Powered by Deep Web Technologies
Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

2014 Modern Power Grid Video  

SciTech Connect (OSTI)

A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

None

2014-06-02T23:59:59.000Z

2

2014 Modern Power Grid Video  

ScienceCinema (OSTI)

A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

None

2014-07-22T23:59:59.000Z

3

FINAL REPORT - CENTER FOR GRID MODERNIZATION  

SciTech Connect (OSTI)

The objective of the CGM was to develop high-priority grid modernization technologies in advanced sensors, communications, controls and smart systems to enable use of real-time or near real-time information for monitoring, analyzing and managing distribution and transmission grid conditions. The key strategic approach to carry out individual CGM research and development (R&D) projects was through partnerships, primarily with the GridAppô Consortium utility members.

Markiewicz, Daniel R

2008-06-30T23:59:59.000Z

4

Assistant Secretary Hoffman Discusses Grid Modernization with...  

Broader source: Energy.gov (indexed) [DOE]

Assistant Secretary Hoffman Discusses Grid Modernization with the New York Times and E&E TV Assistant Secretary Hoffman Discusses Grid Modernization with the New York Times and E&E...

5

Microsoft Word - Compendium of Modern Grid Technologies V1.0Final...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

grid and support advanced protective relaying. They enable consumer choice and demand response, and help relieve congestion. Improved Interfaces and Decision Support -The...

6

Modern Grid Initiative Distribution Taxonomy Final Report  

SciTech Connect (OSTI)

This is the final report for the development of a toxonomy of prototypical electrical distribution feeders. Two of the primary goals of the Department of Energy's (DOE) Modern Grid Initiative (MGI) are 'to accelerate the modernization of our nation's electricity grid' and to 'support demonstrations of systems of key technologies that can serve as the foundation for an integrated, modern power grid'. A key component to the realization of these goals is the effective implementation of new, as well as existing, 'smart grid technologies'. Possibly the largest barrier that has been identified in the deployment of smart grid technologies is the inability to evaluate how their deployment will affect the electricity infrastructure, both locally and on a regional scale. The inability to evaluate the impacts of these technologies is primarily due to the lack of detailed electrical distribution feeder information. While detailed distribution feeder information does reside with the various distribution utilities, there is no central repository of information that can be openly accessed. The role of Pacific Northwest National Laboratory (PNNL) in the MGI for FY08 was to collect distribution feeder models, in the SynerGEE{reg_sign} format, from electric utilities around the nation so that they could be analyzed to identify regional differences in feeder design and operation. Based on this analysis PNNL developed a taxonomy of 24 prototypical feeder models in the GridLAB-D simulations environment that contain the fundamental characteristics of non-urban core, radial distribution feeders from the various regions of the U.S. Weighting factors for these feeders are also presented so that they can be used to generate a representative sample for various regions within the United States. The final product presented in this report is a toolset that enables the evaluation of new smart grid technologies, with the ability to aggregate their effects to regional and national levels. The distribution feeder models presented in this report are based on actual utility models but do not contain any proprietary or system specific information. As a result, the models discussed in this report can be openly distributed to industry, academia, or any interested entity, in order to facilitate the ability to evaluate smart grid technologies.

Schneider, Kevin P.; Chen, Yousu; Chassin, David P.; Pratt, Robert G.; Engel, David W.; Thompson, Sandra E.

2008-11-01T23:59:59.000Z

7

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

where metrics are needed to monitor progress. 11 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y The Grid - Today vs. Tomorrow...

8

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Joe Miller, Modern Grid Strategy Team Lead Grid Econ - The Economics of a Smarter...

9

Chapter III: Modernizing the Electric Grid  

Office of Environmental Management (EM)

34 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 Chapter III: Modernizing the Electric Grid QER Report: Energy Transmission, Storage, and...

10

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Some Technical Challenges Symposium on Modeling & Control of Alternative Energy Systems Joe Miller - Modern Grid Team Lead April 2, 2009 1 Conducted by the National Energy...

11

Secretary Chu to Discuss Importance of Electric Grid Modernization...  

Energy Savers [EERE]

Discuss Importance of Electric Grid Modernization to U.S. Competitiveness at Gridwise Global Forum Secretary Chu to Discuss Importance of Electric Grid Modernization to U.S....

12

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y...

13

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y...

14

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Steve Pullins, Modern Grid Strategy Team Utility Field Services 2009 29 April 2009...

15

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Joe Miller, Modern Grid Strategy Team Lead ACSessions 2009 April 27, 2009 Office of...

16

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y...

17

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2...

18

Platform for a modern grid: customer engagement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

stories engaging the customer when deploying new technologies in the nation's largest smart grid demonstration. Related Articles (by tag) NWPPA spotlights synchrophasors,...

19

Sandia National Laboratories: grid modernization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfull moduleresources grid integration of

20

New DOE Reports on Smart Grid Technologies Seek to Promote Innovation...  

Office of Environmental Management (EM)

policy issues raised by Smart Grid technologies that can promote innovation, cut costs for consumers and modernize our electrical grid. Each report completes a...

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Modern Grid Strategy: Enhanced GridLAB-D Capabilities Final Report  

SciTech Connect (OSTI)

GridLAB-D is a software simulation environment that was initially developed by the US Department of Energy (DOE) Office of Electricity (OE) for the purpose of enabling the effective analysis of emerging smart grid technologies. In order to achieve this goal GridLAB-D was developed using an open source approach with the intent that numerous people and organizations would contribute to the ongoing development. Because of the breadth and complexity of the emerging smart grid technologies the inclusion of multiple groups of developers is essential in order to address the many aspects of the smart grid. As part of the continuing Modern Grid Strategy (MGS) the Pacific Northwest National Laboratory (PNNL) has been tasked with developing an advanced set of GridLAB-D capabilities. These capabilities were developed to enable the analysis of complex use case studies which will allow for multi-disciplinary analysis of smart grid operations. The advanced capabilities which were developed include the implementation of an unbalanced networked power flow algorithm, the implementation of an integrated transmission and distribution system solver, and a set of use cases demonstrating the capabilities of the new solvers.

Schneider, Kevin P.; Fuller, Jason C.; Tuffner, Francis K.; Chen, Yousu

2009-09-09T23:59:59.000Z

22

The transformation of modern electricity grids at the local and global scale into smart grids is at the core of sustainable economic, environmental and societal growth worldwide. This migration to more intelligent, user-friendly and responsive grids aroun  

E-Print Network [OSTI]

The transformation of modern electricity grids at the local and global scale into smart grids and deployment of appropriate communication and information technologies. Such Smart Grid Communication systems with C3 technologies - Communication, Control and Computing - playing key roles. Smart Grid

Fang, Yuguang "Michael"

23

Microsoft Word - Barriers to Achieving the Modern Grid_Final...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

our 21 st Century Economy V1.0 Barriers to Achieving the Modern Grid A declining infusion of new thought is occurring. The technical experience base of utilities is graying....

24

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary AuthorstemActivitiesGrid Wabash Valley

25

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary AuthorstemActivitiesGrid Wabash

26

Smart Grid Newsletter ? ćThe Regulatorźs Role in Grid Modernization...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the National Energy Technology Laboratory Leadership from state regulators can make the Smart Grid a reality In previous articles we discussed the principal characteristics that...

27

GRID Technologies => `Education' = `Distance Michalis Xenos  

E-Print Network [OSTI]

GRID Technologies => `Education' = `Distance Education' Michalis Xenos 1,2 , Bill Vassiliadis 1 possibilities that Grid technologies create in education, presents current learning paradigms and makes a prediction about the way in which Grid technologies may affect the future of education. The case

Boyer, Edmond

28

The Modern Grid Initiative is a DOE-funded project managed by...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

McAdams Theory of grid modernization. This is final in a series of discussions on how different mindsets look at grid modernization. With four generation "X" and "Y" children...

29

The Modern Grid Initiative is a DOE-funded project managed by...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rainsuit Theory of grid modernization. This is third in a series of discussions on how different mindsets look at grid modernization. One of my past bosses used to share humorous...

30

Microsoft Word - Whitepaper_The Modern Grid Vision_APPROVED_2009...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Vision for the Smart Grid The Modern Grid Strategy A VISION FOR THE SMART GRID Developed for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability...

31

Grid Technology Overview and Status Geoffrey Fox1,2  

E-Print Network [OSTI]

Grid Technology Overview and Status Geoffrey Fox1,2 , Alex Ho2 , Marlon Pierce1 1 Community Grids...................................................................................................................... 1 2 What is a Grid? ................................................................................................................ 1 3 Grid Technologies and Capabilities

32

Innovative Energy Efficiency, Renewable Energy, and Grid Technology...  

Energy Savers [EERE]

Innovative Energy Efficiency, Renewable Energy, and Grid Technology Update Innovative Energy Efficiency, Renewable Energy, and Grid Technology Update April 29, 2015 11:00AM to...

33

NREL's Controllable Grid Interface for Testing Renewable Energy Technologies (Presentation)  

SciTech Connect (OSTI)

This presentation is an overview of NREL's Controllable Grid Interface capabilities for testing renewable energy technologies.

Gevorgian, V.

2014-09-01T23:59:59.000Z

34

Grid Technologies | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermalGoGreenServices Grid Software andGrid

35

Vehicle Technologies Office Merit Review 2014: EV-Smart Grid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EV-Smart Grid Research & Interoperability Activities Vehicle Technologies Office Merit Review 2014: EV-Smart Grid Research & Interoperability Activities Presentation given by...

36

Panel 4, Grid-Scale Storage Technologies: Regulatory Barriers...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Grid-scale Storage Technologies Regulatory Barriers and Policy Instruments Hydrogen Energy Storage for Grid and Transportation Services May 15 th , 2014 Sacramento, CA Demand 599...

37

Technology Challenges in Designing the Future Grid to Enable  

E-Print Network [OSTI]

Technology Challenges in Designing the Future Grid to Enable Sustainable Energy Systems Future Grid the Future Electric Energy System #12;Technology Challenges in Designing the Future Grid to Enable Summary This white paper synthesizes technology challenges for reaching a vision of the future grid that

38

Obama Administration Announces Job-Creating Grid Modernization...  

Office of Environmental Management (EM)

as important links across our country to increase our power grid's capacity and reliability," said Secretary of the Interior Ken Salazar. "This is the kind of critical...

39

Modern Quantum Technologies of Information Security  

E-Print Network [OSTI]

In the paper systematization and classification of modern quantum technologies of the information security against cyber-terrorist attack are carried out. The characteristic of the basic directions of quantum cryptography from the viewpoint of used quantum technologies is given. The qualitative analysis of advantages and disadvantages of concrete quantum protocols is made. The current status of a problem of practical quantum cryptography using in telecommunication networks is considered. In particular, the short review of existing commercial systems of quantum key distribution is given.

Korchenko, Oleksandr; Gnatyuk, Sergiy

2010-01-01T23:59:59.000Z

40

Software Technology Readiness for the Smart Grid  

SciTech Connect (OSTI)

Abstract Budget and schedule overruns in product development due to the use of immature technologies constitute an important matter for program managers. Moreover, unexpected lack of technology maturity is also a problem for buyers. Both sides of the situation would benefit from an unbiased measure of technology maturity. This paper presents the use of a software maturity metric called Technology Readiness Level (TRL), in the milieu of the smart grid. For most of the time they have been in existence, power utilities have been protected monopolies, guaranteed a return on investment on anything they could justify adding to the rate base. Such a situation did not encourage innovation, and instead led to widespread risk-avoidance behavior in many utilities. The situation changed at the end of the last century, with a series of regulatory measures, beginning with the Public Utility Regulatory Policy Act of 1978. However, some bad experiences have actually served to strengthen the resistance to innovation by some utilities. Some aspects of the smart grid, such as the addition of computer-based control to the power system, face an uphill battle. It is our position that the addition of TRLs to the decision-making process for smart grid power-system projects, will lead to an environment of more confident adoption.

Tugurlan, Maria C.; Kirkham, Harold; Chassin, David P.

2011-06-13T23:59:59.000Z

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

State Grid and Shenzhen Energy Group Biomass Engineering Technology...  

Open Energy Info (EERE)

Energy Group Biomass Engineering Technology Research Centre Jump to: navigation, search Name: State Grid and Shenzhen Energy Group Biomass Engineering Technology Research Centre...

42

Smart Grid Newsletter ? ćThe Regulatorźs Role in Grid Modernization...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Smart Grid - How do we get there? One step at a time - the path to the Smart Grid is a long and complex journey that needs to be broken down into manageable and understandable...

43

Demonstration and Results of Grid Integrated Technologies at the Demand to Grid Laboratory (D2G Lab): Phase I Operations Report  

E-Print Network [OSTI]

of Grid Integrated Technologies at the Demand to Gridof Grid Integrated Technologies at the Demand to GridCommercial Adoption of DR Technologies Related Activities

Ghatikar, Girish

2014-01-01T23:59:59.000Z

44

Technology Readiness and the Smart Grid  

SciTech Connect (OSTI)

Technology Readiness Levels (TRLs) originated as a way for the National Aeronautics and Space Administration (NASA) to monitor the development of systems being readied for space. The technique has found wide application as part of the more general topic of system engineering. In this paper, we consider the applicability of TRLs to systems being readied for the smart grid. We find that there are many useful parallels, and much to be gained by this application. However, TRLs were designed for a developer who was also a user. That is not usually the case for smart grid developments. We consider the matter from the point of view of the company responsible for implementation, typically a utility, and we find that there is a need for connecting the many standards in the industry. That connection is explored, and some new considerations are introduced.

Kirkham, Harold; Marinovici, Maria C.

2013-02-27T23:59:59.000Z

45

Convergence for the Smart Grid -On the technology opportunities for Future Cyber-Physical Energy Systems, invited paper at New Research Directions for Future Cyber-Physical Energy  

E-Print Network [OSTI]

Convergence for the Smart Grid - On the technology opportunities for Future Cyber-Physical Energy Angeles, CA. 90095 http://winmec.ucla.edu Email:smartgrid@winmec.ucla.edu Convergence for the Smart Grid into what the Future / Smart Electric Grid should look like. For example the DOE has a vision for the Modern

California at Los Angeles, University of

46

Prospects of Smart Grid Technologies for a Sustainable and Secure...  

Open Energy Info (EERE)

Power Supply Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Prospects of Smart Grid Technologies for a Sustainable and Secure Power Supply Focus Area: Crosscutting...

47

Smart Grid Newsletter ? ćThe Regulatorźs Role in Grid Modernization...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

below). So, if it's such a good deal, why isn't everyone jumping on board? Achieving a Smart Grid in the U.S. requires the alignment and cooperation of many stakeholders...

48

Perspectives on Real-Time Grid Operating Technologies to Manage Reliability in the Western Interconnection  

E-Print Network [OSTI]

Real-Time Grid Operating Technologies to Manage ReliabilityEto Environmental Energy Technologies Division October 2013Real-Time Grid Operating Technologies to Manage Reliability

Whitley, Eric

2014-01-01T23:59:59.000Z

49

Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid  

E-Print Network [OSTI]

Signals. Ē SGIP NIST Smart Grid Collaboration Site. http://emix/. Last accessed: Open Smart Grid Users Group. ďOpenADROpenADR technologies and Smart Grid standards activities.

Ghatikar, Girish

2010-01-01T23:59:59.000Z

50

Obama Administration Officials to Announce Job-Creating Grid Modernization  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactor TechnologyOFFICE: I Oak Ridge,8 8 8 , ,withPilot Projects

51

Modernizing the Grid: Getting More out of America's Energy | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 MasterAcquisitiTechnologyPotomacRidgeMobileCladdings:of

52

ECE 437/537 -Smart Grid Catalog Description: Fundamentals of smart power grids. Technology advances in transmission  

E-Print Network [OSTI]

ECE 437/537 - Smart Grid Catalog Description: Fundamentals of smart power grids. Technology advances in transmission and distribution systems. Policy drivers. Assets and demand management. Smart grid Cotilla-Sanchez Course content: · Introduction to smart power grids. Technology and policy background

53

Technological and economic comparison of battery technologies for U.S.A electric grid stabilization applications  

E-Print Network [OSTI]

Energy storage can provide many benefits to the electric grid of the United States of America. With recent pushes to stabilize renewable energy and implement a Smart Grid, battery technology can play a pivotal role in the ...

Fernandez, Ted (Ted A.)

2010-01-01T23:59:59.000Z

54

IEEE TRANSACTIONS ON SMART GRID, VOL. 1, NO. 1, JUNE 2010 99 Security Technology for Smart Grid Networks  

E-Print Network [OSTI]

IEEE TRANSACTIONS ON SMART GRID, VOL. 1, NO. 1, JUNE 2010 99 Security Technology for Smart Grid for a smart grid system, including public key infrastructures and trusted computing. Index Terms--Attestation, public key infrastructure (PKI), Su- pervisory Control And Data Acquisition (SCADA), security, smart grid

Hu, Fei

55

Technology and culture in modern Russia .  

E-Print Network [OSTI]

??Russians have seen communication and transportation technology facilitate greater interaction between themselves and with foreigners. Some cultural values and beliefs blend, but others clash. Perception,Ö (more)

Silver, Joseph

2007-01-01T23:59:59.000Z

56

Enhancing Grid Infrastructures with Virtualization and Cloud Technologies  

E-Print Network [OSTI]

Enhancing Grid Infrastructures with Virtualization and Cloud Technologies Final Report on Stratus of the distribution for a turnkey private cloud solution aimed at SMEs and a large public deployment by Atos within and Technology Network S.A., SixSq S`arl, Telef¬īonica In- vestigaci¬īon y Desarrollo SA, and The Provost Fellows

Paris-Sud XI, Université de

57

Southern California Smart Grid Symposium California Institute of TechnologyCalifornia Institute of Technology  

E-Print Network [OSTI]

Southern California Smart Grid Symposium California Institute of TechnologyCalifornia Institute Service in a Smart Grid World Hung po ChaoHung-po Chao Director, Market Strategy and Analysis October 13 of Technology Competitive Electricity Markets with Consumer Subscription Service in a SmartConsumer Subscription

58

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network [OSTI]

Technologies in a ĶGrid Application heat, usually in thethe ĶGrid. In this ĶGrid the heat loads are not that great,Combined Heat and Power Technologies in a ĶGrid Application

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

59

CCT: Center for Computation & Technology Clouds Provide Grids with Higher-  

E-Print Network [OSTI]

CCT: Center for Computation & Technology Clouds Provide Grids with Higher- Levels of Abstraction and Explicit Support for Usage Modes S Jha*, A Merzky, G Fox #12;In a Nutshell First attempt to characterise: Centrality of Usage Mode: Principal pattern of usage, access Affinity: System's internal design principle

60

Evaluation of Representative Smart Grid Investment Project Technologies: Demand Response  

SciTech Connect (OSTI)

This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of a limited number of demand response technologies and implementations deployed in the SGIG projects.

Fuller, Jason C.; Prakash Kumar, Nirupama; Bonebrake, Christopher A.

2012-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Networks, smart grids: new model for synchronization  

E-Print Network [OSTI]

- 1 - Networks, smart grids: new model for synchronization May 21, 2013 Networks of individual scenarios and in smart grid applications. "Smart grid" refers to technology to modernize utility electricity in a volatile smart grid scenario that included fluctuating loads with random power demand, renewable energy

62

Wireless Communications and Networking Technologies for Smart Grid: Paradigms and Challenges  

E-Print Network [OSTI]

Smart grid, regarded as the next generation power grid, uses two-way flows of electricity and information to create a widely distributed automated energy delivery network. In this work we present our vision on smart grid from the perspective of wireless communications and networking technologies. We present wireless communication and networking paradigms for four typical scenarios in the future smart grid and also point out the research challenges of the wireless communication and networking technologies used in smart grid

Fang, Xi; Xue, Guoliang

2011-01-01T23:59:59.000Z

63

Smart Grid Status and Metrics Report  

SciTech Connect (OSTI)

To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. It measures 21 metrics to provide insight into the gridís capacity to embody these characteristics. This report looks across a spectrum of smart grid concerns to measure the status of smart grid deployment and impacts.

Balducci, Patrick J.; Weimar, Mark R.; Kirkham, Harold

2014-07-01T23:59:59.000Z

64

Communications and Networking for Smart Grid: Technology and Practice , HossamS. Hassanein2  

E-Print Network [OSTI]

Editorial Communications and Networking for Smart Grid: Technology and Practice Chi Zhou1 , Hossam for Smart Grid research and development, so the communications networks in Smart Grid must facilitate communications protocols, and provide secure and reliable communications for the smart grid. Many open issues

Qiu, Robert Caiming

65

High-Performance Secure Database Access Technologies for HEP Grids  

SciTech Connect (OSTI)

The Large Hadron Collider (LHC) at the CERN Laboratory will become the largest scientific instrument in the world when it starts operations in 2007. Large Scale Analysis Computer Systems (computational grids) are required to extract rare signals of new physics from petabytes of LHC detector data. In addition to file-based event data, LHC data processing applications require access to large amounts of data in relational databases: detector conditions, calibrations, etc. U.S. high energy physicists demand efficient performance of grid computing applications in LHC physics research where world-wide remote participation is vital to their success. To empower physicists with data-intensive analysis capabilities a whole hyperinfrastructure of distributed databases cross-cuts a multi-tier hierarchy of computational grids. The crosscutting allows separation of concerns across both the global environment of a federation of computational grids and the local environment of a physicistís computer used for analysis. Very few efforts are on-going in the area of database and grid integration research. Most of these are outside of the U.S. and rely on traditional approaches to secure database access via an extraneous security layer separate from the database system core, preventing efficient data transfers. Our findings are shared by the Database Access and Integration Services Working Group of the Global Grid Forum, who states that "Research and development activities relating to the Grid have generally focused on applications where data is stored in files. However, in many scientific and commercial domains, database management systems have a central role in data storage, access, organization, authorization, etc, for numerous applications.Ē There is a clear opportunity for a technological breakthrough, requiring innovative steps to provide high-performance secure database access technologies for grid computing. We believe that an innovative database architecture where the secure authorization is pushed into the database engine will eliminate inefficient data transfer bottlenecks. Furthermore, traditionally separated database and security layers provide an extra vulnerability, leaving a weak clear-text password authorization as the only protection on the database core systems. Due to the legacy limitations of the systemsí security models, the allowed passwords often can not even comply with the DOE password guideline requirements. We see an opportunity for the tight integration of the secure authorization layer with the database server engine resulting in both improved performance and improved security. Phase I has focused on the development of a proof-of-concept prototype using Argonne National Laboratoryís (ANL) Argonne Tandem-Linac Accelerator System (ATLAS) project as a test scenario. By developing a grid-security enabled version of the ATLAS projectís current relation database solution, MySQL, PIOCON Technologies aims to offer a more efficient solution to secure database access.

Matthew Vranicar; John Weicher

2006-04-17T23:59:59.000Z

66

Introduction to FireGrid  

E-Print Network [OSTI]

FireGrid is an ambitious and innovative project, seeking to develop the technology to support a new way of managing emergency response in the modern built environment. Specific novel aspects include the integration of ...

Welch, Stephen; Usmani, Asif; Upadhyay, Rochan; Berry, Dave; Potter, Stephen; Torero, Jose L

2007-11-14T23:59:59.000Z

67

Web Portal for Photonic Technologies Using Grid Infrastructures  

E-Print Network [OSTI]

The modeling of physical processes is an integral part of scientific and technical research. In this area, the Extendible C++ Application in Quantum Technologies (ECAQT) package provides the numerical simulations and modeling of complex quantum systems in the presence of decoherence with wide applications in photonics. It allows creating models of interacting complex systems and simulates their time evolution with a number of available time-evolution drivers. Physical simulations involving massive amounts of calculations are often executed on distributed computing infrastructures. It is often difficult for non expert users to use such computational infrastructures or even to use advanced libraries over the infrastructures, because they often require being familiar with middleware and tools, parallel programming techniques and packages. The P-RADE Grid Portal is a Grid portal solution that allows users to manage the whole life-cycle for executing a parallel application on the computing Grid infrastructures. The article describes the functionality and the structure of the web portal based on ECAQT package.

H. V. Astsatryan; T. V. Gevorgyan; A. R. Shahinyan

2013-01-09T23:59:59.000Z

68

Faculty Position in Smart-Grid Technologies and Power Systems Department of Electronics  

E-Print Network [OSTI]

Faculty Position in Smart-Grid Technologies and Power Systems Department of Electronics Carleton-track) appointment in the area of smart grid technology and power systems at the rank of Assistant, Associate or Full with an electrical power background to complement our existing strengths and build the stream of "smart technologies

69

Chain ReAKTing: Collaborative Advanced Knowledge Technologies in the Combechem Grid  

E-Print Network [OSTI]

and the Combechem grid. The deeper integration supports the publication at source research objective of Combechem.g. the smart laboratory (smart- tea.org), grid-enabled instrumentation, data tracking for analysis, methodologyChain ReAKTing: Collaborative Advanced Knowledge Technologies in the Combechem Grid Michelle

Chen-Burger, Yun-Heh (Jessica)

70

Residential Customer Enrollment in Time-based Rate and Enabling Technology Programs: Smart Grid Investment Grant Consumer Behavior Study Analysis  

E-Print Network [OSTI]

Time-based Rate and Enabling Technology Programs: Smart GridEnvironmental Energy Technologies Division May 2013 The workTime-based Rate and Enabling Technology Programs: Smart Grid

Todd, Annika

2014-01-01T23:59:59.000Z

71

Dynamic pricing and stabilization of supply and demand in modern electric power grids  

E-Print Network [OSTI]

The paper proposes a mechanism for real-time pricing of electricity in smart power grids, with price stability as the primary concern. In previous publications the authors argued that relaying the real-time wholesale market ...

Roozbehani, Mardavij

72

Technology shapes every facet of modern life. Familiarity with the characteristics,  

E-Print Network [OSTI]

Technology shapes every facet of modern life. Familiarity with the characteristics, capabilities, and limitations of current and emerging technologies is indispen- sable to wise and effective decisions and address the problems that technology often presents. Technologi- cal developments are indeed re

Ge, Qiaode Jeff

73

Abstract--Smart grid technologies in combination with the methodological foundation laid by the economic theory of  

E-Print Network [OSTI]

Abstract-- Smart grid technologies in combination with the methodological foundation laid customers of electricity. We further claim that smart grid technologies that enable load response and load reliability from a public to a private good are the enabling smart grid technologies and the design

Oren, Shmuel S.

