Sample records for grid energy options

  1. OFF-GRID RENEWABLE ENERGY OPTIONS FOR RURAL ELECTRIFICATION IN WESTERN CHINA

    E-Print Network [OSTI]

    Delaware, University of

    OFF-GRID RENEWABLE ENERGY OPTIONS FOR RURAL ELECTRIFICATION IN WESTERN CHINA by the Center for Energy and Environmental Policy of University of Delaware Sponsored by National Renewable Energy Laboratory and Ministry of Agriculture People's Republic of China June 2001 #12;i OFF-GRID RENEWABLE ENERGY

  2. Introduction to off grid energy options for RE systems | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformation source HistoryInternationalHydrogen

  3. Market-Based Indian Grid Integration Study Options: Preprint

    SciTech Connect (OSTI)

    Stoltenberg, B.; Clark, K.; Negi, S. K.

    2012-03-01T23:59:59.000Z

    The Indian state of Gujarat is forecasting solar and wind generation expansion from 16% to 32% of installed generation capacity by 2015. Some states in India are already experiencing heavy wind power curtailment. Understanding how to integrate variable generation (VG) into the grid is of great interest to local transmission companies and India's Ministry of New and Renewable Energy. This paper describes the nature of a market-based integration study and how this approach, while new to Indian grid operation and planning, is necessary to understand how to operate and expand the grid to best accommodate the expansion of VG. Second, it discusses options in defining a study's scope, such as data granularity, generation modeling, and geographic scope. The paper also explores how Gujarat's method of grid operation and current system reliability will affect how an integration study can be performed.

  4. Assessing Renewable Energy Options

    Broader source: Energy.gov [DOE]

    Federal agencies should assess renewable energy options for each specific project when integrating renewable energy in new building construction or major renovations. This section covers the preliminary screening, screening, feasibility study, and sizing and designing systems phases.

  5. Idaho's Energy Options

    SciTech Connect (OSTI)

    Robert M. Neilson

    2006-03-01T23:59:59.000Z

    This report, developed by the Idaho National Laboratory, is provided as an introduction to and an update of the status of technologies for the generation and use of energy. Its purpose is to provide information useful for identifying and evaluating Idaho’s energy options, and for developing and implementing Idaho’s energy direction and policies.

  6. OPTIONS for ENERGY EFFICIENCY

    E-Print Network [OSTI]

    OPTIONS for ENERGY EFFICIENCY in EXISTING BUILDINGS December 2005 CEC-400-2005-039-CMF.B. Blevins Executive Director Valerie Hall Deputy Director Efficiency, Renewables and Demand Analysis Elaine Hussey Contract Manager #12;Acknowledgments The Efficiency Committee expresses its gratitude

  7. Sustainable Energy: Choosing Among Options

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2006-01-01T23:59:59.000Z

    Review: Sustainable Energy: Choosing Among Options Byand William A. Peters. Sustainable Energy: Choosing AmongAll the authors of Sustainable Energy are associated with

  8. Smart Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Meters, Conductor, Surge Protection Devices, Connectors, Lighting Controls, Grid-Scale Battery Storage, Grid-Scale Flywheel Energy for Frequency Regulation, Automation...

  9. Sandia Energy - Fuel Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailure Mode andFinanceFuel Options

  10. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments Home StationaryFAQs HomeProgramSCADASMART Grid

  11. Sandia Energy - Smart Grid Tools and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Tools and Technology Home Stationary Power Grid Modernization Renewable Energy Integration Smart Grid Tools and Technology Smart Grid Tools and TechnologyTara...

  12. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H.Rohit Prasankumar

  13. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbonEnergy Sandia

  14. Sandia Energy - Grid Modernization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInAppliedEnergyGeothermal HomeGrid

  15. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbon CaptureBiofuels

  16. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbon

  17. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H.Rohit Prasankumar HomeEnergy

  18. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailureGlobal ClimateGrid

  19. Smart Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Usage Smart Grid Smart Grid October 21, 2014 Line workers get hands-on experience with an electrical pole as part of their training. | Photo courtesy of David Weaver....

  20. National Grid Energy Efficiency Plans

    Broader source: Energy.gov [DOE]

    Presentation covers the National Grid Energy Efficiency plans and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  1. National Grid Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Presentation covers the National Grid Energy Efficiency programs and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  2. Sandia National Laboratories: energy resilient smart grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resilient smart grid Hoboken Hopes To Reduce Power Outages With New 'Smart Grid' System On June 20, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems,...

  3. Tribal Renewable Energy Foundational Course: Electricity Grid...

    Office of Environmental Management (EM)

    Electricity Grid Basics Tribal Renewable Energy Foundational Course: Electricity Grid Basics Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar...

  4. Pawnee Nation Energy Option Analyses

    SciTech Connect (OSTI)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-31T23:59:59.000Z

    In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Based on the request of Pawnee Nation’s Energy Task Force the research team, consisting Tribal personnel and Summit Blue Consulting, focused on a review of renewable energy resource development potential, funding sources and utility organizational along with energy savings options. Elements of the energy demand forecasting and characterization and demand side options review remained in the scope of work, but were only addressed at a high level. Description of Activities Performed Renewable Energy Resource Development Potential The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Energy Efficiency Options While this was not a major focus of the project, the research team highlighted common strategies for reducing energy use in buildings. The team also discussed the benefits of adopting a building energy code and introduced two model energy codes Pawnee Nation should consider for adoption. Summary of Current and Expected Future Electricity Usage The research team provided a summary overview of electricity usage patterns in current buildings and included discussion of known plans for new construction. Utility Options Review Pawnee Nation electric utility options were analyzed through a four-phase process, which included: 1) summarizing the relevant utility background information; 2) gathering relevant utility assessment data; 3) developing a set of realistic Pawnee electric utility service options, and 4) analyzing the various Pawnee electric utility service options for the Pawnee Energy Team’s consideration. III. Findings and Recommendations Due to a lack of financial incentives for renewable energy, particularly at the state level, combined mediocre renewable energy resources, renewable energy development opportunities are limited for Pawnee Nation. However, near-term potential exists for development of solar hot water at the gym, and an exterior wood-fired boiler system at the tribe’s main administrative building. Pawnee Nation should also explore options for developing LFGTE resources in collaboration with the City of Pawnee. Significant potential may also exist for development of bio-energy resources within the next decade. Pawnee Nation representatives should closely monitor market developments in the bio-energy industry, establish contacts with research institutions with which the tribe could potentially partner in grant-funded research initiatives. In addition, a substantial effort by the Kaw and Cherokee tribes is underway to pursue wind development at the Chilocco School Site in northern Oklahoma where Pawnee is a joint landowner. Pawnee Nation representatives should become actively involved in these development discussions and should explore the potential for joint investment in wind development at the Chilocco site.

  5. Sandia Energy » Fuel Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This authorEnergy & Climate

  6. National Grid (Gas)- Commercial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    National Grid’s Commercial Energy Efficiency Program provides support services and incentives to commercial customers who install energy efficient natural gas related measures. Prescriptive...

  7. Lower Cost Energy Options

    E-Print Network [OSTI]

    Maze, M. E.

    the last f1ve years we have saved over $177 m11110n. 0= o u.vncGS AlIOTT DOMUTtC ENERGY COST & SAVINGS 11(000) uxm llOOOO lDXD ""'"lIXlIl ,..,.., 6CIlOll DlOO :om om a L--=.lLol.uLJULl:LJJU11.Lil:Ll..L<.LLLJ..lLo 7374.75'71i771BNlIJ nAIl F...

  8. Smart Grid | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here HomeSmart Grid Smart Grid Smart

  9. Pawnee Nation Energy Option Analyses

    SciTech Connect (OSTI)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-21T23:59:59.000Z

    Pawnee Nation of Oklahoma Energy Option Analyses In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Description of Activities Performed The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Findings and Recommendations Due to a lack of financial incentives for renewable energy, particularly at the state level, combined mediocre renewable energy resources, renewable energy development opportunities are limited for Pawnee Nation. However, near-term potential exists for development of solar hot water at the gym, and an exterior wood-fired boiler system at the tribe’s main administrative building. Pawnee Nation should also explore options for developing LFGTE resources in collaboration with the City of Pawnee. Significant potential may also exist for development of bio-energy resources within the next decade. Pawnee Nation representatives should closely monitor market developments in the bio-energy industry, establish contacts with research institutions with which the tribe could potentially partner in grant-funded research initiatives. In addition, a substantial effort by the Kaw and Cherokee tribes is underway to pursue wind development at the Chilocco School Site in northern Oklahoma where Pawnee is a joint landowner. Pawnee Nation representatives should become actively involved in these development discussions and should explore the potential for joint investment in wind development at the Chilocco site. Financial incentives for project development are generally structured to provide tribes with access to conventional financing mechanisms. Grant funding for project construction is currently difficult to obtain. Substantial new opportunities for bio-fuel development may exist in the next few years with passage of the 2007 Farm Bill, and through opportunities made available through Oklahoma’s new Bio-energy Center. A review of potential alternatives to Pawnee Nation’s current electricity supply scenario revealed that a range of options could be viable. These include the following scenarios: business as usual, alternative supply, negotiate lower rates with City of Pawnee, focus on reducing energy usage, develop electric utility organization. Under any circumstances, Pawnee Nation should purse strategies to reduce energy usage, as this is the simplest means of reducing electric costs and environmental impacts. The research team also recommends that Pawnee Nation initiate some focused discussions with the City of Pawnee, with GRDA, and with IEC to discuss its wholesale supply purchase options. These discussions will better inform the Pawnee Energy Team of the specific pros and cons of its wholesale power supply options, and will assist the Team’s broader decision-making on utility-related issues. The ultimate path chosen by Pawnee Nation will depend on further consideration of priorities and potential barriers by Pawnee Nation’s Energy Team.

  10. Innovative Energy Efficiency, Renewable Energy, and Grid Technology...

    Energy Savers [EERE]

    Innovative Energy Efficiency, Renewable Energy, and Grid Technology Update Innovative Energy Efficiency, Renewable Energy, and Grid Technology Update April 29, 2015 11:00AM to...

  11. Sandia Energy - Grid Modernization Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailureGlobal ClimateGridGrid

  12. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLongEnergy StorageB.

  13. Sandia Energy » Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This authorEnergy &EC,Team

  14. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstituteThree-DimensionalTransmission Grid

  15. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailureGlobal Climate

  16. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia's Stan AtcittyRenewables

  17. Sandia Energy » SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche ThisStrategicThird AnnualSandia

  18. Adaptive Energy Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 IntroductionActinide ChemistryActivitiesAdapting

  19. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis for Grid Energy Storage DOE-Industry Canada Workshop May 15, 2014 INTRODUCTION HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND CLEAN FUEL PRODUCTION ITM POWER INC. ITM...

  20. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLongEnergy StorageB.DETL Permalink

  1. Smart Grid | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125EnergyIdaho | Department of Energy SmallSmart Grid

  2. National Offshore Wind Energy Grid Interconnection Study

    SciTech Connect (OSTI)

    Daniel, John P. [ABB Inc; Liu, Shu [ABB Inc; Ibanez, Eduardo [National Renewable Energy Laboratory; Pennock, Ken [AWS Truepower; Reed, Greg [University of Pittsburgh; Hanes, Spencer [Duke Energy

    2014-07-30T23:59:59.000Z

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  3. Communication options for protection and control device in Smart Grid applications

    E-Print Network [OSTI]

    Minh, Hyunsik Eugene

    2013-01-01T23:59:59.000Z

    Increasing use of electricity, interest in renewable energy sources, and need for a more reliable power grid system are some of the many drivers for the concept of the Smart Grid technology. In order to achieve these goals, ...

  4. Energy Conservation Options in Distillation Processes 

    E-Print Network [OSTI]

    Harris, G. E.; Hearn, W. R.; Blythe, G. M.; Stuart, J. M.

    1980-01-01T23:59:59.000Z

    I ENERGY CONSERVATION OPTIONS IN DISTILLATION PROCESSES G.E. Harris, W.R. Hearn, G.M. Blythe, and J.M. Stuart, Radian Corporation, Austin, Texas I This paper summarizes the results of a survey of energy conservation options applicable...

  5. Grid Integration | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,Glen WattmanInvestigationsandGrid Integration The

  6. Sandia Energy - Smart Grid Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSiting and Barrier MitigationSmart

  7. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstituteThree-Dimensional

  8. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's SequimReactors ToDecisionDistribution Grid

  9. Energy Aware Grid: Global Workload Placement based on Energy Efficiency

    E-Print Network [OSTI]

    Simunic, Tajana

    Energy Aware Grid: Global Workload Placement based on Energy Efficiency Chandrakant Patel, Ratnesh.graupner}@hp.com Grid Computing, energy- efficiency, workload placement, cooling, data center, utility computing a global utility infrastructure explicitly incorporating energy efficiency and thermal management among

  10. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-04-23T23:59:59.000Z

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  11. Energy Storage for the Power Grid

    ScienceCinema (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-06-12T23:59:59.000Z

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  12. Smart Grid Publications Archive | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    July 2009 The Smart Grid Stakeholder Roundtable Group Perspectives (September 2009) Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A...

  13. How to implement renewable energy and energy efficiency options...

    Open Energy Info (EERE)

    implement renewable energy and energy efficiency options Support for South African local government Jump to: navigation, search Tool Summary LAUNCH TOOL Name: How to implement...

  14. New Grid Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppel WindNew Grid Energy Solutions Jump to:

  15. Sustainable Energy: Choosing Among Options

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2006-01-01T23:59:59.000Z

    on environment and energy sustainability is given as well.an account of energy systems and sustainability metrics.

  16. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    SciTech Connect (OSTI)

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01T23:59:59.000Z

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  17. Sandia Energy - Smart Grid Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reliability, efficiency, flexibility, and cost effectiveness. Smart-grid features include demand-response capabilities, advanced controls, DER integration, increased situational...

  18. Sustainable Energy: Choosing Among Options

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2006-01-01T23:59:59.000Z

    today, their economic evaluation and the technologies toare discussed. Economic evaluation of energy projects is

  19. Renewable Energies program (6 credit hour) Option A: 11

    E-Print Network [OSTI]

    Simaan, Nabil

    Renewable Energies program (6 credit hour) Option A: 11 Option B: The program is organized by t Spanish Institute and the Asso program on renewable energy will provide students with advanced knowledge. opportunities: option A- two renewable energies; option B include on-site visits to renewable energy generation

  20. Hydrogen Delivery Options and Issues | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e& FuelInvited Guests |Options and

  1. EcoGrid EU (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport, Maine:EauEcoFactor Inc Jump(Smart Grid

  2. US options for energy independence

    SciTech Connect (OSTI)

    Kamrany, N.M. (ed.)

    1982-01-01T23:59:59.000Z

    This book is based upon the proceedings of a conference entitled Solutions to the Energy Problem held on campus at the University of Southern California, July 11, 1980. It was out of concern about the far-reaching significance of the energy price increase that the motivation for this conference arose. The Newport Foundation, a group of public-spirited citizens from Newport Beach, California, headed by Dr. Delmar Bunn, a physician, proposed that the University of Southern California sponsor a conference to discuss the economics of alternative energy sources. The objective was to bring together representatives of the Foundation with a group of economists from industry, government, and academe; all are represented in this volume. A separate abstract was prepared for each of 15 chapters for Energy Abstracts for Policy Analysis (EAPA); one of the abstracts will appear in Energy Research Abstracts (ERA).

  3. A National Grid Energy Storage Strategy - Electricity Advisory...

    Energy Savers [EERE]

    A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 The...

  4. International Journal of Smart Grid and Clean Energy Smart Grid Security: Threats, Vulnerabilities and Solutions

    E-Print Network [OSTI]

    Aloul, Fadi

    to be able to communicate with smart meters via a Home Area Network (HAN) facilitating efficient powerInternational Journal of Smart Grid and Clean Energy Smart Grid Security: Threats, Vulnerabilities is currently evolving into the smart grid. Smart grid integrates the traditional electrical power grid

  5. Options for Kentucky's Energy Future

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01T23:59:59.000Z

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  6. Understanding Leasing Options for Energy Projects

    E-Print Network [OSTI]

    Davenport, B.

    2005-01-01T23:59:59.000Z

    UNDERSTANDING LEASING OPTIONS FOR ENERGY PROJECTS Baker Davenport Davenport Finance Company Richmond, Virginia Industrials often find it difficult to fund energy projects with internal monies. Energy projects must compete with the company...?s ?core? assets for capital dollars. Leasing can be used to overcome some of these hurdles. Topics of discussion will include several key leasing structures, with benefits and disadvantages noted. Project financing is also discussed as a way...

  7. Smart Grid Primer (Smart Grid Books) | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here Home »SmallNew

  8. SmartGrid Information | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here HomeSmart Grid SmartSmartGrid

  9. Energy Conservation Options in Distillation Processes

    E-Print Network [OSTI]

    Harris, G. E.; Hearn, W. R.; Blythe, G. M.; Stuart, J. M.

    1980-01-01T23:59:59.000Z

    ~itroo.? ':!OD.e~tell.,..ot!.k1 .'k..,.-.ottNltlu'..,. II ""'I'JI ..... ~I_ """-.4008l1"OO I ~.z.,. 1 ,1'1 (-frl-.'....u_~ R.da at AC~Ofllftl\\,J'ftlit...." ? I 5 "'-tlnc&! Tt.,.. ? 21.' \\lip Gilil.In31 j TnyE.'tIc>Mcy .11.1'llo I ~~TI""'.'2.at... I There are many options available to the engi*eer seeking to reduce the energy requirements of a distil lation process. The technology for most of these I, options has been available for many years, but it has only recently become economically...

  10. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Imhoff, Carl; Vaishnav, Dave

    2014-07-01T23:59:59.000Z

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.

