production.

  15. Sandia Energy Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efforts-during-recent-houston-press-conferencefeed 0 Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments http:energy.sandia.gov...

  16. Buildings to Grid Integration & Interoperability

    Broader source: Energy.gov (indexed) [DOE]

    value proposition Develop and commercialize advanced diagnostics and controls to create self-aware buildings that optimize performance. Scaling Transaction Based...

  17. DOE Announces $220 Million in Grid Modernization Funding

    Broader source: Energy.gov [DOE]

    Grid Modernization Initiative Releases Multi-Year Plan and Awards Funding for Groundbreaking DOE-Wide Grid Modernization Laboratory Consortium

  18. Computational Needs for the Next Generation Electric Grid Proceedings

    SciTech Connect (OSTI)

    Birman, Kenneth; Ganesh, Lakshmi; Renessee, Robbert van; Ferris, Michael; Hofmann, Andreas; Williams, Brian; Sztipanovits, Janos; Hemingway, Graham; University, Vanderbilt; Bose, Anjan; Stivastava, Anurag; Grijalva, Santiago; Grijalva, Santiago; Ryan, Sarah M.; McCalley, James D.; Woodruff, David L.; Xiong, Jinjun; Acar, Emrah; Agrawal, Bhavna; Conn, Andrew R.; Ditlow, Gary; Feldmann, Peter; Finkler, Ulrich; Gaucher, Brian; Gupta, Anshul; Heng, Fook-Luen; Kalagnanam, Jayant R; Koc, Ali; Kung, David; Phan, Dung; Singhee, Amith; Smith, Basil

    2011-10-05

    The April 2011 DOE workshop, 'Computational Needs for the Next Generation Electric Grid', was the culmination of a year-long process to bring together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The attached papers provide a journey into these experts' insights, highlighting a class of mathematical and computational problems relevant for potential power systems research. While each paper defines a specific problem area, there were several recurrent themes. First, the breadth and depth of power system data has expanded tremendously over the past decade. This provides the potential for new control approaches and operator tools that can enhance system efficiencies and improve reliability. However, the large volume of data poses its own challenges, and could benefit from application of advances in computer networking and architecture, as well as data base structures. Second, the computational complexity of the underlying system problems is growing. Transmitting electricity from clean, domestic energy resources in remote regions to urban consumers, for example, requires broader, regional planning over multi-decade time horizons. Yet, it may also mean operational focus on local solutions and shorter timescales, as reactive power and system dynamics (including fast switching and controls) play an increasingly critical role in achieving stability and ultimately reliability. The expected growth in reliance on variable renewable sources of electricity generation places an exclamation point on both of these observations, and highlights the need for new focus in areas such as stochastic optimization to accommodate the increased uncertainty that is occurring in both planning and operations. Application of research advances in algorithms (especially related to optimization techniques and uncertainty quantification) could accelerate power system software tool performance, i.e. speed to solution, and enhance applicability for new and existing real-time operation and control approaches, as well as large-scale planning analysis. Finally, models are becoming increasingly essential for improved decision-making across the electric system, from resource forecasting to adaptive real-time controls to online dynamics analysis. The importance of data is thus reinforced by their inescapable role in validating, high-fidelity models that lead to deeper system understanding. Traditional boundaries (reflecting geographic, institutional, and market differences) are becoming blurred, and thus, it is increasingly important to address these seams in model formulation and utilization to ensure accuracy in the results and achieve predictability necessary for reliable operations. Each paper also embodies the philosophy that our energy challenges require interdisciplinary solutions - drawing on the latest developments in fields such as mathematics, computation, economics, as well as power systems. In this vein, the workshop should be viewed not as the end product, but the beginning of what DOE seeks to establish as a vibrant, on-going dialogue among these various communities. Bridging communication gaps among these communities will yield opportunities for innovation and advancement. The papers and workshop discussion provide the opportunity to learn from experts on the current state-of-the-art on computational approaches for electric power systems, and where one may focus to accelerate progress. It has been extremely valuable to me as I better understand this space, and consider future programmatic activities. I am confident that you too will enjoy the discussion, and certainly learn from the many experts. I would like to thank the authors of the papers for sharing their perspectives, as well as the paper discussants, session recorders, and participants. The meeting would not have been as successful without your commitment and engagement. I also would like to thank Joe Eto and Bob Thomas for their vision and leadership in bringing together such a well-structured and productive forum.

