Powered by Deep Web Technologies
Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Requirements for Defining Utility Drive Cycles: An Exploratory Analysis of Grid Frequency Regulation Data for Establishing Battery Performance Testing Standards  

DOE Green Energy (OSTI)

Battery testing procedures are important for understanding battery performance, including degradation over the life of the battery. Standards are important to provide clear rules and uniformity to an industry. The work described in this report addresses the need for standard battery testing procedures that reflect real-world applications of energy storage systems to provide regulation services to grid operators. This work was motivated by the need to develop Vehicle-to-Grid (V2G) testing procedures, or V2G drive cycles. Likewise, the stationary energy storage community is equally interested in standardized testing protocols that reflect real-world grid applications for providing regulation services. As the first of several steps toward standardizing battery testing cycles, this work focused on a statistical analysis of frequency regulation signals from the Pennsylvania-New Jersey-Maryland Interconnect with the goal to identify patterns in the regulation signal that would be representative of the entire signal as a typical regulation data set. Results from an extensive time-series analysis are discussed, and the results are explained from both the statistical and the battery-testing perspectives. The results then are interpreted in the context of defining a small set of V2G drive cycles for standardization, offering some recommendations for the next steps toward standardizing testing protocols.

Hafen, Ryan P.; Vishwanathan, Vilanyur V.; Subbarao, Krishnappa; Kintner-Meyer, Michael CW

2011-10-19T23:59:59.000Z

2

Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage  

SciTech Connect

GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

2010-10-01T23:59:59.000Z

3

Progress in Grid Scale Flow Batteries  

E-Print Network (OSTI)

all necessary requirements for disconnecting means. Section 690-14(C) is added in a separate proposal lead-acid battery (VRLA) or any other types of sealed batteries that may require steel cases for proper reasons. This proposal does not apply to any type of valve regulated lead-acid battery (VRLA) or any other

4

Communications Requirements of Smart Grid Technologies | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Communications Requirements of Smart Grid Technologies Communications Requirements of Smart Grid Technologies This report sets forth the findings of the U.S. Department of Energy...

5

Optimal charging scheduling for battery electric vehicles under smart grid.  

E-Print Network (OSTI)

??M.S. A projected high penetration of battery electric vehicles (BEV s) in the market will introduce an additional load in the electricity grid. Furthermore, uncontrolled… (more)

Abd Rahman, Nur Dayana

2011-01-01T23:59:59.000Z

6

Low Temperature Sodium-Sulfur Grid Storage and EV Battery ...  

Berkeley Lab researcher Gao Liu has developed an innovative design for a battery, made primarily of sodium and sulfur, that holds promise for both large-scale grid ...

7

ESS 2012 Peer Review - GRIDS Soluble Lead Flow Battery Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Atomics Proprietary Information 1 GRIDS Soluble Lead Flow Battery Technology General Atomics and the University of California, San Diego Aaron J. Sathrum (General Atomics):...

8

Fluidic: Grid-Scale Batteries for Wind and Solar | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

up to 5,000 charge and discharge cycles - enough to support grid-scale integration of wind and solar power. Fluidic's battery could also help optimize electric grid performance...

9

Progress in Grid Scale Flow Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Scale Flow Batteries IMRE GYUK, PROGRAM MANAGER ENERGY STORAGE RESEARCH, DOE FlowBat 03- 07- 12 Without technological breakthroughs in efficient, large scale Energy Storage, it will be difficult to rely on intermittent renewables for much more than 20-30% of our Electricity. Secretary Chu, Feb. 2010 The need for regulation services can dramatically increase as the amount of variable renewable resources is increased. Local storage is among the best means to ensure we can reliably integrate renewable energy resources into the grid. Chairman Wellinghoff, FERC, March 2010 Transmission and storage capacity are key issues for energy resource planning. If you like wind power, you have to love transmission and storage. Terry Boston , CEO, PJM, June 2010

10

Smart Grid Information Security (IS) Functional Requirement  

E-Print Network (OSTI)

It is important to implement safe smart grid environment to enhance people's lives and livelihoods. This paper provides information on smart grid IS functional requirement by illustrating some discussion points to the sixteen identified requirements. This paper introduces the smart grid potential hazards that can be referred as a triggering factor to improve the system and security of the entire grid. The background of smart information infrastructure and the needs for smart grid IS is described with the adoption of hermeneutic circle as methodology. Grid information technology and security-s session discusses that grid provides the chance of a simple and transparent access to different information sources. In addition, the transformation between traditional versus smart grid networking trend and the IS importance on the communication field reflects the criticality of grid IS functional requirement identification is introduces. The smart grid IS functional requirements described in this paper are general and ...

Ling, Amy Poh Ai

2011-01-01T23:59:59.000Z

11

Fact Sheet: Sodium-Ion Batteries for Grid-Level Applications (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aquion Energy, Inc. Aquion Energy, Inc. American Recovery and Reinvestment Act (ARRA) Sodium-Ion Batteries for Grid-Level Applications Demonstrating low-cost, grid-scale, ambient temperature sodium-ion batteries In June 2012, Aquion Energy, Inc. completed the testing and demonstration requirements for the U.S. Department of Energy's program with its low-cost, grid-scale, ambient temperature Aqueous Hybrid Ion (AHI) energy storage device. During the three-year project, Aquion manufactured hundreds of batteries and assemble them into high-voltage, grid-scale systems. This project helped them move their aqueous electrochemical energy storage device from bench-scale testing to pilot-scale manufacturing. The testing successfully demonstrated a grid-connected, high voltage (>1,000 V), 13.5 kWh system with a 4-hour discharge.

12

Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Demonstration Using UltraBattery Technology (October 2012) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) East Penn...

13

New Battery Design Could Help Solar and Wind Power the Grid ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home New Battery Design Could Help Solar and Wind Power the Grid New Battery Design Could Help Solar...

14

Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs  

E-Print Network (OSTI)

with 85% ethanol EIA ­ Energy Information Administration EVSE ­ Electric vehicle supply equipment gPlug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size to get this thesis finished. #12;iv Intentionally blank #12;v Abstract Plug-in hybrid electric vehicles

15

Second use of transportation batteries: Maximizing the value of batteries for transportation and grid services  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are expected to gain significant market share over the next decade. The economic viability for such vehicles is contingent upon the availability of cost-effective batteries with high power and energy density. For initial commercial success, government subsidies will be highly instrumental in allowing PHEVs to gain a foothold. However, in the long-term, for electric vehicles to be commercially viable, the economics have to be self-sustaining. Towards the end of battery life in the vehicle, the energy capacity left in the battery is not sufficient to provide the designed range for the vehicle. Typically, the automotive manufacturers indicated the need for battery replacement when the remaining energy capacity reaches 70-80%. There is still sufficient power (kW) and energy capacity (kWh) left in the battery to support various grid ancillary services such as balancing, spinning reserve, load following services. As renewable energy penetration increases, the need for such balancing services is expected to increase. This work explores optimality for the replacement of transportation batteries to be subsequently used for grid services. This analysis maximizes the value of an electric vehicle battery to be used as a transportation battery (in its first life) and then as a resource for providing grid services (in its second life). The results are presented across a range of key parameters, such as depth of discharge (DOD), number of batteries used over the life of the vehicle, battery life in vehicle, battery state of health (SOH) at end of life in vehicle and ancillary services rate. The results provide valuable insights for the automotive industry into maximizing the utility and the value of the vehicle batteries in an effort to either reduce the selling price of EVs and PHEVs or maximize the profitability of the emerging electrification of transportation.

Viswanathan, Vilayanur V.; Kintner-Meyer, Michael CW

2010-09-30T23:59:59.000Z

16

Iron-Air Rechargeable Battery: A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage  

Science Conference Proceedings (OSTI)

GRIDS Project: USC is developing an iron-air rechargeable battery for large-scale energy storage that could help integrate renewable energy sources into the electric grid. Iron-air batteries have the potential to store large amounts of energy at low cost—iron is inexpensive and abundant, while oxygen is freely obtained from the air we breathe. However, current iron-air battery technologies have suffered from low efficiency and short life spans. USC is working to dramatically increase the efficiency of the battery by placing chemical additives on the battery’s iron-based electrode and restructuring the catalysts at the molecular level on the battery’s air-based electrode. This can help the battery resist degradation and increase life span. The goal of the project is to develop a prototype iron-air battery at significantly cost lower than today’s best commercial batteries.

None

2010-10-01T23:59:59.000Z

17

Method of making battery plate grids for lead--acid batteries and alloys therefor  

SciTech Connect

A method of manufacturing a battery plate grid for a lead--acid battery is explained. A molten alloy is produced which consists of calcium + lithium (0.22 to 1.04 at. percent), aluminium (0.035 to 0.25 at. percent), and lead. The atomic percentage of lithium is not less than 0.15 and does not exceed 0.90, and the atomic percentage of calcium is not less than 0.07 and does not exceed 0.49. The molten alloy is then cast into the shape of the grid.

Barnes, S.C.; Lawrie, R.J.

1974-03-22T23:59:59.000Z

18

Battery Sizing for Grid Connected PV Systems with Fixed Minimum Charging/Discharging Time  

E-Print Network (OSTI)

Battery Sizing for Grid Connected PV Systems with Fixed Minimum Charging/Discharging Time Yu Ru, Jan Kleissl, and Sonia Martinez Abstract-- In this paper, we study a battery sizing problem for grid-connected photovoltaic (PV) systems assuming that the battery charging/discharging limit scales linearly with its

Martínez, Sonia

19

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network (OSTI)

Electrochemical Capacitor Energy Storage Using Direct WriteTarascon, “Electrical Energy Storage for the Grid: A BatteryProgress in electrical energy storage system: A critical

Wang, Zuoqian

2013-01-01T23:59:59.000Z

20

International Battery Presentation - Keeping The Lights On: Smart Storage for a Smart Grid (July 12, 2011)  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Ake Algrem of International Battery before the Electricity Advisorty Committee, July 12, 2011, on storage options for the smart grid.

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

ESS 2012 Peer Review - Iron-Air Rechargeable Battery for Grid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage Lead: University of Southern California, Loker Hydrocarbon Research Institute Sub-Awardee: Jet...

22

Technological and economic comparison of battery technologies for U.S.A electric grid stabilization applications  

E-Print Network (OSTI)

Energy storage can provide many benefits to the electric grid of the United States of America. With recent pushes to stabilize renewable energy and implement a Smart Grid, battery technology can play a pivotal role in the ...

Fernandez, Ted (Ted A.)

2010-01-01T23:59:59.000Z

23

Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid-Scale Energy Storage Demonstration Using Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) East Penn Manufacturing, through its subsidary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery modules integrated in a turnkey battery energy storage system. The UltraBattery technology is a significant breakthrough in lead-acid energy storage technology. It is a hybrid device containing both an ultracapacitor and a battery in a common electrolyte, providing significant advantages over traditional energy storage devices. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) More Documents & Publications

24

CWRU awarded grant to build battery for smart grid, renewables New design for iron flow battery would enhance energy and economic security  

E-Print Network (OSTI)

CWRU awarded grant to build battery for smart grid, renewables New design for iron flow battery of the rustbelt battery could be integrated into a smart grid--charging up when use is low, then adding of the power grid and accelerate the addition of solar and wind power supplies. The project was one of 66

Rollins, Andrew M.

25

Choices and Requirements of Batteries for EVs, HEVs, PHEVs (Presentation)  

DOE Green Energy (OSTI)

This presentation describes the choices available and requirements for batteries for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles.

Pesaran, A. A.

2011-04-01T23:59:59.000Z

26

Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

East Penn Manufacturing East Penn Manufacturing American Recovery and Reinvestment Act (ARRA) Grid-Scale Energy Storage Demonstration Using UltraBattery ® Technology Demonstrating new lead-acid battery and capacitor energy storage technology to improve grid performance East Penn Manufacturing, through its subsidiary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery ® modules integrated in a turnkey battery energy storage system. The UltraBattery ® technology is a significant breakthrough in lead-acid energy storage technology. It is a hybrid device containing both an ultracapacitor and a battery in a common electrolyte, providing significant advantages over traditional energy storage devices. The system is selling up to 3 MW of frequency regulation to PJM Interconnection's grid.

27

Fluidic: Grid-Scale Batteries for Wind and Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fluidic: Grid-Scale Batteries for Wind and Solar Fluidic: Grid-Scale Batteries for Wind and Solar Fluidic: Grid-Scale Batteries for Wind and Solar February 27, 2013 - 5:42pm Addthis Andrew Gumbiner Contractor, Advanced Research Projects Agency-Energy. FLUIDIC: Metal Air Recharged from DOE ARPA-E on Vimeo. Our nation's modern electric grid is limited in its ability to store excess energy for on-demand power. As a result, electricity must be generated on a constant basis to perfectly match demand. Grid-scale storage technologies have the potential to shift this dynamic, revolutionizing how our grid uses and distributes energy. Reliable, high-performing storage technologies could provide a considerable amount of power on very short demand, lowering costs to utilities and consumers alike. These powerful technologies would enable renewable sources of energy -

28

Building a Better Battery for Vehicles and the Grid | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building a Better Battery for Vehicles and the Grid Building a Better Battery for Vehicles and the Grid Building a Better Battery for Vehicles and the Grid November 30, 2012 - 12:28pm Addthis Argonne scientists Ira Bloom (front) and Javier Bareño prepare a sample of battery materials for Raman spectroscopy, which is used to gather information regarding the nature of the materials present in the sample. | Photo courtesy of Argonne National Laboratory. Argonne scientists Ira Bloom (front) and Javier Bareño prepare a sample of battery materials for Raman spectroscopy, which is used to gather information regarding the nature of the materials present in the sample. | Photo courtesy of Argonne National Laboratory. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs

29

New Battery Design Could Help Solar and Wind Power the Grid | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battery Design Could Help Solar and Wind Power the Grid Battery Design Could Help Solar and Wind Power the Grid New Battery Design Could Help Solar and Wind Power the Grid April 24, 2013 - 4:20pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Researchers from the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory and Stanford University have designed a low-cost, long-life "flow" battery that could enable solar and wind energy to become major suppliers to the electrical grid. The research, led by Yi Cui, a Stanford associate professor and member of the Stanford Institute for Materials and Energy Sciences, is a product of the new Joint Center for Energy Storage Research (JCESR), a DOE Energy Innovation Hub. Led by Argonne National Laboratory, with SLAC as major partner, JCESR is one of five such Hubs created by the Department to

30

Grid user requirements--2004: a perspective from the trenches  

Science Conference Proceedings (OSTI)

Pervasive Grid adoption is predicated on the availability of widely deployed usable software and a user community willing to use it. Currently, widespread adoption of Grids, even within technically sophisticated communities, is limited, and determining ... Keywords: Grid functionality, Security, Tools, User requirements

Steven J. Newhouse; Jennifer M. Schopf

2007-09-01T23:59:59.000Z

31

Real-time prediction of battery power requirements for electric vehicles  

Science Conference Proceedings (OSTI)

A battery management system (BMS) is responsible for protecting the battery from damage, predicting battery life, and maintaining the battery in an operational condition. In this paper, we propose an efficient way of predicting the power requirements ... Keywords: acceleration prediction, battery management system (BMS), electric vehicles (EVs), prediction of battery power requirement

Eugene Kim, Jinkyu Lee, Kang G. Shin

2013-04-01T23:59:59.000Z

32

Abstract--Compared to the conventional grid, the smart grid requires active participation of consumers to improve the quality  

E-Print Network (OSTI)

courses. His research interests include distribution automation, smart grid applications, electric1 Abstract-- Compared to the conventional grid, the smart grid requires active participation been visionary documents on smart grids that call for improved security [6], [7]. There are researchers

Namboodiri, Vinod

33

Low Temperature Sodium-Sulfur Grid Storage and EV Battery  

Berkeley Lab researcher Gao Liu has developed an innovative design for a battery, made primarily of sodium and sulfur, that holds promise for both ...

34

Redox Flow Batteries for Grid-scale Energy Storage - Energy ...  

Though considered a promising large-scale energy storage device, the real-world deployment of redox flow batteries has been limited by their inability ...

35

Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale  

DOE Green Energy (OSTI)

Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

2009-07-01T23:59:59.000Z

36

Battery energy storage and wind energy integrated into the Smart Grid  

Science Conference Proceedings (OSTI)

Innovations in electricity infrastructure of today's Smart Grid will allow distributed renewable resources to provide transmission level support when combined with new energy storage technology. The modernization of the existing grid requires the implementation ...

Matthew Clayton Such; Cody Hill

2012-01-01T23:59:59.000Z

37

High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage Title High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage Publication Type Journal Article Year of Publication 2012 Authors Cho, Kyu Taek, Paul L. Ridgway, Adam Z. Weber, Sophia Haussener, Vincent S. Battaglia, and Venkat Srinivasan Journal Journal of the Electrochemical Society Volume 159 Issue 11 Pagination A1806 - A1815 Date Published 01/2012 ISSN 0013-4651 Keywords hydrogen/bromine, redox flow battery Abstract The electrochemical behavior of a promising hydrogen/bromine redox flow battery is investigated for grid-scale energy-storage application with some of the best redox-flow-battery performance results to date, including a peak power of 1.4 W/cm(2) and a 91% voltaic efficiency at 0.4 W/cm(2) constant-power operation. The kinetics of bromine on various materials is discussed, with both rotating-disk-electrode and cell studies demonstrating that a carbon porous electrode for the bromine reaction can conduct platinum-comparable performance as long as sufficient surface area is realized. The effect of flow-cell designs and operating temperature is examined, and ohmic and mass-transfer losses are decreased by utilizing a flow-through electrode design and increasing cell temperature. Charge/discharge and discharge-rate tests also reveal that this system has highly reversible behavior and good rate capability.

38

Advanced Battery Tests and Demonstrations for Grid Asset Management  

Science Conference Proceedings (OSTI)

Introduction Energy storage has traditionally formed a small part of the assets on the grid. The wide adoption of renewable generation and the implementation of market systems has made energy storage an attractive technical solution. Storage is, in many ways, ideally suited to provide ancillary services such as frequency regulation and spinning reserve. This research shows how energy storage can and has been implemented to deliver frequency regulation, a high-value ancillary service that can open the doo...

2008-12-28T23:59:59.000Z

39

Plug-in Electric Vehicle to Grid Interface Requirements  

Science Conference Proceedings (OSTI)

This document provides technical requirements to ensure that plug-in electric vehicles (PEVs) will be designed for electric grid compatibility. It organizes the applicable current and future standards in an overview format, as well as providing a context as to the importance and usefulness of these standards to the utility industry.

2009-12-08T23:59:59.000Z

40

Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

Markel, T.; Simpson, A.

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Compact, Interactive Electric Vehicle Charger: Gallium-Nitride Switch Technology for Bi-directional Battery-to-Grid Charger Applications  

SciTech Connect

ADEPT Project: HRL Laboratories is using gallium nitride (GaN) semiconductors to create battery chargers for electric vehicles (EVs) that are more compact and efficient than traditional EV chargers. Reducing the size and weight of the battery charger is important because it would help improve the overall performance of the EV. GaN semiconductors process electricity faster than the silicon semiconductors used in most conventional EV battery chargers. These high-speed semiconductors can be paired with lighter-weight electrical circuit components, which helps decrease the overall weight of the EV battery charger. HRL Laboratories is combining the performance advantages of GaN semiconductors with an innovative, interactive battery-to-grid energy distribution design. This design would support 2-way power flow, enabling EV battery chargers to not only draw energy from the power grid, but also store and feed energy back into it.

2010-10-01T23:59:59.000Z

42

ESS 2012 Peer Review - GRIDS Soluble Lead Flow Battery Technology - Aaron Sathrum, General Atomics  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atomics Proprietary Information Atomics Proprietary Information 1 GRIDS Soluble Lead Flow Battery Technology General Atomics and the University of California, San Diego Aaron J. Sathrum (General Atomics): Aaron.Sathrum@ga.com Advanced Research Projects Agency - Energy (ARPA-e) OVERVIEW TECHNICAL CHALLENGES RESULTS MODELING CHARACTERIZATION FLOW BATTERY OUTLOOK Anode: Pb 2+ + 2e -  Pb Cathode: Pb 2+ + 2H 2 O  PbO 2 + 4H + + 2e - Overall: H 2 O  Pb + PbO 2 + 4H + Cell Potential = 1.76V Energy Density = 75Wh/kg, 95Wh/L General Atomics (GA) and the University of California, San Diego (UCSD) are jointly developing a soluble lead flow battery 1 where the active lead material is dissolved into methanesulfonic acid, which allows for the use of a single electrolyte and eliminates the

43

Flow-Assisted Alkaline Battery: Low-Cost Grid-Scale Electrical Storage using a Flow-Assisted Rechargeable Zinc-Manganese Dioxide Battery  

SciTech Connect

GRIDS Project: Traditional consumer-grade disposable batteries are made of Zinc and Manganese, 2 inexpensive, abundant, and non-toxic metals. But these disposable batteries can only be used once. If they are recharged, the Zinc in the battery develops filaments called dendrites that grow haphazardly and disrupt battery performance, while the Manganese quickly loses its ability to store energy. CUNY Energy Institute is working to tame dendrite formation and to enhance the lifetime of Manganese in order to create a long-lasting, fully rechargeable battery for grid-scale energy storage. CUNY Energy Institute is also working to reduce dendrite formation by pumping fluid through the battery, enabling researchers to fix the dendrites as they’re forming. The team has already tested its Zinc battery through 3,000 recharge cycles (and counting). CUNY Energy Institute aims to demonstrate a better cycle life than lithium-ion batteries, which can be up to 20 times more expensive than Zinc-based batteries.

2010-09-15T23:59:59.000Z

44

Grid Information Security Functional Requirement - Fulfilling Information Security of a Smart Grid System  

E-Print Network (OSTI)

This paper describes the background of smart information infrastructure and the needs for smart grid information security. It introduces the conceptual analysis to the methodology with the application of hermeneutic circle and information security functional requirement identification. Information security for the grid market cover matters includes automation and communications industry that affects the operation of electric power systems and the functioning of the utilities that manage them and its awareness of this information infrastructure has become critical to the reliability of the power system. Community benefits from of cost savings, flexibility and deployment along with the establishment of wireless communications. However, concern revolves around the security protections for easily accessible devices such as the smart meter and the related communications hardware. On the other hand, the changing points between traditional versus smart grid networking trend and the information security importance on...

Ling, Amy Poh Ai; 10.5121/ijgca.2011.2201

2011-01-01T23:59:59.000Z

45

Semi-Solid Flowable Battery Electrodes: Semi-Solid Flow Cells for Automotive and Grid-Level Energy Storage  

DOE Green Energy (OSTI)

BEEST Project: Scientists at 24M are crossing a Li-Ion battery with a fuel cell to develop a semi-solid flow battery. This system relies on some of the same basic chemistry as a standard Li-Ion battery, but in a flow battery the energy storage material is held in external tanks, so storage capacity is not limited by the size of the battery itself. The design makes it easier to add storage capacity by simply increasing the size of the tanks and adding more paste. In addition, 24M's design also is able to extract more energy from the semi-solid paste than conventional Li-Ion batteries. This creates a cost-effective, energy-dense battery that can improve the driving range of EVs or be used to store energy on the electric grid.

2010-09-01T23:59:59.000Z

46

Semi-Solid Flowable Battery Electrodes: Semi-Solid Flow Cells for Automotive and Grid-Level Energy Storage  

SciTech Connect

BEEST Project: Scientists at 24M are crossing a Li-Ion battery with a fuel cell to develop a semi-solid flow battery. This system relies on some of the same basic chemistry as a standard Li-Ion battery, but in a flow battery the energy storage material is held in external tanks, so storage capacity is not limited by the size of the battery itself. The design makes it easier to add storage capacity by simply increasing the size of the tanks and adding more paste. In addition, 24M's design also is able to extract more energy from the semi-solid paste than conventional Li-Ion batteries. This creates a cost-effective, energy-dense battery that can improve the driving range of EVs or be used to store energy on the electric grid.

2010-09-01T23:59:59.000Z

47

Fact Sheet: Sodium-Ion Batteries for Grid-Level Applications (October 2012)  

Energy.gov (U.S. Department of Energy (DOE))

In June 2012, Aquion Energy, Inc. completed the testing and demonstration requirements for the DOE's program with its low-cost, grid-scale, ambient temperature Aqueous Hybird Ion (AHI) energy...

48

Battery Requirements for Plug-In Hybrid Electric Vehicles: Analysis and Rationale (Presentation)  

DOE Green Energy (OSTI)

Slide presentation to EVS-23 conference describing NREL work to help identify appropriate requirements for batteries to be useful for plug-in hybrid-electric vehicles (PHEVs). Suggested requirements were submitted to the U.S. Advanced Battery Consortium, which used them for a 2007 request for proposals. Requirements were provided both for charge-depleting mode and charge-sustaining mode and for high power/energy ratio and hige energy/power ration batteries for each (different modes of PHEV operation), along with battery and system level requirements.

Pesaran, A.

2007-12-01T23:59:59.000Z

49

ESS 2012 Peer Review - Hydrogen-Bromine Flow Batteries for Grid-Scale Energy Storage - Vincent Battaglia, LBNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

H H 2 /Br 2 Flow Battery for Grid-Scale Energy Storage Venkat Srinivasan, Adam Weber, & Vince Battaglia Lawrence Berkeley National Laboratory * DOE ESS Review * Washington, DC * September 26, 2012 vsbattaglia@lbl.gov Purpose Develop a low-cost, energy-storage system with high power density at 80% efficiency Use H 2 and Br 2 in a flow battery Future Plans Modeling Funding from ARPA-E GRIDS, USDOE LBNL: Kyu Taek Cho (Cell studies); Paul Ridgway (Catalysis studies); Sophia Haussener (Transport modeling) Bosch: Paul Albertus (Cost Modeling); Roel Sanchez-Carrera and Boris Kozinsky (Catalyst theory)

50

Recovery Act - Demonstration of Sodium Ion Battery for Grid Level Applications  

DOE Green Energy (OSTI)

Through the course of this project Aquion developed its aqueous electrolyte electrochemical energy storage device to the point where large demonstration units (> 10 kWh) were able to function in grid-supporting functions detailed by their collaborators. Aquionâ??s final deliverable was an ~15 kWh system that has the ability to perform medium to long duration (> 2 hours) charge and discharge functions approaching 95% DC-DC efficiency. The system has functioned, and continues to function as predicted with no indication that it will not tolerate well beyond 10 calendar years and 10,000 cycles. It has been in continuous operation for more than 1 year with 1,000 cycles (of varying depth of discharge, including 100% depth of discharge) and no identifiable degradation to the system. The final thick electrode cell structure has shown an energy density of 25 kWh/m3 at a five hour (or greater) discharge time. The primary chemistry has remained non-toxic, containing no acids or other corrosive chemicals, and the battery units have passed numerous safety tests, including flame resistance testing. These tests have verified the claim that the device is safe to use and contains no hazardous materials. Current projections show costs at the pack level to offer best in class value and are competitive with lead-acid batteries, factoring in LCOE.

Wiley, Ted; Whitacre, Jay; Eshoo, Michael; Noland, James; Campbell, Williams; Spears, Christopher

2012-08-31T23:59:59.000Z

51

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network (OSTI)

13]); (d) 48 lithium ion battery modules in Nissan Leafhighly toxic. In 1991, lithium-ion battery was introduced byThree main types of lithium ion battery have been developed

Wang, Zuoqian

2013-01-01T23:59:59.000Z

52

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network (OSTI)

Sulfur Battery Cathode Material with High Capacity andto use the same battery type with equal capacity, as well asto 3.6V, and the capacity of the battery quickly stabilizes

Wang, Zuoqian

2013-01-01T23:59:59.000Z

53

Communication Capacity Requirement for Reliable and Secure State Estimation in Smart Grid  

E-Print Network (OSTI)

1 Communication Capacity Requirement for Reliable and Secure State Estimation in Smart Grid Husheng, Cookeville, TN Abstract-- Secure system state estimation is an important issue in smart grid to assure the information the- oretic perspective. The smart grid is modeled as a linear dynamic system. Then, the channel

Qiu, Robert Caiming

54

Rechargeable lithium battery for use in applications requiring a low to high power output  

DOE Patents (OSTI)

Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphorus lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

Bates, John B. (Oak Ridge, TN)

1996-01-01T23:59:59.000Z

55

Rechargeable lithium battery for use in applications requiring a low to high power output  

SciTech Connect

Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphous lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

Bates, John B. (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

56

Recovery Act - Demonstration of Sodium Ion Battery for Grid Level Applications  

SciTech Connect

Aquion Energy received a $5.179 million cooperative research agreement under the Department of Energyâ??s Smart Grid Demonstration Program â?? Demonstration of Promising Energy Storage Technologies (Program Area 2.5) of FOA DE-FOE-0000036. The main objective of this project was to demonstrate Aquionâ??s low cost, grid-scale, ambient temperature sodium ion energy storage device. The centerpiece of the technology is a novel hybrid energy storage chemistry that has been proven in a laboratory environment. The objective was to translate these groundbreaking results from the small-batch, small-cell test environment to the pilot scale to enable significant numbers of multiple ampere-hour cells to be manufactured and assembled into test batteries. Aquion developed a proof of concept demonstration unit that showed similar performance and major cost improvement over existing technologies. Beyond minimizing cell and system cost, Aquion built a technology that is safe, environmentally benign and durable over many thousands of cycles as used in a variety of grid support roles. As outlined in the Program documents, the original goals of the project were to demonstrate a unit that: 1. Has a projected capital cost of less than $250/kWh at the pack level 2. A deep discharge cycle life of > 10,000 cycles 3. A volumetric energy density of >20 kWh/m3 4. Projected calendar life of over 10 years 5. A device that contains no hazardous materials and retains best in class safety characteristics. Through the course of this project Aquion developed its aqueous electrolyte electrochemical energy storage device to the point where large demonstration units (> 10 kWh) were able to function in grid-supporting functions detailed by their collaborators. Aquionâ??s final deliverable was an ~15 kWh system that has the ability to perform medium to long duration (> 2 hours) charge and discharge functions approaching 95% DC-DC efficiency. The system has functioned, and continues to function as predicted with no indication that it will not tolerate well beyond 10 calendar years and 10,000 cycles. It has been in continuous operation for more than 1 year with 1,000 cycles (of varying depth of discharge, including 100% depth of discharge) and no identifiable degradation to the system. The final thick electrode cell structure has shown an energy density of 25 kWh/m3 at a five hour (or greater) discharge time. The primary chemistry has remained non-toxic, containing no acids or other corrosive chemicals, and the battery units have passed numerous safety tests, including flame resistance testing. These tests have verified the claim that the device is safe to use and contains no hazardous materials. Current projections show costs at the pack level to offer best in class value and are competitive with lead-acid batteries, factoring in LCOE.