  11. NREL: Transmission Grid Integration - Energy Imbalance Markets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport Available forVoucherPossibleNewDataEnergy

  12. NREL's Controllable Grid Interface for Testing Renewable Energy Technologies (Presentation)

    SciTech Connect (OSTI)

    Gevorgian, V.

    2014-09-01T23:59:59.000Z

    This presentation is an overview of NREL's Controllable Grid Interface capabilities for testing renewable energy technologies.

  13. National Grid (Electric)- Large Commercial Energy Efficiency Incentive Programs

    Broader source: Energy.gov [DOE]

    National Grid offers electric energy efficiency programs for large commercial and industrial customers.

  14. Playas Grid Reliability and Distributed Energy Research

    SciTech Connect (OSTI)

    Romero, Van; Weinkauf, Don; Khan, Mushtaq; Helgeson, Wes; Weedeward, Kevin; LeClerc, Corey; Fuierer, Paul

    2012-06-30T23:59:59.000Z

    The future looks bright for solar and renewable energies in the United States. Recent studies claim that by 2050, solar power could supply a third of all electricity demand in the country’s western states. Technology advances, soft policy changes, and increased energy consciousness will all have to happen to achieve this goal. But the larger question is, what would it take to do more throughout the United States? The studies tie future solar and renewable growth in the United States to programs that aim to lower the soft costs of solar adoption, streamline utility interconnections, and increase technology advances through research and development. At the state and local levels, the most important steps are: • Net metering: Net metering policies lets customers offset their electric bills with onsite solar and receive reliable and fair compensation for the excess electricity they provide to the grid. Not surprisingly, what utilities consider fair is not necessarily a rate that’s favorable to solar customers. • Renewable portfolio standards (RPS): RPS policies require utilities to provide a certain amount of their power from renewable sources; some set specific targets for solar and other renewables. California’s aggressive RPS1 of 33% renewable energy by 2020 is not bankrupting the state, or its residents. • Strong statewide interconnection policies: Solar projects can experience significant delays and hassles just to get connected to the grid. Streamlined feasibility and impact analysis are needed. Good interconnection policies are crucial to the success of solar or renewable energy development. • Financing options: Financing is often the biggest obstacle to solar adoption. Those obstacles can be surmounted with policies that support creative financing options like third-party ownership (TPO) and property assessed clean energy (PACE). Attesting to the significance of TPO is the fact that in Arizona, it accounted for 86% of all residential photovoltaic (PV) installations in Q1 20132. Policies beyond those at the state level are also important for solar. The federal government must play a role including continuation of the federal Investment tax credit,3 responsible development of solar resources on public lands, and support for research and development (R&D) to reduce the cost of solar and help incorporate large amounts of solar into the grid. The local level can’t be ignored. Local governments should support: solar rights laws, feed-in tariffs (FITs), and solar-friendly zoning rules. A great example of how effective local policies can be is a city like Gainesville, Florida4, whose FIT policy has put it on the map as a solar leader. This is particularly noteworthy because the Sunshine State does not appear anywhere on the list of top solar states, despite its abundant solar resource. Lancaster, California5, began by streamlining the solar permitting process and now requires solar on every new home. Cities like these point to the power of local policies, and the ability of local governments to get things done. A conspicuously absent policy is Community Choice energy6, also called community choice aggregation (CCA). This model allows local governments to pool residential, business, and municipal electricity loads and to purchase or generate on their behalf. It provides rate stability and savings and allows more consumer choice and local control. The model need not be focused on clean energy, but it has been in California, where Marin Clean Energy7, the first CCA in California, was enabled by a state law -- highlighting the interplay of state and local action. Basic net metering8 has been getting a lot of attention. Utilities are attacking it9 in a number of states, claiming it’s unfair to ratepayers who don’t go solar. On the other hand, proponents of net metering say utilities’ fighting stance is driven by worries about their bottom line, not concern for their customers. Studies in California10, Vermont11, New York12, and Texas13 have found that the benefits of net metering (like savings on investments

  15. Protecting the Grid from All Hazards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protecting the Grid from All Hazards Protecting the Grid from All Hazards October 31, 2014 - 2:10pm Addthis Patricia Hoffman Patricia Hoffman Assistant Secretary The Energy...

  16. Climate Financing Options | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean EconomyLLCInformation ExchangeOptions

  17. Are You a Smart Grid Champion? | Department of Energy

    Energy Savers [EERE]

    just of the grid, but of our entire energy economy. Watch this video from Con Edison of New York (recipient of two DOE Smart Grid Recovery grants) on the Smart Grid (it's about 2...

  18. Sandia Energy - Study Compares Floating-Platform Options for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Compares Floating-Platform Options for Offshore Vertical-Axis Wind Turbines Home Renewable Energy Energy Partnership News Wind Energy News & Events Study Compares...

  19. Payment Options - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPO WebsitePalms Village95-1999)Paul J.Paving

  20. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    SciTech Connect (OSTI)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01T23:59:59.000Z

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. Subsystems would be integrated ‘‘behind’’ the electrical transmission bus and would be comprised of two or more energy conversion subsystems that have traditionally been separate or isolated. Energy flows would be dynamically apportioned as necessary to meet grid demand via a single, highly responsive connection to the grid that provides dispatchable electricity while capital-intensive generation assets operate at full capacity. Candidate region-specific hybrid energy systems selected for further study and figures of merit that will be used to assess system performance will be presented.

  1. GridZone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to:Information 9297484°,GreylockGridWiseGridZone

  2. Vehicle to Micro-Grid: Leveraging Existing Assets for Reliable Energy Management (Poster)

    SciTech Connect (OSTI)

    Simpson, M.; Markel, T.; O'Keefe, M.

    2010-12-01T23:59:59.000Z

    Fort Carson, a United States Army installation located south of Colorado Springs, Colorado, is seeking to be a net-zero energy facility. As part of this initiative, the base will be constructing a micro-grid that ties to various forms of renewable energy. To reduce petroleum consumption, Fort Carson is considering grid-connected vehicles (GCVs) such as pure electric trucks to replace some of its on-base truck fleet. As the availability and affordability of distributed renewable energy generation options increase, so will the GCV options (currently, three all-electric trucks are available on the GSA schedule). The presence of GCVs on-base opens up the possibility to utilize these vehicles to provide stability to the base micro-grid. This poster summarizes work to estimate the potential impacts of three electric vehicle grid interactions between the electric truck fleet and the Fort Carson micro-grid: 1) full-power charging without management, 2) full-power charging capability controlled by the local grid authority, and 3) full-power charge and discharge capability controlled by the local grid authority. We found that even at relatively small adoption rates, the control of electric vehicle charging at Fort Carson will aid in regulation of variable renewable generation loads and help stabilize the micro-grid.

  3. Embodied Energy and Off-Grid Lighting

    SciTech Connect (OSTI)

    Alstone, Peter; Mills, Evan; Jacobson, Arne

    2011-01-25T23:59:59.000Z

    The greenhouse gas (GHG) emissions from fuel-based lighting are substantial given the paltry levels of lighting service provided to users, leading to a great opportunity for GHG mitigation byencouraging the switch from fuel-based to rechargeable LED lighting. However, as with most new energy technology, switching to efficient lighting requires an up-front investment of energy(and GHGs) embedded in the manufacture of replacement components. We studied a population of off-grid lighting users in 2008-2009 in Kenya who were given the opportunity to adopt LEDlighting. Based on their use patterns with the LED lights and the levels of kerosene offset we observed, we found that the embodied energy of the LED lamp was"paid for" in only one month for grid charged products and two months for solar charged products. Furthermore, the energyreturn-on investment-ratio (energy produced or offset over the product's service life divided by energy embedded) for off-grid LED lighting ranges from 12 to 24, which is on par with on-gridsolar and large-scale wind energy. We also found that the energy embodied in the manufacture of a typical hurricane lantern is about one-half to one-sixth of that embodied in the particular LEDlights that we evaluated, indicating that the energy payback time would be moderately faster if LEDs ultimately displace the production of kerosene lanterns. As LED products improve, weanticipate longer service lives and more successful displacement of kerosene lighting, both of which will speed the already rapid recovery of embodied energy in these products. Our studyprovides a detailed appendix with embodied energy values for a variety of components used to construct off-grid LED lighting, which can be used to analyze other products.

  4. Energy System Development inAfrica: The case of grid and off-grid power inKenya

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Energy System Development inAfrica: The case of grid and off-grid power inKenya By Katherine Deaton Development inAfrica: The case of grid and off-grid power inKenya Energy System Development inAfrica: The case of grid and off-grid power in Kenya by Katherine Steel Submitted to the Engineering Systems Division

  5. NANA Strategic Energy Plan & Energy Options Analysis

    SciTech Connect (OSTI)

    Jay Hermanson; Brian Yanity

    2008-12-31T23:59:59.000Z

    NANA Strategic Energy Plan summary NRC, as an Alaska Native Corporation, has committed to addressing the energy needs for its shareholders. The project framework calls for implicit involvement of the IRA Councils in the Steering Committee. Tribal Members, from the NRC to individual communities, will be involved in development of the NANA Energy Plan. NRC, as the lead tribal entity, will serve as the project director of the proposed effort. The NRC team has communicated with various governmental and policy stakeholders via meetings and discussions, including Denali Commission, Alaska Energy Authority, and other governmental stakeholders. Work sessions have been initiated with the Alaska Village Electric Cooperative, the NW Arctic Borough, and Kotzebue Electric Association. The NRC Strategic Energy Plan (SEP) Steering committee met monthly through April and May and weekly starting in June 2008 in preparation of the energy summit that was held from July 29-31, 2008. During preparations for the energy summit and afterwards, there was follow through and development of project concepts for consideration. The NANA regional energy summit was held from July 29-31, 2008, and brought together people from all communities of the Northwest Arctic Borough. The effort was planned in conjunction with the Alaska Energy Authority’s state-wide energy planning efforts. Over $80,000 in cash contributions was collected from various donors to assist with travel from communities and to develop the summit project. Available funding resources have been identified and requirements reviewed, including the Denali Commission, U.S. Dept. of Agriculture, and the Alaska Energy Authority. A component of the overall plan will be a discussion of energy funding and financing. There are current project concepts submitted, or are ready for submittal, in the region for the following areas: • Wind-diesel in Deering, Buckland, Noorik, and Kiana areas; potential development around Red Dog mine. • Biomass Feasibility analysis in the upper Kobuk; • Run of the river hydroelectric development for the Upper Kobuk; • Solar photovoltaic (PV) power demonstration projects for Noatak, Ambler, Selawik, Kiana, and Noorvik; • Heat Recovery for several communities; In September 2008, the NRC team participated at the Alaska Rural Energy Conference in Girdwood, Alaska In November 2008, the NRC team gave a presentation on the NANA regional energy plans at a DOE Tribal Energy Program conference in Denver, Colorado. In January 2009, the final SEP report was submitted to NRC.

  6. Grid Net | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to:Information 9297484°,Greylock Partners

  7. Grid Partners | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to:Information 9297484°,Greylock Partners25

  8. Grid Architecture | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment of aLoggingsubscriber toSenate |

  9. Grid Integration | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneral GuidanceEnergy Launching Pad

  10. National Grid | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question)8/14/2007NCPV Jump to:Management Act

  11. Smart Grid | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteel Corporation JumpShines after CaliforniaUS

  12. New Energy Options | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower CoLongxingPartnersNRELAct(Redirected

  13. Green Energy Options Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/Exploration <GlacialGoldenarticle isin the NewsGreen Energy

  14. Sandia Energy » Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This author hasSandia Student Wins Best

  15. Sandia Energy » Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche ThisStrategicThirdSandianSandia

  16. Energy Options Solutions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLC Place: Ketchum,SPARQL SPARQLMatters

  17. PNNL GridWise | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York:Ozark, Alabama: EnergyGridWise Agency/Company

  18. Fact Sheet: Grid-Scale Flywheel Energy Storage Plant | Department...

    Office of Environmental Management (EM)

    Fact Sheet: Grid-Scale Flywheel Energy Storage Plant Fact Sheet: Grid-Scale Flywheel Energy Storage Plant Beacon Power will design, build, and operate a utility-scale 20 MW...

  19. Department of Energy Seeks Information on Smart Grid Challenges...

    Broader source: Energy.gov (indexed) [DOE]

    Seeks Information on Smart Grid Challenges Department of Energy Seeks Information on Smart Grid Challenges September 23, 2010 - 3:01pm Addthis The Department of Energy's Office of...

  20. Interactive Grid | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturing | DepartmentINTEGRATEDEducational

  1. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's SequimReactors ToDecision

  2. Smart Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondarySmartthe Alliance

  3. The challenges and policy options for integrating plug-in hybrid electric vehicle into the electric grid

    SciTech Connect (OSTI)

    Srivastava, Anurag K.; Annabathina, Bharath; Kamalasadan, Sukumar

    2010-04-15T23:59:59.000Z

    Plug-in hybrid electric vehicle may be prime candidates for the next generation of vehicles, but they offer several technological and economical challenges. This article assesses current progress in PHEV technology, market trends, research needs, challenges ahead and policy options for integrating PHEVs into the electric grid. (author)

  4. Vestas State Grid JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:ShreniksourceVentower IndustriesVestasState Grid JV

  5. National Grid Generation, LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen Energy Information NationalNational Grid Generation,

  6. Options for Energy Efficiency in India and Barriers to Their...

    Open Energy Info (EERE)

    Their Adoption: A Scoping Study Jump to: navigation, search Name Options for Energy Efficiency in India and Barriers to Their Adoption: A Scoping Study AgencyCompany...

  7. Clean Energy Options for Sabah: An Analysis of Resource Availability...

    Open Energy Info (EERE)

    An Analysis of Resource Availability and Cost Jump to: navigation, search Name Clean Energy Options for Sabah: An Analysis of Resource Availability and Cost AgencyCompany...

  8. Columbia University Energy Options & Paths to Climate Stabilization

    E-Print Network [OSTI]

    Mauel, Michael E.

    -lived radioactive components. · Safe: no catastrophic accidents; Low-risk for nuclear materials proliferation WhyMike Mauel Columbia University Energy Options & Paths to Climate Stabilization Aspen, 9 July 2003 Fusion Energy: "Pipe Dream or Panacea" #12;Mike Mauel Columbia University Energy Options & Paths

  9. GridWise Alliance | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to:Information 9297484°,GreylockGridWise

  10. Grid-Responsive Buildings | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 BudgetGoals andSenate | Department ofGrid-Responsive Buildings

  11. Grid Week 2008 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneral GuidanceEnergy Launching PadGrid Week 2008

  12. Sandia Energy - Grid Cyber Vulnerability & Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailureGlobal Climate ModelsGrid

  13. The Green Grid | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC Jump to: navigation,Book:ClosingsCarbonGrid

  14. Almacena (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place: Wayne, Pennsylvania Product:Almacena (Smart Grid Project)

  15. GAD (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604°Wisconsin:FyreStorm Inc JumpGAD (Smart Grid

  16. INFOGRAPHIC: Understanding the Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    can I participate? Send us your questions about how the grid works using GridWeek on Facebook, Twitter and Google+. Join the GridWeek Twitter chat on Thursday, November 20 at 2PM...

  17. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01T23:59:59.000Z

    Life Cycle Assessment of Off-Grid Lighting Applications:Testing for Emerging Off-grid White-LED Illumination SystemsBudget: The Economics of Off-Grid Lighting for Small

  18. Integration of Distributed Energy The CERTS MicroGrid Concept

    E-Print Network [OSTI]

    Resources The MicroGrid Concept Appendices Prepared for Transmission Reliability Program Office of PowerIntegration of Distributed Energy Resources The CERTS MicroGrid Concept CALIFORNIA ENERGY;Preface The U.S. Electricity Grid Today The U.S. electric power system is in the midst of a fundamental

  19. Fact Sheet: Community Energy Storage for Grid Support (October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detroit Edison American Recovery and Reinvestment Act (ARRA) Community Energy Storage for Grid Support Demonstrating advanced implementation of community energy storage...

  20. State Grid and Shenzhen Energy Group Biomass Engineering Technology...

    Open Energy Info (EERE)

    Energy Group Biomass Engineering Technology Research Centre Jump to: navigation, search Name: State Grid and Shenzhen Energy Group Biomass Engineering Technology Research Centre...

  1. Sandia Energy - Grid Cyber Vulnerability & Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consequences and Impacts It's important to recognize that adopting these advanced grid-control technologies doesn't just have the potential to increase power grid reliability...

  2. Energy Department Invests Over $10 Million to Improve Grid Reliability...

    Energy Savers [EERE]

    10 Million to Improve Grid Reliability and Resiliency Energy Department Invests Over 10 Million to Improve Grid Reliability and Resiliency June 11, 2014 - 6:20pm Addthis NEWS...

  3. Grid Energy Storage - December 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal TechnologiesGeothermalGoGreatGreenDepartmentGridGridGrid

  4. Optional Residential Program Benchmarking | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Data and Evaluation Peer Exchange Call Series: Optional Residential Program Benchmarking, Call Slides and Discussion Summary, January 23, 2014. Call Slides and Discussion Summary...

  5. Sandia Energy - Smart Grid Tools and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSiting and Barrier

  6. Smart Grid Animation | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3Biology| National NuclearWind ElectricSmart Grid

  7. Advanced Grid Integration (AGI) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVM LoanActiveMission » Advanced Grid Integration

  8. Grid Performance and Reliability | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOE FYAffairs, and International Relations of theGrid

  9. Grid Interaction Tech Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration and the Carrying Capacity of the U.S.

  10. National Grid Deep Energy Retrofit Pilot

    SciTech Connect (OSTI)

    Neuhauser, K.

    2012-03-01T23:59:59.000Z

    Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance. Evaluation of strategies is structured around the critical control functions of water, airflow, vapor flow, and thermal control. The aim of the research project is to develop guidance that could serve as a foundation for wider adoption of high performance, 'deep' retrofit work. The project will identify risk factors endemic to advanced retrofit in the context of the general building type, configuration and vintage encountered in the National Grid DER Pilot. Results for the test homes are based on observation and performance testing of recently completed projects. Additional observation would be needed to fully gauge long-term energy performance, durability, and occupant comfort.