  19. US DRIVE Grid Interaction Technical Team Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Interaction Technical Team Roadmap US DRIVE Grid Interaction Technical Team Roadmap PDF icon gitt_roadmap_june2013.pdf More Documents & Publications Grid Interaction Tech Team, and International Smart Grid Collaboration Grid Connectivity Research, Development & Demonstration Projects Vehicle Technologies Office Merit Review 2015: EV - Smart Grid Research & Interoperability Activities

  20. Quantifiably secure power grid operation, management, and evolution : a study of uncertainties affecting the grid integration of renewables.

    SciTech Connect (OSTI)

    Gray, Genetha Anne; Watson, Jean-Paul; Silva Monroy, Cesar Augusto; Gramacy, Robert B.

    2013-09-01

    This report summarizes findings and results of the Quantifiably Secure Power Grid Operation, Management, and Evolution LDRD. The focus of the LDRD was to develop decisionsupport technologies to enable rational and quantifiable risk management for two key grid operational timescales: scheduling (day-ahead) and planning (month-to-year-ahead). Risk or resiliency metrics are foundational in this effort. The 2003 Northeast Blackout investigative report stressed the criticality of enforceable metrics for system resiliency - the grid's ability to satisfy demands subject to perturbation. However, we neither have well-defined risk metrics for addressing the pervasive uncertainties in a renewable energy era, nor decision-support tools for their enforcement, which severely impacts efforts to rationally improve grid security. For day-ahead unit commitment, decision-support tools must account for topological security constraints, loss-of-load (economic) costs, and supply and demand variability - especially given high renewables penetration. For long-term planning, transmission and generation expansion must ensure realized demand is satisfied for various projected technological, climate, and growth scenarios. The decision-support tools investigated in this project paid particular attention to tailoriented risk metrics for explicitly addressing high-consequence events. Historically, decisionsupport tools for the grid consider expected cost minimization, largely ignoring risk and instead penalizing loss-of-load through artificial parameters. The technical focus of this work was the development of scalable solvers for enforcing risk metrics. Advanced stochastic programming solvers were developed to address generation and transmission expansion and unit commitment, minimizing cost subject to pre-specified risk thresholds. Particular attention was paid to renewables where security critically depends on production and demand prediction accuracy. To address this concern, powerful filtering techniques for spatio-temporal measurement assimilation were used to develop short-term predictive stochastic models. To achieve uncertaintytolerant solutions, very large numbers of scenarios must be simultaneously considered. One focus of this work was investigating ways of reasonably reducing this number.

  1. Advanced Battery Manufacturing Facilities and Equipment Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt002_es_flicker_2011_p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013)

  2. Grid-tied PV battery systems.

    SciTech Connect (OSTI)

    Barrett, Keith Phillip; Gonzalez, Sigifredo; Hund, Thomas D.

    2010-09-01

    Grid tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time interval. On a clear day the solar irradiance power curve is offset by about 1h, while on a variable cloudy day the inverter output power curve will be smoothed based on the average solar irradiance. Test results demonstrate that this smoothing algorithm works very well. Battery state of charge was more difficult to manage because of the variable system inefficiencies. Testing continued for 30-days and established consistent operational performance for extended periods of time under a wide variety of resource conditions. Both battery technologies from Exide (Absolyte) and East Penn (ALABC Advanced) proved to cycle well at a Partial state of charge over the time interval tested.