74

Instrumentation, Controls, and Human-Machine Interface Technology Development Roadmap in Support of Grid Appropriate Reactors  

SciTech Connect (OSTI)

Grid Appropriate Reactors (GARs) are a component of the U.S. Department of Energy s (DOE s) Global Nuclear Energy Partnership (GNEP) program. GARs have smaller output power (<~600 MWe), than those intended for deployment on large, tightly coupled grids. This smaller size is important in avoiding grid destabilization, which can result from having a large fraction of a grid s electrical generation supplied by a single source. GARs are envisioned to be deployed worldwide often in locations without extensive nuclear power experience. DOE recently sponsored the creation of an Instrumentation, Controls, and Human-Machine Interface (ICHMI) technology development roadmap emphasizing the specific characteristics of GARs [1]. This roadmapping effort builds upon and focuses the recently developed, more general nuclear energy ICHMI technology development roadmap [2]. The combination of the smaller plant size, smaller grids, and deployment in locations without extensive prior nuclear power experience presents particular infrastructure, regulation, design, operational, and safeguards challenges for effective GAR deployment. ICHMI technologies are central to efficient GAR operation and as such are a dimension of each of these challenges. Further, while the particular ICHMI technologies to be developed would be useful at larger power plants, they are not high-priority development items at the larger plants. For example, grid transient resilience would be a useful feature for any reactor/grid combination and indeed would have limited some recent blackout events. However, most large reactors have limited passive cooling features. Large plants with active safety response features will likely preserve trip preferential grid transient response. This contrasts sharply with GARs featuring passive shutdown cooling, which can safely support grid stability during large grid transients. ICHMI technologies ranging from alternative control algorithms to simplified human-interface system designs are key to enabling GARs to respond properly and thereby stabilize the grid during transients.

Holcomb, David Eugene [ORNL] [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Kisner, Roger A [ORNL] [ORNL; O'Hara, John [Brookhaven National Laboratory (BNL)] [Brookhaven National Laboratory (BNL); Quinn, Edward L. [Longenecker & Associates] [Longenecker & Associates; Miller, Don W. [Ohio State University] [Ohio State University

2009-01-01T23:59:59.000Z

75

Argonne National Laboratory Smart Grid Technology Interactive Model  

SciTech Connect (OSTI)

As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid to not only handle the new load, but make electricity cheap and efficient for everyone? Argonne engineer Ted Bohn explains a model of a "smart grid" that gives consumers the power to choose their own prices and sources of electricity.

Ted Bohn

2009-10-13T23:59:59.000Z

76

Argonne National Laboratory Smart Grid Technology Interactive Model  

ScienceCinema (OSTI)

As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid to not only handle the new load, but make electricity cheap and efficient for everyone? Argonne engineer Ted Bohn explains a model of a "smart grid" that gives consumers the power to choose their own prices and sources of electricity.

Ted Bohn

2010-01-08T23:59:59.000Z

77

High Penetration, Grid Connected Photovoltaic Technology Codes and Standards: Preprint  

SciTech Connect (OSTI)

This paper reports the interim status in identifying and reviewing photovoltaic (PV) codes and standards (C&S) and related electrical activities for grid-connected, high-penetration PV systems with a focus on U.S. electric utility distribution grid interconnection.

Basso, T. S.

2008-05-01T23:59:59.000Z

78

1154 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 48, NO. 4, JULY/AUGUST 2012 A Comparison of Smart Grid Technologies  

E-Print Network [OSTI]

of Smart Grid Technologies and Progresses in Europe and the U.S. Marcelo Godoy Sim√Ķes, Senior Member, IEEE the electric power grid. The U.S. federal government has ratified the "smart grid initiative" as the official. This paper presents the development of smart grids and an analysis of the methodologies, milestones

Sim√Ķes, Marcelo Godoy

79

Assistant Secretary Hoffman Discusses Grid Modernization with the New York Times and E&E TV  

Broader source: Energy.gov [DOE]

During a New York Times conference on ďEnergy for Tomorrow: Building Sustainable Cities,Ē Assistant Secretary Hoffman joined ConEd CEO Kevin Burke, and Euroheat and Power CEO Sabine Froning for a discussion on ďThink National but Power Local.Ē During an interview with E&E TVís Monica Trauzzi, she discussed how Recovery Act funding is helping utilities achieve important results such as reducing peak load, deferring building of additional generation, improving operations and monitoring the health of the grid more effectively.

80

Integration Technology for PHEV-Grid-Connectivity, with Support...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. vss025bohn2010o.pdf More Documents & Publications Grid Interaction Tech Team Codes and Standards to Support Vehicle Electrification Codes and Standards Support Vehicle...

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A prototype catalogue: DOE National Laboratory technologies for infrastructure modernization  

SciTech Connect (OSTI)

The purpose of this report is to provide the Office of Technology Assessment (OTA) with information about selected technologies under development in the Department of Energy (DOE) through its National Laboratory System and its Program Office operations. The technologies selected are those that have the potential to improve the performance of the nation's public works infrastructure. The product is a relational database that we refer to as a prototype catalogue of technologies.'' The catalogue contains over 100 entries of DOE-supported technologies having potential application to infrastructure-related problems. The work involved conceptualizing an approach, developing a framework for organizing technology information, and collecting samples of readily available data to be put into a prototype catalogue. In developing the catalogue, our objectives were to demonstrate the concept and provide readily available information to OTA. As such, the catalogue represents a preliminary product. The existing database is not exhaustive and likely represents only a fraction of relevant technologies developed by DOE. In addition, the taxonomy we used to classify technologies is based on the judgment of project staff and has received minimal review by individuals who have been involved in the development and testing of the technologies. Finally, end users will likely identify framework changes and additions that will strengthen the catalogue approach. The framework for the catalogue includes four components: a description of the technology, along with potential uses and other pertinent information; identification of the source of the descriptive information; identification of a person or group knowledgeable about the technology; and a classification of the described technology in terms of its type, application, life-cycle use, function, and readiness.

Currie, J.W.; Wilfert, G.L.; March, F.

1990-01-01T23:59:59.000Z

82

Evaluation of Representative Smart Grid Investment Grant Project Technologies: Thermal Energy Storage  

SciTech Connect (OSTI)

This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of energy storage technologies deployed in the SGIG projects.

Tuffner, Francis K.; Bonebrake, Christopher A.

2012-02-14T23:59:59.000Z

83

Grid Integration  

SciTech Connect (OSTI)

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

Not Available

2008-09-01T23:59:59.000Z

84

Abstract--Smart Grid technology appears necessary to succeed in activating the demand through demand side management  

E-Print Network [OSTI]

1 Abstract--Smart Grid technology appears necessary to succeed in activating the demand through recommendations regarding the instruments that should be implemented to maximize the benefits of smart grids by the European Union. The development of smart grids (SG) is a possible solution for achieving these goals [1

Paris-Sud XI, Université de

85

Preprint from: 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe) Copyright 2012, IEEE Preprint page 1  

E-Print Network [OSTI]

Preprint from: 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe) Copyright electrical grid integration Willett Kempton Francesco Marra Peter Bach Andersen Rodrigo Garcia-Valle A liquid of refueling, see Fig. 1. Together, the vehicle characteris- tics, the grid-connection or electric vehicle

Firestone, Jeremy

86

IEA-Technology Roadmap: Smart Grids | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany:Information IDS Climate Change andSmart Grids Jump to:

87

Smart Grid Technology Interactive Model | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite Cultural ResourcestepidumProjectsMoreSmartSmart Grid

88

New National Wind Potential Estimates for Modern and Near-Future Turbine Technologies (Poster)  

SciTech Connect (OSTI)

Recent advancements in utility-scale wind turbine technology and pricing have vastly increased the potential land area where turbines can be deployed in the United States. This presentation quantifies the new developable land potential (e.g., capacity curves), visually identifies new areas for possible development (e.g., new wind resource maps), and begins to address deployment barriers to wind in new areas for modern and future turbine technology.

Roberts, J. O.

2014-01-01T23:59:59.000Z

89

EA-1750: Smart Grid, Center for Commercialization of Electric Technology, Technology Solutions for Wind Integration in ERCOT, Houston, Texas  

Broader source: Energy.gov [DOE]

This EA evaluates the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 to the Center for Commercialization of Electric Technology to facilitate the development and demonstration of a multi-faceted, synergistic approach to managing fluctuations in wind power within the Electric Reliability Council of Texas transmission grid.

90

Smart Grid Status and Metrics Report Appendices  

SciTech Connect (OSTI)

A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the gridís capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

2014-07-01T23:59:59.000Z

91

Innovative Energy Efficiency, Renewable Energy, and Grid Technology Update  

Broader source: Energy.gov [DOE]

This webinar will cover the latest developments in several different energy technologies and how to use them separately or in combination to realize the greatest benefit to tribal communities. The webinar is held from 11:00 a.m. to 12:30 p.m. Mountain Standard Time on April 29, 2015.

92

Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation  

SciTech Connect (OSTI)

This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

Singh, Ruchi; Vyakaranam, Bharat GNVSR

2012-02-14T23:59:59.000Z

93

TITLE XIII- SMART GRID SEC. 1301- 1308 STATEMENT OF POLICY ON...  

Broader source: Energy.gov (indexed) [DOE]

TITLE XIII- SMART GRID SEC. 1301- 1308 STATEMENT OF POLICY ON MODERNIZATION OF ELECTRICITY GRID TITLE XIII- SMART GRID SEC. 1301- 1308 STATEMENT OF POLICY ON MODERNIZATION OF...

94

Grid Security  

E-Print Network [OSTI]

Sinnott,R.O. National Centre for e-Social Science book, Grid Computing: Technology, Service and Application, CRC Press, November 2008.

Sinnott, R.O.

95

Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid  

E-Print Network [OSTI]

AND SMART GRID The GridWiseģ interoperability framework [6] was developed to facilitate systems integration and

Ghatikar, Girish

2010-01-01T23:59:59.000Z

96

In Solis Pacem Dialogue between modern technology and nature is developed through celebrating solar panels and a styl-  

E-Print Network [OSTI]

with a discussion about technology and nature. A field of solar panels to produce economic revenue to consider technology and energy, a Solar Garden exists among the panels. In contrast, an Asian-inspired PondIn Solis Pacem Dialogue between modern technology and nature is developed through celebrating solar

Goodman, Robert M.

97

Using Smart Grid Technologies to Modernize Distribution Infrastructure in New York  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26The ConfederatedSolarusing ventEfficiency |DataDepartment

98

Microsoft Word - Compendium of Modern Grid Technologies V1.0Final_updated201.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTAL IMPACTApproved:GEORGE W.COMPACT POWER, INC.

99

Advances in quasioptical grid array technology for millimeter-wave plasma imaging diagnostics  

SciTech Connect (OSTI)

Quasioptical grid array technologies can provide low cost, wide bandwidth sources supplying 100--500 mW power levels needed for reflectometric and electron cyclotron imaging of fusion plasmas. Broadband quasioptical overmoded waveguide frequency multiplier grid array systems have been designed, simulated, fabricated, and are under test with a goal of providing Watt level output powers from 50 to 200 GHz. Both 1x8, one-dimensional and 4x4, two-dimensional phased antenna arrays utilizing Schottky varactor loaded transmission lines have been designed, simulated, fabricated, and are being tested. Microelectromechanical systems have been designed and fabricated on silicon wafers with traditional integrated circuit processing techniques, resulting in devices with physical dimensions on the order of a few tens of microns.

Rosenau, S. A.; Liang, C.; Chang, C.-C.; Hsu, P. L.; Luhmann, N. C.; Zhang, W.-K.; Li, W.-Y.; Domier, C. W.; Hsia, R. P.

2001-01-01T23:59:59.000Z

100

FUTURE POWER GRID INITIATIVE GridOPTICSTM  

E-Print Network [OSTI]

FUTURE POWER GRID INITIATIVE GridOPTICSTM : A Software Framework for Power System Operations technologies needed to support the operations and planning of the future power grid ¬Ľ provide a framework for integrating novel new operations and planning technologies with external power grid systems, including energy

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid  

E-Print Network [OSTI]

Signals. Ē SGIP NIST Smart Grid Collaboration Site. http://Presented at the Grid Interop Forum, Albuquerque, NM.Last accessed: Open Smart Grid Users Group. ďOpenADR Task

Ghatikar, Girish

2010-01-01T23:59:59.000Z

102

Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids  

E-Print Network [OSTI]

approach to community micro hydro in Kalahandi, Orissa. Santechnologies, such as micro-hydro, biomass gasification,grids, such as many micro-hydro grids, will mainly concern

Harper, Meg

2014-01-01T23:59:59.000Z

103

Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)  

SciTech Connect (OSTI)

Electrical energy consumption of the residential sector is a crucial area of research that has in the past primarily focused on increasing the efficiency of household devices such as water heaters, dishwashers, air conditioners, and clothes washer and dryer units. However, the focus of this research is shifting as objectives such as developing the smart grid and ensuring that the power system remains reliable come to the fore, along with the increasing need to reduce energy use and costs. Load research has started to focus on mechanisms to support the power system through demand reduction and/or reliability services. The power system relies on matching generation and load, and day-ahead and real-time energy markets capture most of this need. However, a separate set of grid services exist to address the discrepancies in load and generation arising from contingencies and operational mismatches, and to ensure that the transmission system is available for delivery of power from generation to load. Currently, these grid services are mostly provided by generation resources. The addition of renewable resources with their inherent variability can complicate the issue of power system reliability and lead to the increased need for grid services. Using load as a resource, through demand response programs, can fill the additional need for flexible resources and even reduce costly energy peaks. Loads have been shown to have response that is equal to or better than generation in some cases. Furthermore, price-incentivized demand response programs have been shown to reduce the peak energy requirements, thereby affecting the wholesale market efficiency and overall energy prices. The residential sector is not only the largest consumer of electrical energy in the United States, but also has the highest potential to provide demand reduction and power system support, as technological advancements in load control, sensor technologies, and communication are made. The prevailing loads based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems, sensors, and communication technologies for demand response and load factor control applications

Starke, Michael R [ORNL; Onar, Omer C [ORNL; DeVault, Robert C [ORNL

2011-09-01T23:59:59.000Z

104

Microsoft Word - Whitepaper_The Modern Grid Vision_APPROVED_2009_06_18_DISCLAIMER.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs535:UFC5, 2010UPDATES: MarchCHanfordModernA

105

GridLAB-D: An Agent-Based Simulation Framework for Smart Grids  

SciTech Connect (OSTI)

Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energyís Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control system design, and integration of wind power in a smart grid.

Chassin, David P.; Fuller, Jason C.; Djilali, Ned

2014-06-23T23:59:59.000Z

106

Reaching Grid Parity Using BP Solar Crystalline Silicon Technology: A Systems Class Application  

SciTech Connect (OSTI)

The primary target market for this program was the residential and commercial PV markets, drawing on BP Solar's premium product and service offerings, brand and marketing strength, and unique routes to market. These two markets were chosen because: (1) in 2005 they represented more than 50% of the overall US PV market; (2) they are the two markets that will likely meet grid parity first; and (3) they are the two market segments in which product development can lead to the added value necessary to generate market growth before reaching grid parity. Federal investment in this program resulted in substantial progress toward the DOE TPP target, providing significant advancements in the following areas: (1) Lower component costs particularly the modules and inverters. (2) Increased availability and lower cost of silicon feedstock. (3) Product specifically developed for residential and commercial applications. (4) Reducing the cost of installation through optimization of the products. (5) Increased value of electricity in mid-term to drive volume increases, via the green grid technology. (6) Large scale manufacture of PV products in the US, generating increased US employment in manufacturing and installation. To achieve these goals BP Solar assembled a team that included suppliers of critical materials, automated equipment developers/manufacturers, inverter and other BOS manufacturers, a utility company, and University research groups. The program addressed all aspects of the crystalline silicon PV business from raw materials (particularly silicon feedstock) through installation of the system on the customers site. By involving the material and equipment vendors, we ensured that supplies of silicon feedstock and other PV specific materials like encapsulation materials (EVA and cover glass) will be available in the quantities required to meet the DOE goals of 5 to 10 GW of installed US PV by 2015 and at the prices necessary for PV systems to reach grid parity in 2015. This final technical report highlights the accomplishments of the BP Solar technical team from 2006 to the end of the project in February 2010. All the main contributors and team members are recognized for this accomplishment and their endeavors are recorded in the twelve main tasks described here.

Cunningham, Daniel W; Wohlgemuth, John; Carlson, David E; Clark, Roger F; Gleaton, Mark; Posbic, John P; Zahler, James

2010-12-06T23:59:59.000Z

107

Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid  

SciTech Connect (OSTI)

We present an Open Automated Demand Response Communications Specifications (OpenADR) data model capable of communicating real-time prices to electricity customers. We also show how the same data model could be used to for other types of dynamic pricing tariffs (including peak pricing tariffs, which are common throughout the United States). Customers participating in automated demand response programs with building control systems can respond to dynamic prices by using the actual prices as inputs to their control systems. Alternatively, prices can be mapped into"building operation modes," which can act as inputs to control systems. We present several different strategies customers could use to map prices to operation modes. Our results show that OpenADR can be used to communicate dynamic pricing within the Smart Grid and that OpenADR allows for interoperability with existing and future systems, technologies, and electricity markets.

Ghatikar, Girish; Mathieu, Johanna L.; Piette, Mary Ann; Kiliccote, Sila

2010-06-02T23:59:59.000Z

108

Using Smart Grids to Enhance Use of Energy-Efficiency and Renewable-Energy Technologies  

SciTech Connect (OSTI)

This report addresses the Asia-Pacific Economic Cooperation (APEC) organizationís desire to minimize the learning time required to understand the implications of smart-grid concepts so APEC members can advance their thinking in a timely manner and advance strategies regarding smart approaches that can help meet their environmental-sustainability and energy-efficiency policy goals. As significant investments are needed to grow and maintain the electricity infrastructure, consideration needs to be given to how information and communications technologies can be applied to electricity infrastructure decisions that not only meet traditional needs for basic service and reliability, but also provide the flexibility for a changing the mix of generation sources with sensitivity to environmental and societal impacts.

Widergren, Steven E.; Paget, Maria L.; Secrest, Thomas J.; Balducci, Patrick J.; Orrell, Alice C.; Bloyd, Cary N.

2011-05-10T23:59:59.000Z

109

Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids  

E-Print Network [OSTI]

power at any one time, whereas on energy-limited grids, such as wind andpower-limited, such as micro-hydro, and those that are also energy- limited, such as wind andsolar and wind mini-grids. Grids that are only power-limited

Harper, Meg

2014-01-01T23:59:59.000Z

110

AUSTRIAN GRID AUSTRIAN GRID  

E-Print Network [OSTI]

AUSTRIAN GRID 1/18 AUSTRIAN GRID THE INITIAL VERSION OF SEE-GRID Document Identifier: AG-DA1c-1) #12;AUSTRIAN GRID 2/18 Delivery Slip Name Partner Date Signature From KŠroly Bůsa RISC 31 See cover on page 3 #12;AUSTRIAN GRID 3/18 THE INITIAL VERSION OF SEE-GRID Karoly Bosa Wolfgang

111

PMEL contributions to the collaboration: SCALING THE EARTH SYSTEM GRID TO PETASCALE DATA for the DOE SciDACs Earth System Grid Center for Enabling Technologies  

SciTech Connect (OSTI)

Drawing to a close after five years of funding from DOE's ASCR and BER program offices, the SciDAC-2 project called the Earth System Grid (ESG) Center for Enabling Technologies has successfully established a new capability for serving data from distributed centers. The system enables users to access, analyze, and visualize data using a globally federated collection of networks, computers and software. The ESG software‚??now known as the Earth System Grid Federation (ESGF)‚??has attracted a broad developer base and has been widely adopted so that it is now being utilized in serving the most comprehensive multi-model climate data sets in the world. The system is used to support international climate model intercomparison activities as well as high profile U.S. DOE, NOAA, NASA, and NSF projects. It currently provides more than 25,000 users access to more than half a petabyte of climate data (from models and from observations) and has enabled over a 1,000 scientific publications.

Hankin, Steve

2012-06-01T23:59:59.000Z

112

Semantic Information Modeling for Emerging Applications in Smart Grid  

E-Print Network [OSTI]

and transmission by the utility, intelligent charging and discharging of electric vehicles from and to the power such emerging application to optimize electricity demand by curtailing/shifting power load when peak load oc to the modernization of the electric power grid through the integration of digital and information technologies. Smart

Prasanna, Viktor K.

113

Smart Grid Demos Provide Guidance on Integrating DER and RES into the Distribution System with Consideration of Transmission Impacts, Market Signals, and Technologies  

SciTech Connect (OSTI)

This paper describes the overall process for developing a planning criteria and deployment strategy for technology applications under the US Department of Energy (USDOE) and Electric Power Research Institute (EPRI) Smart Grid programs. These activities described provide an understanding of each demonstration and how they individually and as group further industry knowledge of Distributed Energy Resources (DER) and Renewable Energy Sources (RES) impact the grid and how the distribution grid can interact with DER and RES in smart ways. Both USDOE through its Renewable and Distributed Systems Integration (RDSI) and EPRI via its Smart Grid Demonstration Program both assess how DER and RES can be integrated and operated to lower the carbon footprint.

Kueck, John D [ORNL] [ORNL; Hamilton, Stephanie [Electric Power Research Institute (EPRI)] [Electric Power Research Institute (EPRI); Smith, Merrill [U.S. Department of Energy] [U.S. Department of Energy

2010-01-01T23:59:59.000Z

114

DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report  

SciTech Connect (OSTI)

The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate data sets. Its specific goals are to (1) provide an easy-to-use and secure web-based data access environment for data sets; (2) add value to individual data sets by presenting them in the context of other data sets and tools for comparative analysis; (3) address the specific requirements of participating organizations with respect to bandwidth, access restrictions, and replication; (4) ensure that the data are readily accessible through the analysis and visualization tools used by the climate research community; and (5) transfer infrastructure advances to other domain areas. For the ESGF, the U.S. Department of Energy's (DOE's) Earth System Grid Center for Enabling Technologies (ESG-CET) team has led international development and delivered a production environment for managing and accessing ultra-scale climate data. This production environment includes multiple national and international climate projects (such as the Community Earth System Model and the Coupled Model Intercomparison Project), ocean model data (such as the Parallel Ocean Program), observation data (Atmospheric Radiation Measurement Best Estimate, Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, etc.), and analysis and visualization tools, all serving a diverse user community. These data holdings and services are distributed across multiple ESG-CET sites (such as ANL, LANL, LBNL/NERSC, LLNL/PCMDI, NCAR, and ORNL) and at unfunded partner sites, such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing Centre, the National Aeronautics and Space Administration Jet Propulsion Laboratory, and the National Oceanic and Atmospheric Administration. The ESGF software is distinguished from other collaborative knowledge systems in the climate community by its widespread adoption, federation capabilities, and broad developer base. It is the leading source for present climate data holdings, including the most important and largest data sets in the global-climate community, and - assuming its development continues - we expect it to be the leading source for future climate data holdings as well. Recently, ESG-CET extended its services beyond data-file access and delivery to include more detailed information products (scientific graphics, animations, etc.), secure binary data-access services (based upon the OPeNDAP protocol), and server-side analysis. The latter capabilities allow users to request data subsets transformed through commonly used analysis and intercomparison procedures. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users seeking to understand, process, extract value from, visualize, and/or communicate it to others. This ongoing effort, though daunting in scope and complexity, will greatly magnify the value of numerical climate model outputs and climate observations for future national and international climate-assessment reports. The ESG-CET team also faces substantial technical challenges due to the rapidly increasing scale of climate simulation and observational data, which will grow, for example, from less than 50 terabytes for the last Intergovernmental Panel on Climate Change (IPCC) assessment to multiple Petabytes for the next IPCC assessment. In a world of exponential technological change and rapidly growing sophistication in climate data analysis, an infrastructure such as ESGF must constantly evolve if it is to remain relevant and useful. Regretfully, we submit our final report at the end of project funding. To continue to serve the climate-science community, we are

Williams, D N

2011-09-27T23:59:59.000Z

115

Smart grid technologies and the development of a decision making framework for market entry  

E-Print Network [OSTI]

This thesis explores business opportunities in the "smart grid" environment for the Power Electronics Global Product Group (PE GPG) of ABB, Ltd. The goal of this thesis is three-fold: 1) Provide a detailed definition of ...

Lankton, Calman (Calman Ballow)

2010-01-01T23:59:59.000Z

116

Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids  

E-Print Network [OSTI]

low-power ďheat storage cookersĒ for mini-grids withHolland et al. 2002). These cookers run at a low power forlow wattage rice cookers. Despite their functionality, these

Harper, Meg

2014-01-01T23:59:59.000Z

117

Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids  

E-Print Network [OSTI]

Center for Appropriate Technology. Alice Springs, Australia.Report of Intermediate Technology Consultants to Overseasand Communication Technologies and Development. Atlanta, GA.

Harper, Meg

2014-01-01T23:59:59.000Z

118

Electric Springs A new Smart Grid Technology Department of Electrical & Electronic Engineering  

E-Print Network [OSTI]

-scale wind and solar power generation · . 7 #12;Future power systems adopt "distributed" power generation electronics system. · · It can be embedded in an electric appliance such as electric water heater or refrigerator. · ( ) · Electric springs can therefore be `distributed" over the power grid to stablize the mains

Leung, Ka-Cheong

119

The Modern Grid Initiative is a DOE-funded project managed by the National Energy Technology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2DifferentTheInforumLastProject:Reaction

120

The Modern Grid Initiative is a DOE-funded project managed by the National Energy Technology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Smart Grid Newsletter ¬Ö ¬ćThe Regulator¬źs Role in Grid Modernization¬é or ¬ćLeadership from State Regulators can make the Smart G  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite Cultural ResourcestepidumProjectsMoreSmart GridThe Smart Grid

122

Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids  

E-Print Network [OSTI]

Technologies for Demand-Side Management on Isolated Mini-technologies used for demand- side management (DSM) on mini-can provide additional demand-side management based on the

Harper, Meg

2014-01-01T23:59:59.000Z

123

Vids4Grids- Controls, Connectors & Surge Protectors  

Broader source: Energy.gov [DOE]

Modernizing our grid means exciting new devices in the power sector. Find out how new lighting controls, connectors and surge protection will bring out electric grid to the next level.

124

Announcement and Call for Papers IWMST 2014 The International Workshop on Modern Science and Technology 2014  

E-Print Network [OSTI]

Char, Fuel Cell, Renewable Energy, Methane Gas, Green House Gas, NOx, SOx, Natural Gas Hydrate, Marine and Technology 2014 October 30 - 31, 2014 Wuhan, China 1. SCOPE We are pleased to announce that the International, Environmental Materials, Bioimaging, Natural Resources, and Others Energy and Environment Solar Energy, Biomass

Yanai, Keiji

125

Comments of Saton Technology Corporation in response to Smart Grid RFI |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart Grid RFI: Addressing Policy and Logistical

126

Vehicle Technologies Office Merit Review 2014: Vehicle to Grid Communications and Field Testing  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

127

Cyberspace modernization :  

SciTech Connect (OSTI)

A common challenge across the communications and information technology (IT) sectors is Internet + modernization + complexity + risk + cost. Cyberspace modernization and cyber security risks, issues, and concerns impact service providers, their customers, and the industry at large. Public and private sectors are struggling to solve the problem. New service opportunities lie in mobile voice, video, and data, and machine-to-machine (M2M) information and communication technologies that are migrating not only to predominant Internet Protocol (IP) communications, but also concurrently integrating IP, version 4 (IPv4) and IP, version 6 (IPv6). With reference to the Second Internet and the Internet of Things, next generation information services portend business survivability in the changing global market. The planning, architecture, and design information herein is intended to increase infrastructure preparedness, security, interoperability, resilience, and trust in the midst of such unprecedented change and opportunity. This document is a product of Sandia National Laboratories Tribal Cyber and IPv6 project work. It is a Cyberspace Modernization objective advisory in support of bridging the digital divide through strategic partnership and an informed path forward.