  11. Adaptive Energy Forecasting and Information Diffusion for Smart Power Grids

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    1 Adaptive Energy Forecasting and Information Diffusion for Smart Power Grids Yogesh Simmhan, prasanna}@usc.edu I. INTRODUCTION Smart Power Grids exemplify an emerging class of Cyber Physical-on paradigm to support operational needs. Smart Grids are an outcome of instrumentation, such as Phasor

  12. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01T23:59:59.000Z

    as a point of comparison with LED lighting product embodieda fairer comparison between off- grid LED lighting and other

  13. Locations of Smart Grid Demonstration and Large-Scale Energy...

    Broader source: Energy.gov (indexed) [DOE]

    the location of all projects created with funding from the Smart Grid Demonstration and Energy Storage Project, funded through the American Recovery and Reinvestment Act....

  14. Expedited Permitting of Grid-Scale Wind Energy Development (Maine)

    Broader source: Energy.gov [DOE]

    Maine's Expedited Permitting of Grid-Scale Wind Energy Development statue provides an expedited permitting pathway for proposed wind developments in certain designated locations, known as expedited...

  15. Off-grid Energy in Rural India: Policy Recommendations for

    E-Print Network [OSTI]

    Mauzerall, Denise

    -grid energy technologies, like improved cooking stoves, biogas digesters, and micro hydropower efficient wood- fueled cooking stoves, biogas digesters for fuel production, or wind

  16. National Grid (Electric) – Residential EnergyWise Incentive Program

    Broader source: Energy.gov [DOE]

    National Grid offers a variety of energy efficiency incentives for residential customers. Incentives are provided for purchasing and implementing insulation upgrades, HVAC equipment, appliances,...

  17. Promise of Solar Energy is Boundless: A Smarter Electric Grid Delivers on that Promise

    SciTech Connect (OSTI)

    Not Available

    2008-10-01T23:59:59.000Z

    This brochure summarizes the benefits of a smart electric grid, the Solar Program's Solar Energy Grid Intergration Systems efforts, and the Office of Electricity's "The Smart Grid" booklet.

  18. The Role of Energy Storage for Mini-Grid Stabilization

    E-Print Network [OSTI]

    Boyer, Edmond

    The Role of Energy Storage for Mini-Grid Stabilization Report IEA-PVPS T11-02:2011 hal-00802927 Program The role of energy storage for mini-grid stabilization IEA PVPS Task 11 Report IEA-PVPS T11 Foreword 5 Executive Summary 7 1 Introduction 10 2 Scope of the study 14 3 The role of energy storage

  19. Brookhaven National Laboratory Solar Energy and Smarter Grid

    E-Print Network [OSTI]

    Brookhaven National Laboratory Solar Energy and Smarter Grid Research Update Presented to BNL CAC on Market Barriers #12;5 BNL's research agenda for solar energy and smarter electric grid focuses on two key areas Advancement of Solar Energy Generation in Northeast · Characterization of renewable generation

  20. Hydrogen Energy Storage: Grid and Transportation Services Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Structure 1 02 Hydrogen Energy Storage: Grid and Transportation Services NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and...

  1. National Grid (Gas) – Residential EnergyWise Rebate Programs

    Broader source: Energy.gov [DOE]

    National Grid's EnergyWise programs encourage energy efficiency amongst its residential customers. Interested customers who heat with gas, oil, or propane should schedule a free home energy audit...

  2. Local Option- Renewable Energy Machinery and Tools Property Tax Exemption

    Broader source: Energy.gov [DOE]

    HB 1297 enacted in March 2015 provides option for local governing body of any county, city, or town to impose a different property tax on renewable energy generating machinery and tools than other...

  3. Grid Integration of Offshore Windparks (Smart Grid Project) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrderNebraska: EnergyStrategy |Information

  4. EnergyGrid Networks Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis JumpESL Jump to:CostaEnergyGrid Networks Inc

  5. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01T23:59:59.000Z

    J. Řstergaard, “Battery energy storage technology for powerBattery for Grid Energy Storage..Energy Storage for the Grid: A Battery of Choices,” Science,

  6. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01T23:59:59.000Z

    J. Řstergaard, “Battery energy storage technology for powerGrid Energy Storage Technologies……………………………………………………….1.2. Grid Energy Storage Technologies The need for

  7. Elforsk Smart grid programme (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to: navigation,Electrosolar JumpElettropiemme Srl Jump

  8. "THE NUCLEAR OPTION IN GREEK NATIONAL ENERGY POLICY

    E-Print Network [OSTI]

    "THE NUCLEAR OPTION IN GREEK NATIONAL ENERGY POLICY: A RENAISSANCE OR A DJA VUE" by RAPHAEL MOISSIS? · the Commission: · Recognizes the contribution of nuclear energy in CO2 emission reduction. · Underlines of nuclear energy generation is reduced, it is essential that this reduction be phased

  9. Options for Improving the Energy Efficiency of Intermodal Freight Trains

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    Options for Improving the Energy Efficiency of Intermodal Freight Trains Yung-Cheng (Rex) Lai and improves energy efficiency, despite the additional weight penalty and consequent increase in bearing, that intermodal cars are loaded to maximize energy-efficient operation. Two trains may have identical slot uti

  10. Communication Systems for Grid Integration of Renewable Energy Resources

    E-Print Network [OSTI]

    Yu, F Richard; Xiao, Weidong; Choudhury, Paul

    2011-01-01T23:59:59.000Z

    There is growing interest in renewable energy around the world. Since most renewable sources are intermittent in nature, it is a challenging task to integrate renewable energy resources into the power grid infrastructure. In this grid integration, communication systems are crucial technologies, which enable the accommodation of distributed renewable energy generation and play extremely important role in monitoring, operating, and protecting both renewable energy generators and power systems. In this paper, we review some communication technologies available for grid integration of renewable energy resources. Then, we present the communication systems used in a real renewable energy project, Bear Mountain Wind Farm (BMW) in British Columbia, Canada. In addition, we present the communication systems used in Photovoltaic Power Systems (PPS). Finally, we outline some research challenges and possible solutions about the communication systems for grid integration of renewable energy resources.

  11. SINGLE STAGE GRID CONVERTERS FOR BATTERY ENERGY STORAGE

    E-Print Network [OSTI]

    Munk-Nielsen, Stig

    in the power system network such as wind and solar is still a challenge in our days. Energy storage systems, is the wide fluctuation of output power depending on the weather conditions. This power variation is reflected grid can smooth the output power of wind farms by acting as a load/generator improving the grid

  12. NREL: Transmission Grid Integration - Issues Affecting Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecasting NRELIntegration

  13. Sustainable Development of Renewable Energy Mini-grids for Energy Access: A Framework for Policy Design

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2014-01-01T23:59:59.000Z

    electricity supply,” Renewable and Sustainable EnergyGanapathy, “Decetralized Renewable Energy (DRE) Micro-gridsextension, off-grid and renewable energy sources,” in World

  14. Sustainable Development of Renewable Energy Mini-grids for Energy Access: A Framework for Policy Design

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2014-01-01T23:59:59.000Z

    Ganapathy, “Decetralized Renewable Energy (DRE) Micro-gridsgrid extension, off-grid and renewable energy sources,”in World Renewable Energy Congress. Policy Issues.

  15. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Dixon, B.W.; Piet, S.J.

    2004-10-03T23:59:59.000Z

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

  16. Control Algorithms for Grid-Scale Battery Energy Storage Systems

    E-Print Network [OSTI]

    Control Algorithms for Grid-Scale Battery Energy Storage Systems This report describes development-connected battery energy storage system. The report was submitted by HNEI to the U.S. Department of Energy Office.2: Energy Storage Systems August 2014 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science

  17. Local Option- Residential Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money from the local government to pay for energy improvements. The amount borrowed is typically repai...

  18. Local Option- Municipal Sustainable Energy Programs

    Broader source: Energy.gov [DOE]

    Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment...

  19. Local Option- Property Assessed Clean Energy

    Broader source: Energy.gov [DOE]

    Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment...

  20. Grid Energy Storage - December 2013 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneral GuidanceEnergy Launching Pad BEFOREtheGrid

  1. Creative renewable energy purchasing options for businesses

    SciTech Connect (OSTI)

    Lokey, Elizabeth

    2007-01-15T23:59:59.000Z

    Green energy providers are creating novel ways for large commercial clients to get involved in the long-term development of renewable energy generation. Some plans are designed to allow the purchase of energy to provide long-term off-take stability and other financial benefits to companies developing renewable energy projects. Two new insurance products could help absorb some of the financial risk taken on by the clients. (author)

  2. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery...

    Office of Environmental Management (EM)

    Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013)...

  3. A First-Ever Global Examination of Successful Wind Energy Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A First-Ever Global Examination of Successful Wind Energy Grid Integration Practices A First-Ever Global Examination of Successful Wind Energy Grid Integration Practices December...

  4. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    SciTech Connect (OSTI)

    Hanley, Charles J.; Ton, Dan T. (U.S. Department of Energy, Washington, D.C.); Boyes, John D.; Peek, Georgianne Huff

    2008-07-01T23:59:59.000Z

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  5. Grid regulation services for energy storage devices based on grid frequency

    DOE Patents [OSTI]

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02T23:59:59.000Z

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  6. Grid regulation services for energy storage devices based on grid frequency

    DOE Patents [OSTI]

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2014-04-15T23:59:59.000Z

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  7. Smart Energy Management and Control for Fuel Cell Based Micro-Grid Connected Neighborhoods

    SciTech Connect (OSTI)

    Dr. Mohammad S. Alam

    2006-03-15T23:59:59.000Z

    Fuel cell power generation promises to be an efficient, pollution-free, reliable power source in both large scale and small scale, remote applications. DOE formed the Solid State Energy Conversion Alliance with the intention of breaking one of the last barriers remaining for cost effective fuel cell power generation. The Alliance’s goal is to produce a core solid-state fuel cell module at a cost of no more than $400 per kilowatt and ready for commercial application by 2010. With their inherently high, 60-70% conversion efficiencies, significantly reduced carbon dioxide emissions, and negligible emissions of other pollutants, fuel cells will be the obvious choice for a broad variety of commercial and residential applications when their cost effectiveness is improved. In a research program funded by the Department of Energy, the research team has been investigating smart fuel cell-operated residential micro-grid communities. This research has focused on using smart control systems in conjunction with fuel cell power plants, with the goal to reduce energy consumption, reduce demand peaks and still meet the energy requirements of any household in a micro-grid community environment. In Phases I and II, a SEMaC was developed and extended to a micro-grid community. In addition, an optimal configuration was determined for a single fuel cell power plant supplying power to a ten-home micro-grid community. In Phase III, the plan is to expand this work to fuel cell based micro-grid connected neighborhoods (mini-grid). The economic implications of hydrogen cogeneration will be investigated. These efforts are consistent with DOE’s mission to decentralize domestic electric power generation and to accelerate the onset of the hydrogen economy. A major challenge facing the routine implementation and use of a fuel cell based mini-grid is the varying electrical demand of the individual micro-grids, and, therefore, analyzing these issues is vital. Efforts are needed to determine the most appropriate means of implementing micro-grids and the costs and processes involved with their extended operation. With the development and availability of fuel cell based stand-alone power plants, an electrical mini-grid, encompassing several connected residential neighborhoods, has become a viable concept. A primary objective of this project is to define the parameters of an economically efficient fuel cell based mini-grid. Since pure hydrogen is not economically available in sufficient quantities at the present time, the use of reforming technology to produce and store excess hydrogen will also be investigated. From a broader perspective, the factors that bear upon the feasibility of fuel cell based micro-grid connected neighborhoods are similar to those pertaining to the electrification of a small town with a localized power generating station containing several conventional generating units. In the conventional case, the town or locality would also be connected to the larger grid system of the utility company. Therefore, in the case of the fuel cell based micro-grid connected neighborhoods, this option should also be available. The objectives of this research project are: To demonstrate that smart energy management of a fuel cell based micro-grid connected neighborhood can be efficient and cost-effective;To define the most economical micro-grid configuration; and, To determine how residential micro-grid connected fuel cell(s) can contribute to America's hydrogen energy future.

  8. Rethinking the Future Grid: Integrated Nuclear Renewable Energy...

    Office of Scientific and Technical Information (OSTI)

    Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint Re-direct Destination: The U.S. DOE is supporting research and development that could lead to more...

  9. Our Nation's Energy Infrastructure: Toward Stronger and Smarter Grid

    E-Print Network [OSTI]

    Amin, S. Massoud

    prior authorization. Material from the Electric Power Research Institute (EPRI), and support from EPRI electrical energy infrastructure ­ Transforming the Network into a Smart Grid ­ Developing an Expanded and Using Alternative Transportation Fuels · Greening the electric power supply ­ Expanding the Use

  10. Sandia Energy - Grid System Planning for Wind: Wind Generator Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailureGlobal ClimateGridGridGrid

  11. Optional Residential Program Benchmarking | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergy Online1 MarchOpti-MNOptional Residential

  12. STEP Participant Financing Options | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDERSTATE ENERGY PROGRAMJuly

  13. Climate Finance Options Platform | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean EconomyLLCInformation Exchange

  14. Public Bonding Options | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 |ofDepartment of EnergyDriveTraditionally,

  15. Fuel Cell Financing Options | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment of Energy's2of EnergySustainableFinancing

  16. Solar Energy Option Requirement for Residential Developments

    Broader source: Energy.gov [DOE]

    In March 2009 New Jersey enacted legislation ([http://www.njleg.state.nj.us/2008/Bills/PL09/33_.PDF A.B. 1558]) designed to support the integration of solar energy systems into new residential...

  17. Local Option- Rural Renewable Energy Development Zones

    Broader source: Energy.gov [DOE]

    Cities, counties, or several contiguous counties in Oregon can set up Rural Renewable Energy Development Zones. The zone can only cover territory outside of the urban growth boundary of any large...

  18. Sandia Energy - Solar Energy Grid Integration Systems (SEGIS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSiting and BarrierSolarSolarSolar

  19. Accelerator Driven Nuclear Energy: The Thorium Option

    SciTech Connect (OSTI)

    Raja, Rajendran

    2009-03-18T23:59:59.000Z

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years. At the current rate of use, existing sources of Uranium will last for 50-100 years. We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy. Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem. Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.

  20. Accelerator Driven Nuclear Energy - The Thorium Option

    SciTech Connect (OSTI)

    Rajendran Raja

    2009-03-18T23:59:59.000Z

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  1. Accelerator Driven Nuclear Energy - The Thorium Option

    ScienceCinema (OSTI)

    Rajendran Raja

    2010-01-08T23:59:59.000Z

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  2. EFormative Options LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek EuropeformEEstor

  3. Remote Access Options | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010InJanuary 29,3, 2012VisitorsThis pageAUnits attheA

  4. |Sustainable energy choices: comparing the options

    E-Print Network [OSTI]

    with an ethical distaste for resource waste. Nuclear power emits no air pollu- tants or greenhouse gases? Should we focus just on one? Is there an optimal combination? How would we make this decision? To what energy choices. In chapter 3, I predict that hydro- gen will become a partner alongside electricity

  5. IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 4, DECEMBER 2013 2139 Dynamic Energy Management for the Smart Grid

    E-Print Network [OSTI]

    Fu, Yong

    IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 4, DECEMBER 2013 2139 Dynamic Energy Management for the Smart Grid With Distributed Energy Resources Sergio Salinas, Student Member, IEEE, Ming Li, Student- lenges for energy management in the system. In this paper, we in- vestigate optimal energy management

  6. General Electric Company Evaluation of Sustainable Energy Options

    E-Print Network [OSTI]

    and performance of each electricity infrastructure scenario in various timescales of power system operation. In addition, three different 2018 electricity infrastructure scenarios were developed. The impact of eachGeneral Electric Company Evaluation of Sustainable Energy Options for the Big Island of Hawaii

  7. Optimal Energy Storage Control Policies for the Smart Power Grid

    E-Print Network [OSTI]

    Koutsopoulos, Iordanis

    Optimal Energy Storage Control Policies for the Smart Power Grid Iordanis Koutsopoulos Vassiliki Center for Research and Technology Hellas (CERTH), Greece Abstract--Electric energy storage devices the optimal energy storage control problem from the side of the utility operator. The operator controller

  8. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01T23:59:59.000Z

    as with most new energy technology, switching to efficientof any “green” energy technology is fully recovered over itspayback period of any energy technology intervention is

  9. National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.; Elizondo, Marcelo A.; Jin, Chunlian; Nguyen, Tony B.; Viswanathan, Vilayanur V.; Zhang, Yu

    2012-06-01T23:59:59.000Z

    To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancing requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.

  10. Scaling Distributed Energy Storage for Grid Peak Reduction

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    large-scale centralized energy storage systems at strategic points in the grid, such as at power plants. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. e-Energy'13, May 21­24, 2013, Berkeley, California, USA. Copyright 2013 ACM 978

  11. Smoothing the Energy Consumption: Peak Demand Reduction in Smart Grid

    E-Print Network [OSTI]

    Li, Xiang-Yang

    for autonomous demand side management within one house. The DRS devices are able to sense and control the peak energy consumption or demand. We assume that several appliances within one building access to oneSmoothing the Energy Consumption: Peak Demand Reduction in Smart Grid Shaojie Tang , Qiuyuan Huang

  12. Sandia National Laboratories: Solar Energy Grid Intergration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid, Partnership, Photovoltaic, Renewable Energy, Research & Capabilities, Solar Solar energy is both predictable-the sun rises and sets everyday-and intermittent-a...

  13. Smart Grid e-Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Smart Grid Task Force Smart Grid e-Forum Smart Grid e-Forum DOE conducted a series of Smart Grid E-Forums to discuss various issues surrounding Smart Grid including...

