Sample records for grid demonstration cxs

  1. GROWDERS Demonstration of Grid Connected Electricity Systems...

    Open Energy Info (EERE)

    GROWDERS Demonstration of Grid Connected Electricity Systems (Smart Grid Project) (Spain) Jump to: navigation, search Project Name GROWDERS Demonstration of Grid Connected...

  2. Grid Connectivity Research, Development & Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connectivity Research, Development & Demonstration Projects Grid Connectivity Research, Development & Demonstration Projects 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  3. Smart Grid Demonstration Funding Opportunity Announcement DE...

    Broader source: Energy.gov (indexed) [DOE]

    Frequently asked questions about the Smart Grid Demonstration and Energy Storage Funding Opportunity Announcement released as part of the American Recovery and Reinvestment Act,...

  4. Vehicle to Grid Demonstration Project

    SciTech Connect (OSTI)

    Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

    2010-12-31T23:59:59.000Z

    This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

  5. Pacific Northwest Smart GridPacific Northwest Smart Grid Demonstration ProjectDemonstration Project

    E-Print Network [OSTI]

    customers to choose to control their energy usage ­ Smart meters ­ Home/building/industrial energy controls and displays · Automated home energy use 4 #12;The End-user is the Centerpiece of the Smart Grid 5Pacific Northwest Smart GridPacific Northwest Smart Grid Demonstration ProjectDemonstration Project

  6. Now Available: Pacific Northwest Smart Grid Demonstration Project...

    Energy Savers [EERE]

    Now Available: Pacific Northwest Smart Grid Demonstration Project - Technology Performance Report Volume 1 Now Available: Pacific Northwest Smart Grid Demonstration Project -...

  7. Secretary Chu Announces $620 Million for Smart Grid Demonstration...

    Office of Environmental Management (EM)

    620 Million for Smart Grid Demonstration and Energy Storage Projects: Recovery Act Funding Will Upgrade the Electrical Grid, Save Energy, and Create Jobs Secretary Chu Announces...

  8. Secure Interoperable Open Smart Grid Demonstration Project

    SciTech Connect (OSTI)

    Magee, Thoman

    2014-12-31T23:59:59.000Z

    The Consolidated Edison, Inc., of New York (Con Edison) Secure Interoperable Open Smart Grid Demonstration Project (SGDP), sponsored by the United States (US) Department of Energy (DOE), demonstrated that the reliability, efficiency, and flexibility of the grid can be improved through a combination of enhanced monitoring and control capabilities using systems and resources that interoperate within a secure services framework. The project demonstrated the capability to shift, balance, and reduce load where and when needed in response to system contingencies or emergencies by leveraging controllable field assets. The range of field assets includes curtailable customer loads, distributed generation (DG), battery storage, electric vehicle (EV) charging stations, building management systems (BMS), home area networks (HANs), high-voltage monitoring, and advanced metering infrastructure (AMI). The SGDP enables the seamless integration and control of these field assets through a common, cyber-secure, interoperable control platform, which integrates a number of existing legacy control and data systems, as well as new smart grid (SG) systems and applications. By integrating advanced technologies for monitoring and control, the SGDP helps target and reduce peak load growth, improves the reliability and efficiency of Con Edison’s grid, and increases the ability to accommodate the growing use of distributed resources. Con Edison is dedicated to lowering costs, improving reliability and customer service, and reducing its impact on the environment for its customers. These objectives also align with the policy objectives of New York State as a whole. To help meet these objectives, Con Edison’s long-term vision for the distribution grid relies on the successful integration and control of a growing penetration of distributed resources, including demand response (DR) resources, battery storage units, and DG. For example, Con Edison is expecting significant long-term growth of DG. The SGDP enables the efficient, flexible integration of these disparate resources and lays the architectural foundations for future scalability. Con Edison assembled an SGDP team of more than 16 different project partners, including technology vendors, and participating organizations, and the Con Edison team provided overall guidance and project management. Project team members are listed in Table 1-1.

  9. Locations of Smart Grid Demonstration and Large-Scale Energy...

    Broader source: Energy.gov (indexed) [DOE]

    the location of all projects created with funding from the Smart Grid Demonstration and Energy Storage Project, funded through the American Recovery and Reinvestment Act....

  10. New York State Electric & Gas Corporation Smart Grid Demonstration...

    Open Energy Info (EERE)

    Electric & Gas Corporation Smart Grid Demonstration Project Jump to: navigation, search Project Lead New York State Electric & Gas Corporation Country United States Headquarters...

  11. Pacific Northwest Smart Grid Demonstration Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPO Website Directory PPPOLarson.CherylPacific

  12. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery...

    Office of Environmental Management (EM)

    Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013)...

  13. AEP Ohio gridSMART Demonstration Project Real-Time Pricing Demonstration Analysis

    SciTech Connect (OSTI)

    Widergren, Steven E.; Subbarao, Krishnappa; Fuller, Jason C.; Chassin, David P.; Somani, Abhishek; Marinovici, Maria C.; Hammerstrom, Janelle L.

    2014-02-01T23:59:59.000Z

    This report contributes initial findings from an analysis of significant aspects of the gridSMART® Real-Time Pricing (RTP) – Double Auction demonstration project. Over the course of four years, Pacific Northwest National Laboratory (PNNL) worked with American Electric Power (AEP), Ohio and Battelle Memorial Institute to design, build, and operate an innovative system to engage residential consumers and their end-use resources in a participatory approach to electric system operations, an incentive-based approach that has the promise of providing greater efficiency under normal operating conditions and greater flexibility to react under situations of system stress. The material contained in this report supplements the findings documented by AEP Ohio in the main body of the gridSMART report. It delves into three main areas: impacts on system operations, impacts on households, and observations about the sensitivity of load to price changes.

  14. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Demonstration Using UltraBattery Technology (October 2012) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) East Penn...

  15. 2012 SG Peer Review - Recovery Act: Irvine Smart Grid Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    RD&D Needs Technical Challenges g Energy Smart Customer Devices * Impact of multiple Zero Net Energy technologies (grid and residential load) * PEV load management using...