Wiley, Ted; Whitacre, Jay; Eshoo, Michael; Noland, James; Campbell, Williams; Spears, Christopher

2012-08-31T23:59:59.000Z

57

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network (OSTI)

Rechargeable, Lithium-ion Molten Salt Battery for Highare room- temperature molten salts, which are typically

Wang, Zuoqian

2013-01-01T23:59:59.000Z

58

Office of Facilities and Grounds Future Power Distribution Grid Requirements for  

E-Print Network (OSTI)

). · This will require the combination of alternate generation (PV, SNG, HFC, etc.), storage, Demand Response switchable circuits ­ Scalable power production (Diesel, SNG, HFC, Batteries) ­ Combine Thermal power

59

High Voltage Thermal Battery Reliability Required to Equal Inverter-Converter Systems  

SciTech Connect

MC-583 and XMC-650 circuits, including associated pulse transformers, are compare with the inverter-converter system typical of present fuses. The required probabilities of thermal battery shorts and opens are determined.

1955-06-14T23:59:59.000Z

60

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

2010). Plug-in hybrid electric vehicles as regulating powervalue of plug-in hybrid electric vehicles as grid resources.of using plug-in hybrid electric vehicle battery packs for

Greer, Mark R

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

ESS 2012 Peer Review - Iron Based Flow Batteries for Low Cost Grid Level Energy Storage - Jesse Wainright, Case Western Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. Iron Based Flow Batteries for Low Cost Grid Level Energy Storage J.S. Wainright, R. F. Savinell, P.I.s Dept. of Chemical Engineering, Case Western Reserve University Purpose Impact on Iron Based Batteries on the DOE OE Energy Storage Mission Recent Results Recent Results Develop efficient, cost-effective grid level storage capability based on iron. Goals of this Effort: * Minimize Cost/Watt by increasing current density - Hardware Cost >> Electrolyte Cost * Minimize Cost/Whr by increasing plating capacity * Maximize Efficiency by minimizing current lost to hydrogen evolution Electrochemistry of the all-Iron system:

62

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network (OSTI)

A Key Enabler of the Smart Grid,” pp. 1–16, Sep. I. Gyuk, P.component of the smart grid, because of its potential rolean essential component for smart grid development is large-

Wang, Zuoqian

2013-01-01T23:59:59.000Z

63

ESS 2012 Peer Review - Hydrogen-Bromine Flow Batteries for Grid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is falling, leading to the reactants storing less energy Component-level cost breakdown Battery cost vs. discharge time System Costs Performance Optimization Bromine resistant...

64

ESS 2012 Peer Review - Iron-Air Rechargeable Battery for Grid-Scale Energy Storage - Sri Narayan, USC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Storage Lead: University of Southern California, Loker Hydrocarbon Research Institute Sub-Awardee: Jet Propulsion Laboratory, California Institute of Technology ARPA-E GRIDS Program Advantages of the Iron-Air Battery * Extremely Low Cost Materials * Environmentally friendly * Abundant raw materials all over the world * High Theoretical Specific Energy, 764 Wh/kg * Iron electrode is robust to cycling Desired Characteristic State-of-Art Performance Target Round trip energy efficiency 50% 80% Cycle life, cycles 1000-2000 5000 Year Key Milestones & Deliverables Year 1 *Complete design of iron electrode *Demonstrate feasibility bi-functional air electrode materials Year 2 *Complete selection of additives and catalysts *Complete characterization of CO

65

Electroville: Grid-Scale Batteries: High Amperage Energy Storage Device—Energy for the Neighborhood  

DOE Green Energy (OSTI)

Broad Funding Opportunity Announcement Project: Led by MIT professor Donald Sadoway, the Electroville project team is creating a community-scale electricity storage device using new materials and a battery design inspired by the aluminum production process known as smelting. A conventional battery includes a liquid electrolyte and a solid separator between its 2 solid electrodes. MIT’s battery contains liquid metal electrodes and a molten salt electrolyte. Because metals and salt don’t mix, these 3 liquids of different densities naturally separate into layers, eliminating the need for a solid separator. This efficient design significantly reduces packaging materials, which reduces cost and allows more space for storing energy than conventional batteries offer. MIT’s battery also uses cheap, earth-abundant, domestically available materials and is more scalable. By using all liquids, the design can also easily be resized according to the changing needs of local communities.

None

2010-01-15T23:59:59.000Z

66

ESS 2012 Peer Review - Demonstration of a Sodium Ion Battery for Grid Level Applications - Ted Wiley, Aquion Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress Report Progress Report Smart Grid Demonstration Program Ted Wiley, Jay Whitacre Department of Energy Peer Review 26 September, 2012 Confidential Information of Aquion Energy, Inc. 2 Thanks to Our Supporters Confidential Information of Aquion Energy, Inc. 3 About Aquion Energy Founded on the belief that stationary energy storage must be: * Safe: Non-toxic and immune to catastrophic failure events * Reliable: Long lasting and capable of operating in abusive environments * Affordable: Made from abundant, simple materials via a scalable manufacturing process This principle demands a new type of energy storage: Aqueous Hybrid Ion Batteries Designed for stationary, long-duration applications * Utilities-various grid services * Microgrids-telco, mining, commercial/residential solar, military,

67

Economic assessment of candidate materials for key components in a grid-scale liquid metal battery  

E-Print Network (OSTI)

In order to satisfy the growing demand for renewable resources as a supply of electricity, much effort is being placed toward the development of battery energy storage systems that can effectively interface these new sources ...

Parent, Michael C. (Michael Calvin)

2011-01-01T23:59:59.000Z

68

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

32 B.1 Electrical power capacity: BatteryB.1 Electrical power capacity: Battery EDVs For the battery-and/or generation capacity of battery, hybrid and fuel cell

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

69

Microsoft Word - TIA Reply Comments DOE NBP RFI Smart Grid Communications Requirements.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26, 2010 26, 2010 US Department of Energy Office of the General Counsel 1000 Independence Avenue, SW Room 6A245 Washington, DC 20585 Re: NBP RFI-Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy The Telecommunications Industry Association (TIA) is pleased to provide comments on the communications requirements of electric utilities relevant to smart grid policy. TIA appreciates the proactive role the Department of Energy (DOE) is taking in executing the recommendations from the FCC in the National Broadband Plan. Electric utilities and the ICT industry share a long tradition of partnering to build and maintain the communications networks contributing to the security and reliability of the grid.

70

Meeting the New CARB ZEV Mandate Requirements: Grid-Connected Hybrids and City EVs  

E-Print Network (OSTI)

= -60 mphtop speed ¯ Battery capacity ~113-1/2of full BEVbatteries ¯ -8 4 kW- hr capacity e-com Battery Pack Locationetc ¯ Battery Endof Lde (EEL)wasdefined as 80% capacity for

Burke, Andrew

2001-01-01T23:59:59.000Z

71

Implementation of battery energy storage system for the electricity grid in Singapore  

E-Print Network (OSTI)

The market of grid-level electricity storage is growing rapidly, with a predicted market value of 1.6 billion in 2012 and 8.3 billion in 2016. Electrochemical storages such as lead-acid, nickel-cadmium, sodium-sulfur and ...

Wu, Zhenqi, M. Eng. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

72

Battery charging in float vs. cycling environments  

SciTech Connect

In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

COREY,GARTH P.

2000-04-20T23:59:59.000Z

73

ESS 2012 Peer Review - Flow-Assisted Zinc Anode Batteries for Grid-Scale Electricity Storage - Sanjoy Banerjee, CUNY Energy Institute  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GRID-CONNECTED SYSTEM! GRID-CONNECTED SYSTEM! !"#$%&'()* !"#$%&'()* The CUNY EI is developing and testing hardware/software systems for peak shaving applications in commercial and industrial buildings 30KWH DEMONSTRATION !"#$%&'()*+&,-./01&2134/5& 6/57+340-4/3&809-+&6/5-+6&:%-0;/& 0/68:'?&@+/0;1&A+3<484/& & '()*+&B(CC&9/&(+4/;0-4/6&B(4%&D+E F )*+& (+&F"G!& G""H&=1:C/3& I&J"K&=7C859(:&@L:(/+:1& I&M"K&@+/0;1&@L:(/+:1& & =755/0:(-C(N/6&91&>09-+&@C/:40(:&O7B/0& %.PQRR340(+;"""GS8/P(+:S:75& FLOW-ASSISTED ZINC ANODE BATTERIES FOR GRID-SCALE ELECTRICITY STORAGE !

74

Definition: Battery | Open Energy Information  

Open Energy Info (EERE)

Battery Battery Jump to: navigation, search Dictionary.png Battery An energy storage device comprised of two or more electrochemical cells enclosed in a container and electrically interconnected in an appropriate series/parallel arrangement to provide the required operating voltage and current levels. Under common usage, the term battery also applies to a single cell if it constitutes the entire electrochemical storage system.[1] View on Wikipedia Wikipedia Definition Also Known As Electrochemical cell Related Terms Fuel cell, energy, operating voltage, smart grid References ↑ http://www1.eere.energy.gov/solar/solar_glossary.html#B Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Battery&oldid=502543

75

Battery Choices and Potential Requirements for Plug-In Hybrids (Presentation)  

DOE Green Energy (OSTI)

Plug-in Hybrid vehicles energy storage and drive cycle impacts presentation given at the 7th Advanced Automotive Battery Conference.

Pesaran, A.

2007-02-13T23:59:59.000Z

76

Battery Power for Your Residential Solar Electric System: Better Buildings Series Solar Electric Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRIC ELECTRIC Battery Power for Your Residential Solar Electric System A Winning Combination-Design, Efficiency, and Solar Technology A battery bank stores electricity produced by a solar electric system. If your house is not connected to the utility grid, or if you antici- pate long power outages from the grid, you will need a battery bank. This fact sheet pro- vides an overview of battery basics, including information to help you select and maintain your battery bank. Types of Batteries There are many types of batteries avail- able, and each type is designed for specific applications. Lead-acid batteries have been used for residential solar electric systems for many years and are still the best choice for this application because of their low mainte- nance requirements and cost. You may

77

Review Article: A comprehensive review of the application characteristics and traffic requirements of a smart grid communications network  

Science Conference Proceedings (OSTI)

A robust communication infrastructure is the touchstone of a smart grid that differentiates it from the conventional electrical grid by transforming it into an intelligent and adaptive energy delivery network. To cope with the rising penetration of renewable ... Keywords: AMI, AMR, ANSI, Applications, Communication architecture, Communication technologies, DAP, DER, DR, ESI, EV, FAN, GOOSE, HAN, HV, IEC, IED, IEEE, IP, M2M, MDMS, MU, NAN, P&C, PMU, QoS, SMV, SOC, Smart grid, Traffic requirements, WAMS, WLAN, WMN, WiMAX

Reduan H. Khan; Jamil Y. Khan

2013-02-01T23:59:59.000Z

79

IntelliGridSM - Distribution Fast Simulation and Modeling (D-FSM): Engineering Requirements Documents Guideline  

Science Conference Proceedings (OSTI)

The EPRI IntelliGridSM Consortium has built a vision of the future electrical system as a "self-healing" grid capable of automatically anticipating and responding to power system disturbances, while continually optimizing its own performance and guaranteeing proper operation of the entire system. To achieve such a vision, all grid automation will rely on powerful monitoring, simulation, and modeling tools.

2005-12-12T23:59:59.000Z

80

Wireless Communication for Smart Grid Applications at Distribution Level Feasibility and Requirements  

E-Print Network (OSTI)

Wireless Communication for Smart Grid Applications at Distribution Level ­ Feasibility Member IEEE, and Ward Jewell, Fellow IEEE Abstract-- Smart grid technology places greater demands high importance for the smart grid. There has already been significant work done on power system

Namboodiri, Vinod

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

Onar, Omer C [ORNL

2011-01-01T23:59:59.000Z

82

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

than the vehicle’s battery capacity will allow. Previousowner selling vehicle battery capacity into the market forusing an EDV’s battery and electronics capacity in segments

Greer, Mark R

2012-01-01T23:59:59.000Z

83

2012 ARPA-E Energy Innovation Summit: Profiling City University of New York (CUNY): Reinventing Batteries for Grid Storage (Performer Video)  

DOE Green Energy (OSTI)

The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These 'performer videos' highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video are Sanjoy Banerjee, Director of CUNY Energy Institute and Dan Steingart (Assistant Professor of Chemical Engineering, CUNY). The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

None Available

2012-02-28T23:59:59.000Z

84

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

efficiency of the electric power system. This opportunity isvehicles and of the electric power grid, yet analysts,cell vehicle generates electric power, but it's not hooked

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

85

Grid Friendly™ Charger Controller - Available Technologies ...  

Daily battery charging is fully automatic with the Grid Friendly ... Reduced electricity costs for consumers—the Grid Friendly Charger Controller ...

86

ESS 2012 Peer Review - Solid State Li Metal Batteries for Grid-Scale Energy Storage - Mohit Singh, Seeo  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Review 2012 Annual Review 2012 Mohit Singh, VP R&D and Engineering Funded in part by the Energy Storage Systems Program from the Department of Energy through the National Energy Technology Laboratory Copyright ©2012 Seeo Inc. All rights reserved Conventional Li Ion Seeo Battery Li Foil Anode Dry Solid Separator Dry Polymer Cathode Composite Al Current Collector Cu Current Collector Porous Graphite Anode Composite Porous Separator Porous Cathode Composite Al Current Collector Element Li Ion Seeo Seeo Benefits Electrolyte Liquid Solid Safety: Non-reactive and non-flammable Energy: Superior specific energy (Wh/kg) Reliability: High temp stability, minimal fade Anode Porous Solid Cathode Porous Solid Seeo's solid polymer battery

87

Battery construction. [miniaturized batteries  

SciTech Connect

A description is given of a battery having a battery cup and a battery cap which has a ridge portion to provide a battery chamber for accommodating a positive electrode, a negative electrode, and an electrolyte. The battery chamber has a contour at its outer periphery different from that of the sealing flanges of the battery cup and the battery cap. 11 figures.

Nishimura, H.; Nomura, Y.

1977-05-24T23:59:59.000Z

88

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

the battery depletion cost per kWh transferred could bethe battery depletion cost per kWh transferred from off-peakhigher battery depletion cost per kWh transferred under the

Greer, Mark R

2012-01-01T23:59:59.000Z

89

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

the significant battery depletion costs incurred from deep-Consequently, the battery depletion cost per kWh transferredTo estimate the battery depletion cost of peak shaving, we

Greer, Mark R

2012-01-01T23:59:59.000Z

90

Fact Sheet: Carbon-Enhanced Lead-Acid Batteries (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

batteries are currently used in a variety of applications, ranging from automotive batteries are currently used in a variety of applications, ranging from automotive starting batteries to storage for renewable energy sources. Lead-acid batteries form deposits on the negative electrodes that hinder their performance, which is a major hurdle to the wider use of lead-acid batteries for grid-scale energy storage. The formation of deposits is exacerbated under the operating conditions required by many large-scale energy storage systems, which cycle at a high electrical current while remaining in a partially charged state (high-rate, partial state of charge operation, or HRPSoC). In 1997, researchers made two important advancements to lead-acid batteries. First, the Japan Storage Battery Company showed that adding carbon to the battery dramatically

91

Batteries - HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and component levels. A very detailed battery design model is used to establish these costs for different Li-Ion battery chemistries. The battery design model considers the...

92

Maintenance-free automotive battery  

SciTech Connect

Two types of maintenance-free automotive batteries were developed by Japan Storage Battery Co. to obtain a maintenance-free battery for practical use and to prevent deterioration of the battery during long storage and/or shipment. Design considerations included a special grid alloy, the separator, plate surface area, vent structure, and electrolyte. Charge characteristics, overcharge characteristics, life characteristics under various conditions, and self-discharge characteristics are presented. The characteristics of the maintenance-free battery with a Pb-Ca alloy grid are superior to those of a conventional battery. 10 figures, 1 table. (RWR)

Kano, S.; Ando, K.

1978-01-01T23:59:59.000Z

93

Batteries and Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

94

Fact Sheet: Community Energy Storage for Grid Support (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Detroit Edison Detroit Edison American Recovery and Reinvestment Act (ARRA) Community Energy Storage for Grid Support Demonstrating advanced implementation of community energy storage technologies for grid support Detroit Edison (DTE) will design, build, and demonstrate Community Energy Storage (CES) systems in their service territory, and two of the CES units will utilize secondary- use electric vehicle batteries. The CES system will use a number of battery energy storage units utilizing lithium batteries with the required electronics and energy conditioning devices to locate backup power near to the customer. The energy storage system consists of 20 separate 25 kW (50 kWh) CES units and a 500 kW lithium battery storage device integrated with a photovoltaic solar module. At just under 1 MW the CES units, coupled

95

Hierarchically Structured Materials for Lithium Batteries  

SciTech Connect

Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electrical vehicles. With the increasing demand on devices of high energy densities (>500 Wh/kg) , new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB also attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performances of these energy storage systems depend not only on the composition of the materials, but also on the structure of electrode materials used in the batteries. Although the desired performances characteristics of batteries often have conflict requirements on the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflict requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate 1) how to realize the full potential of energy materials through the manipulation of morphologies, and 2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties, prolongs the electrode stability and battery lifetime.

Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Jiguang

2013-09-25T23:59:59.000Z

96

Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Batteries Batteries Batteries A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage. Learn more. First invented by Thomas Edison, batteries have changed a lot in the past century, but there is still work to do. Improving this type of energy storage technology will have dramatic impacts on the way Americans travel and the ability to incorporate renewable energy into the nation's electric grid. On the transportation side, the Energy Department is working to reduce the costs and weight of electric vehicle batteries while increasing their energy storage and lifespan. The Department is also supports research, development and deployment of battery technologies that would allow the

97

Examples of Smart Grid Standards  

Science Conference Proceedings (OSTI)

... Examples of Smart Grid Standards. Hundreds of standards will be required for an efficient and effective smart grid. Historically ...

2013-05-09T23:59:59.000Z

98

Apparatus for regulating the charging of a storage battery  

SciTech Connect

An aleatory source of energy, e.g., a battery of photocells, supplies energy to a load and to a storage battery. When the source is supplying more energy than is being drawn by the load, the storage battery is charged; when the source is supplying less than the demand, the shortfall is made up by drawing energy from the storage battery. The state of charge of the storage battery is monitored by a meter (8) which governs a regulator. Once the battery is charged to a predetermined threshold, the amount of current it draws from the source is regulated, and energy supplied by the source in excess of the combined requirements of the load and of battery charging is diverted to a storage means other than the storage battery (e.g., a mains electricity supply grid). The flows of energy to both the battery and the other storage means are controlled by the regulator as a function of the state of charge of the battery.

Billot, M.; Godard, P.

1981-09-01T23:59:59.000Z

99

Off-Grid or Stand-Alone Renewable Energy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Off-Grid or Stand-Alone Renewable Energy Systems Off-Grid or Stand-Alone Renewable Energy Systems Off-Grid or Stand-Alone Renewable Energy Systems July 2, 2012 - 8:20pm Addthis Off-grid, or stand-alone, systems can be more cost-effective than connecting to the grid in remote locations. | Photo courtesy of Dave Parsons. Off-grid, or stand-alone, systems can be more cost-effective than connecting to the grid in remote locations. | Photo courtesy of Dave Parsons. What are the key facts? In remote locations, stand-alone systems can be more cost-effective than extending a power line to the electricity grid. Stand-alone systems are also used by people who live near the grid but are looking for independence from the power provider or to demonstrate a commitment to non-polluting energy sources. Batteries, and other additional equipment, are required with

100

Battery electrode growth accommodation  

DOE Patents (OSTI)

An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Method for the manufacture of lead-acid batteries and an associated apparatus and associated lead-acid battery  

SciTech Connect

A method for the manufacture of lead-acid batteries and associated apparatus and a lead-acid battery design resulting therefrom is disclosed. The method involves providing a battery grid and pasting the grid with a battery paste such that a profiled and tapered battery plate is formed. This battery plate is wrapped onto a coil and cured in curing apparatus. A battery element is formed using coils of the finished plate stock, separator material, and winged end plate. After this, several battery elements are then placed into a battery container. 31 figs.

Wheadon, E.G.; Forrer, L.L.

1994-01-11T23:59:59.000Z

102

Integration of photovoltaic units into electric utility grids: experiment information requirements and selected issues  

SciTech Connect

A number of investigations have led to the recognition of technical, economic, and institutional issues relating to the interface between solar electric technologies and electric utility systems. These issues derive from three attributes of solar electric power concepts, including (1) the variability and unpredictability of the solar resources, (2) the dispersed nature of those resources which suggest the deployment of small dispersed power units, and (3) a high initial capital cost coupled with relatively low operating costs. An important part of the DOE programs to develop new source technologies, in particular photovoltaic systems, is the experimental testing of complete or nearby complete power units. These experiments provide an opportunity to examine operational and integration issues which must be understood before widespread commercial deployment of these technologies can be achieved. Experiments may also be required to explicitly examine integration, operational, and control aspects of single and multiple new source technology power units within a utility system. An identification of utility information requirements, a review of planned experiments, and a preliminary determination of additional experimental needs and opportunities are presented. Other issues discussed include: (1) the impacts of on-site photovoltaic units on load duration curves and optimal generation mixes are considered; (2) the impacts of on-site photovoltaic units on utility production costs, with and without dedicated storage and with and without sellback, are analyzed; and (3) current utility rate structure experiments, rationales, policies, practices, and plans are reviewed.

1980-09-01T23:59:59.000Z

103

Modelling Chinese Smart Grid: A Stochastic Model Checking Case Study  

E-Print Network (OSTI)

Cyber-physical systems integrate information and communication technology functions to the physical elements of a system for monitoring and controlling purposes. The conversion of traditional power grid into a smart grid, a fundamental example of a cyber-physical system, raises a number of issues that require novel methods and applications. In this context, an important issue is the verification of certain quantitative properties of the system. In this technical report, we consider a specific Chinese Smart Grid implementation and try to address the verification problem for certain quantitative properties including performance and battery consumption. We employ stochastic model checking approach and present our modelling and analysis study using PRISM model checker.

Yüksel, Ender; Nielson, Flemming; Zhu, Huibiao; Huang, Heqing

2012-01-01T23:59:59.000Z

104

Integration of photovoltaic units into electric utility grids: experiment information requirements and selected issues  

DOE Green Energy (OSTI)

A number of investigations, including those conducted by The Aerospace Corporation and other contractors, have led to the recognition of technical, economic, and institutional issues relating to the interface between solar electric technologies and electric utility systems. These issues derive from three attributes of solar electric power concepts, including (1) the variability and unpredictability of the solar resources, (2) the dispersed nature of those resources which suggests the feasible deployment of small dispersed power units, and (3) a high initial capital cost coupled with relatively low operating costs. It is imperative that these integration issues be pursued in parallel with the development of each technology if the nation's electric utility systems are to effectively utilize these technologies in the near to intermediate term. Analyses of three of these issues are presented: utility information requirements, generation mix and production cost impacts, and rate structures in the context of photovoltaic units integrated into the utility system. (WHK)

Not Available

1980-09-01T23:59:59.000Z

105

SciTech Connect: "smart grid"  

Office of Scientific and Technical Information (OSTI)

Minimization of Impact from Electric Vehicle Supply Equipment to the Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving Citation Details In-Document...

106

Flow, Li-Air, and Other Batteries  

Science Conference Proceedings (OSTI)

Oct 18, 2011 ... Large-scale energy storage technologies like redox flow batteries have been sought for renewable integration and smart grid applications.

107

Battery Types  

Science Conference Proceedings (OSTI)

...and rechargeable batteries (Table 1A battery consists of a negative electrode (anode) from which electrons

108

Integration of electric drive vehicles with the electric power grid—a new value stream  

E-Print Network (OSTI)

Battery-electric vehicles and grid-connected hybrid vehicles rely on the power grid for energy-- they have to plug in to charge their batteries. With power alerts and blackouts a recent reality in California, it is easy to conclude that the energy requirements of grid-connected electric vehicles will make the energy crisis worse. Actually, quite the opposite may be true. With a bi-directional grid power interface, virtually any vehicle that can plug into the grid can potentially provide beneficial support to the grid. Battery electric vehicles can support the grid exceptionally well by providing any of a number of functions known collectively as ancillary services. These services are vital to the smooth and efficient operation of the power grid. A hybrid vehicle can provide ancillary services, and can also generate power. Fuel cells are already being commercialized for small stationary power sources, so a vehiclemounted fuel cell could also serve as a vehicle-to-grid power source. Sharing power assets between transportation and power generation functions can create a compelling new economics for electrically-propelled vehicles.

Alec Brooks; Tom Gage; Ac Propulsion

2001-01-01T23:59:59.000Z

109

Adaptive Distance Filter-based Traffic Reduction for Mobile Grid  

Science Conference Proceedings (OSTI)

The mobile grid introduces various research challenges distinguished from existing grid computing systems. They are low bandwidth, low processing power, low battery capacity, frequent disconnectivity, and mobility. Mobility of the grid node increases ...

In Kee Kim; Sung Ho Jang; Jong Sik Lee

2007-06-01T23:59:59.000Z

110

Battery chargers  

SciTech Connect

A battery charger designed to be installed in a vehicle, and while utilizing a portion of this vehicle's electrical system, can be used to charge another vehicle's battery or batteries. This battery charger has a polarity sensor, and when properly connected to an external battery will automatically switch away from charging the internal battery to charging the external battery or batteries. And, when disconnected from the external battery or batteries will automatically switch back to charging the internal battery, thus making it an automatic vehicle to vehicle battery charger.

Winkler, H.L.

1984-05-15T23:59:59.000Z

111

DRAFT NISTIR 7628 Revision 1, Guidelines for Smart Grid ...  

Science Conference Proceedings (OSTI)

... advanced metering infrastructure; architecture; cryptography; cybersecurity; electric grid; privacy; security requirements; smart grid Page 5. ...

2013-10-28T23:59:59.000Z

112

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

Ferdowsi, M. (2007). Plug-hybrid vehicles – A vision for thepower: battery, hybrid and fuel cell vehicles as resources2010). Plug-in hybrid electric vehicles as regulating power

Greer, Mark R

2012-01-01T23:59:59.000Z

113

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

a graphite-free lithium ion battery can be built, usingK (1990) Lithium Ion Rechargeable Battery. Prog. Batteriesion battery configurations, as all of the cycleable lithium

Doeff, Marca M

2011-01-01T23:59:59.000Z

114

Energy - Green battery | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy - Green battery By substituting lignin for highly engineered, expensive graphite to make battery electrodes, researchers have developed a process that requires fewer steps...

115

Vehicle Technologies Office: Applied Battery Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Battery Research Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for...

116

Fourier Grid Hamiltonian 1D Program  

Science Conference Proceedings (OSTI)

Fourier Grid Hamiltonian 1D Program. FGH Introduction. ... This particular implementation requires an even number of grid points (basis functions). ...

2012-10-18T23:59:59.000Z

117

Balance-of-System Equipment Required for Renewable Energy Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Balance-of-System Equipment Required for Renewable Energy Systems Balance-of-System Equipment Required for Renewable Energy Systems Balance-of-System Equipment Required for Renewable Energy Systems July 2, 2012 - 8:21pm Addthis Both grid-connected and off-grid home renewable energy systems require additional “balance-of-system” equipment. Both grid-connected and off-grid home renewable energy systems require additional "balance-of-system" equipment. How does it work? With a stand-alone system, depending on your needs, balance-of-system equipment could account for half of your total system costs. For both stand-alone and grid-connect systems, you will need power conditioning equipment, safety equipment, and meters and instrumentation. For stand-alone systems, you will also want batteries and charge controllers.

118

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

portion of the battery’s total energy capacity is used—knownelectricity from a battery which—(i) has a capacity of notassumed battery mass. Second, energy capacity requirements

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

119

Electronically configured battery pack  

DOE Green Energy (OSTI)

Battery packs for portable equipment must sometimes accommodate conflicting requirements to meet application needs. An electronically configurable battery pack was developed to support two highly different operating modes, one requiring very low power consumption at a low voltage and the other requiring high power consumption at a higher voltage. The configurable battery pack optimizes the lifetime and performance of the system by making the best use of all available energy thus enabling the system to meet its goals of operation, volume, and lifetime. This paper describes the cell chemistry chosen, the battery pack electronics, and tradeoffs made during the evolution of its design.

Kemper, D.

1997-03-01T23:59:59.000Z

120

Battery Maintenance  

Science Conference Proceedings (OSTI)

... Cranking batteries are not appropriate for extended use since disharging the battery deeply can rapidly destroy the thin plates. ...

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Analysis of Ultracapacitors for Use in a Grid-Connected Hybrid Electric Vehicle  

Science Conference Proceedings (OSTI)

This study assessed the benefits of combining the unique energy-storage capabilities of ultracapacitors with a grid-connected hybrid electric vehicle (HEV). Ultracapacitors reduce the peak power requirements of the power pack and could thus allow the use of alternate battery technologies with better cost and life cycle characteristics.

2002-10-30T23:59:59.000Z

122

Cybersecurity for Smart Grid Systems  

Science Conference Proceedings (OSTI)

... threats, vulnerabilities, and requirements for the Smart Grid in general and in specific areas such as privacy, smart grid architecture, and AMI. ...

2013-02-28T23:59:59.000Z

123

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

Challenges in Future Li-Battery Research. Phil Trans. RoyalBatteries: Overview of Battery Cathodes Marca M. Doeffduring cell discharge. Battery-a device consisting of one or

Doeff, Marca M

2011-01-01T23:59:59.000Z

124

Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology  

SciTech Connect

GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

None

2010-09-01T23:59:59.000Z

125

Exact Sizing of Battery Capacity for Photovoltaic Systems  

E-Print Network (OSTI)

Exact Sizing of Battery Capacity for Photovoltaic Systems Yu Rua , Jan Kleisslb , Sonia Martinezb a study battery sizing for grid-connected photovoltaic (PV) systems. In our setting, PV generated, it is stored in a battery (as long as the battery is not fully charged), which has a fixed maximum charging

Martínez, Sonia

126

Systems approach to rechargeable batteries  

SciTech Connect

When selecting a rechargeable battery for an application, consideration must be given to the total system. Electrical load requirements, mechanical restrictions, environmental conditions, battery life, and charging must be considered to assure satisfactory battery performance. Meeting the electrical requirements involves selecting a battery that will deliver adequate voltage, run time and power. The mechanical aspects are largely a matter of resolving volume and weight. The charger must be capable of returning the battery to full charge in an allotted time. But of greater importance, the charge control method should be chosen carefully to maximize the operational life of the battery. 4 refs.

Mullersman, F.H.

1980-09-01T23:59:59.000Z

127

A framework for real-time power management of a grid-tied microgrid to extend battery lifetime and reduce cost of energy  

Science Conference Proceedings (OSTI)

Because of different technical and economical concerns, battery is happened to be an inevitable part of a microgrid as well as the most expensive component. This fact brings up the necessity of a real-time power management to guarantee the maximum possible ...

S. A. Pourmousavi; Ratnesh K. Sharma; Babak Asghari

2012-01-01T23:59:59.000Z

128

Battery resource assessment. Interim report No. 1. Battery materials demand scenarios  

DOE Green Energy (OSTI)

Projections of demand for batteries and battery materials between 1980 and 2000 are presented. The estimates are based on existing predictions for the future of the electric vehicle, photovoltaic, utility load-leveling, and existing battery industry. Battery demand was first computed as kilowatt-hours of storage for various types of batteries. Using estimates for the materials required for each battery, the maximum demand that could be expected for each battery material was determined.

Sullivan, D.