  14. Radium Disposition Options for the Department of Energy

    SciTech Connect (OSTI)

    Parks, D. L.; Thiel, E. C.; Seidel, B. R.

    2002-02-26T23:59:59.000Z

    The Department of Energy (DOE) has developed plans to disposition its excess nuclear materials, including radium-containing materials. Within DOE, there is no significant demand for radium at this time. However, DOE is exploring reuse options, including uses that may not exist at this time. The Nonactinide Isotopes and Sealed Sources Management Group (NISSMG) has identified 654 radium-containing items, and concluded that there are no remaining radium items that do not have a pathway to disposition. Unfortunately, most of these pathways end with disposal, whereas reuse would be preferable. DOE has a number of closure sites that must remove the radium at their sites as part of their closure activities. NISSMG suggests preserving the larger radium sources that can easily be manufactured into targets for future reuse, and disposing the other items. As alternatives to disposal, there exist reuse options for radium, especially in nuclear medicine. These options were identified by NISSMG. The NISSMG recommends that DOE set up receiver sites to store these radium materials until reuse options become available. The NISSMG recommends two pathways for dispositioning radium sources, depending on the activity and volume of material. Low activity radium sources can be managed as low level radioactive waste per DOE Order 5820.2A. Higher activity radium sources are more appropriate for reuse in nuclear medicine applications and other applications.

  15. Building to Grid (B2G) (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda, Washington: Energy(B2G) (Smart Grid Project) Jump to:

  16. GridWise Transactive Energy Framework (DRAFT Version)

    SciTech Connect (OSTI)

    Melton, Ronald B.

    2013-11-06T23:59:59.000Z

    Over the past decade, the use of demand response and other flexible distributed resources for market efficiency and grid reliability has grown dramatically. Federal and state policy objectives point to an important role for customers’ loads, generation and storage in the management of an increasingly unpredictable power system. As we consider the need to substantially scale the use of flexible distributed energy resources, there has been growing attention to the need to address not only the economics, but also the control system implications to ensure grid reliability. This has led to a focus on an area of activity called “Transactive Energy.” Transactive Energy refers to the combination of economic and control techniques to improve grid reliability and efficiency. These techniques may also be used to optimize operations within a customer’s facility. The Department of Energy has supported the GridWise® Architecture Council (“the Council”) in developing a conceptual framework that can be used in developing architectures, and designing solutions related to transactive energy. The goal of this effort is to encourage and facilitate collaboration among the many stakeholders involved in the transformation of the power system and thereby advance the practical implementation of transactive energy.

  17. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01T23:59:59.000Z

    embodied energy estimates (see Alsema and de Wild-ScholtenWild- Scholten 2006 Appendix 2: Details on Embodied Energyde Wild Schoelten Kato et al. 2001 LED Array Embodied energy

  18. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    LBNL-pend TV Energy Consumption Trends and Energy-EfficiencyTrends and Energy Consumption ..TV Technology Trends and Energy Consumption. 1.2.3. Factors

  19. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    and Low Power Mode Energy Consumption”, Energy Efficiency inEnergy Consumption ..26 3.1.3. 3D TV Energy Consumption and Efficiency

  20. Improving Energy Use Forecast for Campus Micro-grids using Indirect Indicators Department of Computer Science

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    and institutional campuses can significantly contribute to energy conservation. The rollout of smart grids of occupants, and is a micro-grid test-bed for the DoE sponsored Los Angeles Smart Grid Demonstration ProjectImproving Energy Use Forecast for Campus Micro-grids using Indirect Indicators Saima Aman

  1. Reactor Technology Options Study for Near-Term Deployment of GNEP Grid-Appropriate Reactors

    SciTech Connect (OSTI)

    Ingersoll, Daniel T [ORNL; Poore III, Willis P [ORNL

    2007-09-01T23:59:59.000Z

    World energy demand is projected to significantly increase over the coming decades. The International Energy Agency projects that electricity demand will increase 50% by 2015 and double by 2030, with most of the increase coming in developing countries as they experience double-digit rates of economic growth and seek to improve their standards of living. Energy is the necessary driver for human development, and the demand for energy in these countries will be met using whatever production technologies are available. Recognizing this inevitable energy demand and its implications for the United States, the U.S. National Security Strategy has proposed the Global Nuclear Energy Partnership (GNEP) to work with other nations to develop and deploy advanced nuclear recycling and reactor technologies. This initiative will help provide reliable, emission-free energy with less of the waste burden of older technologies and without making available separated plutonium that could be used by rogue states or terrorists for nuclear weapons. These new technologies will make possible a dramatic expansion of safe, clean nuclear energy to help meet the growing global energy demand. In other words, GNEP seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy without increasing the risk of nuclear weapon proliferation. This global expansion of nuclear power is strategically important to the United States for several reasons, including the following: (1) National security, by reducing the competition and potential for conflict over increasingly scarce fossil energy resources; (2) Economic security, by helping maintain stable prices for nonrenewable resources such as oil, gas, and coal; (3) Environmental security, by replacing or off-setting large-scale burning of greenhouse gas-emitting fuels for electricity production; and (4) Regaining technical leadership, through deployment of innovative U.S. technology-based reactors. Fully meeting the GNEP vision may require the deployment of thousands of reactors during the next century in dozens of countries, many of which are in the developing world where nuclear energy is not used currently. Such a large-scale deployment will have significant implications related to both fuel supply and spent fuel/waste management, both domestically and worldwide. Consequently, GNEP must address the development and demonstration of proliferation-resistant technologies to ensure both a safe and sustainable nuclear fuel cycle, and reactor designs that are appropriate for the range of needs across the global community. The focus of this report is the latter need, that is, the development and demonstration of proliferation-resistant reactors that are well matched to the needs and capabilities of developing countries.

  2. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01T23:59:59.000Z

    and Alsema, E. , 2006. Photovoltaics Energy Payback Times,early 2005 status. Progress in Photovoltaics: Research andRydh and Sanden 2005 Photovoltaics CIS (laminated assembly,

  3. Sandia Energy - Smart Grid Tools and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    itself. Use: Potential deployment environments include ac microgrids equipped with diesel generators, variable generation, andor a battery energy storage system. The...

  4. INFOGRAPHIC: Understanding the Grid | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome| DepartmentPumpHomeof Energy

  5. Smart Grid Overview | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafely Delivering DOE'sEnergy3 SGIG Program Progress Report

  6. Geothermal/Grid Connection | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005)EnergyAmatitlan GeothermalEnergyArizona

  7. National Grid Generation, LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergy Information Conference ofAnalyses |

  8. Renewable Energy Requirements for Future Building Codes: Options for Compliance

    SciTech Connect (OSTI)

    Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.

    2011-09-30T23:59:59.000Z

    As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, use of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including envelope, mechanical and lighting, have been pressed to the end of reasonable limits. Research has been conducted to determine the mechanism for implementing this requirement (Kaufman 2011). Kaufmann et al. determined that the most appropriate way to structure an on-site renewable requirement for commercial buildings is to define the requirement in terms of an installed power density per unit of roof area. This provides a mechanism that is suitable for the installation of photovoltaic (PV) systems on future buildings to offset electricity and reduce the total building energy load. Kaufmann et al. suggested that an appropriate maximum for the requirement in the commercial sector would be 4 W/ft{sup 2} of roof area or 0.5 W/ft{sup 2} of conditioned floor area. As with all code requirements, there must be an alternative compliance path for buildings that may not reasonably meet the renewables requirement. This might include conditions like shading (which makes rooftop PV arrays less effective), unusual architecture, undesirable roof pitch, unsuitable building orientation, or other issues. In the short term, alternative compliance paths including high performance mechanical equipment, dramatic envelope changes, or controls changes may be feasible. These options may be less expensive than many renewable systems, which will require careful balance of energy measures when setting the code requirement levels. As the stringency of the code continues to increase however, efficiency trade-offs will be maximized, requiring alternative compliance options to be focused solely on renewable electricity trade-offs or equivalent programs. One alternate compliance path includes purchase of Renewable Energy Credits (RECs). Each REC represents a specified amount of renewable electricity production and provides an offset of environmental externalities associated with non-renewable electricity production. The purpose of this paper is to explore the possible issues with RECs and comparable alternative compliance options. Existing codes have been examined to determine energy equivalence between the energy generation requirement and the RECs alternative over the life of the building. The price equivalence of the requirement and the alternative are determined to consider the economic drivers for a market decision. This research includes case studies that review how the few existing codes have incorporated RECs and some of the issues inherent with REC markets. Section 1 of the report reviews compliance options including RECs, green energy purchase programs, shared solar agreements and leases, and other options. Section 2 provides detailed case studies on codes that include RECs and community based alternative compliance methods. The methods the existing code requirements structure alternative compliance options like RECs are the focus of the case studies. Section 3 explores the possible structure of the renewable energy generation requirement in the context of energy and price equivalence. The price of RECs have shown high variation by market and over time which makes it critical to for code language to be updated frequently for a renewable energy generation requirement or the requirement will not remain price-equivalent over time. Section 4 of the report provides a maximum case estimate for impact to the PV market and the REC market based on the Kaufmann et al. proposed requirement levels. If all new buildings in the commercial sector complied with the requirement to install rooftop PV arrays, nearly 4,700 MW of solar would be installed in 2012, a major increase from EIA estimates of 640 MW of solar generation capacity installed in 2009. The residential sector could contribute roughly an additional 2,300 MW based on the same code requirement levels of 4 W/ft{sup 2} of r

  9. Optional 2012 Project Management Workshop Course | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy8 *Optional 2012 Project Management

  10. Power Grid Network Evolutions for Local Energy Trading

    E-Print Network [OSTI]

    Pagani, Giuliano Andrea

    2012-01-01T23:59:59.000Z

    The shift towards a energy Grid dominated by prosumers (consumers and producers of energy) will inevitably have repercussions on the distribution infrastructure. Today it is a hierarchical one designed to deliver energy from large scale facilities to end-users. Tomorrow it will be a capillary infrastructure at the medium and Low Voltage levels that will support local energy trading among prosumers. In our previous work, we analyzed the Dutch Power Grid and made an initial analysis of the economic impact topological properties have on decentralized energy trading. In this paper, we go one step further and investigate how different networks topologies and growth models facilitate the emergence of a decentralized market. In particular, we show how the connectivity plays an important role in improving the properties of reliability and path-cost reduction. From the economic point of view, we estimate how the topological evolutions facilitate local electricity distribution, taking into account the main cost ingredi...

  11. Solar Power and the Electric Grid, Energy Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    In today's electricity generation system, different resources make different contributions to the electricity grid. This fact sheet illustrates the roles of distributed and centralized renewable energy technologies, particularly solar power, and how they will contribute to the future electricity system. The advantages of a diversified mix of power generation systems are highlighted.

  12. EcoGrid Denmark, ForskEL (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrictInformationEau ClaireEcoEcoEcoDogEcoGrid

  13. Smart Grid Computational Tool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG SolarSkykomish,NewEnergySmallSystem | Open

  14. Smart Grid Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:Shrenik Industries Jump to:SimranSkyBuiltSkykon A

  15. Address (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio: Energy955°,6671°,

  16. energy grid | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,Eaga SolarZoloHome Dc'scloudgrid Home

  17. About the Smart Grid | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/Curium Vitrification4th DayANVAblamp Limited

  18. Eprice (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolisEnviroMission LtdEnvisolarEpping,Eprice (Smart

  19. Assessment of Future Vehicle Transportation Options and Their Impact on the Electric Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management »EnergyHubs |B - ProgramServices

  20. Assessment of Future Vehicle Transportation Options and their Impact on the Electric Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management »EnergyHubs |B - ProgramServicesFuture

  1. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01T23:59:59.000Z

    Fluorescent Lamps, and LED Lamps. Published by Osram Optothe embodied energy of the LED lamp was “paid for” in onlyof manufacture for an LED lamp powered by a Ľ watt solar

  2. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    and Low Power Mode Energy Consumption”, Energy Efficiency inTV Shipments on Energy Consumption.. 22 Figure 3-1.Estimates of Annual Energy Consumption in 3D mode of 3D TVs

  3. Karuk Tribe Strategic Energy Plan and Energy Options Analysis

    SciTech Connect (OSTI)

    Ramona Taylor, Karuk Tribe; David Carter, Winzler and Kelly

    2009-03-31T23:59:59.000Z

    Energy planning document to assist the Karuk Tribe in making educated decisions about future energy priorities and implementation.

  4. Geothermal/Grid Connection | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd toWell Testing andGeothermal/Environmentsource

  5. ENERGOZ (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek42 EIAELOEMeter JumpENER G

  6. EUDEEP (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek42EOPEPODESBESPEETIEUDEEP

  7. EVCOM (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrictInformation Ireland) Jump to:EVCOM (Smart

  8. Etelligence (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:EmminolEntergyEnvisoryInformation (Cuxhaven,

  9. Grid Connected Functionalities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment of aLoggingsubscriber toSenate |Lead Performer:

  10. Fenix (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°, -89.4742177° ShowRuralFeilden CleggFellsmere,Fenix

  11. SMART GRID: an introduction. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913| DepartmentSLIDESHOW: Solar

  12. AMI (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation, search Name: AMEE Place:

  13. AMIS (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation, search Name: AMEE Place:Traun,AMIS

  14. Secure Smart Grid Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump638324°,Schnell ZTools and GuidelinesSechan2

  15. Piloting the Smart Grid | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation, search Name: Pillar Group BV

  16. JEA Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to: navigation, search7

  17. Direct Grid Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilariaDirectDirect Global Power Inc

  18. EDISON (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek Europeform View

  19. EFlex (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek EuropeformEEstor Inc

  20. Securing the Nation's Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of Energy Advisory BoardSecuring WLANs usingSecuring the

  1. Grid2Home | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrderNebraska:

  2. PNNL GridWise | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia GreenThesourceOvertonPEPCOPERIPNNL)

  3. State Grid Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr County,and5 Plans for 1000kV

  4. Microsoft Word - Grid Energy Storage December 2013

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember S.Fluor-B&W OE-781R (3/88)Brian RileyU.S.Energy

  5. Smarter Grid Solutions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteel Corporation JumpShines afterSmartSmartLabs

  6. Emobility (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| OpenElectromagneticElmwood CUSD

  7. Photo of the Week: Grid Friendly | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum Reserves Vision,4 Photo of the

  8. Distributed Energy Alternative to Electrical Distribution Grid Expansion in Consolidated Edison Service Territory

    SciTech Connect (OSTI)

    Kingston, Tim [Gas Technology Institute; Kelly, John [Endurant Energy LLC

    2008-08-01T23:59:59.000Z

    The nation's power grid, specifically the New York region, faces burgeoning energy demand and suffers from congested corridors and aging equipment that cost New York consumers millions of dollars. Compounding the problem is high-density buildup in urban areas that limits available space to expand grid capacity. Coincidently, these urban areas are precisely where additional power is required. DER in this study refers to combined heat and power (CHP) technology, which simultaneously generates heat and electricity at or near the point where the energy will be consumed. There are multiple CHP options available that, combined with a portfolio of other building energy efficiency (EE) strategies, can help achieve a more efficient supply-demand balance than what the grid can currently provide. As an alternative to expanding grid capacity, CHP and EE strategies can be deployed in a flexible manner at virtually any point on the grid to relieve load. What's more, utilities and customers can install them in a variety of potentially profitable applications that are more environmentally friendly. Under the auspices of the New York State Energy Research and Development Authority (NYSERDA) and the Oak Ridge National Laboratory representing the Office of Electricity of the U.S. Department of Energy, Gas Technology Institute (GTI) conducted this study in cooperation with Consolidated Edison to help broaden the market penetration of EE and DER. This study provides realistic load models and identifies the impacts that EE and DER can have on the electrical distribution grid; specifically within the current economic and regulatory environment of a high load growth area of New York City called Hudson Yards in Midtown Manhattan. These models can be used to guide new policies that improve market penetration of appropriate CHP and EE technologies in new buildings. The following load modeling scenarios were investigated: (1) Baseline: All buildings are built per the Energy Conservation Construction Code of New York State (No CHP applied and no EE above the code); (2) Current Policy: This is a business-as-usual (BAU) scenario that incorporates some EE and DER based on market potential in the current economic and regulatory environment; (3) Modified Rate 14RA: This economic strategy is meant to decrease CHP payback by removing the contract demand from, and adding the delivery charge to the Con Edison Standby Rate PSC2, SC14-RA; (4) Carbon Trade at $20/metric tonne (mt): This policy establishes a robust carbon trading system in NY that would allow building owners to see the carbon reduction resulting from CHP and EE.

  9. Sandia Energy - Study Compares Floating-Platform Options for Offshore

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSitingStaff HomeStructural

  10. Hydrogen Delivery Infrastructure Option Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e& FuelInvited Guests |

  11. Transmission Grid Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenter Gets People Work,Amy7AUnderstanding' %

  12. Expanding Options for Nuclear Power | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt |Exelon Generation Company, LLC OrderExpanding Options

  13. Grid Modernization - A View from Abroad | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37 OPAMResource Guide for Federalthe CommitteeGrid

  14. Smart Grid: Building a Wireless Connection | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafely Delivering DOE'sEnergy3 SGIG Programthe Grid

  15. Securing the Nation's Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle| DepartmentAchievementEnergyWide Area

  16. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 Termoelectrica U.SPRESS FACTBiofuels1ofHanno Butsch | Head

  17. Distribution Grid Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T ADRAFTJanuary 2004 | DepartmentJanuaryVersionSystems

  18. Intelligent Grid Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin andInterimInvoking anyIntelligent Coatings

  19. Energy Consumption Scheduling in Smart Grid: A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Kai, Ma; Guoqiang, Hu; Spanos, Costas

    2013-01-01T23:59:59.000Z

    on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

  20. Energy Consumption Scheduling in Smart Grid:A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Kai, Ma; Guoqiang, Hu; Spanos, Costas

    2013-01-01T23:59:59.000Z

    on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

  1. Energy Consumption Scheduling in Smart Grid: A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Ma, Kai; Hu, Guoqiang; Spanos, Costas J

    2014-01-01T23:59:59.000Z

    on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

  2. Pretreatment options for waste-to-energy facilities

    SciTech Connect (OSTI)

    Diaz, L.F.; Savage, G.M. [CalRecovery, Inc., Hercules, CA (United States)

    1996-12-31T23:59:59.000Z

    This paper describes various options available for processing MSW before the material is introduced to waste-to-energy facilities. Specifically, the paper reviews the type of equipment currently available for the recovery of resources from the waste stream. In addition, the paper discusses other matters which in many cases are ignored but are extremely important for the design of the processes. Some of these matters include the use of reliable waste characterization data during conceptual design and definition of the properties and specifications of the recovered materials and/or energy forms (e.g., RDF). Finally, the paper discusses other factors that have a critical impact on the facility such as potential environmental consequences of pretreatment of the waste prior to its combustion in waste-to-energy facilities.