  16. Consolidated Edison Company of New York, Inc. Smart Grid Demonstration...

    Open Energy Info (EERE)

    The system will include renewable energy generation, grid monitoring, electric vehicle charging stations, transmission automation, and consumer systems that will help...

  17. Secretary Chu Announces $620 Million for Smart Grid Demonstration...

    Energy Savers [EERE]

    "This funding will be used to show how Smart Grid technologies can be applied to whole systems to promote energy savings for consumers, increase energy efficiency, and foster the...

  18. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project, now complete FOR MORE INFORMATION: Rick Knori (307) 739-6038 www.lvenergy.com Cold-climate co-op heats up with smart grid Lower Valley Energy provides electricity to...

  19. Abstract--This paper describes Nice Grid, a demonstration project part of the European initiative Grid4EU. The project

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Grid4EU. The project aims at developing a smart solar neighbourhood in the urban area of the city with forecasts of solar power production and load in a local energy management system. The paper, which demonstration projects on Smart Grid. Index Terms-- Energy storage, Forecasting, Photovoltaic systems, Smart

  20. Smart Grid Regional and Energy Storage Demonstration Projects: Awards |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart Grid RFI Public CommentsDepartment of

  1. Now Available: Pacific Northwest Smart Grid Demonstration Project -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 This is a preprint of a16,8,

  2. Smart Grid Demonstration Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondary Ventilation8 PreparedSmart Grid

  3. Category:Smart Grid Projects - Regional Demonstrations | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformation Demonstrations Projects

  4. Smart Grid Demonstration Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready, Set,Buildings EquipmentDemonstration

  5. Pacific Northwest GridWise™ Testbed Demonstration Projects; Part II. Grid Friendly™ Appliance Project

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.; Brous, Jerry; Chassin, David P.; Horst, Gale R.; Kajfasz, Robert; Michie, Preston; Oliver, Terry V.; Carlon, Teresa A.; Eustis, Conrad; Jarvegren, Olof M.; Marek, W.; Munson, Ryan L.; Pratt, Robert G.

    2007-10-01T23:59:59.000Z

    Fifty residential electric water heaters and 150 new residential clothes dryers were modified to respond to signals received from underfrequency, load-shedding appliance controllers. Each controller monitored the power-grid voltage signal and requested that electrical load be shed by its appliance whenever electric power-grid frequency fell below 59.95 Hz. The controllers and their appliances were installed and monitored for more than a year at residential sites at three locations in Washington and Oregon. The controllers and their appliances responded reliably to each shallow underfrequency event—an average of one event per day—and shed their loads for the durations of these events. Appliance owners reported that the appliance responses were unnoticed and caused little or no inconvenience for the homes’ occupants.

  6. Methodological Approaches for Estimating the Benefits and Costs of Smart Grid Demonstration Projects

    SciTech Connect (OSTI)

    Lee, Russell [ORNL

    2010-01-01T23:59:59.000Z

    This report presents a comprehensive framework for estimating the benefits and costs of Smart Grid projects and a step-by-step approach for making these estimates. The framework identifies the basic categories of benefits, the beneficiaries of these benefits, and the Smart Grid functionalities that lead to different benefits and proposes ways to estimate these benefits, including their monetization. The report covers cost-effectiveness evaluation, uncertainty, and issues in estimating baseline conditions against which a project would be compared. The report also suggests metrics suitable for describing principal characteristics of a modern Smart Grid to which a project can contribute. This first section of the report presents background information on the motivation for the report and its purpose. Section 2 introduces the methodological framework, focusing on the definition of benefits and a sequential, logical process for estimating them. Beginning with the Smart Grid technologies and functions of a project, it maps these functions to the benefits they produce. Section 3 provides a hypothetical example to illustrate the approach. Section 4 describes each of the 10 steps in the approach. Section 5 covers issues related to estimating benefits of the Smart Grid. Section 6 summarizes the next steps. The methods developed in this study will help improve future estimates - both retrospective and prospective - of the benefits of Smart Grid investments. These benefits, including those to consumers, society in general, and utilities, can then be weighed against the investments. Such methods would be useful in total resource cost tests and in societal versions of such tests. As such, the report will be of interest not only to electric utilities, but also to a broad constituency of stakeholders. Significant aspects of the methodology were used by the U.S. Department of Energy (DOE) to develop its methods for estimating the benefits and costs of its renewable and distributed systems integration demonstration projects as well as its Smart Grid Investment Grant projects and demonstration projects funded under the American Recovery and Reinvestment Act (ARRA). The goal of this report, which was cofunded by the Electric Power Research Institute (EPRI) and DOE, is to present a comprehensive set of methods for estimating the benefits and costs of Smart Grid projects. By publishing this report, EPRI seeks to contribute to the development of methods that will establish the benefits associated with investments in Smart Grid technologies. EPRI does not endorse the contents of this report or make any representations as to the accuracy and appropriateness of its contents. The purpose of this report is to present a methodological framework that will provide a standardized approach for estimating the benefits and costs of Smart Grid demonstration projects. The framework also has broader application to larger projects, such as those funded under the ARRA. Moreover, with additional development, it will provide the means for extrapolating the results of pilots and trials to at-scale investments in Smart Grid technologies. The framework was developed by a panel whose members provided a broad range of expertise.