Keliiaa, Curtis M.; McLane, Victor N.

2014-07-01T23:59:59.000Z

128

Smart Grid Newsletter ¬Ö ¬ćThe Regulator¬źs Role in Grid Modernization¬é or ¬ćLeadership from State Regulators can make the Smart G  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite Cultural ResourcestepidumProjectsMoreSmart Grid

129

Smart Grid Newsletter ¬Ö ¬ćThe Regulator¬źs Role in Grid Modernization¬é or ¬ćLeadership from State Regulators can make the Smart G  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite Cultural ResourcestepidumProjectsMoreSmart GridThe Smart

130

Sustainable Energy for Development The evolution of technologies provides remote, non-grid  

E-Print Network [OSTI]

Sustainable Energy for Development GOALS: The evolution of technologies provides remote, non, energy storage, light emitting diodes, energy monitoring and management. RESEARCH ISSUES: Investigate the correlation of energy and social well being and associated energy costs. Research current methods

Mottram, Nigel

131

FPGA-based Particle Recognition in the HADES Abstract--Modern FPGA technologies are often employed in nuclear and particle physics experimental facilities to accelerate  

E-Print Network [OSTI]

1 FPGA-based Particle Recognition in the HADES Experiment Abstract--Modern FPGA technologies-specific computation. We present the particle recognition computation for the HADES experiment in this article of commodity PCs for the HADES experiment. Index Terms--reconfigurable computing, FPGA accelerator, pattern

Jantsch, Axel

132

EC MoDeRn Project: In-situ Demonstration of Innovative Monitoring Technologies for Geological Disposal - 12053  

SciTech Connect (OSTI)

Monitoring to provide information on the evolution of geological disposal presents several challenges. The 4-year, euros M 5, EC MoDeRn Project (http://www.modern-fp7.eu/), which commenced in 2009, addresses monitoring processes, state-of-the-art technology and innovative research and development of monitoring techniques. This paper discusses some of the key drivers for the development of innovative monitoring techniques and provides outlines of the demonstration programmes being conducted within MoDeRn. The aim is to develop these innovative monitoring techniques and to demonstrate them under realistic conditions present in underground laboratories. These demonstration projects, applying a range of different monitoring techniques, are being carried out at underground research facilities in different geological environments at HADES URL in Belgium (plastic clay), Bure in France (indurated clay) and at Grimsel Test Site (granite) in Switzerland. These are either built upon existing infrastructure (EC ESDRED Low pH shotcrete and TEM experiments at Grimsel; and PRACLAY experiment and underground galleries in HADES) or will be attached to infrastructure that is being developed and financed by resources outside of this project (mock-up disposal cell in Bure). At Grimsel Test Site, cross-hole and hole-to-tunnel seismic methods are being employed as a means to monitor induced changes in an artificially saturated bentonite wall confined behind a shotcrete plug. Recognising the limitations for travel-time tomography for monitoring a disposal cell, full waveform inversion techniques are being employed to enhance the capacity to monitor remote from the excavation. At the same Grimsel location, an investigation will be conducted of the potential for using a high frequency wireless (HFW) sensor network embedded within the barrier system; this will include the possibility of providing energy remotely to isolated sensors. At the HADES URL, the monitoring programme will utilise the PRACLAY gallery equipped to simulate a disposal gallery for heat-generating high-level waste evaluating fibre-optic based sensing techniques, including distributed sensing for thermal distribution and long-term reliability in harsh conditions. It also includes the potential to improve the treatment of signals from micro-seismic monitoring to enable enhanced understanding of the evolution around the gallery following its excavation due to ventilation, saturation and heating, and to image a water-bearing concretion layer. HADES URL will also be used to test wireless techniques to transmit monitoring data from the underground to the surface. The main focus of this contribution is to evaluate magneto-inductive data transmission; and to optimise energy usage. At the Bure underground facility in France, monitoring systems have been developed and will be embedded into the steel liner for the mock-up high-level waste disposal tunnel. The aim of this programme is to establish the capacity to conduct integrated monitoring activities inside the disposal cell, on the cell liner and in the near-field and to assess the capability of the monitoring to withstand construction and liner emplacement procedures. These projects, which are supported by focused development and testing of the monitoring systems, will allow the testing of both the effectiveness of these techniques applied to disposal situations and to understand the limits of these monitoring technologies. This approach should also enhance the confidence of key stakeholders in the ability to understand/confirm the changes occurring within a disposal cell. In addition, remote or 'non-intrusive' monitoring technologies are evaluated to provide a means of enhancing understanding of what is occurring in an isolated disposal cell. The projects also test solutions for embedded monitoring systems in challenging (risk of damage) situations. The outputs from this work will lead to improved understanding of these state-of-the-art techniques and allow focused development of those techniques beneficial to future monitoring progr

Breen, B.J. [NDA, Herdus House, Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3HU (United Kingdom); Garcia-Sineriz, J.L. [AITEMIN, c/Margarita Salas 14-Parque Leganes Tecnologico-Leganes, ES-28918, Madrid (Spain); Maurer, H. [ETH Zurich, ETH Honggerberg, CH-8093, Zurich (Switzerland); Mayer, S. [ANDRA, 1-7 rue Jean-Monnet, F-92298 Chatenay-Malabry cedex (France); Schroeder, T.J. [NRG, P.O. Box 25, NL-1755 ZG Petten (Netherlands); Verstricht, J. [EURIDICE EIG, c/o SCK.CEN, Boeretang 200, BE-2400 Mol (Belgium)

2012-07-01T23:59:59.000Z

133

Artificial Intelligence for the Smart Grid  

E-Print Network [OSTI]

Artificial Intelligence for the Smart Grid NICTA is developing technology to automate costs. The Future ∑ Cover more of Smart Grid control (diagnosis, reconfiguration, protection, voltage) products for the Smart Grid. Contact Details: Technical Jussi Rintanen Canberra Research Laboratory Tel

134

Understanding The Smart Grid  

SciTech Connect (OSTI)

The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology providers involved in the Smart Grid and provides profiles on them including contact information, company overviews, technology reviews, and key Smart Grid activities.

NONE

2007-11-15T23:59:59.000Z

135

Enhancing Power Grid Stability through Analytics  

E-Print Network [OSTI]

the "Smart" Grid? · Premise #1: the grid has long been pretty smart (Edison, Tesla, Steinmetz et al were of Vermont Seminar October 23, 2013 3 What Drives the "Smart" Grid? · Premise #2: As well operated as grid of Vermont Seminar October 23, 2013 4 What Drives the "Smart" Grid? · Premise #3: new technology is providing

Lakoba, Taras I.

136

Reactor Technology Options Study for Near-Term Deployment of GNEP Grid-Appropriate Reactors  

SciTech Connect (OSTI)

World energy demand is projected to significantly increase over the coming decades. The International Energy Agency projects that electricity demand will increase 50% by 2015 and double by 2030, with most of the increase coming in developing countries as they experience double-digit rates of economic growth and seek to improve their standards of living. Energy is the necessary driver for human development, and the demand for energy in these countries will be met using whatever production technologies are available. Recognizing this inevitable energy demand and its implications for the United States, the U.S. National Security Strategy has proposed the Global Nuclear Energy Partnership (GNEP) to work with other nations to develop and deploy advanced nuclear recycling and reactor technologies. This initiative will help provide reliable, emission-free energy with less of the waste burden of older technologies and without making available separated plutonium that could be used by rogue states or terrorists for nuclear weapons. These new technologies will make possible a dramatic expansion of safe, clean nuclear energy to help meet the growing global energy demand. In other words, GNEP seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy without increasing the risk of nuclear weapon proliferation. This global expansion of nuclear power is strategically important to the United States for several reasons, including the following: (1) National security, by reducing the competition and potential for conflict over increasingly scarce fossil energy resources; (2) Economic security, by helping maintain stable prices for nonrenewable resources such as oil, gas, and coal; (3) Environmental security, by replacing or off-setting large-scale burning of greenhouse gas-emitting fuels for electricity production; and (4) Regaining technical leadership, through deployment of innovative U.S. technology-based reactors. Fully meeting the GNEP vision may require the deployment of thousands of reactors during the next century in dozens of countries, many of which are in the developing world where nuclear energy is not used currently. Such a large-scale deployment will have significant implications related to both fuel supply and spent fuel/waste management, both domestically and worldwide. Consequently, GNEP must address the development and demonstration of proliferation-resistant technologies to ensure both a safe and sustainable nuclear fuel cycle, and reactor designs that are appropriate for the range of needs across the global community. The focus of this report is the latter need, that is, the development and demonstration of proliferation-resistant reactors that are well matched to the needs and capabilities of developing countries.

Ingersoll, Daniel T [ORNL; Poore III, Willis P [ORNL

2007-09-01T23:59:59.000Z

137

Grid-Competitive Residential and Commercial Fully Automated PV Systems Technology: Final technical Report, August 2011  

SciTech Connect (OSTI)

Under DOE's Technology Pathway Partnership program, SunPower Corporation developed turn-key, high-efficiency residential and commercial systems that are cost effective. Key program objectives include a reduction in LCOE values to 9-12 cents/kWh and 13-18 cents/kWh respectively for the commercial and residential markets. Target LCOE values for the commercial ground, commercial roof, and residential markets are 10, 11, and 13 cents/kWh. For this effort, SunPower collaborated with a variety of suppliers and partners to complete the tasks below. Subcontractors included: Solaicx, SiGen, Ribbon Technology, Dow Corning, Xantrex, Tigo Energy, and Solar Bridge. SunPower's TPP addressed nearly the complete PV value chain: from ingot growth through system deployment. Throughout the award period of performance, SunPower has made progress toward achieving these reduced costs through the development of 20%+ efficient modules, increased cell efficiency through the understanding of loss mechanisms and improved manufacturing technologies, novel module development, automated design tools and techniques, and reduced system development and installation time. Based on an LCOE assessment using NREL's Solar Advisor Model, SunPower achieved the 2010 target range, as well as progress toward 2015 targets.

Brown, Katie E.; Cousins, Peter; Culligan, Matt; Jonathan Botkin; DeGraaff, David; Bunea, Gabriella; Rose, Douglas; Bourne, Ben; Koehler, Oliver

2011-08-26T23:59:59.000Z

138

Brookhaven National Laboratory Smarter Grid Centers  

E-Print Network [OSTI]

(Smart Grid Innovation Center) #12;3 Smart Grid enables 21st Century Economy and Creates Need for SGRID3 Research &Technology (AERTC) Center is designed to nurture creation of new technologies for Smart Grid - New - Development of SGIC (Smart Grid Innovation Center) at SBU - New -Development of AEGIS (Advanced

Homes, Christopher C.

139

Applications (Grid Tools)  

E-Print Network [OSTI]

Grid Fabric Software Grid Applications Core Grid Middleware User-Level Middleware (Grid Tools) !"# $ %& ' ( ) * #& + '& ' , - . / # ) ) 0 # * 1 PDB CDB Grid Fabric Hardware &+ '' + ) , '1 '1 ' % - * # ( Grid Fabric Software Grid Applications Core Grid Middleware User-Level Middleware (Grid Tools) !"# $ %& ' ( ) * #& + '& ' , - . / # ) ) 0

Buyya, Rajkumar

140

FUTURE POWER GRID INITIATIVE GridOPTICSTM Power Networking,  

E-Print Network [OSTI]

FUTURE POWER GRID INITIATIVE GridOPTICSTM Power Networking, Equipment, and Technology (powerNET) Testbed OBJECTIVE A lot of interest in research, improvements, and testing surrounds the power grid to these activities. Specifically, ¬Ľ power system equipment is expensive and has a high knowledge barrier

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

SciTech Connect (OSTI)

This report describes an investigation at Ernesto Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) of the potential for coupling combined heat and power (CHP) with on-site electricity generation to provide power and heating, and cooling services to customers. This research into distributed energy resources (DER) builds on the concept of the microgrid (mGrid), a semiautonomous grouping of power-generating sources that are placed and operated by and for the benefit of its members. For this investigation, a hypothetical small shopping mall (''Microgrid Oaks'') was developed and analyzed for the cost effectiveness of installing CHP to provide the mGrid's energy needs. A mGrid consists of groups of customers pooling energy loads and installing a combination of generation resources that meets the particular mGrid's goals. This study assumes the mGrid is seeking to minimize energy costs. mGrids could operate independently of the macrogrid (the wider power network), but they are usually assumed to be connected, through power electronics, to the macrogrid. The mGrid in this study is assumed to be interconnected to the macrogrid, and can purchase some energy and ancillary services from utility providers.

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-03-01T23:59:59.000Z

142

Vehicle Technologies Office Merit Review 2014: Lubricant Formulations to Enhance Engine Efficiency (LFEEE) in Modern Internal Combustion Engines  

Broader source: Energy.gov [DOE]

Presentation given by Massachusetts Institute of Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

143

Grid Integration of Robotic Telescopes  

E-Print Network [OSTI]

Robotic telescopes and grid technology have made significant progress in recent years. Both innovations offer important advantages over conventional technologies, particularly in combination with one another. Here, we introduce robotic telescopes used by the Astrophysical Institute Potsdam as ideal instruments for building a robotic telescope network. We also discuss the grid architecture and protocols facilitating the network integration that is being developed by the German AstroGrid-D project. Finally, we present three user interfaces employed for this purpose.

F. Breitling; T. Granzer; H. Enke

2009-03-23T23:59:59.000Z

144

Alan Turing's fundamental contributions to computing led to the development of modern computing technology, and his work conti-  

E-Print Network [OSTI]

Alan Turing's fundamental contributions to computing led to the development of modern computing phyllotaxis and connectionism. AlanTuring: Life and Legacy of a Great Thinker Approx.584 p.,77 illus-mail:orders@springer.de · Internet:www.springer.de Available from ____copies: Teuscher,C.(Ed): Alan Turing: Life and Legacy

Teuscher, Christof

145

Smart Grid Week: Working to Modernize the Nation's Electric Grid |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on Energy andDepartment ofAn AudienceEnergy As

146

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in electricity markets See what they use, when they use it, and what it costs Manage energy costs Invest in new devices Sell resources for revenue or environmental stewardship...

147

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in electricity markets See what they use, when they use it, and what it costs Manage energy costs Investment in new devices Sell resources for revenue or environmental...

148

Case Study - Minnesota Power - Accelerating Grid Modernization...  

Broader source: Energy.gov (indexed) [DOE]

and is driven by needs to upgrade the company's electric distribution and metering systems, load control programs, and customer engagement strategies for improved reliability...

149

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ISO's, EEI, NARUC, 13 regulatory commissions, NETL, NREL, ORNL, >25 industry (public and private) organizations, 10 energy investment organizations, >100 vendors, 6 consumer...

150

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

utilities, 6 RTOISO's, EEI, NARUC, 13 regulatory commissions, >25 industry (public and private) organizations, 10 energy investment organizations, >100 vendors, 6 consumer...

151

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Little natural energy * Strongly regulated * Large coal & nuclear focus * Suburban rural mix * Much natural energy * Growing green energy policy * Large hydro resources *...

152

Chapter III: Modernizing the Electric Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStanding FriedelIron-Sulfur3-1 November8-1 November 2012-34 QER

153

Sandia National Laboratories: modernize the electric grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime ismobile test system Solar Testsimulationaddress

154

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary Authorstem ThePrincetonPrinceton

155

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary Authorstem ThePrincetonPrincetonNETL

156

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary Authorstem

157

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary AuthorstemActivities 1 Conducted by the

158

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary AuthorstemActivities 1 Conducted by

159

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary AuthorstemActivities 1 Conducted

160

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary AuthorstemActivities 1 ConductedHawaii

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary AuthorstemActivities 1

162

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary AuthorstemActivities 1 An Emerging

163

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary AuthorstemActivities 1 An EmergingWhat

164

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary AuthorstemActivities 1 An

165

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary AuthorstemActivities 1 AnMid-America

166

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary AuthorstemActivities 1

167

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary AuthorstemActivities 1PSC Missouri -

168

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary AuthorstemActivities 1PSC Missouri

169

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary AuthorstemActivities 1PSC MissouriJoe

170

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary AuthorstemActivities 1PSC

171

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary AuthorstemActivities 1PSCBarriers to

172

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary AuthorstemActivities 1PSCBarriers

173

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary AuthorstemActivities 1PSCBarriersSome

174

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary AuthorstemActivities

175

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Network Transmission Network Baseload Power Peaking Power Need for Demand Response (DR) Variable Power from Wind Solar Farms 50% 30% Continued geo- growth in urban ...

176

A prototype catalogue: DOE National Laboratory technologies for infrastructure modernization. Letter report made publicly available December 1992  

SciTech Connect (OSTI)

The purpose of this report is to provide the Office of Technology Assessment (OTA) with information about selected technologies under development in the Department of Energy (DOE) through its National Laboratory System and its Program Office operations. The technologies selected are those that have the potential to improve the performance of the nation`s public works infrastructure. The product is a relational database that we refer to as a ``prototype catalogue of technologies.`` The catalogue contains over 100 entries of DOE-supported technologies having potential application to infrastructure-related problems. The work involved conceptualizing an approach, developing a framework for organizing technology information, and collecting samples of readily available data to be put into a prototype catalogue. In developing the catalogue, our objectives were to demonstrate the concept and provide readily available information to OTA. As such, the catalogue represents a preliminary product. The existing database is not exhaustive and likely represents only a fraction of relevant technologies developed by DOE. In addition, the taxonomy we used to classify technologies is based on the judgment of project staff and has received minimal review by individuals who have been involved in the development and testing of the technologies. Finally, end users will likely identify framework changes and additions that will strengthen the catalogue approach. The framework for the catalogue includes four components: a description of the technology, along with potential uses and other pertinent information; identification of the source of the descriptive information; identification of a person or group knowledgeable about the technology; and a classification of the described technology in terms of its type, application, life-cycle use, function, and readiness.

Currie, J.W.; Wilfert, G.L.; March, F.

1990-01-01T23:59:59.000Z

177

INTRODUCTION TO SMART GRID Weichao Wang (UNCC), Yi Pan (Georgia State),  

E-Print Network [OSTI]

INTRODUCTION TO SMART GRID Weichao Wang (UNCC), Yi Pan (Georgia State), Wenzhan Song (Georgia State) and Le Xie (Texas A&M) NSF SFS Project Team on "Integrated Learning Environment for Smart Grid Security" #12; Objective of National Power Grid Modernization Architecture of Smart Grid What is Smart Grid

Wang, Weichao

178

SciDAC's Earth System Grid Center for Enabling Technologies Semiannual Progress Report October 1, 2010 through March 31, 2011  

SciTech Connect (OSTI)

This report summarizes work carried out by the Earth System Grid Center for Enabling Technologies (ESG-CET) from October 1, 2010 through March 31, 2011. It discusses ESG-CET highlights for the reporting period, overall progress, period goals, and collaborations, and lists papers and presentations. To learn more about our project and to find previous reports, please visit the ESG-CET Web sites: http://esg-pcmdi.llnl.gov/ and/or https://wiki.ucar.edu/display/esgcet/Home. This report will be forwarded to managers in the Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) program and the Office of Biological and Environmental Research (OBER), as well as national and international collaborators and stakeholders (e.g., those involved in the Coupled Model Intercomparison Project, phase 5 (CMIP5) for the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5); the Community Earth System Model (CESM); the Climate Science Computational End Station (CCES); SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science; the North American Regional Climate Change Assessment Program (NARCCAP); the Atmospheric Radiation Measurement (ARM) program; the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA)), and also to researchers working on a variety of other climate model and observation evaluation activities. The ESG-CET executive committee consists of Dean N. Williams, Lawrence Livermore National Laboratory (LLNL); Ian Foster, Argonne National Laboratory (ANL); and Don Middleton, National Center for Atmospheric Research (NCAR). The ESG-CET team is a group of researchers and scientists with diverse domain knowledge, whose home institutions include eight laboratories and two universities: ANL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), LLNL, NASA/Jet Propulsion Laboratory (JPL), NCAR, Oak Ridge National Laboratory (ORNL), Pacific Marine Environmental Laboratory (PMEL)/NOAA, Rensselaer Polytechnic Institute (RPI), and University of Southern California, Information Sciences Institute (USC/ISI). All ESG-CET work is accomplished under DOE open-source guidelines and in close collaboration with the project's stakeholders, domain researchers, and scientists. Through the ESG project, the ESG-CET team has developed and delivered a production environment for climate data from multiple climate model sources (e.g., CMIP (IPCC), CESM, ocean model data (e.g., Parallel Ocean Program), observation data (e.g., Atmospheric Infrared Sounder, Microwave Limb Sounder), and analysis and visualization tools) that serves a worldwide climate research community. Data holdings are distributed across multiple sites including LANL, LBNL, LLNL, NCAR, and ORNL as well as unfunded partners sites such as the Australian National University (ANU) National Computational Infrastructure (NCI), the British Atmospheric Data Center (BADC), the Geophysical Fluid Dynamics Laboratory/NOAA, the Max Planck Institute for Meteorology (MPI-M), the German Climate Computing Centre (DKRZ), and NASA/JPL. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users who want to understand it, process it, extract value from it, visualize it, and/or communicate it to others. This ongoing effort is extremely large and complex, but it will be incredibly valuable for building 'science gateways' to critical climate resources (such as CESM, CMIP5, ARM, NARCCAP, Atmospheric Infrared Sounder (AIRS), etc.) for processing the next IPCC assessment report. Continued ESG progress will result in a production-scale system that will empower scientists to attempt new and exciting data exchanges, which could ultimately lead to breakthrough climate science discoveries.

Williams, D N

2011-04-02T23:59:59.000Z

179

Pages 6-15 In: J. Wu, X. Han and J. Huang (eds), Lectures in Modern Ecology (II): From Basic Ecology to Environmental Issues. Science and Technology Press, Beijing.  

E-Print Network [OSTI]

Ecology to Environmental Issues. Science and Technology Press, Beijing. 1 #12;Pages 6-15 In: J. Wu, X. Han and J. Huang (eds), Lectures in Modern Ecology (II): From Basic Ecology to Environmental Issues. Science (II): From Basic Ecology to Environmental Issues. Science and Technology Press, Beijing. 3 #12;Pages 6

Wu, Jianguo "Jingle"

180

Information GRID in the Corporate World Information GRID in the Corporate World  

E-Print Network [OSTI]

Information GRID in the Corporate World Information GRID in the Corporate World .Bogonikolos Zeus Ontology Grid) project, an EU project funded under the Information Society Technologies programme and EAI Tools is discussed. The COG (Corporate Ontology Grid) project addresses the problem of accessing

Paris-Sud XI, Universitť de

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NREL Smart Grid Projects  

SciTech Connect (OSTI)

Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

Hambrick, J.

2012-01-01T23:59:59.000Z

182

A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW  

E-Print Network [OSTI]

Indian Institute of Technology Roorkee, ďElectro-MechanicalGrid Connection Equipment and Technology Ė Best Practice andand renewable energy technologies; provides training for

Greacen, Chris

2014-01-01T23:59:59.000Z

183

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network [OSTI]

Economic Analysis of Combined Heat and Power Technologies inEconomic Analysis of Combined Heat and Power Technologies inAgency (1998). Combined Heat and Power in Denmark. Version

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

184

Quality Assurance Needs for Modern Image-Based Radiotherapy: Recommendations From 2007 Interorganizational Symposium on 'Quality Assurance of Radiation Therapy: Challenges of Advanced Technology'  

SciTech Connect (OSTI)

This report summarizes the consensus findings and recommendations emerging from 2007 Symposium, 'Quality Assurance of Radiation Therapy: Challenges of Advanced Technology.' The Symposium was held in Dallas February 20-22, 2007. The 3-day program, which was sponsored jointly by the American Society for Therapeutic Radiology and Oncology (ASTRO), American Association of Physicists in Medicine (AAPM), and National Cancer Institute (NCI), included >40 invited speakers from the radiation oncology and industrial engineering/human factor communities and attracted nearly 350 attendees, mostly medical physicists. A summary of the major findings follows. The current process of developing consensus recommendations for prescriptive quality assurance (QA) tests remains valid for many of the devices and software systems used in modern radiotherapy (RT), although for some technologies, QA guidance is incomplete or out of date. The current approach to QA does not seem feasible for image-based planning, image-guided therapies, or computer-controlled therapy. In these areas, additional scientific investigation and innovative approaches are needed to manage risk and mitigate errors, including a better balance between mitigating the risk of catastrophic error and maintaining treatment quality, complimenting the current device-centered QA perspective by a more process-centered approach, and broadening community participation in QA guidance formulation and implementation. Industrial engineers and human factor experts can make significant contributions toward advancing a broader, more process-oriented, risk-based formulation of RT QA. Healthcare administrators need to appropriately increase personnel and ancillary equipment resources, as well as capital resources, when new advanced technology RT modalities are implemented. The pace of formalizing clinical physics training must rapidly increase to provide an adequately trained physics workforce for advanced technology RT. The specific recommendations of the Symposium included the following. First, the AAPM, in cooperation with other advisory bodies, should undertake a systematic program to update conventional QA guidance using available risk-assessment methods. Second, the AAPM advanced technology RT Task Groups should better balance clinical process vs. device operation aspects-encouraging greater levels of multidisciplinary participation such as industrial engineering consultants and use-risk assessment and process-flow techniques. Third, ASTRO should form a multidisciplinary subcommittee, consisting of physician, physicist, vendor, and industrial engineering representatives, to better address modern RT quality management and QA needs. Finally, government and private entities committed to improved healthcare quality and safety should support research directed toward addressing QA problems in image-guided therapies.

Williamson, Jeffrey F. [Virginia Commonwealth University, Richmond, VA (United States)], E-mail: jwilliamson@mcvh-vcu.edu; Dunscombe, Peter B. [University of Calgary, Calgary, AB (Canada); Sharpe, Michael B. [Princess Margaret Hospital, Toronto, ON (Canada); Thomadsen, Bruce R. [University of Wisconsin, Madison, WI (United States); Purdy, James A. [University of California-Davis, Sacramento, CA (United States); Deye, James A. [National Cancer Institute, Bethesda, MD (United States)

2008-05-01T23:59:59.000Z

185

Smart Grid Information Security (IS) Functional Requirement  

E-Print Network [OSTI]

It is important to implement safe smart grid environment to enhance people's lives and livelihoods. This paper provides information on smart grid IS functional requirement by illustrating some discussion points to the sixteen identified requirements. This paper introduces the smart grid potential hazards that can be referred as a triggering factor to improve the system and security of the entire grid. The background of smart information infrastructure and the needs for smart grid IS is described with the adoption of hermeneutic circle as methodology. Grid information technology and security-s session discusses that grid provides the chance of a simple and transparent access to different information sources. In addition, the transformation between traditional versus smart grid networking trend and the IS importance on the communication field reflects the criticality of grid IS functional requirement identification is introduces. The smart grid IS functional requirements described in this paper are general and ...