  3. Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01T23:59:59.000Z

    This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

  4. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01T23:59:59.000Z

    potential role in complementing intermittent renewable energypotential role of grid-scale energy storage in complementing intermittent renewable

  5. Economical Energy Storage Option Enhances Energy Purchasing Strategies

    E-Print Network [OSTI]

    Hansen, D. W.; Winters, P. J.

    Chilled Water Thermal Energy Storage (TES) offers benefits to both the electricity supplier and the electricity user. This well-established technology uses stratified chilled water to store energy in thermal form so that electricity can be purchased...

  6. Local Option- Financing Program for Renewable Energy and Energy Efficiency

    Broader source: Energy.gov [DOE]

    H.B. 1829 of 2010 expanded the authority of cities and counties to promote renewable energy and energy efficiency. Cities and counties are still free to provide revolving loan programs, but they...

  7. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    China Estimates of global and country-specific energy saving potentials will be based on the above TV market forecast

  8. Grid Engineering for Accelerated Renewable Energy Deployment | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 BudgetGoals andSenate | Department of EnergyGrid

  9. A Liquid Layer Solution for the Grid | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 2010 ARRAA Liquid Layer Solution for the Grid A Liquid

  10. Cleco Power LLC Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean EconomyLLC Smart Grid Project Jump to:

  11. 2012 Smart Grid Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S.Energy19.xlsx2EnergySmart Grid Peer Review 2012

  12. Smart Meters and a Smarter Grid | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmart Meters and a Smarter Grid Smart Meters

  13. Smart-Grid-Vendor.pdf | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmart Meters and a Smarter Grid Smart

  14. Articles about Grid Integration and Transmission | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVMAgriculturalAn1(BENEFIT)Grid Integration and

  15. Comfort demand leading the optimization to energy supply from the Smart Grid 

    E-Print Network [OSTI]

    Aduba,K.; Zeiler,W.; Boxem,G.

    2014-01-01T23:59:59.000Z

    stochastic behaviour, which necessitates for a change in the the management of the grid Slootweg et al., 2011 statedthe increase in decentralised active loads such as, micro Combined Heat and Power (µCHP), Electrical-vehicles, heat pumps which can... of uncertainty within Smart Energy Systems by applying offices as LVPP with different types of energy storage on different systems levels, connecting energy demand and supply within offices (nano Grid) with micro Grid (field or street) and public Smart Grid...

  16. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    Energy Efficiency of New Televisions”. October. http://mappingandbenchmarking.iea-4e.org/shared_files/110/download 2010b Australia

  17. Exploring Energy Options for Rural Alaska | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of Energy 088: FederalEconomicEnergy ConsumersExploring

  18. Energy for Sustainable Development: Policy Options for Africa | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:Emminol JumpEnergy SystemSystems

  19. Cost of Renewable Energy Technology Options | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands2007) | OpenCity,Cosmos EnergyOpenof

  20. Cybersecurity and the Smarter Grid (October 2014) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact UsDepartment of Energyand the Smarter Grid

  1. First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project in

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrentEmergencyU.S.U.S. DOEField

  2. DOE Launches New Smart Grid Web Portal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartment offorEnergy LabSmart Grid Web Portal

  3. One Block Off the Grid 1BOG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff the Grid 1BOG Jump to: navigation,

  4. Category:Smart Grid Projects | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo BackLocationSmart Grid Projects Jump

  5. The Role of Smart Grids in Integrating Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth's LowerFacilityThe ResearchDepartment

  6. Grid Storage and the Energy Frontier Research Centers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration and the Carrying Capacity ofEnergy

  7. Property:GenDelToGrid | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to:Docket Number Jump to:GenDelToGrid Jump to:

  8. GridLab Power Distribution System Simulation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | OpenInformation BestInformationGridLab

  9. Smart Grid Characteristics, Values, and Metrics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWork Force withNonprofit---5---12DOE Smart Grid

  10. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    size on the market, which could also increase average energymarket will somewhat offset the increases in energy consumption that would otherwise be expected from increasing sales and screen sizes.

  11. On Using Cloud Platforms in a Software Architecture for Smart Energy Grids Yogesh Simmhan

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    On Using Cloud Platforms in a Software Architecture for Smart Energy Grids (Poster) Yogesh Simmhan utilities to provide dynamic feedback to curtail peak power load. Smart Grid infrastructure being deployed to monitor and control energy assets for their optimal use. Smart power grids, which leverage large scale

  12. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Demonstration Using UltraBattery Technology (October 2012) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) East Penn...

  13. Progress Energy draft regarding Smart Grid RFI: Addressing Policy...

    Office of Environmental Management (EM)

    Policy and Logistical Challenges in Implementing Smart Grid Solutions COMMENTS OF THE MICHIGAN PUBLIC SERVICE COMMISSION STAFF TO REQUEST FOR INFORMATION REGARDING SMART GRID...

  14. Status of grid scale energy storage and strategies for accelerating cost effective deployment

    E-Print Network [OSTI]

    Kluza, John Jerome

    2009-01-01T23:59:59.000Z

    The development of emerging grid scale energy storage technologies offers great potential to improve the architecture and operation of the electrical grid. This is especially important in the face of increased reliance on ...

  15. State Policy Options for Renewable Energy | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's NuclearSpurring Solar

  16. Measurement and Verification Options for Federal Energy- and Water-Saving Projects

    Broader source: Energy.gov [DOE]

    Federal Energy Management Program (FEMP) measurement and verification (M&V) guidelines and International Performance Measurement and Verification Protocol M&V methodologies are broken into four options.

  17. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    SciTech Connect (OSTI)

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2011-07-01T23:59:59.000Z

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden, the United Arab Emirates, the United Kingdom, and the United States. More information on SEAD is available from its website at http://www.superefficient.org/.

  18. Houston's Smart Grid: Transforming the Future of Electric Distribution & Energy Consumption

    E-Print Network [OSTI]

    Bartel, W.

    2012-01-01T23:59:59.000Z

    of a Smart Grid Smart Meters Intelligent Grid Expanded Energy Sources 3 Digital Meters Meter Data Management System Common Portal / Data Repository Home Area Network CNP?s smart grid journey A history of stakeholder commitment 1990s... Existing Consumer Education & Engagement ? Maximize consumer awareness of CNP?s smart grid program ? Develop consumer understanding of the new technology ? Facilitate active consumer engagement in smart energy management ? In Home Display Pilot...

  19. Energy Spot Price Models and Spread Options Pricing Samuel Hikspoors and Sebastian Jaimungal a

    E-Print Network [OSTI]

    Jaimungal, Sebastian

    Energy Spot Price Models and Spread Options Pricing Samuel Hikspoors and Sebastian Jaimungal In this article, we construct forward price curves and value a class of two asset exchange options for energy the implied market prices of risk for this commodity. 1. Introduction The energy commodity markets

  20. Marketing energy conservation options to Northwest manufactured home buyers

    SciTech Connect (OSTI)

    Hendrickson, P.L.; Mohler, B.L.; Taylor, Z.T.; Lee, A.D.; Onisko, S.A.

    1985-06-01T23:59:59.000Z

    This study relies on extensive, existing survey data and new analyses to develop information that would help design a marketing plan to achieve energy conservation in new manufactured homes. Existing surveys present comprehensive information about regional manufactured home occupants and their homes that are relevant to a potential conservation marketing plan. An independent analysis of the cost-effectiveness of various efficiency improvements provides background information for designing a marketing plan. This analysis focuses on the economic impacts of alternative energy conservation options as perceived by the home owner. Identifying impediments to conservation investments is also very important in designing a marketing plan. A recent report suggests that financial constraints and the need for better information and knowledge about conservation pose the major conservation investment barriers. Since loan interest rates for new manufactured homes typically exceed site-built rates by a considerable amount and the buyers tend to have lower incomes, the economics of manufactured home conservation investments are likely to significantly influence their viability. Conservation information and its presentation directly influences the manufactured home buyer's decision. A marketing plan should address these impediments and their implications very clearly. Dealers express a belief that consumer satisfaction is the major advantage to selling energy efficient manufactured homes. This suggests that targeting dealers in a marketing plan and providing them direct information on consumers' indicated attitudes may be important. 74 refs.

  1. Alleviating Solar Energy Congestion in the Distribution Grid via Smart

    E-Print Network [OSTI]

    Ansari, Nirwan

    metering. Ç 1 INTRODUCTION THE electric power grid is one of the national critical infrastructures electric facilities and equipment in the grid are based on old technologies. While the power grid operation]. The conventional power grid has been built under a centralized infrastructure such that a single far-end power

  2. Smart Grid Regional and Energy Storage Demonstration Projects: Awards |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart Grid RFI Public CommentsDepartment of

  3. Smart Grid e-Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart Grid RFI

  4. Smart Meters and a Smarter Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart Grid RFIGrid: Enabler ofSmart Meters

  5. Sandia Energy - New Jersey Transit FutureGrid MOU Signing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration Permalink GalleryNationalJersey Transit

  6. Three Grid Facilities You Should Know About | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon theTed Donat AboutTheDepartment ofEarlyThreatGrid Facilities

  7. Workplace Charging Challenge Partner: National Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | DepartmentDepartment of Energy Lewis & Clark CommunityMetLife,Grid

  8. Hydrogen Energy Storage for Grid and Transportation Services Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e& FuelInvitedin TexasDepartmentA

  9. Hydrogen Energy Storage: Grid and Transportation Services Workshop Proceedings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e& FuelInvitedin

  10. Smart Grid 2010 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondary Ventilation ActivitySmart Grid

  11. Smart Grid Demonstration Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondary Ventilation8 PreparedSmart Grid

  12. Smart Grid Investment Grant Topic Areas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondarySmart Grid Investment Grant Topic

  13. Smart Grid Investment Grants: Map of Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondarySmart Grid Investment Grant

  14. Multi-Agent Systems and Control, Intelligent Robotics, and Cybernetics. Power Electronics, Renewable Energy, and Smart Grid.

    E-Print Network [OSTI]

    Wu, Yih-Min

    . Power Electronics, Renewable Energy, and Smart Grid. Computer Science and Engineering. Embedded Systems

  15. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Brent W. Dixon; Steven J. Piet

    2004-10-01T23:59:59.000Z

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ~100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation – Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in tripling market share by 2100 from the current 8.4% to 25%, equivalent to continuing the average market growth of last 50 years for an additional 100 years. Five primary spent fuel management strategies are assessed against each of the energy futures to determine the number of geological repositories needed and how the first repository would be used. The geological repository site at Yucca Mountain, Nevada, has the physical potential to accommodate all the spent fuel that will be generated by the current fleet of domestic commercial nuclear reactors, even with license extensions. If new nuclear plants are built in the future as replacements or additions, the United States will need to adopt spent fuel treatment to extend the life of the repository. Should a significant number of new nuclear plants be built, advanced fuel recycling will be needed to fully manage the spent fuel within a single repository. The analysis also considers the timeframe for most efficient implementation of new spent fuel management strategies. The mix of unprocessed spent fuel and processed high level waste in Yucca Mountain varies with each future and strategy. Either recycling must start before there is too much unprocessed waste emplaced or unprocessed waste will have to be retrieved later with corresponding costs. For each case, the latest date to implement reprocessing without subsequent retrieval is determined.

  16. The Clean Air Act and Renewable Energy: Opportunities, Barriers, and Options

    SciTech Connect (OSTI)

    Wooley, D.R. (Young, Sommer, Ward, Ritzenberg, Wooley, Baker and Moore, LLC); Morss, E.M. (Young, Sommer, Ward, Ritzenberg, Wooley, Baker and Moore, LLC); Fang, J.M. (National Renewable Energy Laboratory)

    2001-03-01T23:59:59.000Z

    This paper examines the opportunities, obstacles, and potential options to promote renewable energy under the CAA and related programs. It deals, in sequence, with the regulation of SO2, NOx, regional haze/particulate matter, and CO2. For each pollutant, the paper discusses the opportunities, barriers, and options for boosting renewables under the CAA. It concludes by comparing the options discussed. The paper is based on a project on environmental regulation and renewable energy in electricity generation conducted by the National Renewable Energy Laboratory for the Office of Power Technologies, Office of Energy Efficiency and Renewable Energy, US Department of Energy.

  17. Energy Analysis and Energy Conservation Option for the Warehouse Facility at the Human Services Center Complex

    E-Print Network [OSTI]

    Farzad, M.; O'Neal, D. L.

    1986-01-01T23:59:59.000Z

    could be located in the north or northwest perimeter areas of a building depending on the climate and the prevailing wind directions. HVAC Systems The standards call for VAV systems in office buildings which are more than four stories high. Systems... ENERGY ANALYSIS AND ENERGY CONSERVATION OPTION FOR THE WAREHOUSE FACILITY AT THE HUMAN SERVICES CENTER COMPLEX DRAFT REPORT Submitted by Mohsen Farzad Dennis O'Neal Prepared For Energy Efficiency Division Texas Public Utility Commission Austin...

  18. Power Plant Options Report for Thompson Island prepared by the

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Power Plant Options Report for Thompson Island A report prepared by the Renewable Energy Research....................................................................... 7 3. Grid-connected and Autonomous Renewable Power Systems ................................ 9 3.1. Renewable Power Sources .............................................................................. 9 3

  19. Value of a Smart Grid System | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Value of a Smart Grid System Value of a Smart Grid System A broad range of industries have embraced technology in their quest to improve productivity, reduce costs and improve...

  20. National Grid (Electric) – Small Business Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    National Grid’s Small/Mid-Sized Business Program is for business customers with an average demand of 200 kilowatts or less per month. The program aids qualifying business customers in installing...

  1. An automated energy management system in a smart grid context

    E-Print Network [OSTI]

    Lopes, M.

    The ongoing transformation of electric grids into smart grids provides the technological basis to implement demand-sensitive pricing strategies aimed at using the electric power infrastructure more efficiently. These ...

  2. NV Energy, Inc. Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy ResourcesOcean Energy ThermalEnergy, Inc. Country United

  3. Pioneering the New Grid: Pole-mounted Solar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    state, performing two distinct functions. The devices not only generate energy through a solar panel that feeds into the grid, but also they are equipped with communications...

  4. The Smart Grid: An Estimation of the Energy and Carbon Dioxide...

    Open Energy Info (EERE)

    Benefits Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Smart Grid: An Estimation of the Energy and Carbon Dioxide (CO2) Benefits Focus Area: Crosscutting Topics:...

  5. PNNL Data-Intensive Computing for a Smarter Energy Grid

    ScienceCinema (OSTI)

    Carol Imhoff; Zhenyu (Henry) Huang; Daniel Chavarria

    2012-12-31T23:59:59.000Z

    The Middleware for Data-Intensive Computing (MeDICi) Integration Framework, an integrated platform to solve data analysis and processing needs, supports PNNL research on the U.S. electric power grid. MeDICi is enabling development of visualizations of grid operations and vulnerabilities, with goal of near real-time analysis to aid operators in preventing and mitigating grid failures.

  6. Energy Analysis and Energy Conservation Options for the Addition to Records Storage Building

    E-Print Network [OSTI]

    Farzad, M.; O'Neal, D. L.

    1986-01-01T23:59:59.000Z

    analyzed using the DOE 2.1B building energy simulation program. An analysis was made for the building as specified in schematic designs and primary drawings. To reduce the solar heat gain of the building through the windows and skylights, a glass with high..., and implementing the proposed ASHRAE standards. Finally, the energy consumption of the building was compared with the energy consumption of the building with solar film and other options which conformed to the proposed ASHRAE energy standard. SUMMARY The energy...

  7. Status of Grid Scale Energy Storage and Strategies for Accelerating Cost Effective

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Status of Grid Scale Energy Storage and Strategies for Accelerating Cost Effective Deployment MIT · Motivation · Individual Functions/Markets · Energy Storage Technologies · Implementations to Combine) · Previously: · Energy storage and smart grid analyst at Lux Research and GTM Research · MIT SDM '08 (Graduated

  8. SmartSolarGrid Deciding what to do with Solar Energy production

    E-Print Network [OSTI]

    Ferreira, Paulo

    SmartSolarGrid Deciding what to do with Solar Energy production Diogo Morgado and Paulo Ferreira. Solar energy has been subject of great development in the past years, which led to the concept of Solar, Solar energy, Solar road, Smart- SolarGrid 1 Introduction Mankind is facing a threat from the effects

  9. An Optimal Approximate Dynamic Programming Algorithm for the Energy Dispatch Problem with Grid-

    E-Print Network [OSTI]

    Powell, Warren B.

    dispatch and energy allocation decisions in the presence of grid-level storage. The model makes it possible the economic behavior of energy allocation and electric power dispatch. Linear pro- gramming has been usedAn Optimal Approximate Dynamic Programming Algorithm for the Energy Dispatch Problem with Grid

  10. Ris Energy Report 6 Innovation indicators and future options 1 8.1 Introduction

    E-Print Network [OSTI]

    energy technologies. The best-known source for future trends in energy is the annual World Energy Outlook authoritative source is the Annual Energy Out- look (AEO) series drawn up each year by the Us Energy InformationRisř Energy Report 6 Innovation indicators and future options 1 8 8.1 Introduction A number

  11. Ridge Energy Storage and Grid Services LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewableGeothermalsourceOhio: EnergyRidge Energy

  12. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration Energy Supply Transformation Needed On February 20, 2013, in DETL, Distribution Grid Integration, Energy, Energy Assurance, Energy Surety, Grid Integration,...