  7. Illuminating the Pecking Order in Off-Grid Lighting: A Demonstration of LED Lighting for Saving Energy in the Poultry Sector

    E-Print Network [OSTI]

    Tracy, Jennifer

    2012-01-01T23:59:59.000Z

    the Pecking Order in Off-Grid Lighting A Demonstration ofanalysis and information on off-grid lighting solutions fordevelopment of commercial off-grid lighting markets in Sub-

  8. Recovery Act - Demonstration of Sodium Ion Battery for Grid Level Applications

    SciTech Connect (OSTI)

    Wiley, Ted; Whitacre, Jay; Eshoo, Michael; Noland, James; Campbell, Williams; Spears, Christopher

    2012-08-31T23:59:59.000Z

    Aquion Energy received a $5.179 million cooperative research agreement under the Department of Energyâ??s Smart Grid Demonstration Program â?? Demonstration of Promising Energy Storage Technologies (Program Area 2.5) of FOA DE-FOE-0000036. The main objective of this project was to demonstrate Aquionâ??s low cost, grid-scale, ambient temperature sodium ion energy storage device. The centerpiece of the technology is a novel hybrid energy storage chemistry that has been proven in a laboratory environment. The objective was to translate these groundbreaking results from the small-batch, small-cell test environment to the pilot scale to enable significant numbers of multiple ampere-hour cells to be manufactured and assembled into test batteries. Aquion developed a proof of concept demonstration unit that showed similar performance and major cost improvement over existing technologies. Beyond minimizing cell and system cost, Aquion built a technology that is safe, environmentally benign and durable over many thousands of cycles as used in a variety of grid support roles. As outlined in the Program documents, the original goals of the project were to demonstrate a unit that: 1. Has a projected capital cost of less than $250/kWh at the pack level 2. A deep discharge cycle life of > 10,000 cycles 3. A volumetric energy density of >20 kWh/m3 4. Projected calendar life of over 10 years 5. A device that contains no hazardous materials and retains best in class safety characteristics. Through the course of this project Aquion developed its aqueous electrolyte electrochemical energy storage device to the point where large demonstration units (> 10 kWh) were able to function in grid-supporting functions detailed by their collaborators. Aquionâ??s final deliverable was an ~15 kWh system that has the ability to perform medium to long duration (> 2 hours) charge and discharge functions approaching 95% DC-DC efficiency. The system has functioned, and continues to function as predicted with no indication that it will not tolerate well beyond 10 calendar years and 10,000 cycles. It has been in continuous operation for more than 1 year with 1,000 cycles (of varying depth of discharge, including 100% depth of discharge) and no identifiable degradation to the system. The final thick electrode cell structure has shown an energy density of 25 kWh/m3 at a five hour (or greater) discharge time. The primary chemistry has remained non-toxic, containing no acids or other corrosive chemicals, and the battery units have passed numerous safety tests, including flame resistance testing. These tests have verified the claim that the device is safe to use and contains no hazardous materials. Current projections show costs at the pack level to offer best in class value and are competitive with lead-acid batteries, factoring in LCOE.

  9. NREL: News - INL and NREL Demonstrate Power Grid Simulation at a Distance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isDataWorkingVoltage (I-V)Working

  10. Maui Smart Grid Demonstration Project Managing Distribution System Resources for Improved Service Quality and Reliability, Transmission Congestion Relief, and Grid Support Functions

    SciTech Connect (OSTI)

    None, None

    2014-09-30T23:59:59.000Z

    The Maui Smart Grid Project (MSGP) is under the leadership of the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii at Manoa. The project team includes Maui Electric Company, Ltd. (MECO), Hawaiian Electric Company, Inc. (HECO), Sentech (a division of SRA International, Inc.), Silver Spring Networks (SSN), Alstom Grid, Maui Economic Development Board (MEDB), University of Hawaii-Maui College (UHMC), and the County of Maui. MSGP was supported by the U.S. Department of Energy (DOE) under Cooperative Agreement Number DE-FC26-08NT02871, with approximately 50% co-funding supplied by MECO. The project was designed to develop and demonstrate an integrated monitoring, communications, database, applications, and decision support solution that aggregates renewable energy (RE), other distributed generation (DG), energy storage, and demand response technologies in a distribution system to achieve both distribution and transmission-level benefits. The application of these new technologies and procedures will increase MECO’s visibility into system conditions, with the expected benefits of enabling more renewable energy resources to be integrated into the grid, improving service quality, increasing overall reliability of the power system, and ultimately reducing costs to both MECO and its customers.

  11. Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system that can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.

  12. MHK Projects/Evopod E35 35kW grid connected demonstrator | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: EnergyMARECInformation kW grid connected

  13. New York State Electric & Gas Corporation Smart Grid Demonstration Project

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppel WindNew GridHyTep JumpsourceJumpNew York Oil|

  14. Pacific Northwest GridWise™ Testbed Demonstration Projects; Part I. Olympic Peninsula Project

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.; Ambrosio, Ron; Carlon, Teresa A.; DeSteese, John G.; Horst, Gale R.; Kajfasz, Robert; Kiesling, Laura L.; Michie, Preston; Pratt, Robert G.; Yao, Mark; Brous, Jerry; Chassin, David P.; Guttromson, Ross T.; Jarvegren, Olof M.; Katipamula, Srinivas; Le, N. T.; Oliver, Terry V.; Thompson, Sandra E.

    2008-01-09T23:59:59.000Z

    This report describes the implementation and results of a field demonstration wherein residential electric water heaters and thermostats, commercial building space conditioning, municipal water pump loads, and several distributed generators were coordinated to manage constrained feeder electrical distribution through the two-way communication of load status and electric price signals. The field demonstration took place in Washington and Oregon and was paid for by the U.S. Department of Energy and several northwest utilities. Price is found to be an effective control signal for managing transmission or distribution congestion. Real-time signals at 5-minute intervals are shown to shift controlled load in time. The behaviors of customers and their responses under fixed, time-of-use, and real-time price contracts are compared. Peak loads are effectively reduced on the experimental feeder. A novel application of portfolio theory is applied to the selection of an optimal mix of customer contract types.

  15. Accelerating development of advanced inverters : evaluation of anti-islanding schemes with grid support functions and preliminary laboratory demonstration.

    SciTech Connect (OSTI)

    Neely, Jason C.; Gonzalez, Sigifredo; Ropp, Michael [Northern Plains Power Technologies, Brookings, SD] [Northern Plains Power Technologies, Brookings, SD; Schutz, Dustin [Northern Plains Power Technologies, Brookings, SD] [Northern Plains Power Technologies, Brookings, SD

    2013-11-01T23:59:59.000Z

    The high penetration of utility interconnected photovoltaic (PV) systems is causing heightened concern over the effect that variable renewable generation will have on the electrical power system (EPS). These concerns have initiated the need to amend the utility interconnection standard to allow advanced inverter control functionalities that provide: (1) reactive power control for voltage support, (2) real power control for frequency support and (3) better tolerance of grid disturbances. These capabilities are aimed at minimizing the negative impact distributed PV systems may have on EPS voltage and frequency. Unfortunately, these advanced control functions may interfere with island detection schemes, and further development of advanced inverter functions requires a study of the effect of advanced functions on the efficacy of antiislanding schemes employed in industry. This report summarizes the analytical, simulation and experimental work to study interactions between advanced inverter functions and anti-islanding schemes being employed in distributed PV systems.