  3. Low Temperature Sodium-Sulfur Grid Storage and EV Battery - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Low Temperature Sodium-Sulfur Grid Storage and EV Battery Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Berkeley Lab researcher Gao Liu has developed an innovative design for a battery, made primarily of sodium and sulfur, that

  4. NREL: Distributed Grid Integration - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Distributed Grid Integration Home Capabilities Projects Research Staff Working with Us Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a

  5. Flow Battery Solution for Smart Grid Applications

    SciTech Connect (OSTI)

    none,

    2014-11-30

    To address future grid requirements, a U.S. Department of Energy ARRA Storage Demonstration program was launched in 2009 to commercialize promising technologies needed for stronger and more renewables-intensive grids. Raytheon Ktech and EnerVault received a cost-share grant award from the U.S. Department of Energy to develop a grid-scale storage system based on EnerVault’s iron-chromium redox flow battery technology.

  6. Smart Grid Environmental Benefits … Part 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Environmental Benefits Toolkit Can a Smart Grid deliver real environmental benefits in a time when they are sorely needed? Yes! According to recent studies, it can even reduce emissions at a lower cost than many of the newest clean energy technologies. In this article, we give you four tools to help inform your utility, ratepayers, regulators, or legislators that a Smart Grid offers huge environmental benefits: * An outline of where these benefits are likely to come from * An

  7. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structuring the Smart Grid Framework: Application of Complex Systems Engineering Joe Miller - DOE / NETL Modern Grid Team Lead Committee on Science, Engineering, and Public Policy May 15, 2009 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y This material is based upon work supported by the Department of Energy

  8. Integrating smart sensors into grid systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating smart sensors into grid systems will enable more complex modeling and adaptation to unknown problems for preventing future catastrophic failures. Passive Microsensor for Autonomous Sensing Grid health and reliability forms the backbone of our Nation's infrastructure. Real time monitoring and fast failure location and identification is critical for electrical grid sustainability. We propose the development of a cheap, fast (µs), fully integrated, passive micro-sensor capable of

  9. Smart Grid Overview | Department of Energy

    Energy Savers [EERE]

    Smart Grid Overview Smart Grid Overview Presentation-given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting-discusses the Smart Grid including the National Renewable Energy Laboratory's research and development capabilities in this area. PDF icon fupwg_fall12_kroposki.pdf More Documents & Publications FUPWG Winter 2014 Meeting Agenda, Report, and Presentations Community Energy Strategic Planning - Step 10 Building Energy Management Open-Source Software

  10. ONE of SIX SMART GRID STAKEHOLDER BOOKS

    Energy Savers [EERE]

    ONE of SIX SMART GRID STAKEHOLDER BOOKS utilities consumer advocates regulators environmental groups technology providers policymakers WHAT THE SMART GRID MEANS TO AMERICANS. A smarter electrical grid can save us energy, protect consumers, safeguard our environment and ultimately save money for all Americans. 2 DISCLAIMER PRINTED IN THE UNITED STATES OF AMERICA. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

  11. Installing a Grid-Tied Photovoltaic System

    Office of Environmental Management (EM)

    Generating Renewable Ideas for Development Alternatives GRID Alternatives - Solar Affordable Housing Program * Susie Chang, Director of Tribal Programs * Evelyn Blanco, Outreach Coordinator DOE Office of Indian Energy - Tribal Leader Forum - Financing and Investing in Tribal Renewable Energy Projects Generating Renewable Ideas for Development Alternatives Session Agenda  I. GRID Alternatives' Model  II. GRID and the SASH Program: Eligibility Requirements and Tribal Participation  III.

  12. Smart-Grid-Vendor.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart-Grid-Vendor.pdf Smart-Grid-Vendor.pdf PDF icon Smart-Grid-Vendor.pdf More Documents & Publications 2010 U.S. Smart Grid Vendor Ecosystem Report on the companies and market dynamics shaping the current U.S. smart grid landscape Addressing Policy and Logistical Challenges to smart grid Implementation: eMeter Response to Department of Energy RFI SGIG and SGDP Highlights: Jumpstarting a Modern Grid (October 2014)

  13. Answering Your Questions about Grid Modernization | Department of Energy

    Energy Savers [EERE]