1980-12-01T23:59:59.000Z

129

NREL: Distributed Grid Integration - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects Photo of two NREL engineers sitting in front of two computer monitors, discussing a project. NREL engineers work on data capture for micro-grid synchronization waveforms. Photo by Dennis Schroeder, NREL. NREL's distributed energy projects support the integration of new technologies into the electric power grid. This work involves industry, academia, other national laboratories, and various standards organizations. Learn more about our projects: Codes and standards Data collection and visualization Hawaii Clean Energy Initiative Microgrids Power systems modeling Solar Distributed Grid Integration (SunShot) Technology development Vehicle-to-Grid (V2G) Wind2Battery Printable Version Distributed Grid Integration Home Capabilities Projects Codes & Standards

130

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

131

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this

Doeff, Marca M

2010-07-12T23:59:59.000Z

132

PHEV/EV Li-Ion Battery Second-Use Project (Presentation)  

SciTech Connect

Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (Evs) are restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery cost via reuse in other applications after the battery is retired from service in the vehicle, if the battery can still meet the performance requirements of other energy storage applications. In several current and emerging applications, the secondary use of PHEV and EV batteries may be beneficial; these applications range from utility peak load reduction to home energy storage appliances. However, neither the full scope of possible opportunities nor the feasibility or profitability of secondary use battery opportunities have been quantified. Therefore, with support from the Energy Storage activity of the U.S. Department of Energy's Vehicle Technologies Program, the National Renewable Energy Laboratory (NREL) is addressing this issue. NREL will bring to bear its expertise and capabilities in energy storage for transportation and in distributed grids, advanced vehicles, utilities, solar energy, wind energy, and grid interfaces as well as its understanding of stakeholder dynamics. This presentation introduces NREL's PHEV/EV Li-ion Battery Secondary-Use project.

Neubauer, J.; Pesaran, A.

2010-04-01T23:59:59.000Z

133

Capacitors for Power Grid Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

presentation Capacitors for Power Grid Storage More Documents & Publications Battery SEAB Presentation Energy Storage & Power Electronics 2008 Peer Review - Energy Storage...

134

SLAC National Accelerator Laboratory - New Battery Design Could...  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Entry Information Lodging & Housing Transportation Press Release Archive New Battery Design Could Help Solar and Wind Energy Power the Grid April 24, 2013 Menlo Park,...

135

International Battery Presentation - Keeping The Lights On: Smart...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home International Battery Presentation - Keeping The Lights On: Smart Storage for a Smart Grid (July 12, 2011)...

136

Advanced Vanadium Redox Flow Batteries with Mixed Acid ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Large-scale energy storage technologies like redox flow batteries have been sought for renewable integration and smart grid applications.

137

Smart Grid Week: New Project in Oregon Helping Advance the Grid of the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Grid Week: New Project in Oregon Helping Advance the Grid of Smart Grid Week: New Project in Oregon Helping Advance the Grid of the Future Smart Grid Week: New Project in Oregon Helping Advance the Grid of the Future June 7, 2013 - 2:07pm Addthis Rows of battery racks at Portland General Electric’s Salem Smart Power Center in Salem, Ore. PGE is a participant in the Battelle-led Pacific Northwest Smart Grid Demonstration Project, which will use the center’s 5-megawatt energy storage system to test several smart grid technologies and approaches. | Photo courtesy of Portland General Electric. Rows of battery racks at Portland General Electric's Salem Smart Power Center in Salem, Ore. PGE is a participant in the Battelle-led Pacific Northwest Smart Grid Demonstration Project, which will use the center's 5-megawatt energy storage system to test several smart grid technologies

138

Savings Potential of ENERGY STAR(R) External Power Adapters and Battery Chargers  

E-Print Network (OSTI)

Requirements for Products with Battery Charging Systems (Power Tools Slow Charger Battery Energy No load (stdby) FastWorkshop on Power Supply and Battery Test Procedures, San

Webber, Carrie; Korn, David; Sanchez, Marla

2007-01-01T23:59:59.000Z

139

Battery system  

DOE Patents (OSTI)

A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

2013-08-27T23:59:59.000Z

140

Field Trial of AEP Sodium-Sulfur (NAS) Battery Demonstration Project: Interim Report - Plant Design and Expected Performance  

Science Conference Proceedings (OSTI)

The first stationary power demonstration of sodium-sulfur (NAS) batteries in the United States has been hosted by the American Electric Power Company. The battery system was co-developed by the Tokyo Electric Power Company (TEPCO) and NGK Insulators, Ltd. (NGK). This report defines the NAS technology, as well as the associated power conversion system (PCS) parameters and requirements that were necessary to convert the DC power from the NAS battery modules to AC power for connection to the utility grid sy...

2003-03-27T23:59:59.000Z

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Iron Edison Battery Company | Open Energy Information  

Open Energy Info (EERE)

Iron Edison Battery Company Iron Edison Battery Company Jump to: navigation, search Logo: Iron Edison Battery Company Name Iron Edison Battery Company Place Lakewood, Colorado Sector Bioenergy, Carbon, Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product Nickel Iron (Ni-Fe) battery systems Year founded 2011 Number of employees 1-10 Phone number 202-681-4766 Website http://ironedison.com Region Rockies Area References Iron Edison Battery Company[1] Nickel Iron Battery Specifications[2] About the company and the owners[3] Nickel Iron Battery Association[4] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iron Edison Battery Company is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced

142

Analysis of batteries for use in photovoltaic systems. Final report  

SciTech Connect

An evaluation of 11 types of secondary batteries for energy storage in photovoltaic electric power systems is given. The evaluation was based on six specific application scenarios which were selected to represent the diverse requirements of various photovoltaic systems. Electrical load characteristics and solar insulation data were first obtained for each application scenario. A computer-based simulation program, SOLSIM, was then developed to determine optimal sizes for battery, solar array, and power conditioning systems. Projected service lives and battery costs were used to estimate life-cycle costs for each candidate battery type. The evaluation considered battery life-cycle cost, safety and health effects associated with battery operation, and reliability/maintainability. The 11 battery types were: lead-acid, nickel-zinc, nickel-iron, nickel-hydrogen, lithium-iron sulfide, calcium-iron sulfide, sodium-sulfur, zinc-chlorine, zinc-bromine, Redox, and zinc-ferricyanide. The six application scenarios were: (1) a single-family house in Denver, Colorado (photovoltaic system connected to the utility line); (2) a remote village in equatorial Africa (stand-alone power system); (3) a dairy farm in Howard County, Maryland (onsite generator for backup power); (4) a 50,000 square foot office building in Washington, DC (onsite generator backup); (5) a community in central Arizona with a population of 10,000 (battery to be used for dedicated energy storage for a utility grid-connected photovoltaic power plant); and (6) a military field telephone office with a constant 300 W load (trailer-mounted auxiliary generator backup). Recommendations for a research and development program on battery energy storage for photovoltaic applications are given, and a discussion of electrical interfacing problems for utility line-connected photovoltaic power systems is included. (WHK)

Podder, A.; Kapner, M.

1981-02-01T23:59:59.000Z

143

Grid Transformation Workshop Results  

Science Conference Proceedings (OSTI)

In an earlier white paper entitled Needed: A Grid Operating System to Facilitate Grid Transformation; EPRI; Palo Alto, CA: 2011; 1023223, we set the stage for a new grid operating system called Grid 3.0. Since that time we have identified four core research areas that are required to achieve the expected outcome. These research areas are called: seamless geospatial power system model, seamless power system analytics, integrated energy management system and setting-less protection method. While each area ...

2012-05-08T23:59:59.000Z

144

Non-isolated integrated motor drive and battery charger based on the split-phase PM motor for plug-in vehicles.  

E-Print Network (OSTI)

??In electric vehicles and plug-in hybrid electric vehicles, the utility grid charges the vehicle battery through a battery charger. Different solutions have been proposed to… (more)

Serrano Guillén, Isabel

2013-01-01T23:59:59.000Z

145

grid file  

Science Conference Proceedings (OSTI)

NIST. grid file. (data structure). Definition: A point access method which splits space into a nonperiodic grid. Each spatial ...

2013-08-23T23:59:59.000Z

146

Method of grid generation  

DOE Patents (OSTI)

The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

Barnette, Daniel W. (Veguita, NM)

2002-01-01T23:59:59.000Z

147

Battery charger  

SciTech Connect

A battery charging system for charging a battery from an ac source, including control rectifier means for rectifying the charging current, a pulse generator for triggering the rectifier to control the transmission of current to the battery, phase control means for timing the firing of the pulse generator according to the charge on the battery, and various control means for alternatively controlling the phase control means depending upon the charge on the battery; wherein current limiting means are provided for limiting the charging current according to the charge on the battery to protect the system from excessive current in the event a weak battery is being charged, a feedback circuit is provided for maintaining the charge on a battery to compensate for battery leakage, and circuitry is provided for equalizing the voltage between the respective cells of the battery.

Kisiel, E.

1980-12-30T23:59:59.000Z

148

Battery system  

SciTech Connect

This patent describes a battery system for use with a battery powered device. It comprises a battery pack, the battery pack including; battery cells; positive and negative terminals serially coupled to the battery cells, the positive terminal being adapted to deliver output current to a load and receive input current in the direction of charging current; circuit means coupled to the positive and negative terminals and producing at an analog output terminal an analog output signal related to the state of charge of the battery cells; and display means separate from the battery pack and the battery powered device and electrically coupled to the analog output terminal for producing a display indicating the state of charge of the battery cells in accordance with the analog output signal.

Sokira, T.J.

1991-10-15T23:59:59.000Z

149

ESS 2012 Peer Review - Flow Battery Solution for Smart Grid Renewable Energy Applications - Sheri Nevins, Raytheon & Ron Moss, EnerVault  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012, Raytheon Proprietary and EnerVault Corporation, All Rights Reserved. 2012, Raytheon Proprietary and EnerVault Corporation, All Rights Reserved. 1 Sheri Nevins Raytheon Ktech Ron Mosso EnerVault Corporation DEMONSTRATION OF ENERGY STORAGE USING A BREAKTHROUGH REDOX FLOW BATTERY TECHNOLOGY v. 1-0 Copyright ©2012, Raytheon Proprietary and EnerVault Corporation, All Rights Reserved. 2 Disclaimer This material is partially based upon work supported by NYSERDA under PON1200 Project 15880 NYSERDA has not reviewed the information contained herein, and the opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of New York. This material is partially based upon work supported by the Department of Energy under Award Number DE-OE0000225. This report was prepared as an account of work sponsored by an agency of the United States

150

New Developments in Battery Chargers  

E-Print Network (OSTI)

Abstract: Electronic equipment is increasingly becoming smaller, lighter, and more functional, thanks to the push of technological advancements and the pull from customer demand. The result of these demands has been rapid advances in battery technology and in the associated circuitry for battery charging and protection. For many years, nickel-cadmium (NiCd) batteries have been the standard for small electronic systems. A few larger systems, such as laptop computers and high-power radios, operated on "gel-cell " lead-acid batteries. Eventually, the combined effects of environmental problems and increased demand on the batteries led to the development of new battery technologies: nickel-metal hydride (NiMH), rechargeable alkaline, lithium ion (Li+), and lithium polymer. These new battery technologies require more sophisticated charging and protection circuitry to maximize performance and ensure safety. NiCd and NiMH Batteries NiCd has long been the preferred technology for rechargeable batteries in portable electronic equipment, and in some ways, NiCd batteries still outperform the newer technologies. NiCd batteries have less capacity than Li+ or NiMH types, but their low impedance is attractive in applications that require high current for short periods. Power tools, for example, will continue to use NiCd battery packs indefinitely.

unknown authors

2011-01-01T23:59:59.000Z

151

Ion implantation of highly corrosive electrolyte battery components  

DOE Patents (OSTI)

A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, and sodium sulfur. 6 figs.

Muller, R.H.; Zhang, S.

1997-01-14T23:59:59.000Z

152

Ion implantation of highly corrosive electrolyte battery components  

DOE Patents (OSTI)

A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, end sodium sulfur.

Muller, Rolf H. (Berkeley, CA); Zhang, Shengtao (Berkeley, CA)

1997-01-01T23:59:59.000Z

153

Battery charger  

SciTech Connect

A battery charger can charge a battery from a primary power source having a peak voltage exceeding the maximum battery voltage independently producible by the battery. The charger has output terminals, a switch and a feedback circuit. The output terminals are adapted for connection to the battery. The switch can periodically couple the primary power source to the output terminals to raise their voltage above the maximum battery voltage. The feedback device is responsive to the charging occuring at the terminals for limiting the current thereto by varying the duty cycle of the switch.

Chernotsky, A.; Satz, R.

1984-10-09T23:59:59.000Z

154

Grid Points (GridSampleSet)  

Science Conference Proceedings (OSTI)

... OOF2: The Manual. Grid Points (GridSampleSet). ... Name. Grid Points (GridSampleSet) — Evaluate data on a rectangular grid of points. Synopsis. ...

2013-08-23T23:59:59.000Z

155

Grid Points (StatGridSampleSet)  

Science Conference Proceedings (OSTI)

... OOF2: The Manual. Grid Points (StatGridSampleSet). ... Name. Grid Points (StatGridSampleSet) — Evaluate data on a rectangular grid of points. ...

2013-08-23T23:59:59.000Z

156

Rechargeable batteries: advances since 1977. [Collection of US patents  

SciTech Connect

This book is based on US patents (including DOE patents) issued since January 1978 that deal with rechargeable batteries. It both supplies detailed technical information and can be used as a guide to the patent literature. Subjects treated are as follows: lead-acid batteries (grids, electrodes, terminals and connectors, polyolefin separators, polyvinyl chloride separators, other polymeric separators, other separators, electrolytes, venting techniques, hydrogen-oxygen recombination, general construction and fabrication), lithium batteries (metal chalcogenide cathodes, chalcogenide electrolyte compositions, chalcogenide batteries, lithium anodes, cathodes, lithium-thionyl chloride batteries, lithium-bromine batteries, electrolyte additives and other processes), sodium-sulfur batteries (general battery design, sulfur electrodes, sealing and casing design, current collectors, other processes), alkaline zinc and iron electrode batteries (silver-zinc, nickel-zinc, air-zinc, other zinc electrode processes, iron electrode batteries), zinc-halogen batteries (electrodes, electrolyte additives, other zinc-halogen batteries, zinc-manganese dioxide acid electrolyte), nickel-cadmium and nickel-hydrogen batteries (nickel-cadmium electrodes, other processes for nickel-cadmium batteries, nickel-hydrogen electrodes, other processes for nickel-hydrogen batteries, other nickel-containing batteries), and other battery systems (battery systems and design, other processes). (RWR)

Graham, R.W. (ed.)

1980-01-01T23:59:59.000Z

157

Electricity Grid  

NLE Websites -- All DOE Office Websites (Extended Search)

for the smart grid, distributed generation (microgrids), and improved grid reliability. Demand Response Demand response (DR) is a set of time-dependent activities that reduce or...

158

Smart Grid  

Science Conference Proceedings (OSTI)

Smart Grid. Summary: ... An important question is the extent to which networking protocols can be used in the Smart Grid communications network. ...

2011-03-17T23:59:59.000Z

159

Batteries - Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Modeling Over the last few decades, a broad range of battery technologies have been examined at Argonne for transportation applications. Today the focus is on lithium-ion...

160

Battery Only:  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Only: Acceleration 0-60 MPH Time: 57.8 seconds Acceleration 14 Mile Time: 27.7 seconds Acceleration 1 Mile Maximum Speed: 62.2 MPH Battery & Generator: Acceleration 0-60...

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

SEXUAL BATTERY/RAPE LAWS (In Florida, "rape" is called "sexual battery")  

E-Print Network (OSTI)

SEXUAL BATTERY/RAPE LAWS (In Florida, "rape" is called "sexual battery") ACCORDING TO FLORIDA LAW: Sexual Battery/ Rape is the:"Oral, anal or vaginal penetration by, or union with a sexual organ is not required to physically fight back. Florida Sexual Battery Statutes: www.leg.state.fl.us/Statutes (Chapter

Meyers, Steven D.

162

Battery Recycling  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... About this Symposium. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium, Battery Recycling. Sponsorship, The Minerals, Metals ...

163

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

lithium ion battery can be built, using LiVPO 4 F as both the anode and the cathode!ion battery configurations, as all of the cycleable lithium must originate from the cathode.

Doeff, Marca M

2011-01-01T23:59:59.000Z

164

?Just-in-Time? Battery Charge Depletion Control for PHEVs and E-REVs for Maximum Battery Life  

SciTech Connect

Conventional methods of vehicle operation for Plug-in Hybrid Vehicles first discharge the battery to a minimum State of Charge (SOC) before switching to charge sustaining operation. This is very demanding on the battery, maximizing the number of trips ending with a depleted battery and maximizing the distance driven on a depleted battery over the vehicle s life. Several methods have been proposed to reduce the number of trips ending with a deeply discharged battery and also eliminate the need for extended driving on a depleted battery. An optimum SOC can be maintained for long battery life before discharging the battery so that the vehicle reaches an electric plug-in destination just as the battery reaches the minimum operating SOC. These Just-in-Time methods provide maximum effective battery life while getting virtually the same electricity from the grid.

DeVault, Robert C [ORNL

2009-01-01T23:59:59.000Z

165

Technical and economic feasibility of a high-temperature self-assembling battery  

E-Print Network (OSTI)

A conceptual high-temperature battery system for large-scale grid power applications was proposed, described, and evaluated. Unlike conventional battery technologies whose maximum current rate is constrained by at least ...

Bradwell, David (David Johnathon)

2006-01-01T23:59:59.000Z

166

A control system for improved battery utilization in a PV-powered peak-shaving system  

SciTech Connect

Photovoltaic (PV) power systems offer the prospect of allowing a utility company to meet part of the daily peak system load using a renewable resource. Unfortunately, some utilities have peak system- load periods that do not match the peak production hours of a PV system. Adding a battery energy storage system to a grid-connected PV power system will allow dispatching the stored solar energy to the grid at the desired times. Batteries, however, pose system limitations in terms of energy efficiency, maintenance, and cycle life. A new control system has been developed, based on available PV equipment and a data acquisition system, that seeks to minimize the limitations imposed by the battery system while maximizing the use of PV energy. Maintenance requirements for the flooded batteries are reduced, cycle life is maximized, and the battery is operated over an efficient range of states of charge. This paper presents design details and initial performance results on one of the first installed control systems of this type.

Palomino, E [Salt River Project, Phoenix, AZ (United States); Stevens, J. [Sandia National Labs., Albuquerque, NM (United States); Wiles, J. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

1996-08-01T23:59:59.000Z

167

Synthesizing Realistic Computational Grids  

E-Print Network (OSTI)

Realistic workloads are essential in evaluating middleware for computational grids. One important component is the raw grid itself: a network topology graph annotated with the hardware and software available on each node and link. This paper defines our requirements for grid generation and presents GridG, our extensible generator. We describe GridG in two steps: topology generation and annotation. For topology generation, we have both model and mechanism. We extend Tiers, an existing tool from the networking community, to produce graphs that obey recently discovered power laws of Internet topology. We also contribute to network topology theory by illustrating a contradiction between two laws and proposing a new version of one of them. For annotation, GridG captures intra- and inter-host correlations between attributes using conditional probability rules. We construct a set of rules, including one based on empirical evidence of OS concentration in subnets, that produce sensible host annotations.

Dong Lu; Peter A. Dinda

2003-01-01T23:59:59.000Z

168

Batteries - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

169

Illuminating the Pecking Order in Off-Grid Lighting: A Demonstration of LED Lighting for Saving Energy in the Poultry Sector  

E-Print Network (OSTI)

higher recurring battery replacement costs. Thanks to higherreplacement. Battery-replacement costs are included in ourcosts that may be required over the years, such as battery

Tracy, Jennifer

2012-01-01T23:59:59.000Z

170

Battery technology handbook  

SciTech Connect

This book is a comprehensive reference work on the types of battery available, their characteristics and applications. Topics considered include introduction, guidelines to battery selection, battery characteristics, battery theory and design, battery performance evaluation, battery applications, battery charging, and battery supplies.

Crompton, T.R.

1987-01-01T23:59:59.000Z

171

Battery separators  

SciTech Connect

Novel, improved battery separators carrying a plurality of polymeric ribs on at least one separator surface. The battery separators are produced by extruding a plurality of ribs in the form of molten polymeric rib providing material onto the surface of a battery separator to bond the material to the separator surface and cooling the extruded rib material to a solidified state. The molten polymeric rib providing material of this invention includes a mixture or blend of polypropylenes and an ethylene propylene diene terpolymer.

Battersby, W. R.

1984-12-25T23:59:59.000Z

172

Battery Recycling  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... By the mid-1990's due to manufacturers changing the composition of ... for electric drive vehicles is dependent battery performance, cost, and ...

173

Grid Integration  

SciTech Connect

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

Not Available

2008-09-01T23:59:59.000Z

174

grid drawing  

Science Conference Proceedings (OSTI)

NIST. grid drawing. (definition). Definition: A graph drawing in which each vertex is represented by a point with integer coordinates. ...

2013-08-23T23:59:59.000Z

175

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

176

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

177

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

178

Batteries for stationary standby and cycling applications :Part 5: maintenance and testing standards.  

Science Conference Proceedings (OSTI)

The existing IEEE stationary battery maintenance and testing standards fall into two basic categories: those associated with grid-tied standby applications and those associated with stand-alone photovoltaic cycling applications. These applications differ in several significant ways, which in turn influence their associated standards. A review of the factors influencing the maintenance and testing of stationary battery systems provides the reasons for the differences between these standards and some of the hazards of using a standard inappropriate to the application. This review also provides a background on why these standards will need to be supplemented in the future to support emerging requirements of other applications, such as grid-tied cycling and photovoltaic hybrid applications.

Chamberlin, Jay L.

2003-01-01T23:59:59.000Z

179

Batteries for stationary standby and cycling applications. Part 5, Maintenance and testing standards.  

Science Conference Proceedings (OSTI)

The existing IEEE stationary battery maintenance and testing standards fall into two basic categories: those associated with grid-tied standby applications and those associated with stand-alone photovoltaic cycling applications. These applications differ in several significant ways, which in turn influence their associated standards. A review of the factors influencing the maintenance and testing of stationary battery systems provides the reasons for the differences between these standards and some of the hazards of using a standard inappropriate to the application. This review also provides a background on why these standards will need to be supplemented in the future to support emerging requirements of other applications, such as grid-tied cycling and photovoltaic hybrid applications.

Chamberlin, Jay L.

2003-06-01T23:59:59.000Z

180

Battery resource assessment. Subtask II. 5. Battery manufacturing capability recycling of battery materials. Draft final report  

SciTech Connect

Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials. Each recycle process has been designed to produce a product material which can be used directly as a raw material by the battery manufacturer. Metal recoverabilities are in the range of 93 to 95% for all processes. In each case, capital and operating costs have been developed for a recycling plant which processes 100,000 electric vehicle batteries per year. These costs have been developed based on material and energy balances, equipment lists, factored installation costs, and manpower estimates. In general, there are no technological barriers for recycling in the Nickel/Zinc, Nickel/Iron, Zinc/Chlorine and Zinc/Bromine battery systems. The recycling processes are based on essentially conventional, demonstrate technology. The lead times required to build battery recycling plants based on these processes is comparable to that of any other new plant. The total elapsed time required from inception to plant operation is approximately 3 to 5 y. The recycling process for the sodium/sulfur and lithium-aluminum/sulfide battery systems are not based on conventional technology. In particular, mechanical systems for dismantling these batteries must be developed.

Pemsler, P.

1981-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

MAGNETIC GRID  

DOE Patents (OSTI)

An electronic grid is designed employing magnetic forces for controlling the passage of charged particles. The grid is particularly applicable to use in gas-filled tubes such as ignitrons. thyratrons, etc., since the magnetic grid action is impartial to the polarity of the charged particles and, accordingly. the sheath effects encountered with electrostatic grids are not present. The grid comprises a conductor having sections spaced apart and extending in substantially opposite directions in the same plane, the ends of the conductor being adapted for connection to a current source.

Post, R.F.

1960-08-01T23:59:59.000Z

182

Examination of VRLA cells sampled from a battery energy storage system (BESS) after 30-months of operations  

DOE Green Energy (OSTI)

Valve-Regulated Lead-Acid (VRLA) batteries continue to be employed in a wide variety of applications for telecommunications and Uninterruptible Power Supply (UPS). With the rapidly growing penetration of internet services, the requirements for standby power systems appear to be changing. For example, at last year's INTELEC, high voltage standby power systems up to 300-vdc were discussed as alternatives to the traditional 48-volt power plant. At the same time, battery reliability and the sensitivity of VRLAS to charging conditions (e.g., in-rush current, float voltage and temperature), continue to be argued extensively. Charge regimes which provide off-line charging or intermittent charge to the battery have been proposed. Some of these techniques go against the widely accepted rules of operation for batteries to achieve optimum lifetime. Experience in the telecom industry with high voltage systems and these charging scenarios is limited. However, GNB has several years of experience in the installation and operation of large VRLA battery systems that embody many of the power management philosophies being proposed. Early results show that positive grid corrosion is not accelerated and battery performance is maintained even when the battery is operated at a partial state-of-charge for long periods of time.

SZYMBORSKI,JOSEPH; HUNT,GEORGE; TSAGALIS,ANGELO; JUNGST,RUDOLPH G.

2000-06-08T23:59:59.000Z

183

Examination of VRLA cells sampled from a battery energy storage system (BESS) after 30-months of operations  

SciTech Connect

Valve-Regulated Lead-Acid (VRLA) batteries continue to be employed in a wide variety of applications for telecommunications and Uninterruptible Power Supply (UPS). With the rapidly growing penetration of internet services, the requirements for standby power systems appear to be changing. For example, at last year's INTELEC, high voltage standby power systems up to 300-vdc were discussed as alternatives to the traditional 48-volt power plant. At the same time, battery reliability and the sensitivity of VRLAS to charging conditions (e.g., in-rush current, float voltage and temperature), continue to be argued extensively. Charge regimes which provide off-line charging or intermittent charge to the battery have been proposed. Some of these techniques go against the widely accepted rules of operation for batteries to achieve optimum lifetime. Experience in the telecom industry with high voltage systems and these charging scenarios is limited. However, GNB has several years of experience in the installation and operation of large VRLA battery systems that embody many of the power management philosophies being proposed. Early results show that positive grid corrosion is not accelerated and battery performance is maintained even when the battery is operated at a partial state-of-charge for long periods of time.

SZYMBORSKI,JOSEPH; HUNT,GEORGE; TSAGALIS,ANGELO; JUNGST,RUDOLPH G.

2000-06-08T23:59:59.000Z

184

SMART GRID SMART GRID  

Science Conference Proceedings (OSTI)

... This data can be used to ascertain load failures, or even requirements. Consider an HVAC load that normally consumes at a 10kW. ...

2011-08-02T23:59:59.000Z

185

European battery market  

SciTech Connect

The electric battery industry in Europe is discussed. As in any other part of the world, battery activity in Europe is dependent on people, prosperity, car numbers, and vehicle design. The European battery industry is discussed from the following viewpoints: battery performance, car design, battery production, marketing of batteries, battery life, and technology changes.

1984-02-01T23:59:59.000Z

186

NIST Identifies Five "Foundational" Smart Grid Standards  

Science Conference Proceedings (OSTI)

... be updated as Smart Grid requirements and ... IEC 61970) and distribution (IEC 61968 ... 61850: Facilitating substation automation and communication ...

2010-12-07T23:59:59.000Z

187

Battery loading device  

SciTech Connect

A battery loading device for loading a power source battery, built in small appliances having a battery loading chamber for selectively loading a number of cylindrical unit batteries or a one body type battery having the same voltage as a number of cylindrical unit batteries, whereby the one body type battery and the battery loading chamber are shaped similarly and asymmetrically in order to prevent the one body type battery from being inserted in the wrong direction.

Phara, T.; Suzuki, M.

1984-08-28T23:59:59.000Z

188

Battery pack  

Science Conference Proceedings (OSTI)

A battery pack is described, having a center of mass, for use with a medical instrument including a latch, an ejector, and an electrical connector, the battery pack comprising: energy storage means for storing electrical energy; latch engagement means, physically coupled to the energy storage means, for engaging the latch; ejector engagement means, physically coupled to the energy storage means, for engaging the ejector; and connector engagement means, physically coupled to the energy storage means, for engaging the connector, the latch engagement means, ejector engagement means, and connector engagement means being substantially aligned in a plane offset from the center of mass of the battery pack.

Weaver, R.J.; Brittingham, D.C.; Basta, J.C.

1993-07-06T23:59:59.000Z

189

Battery compatibility with photovoltaic charge controllers  

SciTech Connect

Photovoltaic (PV) systems offer a cost-effective solution to provide electrical power for a wide variety of applications, with battery performance playing a major role in their success. This paper presents some of the results of an industry meeting regarding battery specifications and ratings that photovoltaic system designers require, but do not typically have available to them. Communications between the PV industry and the battery industry regarding appropriate specifications have been uncoordinated and poor in the past. This paper also discusses the effort under way involving the PV industry and battery manufacturers, and provides a working draft of specifications to develop and outline the information sorely needed on batteries. The development of this information is referred to as ``Application Notes for Batteries in Photovoltaic Systems.`` The content of these ``notes`` has been compiled from various sources, including the input from the results of a survey on battery use in the photovoltaic industry. Only lead-acid batteries are discussed

Harrington, S.R. [Ktech Corp., Albuquerque, NM (United States); Bower, W.I. [Sandia National Labs., Albuquerque, NM (United States)

1992-12-31T23:59:59.000Z

190

Tutorial Luncheon: Advanced Rechargeable Batteries: A Materials ...  

Science Conference Proceedings (OSTI)

Batteries for these applications need to satisfy a range of requirements, including high energy density, low materials and processing costs, and avoidance of ...

191

Battery Council International  

SciTech Connect

Forecasts of electric battery use, economic impacts of electric batteries, and battery technology and research were presented at the conference. (GHT)

1980-01-01T23:59:59.000Z

192

NREL Battery Thermal and Life Test Facility (Presentation)  

DOE Green Energy (OSTI)

This presentation describes NREL's Battery Thermal Test Facility and identifies test requirements and equipment and planned upgrades to the facility.

Keyser, M.

2011-05-01T23:59:59.000Z

193

ESS 2012 Peer Review - Demonstration of a Sodium Ion Battery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and demonstrated to be able to givetake from grid Achieved - with a >1000 V battery pack at Aquion Energy HQ High Voltage Test System at Aquion Pilot Line in Operation...

194

Liquid metal batteries : ambipolar electrolysis and alkaline earth electroalloying cells  

E-Print Network (OSTI)

Three novel forms of liquid metal batteries were conceived, studied, and operated, and their suitability for grid-scale energy storage applications was evaluated. A ZnlITe ambipolar electrolysis cell comprising ZnTe dissolved ...

Bradwell, David (David Johnathon)

2011-01-01T23:59:59.000Z

195

Grid Security  

E-Print Network (OSTI)

Sinnott,R.O. National Centre for e-Social Science book, Grid Computing: Technology, Service and Application, CRC Press, November 2008.

Sinnott, R.O.