  16. AUSTRIAN GRID AUSTRIAN GRID

    E-Print Network [OSTI]

    AUSTRIAN GRID 1/18 AUSTRIAN GRID THE INITIAL VERSION OF SEE-GRID Document Identifier: AG-DA1c-1) #12;AUSTRIAN GRID 2/18 Delivery Slip Name Partner Date Signature From Károly Bósa RISC 31 See cover on page 3 #12;AUSTRIAN GRID 3/18 THE INITIAL VERSION OF SEE-GRID Karoly Bosa Wolfgang

  17. Green Energy Workshop Student Posters Semantic Complex Event Processing for Smart Grid Information

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    for Smart Grid Information Integration and Demand Management Qunzhi Zhou, Yogesh of the power grid to a Smart Grid. The benefits of Smart Grid include demand Grid Demonstration Project. We define an ontology model for Smart Grid

  18. Sandia National Laboratories: Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Its Phase 1 Operational Demonstration in Late January On April 5, 2013, in Distribution Grid Integration, Energy Assurance, Energy Assurance, Energy Surety, Grid Integration,...

  19. Illuminating the Pecking Order in Off-Grid Lighting: A Demonstration of LED Lighting for Saving Energy in the Poultry Sector

    SciTech Connect (OSTI)

    Tracy, Jennifer; Mills, Evan

    2010-11-06T23:59:59.000Z

    The Lumina Project and Lighting Africa conducted a full-scale field test involving a switch from kerosene to solar-LED lighting for commercial broiler chicken production at an off-grid farm in Kenya. The test achieved lower operating costs, produced substantially more light, improved the working environment, and had no adverse effect on yields. A strategy using conventional solar-fluorescent lighting also achieved comparable yields, but entailed a six-fold higher capital cost and significantly higher recurring battery replacement costs. Thanks to higher energy and optical efficiencies, the LED system provided approximately twice the illumination to the chicken-production area and yet drew less than half the power.At the study farm, 3000 chickens were grown in each of three identical houses under kerosene, fluorescent, and LED lighting configurations. Under baseline conditions, a yearly expenditure of 1,200 USD is required to illuminate the three houses with kerosene. The LED system eliminates this fuel use and expense with a corresponding simple payback time of 1.5 years, while the solar-fluorescent system has a payback time of 9.3 years. The corresponding reduction in fuel expenditure in both cases represents a 15percent increase in after-tax net income (revenues minus expenses) across the entire business operation. The differential cost-effectiveness between the LED and fluorescent systems would be substantially greater if the fluorescent system were upsized to provide the same light as the LED system. Providing light with the fluorescent or LED systems is also far more economical than connecting to the grid in this case. The estimated grid-connection cost at this facility is 1.7 million Kenya Schillings (approximately 21,250 USD), which is nearly six-times the cost of the fluorescent system and 35-times the cost of the LED system.The LED system also confers various non-energy benefits. The relative uniformity of LED lighting, compared to the fluorescent or kerosene lighting, reduced crowding which in turn created a less stressful environment for the chickens. The far higher levels of illumination also created a better environment for the workers, while eliminating the time required for obtaining fuel and maintaining kerosene lanterns. An additional advantage of the LED system relative to the solar fluorescent system was that the former does not require a skilled technician to carry out the installation. The portable LED system lighting layout is also more easily adjusted than that of the hardwired fluorescent systems. Furthermore, switching to the LED system avoids over one metric ton of carbon dioxide emissions per house on an annual basis compared to kerosene. There is high potential for replication of this particular LED lighting strategy in the developing world. In order to estimate the scale of kerosene use and the potential for savings, more information is needed on the numbers of chickens produced off-grid, as well as lighting uses for other categories of poultry production (egg layers, indigenous broilers ). Our discovery that weight gain did not slow in the solar-fluorescent house after it experienced extended lighting outages beginning on day 14 of the 35-day study suggests that conventional farming practices in Kenyan broiler operations may call for more hours of lighting than is needed to achieve least-cost production.

  20. EA-1751: Smart Grid, New York State Gas & Electric, Compressed Air Energy Storage Demonstration Plant, Near Watkins Glen, Schuyler County, New York

    Broader source: Energy.gov [DOE]

    DOE will prepare an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of a compressed air energy storage demonstration plant in Schuyler County, New York.

  1. Applications (Grid Tools)

    E-Print Network [OSTI]

    Buyya, Rajkumar

    Grid Fabric Software Grid Applications Core Grid Middleware User-Level Middleware (Grid Tools) !"# $ %& ' ( ) * #& + '& ' , - . / # ) ) 0 # * 1 PDB CDB Grid Fabric Hardware &+ '' + ) , '1 '1 ' % - * # ( Grid Fabric Software Grid Applications Core Grid Middleware User-Level Middleware (Grid Tools) !"# $ %& ' ( ) * #& + '& ' , - . / # ) ) 0

  2. Demonstration of a Novel Synchrophasor-based Situational Awareness System: Wide Area Power System Visualization, On-line Event Replay and Early Warning of Grid Problems

    SciTech Connect (OSTI)

    Rosso, A.