    Answering Your Questions about Grid Modernization Answering Your Questions about Grid Modernization June 18, 2013 - 10:47am Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability Smart Grid Recap Find other articles in the Smart Grid Week series by visiting our Smart Grid page. During last week's Smart Grid Week, we highlighted some of the efforts currently underway to modernize the nation's electric grid. Below are answers to

  14. Protecting Consumer Privacy while Building a Smarter Grid

    Broader source: Energy.gov [DOE]

    Smart grid technologies have the capacity to create tremendous new value for electricity consumers: from advanced IT and communication technologies that improve the overall operation of our nation’s electricity transmission and distribution networks; to smart meters and digital sensors that help utilities quickly identify and minimize the extent of outages when they do occur. In addition, consumers now have the ability to monitor and manage their electricity use in far greater detail by tapping into the data generated by smart meters. Many of these emerging technologies—which provide tremendous benefits not only for the nation’s electric system but for consumers throughout the United States—will result in an increase in the amount of data collected regarding grid operating characteristics, including customer energy use data. As the nation’s electric infrastructure is modernized, it is critically important to ensure that the collection of data is performed in a manner that yields the greatest benefits for consumers, while continuing to rigorously protect their privacy. Much progress has been made toward this goal to date. Earlier this month, the U.S. Department of Energy’s (DOE’s) Office of Electricity Delivery and Energy Reliability, in coordination with the Federal Smart Grid Task Force, finalized a 22-month multi-stakeholder effort to develop a Voluntary Code of Conduct (VCC) for utilities and third parties on protecting electricity consumers’ Customer Data which includes energy usage information.

  15. National Wind Technology Center Controllable Grid Interface

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Programmable impedance (strong and weak grids) * Programmable distortions (lower harmonics 3, 5, 7) Frequency control * Fast output frequency control (+- 3 Hz) * 50-Hz60-Hz ...

  16. Conference Proceedings Available - The Smart Grid Experience...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Delivery and Energy Reliability (OE) held a ... learned from utility smart grid projects and to exchange ... Through Integration Conservation and Optimization via ...

  17. About the Smart Grid | Open Energy Information

    Open Energy Info (EERE)

    and demonstration projects, and the federal matching fund for Smart Grid technologies, with funds distributed through a competitive grant process. 1 Below is a map...

  18. Microsoft Word - Smart Grid Economic Impact Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... a dual mission: a primary mission of economic stimulus for the American workforce and ... Grid projects, as they have generated economic benefits and are beginning to ...

  19. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Home area network Smart meters Smart sensors Demand Response and DER dispatch Distribution automation Micro-grids Market transactions Work force ...

  20. Western Electricity Coordinating Council Smart Grid Project ...

    Open Energy Info (EERE)

    your syntax: * Display map References ARRA Smart Grid Investment Grants1 Western Electricity Award2 Western Electricity Coordinating Council, located in Salt Lake City, Utah,...

  1. Southwest Transmission Cooperative, Inc. Smart Grid Project ...

    Open Energy Info (EERE)

    syntax: * Display map References ARRA Smart Grid Investment Grants1 Southwest Transmission Cooperative Award2 Southwest Transmission Cooperative, Inc., located in Benson,...

  2. Ion mobility spectrometer with virtual aperture grid

    DOE Patents [OSTI]

    Pfeifer, Kent B. (Los Lunas, NM); Rumpf, Arthur N. (Albuquerque, NM)

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  3. Application Note: Power Grid Modeling With Xyce.

    SciTech Connect (OSTI)

    Sholander, Peter E.

    2015-06-01

    This application note describes how to model steady-state power flows and transient events in electric power grids with the SPICE-compatible Xyce TM Parallel Electronic Simulator developed at Sandia National Labs. This application notes provides a brief tutorial on the basic devices (branches, bus shunts, transformers and generators) found in power grids. The focus is on the features supported and assumptions made by the Xyce models for power grid elements. It then provides a detailed explanation, including working Xyce netlists, for simulating some simple power grid examples such as the IEEE 14-bus test case.