196

Smart Grid  

NLE Websites -- All DOE Office Websites (Extended Search)

* EV Charging Project * Smart Grid Projects * Video * Image Gallery Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With...

197

Breakthrough Flow Battery Cell Stack: Transformative Electrochemical Flow Storage System (TEFSS)  

SciTech Connect

GRIDS Project: UTRC is developing a flow battery with a unique design that provides significantly more power than today's flow battery systems. A flow battery is a cross between a traditional battery and a fuel cell. Flow batteries store their energy in external tanks instead of inside the cell itself. Flow batteries have traditionally been expensive because the battery cell stack, where the chemical reaction takes place, is costly. In this project, UTRC is developing a new stack design that achieves 10 times higher power than today’s flow batteries. This high power output means the size of the cell stack can be smaller, reducing the amount of expensive materials that are needed. UTRC’s flow battery will reduce the cost of storing electricity for the electric grid, making widespread use feasible.

None

2010-09-09T23:59:59.000Z

198

Breakthrough Flow Battery Cell Stack: Transformative Electrochemical Flow Storage System (TEFSS)  

SciTech Connect

GRIDS Project: UTRC is developing a flow battery with a unique design that provides significantly more power than today's flow battery systems. A flow battery is a cross between a traditional battery and a fuel cell. Flow batteries store their energy in external tanks instead of inside the cell itself. Flow batteries have traditionally been expensive because the battery cell stack, where the chemical reaction takes place, is costly. In this project, UTRC is developing a new stack design that achieves 10 times higher power than today’s flow batteries. This high power output means the size of the cell stack can be smaller, reducing the amount of expensive materials that are needed. UTRC’s flow battery will reduce the cost of storing electricity for the electric grid, making widespread use feasible.

2010-09-09T23:59:59.000Z

199

Bipolar battery  

SciTech Connect

A bipolar battery having a plurality of cells. The bipolar battery includes: a negative electrode; a positive electrode and a separator element disposed between the negative electrode and the positive electrode, the separator element electrically insulating the electrodes from one another; an electrolyte disposed within at least one of the negative electrode, the positive electrode and the separator element; and an electrode containment structure including a cup-like electrode holder.

Kaun, Thomas D. (New Lenox, IL)

1992-01-01T23:59:59.000Z

200

Program on Technology Innovation: Functional Requirements of a Hydrogen-Electric SuperGrid: Two Scenarios - SuperSuburb and SuperTie  

Science Conference Proceedings (OSTI)

To effectively supply U.S. energy needs 3040 years in the future, EPRI has proposed a unique visionary concept called the Hydrogen Electric SuperGrid. The core concept of the SuperGrid is a "continental-scale" (for example, coast-to-coast), superconducting hydrogen-electric transmission system. Electricity and hydrogen would be supplied by advanced nuclear reactors, spaced along the transmission line corridor(s). The line would consist of a high-capacity, direct-current (dc), superconducting power transm...

2006-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sizing the Electrical Grid Omid Ardakanian, S. Keshav, and Catherine Rosenberg  

E-Print Network (OSTI)

. To validate our analysis, we conduct a fine-grained measurement study of household electrical load. We compare energy sources and battery-operated electric vehicles, it is expected that the future grid would have non network or the amount of energy brought to a storage battery in the electrical grid. In this paper, we

Waterloo, University of

202

Battery Performance Monitoring by Internal Ohmic Measurements: Emergency Lighting Unit Batteries  

Science Conference Proceedings (OSTI)

Battery internal ohmic measurements offer a less expensive and technically superior alternative to the 8-hour discharge test, now required to demonstrate capacity. This report documents the initial results of internal ohmic testing on three emergency battery lighting (EBL) unit types used in nuclear power plants. In two of the three EBL unit types tested, internal ohmic measurements could replace battery capacity discharge tests.

1996-12-01T23:59:59.000Z

203

Smart Grid Communications:  

E-Print Network (OSTI)

Interoperability is a key requirement for data communications in the “smart grid”. It has been articulated at great length by the GridWise Architecture Council (GWAC). However, the interoperability issues identified here to date include only interoperability of the data exchange. In this paper, we first argue that middleware is a key enabling technology for helping meet interoperability requirements and avoid stovepipe systems in the smart grid. We then argue that the smart grid’s data communications must support interoperability of Quality of Service (QoS) and security mechanisms across an entire power grid; this will necessarily involve traversing multiple organizations ’ IT infrastructures that may have different network-level mechanisms for providing QoS and security. We introduce the concept of QoS stovepipes to illustrate how such QoS and security interoperability may occur. We then argue that the application programmer interface for such QoS and security requirements must be kept as high-level as possible to avoid QoS stovepipes. Finally, we argue that middleware-level mechanisms are a much better way to provide this end-to-end QoS and security, compared to the usual technique in the power grid of using (and getting locked into) network-level mechanisms (which the middleware is built on top of). 1 This paper is a reformatted version of one from the Grid-Interop 2009 meeting in Denver, Colorado, USA on November 18, 2009, and appearing there in its online proceedings (it won the Best Paper award for the “Connectivity ” Track). URL for this document:

Qos Stovepipes; Qos Interoperability; David E. Bakken; Richard E. Schantz

2009-01-01T23:59:59.000Z

204

Network for minimizing current imbalances in a faradaic battery  

SciTech Connect

A circuit for connecting a faradaic battery with circuitry for monitoring the condition of the battery includes a plurality of voltage divider networks providing battery voltage monitoring nodes and includes compensating resistors connected with the networks to maintain uniform discharge currents through the cells of the battery. The circuit also provides a reduced common mode voltage requirement for the monitoring circuitry by referencing the divider networks to one-half the battery voltage.

Wozniak, Walter (Dearborn, MI); Haskins, Harold J. (Ann Arbor, MI)

1994-01-01T23:59:59.000Z

205

The INEL battery data base  

SciTech Connect

The Department of Energy (DOE) has established a Battery Data Base for electric vehicle applications at the Idaho National Engineering Laboratory (INEL). The objectives of the Data Base are to collect, store, and make available to the electric vehicle community battery data from the INEL. Argonne National Laboratory, Sandia National Laboratory, and DOE battery contractors in forms appropriate for evaluating the batteries in electric vehicles. The Data Base currently includes data from over 500 test on 15 batteries of 5 different types. The data (over 120 MB) is stored on a 760 MB harddisk attached to a MicroVax 2. PC-based software to access the data has been developed on the IBM PS/2 using dBASE 4. The initial version of the Data Base to be distributed on a single floppy disk is nearly complete. The first release will include the physical characteristics of the batteries, summary tables showing the test results for each cycle of the battery test programs, and some constant power discharge data for the batteries. Later versions of the Data Base will include second-by-second peak power and SFUDS data, which will require several floppy of Bernoulli disks to store the data. 2 refs., 4 figs.

Burke, A.F.; Hardin, J.E.; Kiser, D.M.

1990-01-01T23:59:59.000Z

206

Vehicle battery polarity indicator  

SciTech Connect

Battery jumper cables provide an effective means to connect a charged battery to a discharged battery. However, the electrodes of the batteries must be properly connected for charging to occur and to avoid damage to the batteries. A battery polarity indicator is interposed between a set of battery jumper cables to provide a visual/aural indication of relative battery polarity as well as a safety circuit to prevent electrical connection where polarities are reversed.

Cole, L.

1980-08-12T23:59:59.000Z

207

An Analysis of the Retail and Lifecycle Cost of Battery-Powered Electric Vehicles  

E-Print Network (OSTI)

±metal hydride (NiMH) battery costs, several di€erent ``in other cases. The battery cost per mile is low in partstorage energy ± and hence battery cost ± required to supply

Delucchi, Mark; Lipman, Timothy

2001-01-01T23:59:59.000Z

208

Battery charging system  

SciTech Connect

A battery charging system designed to charge a battery, especially a nickel-cadmium (Ni-cd) battery from a lead acid power supply without overcharging, and to charge uniformly a plurality of batteries in parallel is described. A non-linear resistance is utilized and is matched to the voltage difference of the power supply battery and the batteries being charged.

Komatsu, K.; Mabuchi, K.

1982-01-19T23:59:59.000Z

209

DOE Science Showcase - Power Grid Research | OSTI, US Dept of...  

Office of Scientific and Technical Information (OSTI)

Power Grid Research A modernized electrical smart grid is needed to handle the exploding requirements of digital and computerized equipment and technology dependent on it, as well...

210

Opportunity to Plug Your Car Into the Electric Grid is Arriving  

DOE Green Energy (OSTI)

Plug-in hybrid electric vehicles are hitting the U.S. market for the first time this year. Similar to hybrid electric vehicles, they feature a larger battery and plug-in charger that allows consumers to replace a portion of their fossil fuel by simply plugging their cars into standard 110-volt outlets at home or wherever outlets are available. If these vehicles become widely accepted, consumers and the environment will benefit, according to a computer modeling study by Xcel Energy and the Department of Energy's National Renewable Energy Laboratory. Researchers found that each PHEV would cut carbon dioxide emissions in half and save owners up to $450 in annual fuel costs and up to 240 gallons of gasoline. The study also looked at the impact of PHEVs on the electric grid in Colorado if used on a large scale. Integrating large numbers of these vehicles will depend on the adoption of smart-grid technology - adding digital elements to the electric power system to improve efficiency and enable more dynamic communication between consumers and producers of electricity. Using an intelligent monitoring system that keeps track of all electricity flowing in the system, a smart grid could enable optimal PHEV battery-charging much the same way it would enable users to manage their energy use in household appliances and factory processes to reduce energy costs. When a smart grid is implemented, consumers will have many low-cost opportunities to charge PHEVs at different times of the day. Plug-in vehicles could contribute electricity at peak times, such as summer evenings, while taking electricity from the grid at low-use times such as the middle of the night. Electricity rates could offer incentives for drivers to 'give back' electricity when it is most needed and to 'take' it when it is plentiful. The integration of PHEVs, solar arrays and wind turbines into the grid at larger scales will require a more modern electricity system. Technology already exists to allow customers to feed excess power from their own renewable energy systems back to the grid. As more homes and businesses find opportunities to plan power flows to and from the grid for economic gain using their renewable energy systems and PHEVs, more sophisticated systems will be needed. A smart grid will improve the efficiency of energy consumption, manage real-time power flows and provide two-way metering needed to compensate small power producers. Many states are working toward the smart-grid concept, particularly to incorporate renewable sources into their utility grids. According to the Department of Energy, 30 states have developed and adopted renewable portfolio standards, which require up to 20 percent of a state's energy portfolio to come exclusively from renewable sources by this year, and up to 30 percent in the future. NREL has been laying the foundation for both PHEVs and the smart grid for many years with work including modifying hybrid electric cars with plug-in technology; studying fuel economy, batteries and power electronics; exploring options for recharging batteries with solar and wind technologies; and measuring reductions in greenhouse gas emissions. The laboratory participated in development of smart-grid implementation standards with industry, utilities, government and others to guide the integration of renewable and other small electricity generation and storage sources. Dick DeBlasio, principal program manager for electricity programs, is now leading the Institute of Electrical and Electronics Engineers Standards efforts to connect the dots regarding power generation, communication and information technologies.

Griego, G.

2010-06-01T23:59:59.000Z

211

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

212

RADIOACTIVE BATTERY  

DOE Patents (OSTI)

A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

Birden, J.H.; Jordan, K.C.

1959-11-17T23:59:59.000Z

213

Scaling distributed energy storage for grid peak reduction  

Science Conference Proceedings (OSTI)

Reducing peak demand is an important part of ongoing smart grid research efforts. To reduce peak demand, utilities are introducing variable rate electricity prices. Recent efforts have shown how variable rate pricing can incentivize consumers to use ... Keywords: battery, electricity, energy, grid, peak shaving

Aditya Mishra, David Irwin, Prashant Shenoy, Ting Zhu

2013-01-01T23:59:59.000Z

214

Electricity Supply Board Smart Grid Host Site Progress Report  

Science Conference Proceedings (OSTI)

The Electricity Supply Board (ESB) Networks Smart Grid Demonstration Project Host Site is part of a five-year collaborative initiative with 19 utility members. This project will integrate distribution and transmission level load management and embedded generation with customer-level storage by means of electric vehicle (EV) batteries, distribution-grid–connected wind farms, and customer demand response from smart meters.

2011-06-28T23:59:59.000Z

215

ESB Networks Smart Grid Host Site Progress Report  

Science Conference Proceedings (OSTI)

The ESB Networks (ESBN) smart grid demonstration host site is part of a five-year collaborative initiative with 19 utility members. This project will integrate distribution- and transmission-level load management and embedded generation with customer-level storage by means of electric vehicle batteries, distribution-grid-connected wind farms, and customer demand response from smart meters.

2010-10-20T23:59:59.000Z

216

TransForum - Special Issue: Batteries - August 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Special Issue: Batteries-August 2010 Special Issue: Batteries-August 2010 RESEARCH REVIEWS 2 China's Minister of Science and Technology Visits Argonne 3 Testing the Tesla 4 Six Myths about Plug-in Hybrid Electric Vehicles 6 Charging Ahead: Taking PHEVs Farther on a Single Battery Charge 7 Argonne to Explore Lithium-air Battery 8 Argonne's Lithium-ion Battery Research Produces New Materials and Technology Transfer Successes 11 New Battery Facilities Will Help Accelerate Commercialization of Technologies 12 Argonne Charges Ahead with Smart Grid Research 14 Center for Electrical Energy Storage Promises Advances in Transportation Technologies 15 PHEVs Need Further Research for Acceptable Payback 16 PUTTING ARGONNE'S RESOURCES TO WORK FOR YOU Lithium-ion Battery Research page 8 Minister of Science and

217

Fact Sheet: Carbon-Enhanced Lead-Acid Batteries (October 2012) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon-Enhanced Lead-Acid Batteries (October 2012) Carbon-Enhanced Lead-Acid Batteries (October 2012) Fact Sheet: Carbon-Enhanced Lead-Acid Batteries (October 2012) DOE's Energy Storage Program is funding research and testing to improve the performance and reduce the cost of lead-acid batteries. Research to understand and quantify the mechanisms responsible for the beneficial effect of carbon additions will help demonstrate the near-term feasibility of grid-scale energy storage with lead-acid batteries, and may also benefit other battery chemistries. Fact Sheet: Carbon-Enhanced Lead-Acid Batteries (October 2012) More Documents & Publications Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) New Reports and Other Materials Energy Storage Systems 2012 Peer Review Presentations - Day 1, Session 2

218

Framework for querying distributed objects managed by a grid infrastructure  

Science Conference Proceedings (OSTI)

Queries over scientific data often imply expensive analyses of data requiring a lot of computational resources available in Grids. We are developing a customizable query processor built on top of an established Grid infrastructure, the NorduGrid middleware, ...

Ruslan Fomkin; Tore Risch

2005-09-01T23:59:59.000Z

219

Influence of Electric Vehicles Connected to the Grid Guangbin Li (gl2423) Influence of Electric Vehicles Connected to the Grid  

E-Print Network (OSTI)

from both batteries and petrol stored, called Hybrid Electric Vehicle (HEV); and those that useInfluence of Electric Vehicles Connected to the Grid Guangbin Li (gl2423) 1/13 Influence of Electric Vehicles Connected to the Grid Guangbin Li (gl2423) 1. Introduction 1.1 Background of electric

Lavaei, Javad

220

Data Grids and Data Grid Performance Issues  

E-Print Network (OSTI)

Introduction --- Data Grid Architecture --- Existing Data Grid Systems .DPSS and SRB . Part II --- Current Data Grid Work .Globus + LBNL work .other data grid projects . Part III --- Data Grid Performance Issues .network and TCP Issues . application design considerations 2 The Data Grid Introduction The Data Grid Problem . The Problem --- To enable a geographically distributed community to performance analyses on petabytes of data efficiently and cost-effectively. . The Proposed Solution --- The Data Grid 3 The Data Grid Computational/Data Grids . Grid / Computational Grid: --- The integration of various approaches used for coupling geographically dispersed resources --- analogy with the grid that supplies ubiquitous access to electric power --- Basic grid services are those that locate, allocate, coordinate, utilize these resources . Data Grid: --- ser

Brian L. Tierney

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Automotive Battery State-of-Health Monitoring Methods.  

E-Print Network (OSTI)

??Effective vehicular power management requires accurate knowledge of battery state, including state-of-charge (SOC) and state-of-health (SOH). An essential functionality of automotive batteries is delivering high… (more)

Grube, Ryan J.

2008-01-01T23:59:59.000Z

222

A Liquid Layer Solution for the Grid | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Liquid Layer Solution for the Grid A Liquid Layer Solution for the Grid A Liquid Layer Solution for the Grid September 15, 2011 - 2:47pm Addthis The Liquid Metal Battery is comprised of liquid metal electrodes and a liquid electrolyte of differing densities, which allows the liquids to separate and stratify without the need for any solid separator. The Liquid Metal Battery is comprised of liquid metal electrodes and a liquid electrolyte of differing densities, which allows the liquids to separate and stratify without the need for any solid separator. Kristina Pflanz Writer & Contractor, Advanced Research Projects Agency - Energy What does this mean for me? With its all-liquid design, this battery is much more efficient than today's rechargeable batteries, which use 80-90% of the space to hold

223

Scalable Real Time Data Management for Smart Grid  

Science Conference Proceedings (OSTI)

This paper presents GridMW, a scalable and reliable data middleware for smart grids. Smart grids promise to improve the efficiency of power grid systems and reduce green house emissions through incorporating power generation from renewable sources and shaping demand to match the supply. As a result, power grid systems will become much more dynamic and require constant adjustments, which requires analysis and decision making applications to improve the efficiency and reliability of smart grid systems.

Yin, Jian; Kulkarni, Anand V.; Purohit, Sumit; Gorton, Ian; Akyol, Bora A.

2011-12-16T23:59:59.000Z

224

Shock absorbing battery housing  

SciTech Connect

A portable battery device is provided which dampens shock incident upon the battery device such that an electrical energizable apparatus connected to the battery device is subject to reduced shock whenever the battery device receives an impact. The battery device includes a battery housing of resilient shock absorbing material injection molded around an interconnecting structure which mechanically and electrically interconnects the battery housing to an electrically energizable apparatus.

McCartney, W.J.; Jacobs, J.D.; Keil, M.J.

1984-09-04T23:59:59.000Z

225

Universal battery terminal connector  

SciTech Connect

This patent describes a universal battery terminal connector for connecting either a top post battery terminal or a side post battery terminal to a battery cable. The connector comprises an elongated electrically conductive body having: (a) first means for connection to a top post battery terminal; (b) second means for connection to a side post battery terminal, and (c) third means for receiving one end of a battery cable and providing an electrical connection therewith.

Norris, R.W.

1987-01-13T23:59:59.000Z

226

Battery separators  

Science Conference Proceedings (OSTI)

A novel, improved battery separator and process for making the separator. Essentially, the separator carries a plurality of polymeric ribs bonded to at least one surface and the ribs have alternating elevated segments of uniform maxiumum heights and depressed segments along the length of the ribs.

Le Bayon, R.; Faucon, R.; Legrix, J.

1984-11-13T23:59:59.000Z

227

Alkaline battery  

SciTech Connect

A zinc alkaline secondary battery is described having an excellent cycle characteristic, having a negative electrode which comprises a base layer of zinc active material incorporating cadmium metal and/or a cadmium compound and an outer layer made up of cadmium metal and/or a cadmium compound and applied to the surface of the base layer of zinc active material.

Furukawa, N.; Inoue, K.; Murakami, S.

1984-01-24T23:59:59.000Z

228

Techno-Economic Analysis of PEV Battery Second Use: Repurposed-Battery Selling Price and Commercial and Industrial End-User Value  

DOE Green Energy (OSTI)

Accelerated market penetration of plug-in electric vehicles and deployment of grid-connected energy storage are restricted by the high cost of lithium-ion batteries. Research, development, and manufacturing are underway to lower material costs, enhance process efficiencies, and increase production volumes. A fraction of the battery cost may be recovered after vehicular service by reusing the battery where it may have sufficient performance for other energy-storage applications. By extracting post-vehicle additional services and revenue from the battery, the total lifetime value of the battery is increased. The overall cost of energy-storage solutions for both primary (automotive) and secondary (grid) customer could be decreased. This techno-economic analysis of battery second use considers effects of battery degradation in both automotive and grid service, repurposing costs, balance-of-system costs, the value of aggregated energy-storage to commercial and industrial end users, and competitive technology. Batteries from plug-in electric vehicles can economically be used to serve the power quality and reliability needs of commercial and industrial end users. However, the value to the automotive battery owner is small (e.g., $20-$100/kWh) as declining future battery costs and other factors strongly affect salvage value. Repurposed automotive battery prices may range from $38/kWh to $132/kWh.

Neubauer, J.; Pesaran, A.; Williams, B.; Ferry, M.; Eyer, J.

2012-06-01T23:59:59.000Z

229

Battery capacity indicator  

SciTech Connect

This patent describes a battery capacity indicator for providing a continuous indication of battery capacity for a battery powered device. It comprises means for periodically effecting a first and a second positive discharge rate of the battery; voltage measurement means, for measuring the battery terminal voltage at the first and second positive discharge rates during the operation of the device, and for generating a differential battery voltage value in response thereto; memory means for storing a set of predetermined differential battery voltage values and a set of predetermined battery capacity values, each of the set of predetermined differential battery voltage values defining one of the set of predetermined battery capacity values; comparison means, coupled to the memory means and to the voltage measurement means, for comparing the measured differential battery voltage values with the set of predetermined differential battery voltage values, and for selecting the predetermined battery capacity value corresponding thereto.

Kunznicki, W.J.

1991-07-16T23:59:59.000Z

230

Batteries for Electric Drive Vehicles - Status 2005  

Science Conference Proceedings (OSTI)

Commercial availability of advanced battery systems that meet the cost, performance, and durability requirements of electric drive vehicles (EDVs) is a crucial challenge to the growth of markets for these vehicles. Hybrid electric vehicles (HEVs) are a subset of the family of EDVs, which include battery electric vehicles (BEVs), power assist hybrid electric vehicles, plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles. This study evaluates the state of advanced battery technology, presents u...

2005-11-29T23:59:59.000Z

231

Metal-Air Batteries  

Science Conference Proceedings (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

232

Battery charging system  

SciTech Connect

A highly efficient battery charging system is described in which the amperehour discharge of the battery is sensed for controlling the battery charging rate. The battery is charged at a relatively high charge rate during a first time period proportional to the extent of battery discharge and at a second lower rate thereafter.

Bilsky, H.W.; Callen, P.J.

1982-01-26T23:59:59.000Z

233

Advanced batteries for electric vehicles  

SciTech Connect

The idea of battery-powered vehicles is an old one that took on new importance during the oil crisis of 1973 and after California passed laws requiring vehicles that would produce no emissions (so-called zero-emission vehicles). In this overview of battery technologies, the authors review the major existing or near-term systems as well as advanced systems being developed for electric vehicle (EV) applications. However, this overview does not cover all the advanced batteries being developed currently throughout the world. Comparative characteristics for the following batteries are given: lead-acid; nickel/cadmium; nickel/iron; nickel/metal hydride; zinc/bromine; sodium/sulfur; sodium/nickel chloride; zinc/air; lithium/iron sulfide; and lithium-polymer.

Henriksen, G.L.; DeLuca, W.H.; Vissers, D.R. (Argonne National Lab., IL (United States))

1994-11-01T23:59:59.000Z

234

ZINC/AIR BATTERY R & D RESEARCH AND DEVELOPMENT OF BIFUNCTIONAL OXYGEN ELECTRODE TASKS I AND II  

E-Print Network (OSTI)

requirements, weight of battery and cost comparisons arecost, convenience and com- plexity of each of the schemes. The following zinc-air battery

Klein, M.

2009-01-01T23:59:59.000Z

235

Evaluation Study for Large Prismatic Lithium-Ion Cell Designs Using Multi-Scale Multi-Dimensional Battery Model (Presentation)  

Science Conference Proceedings (OSTI)

Addresses battery requirements for electric vehicles using a model that evaluates physical-chemical processes in lithium-ion batteries, from atomic variations to vehicle interface controls.

Kim, G. H.; Smith, K.

2009-05-01T23:59:59.000Z

236

Secondary battery  

SciTech Connect

Secondary batteries are described with aqueous acid solutions of lead salts as electrolytes and inert electrode base plates which also contain redox systems in solution. These systems have a standard potential of from -0.1 to + 1.4 V relative to a standard hydrogen reference electrode, do not form insoluble compounds with the electrolytes and are not oxidized or reduced irreversibly by the active compositions applied to the electrode base plates, within their range of operating potentials.

Wurmb, R.; Beck, F.; Boehlke, K.

1978-05-30T23:59:59.000Z

237

Battery management system  

SciTech Connect

A battery management system is described, comprising: a main battery; main battery charging system means coupled to the main battery for charging the main battery during operation of the main battery charging system means; at least one auxiliary battery; primary switching means for coupling the auxiliary battery to a parallel configuration with the main battery charging system means and with the main battery, where upon both the main battery and the auxiliary battery are charged by the main battery charging system means, the primary switching means also being operable to decouple the auxiliary battery from the parallel configuration; and sensing means coupled to the primary switching means and operable to sense presence or absence of charging current from the main battery charging system means to the main battery, the sensing means being operable to activate the switching means for coupling the auxiliary battery into the parallel configuration during presence of the charging current, wherein the main battery charging system provides a charging signal to the main battery having an alternating current component, and wherein the sensing means includes transformer means coupled to the charging signal for inducing a voltage, the voltage being applied to a switching circuit of the switching means.

Albright, C.D.

1993-07-06T23:59:59.000Z

238

EPAct Transportation Regulatory Activities: National Grid Exceeds EPAct  

NLE Websites -- All DOE Office Websites (Extended Search)

National National Grid Exceeds EPAct Requirements Deploying Natural Gas Technology to someone by E-mail Share EPAct Transportation Regulatory Activities: National Grid Exceeds EPAct Requirements Deploying Natural Gas Technology on Facebook Tweet about EPAct Transportation Regulatory Activities: National Grid Exceeds EPAct Requirements Deploying Natural Gas Technology on Twitter Bookmark EPAct Transportation Regulatory Activities: National Grid Exceeds EPAct Requirements Deploying Natural Gas Technology on Google Bookmark EPAct Transportation Regulatory Activities: National Grid Exceeds EPAct Requirements Deploying Natural Gas Technology on Delicious Rank EPAct Transportation Regulatory Activities: National Grid Exceeds EPAct Requirements Deploying Natural Gas Technology on Digg

239

Computational Grids  

Science Conference Proceedings (OSTI)

In this introductory chapter, we lay the groundwork for the rest of the book by providing a more detailed picture of the expected purpose, shape, and architecture of future grid systems. We structure the chapter in terms of six questions that we believe ...

Ian T. Foster; Carl Kesselman

2000-06-01T23:59:59.000Z

240

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicles. In fact, every hybrid vehicle on the market currently uses Nickel-Metal-Hydride high-voltage batteries in its battery system. Lithium ion batteries appear to be the...

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Battery separator material  

SciTech Connect

A novel, improved battery separator material particularly adaptable for use in maintenance free batteries. The battery separator material includes a diatomaceous earth filler, an acrylate copolymer binder and a combination of fibers comprising polyolefin, polyester and glass fibers.

Bodendorf, W. J.

1985-07-16T23:59:59.000Z

242

Battery-Recycling Chain  

Science Conference Proceedings (OSTI)

...The battery-recycling chain has changed dramatically over the past ten years. The changes have resulted from environmental regulation, changes in battery-processing technology, changes in battery distribution and sales techniques, changes in lead-smelting...

243

Battery depletion monitor  

SciTech Connect

A cmos inverter is used to compare pacemaker battery voltage to a referenced voltage. When the reference voltage exceeds the measured battery voltage, the inverter changes state to indicate battery depletion.

Lee, Y.S.

1982-01-26T23:59:59.000Z

244

Smart Grid Congressional Testimony  

Science Conference Proceedings (OSTI)

Of InterestNIST and the Smart GridResearch at NISTSmart Grid Interoperability Panel (SGIP)International CoordinationSmart Grid Advisory ...

2013-07-30T23:59:59.000Z

245

Solar Powered Grid Based on Reused PCs  

Science Conference Proceedings (OSTI)

In this paper, we propose a way to reuse obsolete older model PCs as a grid in keeping with green IT. A grid can create a high performance environment consisting of ordinary PCs. However, it has continuous energy requirements. This is undesirable in ... Keywords: green IT, grid, solar cell

Kenichi Fujii; Motoi Yamagiwa; Minoru Uehara

2011-06-01T23:59:59.000Z

246

FUTURE POWER GRID INITIATIVE Next Generation Network  

E-Print Network (OSTI)

designed by PNNL and currently being deployed in the AEP gridSMART Demonstration Project, and » developed that will position PNNL as the leader in modeling and planning power grid data communication networks. External users scenarios and testing of communication requirements with smart grid investments. November 2012 PNNL-SA-90012

247

A national public healthcare framework using grid  

Science Conference Proceedings (OSTI)

This paper presents a framework for public healthcare by making a grid over public infrastructure such as Internet. It clearly illustrates the need and viability of such grids. The paper gives in details the technology required behind building such global ... Keywords: DICOM, HL7, SAN, component, grid, healthcare, national, security, state, taluka

Rekha Singhal

2010-09-01T23:59:59.000Z

248

Automating Personalized Battery Management on Smartphones  

E-Print Network (OSTI)

3 Automating Battery Management . . . . . . .122 Battery Goal Setting UI . . . . . . . . . . . . . . .Power and Battery Management . . . . . . . . . . . . . . .

Falaki, Mohamamd Hossein

2012-01-01T23:59:59.000Z

249

Assessing the Performance of LED-Based Flashlights Available in the Kenyan Off-Grid Lighting Market  

E-Print Network (OSTI)

included measurements of battery capacity, time required tothe measured battery capacity was 30-50% lower than theas much as 22% for battery capacity measurements, 3.6% for

Tracy, Jennifer

2010-01-01T23:59:59.000Z

250

Assessing the Performance of LED-Based Flashlights Available in the Kenyan Off-Grid Lighting Market  

SciTech Connect

Low cost rechargeable flashlights that use LED technology are increasingly available in African markets. While LED technology holds promise to provide affordable, high quality lighting services, the widespread dissemination of low quality products may make it difficult to realize this potential. This study includes performance results for three brands of commonly available LED flashlights that were purchased in Kenya in 2009. The performance of the flashlights was evaluated by testing five units for each of the three brands. The tests included measurements of battery capacity, time required to charge the battery, maximum illuminance at one meter, operation time and lux-hours from a fully charged battery, light distribution, and color rendering. All flashlights tested performed well below the manufacturers? rated specifications; the measured battery capacity was 30-50percent lower than the rated capacity and the time required to fully charge the battery was 6-25percent greater than the rated time requirement. Our analysis further shows that within each brand there is considerable variability in each performance indicator. The five samples within a single brand varied from each other by as much as 22percent for battery capacity measurements, 3.6percent for the number of hours required for a full charge, 23percent for maximum initial lux, 38percent for run time, 11percent for light distribution and by as much as 200percent for color rendering. Results obtained are useful for creating a framework for quality assurance of off-grid LED products and will be valuable for informing consumers, distributors and product manufacturers about product performance.