    2012-12-31T23:59:59.000Z

    Since the large North Eastern power system blackout on August 14, 2003, U.S. electric utilities have spent lot of effort on preventing power system cascading outages. Two of the main causes of the August 14, 2003 blackout were inadequate situational awareness and inadequate operator training In addition to the enhancements of the infrastructure of the interconnected power systems, more research and development of advanced power system applications are required for improving the wide-area security monitoring, operation and planning in order to prevent large- scale cascading outages of interconnected power systems. It is critically important for improving the wide-area situation awareness of the operators or operational engineers and regional reliability coordinators of large interconnected systems. With the installation of large number of phasor measurement units (PMU) and the related communication infrastructure, it will be possible to improve the operators’ situation awareness and to quickly identify the sequence of events during a large system disturbance for the post-event analysis using the real-time or historical synchrophasor data. The purpose of this project was to develop and demonstrate a novel synchrophasor-based comprehensive situational awareness system for control centers of power transmission systems. The developed system named WASA (Wide Area Situation Awareness) is intended to improve situational awareness at control centers of the power system operators and regional reliability coordinators. It consists of following main software modules: • Wide-area visualizations of real-time frequency, voltage, and phase angle measurements and their contour displays for security monitoring. • Online detection and location of a major event (location, time, size, and type, such as generator or line outage). • Near-real-time event replay (in seconds) after a major event occurs. • Early warning of potential wide-area stability problems. The system has been deployed and demonstrated at the Tennessee Valley Authority (TVA) and ISO New England system using real-time synchrophasor data from openPDC. Apart from the software product, the outcome of this project consists of a set of technical reports and papers describing the mathematical foundations and computational approaches of different tools and modules, implementation issues and considerations, lessons learned, and the results of lidation processes.

  3. Grid Integration

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

  4. GROWDERS Demonstration of Grid Connected Electricity Systems (Smart Grid

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604°Wisconsin:FyreStormGLOBAL FINANCIALGP

  5. Grid Connectivity Research, Development & Demonstration Projects

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Pacific Northwest Smart Grid Demonstration Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R A T I O N Renewable expansion for a historic utility There's a lot of sunshine in the heart of Washington State. So much so that the City of Ellensburg uses the area's most...

  7. Grid Connectivity Research, Development & Demonstration Projects

    Broader source: Energy.gov (indexed) [DOE]

    implement the SAE J28472 DC charging communication protocol Power Line Communication (PLC) over 1 kHz pilot wire requires a broad range of coexistence, crosstalk and...

  8. Pacific Northwest Smart Grid Demonstration Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognizedEnergyOctOber 23, 2014

  9. Pacific Northwest Smart Grid Demonstration Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognizedEnergyOctOber 23,

  10. Grid Security

    E-Print Network [OSTI]

    Sinnott, R.O.

    Sinnott,R.O. National Centre for e-Social Science book, Grid Computing: Technology, Service and Application, CRC Press, November 2008.

  11. EL Program: Smart Grid Program Manager: David Wollman, Smart Grid and Cyber-Physical Systems

    E-Print Network [OSTI]

    EL Program: Smart Grid Program Manager: David Wollman, Smart Grid and Cyber-Physical Systems Program Office, Associate Program Manager: Dean Prochaska, Smart Grid and Cyber- Physical Systems Program [updated August 23, 2013] Summary: This program develops and demonstrates smart grid measurement science

  12. Smart Grid Investments Improve Grid Reliability, Resilience,...

    Office of Environmental Management (EM)

    Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November...

  13. Product Demonstrations

    Broader source: Energy.gov [DOE]

    The Consortium will pursue a number of demonstrations following the general procedure used by DOE's GATEWAY demonstration program. Specific products to be featured in a demonstration may be...

  14. Grid Architecture

    Broader source: Energy.gov (indexed) [DOE]

    Integration of Distributed Generation", John McDonald, et.al. Electrical Transmission and Smart Grids, Springer, 2013. 4.25 Figure 4.17. Common Distribution Looping Arrangements In...

  15. Selection Criteria for Demonstration Projects | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    and Logistical Challenges to Smart Grid Implementation Demonstration and Deployment Workshop Day 1 Offshore Resource Assessment and Design Conditions Public Meeting Summary Report...

  16. Honeywell Demonstrates Automated Demand Response Benefits for...

    Broader source: Energy.gov (indexed) [DOE]

    Honeywell's Smart Grid Investment Grant (SGIG) project demonstrates utility-scale performance of a hardwaresoftware platform for automated demand response (ADR). This project...

  17. Verification of the coupled fluid/solid transfer in a CASL grid-to-rod-fretting simulation : a technical brief on the analysis of convergence behavior and demonstration of software tools for verification.

    SciTech Connect (OSTI)

    Copps, Kevin D.

    2011-12-01T23:59:59.000Z

    For a CASL grid-to-rod fretting problem, Sandia's Percept software was used in conjunction with the Sierra Mechanics suite to analyze the convergence behavior of the data transfer from a fluid simulation to a solid mechanics simulation. An analytic function, with properties relatively close to numerically computed fluid approximations, was chosen to represent the pressure solution in the fluid domain. The analytic pressure was interpolated on a sequence of grids on the fluid domain, and transferred onto a separate sequence of grids in the solid domain. The error in the resulting pressure in the solid domain was measured with respect to the analytic pressure. The error in pressure approached zero as both the fluid and solids meshes were refined. The convergence of the transfer algorithm was limited by whether the source grid resolution was the same or finer than the target grid resolution. In addition, using a feature coverage analysis, we found gaps in the solid mechanics code verification test suite directly relevant to the prototype CASL GTRF simulations.

  18. FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced Computational Kernels OBJECTIVE The U of the power grid will also have to evolve to insure accurate and timely simulations. On the other hand, the software tools available for power grid simulation today are primarily sequential single core programs

  19. FUTURE POWER GRID INITIATIVE Next Generation Network

    E-Print Network [OSTI]

    designed by PNNL and currently being deployed in the AEP gridSMART Demonstration Project, and » developed that will position PNNL as the leader in modeling and planning power grid data communication networks. External users scenarios and testing of communication requirements with smart grid investments. November 2012 PNNL-SA-90012

  20. Anisotropic Grid Adaptation for Multiple Aerodynamic Outputs

    E-Print Network [OSTI]

    Peraire, Jaime

    Anisotropic Grid Adaptation for Multiple Aerodynamic Outputs David A. Venditti and David L Anisotropic grid­adaptive strategies are presented for viscous flow simulations in which the accurate estimation and Hessian-based anisotropic grid adaptation. Airfoil test cases are presented to demonstrate

  1. Platform for a modern grid: customer engagement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stories engaging the customer when deploying new technologies in the nation's largest smart grid demonstration. Related Articles (by tag) Energy Smart Industrial: five years of...