  4. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL Modern Grid Strategy Overview ABB 2008 Power World Conference Bruce Renz January 14, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y The Modern Grid Strategy (MGS) President Bush has asked the U.S. Department of Energy to lead a national effort to modernize and expand the electric grid. The Office of

  5. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basics 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Joe Miller, Modern Grid Strategy Team Lead Grid Econ - The Economics of a Smarter Electric Grid March 16, 2009 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y This material is based upon work supported by the Department of Energy under Award Number DE-AC26- 04NT41817 This presentation was prepared as an

  6. Smart Grid Demonstration Funding Opportunity Announcement DE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Funding Opportunity Announcement DE-FOA-0000036: Frequently Asked Questions Smart Grid Demonstration Funding Opportunity Announcement DE-FOA-0000036: Frequently Asked ...

  7. EVCOM (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Grid Project) Jump to: navigation, search Project Name EVCOM Country Denmark Coordinates 56.26392, 9.501785 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type...

  8. Almacena (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Almacena (Smart Grid Project) Jump to: navigation, search Project Name Almacena Country Spain Headquarters Location Carmona, Spain Coordinates 37.317753, -5.625 Loading map......

  9. Grid Modernization: Challenges, Opportunities, and Solutions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    various topics which span a multitude of areas related to grid modernization including demand response, stochastic optimization for renewable integration, microgrids and...

  10. local utility grid | OpenEI Community

    Open Energy Info (EERE)

    Contributor 20 March, 2015 - 11:22 Public Art Generates Renewable Energy Beautifully biofuel art clean energy lagi land art generator initiative local utility grid public art...

  11. PNNL GridWise | Open Energy Information

    Open Energy Info (EERE)

    Overview This is a case study of two year-long demonstration projects that tested demand-response concepts. The Grid Friendly Appliance Project demonstrated how household...

  12. Vehicle-Grid Interoperability | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provide support to emerging technology development in grid connectivity, bridging the needs of the EV manufacturers and the utility companies that supply electricity. This...

  13. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis for Grid Energy Storage DOE-Industry Canada Workshop May 15, 2014 INTRODUCTION HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND CLEAN FUEL PRODUCTION ITM POWER INC. ITM ...

  14. EFlex (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    with mobilization of private customers' flexible energy consumption, especially from electric cars, electric heating and heat pumps. References "EU Smart Grid Projects...

  15. Articles about Grid Integration and Transmission | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about grid integration and transmission featured by the U.S. Department of Energy (DOE) Wind Program. September 16, 2015 Argonne National Laboratory Develops New Model to Quantify...

  16. ENERGOZ (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    sources. Maximizing the socio economic effect of the research in the field of renewable energy. References "EU Smart Grid Projects Map" Retrieved from "http:en.openei.org...

  17. Energy Storage for the Power Grid

    ScienceCinema (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-06-12

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  18. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Time of Use Rates Customer Information System IT upgrades Customer Education Demand Response CE empowers the customer and supports grid operations Office of Electricity ...

  19. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of Use Rates Customer Information System IT upgrades and SOA Customer Education Demand Response and DER CE empowers the customer and supports grid operations Office of ...

  20. PNNL GridWise | Open Energy Information

    Open Energy Info (EERE)

    GridWise AgencyCompany Organization Pacific Northwest National Laboratory Sector Energy Resource Type Case studiesexamples Website http:gridwise.pnl.gov Country United...

  1. INFOGRAPHIC: Understanding the Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in the infographic above, our power grid is a network of power plants, substations, transformers, wires, sensors and poles that carry electricity sometimes hundreds of miles to be...

  2. SMART GRID: an introduction. | Department of Energy

    Energy Savers [EERE]

    SMART GRID: an introduction. SMART GRID: an introduction. Our nation's electric power infrastructure that has served us so well for so long - also known as "the grid" - is rapidly running up against its limitations. Our lights may be on, but systemically, the risks associated with relying on an often overtaxed grid grow in size, scale and complexity every day. From national challenges like power system security to those global in nature such as climate change, our near-term agenda is

  3. Etelligence (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    (Smart Grid Project) Jump to: navigation, search Project Name Etelligence Country Germany Headquarters Location Oldenburg, Germany Coordinates 53.136719, 8.216536 Loading...