Ling, Amy Poh Ai

2011-01-01T23:59:59.000Z

186

Recommendations for Modernization of Solid Waste Management Practices in Class -I Cities -Suggestions on Choice of Technology in Indian Context  

E-Print Network [OSTI]

, formed on 16.01.98 in response to a PIL (Public Interest Litigation WP(C) 888/96 ­ Almitra Patel, root growth and soil moisture retention. Beware of Expensive & Unproven Technology ­ Local bodies). This is very important for protecting proposed and even existing sites from demands for shift

Columbia University

187

Smart Grid Investments Improve Grid Reliability, Resilience,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November...

188

The Evolution of the Internet Community and the"Yet-to-Evolve" Smart Grid Community: Parallels and Lessons-to-be-Learned  

SciTech Connect (OSTI)

The Smart Grid envisions a transformed US power distribution grid that enables communicating devices, under human supervision, to moderate loads and increase overall system stability and security. This vision explicitly promotes increased participation from a community that, in the past, has had little involvement in power grid operations -the consumer. The potential size of this new community and its member's extensive experience with the public Internet prompts an analysis of the evolution and current state of the Internet as a predictor for best practices in the architectural design of certain portions of the Smart Grid network. Although still evolving, the vision of the Smart Grid is that of a community of communicating and cooperating energy related devices that can be directed to route power and modulate loads in pursuit of an integrated, efficient and secure electrical power grid. The remaking of the present power grid into the Smart Grid is considered as fundamentally transformative as previous developments such as modern computing technology and high bandwidth data communications. However, unlike these earlier developments, which relied on the discovery of critical new technologies (e.g. the transistor or optical fiber transmission lines), the technologies required for the Smart Grid currently exist and, in many cases, are already widely deployed. In contrast to other examples of technical transformations, the path (and success) of the Smart Grid will be determined not by its technology, but by its system architecture. Fortunately, we have a recent example of a transformative force of similar scope that shares a fundamental dependence on our existing communications infrastructure - namely, the Internet. We will explore several ways in which the scale of the Internet and expectations of its users have shaped the present Internet environment. As the presence of consumers within the Smart Grid increases, some experiences from the early growth of the Internet are expected to be informative and pertinent.

McParland, Charles

2009-11-06T23:59:59.000Z

189

SciDAC's Earth System Grid Center for Enabling Technologies Semi-Annual Progress Report for the Period October 1, 2009 through March 31, 2010  

SciTech Connect (OSTI)

This report summarizes work carried out by the ESG-CET during the period October 1, 2009 through March 31, 2009. It includes discussion of highlights, overall progress, period goals, collaborations, papers, and presentations. To learn more about our project, and to find previous reports, please visit the Earth System Grid Center for Enabling Technologies (ESG-CET) website. This report will be forwarded to the DOE SciDAC program management, the Office of Biological and Environmental Research (OBER) program management, national and international collaborators and stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), the SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science, the North American Regional Climate Change Assessment Program (NARCCAP), and other wide-ranging climate model evaluation activities).

Williams, D N; Foster, I T; Middleton, D E; Ananthakrishnan, R; Siebenlist, F; Shoshani, A; Sim, A; Bell, G; Drach, R; Ahrens, J; Jones, P; Brown, D; Chastang, J; Cinquini, L; Fox, P; Harper, D; Hook, N; Nienhouse, E; Strand, G; West, P; Wilcox, H; Wilhelmi, N; Zednik, S; Hankin, S; Schweitzer, R; Bernholdt, D; Chen, M; Miller, R; Shipman, G; Wang, F; Bharathi, S; Chervenak, A; Schuler, R; Su, M

2010-04-21T23:59:59.000Z

190

Grid Connectivity Research, Development & Demonstration Projects  

Broader source: Energy.gov (indexed) [DOE]

and communication technology * Engage demonstration partners to validate NIST smart grid standards for utility network and sub-meter requirements (includes ANSI, NEMA...

191

Value of a Smart Grid System  

Broader source: Energy.gov (indexed) [DOE]

2 - Section 1: Smart Grid Opportunities Remarkable things happen when economic forces and new technology converge. Consider how the the Internet -- combined with new, affordable...

192

FUTURE POWER GRID INITIATIVE Future Power Grid  

E-Print Network [OSTI]

FUTURE POWER GRID INITIATIVE Future Power Grid Control Paradigm OBJECTIVE This project integration & exploit the potential of distributed smart grid assets Ľ Significantly reduce the risk of advanced mathematical models, next- generation simulation and analytics capabilities for the power grid

193

Energy Storage Activities in the United States Electricity Grid...  

Broader source: Energy.gov (indexed) [DOE]

Activities in the United States Electricity Grid Electricity Advisory Committee Energy Storage Technologies Subcommittee Members Ralph Masiello, Subcommittee Chair Senior...

194

Economic On-Grid Solar Energy via Organic Thin Film Technology: 28 September 2007 - 27 October 2008  

SciTech Connect (OSTI)

Plextronics' PV Incubator goal was to take its organic photovoltaic technology from lab-scale and demonstrate a pathway to 3-W manufacturing capacity (~2010) and 7 cents/kWh LCOE by 2015.

Laird, D.; Bernkopf, J.; Jian, S.; Krieg, J.; Li, S.; McGuiness, C.; Rossier, J.; Storch, M.; Ripnis, R.; Tuttle, R.; Woodworth, B.; Williams, S.

2009-12-01T23:59:59.000Z

195

Evaluating Machine Learning for Improving Power Grid Reliability Leon Wu leon@cs.columbia.edu  

E-Print Network [OSTI]

as the electrical grid morphs into the "smart grid" will require innovations in how we assess the state of the grid and intelligent electricity distribution and trans- mission system, i.e., power grid. The smart grid has been (Force, 2010). Without the smart grid, many emerging clean energy technologies such as electric ve

Rudin, Cynthia

196

Text of article published in IEEE Smart Grid, March 2012. http://smartgrid.ieee.org/march-2012/527-microgrids-an-emerging-technology-to-enhance-power-system-  

E-Print Network [OSTI]

Text of article published in IEEE Smart Grid, March 2012. http://smartgrid.ieee.org/march-2012 of the recommendations of the Smart Grid Initiative [1]. While the microgrid may possess several advantages, including electricity grid are compromised, thus subjecting huge sections of the population to erratic supply

197

Development of Resource Sharing System Components for AliEn Grid Infrastructure  

E-Print Network [OSTI]

The problem of the resource provision, sharing, accounting and use represents a principal issue in the contemporary scientific cyberinfrastructures. For example, collaborations in physics, astrophysics, Earth science, biology and medicine need to store huge amounts of data (of the order of several petabytes) as well as to conduct highly intensive computations. The appropriate computing and storage capacities cannot be ensured by one (even very large) research center. The modern approach to the solution of this problem suggests exploitation of computational and data storage facilities of the centers participating in collaborations. The most advanced implementation of this approach is based on Grid technologies, which enable effective work of the members of collaborations regardless of their geographical location. Currently there are several tens of Grid infrastructures deployed all over the world. The Grid infrastructures of CERN Large Hadron Collider experiments - ALICE, ATLAS, CMS, and LHCb which are exploi...

Harutyunyan, Artem

2010-01-01T23:59:59.000Z

198

FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced  

E-Print Network [OSTI]

FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced Computational Kernels OBJECTIVE The U of the power grid will also have to evolve to insure accurate and timely simulations. On the other hand, the software tools available for power grid simulation today are primarily sequential single core programs

199

Defining CPS Challenges in a Sustainable Electricity Grid Jay Taneja, Randy Katz, and David Culler  

E-Print Network [OSTI]

, and that grid balancing requires integrated management of supply and demand resources. Keywords-electricity; cyber-physical systems; smart grid; renewable energy I. INTRODUCTION Modern electric grids serve to augment the physical planes of classic electric grids [24]. However, the integration o

Culler, David E.

200

Smart Grid Integration Laboratory  

SciTech Connect (OSTI)

The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation ‚?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU‚??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory‚??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

Wade Troxell

2011-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

GENI: Grid Hardware and Software  

SciTech Connect (OSTI)

GENI Project: The 15 projects in ARPA-Eís GENI program, short for ďGreen Electricity Network Integration,Ē aim to modernize the way electricity is transmitted in the U.S. through advances in hardware and software for the electric grid. These advances will improve the efficiency and reliability of electricity transmission, increase the amount of renewable energy the grid can utilize, and provide energy suppliers and consumers with greater control over their power flows in order to better manage peak power demand and cost.

None

2012-01-09T23:59:59.000Z

202

A White Book on Faculty of Information Technology, Mathematics and  

E-Print Network [OSTI]

A White Book on Smart Grid Faculty of Information Technology, Mathematics and Electrical............................................................................................................................4 2. Definition of Smart Grid........................................................................................................5 3. Smart Grid Structure

203

Grid Load Balancing Using Intelligent Agents Junwei Cao1  

E-Print Network [OSTI]

- 1 - Grid Load Balancing Using Intelligent Agents Junwei Cao1 , Daniel P. Spooner* , Stephen A for grid computing. The management and scheduling of dynamic grid resources in a scalable way requires new technologies to implement a next generation intelligent grid environment. This work demonstrates that AI

Jarvis, Stephen

204

1 A Grid based distributed simulation of Plasma Turbulence  

E-Print Network [OSTI]

1 A Grid based distributed simulation of Plasma Turbulence Beniamino Di Martino and Salvatore- cati, Rome, Italy Grid technology is widespreading, but most grid-enabled applications just exploit of Grid platforms. In this paper the porting on a Globus equipped platform of a hierarchically distributed

Vlad, Gregorio

205

NATL Grid Map 50-Meter Grid  

E-Print Network [OSTI]

NATL-east NATL Grid Map 50-Meter Grid Locations in NATL can be specified by reference to a grid intervals. Each gridline intersection ("grid point") is identified by its two gridlines (e.g., E5). Each 50x50-m block formed by the gridlines is identified by the grid point in its northwest corner (e

Slatton, Clint

206

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

J. ōstergaard, ďBattery energy storage technology for powerBattery for Grid Energy Storage..Energy Storage for the Grid: A Battery of Choices,Ē Science,

Wang, Zuoqian

2013-01-01T23:59:59.000Z

207

Impact of Biodiesel on Modern Diesel Engine Emissions  

Broader source: Energy.gov (indexed) [DOE]

Impact of Biodiesel on Modern Diesel Engine Emissions Vehicle Technologies Program Merit Review - Fuels and Lubricants Technologies PI: Bob McCormick Presenter: Aaron Williams May...

208

Smart Grid The New and Improved Power Grid: A Survey Xi Fang, Student Member, IEEE, Satyajayant Misra, Member, IEEE, Guoliang Xue, Fellow, IEEE,  

E-Print Network [OSTI]

Smart Grid ­ The New and Improved Power Grid: A Survey Xi Fang, Student Member, IEEE, Satyajayant--The Smart Grid, regarded as the next generation power grid, uses two-way flows of electricity the literature till 2011 on the enabling technologies for the Smart Grid. We explore three major systems, namely

Misra, Satyajayant

209

Building the International Lattice Data Grid  

E-Print Network [OSTI]

We present the International Lattice Data Grid (ILDG), a loosely federated grid of grids for sharing data from Lattice Quantum Chromodynamics (LQCD) simulations. The ILDG comprises of metadata, file format and web-service standards, which can be used to wrap regional data-grid interfaces, allowing seamless access to catalogues and data in a diverse set of collaborating regional grids. We discuss the technological underpinnings of the ILDG, primarily the metadata and the middleware, and offer a critique of its various aspects with the hindsight of the design work and the first full year of production.

G. Beckett; B. Joo; C. M. Maynard; D. Pleiter; O. Tatebe; T. Yoshie

2009-10-09T23:59:59.000Z

210

Smart Wire Grid: Resisting Expectations  

ScienceCinema (OSTI)

Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

Ramsay, Stewart; Lowe, DeJim

2014-04-09T23:59:59.000Z

211

Smart Wire Grid: Resisting Expectations  

SciTech Connect (OSTI)

Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

Ramsay, Stewart; Lowe, DeJim

2014-03-03T23:59:59.000Z

212

Green Energy Workshop Student Posters Smart Communication of Energy Use and Prediction in a Smart Grid  

E-Print Network [OSTI]

and Prediction in a Smart Grid Software Architecture * Saima Aman, Yogesh Simmhan The increasing deployment of smart meters and other sensor technologies in the Smart Grid. This information-rich Smart Grid environment has opened up research opportunities

Prasanna, Viktor K.

213

2012 IEEE. Reprinted, with permission, from B.J. Williamson, M.A. Redfern and R.K. Aggarwal, Project Edison: SMART-DC, IEEE PES Innovative Smart Grid Technologies (ISGT-EUROPE 2011) December 2011. This material is posted here with permission of the IEEE.  

E-Print Network [OSTI]

, Project Edison: SMART-DC, IEEE PES Innovative Smart Grid Technologies (ISGT-EUROPE 2011) December 2011, intelligent demand management, micro-generation, smart grid. I. INTRODUCTION N the late 19th century, Nikola energy LED lighting and renewable energy generators. "Project Edison: SMART- DC" is a demonstration

Burton, Geoffrey R.

214

From Ions to Wires to the Grid: The Transformational Science of LANL Research in High-Tc Superconducting Tapes and Electric Power Applications  

ScienceCinema (OSTI)

The Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) has been tasked to lead national efforts to modernize the electric grid, enhance security and reliability of the energy infrastructure, and facilitate recovery from disruptions to energy supplies. LANL has pioneered the development of coated conductors ? high-temperature superconducting (HTS) tapes ? which permit dramatically greater current densities than conventional copper cable, and enable new technologies to secure the national electric grid. Sustained world-class research from concept, demonstration, transfer, and ongoing industrial support has moved this idea from the laboratory to the commercial marketplace.

Ken Marken

2010-01-08T23:59:59.000Z

215

assembly spacer grid: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TECHNOLOGY, AND ENGINEERING 2 8 14 Dynamic Vision DARHT FULFILLS ITS DESTINY Solar Smart Grid in the Atomic 38 The Grid Economy CiteSeer Summary: This chapter identifies...

216

Materials Research for Smart Grid Applications Steven J Bossart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research for Smart Grid Applications Steven J Bossart Ryan Egidi U.S. Department of Energy National Energy Technology Laboratory Our nation is transitioning to a Smart Grid which...

217

An automated energy management system in a smart grid context  

E-Print Network [OSTI]

The ongoing transformation of electric grids into smart grids provides the technological basis to implement demand-sensitive pricing strategies aimed at using the electric power infrastructure more efficiently. These ...

Lopes, M.

218

Value of a Smart Grid System | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Value of a Smart Grid System Value of a Smart Grid System A broad range of industries have embraced technology in their quest to improve productivity, reduce costs and improve...

219

From the Grid to the Smart Grid, Topologically  

E-Print Network [OSTI]

The Smart Grid is not just about the digitalization of the Power Grid. In its more visionary acceptation, it is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the Smart Grid a reality will the Distribution Grid have to be updated? We assume a positive answer to the question and we consider the lower layers of Medium and Low Voltage to be the most affected by the change. In our previous work, we have analyzed samples of the Dutch Distribution Grid in our previous work and we have considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains in another previous work. In this paper, we take an extra important further step by defining a methodology for evolving any existing physical Power Grid to a good Smart Grid model th...

Pagani, Giuliano Andrea

2013-01-01T23:59:59.000Z

220

Grid Application for the BaBar Experiment  

SciTech Connect (OSTI)

This paper discusses the use of e-Science Grid in providing computational resources for modern international High Energy Physics (HEP) experiments. We investigate the suitability of the current generation of Grid software to provide the necessary resources to perform large-scale simulation of the experiment and analysis of data in the context of multinational collaboration.

Khan, A.; /Brunel U.; Wilson, F.; /Rutherford

2006-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Department of Humanities Advanced Certificate in Modern Language  

E-Print Network [OSTI]

­ French: Individual and Society ____ HU4273 Modern Language Seminar III ­ French: Technology in Literature Seminar II ­ German: Individual and Society ____ HU4283 Modern Language Seminar III ­ German: Technology Language Seminar II ­ Spanish: Individual and Society ____ HU4293 Modern Language Seminar III ­ Spanish

222

Now Available: Smart Grid Investments Improve Grid Reliability...  

Energy Savers [EERE]

Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and...

223

Synchrophasor Technologies and their Deployment in the Recovery...  

Energy Savers [EERE]

Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid...

224

Smart Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights SuccessSmart Grid Pages default

225

Smart Grid | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electricity Delivery and Energy Reliability Smart Grid Smart Grid Overview Smart Grid refers to electrical grids that automatically gather and communicate information on usage,...

226

Grid Applications Dr Gabrielle Allen  

E-Print Network [OSTI]

of chemistry and other codes (www.gridchem.org) ! Petroleum Engineering " UCoMS: Grid-enabling reservoir ! Requires incredible mix of technologies & expertise! ! Many scientific/engineering components " Physics? Finite elements? " Elliptic equations: multigrid, Krylov subspace,... " Mesh refinement ! Many different

Allen, Gabrielle

227

SciDAC's Earth System Grid Center for Enabling Technologies Semi-Annual Progress Report for the Period April 1, 2009 through September 30, 2009  

SciTech Connect (OSTI)

This report summarizes work carried out by the ESG-CET during the period April 1, 2009 through September 30, 2009. It includes discussion of highlights, overall progress, period goals, collaborations, papers, and presentations. To learn more about our project, and to find previous reports, please visit the Earth System Grid Center for Enabling Technologies (ESG-CET) website. This report will be forwarded to the DOE SciDAC program management, the Office of Biological and Environmental Research (OBER) program management, national and international collaborators and stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), the SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science, the North American Regional Climate Change Assessment Program (NARCCAP), and other wide-ranging climate model evaluation activities). During this semi-annual reporting period, the ESG-CET team continued its efforts to complete software components needed for the ESG Gateway and Data Node. These components include: Data Versioning, Data Replication, DataMover-Lite (DML) and Bulk Data Mover (BDM), Metrics, Product Services, and Security, all joining together to form ESG-CET's first beta release. The launch of the beta release is scheduled for late October with the installation of ESG Gateways at NCAR and LLNL/PCMDI. Using the developed ESG Data Publisher, the ESG II CMIP3 (IPCC AR4) data holdings - approximately 35 TB - will be among the first datasets to be published into the new ESG enterprise system. In addition, the NCAR's ESG II data holdings will also be published into the new system - approximately 200 TB. This period also saw the testing of the ESG Data Node at various collaboration sites, including: the British Atmospheric Data Center (BADC), the Max-Planck-Institute for Meteorology, the University of Tokyo Center for Climate System Research, and the Australian National University. This period, a total of 14 national and international sites installed an ESG Data Node for testing. During this period, we also continued to provide production-level services to the community, providing researchers worldwide with access to CMIP3 (IPCC AR4), CCES, and CCSM, Parallel Climate Model (PCM), Parallel Ocean Program (POP), and Cloud Feedback Model Intercomparison Project (CFMIP), and NARCCAP data.

Williams, D N; Foster, I T; Middleton, D E

2009-10-15T23:59:59.000Z

228

Co-Simulation of Detailed Whole Building with the Power System to Study Smart Grid Applications  

SciTech Connect (OSTI)

Modernization of the power system in a way that ensures a sustainable energy system is arguably one of the most pressing concerns of our time. Buildings are important components in the power system. First, they are the main consumers of electricity and secondly, they do not have constant energy demand. Conventionally, electricity has been difficult to store and should be consumed as it is generated. Therefore, maintaining the demand and supply is critical in the power system. However, to reduce the complexity of power models, buildings (i.e., end-use loads) are traditionally modeled and represented as aggregated ďdumbĒ nodes in the power system. This means we lack effective detailed whole building energy models that can support requirements and emerging technologies of the smart power grid. To gain greater insight into the relationship between building energy demand and power system performance, it is important to constitute a co-simulation framework to support detailed building energy modeling and simulation within the power system to study capabilities promised by the modern power grid. This paper discusses ongoing work at Pacific Northwest National Laboratory and presents underlying tools and framework needed to enable co-simulation of building, building energy systems and their control in the power system to study applications such as demand response, grid-based HVAC control, and deployment of buildings for ancillary services. The optimal goal is to develop an integrated modeling and simulation platform that is flexible, reusable, and scalable. Results of this work will contribute to future building and power system studies, especially those related to the integrated Ďsmart gridí. Results are also expected to advance power resiliency and local (micro) scale grid studies where several building and renewable energy systems transact energy directly. This paper also reviews some applications that can be supported and studied using the framework introduced to understand their implications before they can be successfully implemented in the power system.

Makhmalbaf, Atefe; Fuller, Jason C.; Srivastava, Viraj; Ciraci, Selim; Daily, Jeffrey A.

2014-12-24T23:59:59.000Z

229

Arnold Schwarzenegger REAL-TIME GRID RELIABILITY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor REAL-TIME GRID RELIABILITY MANAGEMENT California ISO Real Laboratory Consortium for Electric Reliability Technology Solutions APPENDIXC October 2008 CEC-500 (VSA) prototype to monitor system voltage conditions and provide real time dispatchers with reliability

230

ARPA-E: Advancing the Electric Grid  

SciTech Connect (OSTI)

The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

2014-02-24T23:59:59.000Z

231

ARPA-E: Advancing the Electric Grid  

ScienceCinema (OSTI)

The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

2014-03-13T23:59:59.000Z

232

Distribution Grid Integration  

Broader source: Energy.gov [DOE]

The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

233

Grid Portal System Based on GPIR , Geoffrey Fox2  

E-Print Network [OSTI]

Grid Portal System Based on GPIR Fang Juan1 , Geoffrey Fox2 , Marlon Pierce2 1 College of Computer Science, Beijing University of Technology, 100022 Beijing, China 2 Community Grids Lab, Indiana University Bloomington, IN 47404, USA fangjuan@bjut.edu.cn ; {gcf, mpierce}@indiana.edu Abstract Grid portal

234

IEEE TRANSACTIONS ON SMART GRID CALL FOR PAPERS  

E-Print Network [OSTI]

IEEE TRANSACTIONS ON SMART GRID CALL FOR PAPERS Special Issue on "Optimization Methods and Algorithms Applied to Smart Grid" With recent developments in advanced monitoring, information, and communication technologies applied to smart grid, electric power systems will be able to respond more

Guan, Yongpei

235

Resilient Smart Grid Customers April 3 4, 2014  

E-Print Network [OSTI]

Resilient Smart Grid Customers April 3 ­ 4, 2014 Berkner Hall, Room B ­ Building 488 Agenda, Department Manager-Smart Grid Orange and Rockland Utilities, Inc. Robert Broadwater, Chief Technology Officer President, Legal, Regulatory And Energy Policy General MicroGrids 9:45 ­10:00 a.m. Break 10:00 ­ 11:30 a

Ohta, Shigemi

236

EMPORA 1 + 2 EMobile Power Austria (Smart Grid Project) (Salzburg...  

Open Energy Info (EERE)

References EU Smart Grid Projects Map1 Overview The emporA projects bring together automobile industry, infrastructure technology, and energy supply sectors in order to achieve a...

237

Vids4Grids: Smart Meters and Super Cables  

Broader source: Energy.gov [DOE]

Find out more about the power engineers behind the exciting new technologies that are essential to constructing a national Smart Grid.

238

Smart Grid Status and Metrics Report Appendices | OSTI, US Dept...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Report Appendices Re-direct Destination: A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of...

239

2012 Smart Grid Peer Review Presentations - Day 2 First Afternoon...  

Broader source: Energy.gov (indexed) [DOE]

Based Dynamic Pricing - Douglas Horton, NSTAR Electric & Gas 2012 SG Peer Review - LANL Smart Grid Technology Test Bed - Scott Backhaus, LANL 2012 SG Peer Review - University of...

240

GridOPTICS(TM): A Design for Plug-and-Play Smart Grid Software Architecture  

SciTech Connect (OSTI)

As the smart grid becomes reality, software architectures for integrating legacy systems with new innovative approaches for grid management are needed. These architectures must exhibit flexibility, extensibility, interoperability and scalability. In this position paper, we describe our preliminary work to design such an architecture, known as GridOPTICS, that will enable the deployment and integration of new software tools in smart grid operations. Our preliminary design is based upon use cases from PNNLís Future Power Grid Initiative, which is a developing a collection of advanced software technologies for smart grid management and control. We describe the motivations for GridOPTICS, and the preliminary design that we are currently prototyping for several distinct use cases.

Gorton, Ian; Liu, Yan; Yin, Jian

2012-06-03T23:59:59.000Z

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Security on the US Fusion Grid  

SciTech Connect (OSTI)

The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

2005-06-01T23:59:59.000Z

242

Data security on the national fusion grid  

SciTech Connect (OSTI)

The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

2005-06-01T23:59:59.000Z

243

Final Report for DOE grant DE-FG02-07ER64432 "New Grid and Discretization Technologies for Ocean and Ice Simulations"  

SciTech Connect (OSTI)

The work reported is in pursuit of these goals: high-quality unstructured, non-uniform Voronoi and Delaunay grids; improved finite element and finite volume discretization schemes; and improved finite element and finite volume discretization schemes. These are sought for application to spherical and three-dimensional applications suitable for ocean, atmosphere, ice-sheet, and other climate modeling applications.

Gunzburger, Max

2013-03-12T23:59:59.000Z

244

IEEE TRANSACTIONS ON SMART GRID 1 Cognitive Radio Network for the Smart Grid  

E-Print Network [OSTI]

smart meter wireless transmissions in the presence of strong wideband interference. The performanceIEEE Proof W eb Version IEEE TRANSACTIONS ON SMART GRID 1 Cognitive Radio Network for the Smart of applying the next generation wireless technology, cognitive radio network, for the smart grid

Qiu, Robert Caiming

245

Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Demonstration Using UltraBattery Technology (October 2012) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) East Penn...

246

Smart Grid Consortium, Response of New York State Smart Grid...  

Broader source: Energy.gov (indexed) [DOE]

Consortium, Response of New York State Smart Grid Addressing Policy and Logistical Challenges Smart Grid Consortium, Response of New York State Smart Grid Addressing Policy and...

247

Grid Interaction Tech Team, and International Smart Grid Collaboration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Team, and International Smart Grid Collaboration Grid Interaction Tech Team, and International Smart Grid Collaboration 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

248

2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid...  

Broader source: Energy.gov (indexed) [DOE]

Smart Grid Panel Discussion 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel Discussion The Office of Electricity Delivery and Energy Reliability held its...