Tracy, Jennifer; Jacobson, Arne; Mills, Evan

2010-03-02T23:59:59.000Z

251

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From  

NLE Websites -- All DOE Office Websites (Extended Search)

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Interfacial Studies to Practical Applications Speaker(s): Robert Kostecki Date: January 11, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Satkartar K. Kinney The constantly growing power requirements of portable electronic devices and the need for high-power batteries for electric vehicles have created a strong demand for new batteries or substantial improvements of existing ones. Fundamental problems associated with complex interfacial processes in batteries must be resolved to enhance battery performance and lifetime. An overview of the principles of electrode-electrolyte interfacial studies, experimental methods, recent results, and potential applications will be presented. Advanced instrumental techniques and

252

Battery Standard Scenario  

Science Conference Proceedings (OSTI)

Scenario: Fast Tracking a Battery Standard. ... with developing a new standard specifying quality controls for the development of batteries used in ...

253

Battery cell feedthrough apparatus  

DOE Patents (OSTI)

A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

Kaun, Thomas D. (New Lenox, IL)

1995-01-01T23:59:59.000Z

254

Portable battery powered system  

SciTech Connect

In a exemplary embodiment, a battery conditioning system monitors battery conditioning and includes a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle. With a microprocessor monitoring battery operation of a portable unit, a measure of remaining battery capacity can be calculated and displayed. Where the microprocessor is permanently secured to the battery so as to receive operating power therefrom during storage and handling, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters.

Koenck, S. E.

1985-11-12T23:59:59.000Z

255

battery2.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

SAND2006-1982J Solid-State Environmentally Safe Battery for Replacing Lithium Batteries 1. Submitting Organization Sandia National Laboratories PO Box 5800, MS 1033 Albuquerque, NM...

256

Storage Size Determination for Grid-Connected Photovoltaic Systems  

E-Print Network (OSTI)

In this paper, we study the problem of determining the size of battery storage used in grid-connected photovoltaic (PV) systems. In our setting, electricity is generated from PV and is used to supply the demand from loads. Excess electricity generated from the PV can be stored in a battery to be used later on, and electricity must be purchased from the electric grid if the PV generation and battery discharging cannot meet the demand. The objective is to minimize the electricity purchase from the electric grid while at the same time choosing an appropriate battery size. More specifically, we want to find a unique critical value (denoted as $E_{max}^c$) of the battery size such that the cost of electricity purchase remains the same if the battery size is larger than or equal to $E_{max}^c$, and the cost is strictly larger if the battery size is smaller than $E_{max}^c$. We propose an upper bound on $E_{max}^c$, and show that the upper bound is achievable for certain scenarios. For the case with ideal PV generat...

Ru, Yu; Martinez, Sonia

2011-01-01T23:59:59.000Z

257

A DC CIRCUIT BREAKER FOR AN ELECTRIC VEHICLE BATTERY PACK  

E-Print Network (OSTI)

A DC CIRCUIT BREAKER FOR AN ELECTRIC VEHICLE BATTERY PACK Geoff Walker Dept of Computer Science vehicle battery packs require DC circuit breakers for safety. These must break thousands of Amps DC at hundreds of Volts. The Sunshark solar racing car has a 140V 17Ahr battery box which needs such a breaker

Walker, Geoff

258

Survey of rechargeable battery technology  

SciTech Connect

We have reviewed rechargeable battery technology options for a specialized application in unmanned high altitude aircraft. Consideration was given to all rechargeable battery technologies that are available commercially or might be available in the foreseeable future. The LLNL application was found to impose very demanding performance requirements which cannot be met by existing commercially available battery technologies. The most demanding requirement is for high energy density. The technology that comes closest to providing the LLNL requirements is silver-zinc, although the technology exhibits significant shortfalls in energy density, charge rate capability and cyclability. There is no battery technology available ``off-the-shelf` today that can satisfy the LLNL performance requirements. All rechargeable battery technologies with the possibility of approaching/meeting the energy density requirements were reviewed. Vendor interviews were carried out for all relevant technologies. A large number of rechargeable battery systems have been developed over the years, though a much smaller number have achieved commercial success and general availability. The theoretical energy densities for these systems are summarized. It should be noted that a generally useful ``rule-of-thumb`` is that the ratio of packaged to theoretical energy density has proven to be less than 30%, and generally less than 25%. Data developed for this project confirm the usefulness of the general rule. However, data shown for the silver-zinc (AgZn) system show a greater conversion of theoretical to practical energy density than would be expected due to the very large cell sizes considered and the unusually high density of the active materials.

1993-07-01T23:59:59.000Z

259

NIST Global Standards Information Smart Grid  

Science Conference Proceedings (OSTI)

... spread adoption of plug-in electric vehicles, and will ... US, almost all of the electrical grid is ... Guides for Industry: Compliance Requirements A new set ...

260

Handbook of secondary storage batteries and charge regulators in photovoltaic systems. Final report  

DOE Green Energy (OSTI)

Solar photovoltaic systems often require battery subsystems to store reserve electrical energy for times of zero insolation. This handbook is designed to help the system designer make optimum choices of battery type, battery size and charge control circuits. Typical battery performance characteristics are summarized for four types of lead-acid batteries: pure lead, lead-calcium and lead-antimony pasted flat plate and lead-antimony tubular positive types. Similar data is also provided for pocket plate nickel cadmium batteries. Economics play a significant role in battery selection. Relative costs of each battery type are summarized under a variety of operating regimes expected for solar PV installations.

Not Available

1981-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Outlook for recycling large and small batteries in the future  

Science Conference Proceedings (OSTI)

Although there are many kinds and varieties of batteries, batteries can be subdivided into two basic types, large lead-acid batteries and small disposable batteries. Small cells contain different metals depending upon the configuration. These materials include iron, zinc, nickel, cadmium, manganese, mercury, silver, and potassium. Recycling these materials is not economically attractive. Most small batteries are thrown away and constitute a small fraction of municipal solid waste (perhaps 1/10%). There is no effective energy savings or economic incentive for recycling and, with the exception of Ni-Cad batteries, no significant environmental incentive. Any recycle scheme would require a significant reward (probably financial) to the consumer for returning the scrap battery. Without a reward, recovery is unlikely. Large batteries of the lead-acid type are composed of lead, acid, and plastic. There is an established recycle mechanism for lead-acid batteries which works quite well. The regulations written under the Hazardous and Solid Waste Disposal Amendments (1985) favor more recycling efforts by scrap metal operators. The reason for this is that recycled batteries are exempt from EPA regulation. If batteries are not recycled, any generator disposing of 6 or more batteries per month is required to have a special EPA license or premit. Currently, working against this incentive is a decreasing demand and low market price for lead which affects waste battery salvage.

Dodds, J.; Goldsberry, J.

1986-03-01T23:59:59.000Z

262

Battery Life Estimator Manual Linear Modeling and Simulation  

DOE Green Energy (OSTI)

The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

Jon P. Christophersen; Ira Bloom; Ed Thomas; Vince Battaglia

2009-08-01T23:59:59.000Z

263

Battery Calendar Life Estimator Manual Modeling and Simulation  

SciTech Connect

The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

Jon P. Christophersen; Ira Bloom; Ed Thomas; Vince Battaglia

2012-10-01T23:59:59.000Z

264

Piezonuclear battery  

DOE Patents (OSTI)

This invention, a piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material ({sup 252}Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluroethylene.

Bongianni, W.L.

1990-01-01T23:59:59.000Z

265

Piezonuclear battery  

SciTech Connect

A piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material (.sup.252 Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluorethylene.

Bongianni, Wayne L. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

266

Smart Grid Homepage  

Science Conference Proceedings (OSTI)

... Welcome to the Smart Grid website at the National Institute of Standards and Technology (NIST). ... Contact. Smart Grid National Coordinator ...

2013-11-07T23:59:59.000Z

267

Using Electric Vehicles to Meet Balancing Requirements Associated with Wind Power  

DOE Green Energy (OSTI)

Many states are deploying renewable generation sources at a significant rate to meet renewable portfolio standards. As part of this drive to meet renewable generation levels, significant additions of wind generation are planned. Due to the highly variable nature of wind generation, significant energy imbalances on the power system can be created and need to be handled. This report examines the impact on the Northwest Power Pool (NWPP) region for a 2019 expected wind scenario. One method for mitigating these imbalances is to utilize plug-in hybrid electric vehicles (PHEVs) or battery electric vehicles (BEVs) as assets to the grid. PHEVs and BEVs have the potential to meet this demand through both charging and discharging strategies. This report explores the usage of two different charging schemes: V2GHalf and V2GFull. In V2GHalf, PHEV/BEV charging is varied to absorb the additional imbalance from the wind generation, but never feeds power back into the grid. This scenario is highly desirable to automotive manufacturers, who harbor great concerns about battery warranty if vehicle-to-grid discharging is allowed. The second strategy, V2GFull, varies not only the charging of the vehicle battery, but also can vary the discharging of the battery back into the power grid. This scenario is currently less desirable to automotive manufacturers, but provides an additional resource benefit to PHEV/BEVs in meeting the additional imbalance imposed by wind. Key findings in the report relate to the PHEV/BEV population required to meet the additional imbalance when comparing V2GHalf to V2GFull populations, and when comparing home-only-charging and work-and-home-charging scenarios. Utilizing V2GFull strategies over V2GHalf resulted in a nearly 33% reduction in the number of vehicles required. This reduction indicates fewer vehicles are needed to meet the unhandled energy, but they would utilize discharging of the vehicle battery into the grid. This practice currently results in the voiding of automotive manufacturer's battery warranty, and is not feasible for many customers. The second key finding is the change in the required population when PHEV/BEV charging is available at both home and work. Allowing 10% of the vehicle population access to work charging resulted in nearly 80% of the grid benefit. Home-only charging requires, at best, 94% of the current NWPP light duty vehicle fleet to be a PHEV or BEV. With the introduction of full work charging availability, only 8% of the NWPP light duty vehicle fleet is required. Work charging has primarily been associated with mitigating range anxiety in new electric vehicle owners, but these studies indicate they have significant potential for improving grid reliability. The V2GHalf and V2GFull charging strategies of the report utilize grid frequency as an indication of the imbalance requirements. The introduction of public charging stations, as well as the potential for PHEV/BEVs to be used as a resource for renewable generation integration, creates conditions for additional products into the ancillary services market. In the United Kingdom, such a capability would be bid as a frequency product in the ancillary services market. Such a market could create the need for larger, third-party aggregators or services to manage the use of electric vehicles as a grid resource. Ultimately, customer adoption, usage patterns and habits, and feedback from the power and automotive industries will drive the need.

Tuffner, Francis K.; Kintner-Meyer, Michael CW

2011-07-31T23:59:59.000Z

268

Thermal control of electric vehicle batteries  

DOE Green Energy (OSTI)

The need to operate electric vehicles in warm, summer conditions and also provide for long periods of standby in cold climates is a challenging problem for any battery system. All advanced batteries of high specific energy require active cooling systems because adiabatic heating will raise the temperature to a level that is deleterious to cycle life. This cooling requires efficient paths for escape of heat to cooled surfaces; cooling the exterior of modules is insufficient. If a battery is heated by its own energy, and insulated to withstand exposure to a cold climate, only vacuum insulation will afford an appreciable reduction (>10{degrees}C) in the ambient temperature that can be tolerated. Standard insulations are of little use for this purpose because the heat loss rate causes too high a drain on the battery energy even for near-ambient temperature batteries.

Nelson, P.A.; Battaglia, V.S.; Henriksen, G.L.

1995-07-01T23:59:59.000Z

269

Technical Specification for a Transportable Lithium-Ion Energy Storage System for Grid Support Using Commercially Available Lithium- Ion Technology  

Science Conference Proceedings (OSTI)

The impressive global scale of lithium-ion battery production and investment in R&D is driving cost reduction and performance improvements that could make lithium-ion technology desirable for certain grid-scale storage applications in the near term. Although many stationary grid market applications can be configured using lithium-ion batteries, Electric Power Research Institute (EPRI) research identified a 1-MW, 2-hour containerized substation grid support storage system as a key electric utility product...

2012-07-31T23:59:59.000Z

270

Evaluating Machine Learning for Improving Power Grid Reliability Leon Wu leon@cs.columbia.edu  

E-Print Network (OSTI)

and intelligent electricity distribution and trans- mission system, i.e., power grid. The smart grid has been as the electrical grid morphs into the "smart grid" will require innovations in how we assess the state of the grid defined as an automated electric power system that monitors and controls grid activities, ensuring the two

Rudin, Cynthia

271

Grid Interconnection and Performance Testing Procedures for Vehicle-To-Grid (V2G) Power Electronics: Preprint  

DOE Green Energy (OSTI)

Bidirectional power electronics can add vehicle-to-grid (V2G) capability in a plug-in vehicle, which then allows the vehicle to operate as a distributed resource (DR). The uniqueness of the battery-based V2G power electronics requires a test procedure that will not only maintain IEEE interconnection standards, but can also evaluate the electrical performance of the vehicle working as a DR. The objective of this paper is to discuss a recently published NREL technical report that provides interim test procedures for V2G vehicles for their integration into the electrical distribution systems and for their performance in terms of continuous output power, efficiency, and losses. Additionally, some other test procedures are discussed that are applicable to a V2G vehicle that desires to provide power reserve functions. A few sample test results are provided based on testing of prototype V2G vehicles at NREL.

Kramer, W.; Chakraborty, S.; Kroposki, B.; Hoke, A.; Martin, G.; Markel, T.

2012-03-01T23:59:59.000Z

272

Battery cell soldering apparatus  

SciTech Connect

A battery cell soldering apparatus for coupling a plurality of battery cells within a battery casing comprises a support platform and a battery casing holder. The support platform operatively supports a soldering block including a plurality of soldering elements coupled to an electrical source together with a cooling means and control panel to control selectively the heating and cooling of the soldering block when the battery cells within the battery casing are held inverted in operative engagement with the plurality of soldering elements by the battery casing holder.

Alvarez, O.E.

1979-09-25T23:59:59.000Z

273

Battery life extender  

SciTech Connect

A battery life extender is described which comprises: (a) a housing disposed around the battery with terminals of the battery extending through top of the housing so that battery clamps can be attached thereto, the housing having an access opening in the top thereof; (b) means for stabilizing temperature of the battery within the housing during hot and cold weather conditions so as to extend operating life of the battery; and (c) a removable cover sized to fit over the access opening in the top of the housing so that the battery can be serviced without having to remove the housing or any part thereof.

Foti, M.; Embry, J.

1989-06-20T23:59:59.000Z

274

Safety Hazards of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

275

Fail Safe Design for Large Capacity Lithium-ion Batteries  

NATIONAL RENEWABLE ENERGY LABORATORY! Challenges for Large LIB Systems 2 • Li-ion batteries are flammable, require expensive manufacturing to reduce defects

276

UNDERSTANDING DEGRADATION AND LITHIUM DIFFUSION IN LITHIUM ION BATTERY ELECTRODES.  

E-Print Network (OSTI)

??Lithium-ion batteries with higher capacity and longer cycle life than that available today are required as secondary energy sources for a wide range of emerging… (more)

Li, Juchuan

2012-01-01T23:59:59.000Z

277

Battery Offgas Behavior under Stress Conditions: Implications for ...  

Science Conference Proceedings (OSTI)

As Li-based battery chemistries find more applications outside of the automotive sector, they experience duty cycles which extend their operational requirements ...

278

Battery Balancing at Xtreme Power.  

E-Print Network (OSTI)

??Battery pack imbalance is one of the most pressing issues for companies involved in Battery Energy Storage. The importance of Battery Balancing with respect to… (more)

Ganesan, Rahul

2012-01-01T23:59:59.000Z

279

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems to someone by E-mail Share Vehicle Technologies Office: Battery Systems on Facebook Tweet about Vehicle Technologies Office: Battery Systems on Twitter Bookmark...

280

Optima Batteries | Open Energy Information  

Open Energy Info (EERE)

Optima Batteries Jump to: navigation, search Name Optima Batteries Place Milwaukee, WI Website http:www.optimabatteries.com References Optima Batteries1 Information About...

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hybrid Electric Vehicles - HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and component levels. A very detailed battery design model is used to establish these costs for different Li-Ion battery chemistries. The battery design model considers the...

282

Valve Regulated Lead Acid (VRLA) Battery Qualification Assessment  

Science Conference Proceedings (OSTI)

Valve-regulated lead acid (VRLA) batteries have been proposed as a prospective dc power source for Class 1E service in passive nuclear plants. However, they are not currently covered by IEEE Standard 535, which addresses qualification for this service. Furthermore, there are reports of significant failure modes or mechanisms beyond the predominant failure mode of grid corrosion of the positive plate associated with vented lead acid (VLA) batteries.

2009-11-06T23:59:59.000Z

283

Modeling, testing and economic analysis of a wind-electric battery charging station  

Science Conference Proceedings (OSTI)

Battery charging systems are very important in many developing countries where rural families cannot afford a solar-battery home system or other electricity options, but they can afford to own a battery (in some cases more than one battery) and can pay for it to be charged on a regular basis. Because the typical households that use batteries are located far from the grid, small wind battery charging stations can be a cost-competitive options for charging batteries. However, the technical aspects of charging numerous 12-volt batteries on one DC bus with a small permanent magnet alternator wind turbine suggest that a special battery charging station be developed. NREL conducted research on two different types of wind battery charging stations: a system that uses one charge controller for the entire DC bus and charges batteries in parallel strings of four batteries each, and one that uses individual charge controllers for each battery. The authors present test results for both system configurations. In addition, modeling results of steady-state time series simulations of both systems are compared. Although the system with the single charge controller for the entire bus is less expensive, it results in less efficient battery charging. The authors also include in the paper a discussion of control strategies to improve system performance and an economic comparison of the two alternative system architectures.

Gevorgian, V.; Corbus, D.A.; Drouilhet, S.; Holz, R. [National Renewable Energy Lab., Golden, CO (US). National Wind Technology Center; Thomas, K.E. [Univ. of California, Berkeley, CA (US). Dept. of Chemical Engineering

1998-07-01T23:59:59.000Z

284

The Grid Economy RAJKUMAR BUYYA, DAVID ABRAMSON, AND SRIKUMAR VENUGOPAL  

E-Print Network (OSTI)

computational and data grids is also presented. Keywords--Distributed computing, grid economy, resource distributed resource management challenges and requirements of economy-based Grid systems, and discusses management, utility computing. I. INTRODUCTION Inspired by the electrical power Grid's pervasiveness, ease

Melbourne, University of

285

Advanced Flow Battery Electrodes: Low-cost, High-Performance 50-Year Electrode  

SciTech Connect

GRIDS Project: Primus Power is developing zinc-based, rechargeable liquid flow batteries that could produce substantially more energy at lower cost than conventional batteries. A flow battery is similar to a conventional battery, except instead of storing its energy inside the cell it stores that energy for future use in chemicals that are kept in tanks that sit outside the cell. One of the most costly components in a flow battery is the electrode, where the electrochemical reactions actually occur. Primus Power is investigating and developing mixed-metal materials for their electrodes that could ultimately reduce the lifetime cost of flow batteries because they are more durable and long-lasting than electrodes found in traditional batteries. Using these electrodes, Primus Power’s flow batteries can be grouped together into robust, containerized storage pods for use by utilities, renewable energy developers, businesses, and campuses.

None

2010-09-01T23:59:59.000Z

286

Battery Voltage Stability Effects on Small Wind Turbine Energy Capture: Preprint  

DOE Green Energy (OSTI)

Previous papers on small wind turbines have shown that the ratio of battery capacity to wind capacity (known as battery-wind capacity ratio) for small wind systems with battery storage has an important effect on wind turbine energy output. Data analysis from pilot project performance monitoring has revealed shortcomings in wind turbine energy output up to 75% of expected due to the effect of a''weak'' battery grid. This paper presents an analysis of empirical test results of small wind battery systems, showing the relationships among wind turbine charging rate, battery capacity, battery internal resistance, and the change in battery voltage. By understanding these relationships, small wind systems can be designed so as to minimize''dumped'' or unused energy from small wind turbines.

Corbus, D.; Newcomb, C.; Baring-Gould, E. I.; Friedly, S.

2002-05-01T23:59:59.000Z

287

Battery separators: Past, present and future  

Science Conference Proceedings (OSTI)

The separator is an essential component of state of the art battery technology. It not only must meet the essential function as a current insulator to the electrodes of different polarity, but must also meet the requirements demanded by the steadily changing manufacturing technology. Improved battery energy density, higher reserve capacity and cold cranking performance as well as increased battery productivity have required changes in separators which will be addressed in this presentation. Some of the more important separator characteristics are discussed as well as separator market.

Strzempko, S.J.; Choi, W.M. [Grace Battery Separators, Cambridge, MA (United States)

1993-03-01T23:59:59.000Z

288

ESS 2012 Peer Review - Iron Based Flow Batteries for Low Cost...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergyOffice of Electricity's Energy Storage Program. Iron Based Flow Batteries for Low Cost Grid Level Energy Storage J.S. Wainright, R. F. Savinell, P.I.s Dept. of Chemical...

289

ESS 2012 Peer Review - Flow-Assisted Zinc Anode Batteries for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6&91&>09-+&@C:40(:&O7B0& %.PQRR340(+;"""GS8P(+:S:75& FLOW-ASSISTED ZINC ANODE BATTERIES FOR GRID-SCALE ELECTRICITY STORAGE Prof. Sanjoy Banerjee, banerjee@che.ccny.cuny.e...

290

Comments of National Grid to the Smart Grid RFI | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Grid to the Smart Grid RFI Comments of National Grid to the Smart Grid RFI National Grid's Response to the Department of Energy Smart Grid RFI: Addressing Policy and...

291

Prediction of Retained Capacity and EODV of Li-ion Batteries in LEO Spacecraft Batteries  

E-Print Network (OSTI)

In resent years ANN is widely reported for modeling in different areas of science including electro chemistry. This includes modeling of different technological batteries such as lead acid battery, Nickel cadmium batteries etc. Lithium ion batteries are advance battery technology which satisfy most of the space mission requirements. Low earth orbit (LEO)space craft batteries undergo large number of charge discharge cycles (about 25000 cycles)compared to other ground level or space applications. This study is indented to develop ANN model for about 25000 cycles, cycled under various temperature, Depth Of Discharge (DOD) settings with constant charge voltage limit to predict the retained capacity and End of Discharge Voltage (EODV). To extract firm conclusion and distinguish the capability of ANN method, the predicted values are compared with experimental result by statistical method and Bland Altman plot.

Ramakrishnan, S; Jeyakumar, A Ebenezer

2010-01-01T23:59:59.000Z

292

Optimal Design of Integration of Intelligent, Adaptive Solar (PV) Power Generator with Grid for Domestic Energy Management System  

Science Conference Proceedings (OSTI)

This paper introduces a novel system based on integration of solar power generator with grid for optimal utilization of energy by minimizing the power drawn from grid. A prototype grid integrated PV system comprising of PV module (2*75Wp), battery bank ... Keywords: Solar power Generator (SPG), Domestic Energy Management, Bi-directional Inverter, Photovoltaic(PV), Total Harmonic Distortion (THD)

S. N. Singh; Pooja Singh; Swati Kumari; Swati

2010-03-01T23:59:59.000Z

293

Recent Progress in Redox Flow Battery Research and Development  

SciTech Connect

With the increase need to seamlessly integrate the renewable energy with the current grid which itself is evolving into a more intelligent, efficient, and capable electrical power system, it is envisioned that the energy storage system will play a more prominent role in bridging the gap between the current technology and a clean sustainable future in grid reliability and utilization. Redox flow battery technology is leading the way in this perspective in providing a well balanced approach for current challenges. Recent progress in the research and development of redox flow battery technology is reviewed here with a focus on new chemistries and systems.

Wang, Wei; Luo, Qingtao; Li, Bin; Wei, Xiaoliang; Li, Liyu; Yang, Zhenguo

2013-02-20T23:59:59.000Z

294

Taking Battery Technology from the Lab to the Big City | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Taking Battery Technology from the Lab to the Big City Taking Battery Technology from the Lab to the Big City Taking Battery Technology from the Lab to the Big City July 29, 2013 - 2:09pm Addthis Watch the video to learn how Urban Electric Power is taking battery technology from the lab to the market. | Video by Matty Greene, Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Matty Greene Matty Greene Videographer What are the key facts? The CUNY Energy Institute developed a low-cost zinc anode rechargeable battery that can be used for grid-scale energy storage. Building on this technology, ARPA-E funded the CUNY Energy Institute to develop a long-lasting, fully rechargeable battery that can store renewable energy for future grid-use at any location. In 2012, Urban Electric Power was formed to commercialize the

295

Portable battery powered system  

SciTech Connect

In an exemplary embodiment, a battery monitoring system includes sensors for monitoring battery parameters and a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle, and by monitoring battery current thereafter during operation, a relatively accurate measure of remaining battery capacity becomes available. The battery monitoring system may include programmed processor circuitry and may be secured to the battery so as to receive operating power therefrom during storage and handling; thus, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters.

Koenck, S.E.

1984-06-19T23:59:59.000Z

296

Auxiliary battery charging terminal  

SciTech Connect

In accordance with the present invention there is provided an auxiliary battery charging terminal that may selectively engage battery charging circuitry inside a portable radio pager. There is provided a current conducting cap having a downwardly and outwardly flared rim that deforms to lock under the crimped edge an insulating seal ring of a standard rechargeable cell by application of a compressive axial force. The auxiliary battery charging terminal is further provided with a central tip axially projecting upwardly from the cap. The auxiliary terminal may be further provided with a cap of reduced diameter to circumferentially engage the raised battery cathode terminal on the battery cell. A mating recess in a remote battery charging receptacle may receive the tip to captivate the battery cell against lateral displacement. The tip may be further provided with a rounded apex to relieve localized frictional forces upon insertion and removal of the battery cell from the remote battery charging receptacle.

Field, H.; Richter, R. E.

1985-04-23T23:59:59.000Z

297

Maxim> App Notes> Battery Management Power-Supply Circuits  

E-Print Network (OSTI)

APPLICATION NOTE 680 How to design battery charger applications that require external microcontrollers and related system-level issues Abstract: Notebook computers increasingly require complex battery charging algorithms and systems. This article provides information and background on lithium-ion (Li+), nickel-cadmium (NiCd), and nickel-metal-hydride (NiMH) batteries and related system-level switch-mode and linear battery chargers. These voltage regulators and current regulators are controlled by external microprocessors like the 8051 or Microchip PIC, and examples are provided with these controllers. An overview of requirements for charging common battery chemistries with Maxim battery charger ICs is provided, along with a discussion of system-level trade-offs and firmware design tips, and a list of World Wide Web engineering resources. The previous issue of Maxim's Engineering Journal (Vol. 27) discussed new developments in stand-alone battery chargers. This second article of a two-part series explores the system-level issues in applying battery-charger ICs. Over the past five years, market pressures on portable equipment have transformed the simple battery charger into a sophisticated switch-mode device capable of charging an advanced battery in 30 minutes. This development also marks a departure from the selfcontained, stand-alone charger ICs of only a few years ago. Some of those ICs included considerable intelligence: enough to handle the complex task of fast charging advanced batteries.

unknown authors

2002-01-01T23:59:59.000Z

298

NERSC Grid Certificates  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Grid Certificates Grid Certificates | Tags: Grid Grid certificates allow you to access NERSC (and other Grid enabled computing facilities) via grid interfaces. Grid certificates are credentials that must be initialized for use with grid tools. Once a certificate is initialized it is automatically used by the grid tools to authenticate the user to the grid resource. Getting a Short Lived NERSC CA Certificate The NERSC Online CA now offers a quick and painless way to obtain grid certificates. You can obtain a grid certificate with a single command using this method. If you are on a NERSC system, load the globus module to set up your environment: % module load globus or % module load osg On the client system (assuming you have the globus binaries in your path), simply run:

299

Impacts of EV battery production and recycling  

DOE Green Energy (OSTI)

Electric vehicles batteries use energy and produce environmental residuals when they are produced and recycled. This study estimates, for four selected battery types (sodium-sulfur, nickel-metal hydride, nickel-cadmium, and advanced lead-acid), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. Nickel-cadmium and nickel-metal hydride batteries are similar, for example, but energy requirements for the production of cadmium electrodes may be higher than those for metal hydride electrodes, while the latter may be more difficult to recycle.

Gaines, L.; Singh, M. [Argonne National Lab., IL (United States). Energy Systems Div.

1996-06-01T23:59:59.000Z

300

EA-1939: Reese Technology Center Wind and Battery Integration Project,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Reese Technology Center Wind and Battery Integration 9: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX SUMMARY This EA will evaluate the potential environmental impacts of a proposal by the Center for Commercialization of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to improve grid performance and thereby aid in the integration of wind generation into the local electricity supply. Under the proposed action, DOE's Office of Electricity Delivery and Energy Reliability would provide cost shared funding for the project through American Reinvestment and Recovery Act

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

SYSPLAN. Load Leveling Battery System Costs  

SciTech Connect

SYSPLAN evaluates capital investment in customer side of the meter load leveling battery systems. Such systems reduce the customer`s monthly electrical demand charge by reducing the maximum power load supplied by the utility during the customer`s peak demand. System equipment consists of a large array of batteries, a current converter, and balance of plant equipment and facilities required to support the battery and converter system. The system is installed on the customer`s side of the meter and controlled and operated by the customer. Its economic feasibility depends largely on the customer`s load profile. Load shape requirements, utility rate structures, and battery equipment cost and performance data serve as bases for determining whether a load leveling battery system is economically feasible for a particular installation. Life-cycle costs for system hardware include all costs associated with the purchase, installation, and operation of battery, converter, and balance of plant facilities and equipment. The SYSPLAN spreadsheet software is specifically designed to evaluate these costs and the reduced demand charge benefits; it completes a 20 year period life cycle cost analysis based on the battery system description and cost data. A built-in sensitivity analysis routine is also included for key battery cost parameters. The life cycle cost analysis spreadsheet is augmented by a system sizing routine to help users identify load leveling system size requirements for their facilities. The optional XSIZE system sizing spreadsheet which is included can be used to identify a range of battery system sizes that might be economically attractive. XSIZE output consisting of system operating requirements can then be passed by the temporary file SIZE to the main SYSPLAN spreadsheet.

Hostick, C.J. [Pacific Northwest Lab., Richland, WA (United States)

1988-03-22T23:59:59.000Z

302

Fuzzy Logic-Based State-of-Health Determination of Lead Acid Batteries Pritpal Singh  

E-Print Network (OSTI)

. A large valve-regulated lead acid (VRLA) battery bank provides sustained off-grid power for all 50 items shown above the distribution panel are physically separated from the user environment-DC converter and the VRLA batteries could all be significantly higher for a non- prototype system installed

Singh, Pritpal

303

A Java commodity grid kit.  