  4. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-04-23

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  5. Quantifying the Impact of Adverse Events on the Electricity Grid as a Function of Grid Topology

    SciTech Connect (OSTI)

    Coles, Garill A.; Sadovsky, Artyom; Du, Pengwei

    2011-11-30

    Abstract--Traditional approaches to the study of grid vulnerability have taken an asset based approach, which seeks to identify those assets most likely to result in grid-wide failures or disruptions in the event that they are compromised. We propose an alternative approach to the study of grid vulnerability, one based on the topological structure of the entire grid. We propose a method that will identify topological parameters most closely related to the ability of the grid to withstand an adverse event. We compare these topological parameters in terms of their impact on the vulnerability metric we have defined, referred to as the grids survivability. Our approach is motivated by Paul Barans work on communications networks, which also studied vulnerability in terms of network-wide parameters. Our approach is useful both as a planning model for evaluating proposed changes to a grid and as a risk assessment tool.

  6. Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014)

    Broader source: Energy.gov [DOE]

    A new report from OE's Smart Grid Investment Grant (SGIG) program presents findings on smart grid improvements in outage management, based on the recent experiences of three SGIG projects.

  7. file://P:\\Smart Grid\\Smart Grid RFI Policy and Logistical Comme

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Docket: DOE-HQ-2010-0024 Policy and Logistical Challenges to Smart Grid Implementation Comment On: DOE-HQ-2010-0024-0001 Policy and Logistical Challenges to Smart Grid ...

  8. Phase stabilities at a glance: Stability diagrams of nickel dipnictides

    SciTech Connect (OSTI)

    Bachhuber, F.; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland ; Rothballer, J.; Weihrich, R.; Shnel, T.; Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Auckland

    2013-12-07

    In the course of the recent advances in chemical structure prediction, a straightforward type of diagram to evaluate phase stabilities is presented based on an expedient example. Crystal structures and energetic stabilities of dipnictides NiPn{sub 2} (Pn = N, P, As, Sb, Bi) are systematically investigated by first principles calculations within the framework of density functional theory using the generalized gradient approximation to treat exchange and correlation. These dipnictides show remarkable polymorphism that is not yet understood systematically and offers room for the discovery of new phases. Relationships between the concerned structures including the marcasite, the pyrite, the arsenopyrite/CoSb{sub 2}, and the NiAs{sub 2} types are highlighted by means of common structural fragments. Electronic stabilities of experimentally known and related AB{sub 2} structure types are presented graphically in so-called stability diagrams. Additionally, competing binary phases are taken into consideration in the diagrams to evaluate the stabilities of the title compounds with respect to decomposition. The main purpose of the stability diagrams is the introduction of an image that enables the estimation of phase stabilities at a single glance. Beyond that, some of the energetically favored structure types can be identified as potential new phases.

  9. PROJECT PROFILE: Combined PV/Battery Grid Integration with High Frequency Magnetics Enabled Power Electronics (SuNLaMP)

    Broader source: Energy.gov [DOE]

    This project will develop new power electronics devices, systems, and materials to address power electronic and dispatchability challenges that result from connecting hundreds of gigawatts of solar energy onto the electricity grid. These devices will incorporate advanced high-frequency (HF) magnetics along with the latest wide bandgap silicon carbide (SiC) switches. This design enables cost-effective grid integration of PV while increasing its dispatchability.

  10. Advanced Gasificatioin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Gasification Research Team Members Key Contacts Advanced Gasification Carbon feedstock gasification is a promising pathway for high-efficiency, low-pollutant power generation and chemical production. The inability, however, to meet a number of operational goals could create roadblocks to widespread acceptance and commercialization of advanced gasification technologies. We must, for example, achieve gasifier online availability of 85-95 percent in utility applications, and 95 percent for

  11. DOE: Quantifying the Value of Hydropower in the Electric Grid

    SciTech Connect (OSTI)

    2012-12-31

    The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

  12. AVTA: ARRA EV Project Electric Grid Impact Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following report describes lessons learned about the impact on the electrical grid from the EV Project. The EV Project partnered with city, regional and state governments, utilities, and other organizations in 16 cities to deploy about 14,000 Level 2 PEV chargers and 300 DC fast chargers. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. This research was conducted by Idaho National Laboratory.