  13. Renewable Energy and a Smart Grid | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCODepartmentEnergyCouncilAffairs, to theRenewableLLC

  14. Tribal Energy Webinar Focuses on Electric Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnologyfact sheetTransferringInc. |

  15. CenterPoint Energy Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China Datang CorporationCenter Ethanol|CenterPoint

  16. Grid Renewable Energy-Financing Mechanisms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrderNebraska: EnergyStrategy

  17. Energy @ home (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to: navigation,Nouvelles etEnergo5.0@ home

  18. Midwest Energy Inc. Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers Inc Jump to:JumpMidwest Energy Inc

  19. Vineyard Energy Project Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillage ofInformationVineyard Energy Project Country

  20. 'Recycling' Grid Energy with Flywheel Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of Bad CholesteroliManage#AskEnergySaver:

  1. Grid Integration

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

  2. Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration and the Carrying Capacity of the U.S. Grid

  3. High-value energy storage for the grid: a multi-dimensional look

    SciTech Connect (OSTI)

    Culver, Walter J.

    2010-12-15T23:59:59.000Z

    The conceptual attractiveness of energy storage in the electrical power grid has grown in recent years with Smart Grid initiatives. But cost is a problem, interwoven with the complexity of quantifying the benefits of energy storage. This analysis builds toward a multi-dimensional picture of storage that is offered as a step toward identifying and removing the gaps and ''friction'' that permeate the delivery chain from research laboratory to grid deployment. (author)

  4. Grid Renewable Energy-Economic and Financial Analysis | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to:Information 9297484°,Greylock

  5. Energy Department Releases Grid Energy Storage Report | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNF &DepartmentEnergyEfficiency |

  6. Powder River Energy Corporation Smart Grid Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation to ReducePoseidonPowder River

  7. Progress Energy Service Company, LLC Smart Grid Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation toPowerPrincetonProgramProgressFlorida

  8. PECO Energy Company Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCN Technology Jump to: navigation, search Name:PECO

  9. Duke Energy Business Services LLC Smart Grid Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjin Semichem CoDowOhio:Information

  10. Duke Energy Carolinas, LLC Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjin Semichem

  11. Mini Grid Renewable Energy-Financing Mechanisms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers Inc JumpFinancing Mechanisms Jump to:

  12. Category:Smart Grid Projects - Energy Storage Demonstrations | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo BackLocation MediaGrantInformation

  13. Westar Energy, Inc. Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraphWellton-Mohawk IrrWestWestNew York:

  14. Reliant Energy Retail Services, LLC Smart Grid Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl., 2005)Coastal

  15. Grid Renewable Energy-Legal Documents | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | OpenInformation Best Practices and

  16. Grid Renewable Energy-Policy and Regulatory Studies | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | OpenInformation Best Practices

  17. Grid-Connected Renewable Energy Systems Case Studies | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | OpenInformation BestInformation

  18. Innovative Energy Efficiency, Renewable Energy, and Grid Technology Update

    Broader source: Energy.gov [DOE]

    This webinar will cover the latest developments in several different energy technologies and how to use them separately or in combination to realize the greatest benefit to tribal communities. The webinar is held from 11:00 a.m. to 12:30 p.m. Mountain Standard Time on April 29, 2015.

  19. Net-Zero Energy Buildings: A Classification System Based on Renewable Energy Supply Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at 2:00DepartmentNeilNet

  20. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation Into Energy Storage Options For the New SUB

    E-Print Network [OSTI]

    Into Energy Storage Options For the New SUB Ryan Kingston, Andrew Porritt University of British Columbia APSC; An Investigation into Energy Storage Options for the New SUB Ryan Kingston, Andrew be written to investigate possible energy storage options. This report outlines

  1. Grid Applications for Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal TechnologiesGeothermalGoGreatGreenDepartment

  2. Power Jobs: The Smart Grid Workforce | Department of Energy

    Energy Savers [EERE]

    by electrical industry representatives across the nation, chronicled in a series of videos dubbed "Vids4Grids." The video series, a project by the National Electrical...

  3. Smart Grid Investment Grant Recipient FAQs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    These Questions and Answers have been provided by DOE to Smart Grid Investment Grant selectees. The information discussed within these documents applies specifically and only to...

  4. NREL: Energy Analysis - NREL Releases Report on Policy Options...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learn more at http:energy.govsunshot. For the latest updates on information regarding energy analysis, visit the Energy Analysis website. You can also subscribe to the Energy...

  5. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on Armed Services U.S. House ofInvestigations Committee

  6. Evaluation of Industrial Energy Options for Cogeneration, Waste Heat Recovery and Alternative Fuel Utilization

    E-Print Network [OSTI]

    Hencey, S.; Hinkle, B.; Limaye, D. R.

    1980-01-01T23:59:59.000Z

    This paper describes the energy options available to Missouri industrial firms in the areas of cogeneration, waste heat recovery, and coal and alternative fuel utilization. The project, being performed by Synergic Resources Corporation...

  7. Simplified Prescriptive Options in the Texas Residential Building Energy Code Make Compliance Easy

    E-Print Network [OSTI]

    Stone, G. A.; DeVito, E. M.; Nease, N. H.

    2002-01-01T23:59:59.000Z

    Simplified Prescriptive Options in the Texas Residential Building Energy Code Make Compliance Easy Garrett A. Stone Eric M. DeVito Nelson H. Nease Partner Associate Associate Brickfield, Burchette...

  8. Energy Efficient Refrigerators Incentive Program Options for South Africa

    E-Print Network [OSTI]

    Can, Stephane de la Rue du

    2014-01-01T23:59:59.000Z

    Covary, Unlimited Energy, South Africa and Paul Waide, WaideCA 94720 Unlimited Energy 2 South Africa Waide Strategicof refrigerator energy efficiency for South Africa. The

  9. Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design

    E-Print Network [OSTI]

    Ogden, Joan M; Yang, Christopher

    2005-01-01T23:59:59.000Z

    to International Journal of Hydrogen Energy (November 2005).05—28 Implementing a Hydrogen Energy Infrastructure: StorageImplementing a Hydrogen Energy Infrastructure: Storage

  10. Wind and Solar on the Power Grid: Myths and Misperceptions, Greening the Grid (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWindEnergySystemSOLAR ON

  11. Redox Flow Batteries for Grid-scale Energy Storage - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead of Contracting Activity

  12. Security is Not an Option | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle|Security Enforcement Documentsis Not an Option Security

  13. Optional 2012 Project Management Workshop Course | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctober 2014FundsOpti-MN ImpactYour Motor-DrivenOptional

  14. Solar PV Deployment through Renewable Energy Tariff: An Option for Key Account Customers

    Broader source: Energy.gov [DOE]

    Renewable energy tariffs, a new program and rate option being offered by some utilities to large customers, are quickly attracting attention in the renewable energy world as a way to do this. These tariffs allow a high energy usage customer to pay a slight premium in order to obtain all or a portion of their electricity from renewable sources.

  15. EDF Option for Scheduling Real-Time Jobs in Energy Harvesting Systems

    E-Print Network [OSTI]

    Boyer, Edmond

    exploiting both the processor capacity and the available ambient energy. Main definitions Definition 1 and profile of the energy produced by the source. #12;Definition 4: An online scheduling algorithmEDF Option for Scheduling Real-Time Jobs in Energy Harvesting Systems Maryline CHETTO IRCCy

  16. Clean Energy Options for Sabah an analysis of resource availability and cost

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Clean Energy Options for Sabah an analysis of resource availability and cost Tyler McNish1, 2 and Appropriate Energy Laboratory 2 University of California, Berkeley School of Law 3 University of California, Berkeley Energy and Resources Group 4 University of California, Berkeley Goldman School of Public Policy 5

  17. Improved Power Grid Stability and Efficiency with a Building-Energy Cyber-Physical System

    E-Print Network [OSTI]

    or stagnant winds to propel wind turbines). Dur- ing an episode, the power grid operators must contend of an 8-12 hour demand period. The primary power demand is often air conditioning. Efforts to balance1 Improved Power Grid Stability and Efficiency with a Building-Energy Cyber-Physical System Mary

  18. European Hydrogen Energy Conference, Maastricht, 18 -22 June 2007 Hydrogen for Grid Integration

    E-Print Network [OSTI]

    Heinemann, Detlev

    that an increasing need for balancing power will result from the advent of large offshore wind parks in the North Sea Integration HYDROGEN AS A MEANS TO CONTROL AND INTEGRATE WIND POWER INTO ELECTRICITY GRIDS Robert Steinberger of wind energy into electricity grids will pose future challenges as the levels of production rise, power

  19. Energy storage for frequency regulation on the electric grid

    E-Print Network [OSTI]

    Leitermann, Olivia

    2012-01-01T23:59:59.000Z

    Ancillary services such as frequency regulation are required for reliable operation of the electric grid. Currently, the same traditional thermal generators that supply bulk power also perform nearly all frequency regulation. ...

  20. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01T23:59:59.000Z

    State Assembly Bill 2514 – Energy storage systems,” Energy Storage for the Electricity5. D. Rastler, Electric Energy Storage Technology Options: A

  1. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01T23:59:59.000Z

    Rastler, Electric Energy Storage Technology Options: A WhiteJ. Řstergaard, Battery energy storage technology for powerof advanced energy storage technologies as a means to

  2. Analysis of Energy Conservation Options for USDOE Child Development Center

    E-Print Network [OSTI]

    Bou-Saada, T. E.; Haberl, J. S.

    1993-01-01T23:59:59.000Z

    The Child Development Center (CDC) was designed to be a "showpiece" model building. Its construction included energy efficient features, including a photovoltaic system, solar hot water system, energy efficient lighting, and energy efficient heat...

  3. Analysis of Energy Conservation Options for USDOE Child Development Center 

    E-Print Network [OSTI]

    Bou-Saada, T. E.; Haberl, J. S.

    1993-01-01T23:59:59.000Z

    The Child Development Center (CDC) was designed to be a "showpiece" model building. Its construction included energy efficient features, including a photovoltaic system, solar hot water system, energy efficient lighting, and energy efficient heat...

  4. Communication Needs and Integration Options

    E-Print Network [OSTI]

    Communication Needs and Integration Options for AMI in the Smart Grid Future Grid Initiative White System #12;Communication Needs and Integration Options for AMI in the Smart Grid Prepared for the Project #12;ii Executive Summary This white paper analyzes the current state of communications

  5. Communication Needs and Integration Options

    E-Print Network [OSTI]

    Communication Needs and Integration Options for AMI in the Smart Grid Future Grid Initiative White System #12;Communication Needs and Integration Options for AMI in the Smart Grid Prepared for the Project the current state of communications for the advanced metering infrastructure (AMI) and recommends

  6. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis, News, Partnership, SMART Grid Vermont-a leader in energy efficiency and deployment of so-called smart-grid...

  7. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis, News, Partnership, SMART Grid Vermont-a leader in energy efficiency and deployment of so-called smart-grid...

  8. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution Grid Integration, Energy, Energy...

  9. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offers Approach to Help Utilities Understand Effects of PV Variability on the Grid On March 7, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid...

  10. Sandia National Laboratories: electric grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid Integration,...

  11. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative (HCEI)

    SciTech Connect (OSTI)

    Busche, S.; Doris, E.; Braccio, R.; Lippert, D.; Finch, P.; O'Toole, D.; Fetter, J.

    2010-04-01T23:59:59.000Z

    This report provides detailed analyses of 21 clean energy policy options considered by the Hawaii Clean Energy Initiative working groups for recommendation to the 2010 Hawaii State Legislature. The report considers the impact each policy may have on ratepayers, businesses, and the state in terms of energy saved, clean energy generated, and the financial costs and benefits. The analyses provide insight into the possible impacts, both qualitative and quantitative, that these policies may have in Hawaii based on the experience with these policies elsewhere. As much as possible, the analyses incorporate Hawaii-specific context to reflect the many unique aspects of energy use in the State of Hawaii.

  12. Local Option- Property Tax Assessment for Energy Efficient Buildings

    Broader source: Energy.gov [DOE]

    In March 2008, Virginia enacted legislation that would allow local jurisdictions to assess the property tax of energy efficient buildings at a reduced rate. Under this law, eligible energy...

  13. Local Option- Solar, Wind and Biomass Energy Systems Exemption

    Broader source: Energy.gov [DOE]

    Section 487 of the New York State Real Property Tax Law provides a 15-year real property tax exemption for solar, wind energy, and farm-waste energy systems constructed in New York State. As...

  14. The Institutional Conservation Program: A Funding Option for Energy Retrofits

    E-Print Network [OSTI]

    Roberts, M.

    1988-01-01T23:59:59.000Z

    at the federal level by the Department of Energy and at the state level in Texas by the Governor's Energy Management Center. The purpose of the ICP is to assist eligible institutions in reducing energy consumption and its attendant costs. More specifically...

  15. use of renewable en-ergy options generally

    E-Print Network [OSTI]

    Delaware, University of

    states and New York City are suing f, counterbal- able energy becomes far more economical (e.g., Awerbuch, 2003). This is because the risk profiles BRACING FOR AN UNCERTAIN ENERGY FUTURE: RENEWABLE ENERGY AND THE US ELECTRICITY INDUSTRY The risk profiles

  16. A multilevel energy buffer and voltage modulator for grid-interfaced micro-inverters

    E-Print Network [OSTI]

    Chen, Minjie

    Micro-inverters operating into the single-phase grid from solar photovoltaic (PV) panels or other low-voltage sources must buffer the twice-line-frequency variations between the energy sourced by the PV panel and that ...

  17. Energy-efficient control of a smart grid with sustainable homes based on distributing risk

    E-Print Network [OSTI]

    Ono, Masahiro, S.M. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    The goal of this thesis is to develop a distributed control system for a smart grid with sustainable homes. A central challenge is how to enhance energy efficiency in the presence of uncertainty. A major source of uncertainty ...

  18. A Multilevel Energy Buffer and Voltage Modulator for Grid-Interfaced Microinverters

    E-Print Network [OSTI]

    Chen, Minjie

    Microinverters operating into the single-phase grid from solar photovoltaic (PV) panels or other low-voltage sources must buffer the twice-line-frequency variations between the energy sourced by the PV panel and that ...

  19. Sub-grid parameterization of snow distribution for an energy and mass balance snow cover model

    E-Print Network [OSTI]

    Sub-grid parameterization of snow distribution for an energy and mass balance snow cover model model of the lumped snowpack mass and energy balance applied to a 26-ha rangeland catchment with high (Af). The energy state variable is evolved through an energy balance. The snow water equivalence state

  20. Utility Grid-Connected Distributed Power Systems National Solar Energy Conference

    E-Print Network [OSTI]

    Utility Grid-Connected Distributed Power Systems National Solar Energy Conference ASES Solar 96 at least half of its energy obtained from energy efficiency and renewable resources by the year 2000. Solar energy, distributed generation resource. Investments made in solar power today are expected to provide

  1. Scheduling Heterogeneous Delay Tolerant Tasks in Smart Grid with Renewable Energy

    E-Print Network [OSTI]

    Sinha, Prasun

    1 Scheduling Heterogeneous Delay Tolerant Tasks in Smart Grid with Renewable Energy Shengbo Chen sources of energy (e.g., harvested renewable energy), and allow for dynamic electricity price, or a business, which is equipped with renewable energy devices when electrical appliances allow different levels

  2. Anforderungen an den Energie-und Leistungsumsatz der POWER TO GAS-Einheit im MICRO GRID eines industriellen Produktionsstandortes

    E-Print Network [OSTI]

    Paderborn, Universität

    Anforderungen an den Energie- und Leistungsumsatz der POWER TO GAS- Einheit im MICRO GRID eines MICRO GRID angeschlossenen elektrischen Energiespeicher und eine ,,POWER TO GAS" -Anlage kompensiert werden. Die ,,POWER TO GAS"­ Anlage entnimmt dem MICRO GRID überschüssige elektrische Energie zur

  3. Abstract -This paper presents the coordinated control of distributed energy storage systems (DESSs) in DC micro-grids.

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    ) in DC micro-grids. In order to balance the state-of-charge (SoC) of each energy storage unit (ESU--Droop control; distributed energy storage system (DESS); DC micro-grids; state-of-charge (SoC) I. INTRODUCTION and more popularity [1]. Nowadays DC micro-grids are becoming more attractive with the raise of DC power

  4. Energy-Efficiency Options for Insurance Loss Prevention

    SciTech Connect (OSTI)

    Mills, E. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.; Knoepfel, I. [Swiss Reinsurance Co., Zurich (Switzerland)

    1997-06-09T23:59:59.000Z

    Energy-efficiency improvements offer the insurance industry two areas of opportunity: reducing ordinary claims and avoiding greenhouse gas emissions that could precipitate natural disaster losses resulting from global climate change. We present three vehicles for taking advantage of this opportunity, including research and development, in- house energy management, and provision of key information to insurance customers and risk managers. The complementary role for renewable energy systems is also introduced.