249

Developing A Grid Portal For Large-scale Reservoir Studies  

E-Print Network [OSTI]

Developing A Grid Portal For Large-scale Reservoir Studies 1 Center for Computation & Technology 2 uncertainty. · Advantages of grid technology · Proposed Solution of the UCoMS Team · What is a Portal? · UCo of reservoir uncertainty... Petroleum drilling consist of many uncertainties. Main objective is to optimize

Allen, Gabrielle

250

The Grid: Prospects for Application in Metrology  

E-Print Network [OSTI]

Global system of distributing computing - Grid - created as reply for challenges, connected with the qualitative progress of complexity of experimental physical assemblies and information systems, is presented as optimal IT platform for assurance of measurement traceability in geographically remote regions and measurement data protection in global networks. The new component grid - Instrument Element (IE) - is intended for secure, remote, joint team work on monitoring and managing instruments generated and stored on distributed scientific equipment using conventional grid resources. The article describes the variety of all possible IE applications within grid technology for the tasks of metrology demanding IT support. Expanded by the new component IE grid becomes an optimal environment for effective monitoring, management and servicing of measuring resources which has the highest level of measurement data transfer, storage and processing safety and reveals new opportunities to track measurement procedures and...

Neyezhmakov, P I; Zub, S S

2011-01-01T23:59:59.000Z

251

Grid Logging: Best Practices Guide  

E-Print Network [OSTI]

Revision date: March 1, 2008 Grid Logging: Best Practicesis to help developers of Grid middleware and applicationlog files that will be useful to Grid administrators, users,

Tierney, Brian L

2008-01-01T23:59:59.000Z

252

Sandia National Laboratories: SMART Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offers Approach to Help Utilities Understand Effects of PV Variability on the Grid On March 7, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid...

253

Smart Grid Data Integrity Attack  

E-Print Network [OSTI]

Data Injection Attacks on Power GridsĒ, IEEE Transactionson Smart Grid, vol. 2, no. 2, June [21] O. Kosut, L.Data Attacks on Smart Grid State Estimation: Attack

Poolla, Kameshwar

2012-01-01T23:59:59.000Z

254

Smart Grid Publications Archive | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Smart Grid Publications Archive Smart Grid Publications Archive 2010 Smart Grid System Report, February 2012 2009 Smart Grid System Report, July 2009 The Smart Grid Stakeholder...

255

National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugust 2012NEVADA SPARKSNVEnergyDesign andNational Grid

256

Game Theoretic Methods for the Smart Grid  

E-Print Network [OSTI]

The future smart grid is envisioned as a large-scale cyber-physical system encompassing advanced power, communications, control, and computing technologies. In order to accommodate these technologies, it will have to build on solid mathematical tools that can ensure an efficient and robust operation of such heterogeneous and large-scale cyber-physical systems. In this context, this paper is an overview on the potential of applying game theory for addressing relevant and timely open problems in three emerging areas that pertain to the smart grid: micro-grid systems, demand-side management, and communications. In each area, the state-of-the-art contributions are gathered and a systematic treatment, using game theory, of some of the most relevant problems for future power systems is provided. Future opportunities for adopting game theoretic methodologies in the transition from legacy systems toward smart and intelligent grids are also discussed. In a nutshell, this article provides a comprehensive account of the...

Saad, Walid; Poor, H Vincent; Ba?ar, Tamer

2012-01-01T23:59:59.000Z

257

Arnold Schwarzenegger REAL-TIME GRID RELIABILITY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor REAL-TIME GRID RELIABILITY MANAGEMENT Scoping Study Report Reliability Technology Solutions APPENDIXG October 2008 CEC-500-2008-049-APG #12;#12;Prepared By: Lawrence for Electric Reliability Technology Solutions and was funded by the California Energy Commission's Public

258

Arnold Schwarzenegger REAL-TIME GRID RELIABILITY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor REAL-TIME GRID RELIABILITY MANAGEMENT Prototype Phasor-Based Real Reliability Technology Solutions APPENDIXE October 2008 CEC-500-2008-049-APE #12;#12;Prepared By: Lawrence in this report. #12;Slide 0 Consortium for Electric Reliability Technology Solutions Real-Time Dynamics

259

Fuel rod support grid  

DOE Patents [OSTI]

A grid for the support of nuclear fuel rods arranged in a triangular array. The grid is formed by concentric rings of strap joined by radially arranged web sections.

Downs, Robert E. (Monroeville, PA); Schwallie, Ambrose L. (Greensburg, PA)

1985-01-01T23:59:59.000Z

260

The soft grid  

E-Print Network [OSTI]

The grid in architecture is a systematic organization of space. The means that architects use to organize space are, almost by definition, rigid and totalizing. The Cartesian grid, which will serve as the antagonist of the ...

Kardasis, Ari (Ari David)

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Method of grid generation  

DOE Patents [OSTI]

The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

Barnette, Daniel W. (Veguita, NM)

2002-01-01T23:59:59.000Z

262

SmartGrid: Quarterly Data Summaries from the Data Hub and SmartGrid Project Information (from OpenEI and SmartGrid.gov)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Both OpenEI and SmartGrid.gov are DOE portals to a wealth of information about the federal initiatives that support the development of the technologies, policies and projects transforming the electric power industry. Projects funded through the U.S. Recovery Act are organized by type and pinned to an interactive map at http://en.openei.org/wiki/Gateway:Smart_Grid. Each project title links to more detailed information. The Quarterly Data Summaries from the Data Hub at SmartGrid.gov are also available on OpenEI at http://en.openei.org/datasets/node/928. In addition, the SmartGrid Information Center contains documents and reports that can be searched or browsed. Smart Grid Resources introduces international SmartGrid programs and sites, while OpenEI encourages users to add SmartGrid information to the repository.

263

Basis for the US Modern Grid Strategy - A Changing World  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sector through the use of plug-in hybrid electric vehicles (PHEV) and all-electric vehicles largely powered from electricity produced from coal and nuclear plants and renewable...

264

Answering Your Questions about Grid Modernization | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORYAgencyLocal|Annual Uncosted

265

Grid Modernization - A View from Abroad | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermalGoing OffGreen Lease BEFOREModernization -

266

SGIG and SGDP Highlights: Jumpstarting a Modern Grid (October 2014) |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015DepartmentDepartmentRRBudget5YearPolicy.pdfDepartment of

267

Obama Administration Announces Job-Creating Grid Modernization Pilot  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy(National1 -OSS 19.3 ConfinedU.S.SmartProjects |

268

Launch of the Grid Modernization Laboratory Consortium | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson -of Energy 1 of 4 Jean-Luc

269

Modernizing the Grid With Your Help | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge√ʬĬôs EM program removes outdated andLauren

270

Basis for the US Modern Grid Strategy - A Changing World  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground High the cover: Invisible

271

Modernizing the Grid: Keeping the Dialogue Going | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32

272

Secretary Chu to Participate in White House Grid Modernization Event |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |Regulation Services2014Need forDepartmentofEnergy DCof

273

Redefining Customer Service is Essential to Modernizing Grid | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research | DepartmentDepartmentHatch,DepartmentDeliveryMay 1,Here youOctoberof

274

The Purpose and Value of Successful Technology Demonstrations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Act of 2007 Demonstrations by Steve Bossart, NETL Senior Management and Technical Advisor, and Steve Pullins, Team Leader, DOENETL Modern Grid Strategy Our industry has...

275

The Purpose and Value of Successful Technology Demonstrations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leader, DOENETL Modern Grid Strategy It seems to be clear from the investment data that private investment and consumer investment is rapidly taking place in the energy...

276

Microsoft PowerPoint - E_forum_1_What is a Smart Grid_Miller...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2...

277

Communication options for protection and control device in Smart Grid applications  

E-Print Network [OSTI]

Increasing use of electricity, interest in renewable energy sources, and need for a more reliable power grid system are some of the many drivers for the concept of the Smart Grid technology. In order to achieve these goals, ...

Minh, Hyunsik Eugene

2013-01-01T23:59:59.000Z

278

Status of grid scale energy storage and strategies for accelerating cost effective deployment  

E-Print Network [OSTI]

The development of emerging grid scale energy storage technologies offers great potential to improve the architecture and operation of the electrical grid. This is especially important in the face of increased reliance on ...

Kluza, John Jerome

2009-01-01T23:59:59.000Z

279

Methodological Approaches for Estimating the Benefits and Costs of Smart Grid Demonstration Projects  

SciTech Connect (OSTI)

This report presents a comprehensive framework for estimating the benefits and costs of Smart Grid projects and a step-by-step approach for making these estimates. The framework identifies the basic categories of benefits, the beneficiaries of these benefits, and the Smart Grid functionalities that lead to different benefits and proposes ways to estimate these benefits, including their monetization. The report covers cost-effectiveness evaluation, uncertainty, and issues in estimating baseline conditions against which a project would be compared. The report also suggests metrics suitable for describing principal characteristics of a modern Smart Grid to which a project can contribute. This first section of the report presents background information on the motivation for the report and its purpose. Section 2 introduces the methodological framework, focusing on the definition of benefits and a sequential, logical process for estimating them. Beginning with the Smart Grid technologies and functions of a project, it maps these functions to the benefits they produce. Section 3 provides a hypothetical example to illustrate the approach. Section 4 describes each of the 10 steps in the approach. Section 5 covers issues related to estimating benefits of the Smart Grid. Section 6 summarizes the next steps. The methods developed in this study will help improve future estimates - both retrospective and prospective - of the benefits of Smart Grid investments. These benefits, including those to consumers, society in general, and utilities, can then be weighed against the investments. Such methods would be useful in total resource cost tests and in societal versions of such tests. As such, the report will be of interest not only to electric utilities, but also to a broad constituency of stakeholders. Significant aspects of the methodology were used by the U.S. Department of Energy (DOE) to develop its methods for estimating the benefits and costs of its renewable and distributed systems integration demonstration projects as well as its Smart Grid Investment Grant projects and demonstration projects funded under the American Recovery and Reinvestment Act (ARRA). The goal of this report, which was cofunded by the Electric Power Research Institute (EPRI) and DOE, is to present a comprehensive set of methods for estimating the benefits and costs of Smart Grid projects. By publishing this report, EPRI seeks to contribute to the development of methods that will establish the benefits associated with investments in Smart Grid technologies. EPRI does not endorse the contents of this report or make any representations as to the accuracy and appropriateness of its contents. The purpose of this report is to present a methodological framework that will provide a standardized approach for estimating the benefits and costs of Smart Grid demonstration projects. The framework also has broader application to larger projects, such as those funded under the ARRA. Moreover, with additional development, it will provide the means for extrapolating the results of pilots and trials to at-scale investments in Smart Grid technologies. The framework was developed by a panel whose members provided a broad range of expertise.

Lee, Russell [ORNL

2010-01-01T23:59:59.000Z

280

Nuclear weapons modernizations  

SciTech Connect (OSTI)

This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

Kristensen, Hans M. [Federation of American Scientists, Washington, DC (United States)

2014-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Cyber-Security Considerations for the Smart Grid  

SciTech Connect (OSTI)

The electrical power grid is evolving into the ďsmart gridĒ. The goal of the smart grid is to improve efficiency and availability of power by adding more monitoring and control capabilities. These new technologies and mechanisms are certain to introduce vulnerabilities into the power grid. In this paper we provide an overview of the cyber security state of the electrical power grid. We highlight some of the vulnerabilities that already exist in the power grid including limited capacity systems, implicit trust and the lack of authentication. We also address challenges of complexity, scale, added capabilities and the move to multipurpose hardware and software as the power grid is upgraded. These changes create vulnerabilities that did not exist before and bring increased risks. We conclude the paper by showing that there are a number mitigation strategies that can help keep the risk at an acceptable level.

Clements, Samuel L.; Kirkham, Harold

2010-07-26T23:59:59.000Z

282

For the Grid and Through the Grid: The Role of Power Line Communications in the Smart Grid  

E-Print Network [OSTI]

Is Power Line Communication (PLC) a good candidate for Smart Grid applications? The objective of this paper is to address this important question. To do so we provide an overview of what PLC can deliver today by surveying its history and describing the most recent technological advances in the area. We then address Smart Grid applications as instances of sensor networking and network control problems and discuss the main conclusion one can draw from the literature on these subjects. The application scenario of PLC within the Smart Grid is then analyzed in detail. Since a necessary ingredient of network planning is modeling, we also discuss two aspects of engineering modeling that relate to our question. The first aspect is modeling the PLC channel through fading models. The second aspect we review is the Smart Grid control and traffic modeling problem which allows us to achieve a better understanding of the communications requirements. Finally, this paper reports recent studies on the electrical and topologic...

Galli, Stefano; Wang, Zhifang

2010-01-01T23:59:59.000Z

283

Vehicle to Grid Demonstration Project  

SciTech Connect (OSTI)

This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

2010-12-31T23:59:59.000Z

284

Graphical Contingency Analysis for the Nation's Electric Grid  

ScienceCinema (OSTI)

PNNL has developed a new tool to manage the electric grid more effectively, helping prevent blackouts and brownouts--and possibly avoiding millions of dollars in fines for system violations. The Graphical Contingency Analysis tool monitors grid performance, shows prioritized lists of problems, provides visualizations of potential consequences, and helps operators identify the most effective courses of action. This technology yields faster, better decisions and a more stable and reliable power grid.

Zhenyu (Henry) Huang

2012-12-31T23:59:59.000Z

285

Graphical Contingency Analysis for the Nation's Electric Grid  

SciTech Connect (OSTI)

PNNL has developed a new tool to manage the electric grid more effectively, helping prevent blackouts and brownouts--and possibly avoiding millions of dollars in fines for system violations. The Graphical Contingency Analysis tool monitors grid performance, shows prioritized lists of problems, provides visualizations of potential consequences, and helps operators identify the most effective courses of action. This technology yields faster, better decisions and a more stable and reliable power grid.

Zhenyu (Henry) Huang [Henry

2011-04-01T23:59:59.000Z

286

Developing a PHP-based Legacy Application Grid System Lorenzo Campanelli  

E-Print Network [OSTI]

electrical grid. Just as the power grid is readily accessible and collectively organizes many power plants to defeat such threats are rewarded with greater efficiency over alternate systems for distributive derived its name from its ideal similarity to the way power companies and their users share the modern

Miles, Will

287

Erythema ab igne: evolving technology, evolving presentation  

E-Print Network [OSTI]

manifestations of modern technology use. J Cutan Med SurgErythema ab igne: evolving technology, evolving presentationheaters, as in our case. As technology changes, so does the

Kesty, Katarina; Feldman, Steven R

2014-01-01T23:59:59.000Z

288

Exploiting the Computational Grid Lecture 1 Globus and the Grid  

E-Print Network [OSTI]

Exploiting the Computational Grid Lecture 1 ≠ Globus and the Grid ∑ The grid needs middleware to enable things such as logins etc ∑ The toolkit model for the grid is to define a set of standards for the grid and then develop applications on top. The low level stuff is then hidden from the user ∑ Globus

289

Mapping Unstructured Grids to Structured Grids and Multigrid  

E-Print Network [OSTI]

Chapter 4 Mapping Unstructured Grids to Structured Grids and Multigrid Many problems based solution is to map the unstructured grid onto a structured grid and then apply multigrid to a sequence). We 65 #12; CHAPTER 4. MAPPING UNSTRUCTURED GRIDS 66 show that unless great care is taken

290

Cyber Security & Smart Grid  

E-Print Network [OSTI]

Cyber Security & Smart Grid Jonathan Shapiro Texas Institute The Clean Air Through Energy Efficiency (CATEE) Conference Cyber Security & Smart Grid ESL-KT-11-11-23 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 Cyber Security and The Smart... and communication protocols. ESL-KT-11-11-23 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 Smart Grid Systems ?Current Cyber Security Issues ? Advanced Metering Infrastructure (AMI) Security ? The wireless devices are used in the smart meters located...

Shapiro, J.

2011-01-01T23:59:59.000Z

291

Smart Grid: Transforming the Electric System  

SciTech Connect (OSTI)

This paper introduces smart grid concepts, summarizes the status of current smart grid related efforts, and explains smart grid priorities.

Widergren, Steven E.

2010-04-13T23:59:59.000Z

292

Challenges facing production grids  

SciTech Connect (OSTI)

Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

Pordes, Ruth; /Fermilab

2007-06-01T23:59:59.000Z

293

Grid Transformation Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3-03-Grid-Transformation-Workshop Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

294

UNIVERSITY of STRATHCLYDE TECHNOLOGY &  

E-Print Network [OSTI]

electricity networks and distribution systems, through to using smart grid technologies for more effective of dynamic collaborations delivering productive outcomes. #12;#12;LOW CARBON POWER AND ENERGY FUTURE CITIES Advanced Manufacturing Future Cities Health Technologies Working collaboratively, programmes within

Mottram, Nigel

295

Layered Timeseries Analysis for Smart Grid Agents Prashant Reddy  

E-Print Network [OSTI]

producers, such as small wind farms or households with solar panels, to sell energy into the power grid control and customer participation. First, we study the evolution of hourly electricity prices in a modern wholesale electricity market with the goal of predicting hourly forward prices so that an intermediary

Gordon, Geoffrey J.

296

GridWise Standards Mapping Overview  

SciTech Connect (OSTI)

''GridWise'' is a concept of how advanced communications, information and controls technology can transform the nation's energy system--across the spectrum of large scale, central generation to common consumer appliances and equipment--into a collaborative network, rich in the exchange of decision making information and an abundance of market-based opportunities (Widergren and Bosquet 2003) accompanying the electric transmission and distribution system fully into the information and telecommunication age. This report summarizes a broad review of standards efforts which are related to GridWise--those which could ultimately contribute significantly to advancements toward the GridWise vision, or those which represent today's current technological basis upon which this vision must build.

Bosquet, Mia L.

2004-04-01T23:59:59.000Z

297

PNNL's Community Science & Technology Seminar Series Biomedical Research  

E-Print Network [OSTI]

. Advances in modern technologies related to genomics (genes) and proteomics (proteins) promise to usher

298

The CMS integration grid testbed  

SciTech Connect (OSTI)

The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distribution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuous two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. In this paper, we describe the process that led to one of the world's first continuously available, functioning grids.

Graham, Gregory E.

2004-08-26T23:59:59.000Z

299

Uganda: A Modern History  

E-Print Network [OSTI]

pages, hardcover,. $27.50. uganda; A Modern History. Jan J .contemporary history Qf Uganda. His work supplies us with aand integration of Uganda's economy into the World capita 1

Ssali, Ndugu Mike

1983-01-01T23:59:59.000Z

300

TITLE XIII- SMART GRID SEC. 1301- 1308 STATEMENT OF POLICY ON MODERNIZATION OF ELECTRICITY GRID  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage ¬Ľof Energy StrainClient update resolve008Energy 8

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Article on the Grid Tech Team's Strategic Plan for Grid Modernization Now  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing, Inc. | Department Training April 30,Failures |! !Available |

302

Smart Grid Data Integrity Attack  

E-Print Network [OSTI]

IEEE Transactions on Smart Grid, vol. 2, no. 2, June [21] O.Malicious Data Attacks on Smart Grid State Estimation:Framework and Roadmap for Smart Grid Interoperability Stan-

Poolla, Kameshwar

2012-01-01T23:59:59.000Z

303

Smart Grid Data Integrity Attack  

E-Print Network [OSTI]

IEEE Transactions on Smart Grid, vol. 2, no. 2, June [21] O.Malicious Data Attacks on Smart Grid State Estimation:Attack and Detection in Smart Grid,Ē to appear in IEEE

Poolla, Kameshwar

2012-01-01T23:59:59.000Z

304

Conditions of Employment Modern Apprentice  

E-Print Network [OSTI]

Conditions of Employment Modern Apprentice 1. GENERAL CONDITIONS Members of staff are subject. Modern Apprentices are required under this agreement to undertake training, attend courses and carry out

Strathclyde, University of

305

Chaninik Wind Group Wind Heat Smart Grids Final Report  

SciTech Connect (OSTI)

Final report summarizes technology used, system design and outcomes for US DoE Tribal Energy Program award to deploy Wind Heat Smart Grids in the Chaninik Wind Group communities in southwest Alaska.

Meiners, Dennis [Technical Contact

2013-06-29T23:59:59.000Z

306

Sandia National Laboratories: SMART Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SMART Grid Vermont and Sandia National Laboratories Announce Energy Research Center On December 20, 2011, in Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis,...

307

Compressed Sensing Off the Grid  

E-Print Network [OSTI]

Jul 26, 2012 ... pressed sensing, the frequencies are not assumed to lie on a grid, but ... where the true parameters lie on the grid, discretization has several.

2012-07-26T23:59:59.000Z

308

Sandia National Laboratories: SMART Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Safety Workshop On April 7, 2014, in Capabilities, CINT, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Grid...

309

Sandia National Laboratories: SMART Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photovoltaic Specialists (PVSC) Conference On August 14, 2013, in DETL, Distribution Grid Integration, Energy, Facilities, Grid Integration, News, News & Events, Photovoltaic,...

310

Grid Monitoring: Bounds on Performances of Sensor Placement Algorithms Muhammad Uddin  

E-Print Network [OSTI]

Grid Monitoring: Bounds on Performances of Sensor Placement Algorithms Muhammad Uddin Anthony Kuh measurement units (PMUs) in the power grid. Given noisy measurements and knowledge of the state correlation to capture the dynamics of the power grid [1]. With the advent of phasor technology, time synchronized

Kavcic, Aleksandar

311

Challenges on Software Defect Analysis in Smart Grid Applications Mohsen Anvaari Daniela S. Cruzes Reidar Conradi  

E-Print Network [OSTI]

Challenges on Software Defect Analysis in Smart Grid Applications Mohsen Anvaari Daniela S. Cruzes and Technology Trondheim, Norway {mohsena,dcruzes,conradi}@idi.ntnu.no Abstract--Smart Grid software applications the relationship between the characteristics of Smart Grid software applications as a ULSS and their software

312

Compressed Meter Reading for Delay-sensitive and Secure Load Report in Smart Grid  

E-Print Network [OSTI]

1 Compressed Meter Reading for Delay-sensitive and Secure Load Report in Smart Grid Husheng Li, Rukun Mao, Lifeng Lai and Robert. C. Qiu Abstract-- It is a key task in smart grid to send the readings years, the technology of smart grid has attracted significant studies in both communities of power

Qiu, Robert Caiming

313

Management of a Smart Grid with Controlled-Delivery of Discrete Power Levels  

E-Print Network [OSTI]

Management of a Smart Grid with Controlled-Delivery of Discrete Power Levels Roberto Rojas of Technology Newark, NJ 07102 {rojas, yx63, grebel}@njit.edu Abstract--The present electrical grid uses two to power amounts. These two properties, although functional and practical, expose the grid to overload

Rojas-Cessa, Roberto

314

Towards a Secure, Wireless-Based, Home Area Network for Metering in Smart Grids  

E-Print Network [OSTI]

1 Towards a Secure, Wireless-Based, Home Area Network for Metering in Smart Grids Vinod Namboodiri, Student Member, IEEE, Ward Jewell, Fellow, IEEE Abstract--Compared to the conventional grid, the smart significant develop- ments are based on smart grid technology ­ an automated sys- tem with improved

Namboodiri, Vinod

315

Cyber Security in the Smart Grid: Survey and Challenges$ Wenye Wanga,  

E-Print Network [OSTI]

Cyber Security in the Smart Grid: Survey and Challenges$ Wenye Wanga, , Zhuo Lua a The Smart Grid, generally referred to as the next-generation power system, is considered as a revolutionary and communication technologies, the Smart Grid is expected to greatly enhance efficiency and reliability of future

Wang, Wenye

316

Demand Response Design based on a Stackelberg Game in Smart Grid  

E-Print Network [OSTI]

Demand Response Design based on a Stackelberg Game in Smart Grid Sung-Guk Yoon, Young-June Choi and communications technology (ICT), that is, smart grid. With help of a two-way communication infrastructure, a real- time demand response can be applied. A smart grid network consisting of one retailer and many customers

Bahk, Saewoong

317

Security Games and Risk Minimization for Automatic Generation Control in Smart Grid  

E-Print Network [OSTI]

Security Games and Risk Minimization for Automatic Generation Control in Smart Grid Yee Wei Law be protected against potential threats. Advanced monitoring technologies at the center of smart grid evolution injection. This paper develops a game-theoretic approach to smart grid security by combining quantitative

Alpcan, Tansu

318

Development of the Smart Grid: Missing Elements in the Policy Process  

E-Print Network [OSTI]

Development of the Smart Grid: Missing Elements in the Policy Process Richard D. Tabors Geoffrey@crai.com gparker@tulane.edu mcaraman@bu.edu Abstract This paper seeks to frame one aspect of the Smart Grid focused Smart Grid attention on the technologies and on technical interoperability, there has been, we

Caramanis, Michael

319

Consortium for Electric Reliability Technology Solutions Grid of the Future White Paper on Review of Recent Reliability Issues and Systems Events  

SciTech Connect (OSTI)

This report is one of six reports developed under the U.S. Department of Energy (DOE) program in Power System Integration and Reliability (PSIR). The objective of this report is to review, analyze, and evaluate critical reliability issues demonstrated by recent disturbance events in the North America power system. Eleven major disturbances are examined, most occurring in this decade. The strategic challenge is that the pattern of technical need has persisted for a long period of time. For more than a decade, anticipation of market deregulation has been a major disincentive to new investments in system capacity. It has also inspired reduced maintenance of existing assets. A massive infusion of better technology is emerging as the final option to continue reliable electrical services. If an investment in better technology will not be made in a timely manner, then North America should plan its adjustments to a very different level of electrical service. It is apparent that technical operations staff among the utilities can be very effective at marshaling their forces in the immediate aftermath of a system emergency, and that serious disturbances often lead to improved mechanisms for coordinated operation. It is not at all apparent that such efforts can be sustained through voluntary reliability organizations in which utility personnel external to those organizations do most of the technical work. The eastern interconnection shows several situations in which much of the technical support has migrated from the utilities to the Independent System Operator (ISO), and the ISO staffs or shares staff with the regional reliability council. This process may be a natural and very positive consequence of utility restructuring. If so, the process should be expedited in regions where it is less advanced.

Hauer, John F.; Dagle, Jeffery E.

1999-12-01T23:59:59.000Z

320

Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities  

E-Print Network [OSTI]

Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.

Fan, Zhong; Gormus, Sedat; Efthymiou, Costas; Kalogridis, Georgios; Sooriyabandara, Mahesh; Zhu, Ziming; Lambotharan, Sangarapillai; Chin, Woon Hau

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

17.950 Understanding Modern Military Operations, Spring 2005  

E-Print Network [OSTI]

A proper understanding of modern military operations requires a prior understanding of both the material side of war, including especially weapon, sensor, communication, and information processing technologies, and the ...

Cote, Owen R., 1960-

322

Future Grid: The Environment Future Grid Initiative White Paper  

E-Print Network [OSTI]

Future Grid: The Environment Future Grid Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Future Grid: The Environment Prepared for the Project "The Future Grid to Enable Sustainable Energy Systems" Funded by the U

323

Control and regulation of modern distribution system, ForskEL...  

Open Energy Info (EERE)

idProject)&oldid405598" Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Smart Meter and AMI...