SciTech Connect

In this paper we report on the features of the Java Commodity Grid Kit. The Java CoG Kit provides middleware for accessing Grid functionality from the Java framework. Java CoG Kit middleware is general enough to design a variety of advanced Grid applications with quite different user requirements. Access to the Grid is established via Globus protocols, allowing the Java CoG Kit to communicate also with the C Globus reference implementation. Thus, the Java CoG Kit provides Grid developers with the ability to utilize the Grid, as well as numerous additional libraries and frameworks developed by the Java community to enable network, Internet, enterprise, and peer-to peer computing. A variety of projects have successfully used the client libraries of the Java CoG Kit to access Grids driven by the C Globus software. In this paper we also report on the efforts to develop server side Java CoG Kit components. As part of this research we have implemented a prototype pure Java resource management system that enables one to run Globus jobs on platforms on which a Java virtual machine is supported, including Windows NT machines.

von Laszewski, G.; Foster, I.; Gawor, J.; Lane, P.; Mathematics and Computer Science

2001-07-01T23:59:59.000Z

304

Rechargeable electric battery system  

SciTech Connect

A rechargable battery, system and method for controlling its operation and the recharging thereof in order to prolong the useful life of the battery and to optimize its operation is disclosed. In one form, an electronic microprocessor is provided within or attached to the battery for receiving and processing electrical signals generated by one or more sensors of battery operational variable and for generating output signals which may be employed to control the charge of the battery and to display one or more variables concerned with the battery operation.

Lemelson, J.H.

1981-09-15T23:59:59.000Z

305

Battery cell for a primary battery  

Science Conference Proceedings (OSTI)

A battery cell for a primary battery, particularly a flat cell battery to be activated on being taken into use, e.g., when submerged into water. The battery cell comprises a positive current collector and a negative electrode. A separator layer which, being in contact with the negative electrode, is disposed between said negative electrode and the positive current collector. A depolarizing layer containing a depolarizing agent is disposed between the positive current collector and the separate layer. An intermediate layer of a porous, electrically insulating, and water-absorbing material is disposed next to the positive current collector and arranged in contact with the depolarizing agent.

Hakkinen, A.

1984-12-11T23:59:59.000Z

306

East Penn Manufacturing Co. Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Manufacturing Co. Smart Grid Demonstration Project Manufacturing Co. Smart Grid Demonstration Project Jump to: navigation, search Project Lead East Penn Manufacturing Co. Country United States Headquarters Location Lyon Station, Pennsylvania Recovery Act Funding $2,245,523.00 Total Project Value $4,491,046.00 References ARRA Smart Grid Demonstration Projects[1] This article is a stub. You can help OpenEI by expanding it. The East Penn Manufacturing Co. Smart Grid Demonstration Project is a U.S. Department of Energy Smart Grid Demonstration Project which is based in Lyon Station, Pennsylvania. Overview Demonstrate the economic and technical viability of a 3MW grid-scale, advanced energy storage system using the lead-carbon UltraBattery technology to regulate frequency and manage energy demand. This project

307

Solar battery energizer  

SciTech Connect

A battery energizer for button batteries, such as zinc-silver oxide or zinc-mercuric oxide batteries, that are normally considered unchargeable, provides for energizing of the batteries in a safe and simple manner. A solar cell having a maximum current output (e.g., 20 milliamps) is operatively connected to terminals for releasably receiving a button battery. A light emitting diode, or like indicator, provides an indication of when the battery is fully energized, and additionally assists in preventing overenergization of the battery. The solar cell, terminals, LED, and the like can be mounted on a nonconductive material mounting plate which is mounted by a suction cup and hook to a window, adjacent a light bulb, or the like. A battery charger for conventional dry cell rechargeable batteries (such as nickel-cadmium batteries) utilizes the solar cells, and LED, and a zener diode connected in parallel with terminals. An adaptor may be provided with the terminal for adapting them for use with any conventional size dry cell battery, and a simple dummy battery may be utilized so that less than the full complement of batteries may be charged utilizing the charger.

Thompson, M. E.

1985-09-03T23:59:59.000Z

308

GridLAB-D  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GridLAB-D GridLAB-D 2010 Peer Review Overview * What is GridLAB-D? * Why use GridLAB-D? * How does GridLAB-D work? * How has GridLAB-D been used so far? * What is it expected in the coming year? * Funding and management details GridLAB-D Simulates the Smart Grid Power system models Load models Market models GridLAB-D model unifies keys elements of a Smart Grid  Next generation tool  Integrates models  Smart Grid analysis  Projects  Technologies  Cost/benefits  Business cases  Multi-scale models  Seconds to decades  Links to existing tools  Open source  Contributions from  Government  Industry  Academic  Vendors  Drives need for high performance computers  Vendors can add/extract modules for their own uses 3 Why simulate the smart grid?

309

Battery technology - an assessment of the state of the art  

SciTech Connect

A state-of-the-art battery survey and data verification process were conducted with battery manufacturers and organizations involved in battery technology research and development. This report addresses those major battery technologies which were identified as either being developed or explored as potential candidates for major energy storage applications in electric utilities or transportation as well as for future operations with solar or wind energy systems. Near- and far-term battery systems, current data and opinions, and developments in both US and foreign battery technology for utility load leveling and electric vehicles are discussed. Background information and the scope of the report are given first. Then basic data for each battery type are summarized; a general discussion of other potential battery systems is also included. A comparative summary of battery cost and performance is presented; actual battery capabilities are discussed relative to the general requirements of electric utility load leveling and transportation applications. The current status of the scarce materials and environmental and safety problems related to battery technology is presented. The overall status of the current R and D programs and expected progress toward commercialization are discussed; the roles of competing technologies in two major markets for battery technology are addressed. General observations, conclusions, and recommendations are given. 9 figures, 25 tables. (RWR)

1978-03-27T23:59:59.000Z

310

Smart Grid Investment Grant Program (SGIG): Cyber Security Issues...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(SGIG): Cyber Security Issues and Requirements, November 19, 2009 Smart Grid Investment Grant Program (SGIG): Cyber Security Issues and Requirements, November 19, 2009 Presentation...

311

Battery charger polarity circuit control  

SciTech Connect

A normally open polarity sensing circuit is interposed between the charging current output of a battery charger and battery terminal clamps connected with a rechargeable storage battery. Normally open reed switches, closed by battery positive terminal potential, gates silicon controlled recitifiers for battery charging current flow according to the polarity of the battery.

Santilli, R.R.

1982-11-30T23:59:59.000Z

312

Recycling readiness of advanced batteries for electric vehicles  

SciTech Connect

Maximizing the reclamation/recycle of electric-vehicle (EV) batteries is considered to be essential for the successful commercialization of this technology. Since the early 1990s, the US Department of Energy has sponsored the ad hoc advanced battery readiness working group to review this and other possible barriers to the widespread use of EVs, such as battery shipping and in-vehicle safety. Regulation is currently the main force for growth in EV numbers and projections for the states that have zero-emission vehicle (ZEV) programs indicate about 200,000 of these vehicles would be offered to the public in 2003 to meet those requirements. The ad hoc Advanced Battery Readiness Working Group has identified a matrix of battery technologies that could see use in EVs and has been tracking the state of readiness of recycling processes for each of them. Lead-acid, nickel/metal hydride, and lithium-ion are the three EV battery technologies proposed by the major automotive manufacturers affected by ZEV requirements. Recycling approaches for the two advanced battery systems on this list are partly defined, but could be modified to recover more value from end-of-life batteries. The processes being used or planned to treat these batteries are reviewed, as well as those being considered for other longer-term technologies in the battery recycling readiness matrix. Development efforts needed to prepare for recycling the batteries from a much larger EV population than exists today are identified.

Jungst, R.G.

1997-09-01T23:59:59.000Z

313

Modeling & Simulation - Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

314

Dual battery system  

Science Conference Proceedings (OSTI)

A dual battery system is described, comprising: a primary first battery having a first open circuit voltage, the first battery including a first positive electrode, a first negative electrode, and a first electrolyte; a second battery having a second open circuit voltage less than the first open circuit voltage, the second battery including a second positive electrode, a second negative electrode, and a second electrolyte stored separately and isolated from the first electrolyte; a pair of positive and negative terminals; and electrical connections connecting the first and second batteries in parallel to the terminals so that, as current is drawn from the batteries, the amount of current drawn from each respective battery at a constant voltage level varies with the magnitude of the current.

Wruck, W.J.

1993-06-29T23:59:59.000Z

315

Battery cell feedthrough apparatus  

DOE Patents (OSTI)

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

316

Aluminum ION Battery  

•Lower cost because of abundant aluminum resources ... Li-ion battery (LiC 6 - Mn 2 O 4) 106 4.0 424 Al-ion battery (Al - Mn 2 O 4) 400 2.65 1,060

317

Manufacturer: Panasonic Battery Type: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Specifi cations Manufacturer: Panasonic Battery Type: Nickel Metal Hydride Rated Capacity: 5.5 Ahr Rated Power: Not Available Nominal Pack Voltage: 158.4 VDC Nominal Cell...

318

BEST for batteries  

Science Conference Proceedings (OSTI)

The Battery Energy Storage Test (BEST) Facility, Hillsborough Township, New Jersey, will investigate advanced battery performance, reliability, and economy and will verify system characteristics and performance in an actual utility environment.

Lihach, N.

1981-05-01T23:59:59.000Z

319

Article on the Grid Tech Team's Strategic Plan for Grid Modernization Now  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Article on the Grid Tech Team's Strategic Plan for Grid Article on the Grid Tech Team's Strategic Plan for Grid Modernization Now Available Article on the Grid Tech Team's Strategic Plan for Grid Modernization Now Available January 11, 2013 - 4:10pm Addthis A new article by OE's Kerry Cheung, William Parks and Anjan Bose in IEEE's Smart Grid newsletter describes the Department of Energy's strategic plan to achieve a future electricity system that will be cost-effective, seamless from generation to end-use, and capable of meeting all clean energy demands and capacity requirements. Developed by DOE's Grid Tech Team (GTT), the proposed strategy recognizes the diversity and uncertainty of future energy demands and generation portfolios, the inherent regional differences in needs, goals and resources, and the critical importance of continued dialogue and engagement with appropriate

320

Protecting Intelligent Distributed Power Grids Against Cyber Attacks - May  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protecting Intelligent Distributed Power Grids Against Cyber Protecting Intelligent Distributed Power Grids Against Cyber Attacks - May 2008 Protecting Intelligent Distributed Power Grids Against Cyber Attacks - May 2008 Development of a novel distributed and hierarchical security layer specific to intelligent grid design will help protect intelligent distributed power grids from cyber attacks. Intelligent power grids are interdependent energy management systems-encompassing generation, distribution, IT networks, and control systems-that use automated data analysis and demand response capabilities to increase system functionality, efficiency, and reliability. But increased interconnection and automation over a large geographical area requires a distributed and hierarchical approach to cybersecurity. Protecting Intelligent Distributed Power Grids Again Cyber Attacks.pdf

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Soldier power. Battery charging.  

E-Print Network (OSTI)

Soldier power. Marine. Battery charging. Advertising. Remote. SOFC (NanoDynamics, AMI) 60 watts q SOFC #12;

Hong, Deog Ki

322

Anodes for Batteries  

SciTech Connect

The purpose of this chapter is to discuss, "constructive corrosion" as it occurs in power generated devices, specifically batteries.

Windisch, Charles F.

2003-01-01T23:59:59.000Z

323

SLA battery separators  

SciTech Connect

Since they first appeared in the early 1970's, sealed lead acid (SLA) batteries have been a rapidly growing factor in the battery industry - in rechargeable, deep-cycle, and automotive storage systems. The key to these sealed batteries is the binderless, absorptive glass microfiber separator which permits the electrolyte to recombine after oxidation. The result is no free acid, no outgassing, and longer life. The batteries are described.

Fujita, Y.

1986-10-01T23:59:59.000Z

324

Nickel/zinc batteries  

SciTech Connect

A review of the design, components, electrochemistry, operation and performance of nickel-zinc batteries is presented. 173 references. (WHK)

McBreen, J.

1982-07-01T23:59:59.000Z

325

Primary and secondary ambient temperature lithium batteries  

Science Conference Proceedings (OSTI)

These proceedings collect papers on the subject of batteries. Topics include: lithium-oxygen batteries, lithium-sulphur batteries, metal-metal oxide batteries, metal-nonmetal batteries, spacecraft power supplies, electrochemistry, and battery containment materials.

Gabano, J.P.; Takehara, Z.; Bro, P.

1988-01-01T23:59:59.000Z

326

TITLE XIII—SMART GRID SEC. 1305. SMART GRID ...  

Science Conference Proceedings (OSTI)

Page 1. TITLE XIII—SMART GRID SEC. 1305. SMART GRID INTEROPERABILITY FRAMEWORK. (a) INTEROPERABILITY ...

2013-05-16T23:59:59.000Z

327

battery, map parcel, med  

E-Print Network (OSTI)

Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

Rosenthal, Jeffrey S.

328

Servant dictionary battery, map  

E-Print Network (OSTI)

Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

Rosenthal, Jeffrey S.

329

Alkaline storage battery  

Science Conference Proceedings (OSTI)

An alkaline storage battery having located in a battery container a battery element comprising a positive electrode, a negative electrode, a separator and a gas ionizing auxiliary electrode, in which the gas ionizing electrode is contained in a bag of microporous film, is described.

Suzuki, S.

1984-02-28T23:59:59.000Z

330

Recycle of battery materials  

SciTech Connect

Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials.

Pemsler, J.P.; Spitz, R.A.

1981-01-01T23:59:59.000Z

331

Sodium sulfur battery seal  

SciTech Connect

This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

Topouzian, Armenag (Birmingham, MI)

1980-01-01T23:59:59.000Z

332

Condition Assessment of Substation Ground Grids  

Science Conference Proceedings (OSTI)

This report describes the second stage of a research project to develop a simple and inexpensive method and device to assess the integrity of substation grounding grids. The problem has been studied before but a reliable and inexpensive method or device to make a reliable diagnosis of grid condition is still lacking. While the EPRI-developed Ground Grid Evaluator (commercially known as the Smart Ground Multimeter) can be used to provide valuable information, the equipment is expensive and requires extens...

2008-12-17T23:59:59.000Z

333

Energy management for battery-powered embedded systems  

Science Conference Proceedings (OSTI)

Portable embedded computing systems require energy autonomy. This is achieved by batteries serving as a dedicated energy source. The requirement of portability places severe restrictions on size and weight, which in turn limits the amount of energy that ... Keywords: Battery, low-power design, modeling, scheduling, voltage scaling

Daler Rakhmatov; Sarma Vrudhula

2003-08-01T23:59:59.000Z

334

Potential use of battery packs from NCAP tested vehicles.  

Science Conference Proceedings (OSTI)

Several large electric vehicle batteries available to the National Highway Traffic Safety Administration are candidates for use in future safety testing programs. The batteries, from vehicles subjected to NCAP crashworthiness testing, are considered potentially damaged due to the nature of testing their associated vehicles have been subjected to. Criteria for safe shipping to Sandia is discussed, as well as condition the batteries must be in to perform testing work. Also discussed are potential tests that could be performed under a variety of conditions. The ultimate value of potential testing performed on these cells will rest on the level of access available to the battery pack, i.e. external access only, access to the on board monitoring system/CAN port or internal electrical access to the battery. Greater access to the battery than external visual and temperature monitoring would likely require input from the battery manufacturer.

Lamb, Joshua; Orendorff, Christopher J.

2013-10-01T23:59:59.000Z

335

Characteristics and development report for the MC3714 thermal battery  

SciTech Connect

This report describes the design intent, design considerations, system use, development, product characteristics, and early production history of the MC3714 Thermal Battery. This battery has a required operating life of 146 s above 24.0 V with a constant current load of 0.5 A. It is activated when the MC3830 Actuator initiates the WW42C1 Percussion Primer in the battery. The MC3714 employs the Li(Si)/LiCl-CCl/lithiated FeS{sub 2} electrochemical system. The battery is a hermetically sealed right-circular cylinder with an antirotation ring brazed to the base of the cylinder. The battery is 50 mm long and 38.1 mm in diameter. The mass of the battery is 165 g. The battery was designed and developed to provide the power for the W82 JTA Telemetry System. 8 refs., 12 figs., 11 tabs.

Scharrer, G.L.; Lasky, F.P.

1990-08-01T23:59:59.000Z

336

Off-grid Power for Small Communities with Renewable Energy Sources in Rural Guatemalan Villages  

Science Conference Proceedings (OSTI)

Abstract--This paper describes the process used to plan, design, and implement an off-grid electrical system for a village with less than 50 homes in rural Guatemala. The community has a small school, community center, community kitchen, and 43 homes/families. ... Keywords: photovoltaic, hydroelectric, Guatemala, battery, EWB, Engineers Without Borders, solar energy, microhydro, off-grid.

Eugene D. Moe; Andrea P. Moe

2011-10-01T23:59:59.000Z

337

Modeling and Simulation for Grid Fault Impacts on a DC Microgrid  

Science Conference Proceedings (OSTI)

A micro grid consists of several distributed generation resources and local loads, which provide the solution to supply premium power to remote or specific areas. To the design of a micro grid, it is necessary to perform computer simulation for the planning ... Keywords: DC microgrid, bi-directional inverter, wind turbine, fuel cell, battery

H. C. Su; G. W. Chang; B. W. Liu; J. H. Chen; K. K. Jen; C. H. Chung; J. Z. Wu

2012-06-01T23:59:59.000Z

338

Walden: A Scalable Solution for Grid Account Management  

Science Conference Proceedings (OSTI)

A large and diverse consortium of grid clusters, as can be found in a university setting, requires a flexible authorization model that is scalable, extensible and easy to administer. Current approaches to grid authorization suffer from administrative ...

Beth A. Kirschner; Thomas J. Hacker; William A. Adamson; Brian D. Athey

2004-11-01T23:59:59.000Z

339

NREL: Transmission Grid Integration - Grid Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Simulation Grid Simulation NREL's controllable grid interface test system can reduce certification testing time and costs while providing system engineers with a better understanding of how wind turbines react to disturbances on the electric power system. To understand the behavior of wind turbines during grid disturbances, manufacturers and utility grid operators perform a series of tests and transient simulation studies. Utility operators need to estimate how much power wind turbines can provide to help regulate grid frequency. And after design modifications are made to control software, manufacturers may need to retest their turbines. But testing wind turbines in the field can be a lengthy and expensive process. NREL developed the controllable grid interface test system to reduce the

340

NIST Priority Action Plan 2 Guidelines for Assessing Wireless Standards for Smart Grid  

E-Print Network (OSTI)

NIST Priority Action Plan 2 Guidelines for Assessing Wireless Standards for Smart Grid Applications ..................................................................................................................................... 8 3 SMART GRID CONCEPTUAL MODEL AND BUSINESS FUNCTIONAL REQUIREMENTS .................. 13 3.1 SMART GRID CONCEPTUAL REFERENCE DIAGRAMS

Magee, Joseph W.

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Data quality assurance and performance measurement of data mining for preventive maintenance of power grid  

E-Print Network (OSTI)

Ensuring reliability as the electrical grid morphs into the "smart grid" will require innovations in how we assess the state of the grid, for the purpose of proactive maintenance, rather than reactive maintenance; in the ...

Wu, Leon

2011-01-01T23:59:59.000Z

342

Combination field chopper and battery charger  

DOE Patents (OSTI)

A power transistor used in a chopper circuit to control field excitation of a vehicle motor when in a power mode is also used to control charging current from an a-c to d-c rectifier to the vehicle battery when in a battery charging mode. Two isolating diodes and a small high frequency filter inductor are the only elements required in the chopper circuit to reconfigure the circuit for power or charging modes of operation.

Steigerwald, R.L.; Crouch, K.E.; Wilson, J.W.A.

1979-08-13T23:59:59.000Z

343

Combination field chopper and battery charger  

SciTech Connect

A power transistor used in a chopper circuit to control field excitation of a vehicle motor when in a power mode is also used to control charging current from an a-c to d-c rectifier to the vehicle battery when in a battery charging mode. Two isolating diodes and a small high frequency filter inductor are the only elements required in the chopper circuit to reconfigure the circuit for power or charging modes of operation.

Steigerwald, Robert L. (Scotia, NY); Crouch, Keith E. (Pittsfield, MA); Wilson, James W. A. (Scotia, NY)

1981-01-01T23:59:59.000Z

344

Performance Analysis of Off-Grid Micro WECS in Harsh  

E-Print Network (OSTI)

wind power at off-grid sites · Motivated by high cost and environmental risk of traditional diesel Labrador · Originally powered solely by diesel generators with battery bank · Solar power introduced at sites in early 1990's · Wind power installation began in 2003 #12;4/19 Background · Now implementing

Bruneau, Steve

345

MIRABEL DW: managing complex energy data in a smart grid  

Science Conference Proceedings (OSTI)

In the MIRABEL project, a data management system for a smart grid is developed to enable smarter scheduling of energy consumption such that, e.g., charging of car batteries is done during night when there is an overcapacity of green energy ...

Laurynas Siksnys; Christian Thomsen; Torben Bach Pedersen

2012-09-01T23:59:59.000Z

346

Advanced Intermediate-Temperature Na-S Battery  

Science Conference Proceedings (OSTI)

In this study, we reported an intermediate-temperature (~150°C) sodium-sulfur (Na-S) battery. With a reduced operating temperature, this novel battery can potentially reduce the cost and safety issues associated with the conventional high-temperature (300~350°C) Na-S battery. A dense ?"-Al2O3 solid membrane and tetraglyme were utilized as the electrolyte separator and catholyte solvent in this battery. Solubility tests indicated that cathode mixture of Na2S4 and S exhibited extremely high solubility in tetraglyme (e.g., > 4.1 M for Na2S4 + 4 S). CV scans of Na2S4 in tetraglyme revealed two pairs of redox couples with peaks at around 2.22 and 1.75 V, corresponding to the redox reactions of polysulfide species. The discharge/charge profiles of the Na-S battery showed a slope region and a plateau, indicating multiple steps and cell reactions. In-situ Raman measurements during battery operation suggested that polysulfide species were formed in the sequence of Na2S5 + S ? Na2S5 + Na2S4? Na2S4 + Na2S2 during discharge and in a reverse order during charge. This battery showed dramatic improvement in rate capacity and cycling stability over room-temperature Na-S batteries, which makes it attractive for renewable energy integration and other grid related applications.

Lu, Xiaochuan; Kirby, Brent W.; Xu, Wu; Li, Guosheng; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo (Gary)

2013-01-01T23:59:59.000Z

347

Smart Grid Cyber Security Strategy and Requirements  

E-Print Network (OSTI)

(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analysis to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems. This Interagency Report discusses ITL’s research, guidance, and outreach efforts in computer security and its collaborative activities with industry, government, and academic organizations. National Institute of Standards and Technology Interagency Report 7628 (draft) 305 pages (February 2010) Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. Acknowledgments

The Smart; Grid Interoperability

2010-01-01T23:59:59.000Z

348

Hidden costs of power cuts and battery backups  

Science Conference Proceedings (OSTI)

Many developing countries suffer from intense electricity deficits. For instance, the Indian electricity sector, despite having the world's fifth largest installed capacity, suffers from severe energy and peak power shortages. In February 2013, these ... Keywords: battery backups, electricity storage, inverters, losses, power cuts, power grids, uninterrupted power supply, ups

Deva P. Seetharam, Ankit Agrawal, Tanuja Ganu, Jagabondhu Hazra, Venkat Rajaraman, Rajesh Kunnath

2013-01-01T23:59:59.000Z

349

Questions and Answers for the Smart Grid Investment Grant Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercially Valuable Smart Grid Data Commercially Valuable Smart Grid Data Questions and Answers for the Smart Grid Investment Grant Program: Commercially Valuable Smart Grid Data Questions and answers for the Smart Grid Investment Grant Program on commercially valuable smart grid data, presenting an approach for ensuring the confidentiality of information that contains confidential and/or propriety information that recipients of Smart Grid Investment Grant awards under the American Recovery and Reinvestment Act are required to submit in carrying out their Metrics and Benefits Reporting Plan obligations Questions and Answers for the Smart Grid Investment Grant Program: Commercially Valuable Smart Grid Data More Documents & Publications Questions and Answers for the Smart Grid Investment Grant Program:

350

Electric Energy Challenges of the Future Future Grid Thrust Area 1 White Paper  

E-Print Network (OSTI)

being developed for the smart grid will change grid operations and grid characteristics. With high- prove system reliability and facilitate the management of variable renewable resources. Smart Grid Technologies Future smart grid technologies will also impact reserve requirement determination and our ability

351

Data Quality Assurance and Performance Measurement of Data Mining for Preventive Maintenance of Power Grid  

E-Print Network (OSTI)

- able and intelligent electricity distribution and transmission system, i.e., power grid. The smart grid Ensuring reliability as the electrical grid morphs into the "smart grid" will require innovations in how we has been defined as an automated electric power system that monitors and con- trols grid activities

Rudin, Cynthia

352

Battery condition indicator  

SciTech Connect

A battery condition indicator is described for indicating both the charge used and the life remaining in a rechargeable battery comprising: rate multiplying and counting means for indirectly measuring the charge useed by the battery between charges; means for supplying variable rate clock pulse to the rate multiplying and counting means, the rate of the clock pulses being a function of whether a high current consumption load is connected to the battery or not; timing means for measuring the total time in service of the battery; charge used display means responsive to the rate multiplying and counting means for providing an indication of the charge remaining in the battery; and age display means responsive to the timing means for providing an indication of the life or age of the battery.

Fernandez, E.A.

1987-01-20T23:59:59.000Z

353

Industrial battery stack  

SciTech Connect

A novel industrial battery stack is disclosed, wherein positive plates which have been longitudinally wrapped with a perforate or semi-perforate material are accurately aligned with respect to the negative plates and separators in the stack during the stacking operation. The novel spacing members of the present invention have a generally U-shaped cross section for engaging through the wrapping a portion of the positive plate adjacent to the longitudinal edges of that plate. Projections protruding substantially from the base of the ''U'' provide the proper distance between the edge of the wrapped plate and an adjacent longitudinal surface. During the stacking and burning operation, this longitudinal surface comprises the back wall of a novel industrial battery plate holder. Following the burning of the battery stack and its subsequent assembly into an appropriate industrial battery case, the spacing member or members act to protect the positive battery plates and retain them in their proper alignment during the operation of the battery. Applicants have also provided a novel apparatus and method for stacking, aligning and burning industrial battery stacks which comprises a battery stack holder having several upstanding walls which define a stacking column having a coplanar terminus. An adjustably locatable partition within said stacking column may be disposed at any of a plurality of positions parallel with respect to the coplanar terminus so that the battery stack holder may be adjusted for any of a variety of given sizes of plates and separators. The battery plates and separators may then be stacked into the battery stack holder so that only the plate lugs extrude beyond the coplanar terminus. A dam is insertable along the top of the battery plates and across the top of the upstanding side walls of the battery stack holder to facilitate the rapid efficient burning of the industrial battery stack.

Digiacomo, H.L.; Sacco, J.A.

1980-08-19T23:59:59.000Z

354

Collecting battery data with Open Battery Gareth L. Jones1  

E-Print Network (OSTI)

Collecting battery data with Open Battery Gareth L. Jones1 and Peter G. Harrison2 1,2 Imperial present Open Battery, a tool for collecting data on mobile phone battery usage, describe the data we have a useful tool in future work to describe mobile phone battery traces. 1998 ACM Subject Classification D.4

Imperial College, London

355

Grid Strategy 2011: Energy Storage Monetization  

Science Conference Proceedings (OSTI)

Energy storage is the only grid asset with the ability to act both as a load and a generation source by first storing energy for a limited duration and then releasing it. It is a flexible grid asset capable of providing multiple grid benefits. However, aside from large pumped hydro storage plants, very little energy storage has been deployed on the grid. Due to the high cost of energy storage, aggregation of multiple benefits is generally required to justify the investment. Due to the limited duration of...

2011-10-14T23:59:59.000Z

356

Ion mobility spectrometer with virtual aperture grid  

DOE Patents (OSTI)

An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

Pfeifer, Kent B. (Los Lunas, NM); Rumpf, Arthur N. (Albuquerque, NM)

2010-11-23T23:59:59.000Z

357

The Grid-idea and its evolution.  

SciTech Connect

In this paper we review the essence of the Grid-Idea. Specifically, we explore the changing definition of the Grid and follow its evolution over the past decade. This evolution is motivated by the gradual expansion of management issues that must be addressed to make production Grids a reality and to meet user requirements for increased functionality. Additionally, we focus on the evolutionary path of the Globus Toolkit taken to address the increasing needs of the community. We also discuss the evolutionary inclusion of commodity technologies as illustrated by the Java Commodity Grid Project.

von Laszewski, G.; Mathematics and Computer Science

2005-01-01T23:59:59.000Z

358

FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced  

E-Print Network (OSTI)

of the FPGI GridOPTICSTM program and other tools developed at PNNL to provide synergistic tool development application of HPC to critical Power Grid simulations and provide great benefits to PNNL, DOE, and industrial and integrate them with sophisti- cated mathematical models to conduct November 2012 PNNL-SA-90076 Bruce Palmer

359

A novel grid middleware architecture  

Science Conference Proceedings (OSTI)

The important field associated to high throughput computing (HTC) [1] emerged as grid computing. With the development of cluster computing the overheads of the hardware required to execute rigorous computations has been reduced. The major drawback of ... Keywords: RASMC (resource and state management container), TDACClient (thread distribution and allocationclient), TDACServer (thread distribution and allocationserver)

Muhammad Asad Khan; Tamleek Ali; Muhammad Irfan; Khurram Ali Shah; Farhan Ali

2010-12-01T23:59:59.000Z

360

Urban Electric Power Takes Energy Storage from Startup to Grid-Scale |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Urban Electric Power Takes Energy Storage from Startup to Urban Electric Power Takes Energy Storage from Startup to Grid-Scale Urban Electric Power Takes Energy Storage from Startup to Grid-Scale June 25, 2013 - 12:42pm Addthis Learn how the CUNY Energy Institute is creating safe, low cost, rechargeable, long lifecycle batteries that could be used to store renewable energy. | Video courtesy of the Energy Department. Alexa McClanahan Communications Support Contractor to ARPA-E What are the key facts? The CUNY Energy Institute developed a low-cost zinc-anode rechargeable battery that can be used for grid-scale energy storage. Building on this technology, ARPA-E funded the CUNY Energy Institute to develop a long-lasting, fully rechargeable battery that can store renewable energy for future grid-use at any location. In 2012, Urban Electric Power was formed to commercialize the

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Urban Electric Power Takes Energy Storage from Startup to Grid-Scale |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Urban Electric Power Takes Energy Storage from Startup to Urban Electric Power Takes Energy Storage from Startup to Grid-Scale Urban Electric Power Takes Energy Storage from Startup to Grid-Scale June 25, 2013 - 12:42pm Addthis Learn how the CUNY Energy Institute is creating safe, low cost, rechargeable, long lifecycle batteries that could be used to store renewable energy. | Video courtesy of the Energy Department. Alexa McClanahan Communications Support Contractor to ARPA-E What are the key facts? The CUNY Energy Institute developed a low-cost zinc-anode rechargeable battery that can be used for grid-scale energy storage. Building on this technology, ARPA-E funded the CUNY Energy Institute to develop a long-lasting, fully rechargeable battery that can store renewable energy for future grid-use at any location. In 2012, Urban Electric Power was formed to commercialize the

362

Smart Grid Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Grid Overview Ben Kroposki, PhD, PE Director, Energy Systems IntegraLon NaLonal Renewable Energy Laboratory What is t he S mart Grid? and DER Source: NIST/EPRI Architecture Task Group The S mart Grid is the electricity producHon a nd delivery s ystem along with consumpHon integrated with communicaHons and informaHon technology The S mart Grid is an automated, widely distributed energy delivery network characterized by a two---way flow of electricity and informaHon, capable of monitoring a nd responding t o changes in everything f rom power plants to customer preferences t o individual appliances. 2 Grid ModernizaHon - Smart Grid Scope Transmission DistribuHon End---Use and DER 2010 Smart Grid System Report, February 2012 hNp://energy.gov/sites/prod/files/2010%20Smart%20Grid%20System%20Report.pdf 3 Smart Grid Vision

363

Smart Grid Consortium, Response of New York State Smart Grid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consortium, Response of New York State Smart Grid Addressing Policy and Logistical Challenges Smart Grid Consortium, Response of New York State Smart Grid Addressing Policy and...