  5. Solar energy grid integration systems : final report of the Florida Solar Energy Center Team.

    SciTech Connect (OSTI)

    Ropp, Michael (Northern Plains Power Technologies, Brookings, SD); Gonzalez, Sigifredo; Schaffer, Alan (Lakeland Electric Utilities, Lakeland, FL); Katz, Stanley (Satcon Technology Corporation, Boston, MA); Perkinson, Jim (Satcon Technology Corporation, Boston, MA); Bower, Ward Isaac; Prestero, Mark (Satcon Technology Corporation, Boston, MA); Casey, Leo (Satcon Technology Corporation, Boston, MA); Moaveni, Houtan (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Click, David (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Davis, Kristopher (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Reedy, Robert (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

    2012-03-01T23:59:59.000Z

    Initiated in 2008, the Solar Energy Grid Integration Systems (SEGIS) program is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the program have focused on the complete-system development of solar technologies, with the dual goal of expanding utility-scale penetration and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. The Florida Solar Energy Center (FSEC), its partners, and Sandia National Laboratories have successfully collaborated to complete the work under the third and final stage of the SEGIS initiative. The SEGIS program was a three-year, three-stage project that include conceptual design and market analysis in Stage 1, prototype development and testing in Stage 2, and moving toward commercialization in Stage 3. Under this program, the FSEC SEGIS team developed a comprehensive vision that has guided technology development that sets one methodology for merging photovoltaic (PV) and smart-grid technologies. The FSEC team's objective in the SEGIS project is to remove barriers to large-scale general integration of PV and to enhance the value proposition of photovoltaic energy by enabling PV to act as much as possible as if it were at the very least equivalent to a conventional utility power plant. It was immediately apparent that the advanced power electronics of these advanced inverters will go far beyond conventional power plants, making high penetrations of PV not just acceptable, but desirable. This report summarizes a three-year effort to develop, validate and commercialize Grid-Smart Inverters for wider photovoltaic utilization, particularly in the utility sector.

  6. Local Option - Commercial PACE Financing (Utah) | Open Energy...

    Open Energy Info (EERE)

    Central Air conditioners, Chillers, CustomOthers pending approval, Doors, Energy Mgmt. SystemsBuilding Controls, Equipment Insulation, Furnaces, Heat pumps, Heat...

  7. Decoupling Policies: Options to Encourage Energy Efficiency Policies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    encourage energy efficiency. 46606.pdf More Documents & Publications Greensburg, Kansas: Building a Model Green Community, How Would You Rebuild a Town - Green? April 2009...

  8. Local Option- Property Tax Exemption for Renewable Energy Systems

    Broader source: Energy.gov [DOE]

    Eligible renewable energy property is defined as "any fixture, product, system, device or interacting group of devices that produce electricity from renewable resources, including, but not limited...

  9. Energy Use and Design Options for Texas State Buildings

    E-Print Network [OSTI]

    Katipamula, S.; O'Neal, D. L.

    1988-01-01T23:59:59.000Z

    of improved glass type. The results are shown in Table 1. The EUI is defined as the Energy Utilization Index and is a measure of the annual energy consumption of the building in kBtu's per square foot per year. ii Table 1 - Comparison of EUI For Travis....3 ASHRAE Standard Rating Conditions &. Minimum Performance.7 2.4 California Prescriptive Standard 10 2.5 Energy Budget for Offices of Four or Habitable Stories 11 3.1 Comparison of Energy Use for Travis Building at Different Locations in Texas 14 3...

  10. Electrolysis for Energy Storage & Grid Balancing in West Denmark

    E-Print Network [OSTI]

    this capacity before 2010, to about 2,700 MW. High wind power output often occurs out of phase with demand and often unpredictably. Wind power output also ramps up and down continuously, sometimes by large amounts, there is an excellent match between wind and fast responding hydro, from an overall operating and grid balancing point

  11. Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed Services U.S.Gregory J.VehiclesGrid

  12. DG Demonet Smart LV Grid (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosaPageEnergy InformationDEFRADEIF ADG

  13. Green Energy Options for Consumer-Owned Business

    SciTech Connect (OSTI)

    Co-opPlus of Western Massachusetts

    2006-05-01T23:59:59.000Z

    The goal of this project was to define, test, and prototype a replicable business model for consumer-owned cooperatives. The result is a replicable consumer-owned cooperative business model for the generation, interconnection, and distribution of renewable energy that incorporates energy conservation and efficiency improvements.

  14. Maryland Efficiency Program Options

    Broader source: Energy.gov [DOE]

    Maryland Efficiency Program Options, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  15. The Smart Grid: An Estimation of the Energy and CO2 Benefits

    SciTech Connect (OSTI)

    Pratt, Robert G.; Balducci, Patrick J.; Gerkensmeyer, Clint; Katipamula, Srinivas; Kintner-Meyer, Michael CW; Sanquist, Thomas F.; Schneider, Kevin P.; Secrest, Thomas J.

    2010-01-27T23:59:59.000Z

    This report articulates nine mechanisms by which the smart grid can reduce energy use and carbon impacts associated with electricity generation and delivery. The quantitative estimates of potential reductions in electricity sector energy and associated CO2 emissions presented are based on a survey of published results and simple analyses. This report does not attempt to justify the cost effectiveness of the smart grid, which to date has been based primarily upon the twin pillars of cost-effective operation and improved reliability. Rather, it attempts to quantify the additional energy and CO2 emission benefits inherent in the smart grid’s potential contribution to the nation’s goal of mitigating climate change by reducing the carbon footprint of the electric power system.

  16. The Smart Grid: An Estimation of the Energy and CO2 Benefits

    SciTech Connect (OSTI)

    Pratt, Robert G.; Balducci, Patrick J.; Gerkensmeyer, Clint; Katipamula, Srinivas; Kintner-Meyer, Michael CW; Sanquist, Thomas F.; Schneider, Kevin P.; Secrest, Thomas J.

    2010-01-15T23:59:59.000Z

    This report articulates nine mechanisms by which the smart grid can reduce energy use and carbon impacts associated with electricity generation and delivery. The quantitative estimates of potential reductions in electricity sector energy and associated CO2 emissions presented are based on a survey of published results and simple analyses. This report does not attempt to justify the cost effectiveness of the smart grid, which to date has been based primarily upon the twin pillars of cost-effective operation and improved reliability. Rather, it attempts to quantify the additional energy and CO2 emission benefits inherent in the smart grid’s potential contribution to the nation’s goal of mitigating climate change by reducing the carbon footprint of the electric power system.

  17. Energy use and emissions of idling-reduction options for heavy-duty diesel truacks a comparison.

    SciTech Connect (OSTI)

    Gaines, L. L.; Hartman, C. J. B.; Solomon, M. J.; Energy Systems; James Madison Univ.; Northeast States for Coordinated Air Use Management

    2009-01-01T23:59:59.000Z

    Pollution and energy analyses of different idling-reduction (IR) technologies have been limited to localized vehicle emissions and have neglected upstream energy use and regional emissions. In light of increasing regulation and government incentives for IR, this research analyzed the full fuel cycle effects of contemporary approaches. It compared emissions, energy use, and proximity to urban populations for nine alternatives, including idling, electrified parking spaces, auxiliary power units, and several combinations of these. It also compared effects for the United States and seven states: California, Florida, Illinois, New York, Texas, Virginia, and West Virginia. U.S. average emissions impacts from all onboard IR options were found to be lower than those from a 2007-compliant idling truck. Total particulate emissions from electrified parking spaces were found to be greater than those from a 2007 truck, but such emissions generally occurred in areas with low population density. The lowest energy use, carbon dioxide emissions, and nitrogen oxide emissions are seen with a direct-fired heater combined with electrified parking spaces for cooling, and the lowest particulate-matter emissions were found with a direct-fired heater combined with an onboard device for cooling. As expected, state-to-state variations in the climate and grid fuel mix influence the impacts of the full fuel cycle from IR technologies, and the most effective choice for one location may be less effective elsewhere.

  18. Energy Efficiency Tax Credits, Rebates and Financing: What Options Are

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome | DocumentsElements of atoEfficiency

  19. Tool to Compare Solar Energy Program Financing Options | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnologyfact sheet summarizes whatTitle25, 20152195Asset

  20. India-Options for Low Carbon Development | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatelliteInSAR JumpRenewable EnergyESMAP Low

  1. Indonesia-Low Carbon Development Options Study | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown, Florida: EnergyStudy Jump to: navigation,

  2. Brochure HI Standards Subscription Options | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRAM-04-07 Audit Report:FieldBodman Statement onBrighter Future:

  3. Center for Climate Strategies Catalog of Policy Options | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China Datang CorporationCenter Ethanol

  4. Local Option - Solar, Wind & Biomass Energy Systems Exemption | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999InspectionsAnnualThe following termsof Energy Solar -

  5. Local Option - Special Assessment of Wind Energy Devices | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999InspectionsAnnualThe following termsof Energy Solar

  6. Bioenergy in India: Barriers and Policy Options | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:EnergyPark,BioJetMadison, WisconsinEast Sussex,in

  7. Indonesia-Low Carbon Development Options Study | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua NewSmallholder SystemsIndoEnergyMeasuresStudy

  8. Automatic Deployment Options Projection Tool (ADOPT) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria Power Corporation LtdATIAustria:

  9. Green Energy Workshop Student Posters Smart Communication of Energy Use and Prediction in a Smart Grid

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    and Prediction in a Smart Grid Software Architecture * Saima Aman, Yogesh Simmhan The increasing deployment of smart meters and other sensor technologies in the Smart Grid. This information-rich Smart Grid environment has opened up research opportunities

  10. COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES

    E-Print Network [OSTI]

    Deymier, Pierre

    COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES Dominique. Preliminary results clearly establish that the prototype holds enormous promise as energy storage systems production, is critically dependent on the availability of cost-effective, energy- storage technologies

  11. NREL Energy Models Examine the Potential for Wind and Solar Grid Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01T23:59:59.000Z

    As renewable energy generating sources, such as wind turbines and solar power systems, reach high levels of penetration in parts of the United States, the National Renewable Energy Laboratory (NREL) is helping the utility industry to peer into the future. Using software modeling tools that the lab developed, NREL is examining the future operation of the electrical grid as renewable energy continues to grow.

  12. Secure Distributed Solution for Optimal Energy Consumption Scheduling in Smart Grid

    E-Print Network [OSTI]

    Shehab, Mohamed

    Secure Distributed Solution for Optimal Energy Consumption Scheduling in Smart Grid Mohammad Emails: {mrahman4, lbai2, mshehab, ealshaer}@uncc.edu Abstract--The demand-side energy management is crucial to optimize the energy usage with its production cost, so that the price paid by the users

  13. Reducing Energy Costs in the Texas State Agencies: Conservation and Policy Options: Volume II – Final Report

    E-Print Network [OSTI]

    Turner, W. D.; O'Neal, D. L.; Murphy, W. E.; Subramanian, S. T.

    1984-01-01T23:59:59.000Z

    are needed, consider Table 4. Data from the 1973-75 period were obtained from a report prepared by the Governor's Energy Advisory Council Staff, dated January 1977. Not all the current agencies existed or were reported in the earlier report, and some...REDUCING ENERGY COSTS IN THE TEXAS STATE AGENCIES: CONSERVATION AND POLICY OPTIONS Vol. 2 - Final Report ENERGY SYSTEMSLABORATORY Department of Mechanical Engineering Texas Engineering Experiment Station Texas A&M University College Station Texas...

  14. Energy development and water options in the Yellowstone River Basin

    SciTech Connect (OSTI)

    Narayanan, R.; MacIntyre, D.D.; Torpy, M.F.

    1980-08-01T23:59:59.000Z

    Using a mixed-integer programming model, the impacts of institutional constraints on the marginal capacity for energy development in the Yellowstone River Basin and consequent hydrologic changes were examined. Under average annual flow conditions, energy outputs in the Yellowstone Basin can increase roughly nine times by 1985 and 12 to 18 times by 2000. In contrast, water availability is limiting energy development in the Tongue and Powder River Basins in Wyoming. Variability in hydrologic regime causes model solutions to change drastically. If flows decrease to 80 and 60% of average annual levels, the energy production is decreased by 17 and 95%, respectively. If development strategies in the basin are followed on the basis of 80% average annual flows, the Buffalo Bill enlargement (271,300 acre-ft), Tongue River Modification (58,000 acre-ft), and the two reservoirs at Sweetgrass Creek (each 27,000 acre-ft) will be necessary, in addition to several small storage facilities, to best meet the instream flow needs in Montana and to deliver the waters apportioned by compact between Wyoming and Montana. Furthermore, the results indicate that relaxing the instream flow requirements from recommended levels by 10% could increase regional energy output by 19% in 1985 and 35% in 2000. This model illustrates that modifications in institutional restrictions to achieve greater water mobility between users in a given state, as well as flexible practices for transferring water between states, can assist economic growth. Thus, the probability for restricted energy development at this juncture appears to be affected to a greater degree by institutional constraints than by water availability constraints.

  15. Energy Use and Design Options for Texas State Buildings 

    E-Print Network [OSTI]

    Katipamula, S.; O'Neal, D. L.

    1988-01-01T23:59:59.000Z

    standard restricts the total glazing to 50% of the exterior wall area, lighting levels to 1.5 W/sf, has higher summer and lower winter set point temperatures and requires a heat pump for heating - there was a 36% reduction in annual energy consumption... restrict the total glazing to 50% of the exterior wall area, lighting levels to 1.5 W/sf, require a heat pump for heating, and have higher summer and lower winter set point temperatures than the base buildings, there were savings of 60% in the annual energy...

  16. Pilot Application to Nuclear Fuel Cycle Options | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM5Parabolic TroughPhotoCell StructureUranium MillPilgrim

  17. Forecourt Storage and Compression Options | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen andMeetingonup onFood7,2Storage

  18. TOLEDO BETTERS BUILDINGS WITH FINANCING OPTIONS | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThis Decision considers anExercise32 DATE: June2Recovery ActTOLEDO

  19. Procurement Options for New Renewable Electricity Supply | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation toPowerPrinceton PublicTODO:

  20. Realising REDD+: National Strategy and Policy Options | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito,JumpReaction Systems Engineering of

  1. POLICY OPTIONS FOR FCV MARKET INTRODUCTION | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreachDepartment567 PreparedEnergy

  2. Integrating Solar PV into Energy Services Performance Contracts: Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartmentEnergy Integrated EnergyIntegratedAdapting On-sitefor

  3. Security is Not an Option | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of Energy Advisory BoardSecuring WLANsMaySecurity

  4. Mandatory Utility Green Power Option | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersource HistoryMandaluyong City,

  5. Clean Diesels, an Economy or Performance Option? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag" |Energy Diesel: The Progress, TheDiesels,

  6. Decoupling Policies: Options to Encourage Energy Efficiency Policies for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton: ENERGY8Decommissioning Plan

  7. Local Option - Property Tax Credit for Renewables and Energy Conservation

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999InspectionsAnnualThe following terms areSchools SavingsDevices

  8. Local Option - Property Tax Exemption for Renewable Energy | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999InspectionsAnnualThe following terms areSchools

  9. Local Option - Property Tax Exemption | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999InspectionsAnnualThe following terms areSchoolsSavings

  10. Mandatory Utility Green Power Option | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC) Richard Cowart, ChairReactor

  11. Mandatory Utility Green Power Option | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC) Richard Cowart, ChairReactorSolar Photovoltaics Wind (All)

  12. Brochure HI Standards Subscription Options | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green BusNewsCellulosicofBring Your OwnRemarksHI's

  13. UNDP-Climate Finance Options Platform | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinityTurnbull HydroUK CentreMechanism JumpClimate

  14. Small Business Financing Options for Clean Energy Projects | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWork Force with evenControl SystemsAgenda|

  15. Consumer to Grid (C2G) (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| OpenCongress,Consolidated EdisonMinorEnergyConsumer to

  16. Green Energy Workshop Student Posters Semantic Complex Event Processing for Smart Grid Information

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    for Smart Grid Information Integration and Demand Management Qunzhi Zhou, Yogesh of the power grid to a Smart Grid. The benefits of Smart Grid include demand Grid Demonstration Project. We define an ontology model for Smart Grid

  17. Comfort demand leading the optimization to energy supply from the Smart Grid

    E-Print Network [OSTI]

    Aduba,K.; Zeiler,W.; Boxem,G.

    2014-01-01T23:59:59.000Z

    ). The control of loads in the building, may also be a resource to the grid using the flexibilities in service of the grid in Demand Side Management (DSM) scenarios as so called Demand Response (DR) or Load Control (LC). (Callaway and Hiskens 2011) However... of energy management, building management, and comfort management have to be developed to anticipate on the coming possible changes on Demand Side Management by Demand Response (DR) and Load Control (LC). This study is a first step towards...

  18. Solar energy potential atlas for planning energy system off-grid electrification in the Republic of Djibouti

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Solar energy potential atlas for planning energy system off-grid electrification in the Republic solar resource can therefore be an interesting mean to produce energy where it is consumed. The aimWh/m². Furthermore, the solar radiation reaching Djibouti corresponded to 20 000 times the total yearly energy

  19. A prefeasibility study of energy resource options in Hainan, China

    SciTech Connect (OSTI)

    Hill, L.J.; Russell, M. [Oak Ridge National Lab., TN (United States)]|[Tennessee Univ., Knoxville, TN (United States); Barron, W.F. [Hong Kong Univ. (Hong Kong); LaRocco, P. [LaRocco Associates (United States); Shen, Z. [Tennessee Univ., Knoxville, TN (United States)

    1992-10-01T23:59:59.000Z

    This study identifies a strategy that (1) provides future energy services for Hainan in the least environmentally degrading way, (2) eliminates the need to build significant amounts of new fossil-fueled, electric generating capacity, saving capital to invest in other development projects, (3) lowers the cost that Hainan households and businesses will pay to light their homes and run their industries, (4) reduces the future coal import bill, and (5) improves the prospects for export industries. implementing this strategy will promote economic development and growth in Hainan, improve the standard of living, and preserve to the greatest extent possible Hainan`s rich environmental resource base, a key requirement for its tourist industry. The focus of this strategy is to adapt proven policies and techniques for producing and using energy more efficiently to existing conditions in Hainan. This Report applies the principles of integrated resource planning (IRP) and the experiences in other countries to outline a strategy for the Province. The experience is that fuel consumption can be reduced without lessening the ability of consumers, industry, and the government to obtain the energy services that higher use of fuel would otherwise bring. Further, those energy services can be provided with less capital investment than would be necessary if traditional practices were followed. Both of these results have obvious and important development and environmental benefits. In short, consumers have more money available to buy other things; production costs are lowered, improving the ability of firms to compete in international markets; and more capital is available to invest in new machinery and equipment that produces goods and services to use in Hainan or to export to other countries.