324

Solid-State Lighting on a Shoestring Budget: The Economics of Off-Grid Lighting for Small Businesses in Kenya  

E-Print Network [OSTI]

Report #3 Solid-State Lighting on a Shoestring Budget:The Economics of Off-Grid Lighting for Small Businesses inProject includes an Off-Grid Lighting Technology Assessment

Radecsky, Kristen

2009-01-01T23:59:59.000Z

325

Study of Security Attributes of Smart Grid Systems- Current Cyber Security Issues  

SciTech Connect (OSTI)

This document provides information for a report to congress on Smart Grid security as required by Section 1309 of Title XIII of the Energy Independence and Security Act of 2007. The security of any future Smart Grid is dependent on successfully addressing the cyber security issues associated with the nationís current power grid. Smart Grid will utilize numerous legacy systems and technologies that are currently installed. Therefore, known vulnerabilities in these legacy systems must be remediated and associated risks mitigated in order to increase the security and success of the Smart Grid. The implementation of Smart Grid will include the deployment of many new technologies and multiple communication infrastructures. This report describes the main technologies that support Smart Grid and summarizes the status of implementation into the existing U.S. electrical infrastructure.

Wayne F. Boyer; Scott A. McBride

2009-04-01T23:59:59.000Z

326

Sycamore Canyon Modernization  

High Performance Buildings Database

Santee, CA The Sycamore Canyon Elementary School is one of five schools in the Santee district that has completed a modernization program. This first round of projects has helped inform the district's ongoing effort to modernize all of their facilities. The total energy use at Sycamore Canyon was successfully reduced by more than one-third, as compared to the pre-retrofit consumption. The school is currently operating with an energy use intensity of only 23 kBtu/SqFt, placing it in the top 99% of schools (per the EnergyStar rating system).

327

Quantifying the value of hydropower in the electric grid : role of hydropower in existing markets.  

SciTech Connect (OSTI)

The electrical power industry is facing the prospect of integrating a significant addition of variable generation technologies in the next several decades, primarily from wind and solar facilities. Overall, transmission and generation reserve levels are decreasing and power system infrastructure in general is aging. To maintain grid reliability modernization and expansion of the power system as well as more optimized use of existing resources will be required. Conventional and pumped storage hydroelectric facilities can provide an increasingly significant contribution to power system reliability by providing energy, capacity and other ancillary services. However, the potential role of hydroelectric power will be affected by another transition that the industry currently experiences - the evolution and expansion of electricity markets. This evolution to market-based acquisition of generation resources and grid management is taking place in a heterogeneous manner. Some North American regions are moving toward full-featured markets while other regions operate without formal markets. Yet other U.S. regions are partially evolved. This report examines the current structure of electric industry acquisition of energy and ancillary services in different regions organized along different structures, reports on the current role of hydroelectric facilities in various regions, and attempts to identify features of market and scheduling areas that either promote or thwart the increased role that hydroelectric power can play in the future. This report is part of a larger effort led by the Electric Power Research Institute with purpose of examining the potential for hydroelectric facilities to play a greater role in balancing the grid in an era of greater penetration of variable renewable energy technologies. Other topics that will be addressed in this larger effort include industry case studies of specific conventional and hydro-electric facilities, systemic operating constraints on hydro-electric resources, and production cost simulations aimed at quantifying the increased role of hydro.

Loose, Verne W.

2011-01-01T23:59:59.000Z

328

Home Area Networks and the Smart Grid  

SciTech Connect (OSTI)

With the wide array of home area network (HAN) options being presented as solutions to smart grid challenges for the home, it is time to compare and contrast their strengths and weaknesses. This white paper examines leading and emerging HAN technologies. The emergence of the smart grid is bringing more networking players into the field. The need for low consistent bandwidth usage differs enough from the traditional information technology world to open the door to new technologies. The predominant players currently consist of a blend of the old and new. Within the wired world Ethernet and HomePlug Green PHY are leading the way with an advantage to HomePlug because it doesn't require installing new wires. In the wireless the realm there are many more competitors but WiFi and ZigBee seem to have the most momentum.

Clements, Samuel L.; Carroll, Thomas E.; Hadley, Mark D.

2011-04-01T23:59:59.000Z

329

Transmission Grid Integration  

Broader source: Energy.gov [DOE]

The levels of solar energy penetration envisioned by the DOE SunShot Initiative must be interconnected effectively onto the transmission grid. This interconnection requires an in-depth...

330

Smart Grid Overview  

Broader source: Energy.gov (indexed) [DOE]

S imulator NREL Smart Grid TesHng Power I nfrastructure 11 Monitoring on DistribuLon Transformer Anatolia Subdivision --- SMUD 2kW of PV on each home Modeling System Impacts...

331

To Begin the World Anew: Smart Grids and the Need for a Comprehensive U.S. Energy Policy  

SciTech Connect (OSTI)

The United States is in the midst of a monumental transformation of its electric power grid. Advances in information and communication technologies and grid measurement and control devices have initiated the transition toward a more resilient, sustainable and efficient future power grid. Deployment of these technologies is being driven by policies encouraging the shift to a greener grid, incorporating clean and low carbon energy; as well as rising consumer demand for smarter ways to use existing resources.

Foster, Nikolas AF

2011-12-01T23:59:59.000Z

332

Storms exploding off the surface of the sun can wreak havoc on technologies like satellites, phones, GPS, and electrical power grids. As society's dependence on these technologies grows, so does our vulnerability to changes on the Sun and in space.  

E-Print Network [OSTI]

Storms exploding off the surface of the sun can wreak havoc on technologies like satellites, phones vulnerability to changes on the Sun and in space. For example, GPS is present in almost all aspects of our is expected to total $75 billion by 2013. Meanwhile, the Sun is approaching a heightened period of activity

333

Applied Statistics: Modern Applications  

E-Print Network [OSTI]

Real-time vehicle tracking Pollution levels Medical and genetic information .... Saturday, 5 February-time vehicle tracking Pollution levels Medical and genetic information .... Saturday, 5 February 2011 #12 · Advertising · ... Saturday, 5 February 2011 #12;Saturday, 5 February 2011 #12;Modern Application Areas

Burton, Geoffrey R.

334

High-Performance Computing for Advanced Smart Grid Applications  

SciTech Connect (OSTI)

The power grid is becoming far more complex as a result of the grid evolution meeting an information revolution. Due to the penetration of smart grid technologies, the grid is evolving as an unprecedented speed and the information infrastructure is fundamentally improved with a large number of smart meters and sensors that produce several orders of magnitude larger amounts of data. How to pull data in, perform analysis, and put information out in a real-time manner is a fundamental challenge in smart grid operation and planning. The future power grid requires high performance computing to be one of the foundational technologies in developing the algorithms and tools for the significantly increased complexity. New techniques and computational capabilities are required to meet the demands for higher reliability and better asset utilization, including advanced algorithms and computing hardware for large-scale modeling, simulation, and analysis. This chapter summarizes the computational challenges in smart grid and the need for high performance computing, and present examples of how high performance computing might be used for future smart grid operation and planning.

Huang, Zhenyu; Chen, Yousu

2012-07-06T23:59:59.000Z

335

The Particle Physics Data Grid. Final Report  

SciTech Connect (OSTI)

The main objective of the Particle Physics Data Grid (PPDG) project has been to implement and evaluate distributed (Grid-enabled) data access and management technology for current and future particle and nuclear physics experiments. The specific goals of PPDG have been to design, implement, and deploy a Grid-based software infrastructure capable of supporting the data generation, processing and analysis needs common to the physics experiments represented by the participants, and to adapt experiment-specific software to operate in the Grid environment and to exploit this infrastructure. To accomplish these goals, the PPDG focused on the implementation and deployment of several critical services: reliable and efficient file replication service, high-speed data transfer services, multisite file caching and staging service, and reliable and recoverable job management services. The focus of the activity was the job management services and the interplay between these services and distributed data access in a Grid environment. Software was developed to study the interaction between HENP applications and distributed data storage fabric. One key conclusion was the need for a reliable and recoverable tool for managing large collections of interdependent jobs. An attached document provides an overview of the current status of the Directed Acyclic Graph Manager (DAGMan) with its main features and capabilities.

Livny, Miron

2002-08-16T23:59:59.000Z

336

QoS Routing in Smart Grid  

E-Print Network [OSTI]

Smart grid is an emerging technology which is able to control the power load via price signaling. The communication between the power supplier and power customers is a key issue in smart grid. Performance degradation like delay or outage may cause significant impact on the stability of the pricing based control and thus the reward of smart grid. Therefore, a QoS mechanism is proposed for the communication system in smart grid, which incorporates the derivation of QoS requirement and applies QoS routing in the communication network. For deriving the QoS requirement, the dynamics of power load and the load-price mapping are studied. The corresponding impacts of different QoS metrics like delay are analyzed. Then, the QoS is derived via an optimization problem that maximizes the total revenue. Based on the derived QoS requirement, a simple greedy QoS routing algorithm is proposed for the requirement of high speed routing in smart grid. It is also proven that the proposed greedy algorithm is a $K$-approximation. ...

Li, Husheng

2010-01-01T23:59:59.000Z

337

Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and InnovationexperimentsTechnology

338

NREL: Transmission Grid Integration - Grid Simulation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOtherForecasting NREL researchers use solarGrid

339

Building a Global Federation System for Climate Change Research: The Earth System Grid Center for Enabling  

E-Print Network [OSTI]

Building a Global Federation System for Climate Change Research: The Earth System Grid Center for Enabling Technologies (ESG-CET) The Earth System Grid Center for Enabling Technologies Team: R Ananthakrishnan1 , D E Bernholdt7,9 , S Bharathi8 , D Brown5 , M Chen7 , A L Chervenak8 , L Cinquini5 , R Drach3

Chervenak, Ann

340

GROWDERS Demonstration of Grid Connected Electricity Systems...  

Open Energy Info (EERE)

GROWDERS Demonstration of Grid Connected Electricity Systems (Smart Grid Project) (Spain) Jump to: navigation, search Project Name GROWDERS Demonstration of Grid Connected...

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Networked Loads in the Distribution Grid  

E-Print Network [OSTI]

Lu, and Deborah A. Frincke. Smart-Grid Security Issues. IEEELoads in the Distribution Grid Zhifang Wang ? , Xiao Li Ü ,Transformer † sensors † Grid † Cyber †system † Cooling † †

Wang, Zhifang; Li, Xiao; Muthukumar, Vishak; Scaglione, Anna; Peisert, Sean; McParland, Chuck

2012-01-01T23:59:59.000Z

342

Flexible Transmission in the Smart Grid  

E-Print Network [OSTI]

New England Outlook: Smart Grid is About Consumers,Ē Apr. [Transmission in the Smart Grid By Kory Walter Hedman ATransmission in the Smart Grid by Kory Walter Hedman Doctor

Hedman, Kory Walter

2010-01-01T23:59:59.000Z

343

Intelligent Grid Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land SurfaceVirus-InfectedIntelligent Coatings for Location AndEnergy

344

Sandia National Laboratories: smart-grid technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskiteremovingsensorssituation assessment

345

smart grid technologies | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Homerequest

346

OpenEI Community - smart grid technologies  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahomast,Logistics Agency (DLA) RFP - Deadline -

347

National Wind Technology Center Controllable Grid Interface  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of Energy2015 | Jefferson LabVahan

348

Communication Systems for Grid Integration of Renewable Energy Resources  

E-Print Network [OSTI]

There is growing interest in renewable energy around the world. Since most renewable sources are intermittent in nature, it is a challenging task to integrate renewable energy resources into the power grid infrastructure. In this grid integration, communication systems are crucial technologies, which enable the accommodation of distributed renewable energy generation and play extremely important role in monitoring, operating, and protecting both renewable energy generators and power systems. In this paper, we review some communication technologies available for grid integration of renewable energy resources. Then, we present the communication systems used in a real renewable energy project, Bear Mountain Wind Farm (BMW) in British Columbia, Canada. In addition, we present the communication systems used in Photovoltaic Power Systems (PPS). Finally, we outline some research challenges and possible solutions about the communication systems for grid integration of renewable energy resources.

Yu, F Richard; Xiao, Weidong; Choudhury, Paul

2011-01-01T23:59:59.000Z

349

Comments from The Center for Democracy and Technology and the...  

Broader source: Energy.gov (indexed) [DOE]

from The Center for Democracy and Technology and the Electric Frontier Foundation: Implementing the Fips in the Smart Grid Comments from The Center for Democracy and Technology and...

350

Software-Based Challenges of Developing the Future Distribution Grid  

SciTech Connect (OSTI)

The software that the utility industry currently uses may be insufficient to analyze the distribution grid as it rapidly modernizes to include active resources such as distributed generation, switch and voltage control, automation, and increasingly complex loads. Although planners and operators have traditionally viewed the distribution grid as a passive load, utilities and consultants increasingly need enhanced analysis that incorporates active distribution grid loads in order to ensure grid reliability. Numerous commercial and open-source tools are available for analyzing distribution grid systems. These tools vary in complexity from providing basic load-flow and capacity analysis under steady-state conditions to time-series analysis and even geographical representations of dynamic and transient events. The need for each type of analysis is not well understood in the industry, nor are the reasons that distribution analysis requires different techniques and tools both from those now available and from those used for transmission analysis. In addition, there is limited understanding of basic capability of the tools and how they should be practically applied to the evolving distribution system. The study reviews the features and state of the art capability of current tools, including usability and visualization, basic analysis functionality, advanced analysis including inverters, and renewable generation and load modeling. We also discuss the need for each type of distribution grid system analysis. In addition to reviewing basic functionality current models, we discuss dynamics and transient simulation in detail and draw conclusions about existing software?s ability to address the needs of the future distribution grid as well as the barriers to modernization of the distribution grid that are posed by the current state of software and model development. Among our conclusions are that accuracy, data transfer, and data processing abilities are key to future distribution grid modeling, and measured data sources are a key missing element . Modeling tools need to be calibrated based on measured grid data to validate their output in varied conditions such as high renewables penetration and rapidly changing topology. In addition, establishing a standardized data modeling format would enable users to transfer data among tools to take advantage of different analysis features. ?

Stewart, Emma; Kiliccote, Sila; McParland, Charles

2014-06-01T23:59:59.000Z

351

GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical...  

Broader source: Energy.gov (indexed) [DOE]

GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical Challenges GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical Challenges The GridWise Alliance...

352

Modelling Chinese Smart Grid: A Stochastic Model Checking Case Study  

E-Print Network [OSTI]

Cyber-physical systems integrate information and communication technology functions to the physical elements of a system for monitoring and controlling purposes. The conversion of traditional power grid into a smart grid, a fundamental example of a cyber-physical system, raises a number of issues that require novel methods and applications. In this context, an important issue is the verification of certain quantitative properties of the system. In this technical report, we consider a specific Chinese Smart Grid implementation and try to address the verification problem for certain quantitative properties including performance and battery consumption. We employ stochastic model checking approach and present our modelling and analysis study using PRISM model checker.

YŁksel, Ender; Nielson, Flemming; Zhu, Huibiao; Huang, Heqing

2012-01-01T23:59:59.000Z

353

Wide-area situation awareness in electric power grid  

SciTech Connect (OSTI)

Two primary elements of the US energy policy are demand management and efficiency and renewable sources. Major objectives are clean energy transmission and integration, reliable energy transmission, and grid cyber security. Development of the Smart Grid seeks to achieve these goals by lowering energy costs for consumers, achieving energy independence and reducing greenhouse gas emissions. The Smart Grid is expected to enable real time wide-area situation awareness (SA) for operators. Requirements for wide-area SA have been identified among interoperability standards proposed by the Federal Energy Regulatory Commission and the National Institute of Standards and Technology to ensure smart-grid functionality. Wide-area SA and enhanced decision support and visualization tools are key elements in the transformation to the Smart Grid. This paper discusses human factors research to promote SA in the electric power grid and the Smart Grid. Topics that will be discussed include the role of human factors in meeting US energy policy goals, the impact and challenges for Smart Grid development, and cyber security challenges.

Greitzer, Frank L.

2010-04-28T23:59:59.000Z

354

Stability of elastic grid shells  

E-Print Network [OSTI]

The elastic grid shell is a solution that combines double curvature and ease of mounting. This structural system, based on the deformation of an initially at grid without shear stiffness was invented more than fifty years ...

Mesnil, Romain, M. Eng. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

355

Smart Grid | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Usage Smart Grid Smart Grid October 21, 2014 Line workers get hands-on experience with an electrical pole as part of their training. | Photo courtesy of David Weaver....

356

Unlocking the smart grid  

SciTech Connect (OSTI)

The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)

Rokach, Joshua Z.

2010-10-15T23:59:59.000Z

357

APEC Smart Grid Initiative  

SciTech Connect (OSTI)

This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

Bloyd, Cary N.

2012-03-01T23:59:59.000Z

358

Grid Architecture William E. Johnston  

E-Print Network [OSTI]

·numerical grid generators ·etc. Apache Tomcat&WebSphere &Cold Fusion=JVM + servlet instantiation + routing

359

Grid Transfer Remark 4.1 Contents of this chapter. Consider a grid with grid size h and the  

E-Print Network [OSTI]

Chapter 4 Grid Transfer Remark 4.1 Contents of this chapter. Consider a grid with grid size h that there might be an iterative method for solving this system efficiently, which uses also coarser grids way between the grids. 2 4.1 The Coarse Grid System and the Residual Equa- tion Remark 4.2 Basic idea

John, Volker

360

Abstract --With the increasing acceptance, micro-grid, combined with distributed generation (DG), may be operated in  

E-Print Network [OSTI]

Abstract --With the increasing acceptance, micro-grid, combined with distributed generation (DG generation (DG) technology [1-3]. DG units may be located in distribution network or on the local load side), may be operated in two modes: grid-connected mode and island mode. In grid connected mode, energy

Chen, Zhe

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

500 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 1, MARCH 2012 The Evolution of Plug-In Electric  

E-Print Network [OSTI]

500 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 1, MARCH 2012 The Evolution of Plug-In Electric Vehicle-Grid Interactions David P. Tuttle and Ross Baldick Abstract--Over the past decade key technologies the first of many major vehicle markets by 2011. PEV-grid interactions comprise a mix of in- dustries

Baldick, Ross

362

High Penetration of Photovoltaic (PV) Systems into the Distribution Grid, Workshop Report, February 24-25, 2009  

SciTech Connect (OSTI)

Outcomes from the EERE Solar Energy Technologies Program workshop on high penetration of photovoltaic (PV) systems into the distribution grid, Feb. 24-25, 2009, Ontario, Calif.

Not Available

2009-06-01T23:59:59.000Z

363

Conference Proceedings Available - The Smart Grid Experience...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conference Proceedings Available - The Smart Grid Experience: Applying Results, Reaching Beyond Conference Proceedings Available - The Smart Grid Experience: Applying Results,...

364

Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid  

SciTech Connect (OSTI)

GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloudís data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornellís GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

None

2012-02-08T23:59:59.000Z

365

Course Description Grid Computing, NGSSC, 2p  

E-Print Network [OSTI]

: Application projects, software development projects, political and administrative aspects on grids, emerging grid standards (OGSA/OGSI), etc. ­ Foundations in algorithm and software development for grids. · Grid issues. ­ Sample grid middleware packages, software tools, and problem solv- ing environments for grids

Elmroth, Erik

366

United States National Energy Technology Laboratory's (NETL)...  

Open Energy Info (EERE)

Laboratory's (NETL) Smart Grid Implementation Strategy Reference Library Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: United States National Energy Technology...

367

Combating False Reports for Secure Networked Control in Smart Grid via Trustiness Evaluation  

E-Print Network [OSTI]

Smart grid, equipped with modern communication infrastructures, is subject to possible cyber attacks. Particularly, false report attacks which replace the sensor reports with fraud ones may cause the instability of the whole power grid or even result in a large area blackout. In this paper, a trustiness system is introduced to the controller, who computes the trustiness of different sensors by comparing its prediction, obtained from Kalman filtering, on the system state with the reports from sensor. The trustiness mechanism is discussed and analyzed for the Linear Quadratic Regulation (LQR) controller. Numerical simulations show that the trustiness system can effectively combat the cyber attacks to smart grid.

Li, Husheng; Djouadi, Seddik M

2010-01-01T23:59:59.000Z

368

Technology Innovation Program Programmatic Plan: FY 2011 FY 2014  

E-Print Network [OSTI]

Technology Innovation Program Programmatic Plan: FY 2011 ≠ FY 2014 Critical National Need Area & intelligent automation (#3) Technologies to enable a smart grid (#4) Technologies for water availability (#6) Sustainability Technologies for personalized medicine (#5) Complex networks Manufacturing Advanced sensing

Magee, Joseph W.

369

Modern hot water district heating  

SciTech Connect (OSTI)

The history of district heating in Europe is drastically different from that in the United States. The development of district heating in northern and eastern Europe started in the early 1950s. Hot water rather than steam was used as the transport medium and the systems have proven to be more economical. Recently, the northern European concept has been introduced into two US cities - St. Paul and Willmar, Minnesota. The hot water project in St. Paul started construction and operation in the summer and fall of 1983, respectively. The entire first phase of the St. Paul project will take two summers to construct and will connect approximately 80 buildings for a total of 150 MW(t). The system spans the entire St. Paul business district and includes privately owned offices and retail buildings, city and county government buildings, hospitals, the state Capitol complex, and several industrial customers. The City of Willmar, Minnesota, replaced an old steam system with a modern hot water system in the summer of 1982. The first phase of the hot water system was constructed in the central business district. The system serves a peak thermal load of about 10 MW(t) and includes about 12,000 ft of network. The Willmar system completed the second stage of development in the fall of 1983. These two new systems demonstrate the benefits of the low-temperature hot water district heating technology. The systems are economical to build, have high reliability, and have low maintenance and operating cost.

Karnitz, M.A.; Barnes, M.H.; Kadrmas, C.; Nyman, H.O.

1984-06-01T23:59:59.000Z

370

Data Management in the GridRPC GridRPC Data Management API  

E-Print Network [OSTI]

Data Management in the GridRPC Issues Conclusion GridRPC Data Management API Implementations, Le Mahec, Nakada GridRPC DM API: Implem. and Interop. Issues (1/13) #12;Data Management in the GridRPC Issues Conclusion Goal GridRPC DM types: Reminder 1 Data Management in the GridRPC Goal GridRPC DM types

Caniou, Yves

371

Relativistic mass and modern physics  

E-Print Network [OSTI]

At first sight, arguments for and against the notion of relativistic mass look like a notorious intra-Lilliputian quarrel between Big-Endians (those who broke their eggs at the larger end) and Little-Endians. However, upon closer inspection we discover that the relativistic mass notion is alien to the spirit of modern physics to a much greater extent than it seems. To demonstrate an abyss between the modern approach and archaic notions, in this paper we explore how the concept of mass is introduced in modern physics. This modern approach reveals a deep cohomological origin of mass.

Z. K. Silagadze

2014-12-15T23:59:59.000Z

372

Micro-Grids for Colonias (TX)  

SciTech Connect (OSTI)

This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing power generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid power. However, the operational costs are reasonable if grid power is unavailable, e.g. in a remote area or in a disaster recovery situation. In fact, avoided fuel costs for the smaller of the systems in use during this project would have a payback of the capital costs of that system in 2.3 years, far short of the effective system life.

Dean Schneider; Michael Martin; Renee Berry; Charles Moyer

2012-07-31T23:59:59.000Z

373

The Purpose and Value of Successful Technology Demonstrations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Rural America by Steve Pullins, Team Leader, DOENETL Modern Grid Strategy About two years ago Pat Hoffman and Eric Lightner of DOE, Steve Bossart of DOENETL, and I had a...

374

NWTC Controllable Grid Interface (Fact Sheet)  

SciTech Connect (OSTI)

NREL's Controllable Grid Interface tests wind turbines off-line from the grid, verifies compliance with standards, and provides grid operators with the performance information they need for a faction of the time and cost it would take to test the turbine in the field. To understand the behavior of wind turbines during grid disturbances, manufacturers and utility grid operators need to perform a series of tests and accurate transient simulation studies. The latest edition of the IEC 61400-21 standard describes methods for such tests that include low voltage ride-through (LVRT), active power set-point control, ramp rate limitations, and reactive power capability tests. The IEC methods are being widely adopted on both national and international levels by wind turbine manufacturers, certification authorities, and utilities. Utility operators also need to estimate how much power wind turbines might be able provide to help regulate grid frequency during situations when they need additional energy quickly, and after design modifications or changes are made to control software, manufacturers may be required to retest their turbines. But testing wind turbines in the field can be a lengthy and expensive process often requiring manufacturers and utility operators to send equipment and personnel to remote locations for long periods of time. NREL's National Wind Technology Center (NWTC) has developed a new Controllable Grid Interface (CGI) test system that can significantly reduce the time and cost required to conduct these tests. The CGI is first test facility in the United States that has fault simulation capabilities and allows manufacturers and system operators to conduct the tests required for certification in a controlled laboratory environment. It is the only system in the world that is fully integrated with two dynamometers and has the capacity to extend that integration to turbines in the field and to a matrix of electronic and mechanical storage devices, all of which are located within close proximity on the same site. NREL's 7.5 MVA CGI tests wind turbines off-line from the grid, verifies compliance with standards, and provides grid operators with the performance information they need for a fraction of the time and cost it would take to test the turbine in the field. The system combines hardware and real-time control software and is designed to operate with the NWTC's 2.5-MW dynamometer as well as the center's new 5-MW dynamometer test facilities. It is designed to work with four types of wind turbines, photovoltaic systems, and energy storage inverters. Results from the dynamometer tests can also be used to fine tune and validate the dynamic models used in integration studies and help industry improve turbine performance and develop test standards for renewable technologies and energy storage.

Not Available

2012-02-01T23:59:59.000Z

375

Grid-based Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermalGoGreenServices Grid

376

Building the Distribution Grid  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prevBuilding the Distribution Grid of the Future

377

Sharing Smart Grid Experiences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smart Grid Experiences through Performance Feedback

378

National Grid Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Presentation covers the National Grid Energy Efficiency programs and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

379

Smart-Grid Security Issues  

SciTech Connect (OSTI)

TITLE: Smart-Grid Security Issues (Editorial Material, English) IEEE SECURITY & PRIVACY 8 (1). JAN-FEB 2010. p.81-85 IEEE COMPUTER SOC, LOS ALAMITOS

Khurana, Himanshu; Hadley, Mark D.; Lu, Ning; Frincke, Deborah A.

2010-01-29T23:59:59.000Z

380

Smart Grid Data Integrity Attack  

E-Print Network [OSTI]

Against Data Injection Attacks on Power GridsĒ, IEEER. Thomas, and L. Tong, ďMalicious Data Attacks on SmartState Estimation: Attack Strategies and Countermeasures,Ē

Poolla, Kameshwar

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

LED Lighting Off the Grid  

Energy Savers [EERE]

D. & Kammen, D. M. Decentralized energy systems for clean electricity access. Nature Climate Change accepted, in press, (2015). Off-Grid Status Quo : Fuel Based Lighting...

382

Environmental Impacts of Smart Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and distribution TOU Time of use UBC Unburned hydrocarbon UNDEERC University of North Dakota Energy and Environmental Research Center V2G Vehicle to grid Environmental Impacts of...