  2. NATL Grid Map 50-Meter Grid

    E-Print Network [OSTI]

    Slatton, Clint

    NATL-east NATL Grid Map 50-Meter Grid Locations in NATL can be specified by reference to a grid intervals. Each gridline intersection ("grid point") is identified by its two gridlines (e.g., E5). Each 50x50-m block formed by the gridlines is identified by the grid point in its northwest corner (e

  3. Structural Vulnerability Assessment of Electric Power Grids

    E-Print Network [OSTI]

    Koç, Yakup; Kooij, Robert E; Brazier, Frances M T

    2013-01-01T23:59:59.000Z

    Cascading failures are the typical reasons of black- outs in power grids. The grid topology plays an important role in determining the dynamics of cascading failures in power grids. Measures for vulnerability analysis are crucial to assure a higher level of robustness of power grids. Metrics from Complex Networks are widely used to investigate the grid vulnerability. Yet, these purely topological metrics fail to capture the real behaviour of power grids. This paper proposes a metric, the effective graph resistance, as a vulnerability measure to de- termine the critical components in a power grid. Differently than the existing purely topological measures, the effective graph resistance accounts for the electrical properties of power grids such as power flow allocation according to Kirchoff laws. To demonstrate the applicability of the effective graph resistance, a quantitative vulnerability assessment of the IEEE 118 buses power system is performed. The simulation results verify the effectiveness of the effect...

  4. Grid Load Balancing Using Intelligent Agents Junwei Cao1

    E-Print Network [OSTI]

    Jarvis, Stephen

    - 1 - Grid Load Balancing Using Intelligent Agents Junwei Cao1 , Daniel P. Spooner* , Stephen A for grid computing. The management and scheduling of dynamic grid resources in a scalable way requires new technologies to implement a next generation intelligent grid environment. This work demonstrates that AI

  5. GATEWAY Demonstrations

    Broader source: Energy.gov [DOE]

    DOE GATEWAY demonstrations showcase high-performance LED products for general illumination in a variety of commercial and residential applications. Demonstration results provide real-world experience and data on state-of-the-art solid-state lighting (SSL) product performance and cost effectiveness. These results connect DOE technology procurement efforts with large-volume purchasers and provide buyers with reliable data on product performance.

  6. NAVAJO ELECTRIFICATION DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Terry W. Battiest

    2008-06-11T23:59:59.000Z

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year project which addresses the electricity needs of the unserved and underserved Navajo Nation, the largest American Indian tribe in the United States. The program serves to cumulatively provide off-grid electricty for families living away from the electricty infrastructure, line extensions for unserved families living nearby (less than 1/2 mile away from) the electricity, and, under the current project called NEDP-4, the construction of a substation to increase the capacity and improve the quality of service into the central core region of the Navajo Nation.

  7. Now Available: Smart Grid Investments Improve Grid Reliability...

    Energy Savers [EERE]

    Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and...

  8. Brookhaven National Laboratory Smarter Grid Centers

    E-Print Network [OSTI]

    Homes, Christopher C.

    1. Sustainable Chemical Conversion 2. Electric Grid Infrastructure · De-carbonized Generation Distribution Infrastructure - How does Smarter Electric Grid Research, Innovation, Development, Demonstration ­ SGRID3 SGRID3 Goals · Lower the cost of electric power by 5-10% · Improve the quality and reliability

  9. Smart Grid

    E-Print Network [OSTI]

    Haskell,

    2011-01-01T23:59:59.000Z

    -Conditioner, 15min ESL-KT-11-11-22 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 What is Pecan Street Inc. ? A research-oriented smart home demonstration ? that places added interest to residential consumer experiences. ESL-KT-11-11-22 CATEE 2011, Dallas... to 1000 homes ? many with consumer feedback, load controls ? Lab completion ? 100+ electric vehicles ? Smart appliances ? Residential Storage ? LEED Hospital and multi-home systems ? home health, home security ESL-KT-11-11-22 CATEE 2011, Dallas...

  10. Fact Sheet: Community Energy Storage for Grid Support (October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detroit Edison American Recovery and Reinvestment Act (ARRA) Community Energy Storage for Grid Support Demonstrating advanced implementation of community energy storage...

  11. Economic Impact of Recovery Act Investments in the Smart Grid...

    Office of Environmental Management (EM)

    in Smart Grid Technologies Improves Services and Lowers Costs SGDP Report Now Available: Interoperability of Demand Response Resources Demonstration in NY (February 2015)...

  12. 2012 SG Peer Review - Recovery Act: LADWP Smart Grid Regional...

    Energy Savers [EERE]

    Funding (K) FY1011 - FY1516 60,280K Match Grant Technical Scope *Integrate Electric Vehicles into the LADWP grid *Demonstrate integrated Demand Response operation and...

  13. Technical Assistance to ISO's and Grid Operators For Loads Providing...

    Broader source: Energy.gov (indexed) [DOE]

    Project demonstrates and promotes the use of responsive load to provide ancillary services; helps ISOsand grid operators understand the resource and how best to apply it. Technical...

  14. NREL: Transmission Grid Integration - Grid Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecasting NREL researchersGrid

  15. Smart Grid Consortium, Response of New York State Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consortium, Response of New York State Smart Grid Addressing Policy and Logistical Challenges Smart Grid Consortium, Response of New York State Smart Grid Addressing Policy and...

  16. Grid Interaction Tech Team, and International Smart Grid Collaboration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Team, and International Smart Grid Collaboration Grid Interaction Tech Team, and International Smart Grid Collaboration 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  17. 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Panel Discussion 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel Discussion The Office of Electricity Delivery and Energy Reliability held its...

  18. FUTURE POWER GRID INITIATIVE GridOPTICSTM

    E-Print Network [OSTI]

    of individual software products November 2012 PNNL-SA-90162 Ian Gorton Pacific Northwest National Laboratory (509) 375-3850 ian.gorton@pnnl.gov ABOUT FPGI The Future Power Grid Initiative (FPGI) will deliver next National Laboratory's (PNNL) national electric grid research facility, the FPGI will advance the science

  19. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis, News, Partnership, SMART Grid Vermont-a leader in energy efficiency and deployment of so-called smart-grid...