  20. A prefeasibility study of energy resource options in Hainan, China

    SciTech Connect (OSTI)

    Hill, L.J.; Russell, M. (Oak Ridge National Lab., TN (United States) Tennessee Univ., Knoxville, TN (United States)); Barron, W.F. (Hong Kong Univ. (Hong Kong)); LaRocco, P. (LaRocco Associates (United States)); Shen, Z. (Tennessee Univ., Knoxville, TN (United States))

    1992-10-01T23:59:59.000Z

    This study identifies a strategy that (1) provides future energy services for Hainan in the least environmentally degrading way, (2) eliminates the need to build significant amounts of new fossil-fueled, electric generating capacity, saving capital to invest in other development projects, (3) lowers the cost that Hainan households and businesses will pay to light their homes and run their industries, (4) reduces the future coal import bill, and (5) improves the prospects for export industries. implementing this strategy will promote economic development and growth in Hainan, improve the standard of living, and preserve to the greatest extent possible Hainan's rich environmental resource base, a key requirement for its tourist industry. The focus of this strategy is to adapt proven policies and techniques for producing and using energy more efficiently to existing conditions in Hainan. This Report applies the principles of integrated resource planning (IRP) and the experiences in other countries to outline a strategy for the Province. The experience is that fuel consumption can be reduced without lessening the ability of consumers, industry, and the government to obtain the energy services that higher use of fuel would otherwise bring. Further, those energy services can be provided with less capital investment than would be necessary if traditional practices were followed. Both of these results have obvious and important development and environmental benefits. In short, consumers have more money available to buy other things; production costs are lowered, improving the ability of firms to compete in international markets; and more capital is available to invest in new machinery and equipment that produces goods and services to use in Hainan or to export to other countries.

  1. Energy Efficiency Policy Rules: Options and Alternatives for Illinois |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |in STEMEnergyI. Introduction

  2. Direct fission fragment energy converter - Magnetic collimator option

    SciTech Connect (OSTI)

    Tsvetkov, P. V.; Hart, R. R. [Dept. of Nuclear Engineering, Texas AandM Univ., 129 Zachry Engineering Center, College Station, TX 77843-3133 (United States)

    2006-07-01T23:59:59.000Z

    The present study was focused on developing a technologically feasible power system that is based on direct fission fragment energy conversion utilizing magnetic collimation. The new concept is an attempt to combine several advantageous design solutions, which have been proposed for application in both fission and fusion reactors, into one innovative system that can offer exceptional energy conversion efficiency. The analysis takes into consideration a wide range of operational aspects including fission fragment escape from the fuel, collimation, collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Specific characteristics of the individual system components and the entire system are evaluated. Analysis and evaluation of the technological feasibility of the concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling. In addition to the extensive computational effort, the scaled prototype experimental proof-of-principle program was conducted to validate basic physics of the concept. The program was focused on electromagnetic components and experimental demonstration of performance. This paper summarizes the final results of the 6-years research program including both computational and experimental efforts. Potential future research and development and anticipated applications are discussed. (authors)

  3. 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Panel Discussion 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel Discussion The Office of Electricity Delivery and Energy Reliability held its...

  4. Techno-economic analysis of renewable energy source options for a district heating project

    SciTech Connect (OSTI)

    Ghafghazi, S. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [University of British Columbia, Vancouver

    2009-09-01T23:59:59.000Z

    With the increased interest in exploiting renewable energy sources for district heating applications, the economic comparison of viable options has been considered as an important step in making a sound decision. In this paper, the economic performance of several energy options for a district heating system in Vancouver, British Columbia, is studied. The considered district heating system includes a 10 MW peaking/ backup natural gas boiler to provide about 40% of the annual energy requirement and a 2.5 MW base-load system. The energy options for the base-load system include: wood pellet, sewer heat, and geothermal heat. Present values of initial and operating costs of each system were calculated over 25-year service life of the systems, considering depreciation and salvage as a negative cost item. It was shown that the wood pellet heat producing technologies provided less expensive energy followed by the sewer heat recovery, geothermal and natural gas systems. Among wood pellet technologies, the grate burner was a less expensive option than powder and gasifier technologies. It was found that using natural gas as a fuel source for the peaking/backup system accounted for more than 40% of the heat production cost for the considered district heating center. This is mainly due to the high natural gas prices which cause high operating costs over the service life of the district heating system. Variations in several economic inputs did not change the ranking of the technology options in the sensitivity analysis. However, it was found that the results were more sensitive to changes in operating costs of the system than changes in initial investment. It is economical to utilize wood pellet boilers to provide the base-load energy requirement of district heating systems Moreover, the current business approach to use natural gas systems for peaking and backup in district heating systems could increase the cost of heat production significantly.

  5. Neutronics Assessment of Blanket Options for the HAPL Laser Inertial Fusion Energy Chamber

    E-Print Network [OSTI]

    Raffray, A. René

    -cooled lithium blanket, a helium-cooled solid breeder blanket, and a dual-coolant lithium lead blanket of the reference blanket. Keywords-Laser fusion; lithium blanket; solid breeder; lithium lead; tritium breedingNeutronics Assessment of Blanket Options for the HAPL Laser Inertial Fusion Energy Chamber M

  6. Electrical vehicles impacts on the grids (Smart Grid Project) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to: navigation, searchElectric Fund (CDWR)Electrical

  7. Comments of National Grid to the Smart Grid RFI | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment. CashDay-June 22, 2015 |atfromChallengesNational

  8. G4V Grid for Vehicles (Smart Grid Project) (Portugal) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604°Wisconsin:FyreStorm Inc Jump

  9. Consumer to Grid (C2G) (Smart Grid Project) (Austria) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| OpenCongress,Consolidated EdisonMinor

  10. Optimal Placement of Energy Storage in the Grid Subhonmesh Bose, Dennice F. Gayme, Ufuk Topcu, and K. Mani Chandy

    E-Print Network [OSTI]

    Gayme, Dennice

    Optimal Placement of Energy Storage in the Grid Subhonmesh Bose, Dennice F. Gayme, Ufuk Topcu with these sources has led to a great deal of research into grid level energy storage [1], [2]. Several authors have studied the benefits of energy storage in both the conventional [3] and renewable energy settings [2], [4

  11. Energy Efficiency Tax Credits, Rebates and Financing: What Options Are

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogen andResiliencyDepartment of Energy|

  12. DOE Exercises Option for Mission Support Contract | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project| DepartmentAdvisoryCaptureDOE

  13. Smart Grid: Enabler of the New Energy Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart Grid RFIGrid: Enabler of the New

  14. Off-Grid or Stand-Alone Renewable Energy Systems | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofC T O B EOff-Grid or Stand-Alone

  15. Smart Grid: Enabler of the New Energy Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondarySmartthe AllianceSmart Grid:

  16. Buildings-to-Grid Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal Ongoing at DOE'sBuildings-to-Grid »

  17. To Begin the World Anew: Smart Grids and the Need for a Comprehensive U.S. Energy Policy

    SciTech Connect (OSTI)

    Foster, Nikolas AF

    2011-12-01T23:59:59.000Z

    The United States is in the midst of a monumental transformation of its electric power grid. Advances in information and communication technologies and grid measurement and control devices have initiated the transition toward a more resilient, sustainable and efficient future power grid. Deployment of these technologies is being driven by policies encouraging the shift to a greener grid, incorporating clean and low carbon energy; as well as rising consumer demand for smarter ways to use existing resources.

  18. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Safety Workshop On April 7, 2014, in Capabilities, CINT, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Grid...

  19. Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options Neufville Professor of Engineering Systems Chair, ESD Education Committee #12;2 #12;3 Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities By Chia

  20. Comments of National Grid to the Smart Grid RFI | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational Broadband Plan byCommentsComments of National

  1. Grid Integration Studies: Data Requirements, Greening the Grid (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed Services U.S.Gregory J.Vehicles

  2. Real Options Valuation of U.S. Federal Renewable Energy Research,Development, Demonstration, and Deployment

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Wiser, Ryan H.

    2005-03-01T23:59:59.000Z

    Benefits analysis of US Federal government funded research, development, demonstration, and deployment (RD3) programs for renewable energy (RE) technology improvement typically employs a deterministic forecast of the cost and performance of renewable and nonrenewable fuels. The benefits estimate for a program derives from the difference between two forecasts, with and without the RD3 in place. The deficiencies of the current approach are threefold: (1) it does not consider uncertainty in the cost of non-renewable energy (NRE), and the option or insurance value of deploying RE if and when NRE costs rise; (2) it does not consider the ability of the RD3 manager to adjust the RD3 effort to suit the evolving state of the world, and the option value of this flexibility; and (3) it does not consider the underlying technical risk associated with RD3, and the impact of that risk on the programs optimal level of RD3 effort. In this paper, a rudimentary approach to determining the option value of publicly funded RE RD3 is developed. The approach seeks to tackle the first deficiency noted above by providing an estimate of the options benefit of an RE RD3 program in a future with uncertain NRE costs.While limited by severe assumptions, a computable lattice of options values reveals the economic intuition underlying the decision-making process. An illustrative example indicates how options expose both the insurance and timing values inherent in a simplified RE RD3 program that coarsely approximates the aggregation of current Federal RE RD3.This paper also discusses the severe limitations of this initial approach, and identifies needed model improvements before the approach can adequately respond to the RE RD3 analysis challenge.

  3. Control and Optimization Meet the Smart Power Grid: Scheduling of Power Demands for Optimal Energy

    E-Print Network [OSTI]

    Koutsopoulos, Iordanis

    Control and Optimization Meet the Smart Power Grid: Scheduling of Power Demands for Optimal Energy technologies to enforce sensible use of energy through effective demand load management. We envision a scenario con- sumer power demand requests with different power require- ments, durations, and deadlines

  4. SmartHG: Energy Demand Aware Open Services for Smart Grid Intelligent Automation

    E-Print Network [OSTI]

    Tronci, Enrico

    solar panels)], for each time slot (say each hour) the DNO price policy defines an interval of energySmartHG: Energy Demand Aware Open Services for Smart Grid Intelligent Automation Enrico Tronci.prodanovic,jorn.gruber, barry.hayes}@imdea.org I. INTRODUCTION The SmartHG project [1], [2] has the goal of developing

  5. Solar Energy Systems - Research - Systems Analysis - Smart Grid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Systems U.S. Department of Energy Search Argonne ... Search Argonne Home > SES Home Research Home Photovoltaics Transparent Conductors Concentrating Sunlight Systems...

  6. Development of renewable energy Challenges for the electrical grids

    E-Print Network [OSTI]

    Canet, LĂ©onie

    , Geothermal energy... · The Voice of the Renewable Energy sector for Government & public authorities, TSOs energy consumption · Electricity : new RES capacities ­ 19 000 MW onshore wind ­ 6 000 MW offshore wind #12;RES Development Objectives (Electricity) Objectif 2020 : RES in global energy consumption 2010

  7. 992 IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 2, MARCH 2014 Adaptive Control for Energy Storage Systems in

    E-Print Network [OSTI]

    Pedram, Massoud

    992 IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 2, MARCH 2014 Adaptive Control for Energy Storage) power generation and energy storage systems into the smart grid will provide a better way of utilizing and storage systems. Index Terms--Control, energy storage, photovoltaic, prediction. I. INTRODUCTION

  8. Energy recovery in SUDS towards smart water grids: A case study Helena M. Ramos a,n

    E-Print Network [OSTI]

    Diggavi, Suhas

    Energy recovery in SUDS towards smart water grids: A case study Helena M. Ramos a,n , Charlotte and energy nexus for sustainable operation towards future smart cities. a r t i c l e i n f o Article history: Received 9 January 2013 Accepted 2 August 2013 Keywords: Energy recovery SUDS Smart water grids. a b s t r

  9. Technological options for management of hazardous wastes from US Department of Energy facilities

    SciTech Connect (OSTI)

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01T23:59:59.000Z

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables.

  10. Hydrogen Energy Storage for Grid and Transportation Services...

    Broader source: Energy.gov (indexed) [DOE]

    A Workshop Convened by the U.S. Department of Energy and Industry Canada Hosted by the National Renewable Energy Laboratory and the California Air Resources Board Sheraton Grand...

  11. The CUNY Energy Institute Electrical Energy Storage Development for Grid Applications

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2013-03-31T23:59:59.000Z

    1. Project Objectives The objectives of the project are to elucidate science issues intrinsic to high energy density electricity storage (battery) systems for smart-grid applications, research improvements in such systems to enable scale-up to grid-scale and demonstrate a large 200 kWh battery to facilitate transfer of the technology to industry. 2. Background Complex and difficult to control interfacial phenomena are intrinsic to high energy density electrical energy storage systems, since they are typically operated far from equilibrium. One example of such phenomena is the formation of dendrites. Such dendrites occur on battery electrodes as they cycle, and can lead to internal short circuits, reducing cycle life. An improved understanding of the formation of dendrites and their control can improve the cycle life and safety of many energy storage systems, including rechargeable lithium and zinc batteries. Another area where improved understanding is desirable is the application of ionic liquids as electrolytes in energy storage systems. An ionic liquid is typically thought of as a material that is fully ionized (consisting only of anions and cations) and is fluid at or near room temperature. Some features of ionic liquids include a generally high thermal stability (up to 450 °C), a high electrochemical window (up to 6 V) and relatively high intrinsic conductivities. Such features make them attractive as battery or capacitor electrolytes, and may enable batteries which are safer (due to the good thermal stability) and of much higher energy density (due to the higher voltage electrode materials which may be employed) than state of the art secondary (rechargeable) batteries. Of particular interest is the use of such liquids as electrolytes in metal air batteries, where energy densities on the order of 1-2,000 Wh / kg are possible; this is 5-10 times that of existing state of the art lithium battery technology. The Energy Institute has been engaged in the development of flow-assisted nickel zinc battery technology. This technology has the promise of enabling low-cost (<$250 / kWh) energy storage, while overcoming the historical poor cycle-life drawback. To date, the results have been promising, with a cycle life of 1,500 cycles demonstrated in small laboratory cells – an improvement of approximately 400%. Prior state of the art nickel zinc batteries have only demonstrated about 400 cycles to failure.

  12. Integration of Distributed Energy The CERTS MicroGrid Concept

    E-Print Network [OSTI]

    the California Energy Commission passed upon the accuracy or adequacy of the information in this report. #12 Foundation's Power Systems Engineering Research Center, and Sandia National Laboratories. #12;LBNL-50829 Systems Integration Program Public Interest Energy Research California Energy Commission Prepared

  13. News Release: Energy Department Signs Option and Lease for Durango Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorodSizeprogramProject |

  14. Expanding the Pool of Federal Policy Options to Promote Industrial Energy Efficiency

    SciTech Connect (OSTI)

    Brown, Dr. Marilyn Ann [Georgia Institute of Technology] [Georgia Institute of Technology; Cox, Matthew [Georgia Institute of Technology] [Georgia Institute of Technology; Jackson, Roderick K [ORNL] [ORNL; Lapsa, Melissa Voss [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    Improving the energy efficiency of industry is essential for maintaining the viability of domestic manufacturing, especially in a world economy where production is shifting to low-cost, less regulated developing countries. Numerous studies have shown the potential for significant cost-effective energy-savings in U.S. industries, but the realization of this potential is hindered by regulatory, information, workforce, and financial obstacles. This report evaluates seven federal policy options aimed at improving the energy efficiency of industry, grounded in an understanding of industrial decision-making and the barriers to efficiency improvements. Detailed analysis employs the Georgia Institute of Technology's version of the National Energy Modeling System and spreadsheet calculations, generating a series of benefit/cost metrics spanning private and public costs and energy bill savings, as well as air pollution benefits and the social cost of carbon. Two of the policies would address regulatory hurdles (Output-Based Emissions Standards and a federal Energy Portfolio Standard with Combined Heat and Power); three would help to fill information gaps and workforce training needs (the Superior Energy Performance program, Implementation Support Services, and a Small Firm Energy Management program); and two would tackle financial barriers (Tax Lien Financing and Energy-Efficient Industrial Motor Rebates). The social benefit-cost ratios of these policies appear to be highly favorable based on a range of plausible assumptions. Each of the seven policy options has an appropriate federal role, broad applicability across industries, utilizes readily available technologies, and all are administratively feasible.

  15. Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system that can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.

  16. Buildings-to-Grid Integration | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary 29 - MarchCodesEnergy 3 PeerEnergy1

  17. DCN4TSO (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosaPageEnergy Information

  18. DERIREC 22@Microgrid (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosaPageEnergy InformationDEFRADEIF A

  19. AUSTRIAN GRID AUSTRIAN GRID

    E-Print Network [OSTI]

    AUSTRIAN GRID 1/18 AUSTRIAN GRID THE INITIAL VERSION OF SEE-GRID Document Identifier: AG-DA1c-1) #12;AUSTRIAN GRID 2/18 Delivery Slip Name Partner Date Signature From Károly Bósa RISC 31 See cover on page 3 #12;AUSTRIAN GRID 3/18 THE INITIAL VERSION OF SEE-GRID Karoly Bosa Wolfgang

  20. Scaling Up Renewable Energy Generation: Aligning Targets and Incentives with Grid Integration Considerations, Greening The Grid (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch Briefs TheSanket A.LittleFY13 |SawteethDoug