383

National Grid Energy Efficiency Plans  

Broader source: Energy.gov [DOE]

Presentation covers the National Grid Energy Efficiency plans and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

384

Some characteristics of emerging distribution systems considering the smart grid initiative  

SciTech Connect (OSTI)

Modernization of the electric power system in the United States is driven by the Smart Grid Initiative. Many changes are planned in the coming years to the distribution side of the U.S. electricity delivery infrastructure to embody the idea of ''smart distribution systems.'' However, no functional or technical definition of a smart distribution system has yet been accepted by all. (author)

Brown, Hilary E.; Suryanarayanan, Siddharth; Heydt, Gerald T.

2010-06-15T23:59:59.000Z

385

Grid Storage and the Energy Frontier Research Centers | Department...  

Broader source: Energy.gov (indexed) [DOE]

Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

386

Feedback" An Article for Smart Grid News The Smart Grid Transition...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sharing Smart Grid Experiences through Performance Feedback" An Article for Smart Grid News The Smart Grid Transition-Getting Started We are on the ground floor of a Smart Grid...

387

AAAA ResourceResourceResourceResource DiscoveryDiscoveryDiscoveryDiscovery AlgorithmAlgorithmAlgorithmAlgorithm inininin MobileMobileMobileMobile GridGridGridGrid ComputingComputingComputingComputing basedbasedbasedbased onononon IP-pagingIP-pagingIP-pagi  

E-Print Network [OSTI]

on the mobile grid computing framework to manage idle mobile devices. Within this framework, we discuss several technology, the use of mobile devices is rapidly increasing. Researches in Grid computing [6] tried, the management of mobile devices deserve many careful considerations, such as mobility management, disconnected

Boyer, Edmond

388

Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid  

E-Print Network [OSTI]

Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault Wind Turbines with Induction Generator during Grid Fault by Sigrid M. Bolik Institute of Energy turbine technology has undergone rapid developments. Growth in size and the optimization of wind turbines

Hansen, René Rydhof

389

Utility Computing on Global Grids Chee Shin Yeo, Rajkumar Buyya1  

E-Print Network [OSTI]

. Utility computing is envisioned to be the next generation of Information Technology (IT) evolution1 Utility Computing on Global Grids Chee Shin Yeo, Rajkumar Buyya1 , Marcos Dias de Assunção, Jia Yu, Anthony Sulistio, Srikumar Venugopal, and Martin Placek Grid Computing and Distributed Systems

Buyya, Rajkumar

390

Status of Grid Scale Energy Storage and Strategies for Accelerating Cost Effective  

E-Print Network [OSTI]

Status of Grid Scale Energy Storage and Strategies for Accelerating Cost Effective Deployment MIT · Motivation · Individual Functions/Markets · Energy Storage Technologies · Implementations to Combine) · Previously: · Energy storage and smart grid analyst at Lux Research and GTM Research · MIT SDM '08 (Graduated

de Weck, Olivier L.

391

Active Brokerage for Data Grids A Sanna and C Zunino and B Bentley and G Piccinelli  

E-Print Network [OSTI]

Torino, University Colloge London Abstract: Scientific research and practical applications of solar Grid for Solar Observations (EGSO) leverages grid-oriented concepts and technology to provide a high-performance infrastructure for solar applications. In this paper, we describe the active brokerage technique adopted in EGSO

Haddadi, Hamed

392

Smart Grid Enabled EVSE  

SciTech Connect (OSTI)

The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energyís Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

None, None

2014-10-15T23:59:59.000Z

393

National Offshore Wind Energy Grid Interconnection Study  

SciTech Connect (OSTI)

The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

Daniel, John P. [ABB Inc; Liu, Shu [ABB Inc; Ibanez, Eduardo [National Renewable Energy Laboratory; Pennock, Ken [AWS Truepower; Reed, Greg [University of Pittsburgh; Hanes, Spencer [Duke Energy

2014-07-30T23:59:59.000Z

394

PHEV and Grid Interfacing  

Broader source: Energy.gov (indexed) [DOE]

Materials and Processes for High Temperature Packaging of Power Electronic Devices G. Muralidharan, A. Kercher, M. L. Santella, R. Battiste Materials Science and Technology...

395

Sharing Smart Grid Experiences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Coalition) NARUC National Association of Regulatory Utility Commissioners NETL National Energy Technology Laboratory NRECA National Rural Electric Cooperative Association O&M...

396

Grid Interaction Tech Team  

Broader source: Energy.gov (indexed) [DOE]

Team 2011 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 10, 2011 Keith Hardy (PI) Argonne National Laboratory Sponsored by Lee Slezak This presentation does...

397

U.S. Department of Energy Report on the First Quadrennial Technology Review (QTR)  

SciTech Connect (OSTI)

Access to clean, affordable, secure, and reliable energy has been a cornerstone of Americanís economic growth. Yet, today the Nationís systems that produce, store, transmit, and use energy are falling short of U.S needs. The Department of Energyís (DOE) first Quadrennial Technology Review (QTR), launched at the recommendation of the Presidentís Council of Advisors on Science and Technology (PCAST), addresses these facts. The report details todayís energy landscape and the associated energy security, economic and environmental challenges; provides a framework for presenting six strategies to address those challenges encompassing vehicle efficiency, deployment of alternative hydrocarbon fuels, increased building and industrial efficiency, modernization of the grid, and deployment of clean electricity; addresses priorities among activities in DOEís energy-technology programs; and explains the roles that DOE, the broader government, the private sector, the national laboratories, and academia play in energy transformation.

Quadrennial Technology Review Team

2011-09-01T23:59:59.000Z

398

Fermilab | Science at Fermilab | Computing | Grid Computing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000Technology | GISMOGrid Computing

399

International Journal of Smart Grid and Clean Energy Smart Grid Security: Threats, Vulnerabilities and Solutions  

E-Print Network [OSTI]

International Journal of Smart Grid and Clean Energy Smart Grid Security: Threats, Vulnerabilities is currently evolving into the smart grid. Smart grid integrates the traditional electrical power grid, controlling and managing the demands of customers. A smart grid is a huge complex network composed of millions

Aloul, Fadi

400

Secure Interoperable Open Smart Grid Demonstration Project  

SciTech Connect (OSTI)

The Consolidated Edison, Inc., of New York (Con Edison) Secure Interoperable Open Smart Grid Demonstration Project (SGDP), sponsored by the United States (US) Department of Energy (DOE), demonstrated that the reliability, efficiency, and flexibility of the grid can be improved through a combination of enhanced monitoring and control capabilities using systems and resources that interoperate within a secure services framework. The project demonstrated the capability to shift, balance, and reduce load where and when needed in response to system contingencies or emergencies by leveraging controllable field assets. The range of field assets includes curtailable customer loads, distributed generation (DG), battery storage, electric vehicle (EV) charging stations, building management systems (BMS), home area networks (HANs), high-voltage monitoring, and advanced metering infrastructure (AMI). The SGDP enables the seamless integration and control of these field assets through a common, cyber-secure, interoperable control platform, which integrates a number of existing legacy control and data systems, as well as new smart grid (SG) systems and applications. By integrating advanced technologies for monitoring and control, the SGDP helps target and reduce peak load growth, improves the reliability and efficiency of Con Edisonís grid, and increases the ability to accommodate the growing use of distributed resources. Con Edison is dedicated to lowering costs, improving reliability and customer service, and reducing its impact on the environment for its customers. These objectives also align with the policy objectives of New York State as a whole. To help meet these objectives, Con Edisonís long-term vision for the distribution grid relies on the successful integration and control of a growing penetration of distributed resources, including demand response (DR) resources, battery storage units, and DG. For example, Con Edison is expecting significant long-term growth of DG. The SGDP enables the efficient, flexible integration of these disparate resources and lays the architectural foundations for future scalability. Con Edison assembled an SGDP team of more than 16 different project partners, including technology vendors, and participating organizations, and the Con Edison team provided overall guidance and project management. Project team members are listed in Table 1-1.

Magee, Thoman

2014-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Smart-grid Electricity Allocation via Strip Packing with Slicing  

E-Print Network [OSTI]

,biedl,tmchan,alubiw,keshav,vpathak}@uwaterloo.ca 2 Massachusetts Institute of Technology, Cambridge, USA elyot@mit.edu 3 University of Guelph, Guelph in Massachusetts was used less than 88 hours per year [7]. Reducing the infrastructure size is not practical since that future smart grids would obtain (at each substation) daily "demand schedules" for appliance use from

Chan, Timothy M.

402

Future of the Grid Massoud Amin*, D.Sc.  

E-Print Network [OSTI]

of Electrical & Computer Engineering Center for the Dev. of Technological leadership University of Minnesota at EPRI is gratefully acknowledged. EPRI Grid Reliability & Power Markets Enterprise Information Security Expenses & Investments (1990 = 1) Maintenance Capital Investment Source: FERC, EIA #12;6 Power Law

Amin, S. Massoud

403

Solar Power and the Electric Grid, Energy Analysis (Fact Sheet)  

SciTech Connect (OSTI)

In today's electricity generation system, different resources make different contributions to the electricity grid. This fact sheet illustrates the roles of distributed and centralized renewable energy technologies, particularly solar power, and how they will contribute to the future electricity system. The advantages of a diversified mix of power generation systems are highlighted.

Not Available

2010-03-01T23:59:59.000Z

404

N1 Grid Engine 6 Administration Sun Microsystems, Inc.  

E-Print Network [OSTI]

N1 Grid Engine 6 Administration Guide Sun Microsystems, Inc. 4150 Network Circle Santa Clara, CA 95054 U.S.A. Part No: 817­5677­10 June 2004 #12;Copyright 2004 Sun Microsystems, Inc. 4150 Network authorization of Sun and its licensors, if any. Third-party software, including font technology, is copyrighted

Baer, Christian

405

Optimal Energy Storage Control Policies for the Smart Power Grid  

E-Print Network [OSTI]

Optimal Energy Storage Control Policies for the Smart Power Grid Iordanis Koutsopoulos Vassiliki Center for Research and Technology Hellas (CERTH), Greece Abstract--Electric energy storage devices the optimal energy storage control problem from the side of the utility operator. The operator controller

Koutsopoulos, Iordanis

406

Parametrization-independent elliptic surface grid generation  

E-Print Network [OSTI]

The generation of computational grids on surfaces of three-dimensional configurations is an important component of many areas of computational research, both as a boundary grid for volume grid generation or to perform ...

Rasmussen, Britt Bille

2009-01-01T23:59:59.000Z

407

Considering Prefabulous and Almost Off the Grid  

E-Print Network [OSTI]

Prefabulous and Almost Off the Grid Introduction Two recentPrefabulous and Almost Off the Grid by Sheri Koones In herand Almost O?fzĎ/Je Grid (Abrams, 2012), Sheri Koones pro?

Grenier, Lotus; Beba, Zoe; Gray, Art

2013-01-01T23:59:59.000Z

408

Information Technology Letter from the Director  

E-Print Network [OSTI]

information technology, quantum information, security automation, Smart Grid, virtual measurement systems such as public safety and Smart Grid communications. © Nicholas McIntosh #12;Cloud Computing ITL plays a central and Technology, ITL accelerates, through standards, tests and metrics, the development, deployment and use

Perkins, Richard A.

409

Embodied Energy and Off-Grid Lighting  

SciTech Connect (OSTI)

The greenhouse gas (GHG) emissions from fuel-based lighting are substantial given the paltry levels of lighting service provided to users, leading to a great opportunity for GHG mitigation byencouraging the switch from fuel-based to rechargeable LED lighting. However, as with most new energy technology, switching to efficient lighting requires an up-front investment of energy(and GHGs) embedded in the manufacture of replacement components. We studied a population of off-grid lighting users in 2008-2009 in Kenya who were given the opportunity to adopt LEDlighting. Based on their use patterns with the LED lights and the levels of kerosene offset we observed, we found that the embodied energy of the LED lamp was"paid for" in only one month for grid charged products and two months for solar charged products. Furthermore, the energyreturn-on investment-ratio (energy produced or offset over the product's service life divided by energy embedded) for off-grid LED lighting ranges from 12 to 24, which is on par with on-gridsolar and large-scale wind energy. We also found that the energy embodied in the manufacture of a typical hurricane lantern is about one-half to one-sixth of that embodied in the particular LEDlights that we evaluated, indicating that the energy payback time would be moderately faster if LEDs ultimately displace the production of kerosene lanterns. As LED products improve, weanticipate longer service lives and more successful displacement of kerosene lighting, both of which will speed the already rapid recovery of embodied energy in these products. Our studyprovides a detailed appendix with embodied energy values for a variety of components used to construct off-grid LED lighting, which can be used to analyze other products.

Alstone, Peter; Mills, Evan; Jacobson, Arne

2011-01-25T23:59:59.000Z

410

GridStat Ė Cyber Security and Regional Deployment Project Report  

SciTech Connect (OSTI)

GridStat is a developing communication technology to provide real-time data delivery services to the electric power grid. It is being developed in a collaborative effort between the Electrical Power Engineering and Distributed Computing Science Departments at Washington State University. Improving the cyber security of GridStat was the principle focus of this project. A regional network was established to test GridStatís cyber security mechanisms in a realistic environment. The network consists of nodes at Pacific Northwest National Laboratory, Idaho National Laboratory, and Washington State University. Idaho National Laboratory (INL) was tasked with performing the security assessment, the results of which detailed a number or easily resolvable and previously unknown issues, as well as a number of difficult and previously known issues. Going forward we recommend additional development prior to commercialization of GridStat. The development plan is structured into three domains: Core Development, Cyber Security and Pilot Projects. Each domain contains a number of phased subtasks that build upon each other to increase the robustness and maturity of GridStat.

Clements, Samuel L.

2009-02-18T23:59:59.000Z

411

DOE Announces Public Meetings on the Communications Needs of Utilities and Smart-Grid Data Access and Privacy  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE) has long recognized the importance of incorporating broadband and other interactive communications technologies into ongoing efforts to modernize Americaís electrical...

412

The Open Science Grid  

SciTech Connect (OSTI)

The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. OSG provides support for and evolution of the infrastructure through activities that cover operations, security, software, troubleshooting, addition of new capabilities, and support for existing and engagement with new communities. The OSG SciDAC-2 project provides specific activities to manage and evolve the distributed infrastructure and support its use. The innovative aspects of the project are the maintenance and performance of a collaborative (shared & common) petascale national facility over tens of autonomous computing sites, for many hundreds of users, transferring terabytes of data a day, executing tens of thousands of jobs a day, and providing robust and usable resources for scientific groups of all types and sizes. More information can be found at the OSG web site: www.opensciencegrid.org.

Pordes, Ruth; /Fermilab; Kramer, Bill; Olson, Doug; / /LBL, Berkeley; Livny, Miron; Roy, Alain; /Wisconsin U., Madison; Avery, Paul; /Florida U.; Blackburn, Kent; /Caltech; Wenaus, Torre; /Brookhaven; Wurthwein, Frank; /UC, San Diego; Gardner, Rob; Wilde, Mike; /Chicago U. /Indiana U.

2007-06-01T23:59:59.000Z

413

Phylogenetics of modern birds in the era of genomics  

E-Print Network [OSTI]

Review Phylogenetics of modern birds in the era of genomics Scott V. Edwards*, W. Bryan Jennings and maturation of the genomics era, the completion of the chicken genome and a suite of technologies that promise genomics strategies, including adoption of objective quality scores for sequence data, analysis

Edwards, Scott

414

A grid-level alkali liquid metal battery recycling process : design, implementation, and characterization  

E-Print Network [OSTI]

The application of liquid metal batteries for large scale grid-level energy storage is being enabled through the development of research conducted at the Massachusetts Institute of Technology (MIT) in 2006. A recycling ...

Thomas, Dale Arlington, III

2014-01-01T23:59:59.000Z

415

LPTV-Aware Bit Loading and Channel Estimation in Broadband PLC for Smart Grid  

E-Print Network [OSTI]

Power line communication (PLC) has received steady interest over recent decades because of its economic use of existing power lines, and is one of the communication technologies envisaged for Smart Grid (SG) infrastructure. However, power lines...

Tunc, Muharrem Ali

2014-05-31T23:59:59.000Z

416

E-Print Network 3.0 - aware diana grid Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources, Technology and Services in the Sharing Paradigm, pages 6774, Chiang Mai, Thailand, November 12, 2011. Summary: ishida@i.kyoto-u.ac.jp Abstract The Language Grid is...

417

What can the smart grid Do for you? and what can You Do for the smart grid?  

SciTech Connect (OSTI)

The intersection of technology and economics is where all the Smart Grid benefits arise. If we do one without the other, then utilities and consumers hardly see any enduring benefit at all and the investment made in the underlying infrastructure justified on the basis of those benefits is wasted. (author)

Chassin, David P.

2010-06-15T23:59:59.000Z

418

Production of BaBar Skimmed Analysis Datasets Using the Grid  

SciTech Connect (OSTI)

The BABAR Collaboration, based at Stanford Linear Accelerator Center (SLAC), Stanford, US, has been performing physics reconstruction, simulation studies and data analysis for 8 years using a number of compute farms around the world. Recent developments in Grid technologies could provide a way to manage the distributed resources in a single coherent structure. We describe enhancements to the BABAR experiment's distributed skimmed dataset production system to make use of European Grid resources and present the results with regard to BABAR's latest cycle of skimmed dataset production. We compare the benefits of a local and Grid-based systems, the ease with which the system is managed and the challenges of integrating the Grid with legacy software. We compare job success rates and manageability issues between Grid and non-Grid production.

Brew, C.A.J.; /Rutherford; Wilson, F.F.; /Rutherford; Castelli, G.; /Rutherford; Adye, T.; /Rutherford; Roethel, W.; /Rutherford; Luppi, E.; /INFN, Ferrara; Andreotti, D.; /INFN, Ferrara; Smith, D.; /SLAC; Khan, A.; /Brunel U.; Barrett, M.; /Brunel U.; Barlow, R.; /Manchester U.; Bailey, D.; /Manchester U.

2011-11-10T23:59:59.000Z

419

Heating System Modernization, Management of Peripheral Scope...  

Energy Savers [EERE]

System Modernization, Management of Peripheral Scope Lessons Learned Report, NNSA, Dec 2010 Heating System Modernization, Management of Peripheral Scope Lessons Learned Report,...

420

Sandia National Laboratories: Distribution Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Supply Transformation Needed On February 20, 2013, in DETL, Distribution Grid Integration, Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure...

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Sandia National Laboratories: Distribution Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Symposium On April 15, 2014, in Concentrating Solar Power, Distribution Grid Integration, Energy, Facilities, Grid Integration, News, News & Events, Photovoltaic,...

422

Sandia National Laboratories: Distribution Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distribution Grid Integration Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments On March 3, 2015, in Capabilities, Distribution Grid Integration,...

423

National Grid (Gas)- Commercial Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

National Gridís Commercial Energy Efficiency Program provides support services and incentives to commercial customers who install energy efficient natural gas related measures. Prescriptive...

424

EV-Smart Grid Research & Interoperability Activities  

Broader source: Energy.gov (indexed) [DOE]

isolation chamber w wireless charging test fixture Integrated grid simulation, real-time grid data, and configurable branch circuit for smart charging and energy management...

425

Smart Grid Investment Grant Recipient Information | Department...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act SGIG Smart Grid Investment Grant Recipient Information Smart Grid Investment Grant Recipient Information BACKGROUND The Department of Energy's Office of Electricity...

426

Electricity Advisory Committee Smart Grid Subcommittee  

Broader source: Energy.gov (indexed) [DOE]

Electricity Advisory Committee Smart Grid Subcommittee Update to the 2008 EAC Report Smart Grid: Enabler of the New Energy Economy Report Recommendations May 10, 2011...

427

Identifying emerging smart grid impacts to upstream and midstream natural gas operations.  

SciTech Connect (OSTI)

The Smart Grid has come to describe a next-generation electrical power system that is typified by the increased use of communications and information technology in the generation, delivery and consumption of electrical energy. Much of the present Smart Grid analysis focuses on utility and consumer interaction. i.e. smart appliances, home automation systems, rate structures, consumer demand response, etc. An identified need is to assess the upstream and midstream operations of natural gas as a result of the smart grid. The nature of Smart Grid, including the demand response and role of information, may require changes in upstream and midstream natural gas operations to ensure availability and efficiency. Utility reliance on natural gas will continue and likely increase, given the backup requirements for intermittent renewable energy sources. Efficient generation and delivery of electricity on Smart Grid could affect how natural gas is utilized. Things that we already know about Smart Grid are: (1) The role of information and data integrity is increasingly important. (2) Smart Grid includes a fully distributed system with two-way communication. (3) Smart Grid, a complex network, may change the way energy is supplied, stored, and in demand. (4) Smart Grid has evolved through consumer driven decisions. (5) Smart Grid and the US critical infrastructure will include many intermittent renewables.

McIntyre, Annie

2010-09-01T23:59:59.000Z

428

Introduction to CamGrid  

E-Print Network [OSTI]

set up: one for users (92 currently registered) and the other for sysadmins. Have a nice web-based utility for viewing job files in realtime on execute hosts. 41 refereed publications to date, (Science, Phys. Rev. Lett., PLOS,Ö) USERS YOUR GRID... GOD SAVE THE GRID How you can help us help you Pressgang local resources. Why arenít those laptops/desktops on CamGrid? When applying for grants, please ask for funds to put towards computational resources (~£10k?) Publications, publications...

Calleja, Mark

2008-06-26T23:59:59.000Z

429

National Smart Water Grid  

SciTech Connect (OSTI)

The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US-Mexico border; and decreased eutrophication (excessive plant growth and decay) in the Gulf of Mexico to name a few. The National Smart Water Grid{trademark} will pay for itself in a single major flood event.

Beaulieu, R A

2009-07-13T23:59:59.000Z

430

Smart Grid e-Forum | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Federal Smart Grid Task Force Smart Grid e-Forum Smart Grid e-Forum DOE conducted a series of Smart Grid E-Forums to discuss various issues surrounding Smart Grid including...

431

High-level Functions for Modern Control Systems: A Practical Example  

E-Print Network [OSTI]

Modern control systems make wide usage of different IT technologies and complex computational techniques to render the data gathered accessible from different locations and devices, as well as to understand and even predict the behaviour of the systems under supervision.

Varela, F; Golonka, P; Gonzalez-Berges, M; Petrova, L B

2014-01-01T23:59:59.000Z

432

Grid Pricing of Fed Cattle  

E-Print Network [OSTI]

There are several value-based fed cattle pricing systems, including formula pricing, price grids and alliances. This publication describes the different cattle pricing methods and helps you decide which is best for you....

Schroeder, Ted C.; Hogan, Robert J.; Anderson, David P.

2009-03-02T23:59:59.000Z

433

[Article 6 of 7]: Research on the Characteristics of a Smart Grid by the NETL Modern Grid Strategy Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss, VersionThe RoleThe4 of

434

Grid Architecture Release 2.3  

E-Print Network [OSTI]

Draft Grid Architecture Release 2.3 November 2014 Draft #12;Grid Architecture Release 2.3 November..................................................................................................... 2.1 3.0 Brief Introduction to Grid Architecture........................................................................................ 3.2 3.1 How Grid Architecture Can Be Used

435

Benchmarking Grid Information Systems Laurence Field1  

E-Print Network [OSTI]

Benchmarking Grid Information Systems Laurence Field1 and Rizos Sakellariou2 1 CERN, Geneva. Grid information systems play a central role in today's pro- duction Grid infrastructures, enabling the discovery of a range of in- formation about the Grid services that exist in an infrastructure. As the number

Sakellariou, Rizos

436

Evidential Grids Information Management in Dynamic Environments  

E-Print Network [OSTI]

of CompiŤgne CNRS Heudiasyc UMR 7253, France Email: surname.name@utc.fr Abstract--An occupancy grid map conditions. The perception strategy involves map and scan grids [9], [10]. Indeed, an instantaneous scan grid-detections. The map grid acts as a filter that accumulate information and allows to detect moving objects. In dynamic

Paris-Sud XI, Universitť de

437

Reinventing Batteries for Grid Storage  

SciTech Connect (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2012-01-01T23:59:59.000Z

438

Reinventing Batteries for Grid Storage  

ScienceCinema (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2013-05-29T23:59:59.000Z

439

1 September 2012 Siemens Building Technologies Copyright Siemens  

E-Print Network [OSTI]

! Mobility and Logistics ! Low and Medium Voltage ! Smart Grid ! Building Technologies ! OSRAM* Industry ! Clinical Products ! Diagnostics ! Customer Solutions Infrastructure & Cities Divisionen ! Rail Systems

Fischlin, Andreas

440

Application of a New Structural Model and Exploration Technologies...  

Open Energy Info (EERE)

Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid-Drilling for Geothermal Exploration: McCoy, Churchill County, NV Geothermal Project Jump to:...

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Panel 1, DOE Fuel Cell Technologies Office: Hydrogen for Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

22011 eere.energy.gov DOE Fuel Cell Technologies Office Hydrogen for Energy Storage Workshop on Hydrogen Energy Storage Grid and Transportation Services Sacramento, California Dr....

442

A Core Grid Ontology for the Semantic Grid Wei Xing Marios D. Dikaiakos  

E-Print Network [OSTI]

A Core Grid Ontology for the Semantic Grid Wei Xing Marios D. Dikaiakos Department of Computer, we propose a Core Grid Ontology (CGO) that defines fundamental Grid-specific concepts, and the re- lationships between them. One of the key goals is to make this Core Grid Ontology general enough and easily

Pallis, George

443

Modeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter  

E-Print Network [OSTI]

Modeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter based in the same grid interface conditions by means of impedance-based analysis and modeling. Unlike the single grid connected inverter, it is found that multiple parallel connected inverters and grid impedance can

Bak, Claus Leth

444

What is a Grid? Grid Today, AUGUST 12, 2002: VOL. 1 NO. 9  

E-Print Network [OSTI]

What is a Grid? Grid Today, AUGUST 12, 2002: VOL. 1 NO. 9 (http://www.gridtoday.com/02/0812/020812.html) I would like to provide perspective on the question of what is a Grid - a perspective derived from several years of building production Grids. For a significant segment of the Grid community, most

445

Analysis of grid imprinting on geodesic spherical icosahedral grids Pedro S. Peixoto, Saulo R. M. Barros  

E-Print Network [OSTI]

Analysis of grid imprinting on geodesic spherical icosahedral grids Pedro S. Peixoto, Saulo R. M-090 S~ao Paulo, Brazil Abstract Numerical grid imprinting errors have often been observed in global atmospheric models on icosahedral grids. In this paper we analyse the sources of grid imprinting error related

446

Smart Grid: Opportunities and Challenges Toward a Stronger and Smarter Grid  

E-Print Network [OSTI]

Smart Grid: Opportunities and Challenges Toward a Stronger and Smarter Grid S. Massoud Amin, D electrical energy infrastructure ­ Transforming the Network into a Smart Grid ­ Developing an Expanded be reproduced in any form without prior authorization. Enabling a Stronger and Smarter Grid ·Smart Grid

Amin, S. Massoud

447

Pacific Northwest Smart GridPacific Northwest Smart Grid Demonstration ProjectDemonstration Project  

E-Print Network [OSTI]

Pacific Northwest Smart GridPacific Northwest Smart Grid Demonstration ProjectDemonstration Project Northwest Power and Conservation Council Lee Hall, BPA Smart Grid Program Manager Tracy Yount, Battelle Electric Grid Research Manager April 14, 2010 PNWD-SA-8921 #12;Agenda · Smart Grid ­ What is it? · PNW

448

EconoGrid: A detailed Simulation Model of a Standards-based Grid Compute Economy  

E-Print Network [OSTI]

EconoGrid: A detailed Simulation Model of a Standards-based Grid Compute Economy EconoGrid is a detailed simulation model, implemented in SLX1 , of a grid compute economy that implements selected of users. In a grid compute economy, computing resources are sold to users in a market where price

449

GRID-Launcher v.1.0  

E-Print Network [OSTI]

GRID-launcher-1.0 was built within the VO-Tech framework, as a software interface between the UK-ASTROGRID and a generic GRID infrastructures in order to allow any ASTROGRID user to launch on the GRID computing intensive tasks from the ASTROGRID Workbench or Desktop. Even though of general application, so far the Grid-Launcher has been tested on a few selected softwares (VONeural-MLP, VONeural-SVM, Sextractor and SWARP) and on the SCOPE-GRID.