364

Batteries - Next-generation Li-ion batteries Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-generation Li-ion batteries Next-generation Li-ion batteries EV Everywhere Workshop July 26, 2012 Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * Overall, everything is achievable, but, clearly, the cost targets are dramatic, particularly for AEV 300. (I have discussed this with Yet-Ming Chiang, who has a good feel for cost reductions, both their importance and interesting approaches.) * AEV 100 achievable with a good silicon/graphite composite anode and LMRNMC (unsure timeline) * AEV 300 would require cycleable Li-metal anode and UHVHC cathode (can't get there with Li-ion intercalation on both electrodes) (unsure timeline) Barriers Interfering with Reaching the Targets * Pack - too high a fraction of inactive materials/inefficient engineering designs.

365

Recommended mission directed goals for electric vehicle battery research and development. The task force on electric vehicle battery goals  

SciTech Connect

Research and development goal packages were developed for the state-of-the-art, flow-through, and bipolar lead-acid batteries, nickel/iron, nickel/zinc, nickel/cadmium, zinc/bromine, iron/air, lithium/iron sulfide, and sodium/sulfur technologies. Since each battery must satisfy mission power/energy requirements throughout every cycle of its operating life, the principal ''design point'' is the end-of-life condition. Since all batteries exhibit deteriorating performance with age, excess kWh capacity of 20 to 30 percent is required early in life. The Battery Panel first identified present state-of-the-art performance characteristics and design interrelationships for each battery technology, and projected the degree of advance expected by 1995. Near-term and 1995 design tradeoffs were modeled using the EVA computerized system developed by ANL. The next step was to target each battery system for a single range (80, 120 or 160 km), depending on its projected 1995 capabilities. For each battery, baseline calculations were carried out assuming the maximum battery weight (695 kg) to be on board. In addition to performance, life, and cost goals, development targets were also established for efficiency, maintenance, and allowable self-discharge rate. The Task Force attempted to establish battery cost requirements, assuming economic parity (in 1995) with other modes of transportation.

Not Available

1986-03-01T23:59:59.000Z

366

Grid-Connected Renewable Energy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid-Connected Renewable Energy Systems Grid-Connected Renewable Energy Systems Grid-Connected Renewable Energy Systems July 2, 2012 - 8:21pm Addthis When connecting a home energy system to the electric grid, research and consider equipment required as well as your power provider’s requirements and agreements. | Photo courtesy of Solar Design Associates, Inc. When connecting a home energy system to the electric grid, research and consider equipment required as well as your power provider's requirements and agreements. | Photo courtesy of Solar Design Associates, Inc. What are the key facts? While renewable energy systems are capable of powering houses and small businesses without any connection to the electricity grid, many people prefer the advantages that grid-connection offers. Aside from the major small renewable energy system components, you

367

Dairyland Power Cooperative Comments on Smart Grid RFI: Addressing Policy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comments on Smart Grid RFI: Addressing Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges Dairyland Power Cooperative Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges Dairyland Power Cooperative is a generation and transmission cooperative (G&T) that provides the wholesale electrical requirements and other services for 25 electric distribution cooperatives and 16 municipal utilities in the Upper Midwest. Smart Grid RFI: Addressing Policy and Logistical Challenges More Documents & Publications AARP, National Consumer Law Center, and Public Citizen Comments to:DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical Challenges Florida Power and Light Comments on Smart Grid Request For Information (RFI): Addressing Policy & Logistical Challenges.

368

Battery utilizing ceramic membranes  

SciTech Connect

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

1994-01-01T23:59:59.000Z

369

Lithium battery management system  

SciTech Connect

Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

Dougherty, Thomas J. (Waukesha, WI)

2012-05-08T23:59:59.000Z

370

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicle types, configurations, and use strategies - Accounting for the added utility, battery wear, and infrastructure costs of range-extension techniques (battery swap, fast...

371

Mesoporous Block Copolymer Battery Separators  

E-Print Network (OSTI)

is ~1-2 $ kg -1 , the cost of battery separators is ~120-240greatly reduce the cost of battery separators. Our approach1-2 $ kg -1 , the cost of a typical battery separator is in

Wong, David Tunmin

2012-01-01T23:59:59.000Z

372

Feature - Lithium-air Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Develop Lithium-Air Battery Li-air Li-air batteries hold the promise of increasing the energy density of Li-ion batteries by as much as five to 10 times. But that potential will...

373

Grid regulation services for energy storage devices based on grid frequency  

DOE Patents (OSTI)

Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

2013-07-02T23:59:59.000Z

374

FUTURE POWER GRID INITIATIVE GridOPTICSTM  

E-Print Network (OSTI)

of individual software products November 2012 PNNL-SA-90162 Ian Gorton Pacific Northwest National Laboratory (509) 375-3850 ian.gorton@pnnl.gov ABOUT FPGI The Future Power Grid Initiative (FPGI) will deliver next National Laboratory's (PNNL) national electric grid research facility, the FPGI will advance the science

375

Energy Materials: Battery Technologies  

Science Conference Proceedings (OSTI)

... batteries of miniature electronic devices to large power source of electric vehicles. ... process developments on electrodes and separators and safety design.

376

Zinc-Nickel Battery  

The short lifetime of the conventional zinc-nickel oxide battery has been the primary factor limiting its commercial use, ... Higher voltage, lower co ...

377

Battery Photo Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Analysis Computing Center Working With Argonne Contact TTRDC Battery Photo Archive The following images may be used freely as long as they are accompanied...

378

ECE 5332 Communications and Control in Smart Grid Syllabus Instructor  

E-Print Network (OSTI)

confidentiality issues: (1) Ensuring that its cyber security standards incorporate into Smart Grid architecture and the final security architecture. Comments on draft NISTIR 7628, Smart Grid Cyber Security Strategy NIST Interagency Report (NISTIR) 7628, Smart Grid Cyber Security Strategy and Requirements; Request

Mohsenian-Rad, Hamed

379

Fuel rod support grid  

DOE Patents (OSTI)

A grid for the support of nuclear fuel rods arranged in a triangular array. The grid is formed by concentric rings of strap joined by radially arranged web sections.

Downs, Robert E. (Monroeville, PA); Schwallie, Ambrose L. (Greensburg, PA)

1985-01-01T23:59:59.000Z

380

A transparent grid filesystem  

Science Conference Proceedings (OSTI)

Existing data management solutions fail to adequately support data management needs at the inter-grid (interoperability) level. We describe a possible solution, a transparent grid filesystem, and consider in detail a challenging use case.

Brian Coghlan; Geoff Quigley; Soha Maad; Gabriele Pierantoni; John Ryan; Eamonn Kenny; David O'Callaghan

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Smart Grid.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

electric vehicles and the smart grid " Presented at " Plug-In 2011" June 19, 2011" EV SMART GRID INTEGRATION" n Off peak energy sales" * AMR smart meter" * TOU EV rate" n...

382

Smart Grid Video  

NLE Websites -- All DOE Office Websites (Extended Search)

Video: Smart Grid Technology Interactive Model Argonne engineer Ted Bohn talks about the smart grid and how it could help consumers. By making two-way communication a central part...

383

Redox Flow Batteries, a Review  

E-Print Network (OSTI)

to Spur Transition to Smart Grid. Available: http://of storage into the smart grid also promises to enablewidespread adoption of smart grid technologies could yield a

Weber, Adam Z.

2013-01-01T23:59:59.000Z

384

Utility Battery Storage Systems Program Report for FY92  

DOE Green Energy (OSTI)

This report documents the fiscal year 1992 activities of the, Utility Battery Storage Systems Program (UBS) of the US Department of Energy (DOE), Office of Energy Management (OEM). The UBS program is conducted by Sandia National Laboratories (SNL). UBS is responsible for the engineering development of integrated battery systems for use in utility-energy-storage (UES) and other stationary applications. Development is accomplished primarily through cost-shared contracts with industrial organizations. An important part of the development process is the identification, analysis, and characterization of attractive UES applications. UBS is organized into five projects: Utility Battery Systems Analyses; Battery Systems Engineering; Zinc/Bromine; Sodium/Sulfur; Supplemental Evaluations and Field Tests. The results of the Utility Systems Analyses are used to identify several utility-based applications for which battery storage can effectively solve existing problems. The results will also specify the engineering requirements for widespread applications and motivate and define needed field evaluations of full-size battery systems.

Butler, P.C.

1993-01-01T23:59:59.000Z

385

Characterization of electrochemical systems and batteries: Materials and systems  

SciTech Connect

Materials are a pacing problem in battery development. The battery environment, particularly in rechargeable batteries, places great demands on materials. Characterization of battery materials is difficult because of their complex nature. In many cases meaningful characterization requires iii situ methods. Fortunately, several new electrochemical and spectroscopic techniques for in situ characterization studies have recently become available, and reports of new techniques have become more frequent. The opportunity now exists to utilize advanced instrumentation to define detailed features, participating chemical species and interfacial structure of battery materials with a precision heretofore not possible. This overview gives key references to these techniques and discusses the application of x-ray absorption spectroscopy to the study of battery materials.

McBreen, J.

1992-01-01T23:59:59.000Z

386

Characterization of electrochemical systems and batteries: Materials and systems  

SciTech Connect

Materials are a pacing problem in battery development. The battery environment, particularly in rechargeable batteries, places great demands on materials. Characterization of battery materials is difficult because of their complex nature. In many cases meaningful characterization requires iii situ methods. Fortunately, several new electrochemical and spectroscopic techniques for in situ characterization studies have recently become available, and reports of new techniques have become more frequent. The opportunity now exists to utilize advanced instrumentation to define detailed features, participating chemical species and interfacial structure of battery materials with a precision heretofore not possible. This overview gives key references to these techniques and discusses the application of x-ray absorption spectroscopy to the study of battery materials.

McBreen, J.

1992-12-01T23:59:59.000Z

387

Studying the Communications Requirements of Electric Utilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities...

388

Prieto Battery | Open Energy Information  

Open Energy Info (EERE)

Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References Prieto Battery1 LinkedIn Connections CrunchBase...

389

Redox Flow Batteries: a Review  

NLE Websites -- All DOE Office Websites (Extended Search)

1137-1164 Date Published 102011 ISSN 1572-8838 Keywords Flow battery, Flow cell, Redox, Regenerative fuel cell, Vanadium Abstract Redox flow batteries (RFBs) are enjoying a...

390

Phylion Battery | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Phylion Battery Jump to: navigation, search Name Phylion Battery Place Suzhou, Jiangsu Province,...

391

Nanowire Lithium-Ion Battery  

Science Conference Proceedings (OSTI)

... workings of Li-ion batteries, they either lack the nanoscale spatial resolution commensurate with the morphology of the active battery materials and ...

2012-10-02T23:59:59.000Z

392

How Green Is Battery Recycling?  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaines Center for Transportation Research Argonne National Laboratory How Green Is Battery Recycling? 28 th International Battery Seminar and Exhibit Ft. Lauderdale, FL March...

393

Argonne to Advise Battery Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

and Analysis Computing Center Working With Argonne Contact TTRDC Argonne to advise battery alliance Lithium ion batteries are anticipated to replace gasoline as a major source...

394

Advanced Flow-Battery Systems  

Science Conference Proceedings (OSTI)

Presentation Title, Advanced Flow-Battery Systems ... Abstract Scope, Flow- battery systems (FBS) were originally developed over 30 years ago and have since ...

395

Lithium-Ion Battery Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Battery Issues IEA Workshop on Battery Recycling Hoboken, Belgium September 26-27, 2011 Linda Gaines Center for Transportation Research Argonne National Laboratory...

396

Smart Grid Program  

Science Conference Proceedings (OSTI)

... Science for Distributed Energy Resources and ... Power Conditioning Systems for Renewables, Storage, and ... Building Integration with Smart Grid ...

2013-08-01T23:59:59.000Z

397

High assurance smart grid  

Science Conference Proceedings (OSTI)

As electrical grids evolve through the introduction of additional 'smart' sensors and actuators, cyber security becomes an even more significant factor. Information Assurance controls must be implemented throughout the grid, from large scale power generating ... Keywords: Smart Grid, cyber security, information assurance, standards, trust model

Thomas M. Overman; Terry L. Davis; Ronald W. Sackman

2010-04-01T23:59:59.000Z

398

Metagenomics Smart power grid  

E-Print Network (OSTI)

Metagenomics Smart power grid The new weapons workhorse Laser on Mars LOS ALAMOS SCIENCE'll read about a unique collaboration to create a "smart" power grid to accommodate an increasing, TECHNOLOGY, AND ENGINEERING 2 8 14 Dynamic Vision DARHT FULFILLS ITS DESTINY Solar Smart Grid in the Atomic

399

Smart Grid Leadership Report: Global Smart Grid Implementation Assessment  

Science Conference Proceedings (OSTI)

Through its Smart Grid Demonstration Initiative, EPRI and the Galvin Electricity Initiative developed a survey to assess the development and deployment of Smart Grid projects worldwide. The survey identified leaders in Smart Grid advancement, key applications, drivers in developing a Smart Grid project, and lessons learned from Smart Grid initiatives, with emphasis on the integration of distributed energy resources with grid operation. Critical to Smart Grid success is coordination of Smart Grid research...

2010-10-11T23:59:59.000Z

400

Smart Grid Investment Grants (SGIG) Kickoff Meeting Negotiating Group  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grants (SGIG) Kickoff Meeting Negotiating Grants (SGIG) Kickoff Meeting Negotiating Group Question and Answer Sessions November 19, 2009 Smart Grid Investment Grants (SGIG) Kickoff Meeting Negotiating Group Question and Answer Sessions November 19, 2009 Smart Grid Investment Grants (SGIG) Kickoff Meeting Negotiating Group Question/Answer Sessions. DOE will be gathering information about the questions concerning cyber requirements, metrics and reporting requirements. Smart Grid Investment Grants (SGIG) Kickoff Meeting Negotiating Group Question and Answer Sessions November 19, 2009 More Documents & Publications Smart Grid Investment Grant Program (SGIG): Recipient Workshop Closing Remarks, December 11, 2009 Smart Grid Investment Grant Program (SGIG) Recipient Workshop: Introduction by Rich Scheer, December 11, 2009

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Anti-Idling Battery for Truck Applications  

DOE Green Energy (OSTI)

In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

Keith Kelly

2011-09-30T23:59:59.000Z

402

Grid Logging: Best Practices Guide  

Science Conference Proceedings (OSTI)

The purpose of this document is to help developers of Grid middleware and application software generate log files that will be useful to Grid administrators, users, developers and Grid middleware itself. Currently, most of the currently generated log files are only useful to the author of the program. Good logging practices are instrumental to performance analysis, problem diagnosis, and security auditing tasks such as incident tracing and damage assessment. This document does not discuss the issue of a logging API. It is assumed that a standard log API such as syslog (C), log4j (Java), or logger (Python) is being used. Other custom logging API or even printf could be used. The key point is that the logs must contain the required information in the required format. At a high level of abstraction, the best practices for Grid logging are: (1) Consistently structured, typed, log events; (2) A standard high-resolution timestamp; (3) Use of logging levels and categories to separate logs by detail and purpose; (4) Consistent use of global and local identifiers; and (5) Use of some regular, newline-delimited ASCII text format. The rest of this document describes each of these recommendations in detail.

Tierney, Brian L; Tierney, Brian L; Gunter, Dan

2008-04-01T23:59:59.000Z

403

NIST Seeks Public Input on Updated Smart Grid Cybersecurity ...  

Science Conference Proceedings (OSTI)

... architecture and high-level security requirements. Vol. 2 addresses privacy issues, containing a discussion of potential privacy issues in smart grid ...

2013-11-05T23:59:59.000Z

404

DRAFT NISTIR 7628 Revision 1, Guidelines for Smart Grid ...  

Science Conference Proceedings (OSTI)

... may 879 provide access to system assets, and ... 928 Most functions of the Smart Grid, such as ... of use (TOU), and distribution automation (DA), require ...

2013-10-28T23:59:59.000Z

405

Condition responsive battery charging circuit  

SciTech Connect

A battery charging circuit includes a ferroresonant transformer having a rectified output for providing a constant output voltage to be supplied to a battery to be charged. Battery temperature is sensed providing an input to a control circuit which operates a shunt regulator associated with the ferroresonant transformer to provide battery charge voltage as a function of battery temperature. In response to a high battery temperature the controller functions to lower the output voltage to the battery, and in response to a low battery temperature, operates to provide a higher output voltage, with suitable control for any battery temperature between minus 10* and plus 150* fahrenheit. As the battery approaches full charge and battery acceptance current falls below a predetermined level, a charge cycle termination control allows charging to continue for a period preset by the operator, at the end of which period, line voltage is removed from the charger thereby terminating the charge cycle.

Reidenbach, S.G.

1980-06-24T23:59:59.000Z

406

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

407

Battery paste expander material  

SciTech Connect

Battery paste expander material for the negative plate of a lead--acid storage battery had the following composition: finely divided carbon; barium sulfate; lignosulfonic acid; sulfur; carbohydrates; and Ca/sup 2 +/, Na/sup +/, and NH/sub 4//sup +/ ions. (RWR)

Limbert, J.L.; Procter, H.G.; Poe, D.T.

1971-10-26T23:59:59.000Z

408

NIST and the Smart Grid  

Science Conference Proceedings (OSTI)

... 4b. Smart Grid Standards Assessment 4b. Smart Grid Standards Assessment 4a. Security Architecture 4a. Security Architecture ...

2010-09-28T23:59:59.000Z

409

NIST Testimony on Smart Grid  

Science Conference Proceedings (OSTI)

NIST Testimony on Smart Grid. 2011. ... G. Arnold House Science Committee Testimony, July 1, 2010 Smart Grid Interoperability Standards Progress. ...

2010-10-05T23:59:59.000Z

410

Battery capacity measurement and analysis using lithium coin cell battery  

Science Conference Proceedings (OSTI)

Keywords: DC/DC converter, battery, coin cell, data acquisition, embedded system, energy estimation, power estimation

Sung Park; Andreas Savvides; Mani Srivastava

2001-08-01T23:59:59.000Z

411

National Transmission Grid Study  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Study Grid Study U.S. Department of Energy The Honorable Spencer Abraham Secretary of Energy May 2002 ii National Transmission Grid Study National Transmission Grid Study i ii National Transmission Grid Study National Transmission Grid Study iii How This Study Was Conducted The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE's Policy Office Electricity Modeling System (POEMS). DOE's analysis, presented in Section 2, confirms the central role of the nation's transmission

412

Understanding The Smart Grid  

Science Conference Proceedings (OSTI)

The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology providers involved in the Smart Grid and provides profiles on them including contact information, company overviews, technology reviews, and key Smart Grid activities.

NONE

2007-11-15T23:59:59.000Z

413

Grid Collector: Facilitating Efficient Selective Access from DataGrids  

Science Conference Proceedings (OSTI)

The Grid Collector is a system that facilitates the effective analysis and spontaneous exploration of scientific data. It combines an efficient indexing technology with a Grid file management technology to speed up common analysis jobs on high-energy physics data and to enable some previously impractical analysis jobs. To analyze a set of high-energy collision events, one typically specifies the files containing the events of interest, reads all the events in the files, and filters out unwanted ones. Since most analysis jobs filter out significant number of events, a considerable amount of time is wasted by reading the unwanted events. The Grid Collector removes this inefficiency by allowing users to specify more precisely what events are of interest and to read only the selected events. This speeds up most analysis jobs. In existing analysis frameworks, the responsibility of bringing files from tertiary storages or remote sites to local disks falls on the users. This forces most of analysis jobs to be performed at centralized computer facilities where commonly used files are kept on large shared file systems. The Grid Collector automates file management tasks and eliminates the labor-intensive manual file transfers. This makes it much easier to perform analyses that require data files on tertiary storages and remote sites. It also makes more computer resources available for analysis jobs since they are no longer bound to the centralized facilities.

Wu, Kesheng; Gu, Junmin; Lauret, Jerome; Poskanzer, Arthur M.; Shoshani, Arie; Sim, Alexander; Zhang, Wei-Ming

2005-05-17T23:59:59.000Z

414

Commercially Valuable Smart Grid Data  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 4, 2010 1 February 4, 2010 1 Commercially Valuable Smart Grid Data Commercially Valuable Smart Grid Data Question: What is the Department of Energy's (DOE's) approach for ensuring confidentiality of information that contains confidential and/or proprietary information that recipients are required to submit in carrying out their Metrics and Benefits Reporting Plan obligations? Answer: DOE does not anticipate requiring delivery of any "proprietary" information, i.e., confidential information developed at private expense outside the DOE grant. For data developed under a SGIG grant, DOE has the right to obtain and publish such data. However, certain "commercially valuable data" as set forth in more detail below, may be protected from publication.

415

Food Battery Competition Sponsored by  

E-Print Network (OSTI)

Food Battery Competition Sponsored by: The University of Tennessee, Materials Research Society (MRS growing populations and energy needs forever. Batteries have evolved a great deal and when you compare the bulky, heavy, toxic car lead batteries to the novel and outstanding lithium-ion batteries, you can

Tennessee, University of

416

Substation battery-maintenance procedures  

SciTech Connect

The frequency of substation battery failures is gratifyingly low. One trouble spot appears to be extraneous short circuits that drain an otherwise healthy battery. Use of the lead--calcium battery promises to reduce substantially the amount of maintenance that substation batteries need.

Timmerman, M.H.

1976-05-15T23:59:59.000Z

417

Efficient Power Profiling for Battery-Driven Embedded System Design  

E-Print Network (OSTI)

The ability to efficiently and accurately estimate battery life under different design choices at the system level is an important aid in designing battery-efficient systems. Recently developed battery models help by estimating battery life under given profiles of the battery discharge current over time. However, existing techniques for energy (or average power) estimation do not provide sufficient information (such as time profiles of system power consumption) to drive battery-life estimation. Techniques that are capable of generating such profiles often lack the efficiency required to support exploration at the system level. In this paper, we describe techniques for efficient generation of system-level power profiles, for use in a battery-life estimation framework. Our power profiling technique allows a designer to experiment with: 1) the mapping of system tasks to a set of architectural components and 2) the mapping of system communications to a specified communication architecture, and efficiently generate system power profiles for each alternative. The resulting profiles can then be analyzed using existing battery models to estimate battery lifetime and capacity. Extensive experiments conducted on an IEEE 802.11 MAC processor design demonstrate that our power profiler offers orders of magnitude improvement in runtimes over state-of-the-art cosimulation-based power estimation techniques, while suffering minimal loss of accuracy (average profiling error was 3.8%).

Kanishka Lahiri; Anand Raghunathan; Senior Member; Sujit Dey

2004-01-01T23:59:59.000Z

418

The NCRC Grid Scheduling Environment  

Science Conference Proceedings (OSTI)

In support of the NCRC, a joint computing center between NOAA and ORNL, a grid-based scheduling infrastructure was designed to allow geographically separate computing resources to be used as production resources in climate and weather research workflows. These workflows require job coordination between the two centers in order to provide a complete workflow of data staging, computation, post-analysis and archival. This paper details the design, implementation and initial production phase of the infrastructure and lessons learned from the process.

Indiviglio, Frank M [ORNL; Maxwell, Don E [ORNL

2011-01-01T23:59:59.000Z

419

Assessment of battery technologies for electric vehicles  

SciTech Connect

This document, Part 2 of Volume 2, provides appendices to this report and includes the following technologies, zinc/air battery; lithium/molybdenum disulfide battery; sodium/sulfur battery; nickel/cadmium battery; nickel/iron battery; iron/oxygen battery and iron/air battery. (FI)

Ratner, E.Z. (Sheladia Associates, Inc., Rockville, MD (USA)); Henriksen, G.L. (ed.) (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-02-01T23:59:59.000Z

420

Features of the Java commodity grid kit.  

SciTech Connect

In this paper we report on the features of the Java Commodity Grid Kit (Java CoG Kit). The Java CoG Kit provides middleware for accessing Grid functionality from the Java framework. Java CoG Kit middleware is general enough to design a variety of advanced Grid applications with quite different user requirements. Access to the Grid is established via Globus Toolkit protocols, allowing the Java CoG Kit to also communicate with the services distributed as part of the C Globus Toolkit reference implementation. Thus, the Java CoG Kit provides Grid developers with the ability to utilize the Grid, as well as numerous additional libraries and frameworks developed by the Java community to enable network, Internet, enterprise and peer-to-peer computing. A variety of projects have successfully used the client libraries of the Java CoG Kit to access Grids driven by the C Globus Toolkit software. In this paper we also report on the efforts to develop serverside Java CoG Kit components. As part of this research we have implemented a prototype pure Java resource management system that enables one to run Grid jobs on platforms on which a Java virtual machine is supported, including Windows NT machines.

von Laszewski, G.; Gawor, J.; Lane, P.; Rehn, N.; Russell, M.; Mathematics and Computer Science

2002-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Battery availability for near-term (1998) electric vehicles  

SciTech Connect

Battery Requirements were determined for a wide spectrum of electric vehicles ranging from 2-passenger sports cars and microvans to full-size vans with a payload of 500 kg. All the vehicles utilize ac, high voltage (340--360 V) powertrains and have acceleration performance (0--80 km/h in less than 15 seconds) expected to be the norm in 1988 electric vehicles. Battery packs were configured for each of the vehicles using families of sealed lead-acid and nickel-cadmium modules which are either presently available in limited quantities or are being developed by battery companies which market a similar battery technology. It was found that the battery families available encompass the Ah cell sizes required for the various vehicles and that they could be packaged in the space available in each vehicle. The acceleration performance and range of the vehicles were calculated using the SIMPLEV simulation program. The results showed that all the vehicles had the required acceleration characteristics and ranges between 80--160 km (50--100 miles) with the ranges using nickel-cadmium batteries being 40--60% greater than those using lead-acid batteries. Significant changes in the design of electric vehicles over the last fifteen years are noted. These changes make the design of the batteries more difficult by increasing the peak power density required from about 60 W/kg to 100--150 W/kg and by reducing the Ah cell size needed from about 150 Ah to 30--70 Ah. Both of these changes in battery specifications increase the difficulty of achieving low $/kWh cost and long cycle life. This true for both lead-acid and nickel-cadmium batteries. 25 refs., 6 figs., 16 tabs.

Burke, A.F.

1991-06-01T23:59:59.000Z

422

Low Temperature Sodium-Sulfur Grid Storage and EV Battery  

Energy. Energy Efficiency; Energy Storage and Recovery; Renewable Energy; Environmental Technologies. Monitoring and Imaging; Remediation; Modeling; Imaging & Lasers.

423

Redox Flow Batteries for Grid-scale Energy Storage - Energy ...  

Wind Energy; Partners (27) Visual Patent Search; Success Stories; News; Events; Startup America Industrial Technologies Energy Storage Redox ...

424

Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes  

SciTech Connect

BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

2010-07-01T23:59:59.000Z

425

PNGV battery test manual  

DOE Green Energy (OSTI)

This manual defines a series of tests to characterize aspects of the performance or life cycle behavior of batteries for hybrid electric vehicle applications. Tests are defined based on the Partnership for New Generation Vehicles (PNGV) program goals, although it is anticipated these tests may be generally useful for testing energy storage devices for hybrid electric vehicles. Separate test regimes are defined for laboratory cells, battery modules or full size cells, and complete battery systems. Some tests are common to all three test regimes, while others are not normally applicable to some regimes. The test regimes are treated separately because their corresponding development goals are somewhat different.

NONE

1997-07-01T23:59:59.000Z

426

Polymeric battery separators  

SciTech Connect

Configurations of cross-linked or vulcanized amphophilic or quaternized block copolymer of haloalkyl epoxides and hydroxyl terminated alkadiene polymers are useful as battery separators in both primary and secondary batteries, particularly nickel-zinc batteries. The quaternized block copolymers are prepared by polymerizing a haloalkyl epoxide in the presence of a hydroxyl terminated 1,3-alkadiene to form a block copolymer that is then reacted with an amine to form the quaternized or amphophilic block copolymer that is then cured or cross-linked with sulfur, polyamines, metal oxides, organic peroxides and the like.

Minchak, R. J.; Schenk, W. N.

1985-06-11T23:59:59.000Z

427

BEEST: Electric Vehicle Batteries  

SciTech Connect

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

428

Battery utilizing ceramic membranes  

DOE Patents (OSTI)

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

1994-08-30T23:59:59.000Z

429

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 2, Battery recycling and disposal  

SciTech Connect

Recycling and disposal of spent sodium-sulfur (Na/S) batteries are important issues that must be addressed as part of the commercialization process of Na/S battery-powered electric vehicles. The use of Na/S batteries in electric vehicles will result in significant environmental benefits, and the disposal of spent batteries should not detract from those benefits. In the United States, waste disposal is regulated under the Resource Conservation and Recovery Act (RCRA). Understanding these regulations will help in selecting recycling and disposal processes for Na/S batteries that are environmentally acceptable and cost effective. Treatment processes for spent Na/S battery wastes are in the beginning stages of development, so a final evaluation of the impact of RCRA regulations on these treatment processes is not possible. The objectives of tills report on battery recycling and disposal are as follows: Provide an overview of RCRA regulations and requirements as they apply to Na/S battery recycling and disposal so that battery developers can understand what is required of them to comply with these regulations; Analyze existing RCRA regulations for recycling and disposal and anticipated trends in these regulations and perform a preliminary regulatory analysis for potential battery disposal and recycling processes. This report assumes that long-term Na/S battery disposal processes will be capable of handling large quantities of spent batteries. The term disposal includes treatment processes that may incorporate recycling of battery constituents. The environmental regulations analyzed in this report are limited to US regulations. This report gives an overview of RCRA and discusses RCRA regulations governing Na/S battery disposal and a preliminary regulatory analysis for Na/S battery disposal.

Corbus, D.

1992-09-01T23:59:59.000Z

430

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network (OSTI)

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

431

MIGP: medical image grid platform based on HL7 grid middleware  

Science Conference Proceedings (OSTI)

MIGP (Medical Image Grid Platform) realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But ...

Hai Jin; Aobing Sun; Qin Zhang; Ran Zheng; Ruhan He

2006-10-01T23:59:59.000Z

432

Smart Grid Newsletter ? The Regulators Role in Grid Modernization...  