  20. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis, News, Partnership, SMART Grid Vermont-a leader in energy efficiency and deployment of so-called smart-grid...

  1. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration Energy Supply Transformation Needed On February 20, 2013, in DETL, Distribution Grid Integration, Energy, Energy Assurance, Energy Surety, Grid Integration,...

  2. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution Grid Integration, Energy, Energy...

  3. Grid Logging: Best Practices Guide

    E-Print Network [OSTI]

    Tierney, Brian L

    2008-01-01T23:59:59.000Z

    Revision date: March 1, 2008 Grid Logging: Best Practicesis to help developers of Grid middleware and applicationlog files that will be useful to Grid administrators, users,

  4. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offers Approach to Help Utilities Understand Effects of PV Variability on the Grid On March 7, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid...

  5. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    Data Injection Attacks on Power Grids”, IEEE Transactionson Smart Grid, vol. 2, no. 2, June [21] O. Kosut, L.Data Attacks on Smart Grid State Estimation: Attack

  6. Sandia National Laboratories: electric grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid Integration,...

  7. Smart Grid Information Clearinghouse (SGIC)

    SciTech Connect (OSTI)

    Rahman, Saifur

    2014-08-31T23:59:59.000Z

    Since the Energy Independence and Security Act of 2007 was enacted, there has been a large number of websites that discusses smart grid and relevant information, including those from government, academia, industry, private sector and regulatory. These websites collect information independently. Therefore, smart grid information was quite scattered and dispersed. The objective of this work was to develop, populate, manage and maintain the public Smart Grid Information Clearinghouse (SGIC) web portal. The information in the SGIC website is comprehensive that includes smart grid information, research & development, demonstration projects, technical standards, costs & benefit analyses, business cases, legislation, policy & regulation, and other information on lesson learned and best practices. The content in the SGIC website is logically grouped to allow easily browse, search and sort. In addition to providing the browse and search feature, the SGIC web portal also allow users to share their smart grid information with others though our online content submission platform. The Clearinghouse web portal, therefore, serves as the first stop shop for smart grid information that collects smart grid information in a non-bias, non-promotional manner and can provide a missing link from information sources to end users and better serve users’ needs. The web portal is available at www.sgiclearinghouse.org. This report summarizes the work performed during the course of the project (September 2009 – August 2014). Section 2.0 lists SGIC Advisory Committee and User Group members. Section 3.0 discusses SGIC information architecture and web-based database application functionalities. Section 4.0 summarizes SGIC features and functionalities, including its search, browse and sort capabilities, web portal social networking, online content submission platform and security measures implemented. Section 5.0 discusses SGIC web portal contents, including smart grid 101, smart grid projects, deployment experience (i.e., use cases, lessons learned, cost-benefit analyses and business cases), in-depth information (i.e., standards, technology, cyber security, legislation, education and training and demand response), as well as international information. Section 6.0 summarizes SGIC statistics from the launch of the portal on July 07, 2010 to August 31, 2014. Section 7.0 summarizes publicly available information as a result of this work.

  8. Smart Grid Overview

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Overview Ben Kroposki, PhD, PE Director, Energy Systems IntegraLon NaLonal Renewable Energy Laboratory What is t he S mart Grid? and DER Source: NISTEPRI Architecture...

  9. Fuel rod support grid

    DOE Patents [OSTI]

    Downs, Robert E. (Monroeville, PA); Schwallie, Ambrose L. (Greensburg, PA)

    1985-01-01T23:59:59.000Z

    A grid for the support of nuclear fuel rods arranged in a triangular array. The grid is formed by concentric rings of strap joined by radially arranged web sections.

  10. The soft grid

    E-Print Network [OSTI]

    Kardasis, Ari (Ari David)

    2011-01-01T23:59:59.000Z

    The grid in architecture is a systematic organization of space. The means that architects use to organize space are, almost by definition, rigid and totalizing. The Cartesian grid, which will serve as the antagonist of the ...

  11. Method of grid generation

    DOE Patents [OSTI]

    Barnette, Daniel W. (Veguita, NM)

    2002-01-01T23:59:59.000Z

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  12. Residential Transactive Control Demonstration

    SciTech Connect (OSTI)

    Widergren, Steven E.; Fuller, Jason C.; Marinovici, Maria C.; Somani, Abhishek

    2014-02-19T23:59:59.000Z

    Arguably the most exciting aspect of the smart grid vision is the full participation of end-use resources with all forms of generation and energy storage in the reliable and efficient operation of an electric power system. Engaging all of these resources in a collaborative manner that respects the objectives of each resource, is sensitive to the system and local constraints of electricity flow, and scales to the large number of devices and systems participating is a grand challenge. Distributed decision-making system approaches have been presented and experimentation is underway. This paper reports on the preliminary findings of a residential demand response demonstration that uses the bidding transactions of supply and end-use air conditioning resources communicating with a real-time, 5 minute market to balance the various needs of the participants on a distribution feeder. The nature of the demonstration, the value streams being explored, and the operational scenarios implemented to characterize the system response are summarized along with preliminary findings.

  13. The Smart Grid, A Scale Demonstration Model Incorporating Electrified Vehicles

    E-Print Network [OSTI]

    Clemon, Lee; Mattson, Jon; Moore, Andrew; Necefer, Len; Heilman, Shelton

    2011-04-01T23:59:59.000Z

    energy infrastructure. Furthermore, with the advent and commercialization of electrified vehicles, energy demand has the capability to increase dramatically. A sustainable solution via renewable energy technologies can act to offset... to ensure the energy security of the United States. Supported by the EPA P3 initiative, the current small-scale stage of the EcoHawks design project involves creation of a smart energy infrastructure that integrates solar and wind renewable energy...

  14. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 2014 FLATHEAD ELECTRIC CO-OP FLATHEAD ELECTRIC CO-OP Kalispell, Montana * Locally-owned & operated since 1937 * Second largest utility in state * 3,900 miles of line * 48,000...