N. Deniskina; M. Brescia; S. Cavuoti; G. d'Angelo; O. Laurino; G. Longo

2008-06-06T23:59:59.000Z

450

Protecting Intelligent Distributed Power Grids against Cyber Attacks  

SciTech Connect (OSTI)

Like other industrial sectors, the electrical power industry is facing challenges involved with the increasing demand for interconnected operations and control. The electrical industry has largely been restructured due to deregulation of the electrical market and the trend of the Smart Grid. This moves new automation systems from being proprietary and closed to the current state of Information Technology (IT) being highly interconnected and open. However, while gaining all of the scale and performance benefits of IT, existing IT security challenges are acquired as well. The power grid automation network has inherent security risks due to the fact that the systems and applications for the power grid were not originally designed for the general IT environment. In this paper, we propose a conceptual layered framework for protecting power grid automation systems against cyber attacks. The following factors are taken into account: (1) integration with existing, legacy systems in a non-intrusive fashion; (2) desirable performance in terms of modularity, scalability, extendibility, and manageability; (3) alignment to the 'Roadmap to Secure Control Systems in the Energy Sector' and the future smart grid. The on-site system test of the developed prototype security system is briefly presented as well.

Dong Wei; Yan Lu; Mohsen Jafari; Paul Skare; Kenneth Rohde

2010-12-31T23:59:59.000Z

451

The Vermont-Sandia Smart Grid Partnership Powering the Future: The Vermont Smart Grid and Beyond  

E-Print Network [OSTI]

The Vermont-Sandia Smart Grid Partnership Powering the Future: The Vermont Smart Grid and Beyond BURLINGTON SHERATON HOTEL & CONFERENCE CENTER MAY Laboratories 9:10-10:15 a.m. Opening Plenary: The Vermont-Sandia Smart Grid

Hayden, Nancy J.

452

DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity  

E-Print Network [OSTI]

DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity: Vol. 2, Privacy and the Smart Grid The Smart Grid Interoperability Panel ­ Smart Grid Cybersecurity Committee #12;DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity: Vol. 2, Privacy and the Smart Grid The Smart Grid

453

Maturity Model for Advancing Smart Grid Interoperability  

SciTech Connect (OSTI)

AbstractóInteroperability is about the properties of devices and systems to connect and work properly. Advancing interoperability eases integration and maintenance of the resulting interconnection. This leads to faster integration, lower labor and component costs, predictability of projects and the resulting performance, and evolutionary paths for upgrade. When specifications are shared and standardized, competition and novel solutions can bring new value streams to the community of stakeholders involved. Advancing interoperability involves reaching agreement for how things join at their interfaces. The quality of the agreements and the alignment of parties involved in the agreement present challenges that are best met with process improvement techniques. The GridWiseģ Architecture Council (GWAC) sponsored by the United States Department of Energy is supporting an effort to use concepts from capability maturity models used in the software industry to advance interoperability of smart grid technology. An interoperability maturity model has been drafted and experience is being gained through trials on various types of projects and community efforts. This paper describes the value and objectives of maturity models, the nature of the interoperability maturity model and how it compares with other maturity models, and experiences gained with its use.

Knight, Mark; Widergren, Steven E.; Mater, J.; Montgomery, Austin

2013-10-28T23:59:59.000Z

454

POWER GRID RELIABILITY AND SECURITY  

SciTech Connect (OSTI)

This project has led to the development of a real-time simulation platform for electric power grids called Grid Simulator or GridSim for simulating the dynamic and information network interactions of large- scale power systems. The platform consists of physical models of power system components including synchronous generators, loads and control, which are simulated using a modified commercial power simulator namely Transient Stability Analysis Tool (TSAT) [1] together with data cleanup components, as well as an emulated substation level and wide-area power analysis components. The platform also includes realistic representations of communication network middleware that can emulate the real-time information flow back and forth between substations and control centers in wide-area power systems. The platform has been validated on a realistic 6000-bus model of the western American power system. The simulator GridSim developed in this project is the first of its kind in its ability to simulate real-time response of large-scale power grids, and serves as a cost effective real-time stability and control simulation platform for power industry.

Bose, Anjan; Venkatasubramanian, Vaithianathan; Hauser, Carl; Bakken, David; Anderson, David; Zhao, Chuanlin; Liu, Dong; Yang, Tao; Meng, Ming; Zhang, Lin; Ning, Jiawei; Tashman, Zaid

2014-09-30T23:59:59.000Z

455

Application of a New Structural Model & Exploration Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid Drilling for Geothermal Exploration: McCoy, Churchill County, NV  

Broader source: Energy.gov [DOE]

DOE Geothermal Technologies Peer Review 2010 - Presentation. Relevance of research: Improve exploration technologies for range-hosted geothermal systems:Employ new concept models and apply existing methods in new ways; Breaking geothermal exploration tasks into new steps, segmenting the problem differently; Testing new models for dilatent structures; Utilizing shallow thermal aquifer model to focus exploration; Refining electrical interpretation methods to map shallow conductive featuresIdentifying key faults as fluid conduits; and Employ soil gas surveys to detect volatile elements and gases common to geothermal systems.

456

EcoGrid EU (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThisEcoGrid EU (Smart Grid Project) Jump to:

457

High-Performance Computing for Real-Time Grid Analysis and Operation  

SciTech Connect (OSTI)

Power grids worldwide are undergoing an unprecedented transition as a result of grid evolution meeting information revolution. The grid evolution is largely driven by the desire for green energy. Emerging grid technologies such as renewable generation, smart loads, plug-in hybrid vehicles, and distributed generation provide opportunities to generate energy from green sources and to manage energy use for better system efficiency. With utility companies actively deploying these technologies, a high level of penetration of these new technologies is expected in the next 5-10 years, bringing in a level of intermittency, uncertainties, and complexity that the grid did not see nor design for. On the other hand, the information infrastructure in the power grid is being revolutionized with large-scale deployment of sensors and meters in both the transmission and distribution networks. The future grid will have two-way flows of both electrons and information. The challenge is how to take advantage of the information revolution: pull the large amount of data in, process it in real time, and put information out to manage grid evolution. Without addressing this challenge, the opportunities in grid evolution will remain unfulfilled. This transition poses grand challenges in grid modeling, simulation, and information presentation. The computational complexity of underlying power grid modeling and simulation will significantly increase in the next decade due to an increased model size and a decreased time window allowed to compute model solutions. High-performance computing is essential to enable this transition. The essential technical barrier is to vastly increase the computational speed so operation response time can be reduced from minutes to seconds and sub-seconds. The speed at which key functions such as state estimation and contingency analysis are conducted (typically every 3-5 minutes) needs to be dramatically increased so that the analysis of contingencies is both comprehensive and real time. An even bigger challenge is how to incorporate dynamic information into real-time grid operation. Todayís online grid operation is based on a static grid model and can only provide a static snapshot of current system operation status, while dynamic analysis is conducted offline because of low computational efficiency. The offline analysis uses a worst-case scenario to determine transmission limits, resulting in under-utilization of grid assets. This conservative approach does not necessarily lead to reliability. Many times, actual power grid scenarios are not studied, and they will push the grid over the edge and resulting in outages and blackouts. This chapter addresses the HPC needs in power grid analysis and operations. Example applications such as state estimation and contingency analysis are given to demonstrate the value of HPC in power grid applications. Future research directions are suggested for high performance computing applications in power grids to improve the transparency, efficiency, and reliability of power grids.

Huang, Zhenyu; Chen, Yousu; ChavarrŪa-Miranda, Daniel

2013-10-31T23:59:59.000Z

458

MODERN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministration -Lowell L.FallU . S . D e p a r t m e n t o f E

459

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

data† integration† for† Smart† GridĒ,† B 2010† 3rd† IEEE†simulation† integration,† the† next†generation†smart†grid†the†Smart†Grid†vision†requires†the†efficient†integration†of†

Birman, Kenneth

2012-01-01T23:59:59.000Z

460

Smart Grid Week: Hurricane Season and the Department's Efforts...  

Broader source: Energy.gov (indexed) [DOE]

Season and the Department's Efforts to Make the Grid More Resilient to Power Outages Smart Grid Week: Hurricane Season and the Department's Efforts to Make the Grid More...

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...  

Broader source: Energy.gov (indexed) [DOE]

Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid...

462

EV-Smart Grid Research & Interoperability Activities 2014 DOE...  

Broader source: Energy.gov (indexed) [DOE]

- Codes & Standards Support, Grid Connectivity R&D, International Cooperation and EV-Smart Grid Interoperability Center (funding began in FY 2013) Grid Integration * PEV J1772...

463

Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical...  

Broader source: Energy.gov (indexed) [DOE]

Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Okaloosa Gas District Smart Grid RFI: Addressing Policy and...

464

Sandia National Laboratories: How a Grid Manager Meets Demand...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to meet peak loads. Comments are closed. Advanced Electric Systems Integrating Renewable Energy into the Electric Grid Why is Grid Synchronization Important? How a Grid Manager...

465

Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and...

466

Convectively cooled electrical grid structure  

DOE Patents [OSTI]

Undesirable distortions of electrical grid conductors from thermal cycling are minimized and related problems such as unwanted thermionic emission and structural failure from overheating are avoided by providing for a flow of fluid coolant within each conductor. The conductors are secured at each end to separate flexible support elements which accommodate to individual longitudinal expansion and contraction of each conductor while resisting lateral displacements, the coolant flow preferably being directed into and out of each conductor through passages in the flexible support elements. The grid may have a modular or divided construction which facilitates manufacture and repairs.

Paterson, J.A.; Koehler, G.W.

1980-11-10T23:59:59.000Z

467

FermiGrid - experience and future plans  

SciTech Connect (OSTI)

Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and the Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.

Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Timm, S.; Yocum, D.; /Fermilab

2007-09-01T23:59:59.000Z

468

Data Management and Analysis for the Earth System Grid  

SciTech Connect (OSTI)

The international climate community is expected to generate hundreds of petabytes of simulation data within the next five to seven years. This data must be accessed and analyzed by thousands of analysts worldwide in order to provide accurate and timely estimates of the likely impact of climate change on physical, biological, and human systems. Climate change is thus not only a scientific challenge of the first order but also a major technological challenge. To address this technological challenge, the Earth System Grid Center for Enabling Technologies (ESG-CET) has been established within the U.S. Department of Energy's Scientific Discovery through Advanced Computing (SciDAC)-2 program, with support from the offices of Advanced Scientific Computing Research and Biological and Environmental Research. ESG-CET's mission is to provide climate researchers worldwide with access to the data, information, models, analysis tools, and computational capabilities required to make sense of enormous climate simulation datasets. Its specific goals are to (1) make data more useful to climate researchers by developing Grid technology that enhances data usability; (2) meet specific distributed database, data access, and data movement needs of national and international climate projects; (3) provide a universal and secure web-based data access portal for broad multi-model data collections; and (4) provide a wide-range of Grid-enabled climate data analysis tools and diagnostic methods to international climate centers and U.S. government agencies. Building on the successes of the previous Earth System Grid (ESG) project, which has enabled thousands of researchers to access tens of terabytes of data from a small number of ESG sites, ESG-CET is working to integrate a far larger number of distributed data providers, high-bandwidth wide-area networks, and remote computers in a highly collaborative problem-solving environment.

Williams, D N; Ananthakrishnan, R; Bernholdt, D; Bharathi, S; Brown, D; Chen, M; Chervenak, A L; Cinquini, L; Drach, R; Foster, I T; Fox, P; Hankin, S; Henson, V; Jones, P; Middleton, D E; Schwidder, J; Schweitzer, R; Schuler, R; Shoshani, A; Siebenlist, F; Sim, A; Strand, W G; Wilhelmi, N; Su, M

2008-06-19T23:59:59.000Z

469

Planting the Seed: Greening the Grid with Concentrating Solar Power  

SciTech Connect (OSTI)

In the United States and around the world, interest in concentrating solar power (CSP) is growing rapidly and its use is increasing. This solar thermal technology can meet a significant share of our electricity demand. Yet, while CSP's market share rises, concerns about the potential impact of CSP-generated electricity on the stability and operation of the U.S. power grid might create barriers to its future expansion in America.

Mehos, M.; Kabel, D.; Smithers, P.

2009-05-01T23:59:59.000Z

470

GridMat: Matlab Toolbox for GridLAB-D to Analyse Grid Impact and Validate Residential Microgrid Level  

E-Print Network [OSTI]

GridMat: Matlab Toolbox for GridLAB-D to Analyse Grid Impact and Validate Residential Microgrid.alfaruque, fahourai} @ uci.edu Abstract-- Residential microgrid has the capability to participate in the distribution level) advanced control algorithms need to be developed and validated for such residential microgrids

Al Faruque, Mohammad Abdullah

471

Moderne bioenergi -et nyt dansk vkstomrde?  

E-Print Network [OSTI]

Moderne bioenergi - et nyt dansk v√¶kstomr√•de? 11. december 2003 Marriott Hotel, K√łbenhavn #12;Moderne bioenergi - et nyt dansk v√¶kstomr√•de? Velkomst og introduktion J√łrgen Kjems, administrerende direkt√łr, Ris√ł #12;Program 13.40-14.00 Perspektiver for moderne bioenergi Hans Larsen, Ris√ł 14

472

Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid  

SciTech Connect (OSTI)

Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.

Chertkov, Michael [Los Alamos National Laboratory; Bent, Russell W. [Los Alamos National Laboratory; Backhaus, Scott N. [Los Alamos National Laboratory

2012-07-10T23:59:59.000Z

473

Cybersecurity and the Smarter Grid (2014)  

Broader source: Energy.gov [DOE]

An article by OEís Carol Hawk and Akhlesh Kaushiva in The Electricity Journal discusses cybersecurity for the power grid and how DOE and the energy sector are partnering to keep the smart grid reliable and secure.

474

INFOGRAPHIC: Understanding the Grid | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Grid November 17, 2014 - 2:05pm Addthis Our GridWeek infographic shows how electricity is generated, transmitted and distributed for use in our homes. | Graphic by

475

GridWise Alliance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Challenges Re: NBP RFI: Communications Requirements 2010 U.S. Smart Grid Vendor Ecosystem Report on the companies and market dynamics shaping the current U.S. smart grid landscape...

476

Past and future of grid shell structures  

E-Print Network [OSTI]

Because of their original organic shape and the column free space that they provide, the design of grid shell structures challenges architects and structural engineers in more than one way. Very few grid shell building ...

Paoli, Cťline (Cťline Aude)

2007-01-01T23:59:59.000Z

477

Grid Logging: Best Practices Guide  

SciTech Connect (OSTI)

The purpose of this document is to help developers of Grid middleware and application software generate log files that will be useful to Grid administrators, users, developers and Grid middleware itself. Currently, most of the currently generated log files are only useful to the author of the program. Good logging practices are instrumental to performance analysis, problem diagnosis, and security auditing tasks such as incident tracing and damage assessment. This document does not discuss the issue of a logging API. It is assumed that a standard log API such as syslog (C), log4j (Java), or logger (Python) is being used. Other custom logging API or even printf could be used. The key point is that the logs must contain the required information in the required format. At a high level of abstraction, the best practices for Grid logging are: (1) Consistently structured, typed, log events; (2) A standard high-resolution timestamp; (3) Use of logging levels and categories to separate logs by detail and purpose; (4) Consistent use of global and local identifiers; and (5) Use of some regular, newline-delimited ASCII text format. The rest of this document describes each of these recommendations in detail.

Tierney, Brian L; Tierney, Brian L; Gunter, Dan

2008-04-01T23:59:59.000Z

478

Articles about Grid Integration and Transmission  

Broader source: Energy.gov [DOE]

Stories about grid integration and transmission featured by the U.S. Department of Energy (DOE) Wind Program.

479

Embodied Energy and Off-Grid Lighting  

E-Print Network [OSTI]

as a point of comparison with LED lighting product embodieda fairer comparison between off- grid LED lighting and other

Alstone, Peter

2012-01-01T23:59:59.000Z

480

Flexible Transmission in the Smart Grid  

E-Print Network [OSTI]

Planning . 102 vi Transmission Line Maintenance Scheduling 103 Just-in-time Transmission 103 Flexible Transmission in the Smart Grid

Hedman, Kory Walter

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "grid modernization technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Grid Connectivity Research, Development & Demonstration Projects...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Connectivity Research, Development & Demonstration Projects Grid Connectivity Research, Development & Demonstration Projects 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

482

Statistics and the Modern Student  

E-Print Network [OSTI]

Technology Innovations in Statistics Education, 3(1). Wild,the "wider view" of statistics, The American Statistician,a History of Teaching Statistics, Edinburgh: John Bibby (

Robert Gould

2011-01-01T23:59:59.000Z

483

Statistics and the Modern Student  

E-Print Network [OSTI]

Technology Innovations in Statistics Education, 3(1). Wild,the "wider view" of statistics, The American Statistician,a History of Teaching Statistics, Edinburgh: John Bibby (

Gould, Robert

2010-01-01T23:59:59.000Z

484

The Adjustable Grid: A Grid-Based Cursor Control Solution using Speech Recognition  

E-Print Network [OSTI]

The Adjustable Grid: A Grid-Based Cursor Control Solution using Speech Recognition Tarif Haque1 of grid-based cursor control systems using speech recognition have been developed. These systems typically overlay a numbered 3x3 grid on the screen and allow the user to recursively drill the cursor down

Gray, Jeffrey G.

485

GridBank: A Grid Accounting Services Architecture (GASA) for Distributed Systems Sharing and Integration  

E-Print Network [OSTI]

GridBank: A Grid Accounting Services Architecture (GASA) for Distributed Systems Sharing Australia Nedlands, Western Australia, 6009 barmouta@csse.uwa.edu.au Rajkumar Buyya Grid Computing and Distributed Systems (GRIDS) Lab Dept. of Computer Science and Software Engineering The University of Melbourne

Buyya, Rajkumar

486

GRID superscalar and SAGA: forming a high-level and platform-independent Grid  

E-Print Network [OSTI]

GRID superscalar and SAGA: forming a high-level and platform-independent Grid programming Universiteit, Amsterdam, The Netherlands {merzky|kielmann}@cs.vu.nl Abstract. The Simple API for Grid Applications (SAGA), as currently standardized within GGF, aims to provide a simple yet powerful Grid API; its

Kielmann, Thilo

487

A Multi-solver Scheme for Viscous Flows Using Adaptive Cartesian Grids and Meshless Grid  

E-Print Network [OSTI]

A Multi-solver Scheme for Viscous Flows Using Adaptive Cartesian Grids and Meshless Grid of an adaptive multi-solver approach for CFD sim- ulation of viscous flows. Curvilinear grids are used near solid bodies to capture boundary layers, and stuctured adaptive Cartesian grids are used away from the body

Jameson, Antony

488

Semantic-based Grid Resource Discovery and its Integration with the Grid Service Broker  

E-Print Network [OSTI]

1 Semantic-based Grid Resource Discovery and its Integration with the Grid Service Broker Thamarai Chromepet, Chennai ≠ 600044, India Email : stselvi@annauniv.edu 2 Grid Computing and Distributed Systems :mohanram@cdacb.ernet.in Abstract: This paper addresses the need of semantic component in the grid

Melbourne, University of

489

Using the GridSim Toolkit for Enabling Grid Computing Education Manzur Murshed  

E-Print Network [OSTI]

with (Grid-enabled) resources or their agents using middleware services, map tasks to resources (schedulingUsing the GridSim Toolkit for Enabling Grid Computing Education Manzur Murshed Gippsland School: Grid Simulation; Education; Scheduling; Resource Management. Abstract Numerous research groups

Melbourne, University of

490

EL Program: Smart Grid Program Manager: David Wollman, Smart Grid and Cyber-Physical Systems  

E-Print Network [OSTI]

EL Program: Smart Grid Program Manager: David Wollman, Smart Grid and Cyber-Physical Systems Program Office, Associate Program Manager: Dean Prochaska, Smart Grid and Cyber- Physical Systems Program [updated August 23, 2013] Summary: This program develops and demonstrates smart grid measurement science

491

Smart Grids: Fact or Fiction? A Discussion of Smart Grids in New Zealand  

E-Print Network [OSTI]

May 2013 1 Smart Grids: Fact or Fiction? A Discussion of Smart Grids in New Zealand Dr Allan Miller. Introduction The term `smart grid' is used extensively today, even though there are diverse opinions on what to some extent, and the key questions should not be about what constitutes a `smart grid', but what

Hickman, Mark

492

Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave  

E-Print Network [OSTI]

Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave INFORME para la Sostenibilidad Energética y Ambiental, FUNSEAM. #12;Smart Grids: Sectores y actividades clave eléctrica y los diferentes sectores que forman la smart grid. 6 Figura 2. Evolución y previsión de

Politècnica de Catalunya, Universitat

493

Quantifiably secure power grid operation, management, and evolution : a study of uncertainties affecting the grid integration of renewables.  

SciTech Connect (OSTI)

This report summarizes findings and results of the Quantifiably Secure Power Grid Operation, Management, and Evolution LDRD. The focus of the LDRD was to develop decisionsupport technologies to enable rational and quantifiable risk management for two key grid operational timescales: scheduling (day-ahead) and planning (month-to-year-ahead). Risk or resiliency metrics are foundational in this effort. The 2003 Northeast Blackout investigative report stressed the criticality of enforceable metrics for system resiliency - the grid's ability to satisfy demands subject to perturbation. However, we neither have well-defined risk metrics for addressing the pervasive uncertainties in a renewable energy era, nor decision-support tools for their enforcement, which severely impacts efforts to rationally improve grid security. For day-ahead unit commitment, decision-support tools must account for topological security constraints, loss-of-load (economic) costs, and supply and demand variability - especially given high renewables penetration. For long-term planning, transmission and generation expansion must ensure realized demand is satisfied for various projected technological, climate, and growth scenarios. The decision-support tools investigated in this project paid particular attention to tailoriented risk metrics for explicitly addressing high-consequence events. Historically, decisionsupport tools for the grid consider expected cost minimization, largely ignoring risk and instead penalizing loss-of-load through artificial parameters. The technical focus of this work was the development of scalable solvers for enforcing risk metrics. Advanced stochastic programming solvers were developed to address generation and transmission expansion and unit commitment, minimizing cost subject to pre-specified risk thresholds. Particular attention was paid to renewables where security critically depends on production and demand prediction accuracy. To address this concern, powerful filtering techniques for spatio-temporal measurement assimilation were used to develop short-term predictive stochastic models. To achieve uncertaintytolerant solutions, very large numbers of scenarios must be simultaneously considered. One focus of this work was investigating ways of reasonably reducing this number.

Gray, Genetha Anne; Watson, Jean-Paul [Sandia National Laboratories, Albuquerque, NM; Silva Monroy, Cesar Augusto [Sandia National Laboratories, Albuquerque, NM; Gramacy, Robert B. [University of Chicago, Chicago, IL

2013-09-01T23:59:59.000Z

494

FUTURE POWER GRID INITIATIVE Scalable Sensor Data  

E-Print Network [OSTI]

of sensors and a large number of applications in future smart grids Ľ Provide a uniformed API to allow applications to access real time power grid data Ľ Facilitate the integration of a large number of diverse management systems Ľ Allow easy integration of a large number of diverse power grid applications

495

February 2002 Grid Scale Oscillations in MICOM  

E-Print Network [OSTI]

are the implications of the grid scale oscillation on ­ Surface Fluxes that drive THC ­ Heat transport ­ MeridionalFebruary 2002 Grid Scale Oscillations in MICOM Balasubramanya T. Nadiga Los Alamos National Model · 3o displaced pole grid. 16 layers · Kraus-Turner Bulk Mixed Layer · Explicit diapycnal

Nadiga, Balasubramanya T. "Balu"

496

Vids 4 Grids: Surge Arresters and Switchgears  

Broader source: Energy.gov [DOE]

A new video series is increasing general public knowledge of the cutting edge jobs in the power sector that are essential to implementing a national clean-energy Smart Grid. Find out how switches and surge arresters are making the grid more reliable -- helping to bring the grid into the 21st century.

497

"Reliability, Resiliency, and Restoration for Smarter Grid  

E-Print Network [OSTI]

"Reliability, Resiliency, and Restoration for Smarter Grid Workshop" Save the Date April 3 and 4 at mohlsen@bnl.gov "The Resilient Smart Grid" to be held at Brookhaven National Laboratory Upton, Long Island://www.bnl.gov/maps/. This is the 5th workshop that BNL is hosting on the Smart Grid. This Workshop will build on the previous

Ohta, Shigemi

498

Grid adaptation for multiscale plasma simulations  

E-Print Network [OSTI]

Grid adaptation for multiscale plasma simulations Gian Luca Delzanno Los Alamos National Laboratory In collaboration with L. Chacon and J.M. Finn #12;delzanno@lanl.gov Outline ∑ Introduction and motivation ∑ Grid tests ∑ New directions ∑ Conclusions #12;delzanno@lanl.gov Outline ∑ Introduction and motivation ∑ Grid

Ito, Atsushi

499

Distributing MCell Simulations on the Grid  

E-Print Network [OSTI]

Distributing MCell Simulations on the Grid Henri Casanova casanova@cs.ucsd.edu Tom Bartol The Computational Grid [21] is a promising platform for the deployment of large-scale scientific and engineering that structure, PSAs are particularly well suited to the Grid infrastructure and can be deployed on very large

Sejnowski, Terrence J.

500

Programming, Composing, Deploying for the Grid  

E-Print Network [OSTI]

Programming, Composing, Deploying for the Grid Laurent Baduel, Franłcoise Baude, Denis Caromel FirstName.LastName@sophia.inria.fr Abstract. Grids raise new challenges in the following way: heterogene objects and components. We especially target Grid computing, but our approach also applies to application

Paris-Sud XI, Universitť de