  13. Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytes - Interfacial and Bulk Properties and Stability Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of ...

  14. Metrics for Assessment of Smart Grid Data Integrity Attacks

    SciTech Connect (OSTI)

    Annarita Giani; Miles McQueen; Russell Bent; Kameshwar Poolla; Mark Hinrichs

    2012-07-01

    There is an emerging consensus that the nation’s electricity grid is vulnerable to cyber attacks. This vulnerability arises from the increasing reliance on using remote measurements, transmitting them over legacy data networks to system operators who make critical decisions based on available data. Data integrity attacks are a class of cyber attacks that involve a compromise of information that is processed by the grid operator. This information can include meter readings of injected power at remote generators, power flows on transmission lines, and relay states. These data integrity attacks have consequences only when the system operator responds to compromised data by redispatching generation under normal or contingency protocols. These consequences include (a) financial losses from sub-optimal economic dispatch to service loads, (b) robustness/resiliency losses from placing the grid at operating points that are at greater risk from contingencies, and (c) systemic losses resulting from cascading failures induced by poor operational choices. This paper is focused on understanding the connections between grid operational procedures and cyber attacks. We first offer two examples to illustrate how data integrity attacks can cause economic and physical damage by misleading operators into taking inappropriate decisions. We then focus on unobservable data integrity attacks involving power meter data. These are coordinated attacks where the compromised data are consistent with the physics of power flow, and are therefore passed by any bad data detection algorithm. We develop metrics to assess the economic impact of these attacks under re-dispatch decisions using optimal power flow methods. These metrics can be use to prioritize the adoption of appropriate countermeasures including PMU placement, encryption, hardware upgrades, and advance attack detection algorithms.

  15. Energy.Gov Presents: Understanding The Grid | Department of Energy

    Energy Savers [EERE]

    Energy.Gov Presents: Understanding The Grid Energy.Gov Presents: Understanding The Grid Addthis Topic Smart Grid The U.S. Department of Energy is making a series of announcements to support its Grid Modernization Initiative. As we do so, we realize many of you may be wondering: what does "grid modernization" mean? Watch this video to find out

  16. Intelligent Grid Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Intelligent Grid Technologies Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (611 KB) Technology Marketing Summary With the increasing demand for new energy distribution methods including increased efficiency and alternative sources, Intelligent Grid technologies are on the cutting edge of demand. The

  17. NREL: Distributed Grid Integration - Technology Development Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Development Projects NREL works on several distributed energy integration technology development projects, including the following: High Penetration Photovoltaics Hydrogen Systems Research Metering Solutions Mobile Electric Power Printable Version Distributed Grid Integration Home Capabilities Projects Codes & Standards Data Collection & Visualization Hawaii Clean Energy Initiative Microgrids Power Systems Modeling Solar Distributed Grid Integration Technology Development High

  18. 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Discussion | Department of Energy Smart Grid Panel Discussion 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel Discussion The Office of Electricity Delivery and Energy Reliability held its bi-annual peer review of the Smart Grid Research and Development Program on June 7-8, 2012. More than 30 projects were presented at San Diego Gas & Electric's Energy Innovation Center. Presentations from the Day 2 Smart Grid panel discussion are below. Moderator: Lee Kreval, SDG&E

  19. X-ray grid-detector apparatus

    DOE Patents [OSTI]

    Boone, John M. (Folsom, CA); Lane, Stephen M. (Oakland, CA)

    1998-01-27

    A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

  20. Development of Early Warning Systems (PMU/WAMS) (Smart Grid Project...

    Open Energy Info (EERE)

    Missing content Broken link Other Additional Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Transmission...