NLE Websites -- All DOE Office Websites (Extended Search)

below). So, if it's such a good deal, why isn't everyone jumping on board? Achieving a Smart Grid in the U.S. requires the alignment and cooperation of many stakeholders...

433

PHEV Battery Trade-Off Study and Standby Thermal Control (Presentation)  

DOE Green Energy (OSTI)

Describes NREL's R&D to optimize the design of batteries for plug-in hybrid electric vehicles to meet established requirements at minimum cost.

Smith, K.; Markel, T.; Pesaran, A.

2009-03-01T23:59:59.000Z

434

PHEV Battery Trade-Off Study and Standby Thermal Control (Presentation)  

SciTech Connect

Describes NREL's R&D to optimize the design of batteries for plug-in hybrid electric vehicles to meet established requirements at minimum cost.

Smith, K.; Markel, T.; Pesaran, A.

2009-03-01T23:59:59.000Z

435

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

436

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

Ethylene Carbonate for Lithium Ion Battery Use. Journal oflithium atoms in lithium-ion battery electrolyte. Chemicalcapacity fading of a lithium-ion battery cycled at elevated

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

437

Battery SEAB Presentation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battery SEAB Presentation Battery SEAB Presentation Battery SEAB Presentation More Documents & Publications Energy Storage Systems 2012 Peer Review Presentations - Day 1, Session 1...

438

Vehicle Technologies Office: Applied Battery Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Battery Research to someone by E-mail Share Vehicle Technologies Office: Applied Battery Research on Facebook Tweet about Vehicle Technologies Office: Applied Battery...

439

Aerospatiale Batteries ASB | Open Energy Information  

Open Energy Info (EERE)

Aerospatiale Batteries ASB Jump to: navigation, search Name Aerospatiale Batteries (ASB) Place France Product Research, design and manufacture of Thermal Batteries. References...

440

Battery SEAB Presentation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Battery SEAB Presentation Battery SEAB Presentation Battery SEAB Presentation More Documents...

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Automating Personalized Battery Management on Smartphones  

E-Print Network (OSTI)

get the new available battery capacity that can be assignedof expected lifetime of 1% battery capacity in minutes. Forof energy supply (battery capacity) and demand on cell

Falaki, Mohamamd Hossein

2012-01-01T23:59:59.000Z

442

What's Next for Batteries? - Energy Innovation Portal  

What's Next for Batteries? July 30, 2013. What will batteries look like in the future? How will they work? Argonne National Laboratory battery research experts ...

443

Smart Grid | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Grid Smart Grid Smart Grid Overview Smart Grid refers to electrical grids that automatically gather and communicate information on usage, allowing for remote and automated control to improve efficiency and reliability of the grid. The goals of Smart Grid technology are to allow greater consumer control, reduce pollution, improve reliability, and reduce costs. For a more detailed overview of the Smart Grid, visit the Energy.gov sites below: Smart Grid 2010 Smart Grid Report You can also view a series of short videos to learn more: SmartGrid.gov NOVA - Smart Grid Technology Smart Grid technology employs existing communications and manufacturing technology to automate and integrate the electrical grid. Sensors and meters gather data that is communicated and analyzed, allowing advanced

444

DOE Grids Service Transition  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Grids Service Transition DOE Grids Service Transition Services Overview ECS Audio/Video Conferencing Fasterdata IPv6 Network Network Performance Tools (perfSONAR) ESnet OID Registry PGP Key Service Virtual Circuits (OSCARS) DOE Grids Service Transition Contact Us Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net DOE Grids Service Transition Background ESnet has decided to transition support and management for the certificate services provided by the DOE Grids public key infrastructure (PKI) to the Open Sciences Grid (OSG). OSG and ESnet provide service to many of the same user communities, and have long been collaborators in the areas of identity

445

Towards a Distributed, Service-Oriented Control Infrastructure for Smart Grid  

Science Conference Proceedings (OSTI)

Smart Grid initiatives aim to overlay the existing power grid infrastructure with a communication and computation infrastructure to enable integration of renewable resources and increased efficiency and reliability of the electric power grid. This requires ... Keywords: Smart Grid, Cyber Physical Systems, Power System Informatics, Hard Real-Time Systems, Web Services, Model Transformation

Muhammad Umer Tariq; Santiago Grijalva; Marilyn Wolf

2011-04-01T23:59:59.000Z

446

Data quality assurance and performance measurement of data mining for preventive maintenance of power grid  

Science Conference Proceedings (OSTI)

Ensuring reliability as the electrical grid morphs into the "smart grid" will require innovations in how we assess the state of the grid, for the purpose of proactive maintenance, rather than reactive maintenance; in the future, we will not only react ... Keywords: data mining, data quality assurance, machine learning, performance measurement, power grid, preventive maintenance

Leon Wu; Gail Kaiser; Cynthia Rudin; Roger Anderson

2011-08-01T23:59:59.000Z

447

A Smarter Transmission Grid  

Science Conference Proceedings (OSTI)

Our modern transmission grid transports bulk power over long distances and across many provincial boundaries, but ever-increasing energy demands are significantly transforming it. Worldwide, many catalysts are driving this transformation, including emerging supply- and demand-side technologies, cyber security concerns, and aging infrastructures, to name just a few. As the grid transforms and more grid-connected renewable resources complicate reliability, it will be increasingly difficult to meet its futu...

2010-12-31T23:59:59.000Z

448

Smart Grid Communication Networks  

Science Conference Proceedings (OSTI)

... ITL staff led the evaluation of networking technologies for Smart Grid communication applications. ITL's staff lead the SGIP Priority Action Plans ...

2013-04-29T23:59:59.000Z

449

Grid Integration Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Integration Group The Demand Response Research Center (DRRC) conducts research that advances the near-term adoption of demand response (DR) technologies, policies, programs,...

450

Grid computing's future  

Science Conference Proceedings (OSTI)

Outreach programs and usability improvements are drawing many researchers to grid computing from disciplines that have not traditionally used such resources.

Kirk L. Kroeker

2011-03-01T23:59:59.000Z

451

Access Grid - CECM  

E-Print Network (OSTI)

"The Access Grid (AG) is the ensemble of resources that can be used to support ... We shall also illustrate the basic capture capacities that Smart Technology's ...

452

Smart Grid International Coordination  

Science Conference Proceedings (OSTI)

... Report on the APEC Workshop on Regulatory Approaches to Smart Grid Investment & Deployment (pdf) Release Date: May 16-17,2012 The ...

2013-05-09T23:59:59.000Z

453

Providing Grid Flexibility in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Providing Grid Flexibility in Wyoming and Montana Introduction Powder River Energy Corporation (PRECorp) is an electric cooperative serving approximately 11,900 customers in a...

454

Sharing Smart Grid Experiences  

NLE Websites -- All DOE Office Websites (Extended Search)

Sharing Smart Grid Experiences through Performance Feedback March 31, 2011 DOENETL- DE-FE0004001 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability...

455

AVESTAR® - Smart Grid  

NLE Websites -- All DOE Office Websites (Extended Search)

that can be exploited in research on dynamics, control, and decision-making to optimize smart grid operations and stability. The AVESTAR Center will also provide a realistic,...

456

Smart grid update  

Science Conference Proceedings (OSTI)

... 100 Bureau Drive, M/S 8100 Gaithersburg, MD 20899-8100. *. Bookmark and Share. Smart Grid Update. 2013. June; October.

2013-11-05T23:59:59.000Z

457

Batteries Breakout Session  

NLE Websites -- All DOE Office Websites (Extended Search)

models (trailers with engine or battery for long drives) "Out-of-the-Box" Ideas * High voltage packs> 600V Packs (getting rid of high current components) * Cars driven on...

458

Sodium sulfur battery seal  

DOE Patents (OSTI)

This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.

Mikkor, Mati (Ann Arbor, MI)

1981-01-01T23:59:59.000Z

459

Parallel flow diffusion battery  

DOE Patents (OSTI)

A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

Yeh, Hsu-Chi (Albuquerque, NM); Cheng, Yung-Sung (Albuquerque, NM)

1984-08-07T23:59:59.000Z

460

Parallel flow diffusion battery  

DOE Patents (OSTI)

A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

Yeh, H.C.; Cheng, Y.S.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Grid-Controlled Lightpaths for High Performance Grid Applications  

E-Print Network (OSTI)

be shared among users and easily integrated with data and computation Grids. Keywords: network support for a data Grid supported by a high-performance network. Another concern in deploying Grids over the InternetGrid-Controlled Lightpaths for High Performance Grid Applications Raouf Boutaba, Wojciech Golab

Boutaba, Raouf

462

Privacy in the Smart Grid Smart Grid 101  

E-Print Network (OSTI)

Privacy in the Smart Grid #12;Smart Grid 101 Energy and information flows in many directions, from Distributed Generation & StorageThird party services #12;#12;Smart Grid Hopes/Promises #1 ­Better Utilization Grid Hopes/ Promisses (II) "The Smart Grid will:" · Reduce CO2 emissions by up to 480 MMT by 2020

Hoepman, Jaap-Henk

463

Flywheel Battery Commercialization Study  

Science Conference Proceedings (OSTI)

High energy-density flywheel batteries, already in development as load leveling devices for electric and hybrid vehicles, have the potential to form part of an uninterruptible power supply (UPS) for utilities and their customers. This comprehensive assessment of the potential of flywheels in a power conditioning role shows that a sizeable market for flywheel battery-UPS systems may emerge if units can be manufactured in sufficient volume.

1999-09-23T23:59:59.000Z

464

Vanadium Redox Flow Batteries  

Science Conference Proceedings (OSTI)

The vanadium redox flow battery, sometimes abbreviated as VRB, is an energy storage technology with significant potential for application in a wide range of contexts. Vanadium redox batteries have already been used in a number of demonstrations in small-scale utility-scale applications, and it is believed that the technology is close to being viable for more widespread use. This report examines the vanadium redox technology, including technical performance and cost issues that drive its application today...

2007-03-30T23:59:59.000Z

465

Li-ion Batteries  

Science Conference Proceedings (OSTI)

Mar 12, 2012... are critical for the development of zero-emission electrical vehicles, large scale smart grid, and energy efficient cargo ships and locomotives.

466

Battery Capacity Measurement And Analysis  

E-Print Network (OSTI)

In this paper, we look at different battery capacity models that have been introduced in the literatures. These models describe the battery capacity utilization based on how the battery is discharged by the circuits that consume power. In an attempt to validate these models, we characterize a commercially available lithium coin cell battery through careful measurements of the current and the voltage output of the battery under different load profile applied by a micro sensor node. In the result, we show how the capacity of the battery is affected by the different load profile and provide analysis on whether the conventional battery models are applicable in the real world. One of the most significant finding of our work will show that DC/DC converter plays a significant role in determining the battery capacity, and that the true capacity of the battery may only be found by careful measurements.

Using Lithium Coin; Sung Park; Andreas Savvides; Mani B. Srivastava

2001-01-01T23:59:59.000Z

467

Thin film battery and method for making same  

DOE Patents (OSTI)

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between [minus]15 C and 150 C. 9 figs.

Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.

1994-08-16T23:59:59.000Z

468

Thin film battery and method for making same  

SciTech Connect

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

1994-01-01T23:59:59.000Z

469

Product Quality Assurance for Off-Grid Lighting in Africa  

SciTech Connect

Although the emergence of markets for high efficiency off-grid lighting technologies holds promise, realizing the potential of this opportunity on a long-term, sustainable basis requires careful attention to issues of product quality, consumer protection, and the potential for significant 'market spoiling', in anticipation of increases of sales of low cost, low performance off-grid lighting products. The goal of the Lighting Africa quality assurance workshop was to articulate strategies to mitigate the dangers of market spoiling and to explore ways to protect consumers from misleading advertising for sales of inferior, off-grid lighting products in the context of Lighting Africa's overarching objective to support the industry in developing a robust off-grid lighting market in Africa. The workshop resulted in the identification of two strategic approaches for meeting Lighting Africa quality assurance programmatic needs. The first strategy is intended to meet a short-term programmatic need for quality associated with requests for lighting products by bulk procurement agents, such as in a World Bank-financed project. The development of procurement specifications and test procedures that could be used in a quality/usability screening method in order to provide guidance for forthcoming large volume purchases emerged as the best solution to meet this need. Such approaches are used in World Bank-financed solar home systems (SHSs) projects in Bangladesh, Sri Lanka, and China, among others. However, unlike the SHSs which have multiple balance-of-system (BOS) components warranting the need for an array of specifications for individual components, stand alone lighting systems require specifications that are amenable to individual light points. To test this approach, Lighting Africa elected to use the technical specifications issued by the Photovoltaic Global Approval Program for solar lanterns that use CFL bulbs (PVRS11A) as the basis of qualifying such products. A contract has been competitively awarded to the Global Approval Program for Photovoltaics (PV GAP) under the Lighting Africa Program to select and test ten solar lantern product models. Lantern selection will be determined based on a number of criteria, among them, the ability to provide a daily duty cycle of at least 3 hours of light, the number of days of autonomy of battery, the volume of sales (especially in Africa), and whether or not the manufacturing facility is ISO 9000 certified. Those that are confirmed as meeting the specifications may be eligible to receive a PVGAP quality seal. The work is being carried out in partnership with the Photovoltaic and Wind Quality Test Center in Beijing, China and TUV Rhineland in Koeln, Germany. As off-grid LED-based stand-alone lighting products is in a nascent stage of development compared to CFL-based lanterns, Lighting Africa will support the development of a 'Quality Screening' approach to selecting LED lighting, in order not to delay consumers benefiting from such advances. The screening methodology could be used by procurement agencies to qualify LED lighting products for bulk or programmatic procurements. The main elements of this work comprises of developing a procurement specification and test procedure for undertaking a 'quick' quality/usability screening to be used for procuring LED lights and to test up to 30 LED-based lights to screen products that meet the requirement. The second strategy is intended to meet a longer-term need associated with creating a self-sustaining product quality assurance program that will effectively protect the African consumer, prevent significant market spoiling, adapt with expected technological advancements over the long-term--in other words, give consumers the ability to detect quality products and the information needed to find products that meet their specific needs from among the myriad of lighting products that become available commercially. Workshop discussions and the discussions evolving from the workshop led the Lighting Africa team to opt for an approach similar to that of th

World Bank; Mills, Evan; Mills, Evan

2008-07-13T23:59:59.000Z

470

Battery disconnect sensing circuit for battery charging systems  

SciTech Connect

This patent describes a battery disconnect sensing circuit for battery charging systems which have a pair of cables adapted to be connected to a battery to charge it. The sensing circuit contains a first R-C circuit adapted to connect across the cables and a second R-C circuit adapted to connect across the cables. The time constant of the first R-C circuit is substantially greater than that of the second R-C circuit. Also means connected to the RC circuits produced a momentary control signal in response to disconnection of the cables from a battery being charged. Included in a battery charging system is a source of charging current whose voltage output is controlled at a predetermined value when connected to a battery. It increases to a higher value when disconnected from the battery. Controller means connected with the source activate the battery charging system automatically in response to electrical connection of the battery. The improvement consists of: means for momentarily effecting reversal of the higher voltage value, and battery disconnect sensing means connected the charging source and to the controller means for sensing the reversed higher voltage upon disconnection of the battery charger system from the battery and for responding by automatically deactivating the battery charging system.

Dattilo, D.P.

1986-01-28T23:59:59.000Z

471

Available Technologies Grid Friendly Appliance™ Controller  

The Grid Friendly Appliance controller developed at PNNL senses grid conditions ... » Smart Grid Devices potential industry Applications » Computers ...

472

Smart Grid: Transforming the Electric System  

Science Conference Proceedings (OSTI)

This paper introduces smart grid concepts, summarizes the status of current smart grid related efforts, and explains smart grid priorities.

Widergren, Steven E.

2010-04-13T23:59:59.000Z

473

Smart Grid Week: Working to Modernize the Nation's Electric Grid |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Grid Week: Working to Modernize the Nation's Electric Grid Smart Grid Week: Working to Modernize the Nation's Electric Grid Smart Grid Week: Working to Modernize the Nation's Electric Grid June 3, 2013 - 11:00am Addthis Introducing Smart Grid Week. | Photo courtesy of Pacific Northwest National Laboratory. Introducing Smart Grid Week. | Photo courtesy of Pacific Northwest National Laboratory. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Learn More about the Smart Grid Visit smartgrid.gov for access to videos, maps and data on the effort to transform the nation's electric grid. Take a look at A Policy Framework For the 21st Century Grid: A Progress Report, from the White House Office of Science and Technology Policy. Our new Energy.gov series, Smart Grid Week, highlights efforts happening

474

Smart Grid Primer (Smart Grid Books) | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Educational Resources » Smart Grid Primer Educational Resources » Smart Grid Primer (Smart Grid Books) Smart Grid Primer (Smart Grid Books) Smart Grid Primer (Smart Grid Books) "The Smart Grid: An Introduction," prepared 2008, is a publication sponsored by DOE's Office of Electricity Delivery and Energy Reliability that explores - in layman's terms - the nature, challenges, opportunities and necessity of Smart Grid implementation. Additional books, released in 2009, target the interests of specific stakeholder groups: Consumer Advocates, Utilities, Technology Providers, Regulators, Policy Makers, and Environmental Groups, to explain in greater detail what the Smart Grid will mean to each. General Public The Smart Grid: An Introduction Consumer Advocates What the Smart Grid Means to Americans

475

GridLab: Enabling Applications on the Grid  

Science Conference Proceedings (OSTI)

Grid technology is widely emerging. Still, there is an eminent shortage of real Grid users, due to the absence of two important catalysts: First, a widely accepted vision on how applications can substantially benefit from Grids, and second a toolkit ...

Gabrielle Allen; Dave Angulo; Tom Goodale; Thilo Kielmann; André Merzky; Jarek Nabrzysky; Juliusz Pukacki; Michael Russell; Thomas Radke; Edward Seidel; John Shalf; Ian Taylor

2002-11-01T23:59:59.000Z

476

Side Reactions in Lithium-Ion Batteries  

E-Print Network (OSTI)

Model for Aging of Lithium-Ion Battery Cells. Journal of TheSalts Formed on the Lithium-Ion Battery Negative Electrodeion batteries In a lithium ion battery, positively charged

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

477

Advances in lithium-ion batteries  

E-Print Network (OSTI)

current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,lithium ion batteries. The chapter on aging summarizes the effects of the chemistry on the battery

Kerr, John B.

2003-01-01T23:59:59.000Z

478

A Hybrid PSO-Self Regulating VSC-SMC Controller for PV-FC-Diesel-Battery Renewable Energy Scheme for Buildings Electricity Utilization  

Science Conference Proceedings (OSTI)

The paper presents the dynamic modeling and coordinated control strategy for an integrated micro grid scheme using Photo Voltaic PV, Fuel Cell FC, and backup Diesel generation with additional battery backup system. The integrated scheme is fully stabilized ... Keywords: Diesel-driven generator, Photo Voltaic PV, Fuel Cell, Backup Battery, Dynamic Filter Compensator, Green Power Filter, Multi Objective Optimization MOO, Particle Swarm Optimization PSO

Adel M. Sharaf; Adel A. A. El-Gammal

2010-05-01T23:59:59.000Z

479

DataGrid  

E-Print Network (OSTI)

DataGrid is a project funded by the European Union that aims to enable access to geographically distributed computing power and storage facilities belonging to different institutions. This will provide scientists with an unprecedented computing and data management tool. DataGrid is led by CERN, together with 20 other scientific and industrial partners.

Silvano de Gennaro

2003-01-01T23:59:59.000Z

480

Means for controlling battery chargers  

SciTech Connect

A battery charger control device is described that senses the placement of a battery across control terminals and utilizes the voltage thereof to place into conduction a transistor which actuates a relay which turns on a battery charger, which thereafter, monitors the the charge condition of the battery as determined by the voltage supplied to a voltage following circuit from the control terminals, and which actuates an electronic switch after the elapse of a predetermined period of time after the battery has attained a fully charged condition as determined by the voltage of the battery as presented to the voltage following circuit.

Ballman, G.C.

1980-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "grid require batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

For the Grid and Through the Grid: The Role of Power Line Communications in the Smart Grid  

E-Print Network (OSTI)

Is Power Line Communication (PLC) a good candidate for Smart Grid applications? The objective of this paper is to address this important question. To do so we provide an overview of what PLC can deliver today by surveying its history and describing the most recent technological advances in the area. We then address Smart Grid applications as instances of sensor networking and network control problems and discuss the main conclusion one can draw from the literature on these subjects. The application scenario of PLC within the Smart Grid is then analyzed in detail. Since a necessary ingredient of network planning is modeling, we also discuss two aspects of engineering modeling that relate to our question. The first aspect is modeling the PLC channel through fading models. The second aspect we review is the Smart Grid control and traffic modeling problem which allows us to achieve a better understanding of the communications requirements. Finally, this paper reports recent studies on the electrical and topologic...

Galli, Stefano; Wang, Zhifang

2010-01-01T23:59:59.000Z

482

Current status of environmental, health, and safety issues of nickel metal-hydride batteries for electric vehicles  

Science Conference Proceedings (OSTI)

This report identifies important environment, health, and safety issues associated with nickel metal-hydride (Ni-MH) batteries and assesses the need for further testing and analysis. Among the issues discussed are cell and battery safety, workplace health and safety, shipping requirements, and in-vehicle safety. The manufacture and recycling of Ni-MH batteries are also examined. This report also overviews the ``FH&S`` issues associated with other nickel-based electric vehicle batteries; it examines venting characteristics, toxicity of battery materials, and the status of spent batteries as a hazardous waste.

Corbus, D.; Hammel, C.J.; Mark, J.

1993-08-01T23:59:59.000Z

483

EPRI-DOE Handbook Supplement of Energy Storage for Grid Connected Wind Generation Applications  

Science Conference Proceedings (OSTI)

To date, the use of energy storage systems to optimize wind power generation has been limited to small, off-grid rural or village power applications plus a few technology demonstration-scale battery storage projects for grid connected applications. However, recent developments in advanced energy storage technologies and other technical, economic, and social factors suggest a promising future for such energy storage applications. This Handbook Supplement provides an objective information resource on the l...

2004-12-15T23:59:59.000Z

484

QoS Routing in Smart Grid  

E-Print Network (OSTI)

Smart grid is an emerging technology which is able to control the power load via price signaling. The communication between the power supplier and power customers is a key issue in smart grid. Performance degradation like delay or outage may cause significant impact on the stability of the pricing based control and thus the reward of smart grid. Therefore, a QoS mechanism is proposed for the communication system in smart grid, which incorporates the derivation of QoS requirement and applies QoS routing in the communication network. For deriving the QoS requirement, the dynamics of power load and the load-price mapping are studied. The corresponding impacts of different QoS metrics like delay are analyzed. Then, the QoS is derived via an optimization problem that maximizes the total revenue. Based on the derived QoS requirement, a simple greedy QoS routing algorithm is proposed for the requirement of high speed routing in smart grid. It is also proven that the proposed greedy algorithm is a $K$-approximation. ...

Li, Husheng

2010-01-01T23:59:59.000Z

485

Battery venting system and method  

SciTech Connect

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

486

Battery Vent Mechanism And Method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

487

Battery venting system and method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

1999-01-05T23:59:59.000Z

488

Smart Grid deployment in Colorado  

E-Print Network (OSTI)

.................................................................................................................... 383.1. Architectural Goals for the Smart Grid........................................................................ 53 Ongoing Work of the Smart Grid Architecture Committee (SGAC)............................. 543.7. 3 deliverables have been produced in the areas of Smart Grid architecture, cybersecurity, and testing

Stowell, Michael

489

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles  

SciTech Connect

Recycling and disposal of spent sodium-sulfur (Na/S) batteries are important issues that must be addressed as part of the commercialization process of Na/S battery-powered electric vehicles. The use of Na/S batteries in electric vehicles will result in significant environmental benefits, and the disposal of spent batteries should not detract from those benefits. In the United States, waste disposal is regulated under the Resource Conservation and Recovery Act (RCRA). Understanding these regulations will help in selecting recycling and disposal processes for Na/S batteries that are environmentally acceptable and cost effective. Treatment processes for spent Na/S battery wastes are in the beginning stages of development, so a final evaluation of the impact of RCRA regulations on these treatment processes is not possible. The objectives of tills report on battery recycling and disposal are as follows: Provide an overview of RCRA regulations and requirements as they apply to Na/S battery recycling and disposal so that battery developers can understand what is required of them to comply with these regulations; Analyze existing RCRA regulations for recycling and disposal and anticipated trends in these regulations and perform a preliminary regulatory analysis for potential battery disposal and recycling processes. This report assumes that long-term Na/S battery disposal processes will be capable of handling large quantities of spent batteries. The term disposal includes treatment processes that may incorporate recycling of battery constituents. The environmental regulations analyzed in this report are limited to US regulations. This report gives an overview of RCRA and discusses RCRA regulations governing Na/S battery disposal and a preliminary regulatory analysis for Na/S battery disposal.

Corbus, D.

1992-09-01T23:59:59.000Z

490

Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Holdings, Inc. Smart Grid RFI: Addressing Policy and Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges. Pepco Holdings, Inc. (PHI) is pleased to respond to the US Department of Energy (DOE) request for information regarding addressing policy and logistical challenges to smart grid implementation. This follows on the heels of PHI's responses to two other DOE RFls on data access and communications requirements. Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges More Documents & Publications DC OPC Comments. September 17, 2010 Addressing Policy and Logistical Challenges to smart grid Implementation:

491

Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southern Company: DOE Smart Grid RFI Addressing Policy and Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges. Southern recognizes that many policy and logistical concerns must be addressed for the promises of smart grid technologies and applications to be fully realized in ways that are beneficial, secure, and cost-effective lor utility customers. Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges More Documents & Publications Re: DOE Request for Information - Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy

492

IEA-Technology Roadmap: Smart Grids | Open Energy Information  

Open Energy Info (EERE)

IEA-Technology Roadmap: Smart Grids IEA-Technology Roadmap: Smart Grids Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IEA-Technology Roadmap: Smart Grids Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Low emission development planning, Pathways analysis, Technology characterizations Resource Type: Publications, Guide/manual Website: www.iea.org/papers/2011/smartgrids_roadmap.pdf Cost: Free IEA-Technology Roadmap: Smart Grids Screenshot References: Technology Roadmap: Smart Grid[1] "This roadmap focuses on smart grids - the infrastructure that enables the delivery of power from generation sources to end-uses to be monitored and managed in real time. Smart grids are required to enable the use of a range of low-carbon technologies, such as variable renewable resources and

493

Energizing the batteries for electric cars  

SciTech Connect

This article reports of the nickel-metal-hydride battery and its ability to compete with the lead-acid battery in electric-powered vehicles. The topics of the article include development of the battery, the impetus for development in California environmental law, battery performance, packaging for the battery's hazardous materials, and the solid electrolyte battery.

O' Connor, L.

1993-07-01T23:59:59.000Z

494

Cyber Security Issues and Requirements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program (SGIG) Cyber Security Issues and Requirements Jeff Dagle November 19, 2009 Communication and Information Technology will be Central to Smart Grid Deployment Final Interim Smart Grid Roadmap, prepared by the Electric Power Research Institute (EPRI) for the National Institute of Standards and Technology (NIST) Cyber Security Requirements Associated with ARRA Projects Proposals were required to include:  Discussion of how cyber security risks will be mitigated  What criteria will be used for vendor and technology selection  Relevant cyber security standards that will be followed (or industry best practices)  How emerging smart grid cyber security standards that are currently being developed will be adopted Cyber Security Objectives for Smart

495

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems  

DOE Patents (OSTI)

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

2012-05-22T23:59:59.000Z

496

Evaluation of a Single-Phase Photovoltaic Inverter with Grid Support Functionality  

Science Conference Proceedings (OSTI)

Previous EPRI work has shown that photovoltaic (PV) generation employing grid support functionality can enable a utility distribution feeder to host higher penetration of PV without operating problems. In Europe medium and low voltage grid codes define grid support functions and are often required for specific installations particularly in Germany. Similar to transmission grid codes, devised for integration of wind power, we expect these distribution grid codes to begin seeing application in North Americ...

2011-12-30T23:59:59.000Z

497

Circulating current battery heater  

SciTech Connect

A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

Ashtiani, Cyrus N. (West Bloomfield, MI); Stuart, Thomas A. (Toledo, OH)

2001-01-01T23:59:59.000Z

498

Battery charging and testing circuit  

SciTech Connect

A constant current battery charging circuit is provided by which the battery receives a full charge until the battery voltage reaches a threshold. When the battery voltage is above the threshold, the battery receives a trickle charge. The actual battery voltage is compared with a reference voltage to determine whether the full charge circuit should be in operation. Hysteresis is provided for preventing a rapid on/off operation around the threshold. The reference voltage is compensated for temperature variations. The hysteresis system and temperature compensation system are independent of each other. A separate test circuit is provided for testing the battery voltage. During testing of the battery, the full charge circuit is inoperative.

Wicnienski, M. F.; Charles, D. E.

1984-01-17T23:59:59.000Z

499

Grid-based Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid-based Production Grid-based Production Grid-based Production PDSF is a Tier 2 site for ALICE and as such has the infrastructure in place to run automated grid-based ALICE production jobs. The main components of this infrastructure are listed below. Grid-Enabled Storage Elements There are currently a set of 10 servers running XRootD with a total capacity of 720TB. Included in XRootD are the data transfer tools used to transfer the input and output files for the production jobs running at PDSF. In addition to the 10 servers there is also the XRootD redirector which is currently running on pc1801.nersc.gov (pdsf5.nersc.gov). VO Box A VO (Virtual Organization) box is a dedicated node (palicevo1.nersc.gov) that coordinates the production. It runs the grid-monitoring tool MonALISA, the AliEn grid framework software, a Condor-G client and does job

500

The open science grid  

SciTech Connect

The U.S. LHC Tier-1 and Tier-2 laboratories and universities are developing production Grids to support LHC applications running across a worldwide Grid computing system. Together with partners in computer science, physics grid projects and active experiments, we will build a common national production grid infrastructure which is open in its architecture, implementation and use. The Open Science Grid (OSG) model builds upon the successful approach of last year's joint Grid2003 project. The Grid3 shared infrastructure has for over eight months provided significant computational resources and throughput to a range of applications, including ATLAS and CMS data challenges, SDSS, LIGO, and biology analyses, and computer science demonstrators and experiments. To move towards LHC-scale data management, access and analysis capabilities, we must increase the scale, services, and sustainability of the current infrastructure by an order of magnitude or more. Thus, we must achieve a significant upgrade in its functionalities and technologies. The initial OSG partners will build upon a fully usable, sustainable and robust grid. Initial partners include the US LHC collaborations, DOE & NSF Laboratories and Universities & Trillium Grid projects. The approach is to federate with other application communities in the U.S. to build a shared infrastructure open to other sciences and capable of being modified and improved to respond to needs of other applications, including CDF, D0, BaBar, and RHIC experiments. We describe the application-driven, engineered services of the OSG, short term plans and status, and the roadmap for a consortium, its partnerships and national focus.

Pordes, R.; /Fermilab

2004-12-01T23:59:59.000Z