  15. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22, 2014 IDAHO FALLS POWER IDAHO FALLS POWER Idaho Falls, Idaho * Locally-owned and operated since 1900 * Largest municipal utility in Idaho * 27,000 metered customers, including...

  16. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    400,000 metered customers INVESTMENT IN PNWSGDP: * 2.1 million HIGHLIGHTS: * Demand response program * Distribution Voltage Reduciton * Advanced AMI communicatons net- work *...

  17. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    City Light's second largest customer. Even so, the campus also has its own five megawatt steam turbine generator. The power is distributed through a network of underground utility...

  18. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program and tested some newer technologies, such as voltage reduction and voltage-sensing water heaters. Of the 60,000 metered-customers involved in the regionwide project,...

  19. Secretary Chu Announces $620 Million for Smart Grid Demonstration and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle School (6-8)Need forNext GenerationEnergy Storage

  20. Secretary Chu Announces $620 Million for Smart Grid Demonstration and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle School (6-8)Need forNext GenerationEnergy StorageEnergy

  1. Seeo, Inc Smart Grid Demonstration Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners, NewSeeger Engineering AG Jump

  2. 44 Tech Inc. Smart Grid Demonstration Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Windthe Commission | OpenDevelopmentOperating et seq.Tech Inc.

  3. Public Service Company of New Mexico Smart Grid Demonstration Project |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon TwitterZip JumpProwind GmbHPublicOpen Energy

  4. Primus Power Corporation Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power RentalAreas-|Log JumpNew York,

  5. Consolidated Edison Company of New York, Inc. Smart Grid Demonstration

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentrating Solar Power BasicsConnectiveOpenEI

  6. Secretary Chu Announces $620 Million for Smart Grid Demonstration and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »Usage »DownloadSolarSequestration | Department ofEnergy Storage Projects:

  7. Pacific Gas & Electric Company Smart Grid Demonstration Project | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York:Ozark,Pacific Gas & Electric CoEnergy

  8. Pecan Street Project, Inc. Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,Parle Biscuits PvtPawPearland, Texas:

  9. Premium Power Corporation Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for Energy Efficiency Jump to:Open

  10. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognizedEnergyOctOber 23,17,

  11. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognizedEnergyOctOber 23,17,0,

  12. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognizedEnergyOctOber

  13. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognizedEnergyOctOber22, 2014

  14. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognizedEnergyOctOber22, 2014,

  15. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognizedEnergyOctOber22,

  16. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognizedEnergyOctOber22,2, 2014

  17. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognizedEnergyOctOber22,2,

  18. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognizedEnergyOctOber22,2,25,

  19. City of Painesville Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona, Mississippi (UtilityCity ofCityCity

  20. NSTAR Electric & Gas Corporation Smart Grid Demonstration Project (2) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/AmesNS Solar Material Co Ltd Jump

  1. Oncor Electric Delivery Company, LLC Smart Grid Demonstration Project |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia Green Fuels Jump to:Omniwatt Jump

  2. Southern California Edison Company Smart Grid Demonstration Project (2) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast Colorado Power Assn Jump to:Southern AllianceSCE

  3. Duke Energy Business Services, LLC Smart Grid Demonstration Project | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey:Jump to:Dudleyville, Arizona:

  4. The Detroit Edison Company Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformation 2EnergyCity of Union CityInformation

  5. US Recovery Act Smart Grid Demonstration Projects | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas,UGIURDB SchemaNeal Hot Springs

  6. US Recovery Act Smart Grid Regional Demonstration Projects | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas,UGIURDB SchemaNeal HotOpen

  7. Demonstration project Smart Charging (Smart Grid Project) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: Energy Resources

  8. The Boeing Company Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC Jump to: navigation, searchLook at

  9. Ktech Corporation Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea Parts and FastenersKowloonKrishna

  10. Long Island Power Authority Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan CityLiqcrytech

  11. Southern California Edison Company Smart Grid Demonstration Project | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop, Inc Jump to: navigation, searchCAEnergy

  12. Category:Smart Grid Projects - Energy Storage Demonstrations | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo BackLocation MediaGrantInformation

  13. NSTAR Electric & Gas Corporation Smart Grid Demonstration Project | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy ResourcesOcean Energy Thermal Conversion8Energy

  14. National Rural Electric Cooperative Association Smart Grid Demonstration

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergy Information ConferenceProject | Open Energy

  15. Waukesha Electric Systems Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraph HomeWaranaWater Power Forum

  16. Smart Grid Regional and Energy Storage Demonstration Projects: Awards |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondarySmartthe Alliance to Save

  17. US Recovery Act Smart Grid Energy Storage Demonstration Projects | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpTypefor Africa |Green6NFCRC

  18. Secretary Chu Announces $620 Million for Smart Grid Demonstration and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - Policy Advisor, EnergyA lookTechnology |Energy Storage Projects

  19. Smart Grid Demonstration Funding Opportunity Announcement DE-FOA-0000036:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWork Force withNonprofit---5---12DOE Smart8 Prepared

  20. Amber Kinetics, Inc. Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgouraAlbatechFuels JumpKinetics Jump

  1. Beacon Power Corporation Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtriaPower

  2. East Penn Manufacturing Co. Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Jump to:(RES-AEI)Coast UtilitiesInformation

  3. Improving Energy Use Forecast for Campus Micro-grids using Indirect Indicators Department of Computer Science

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    and institutional campuses can significantly contribute to energy conservation. The rollout of smart grids of occupants, and is a micro-grid test-bed for the DoE sponsored Los Angeles Smart Grid Demonstration ProjectImproving Energy Use Forecast for Campus Micro-grids using Indirect Indicators Saima Aman

  4. Understanding The Smart Grid

    SciTech Connect (OSTI)

    NONE

    2007-11-15T23:59:59.000Z

    The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology providers involved in the Smart Grid and provides profiles on them including contact information, company overviews, technology reviews, and key Smart Grid activities.

  5. Response Resources Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    Manager, Smart Grid Implementation Group Recipient: Consolidated Edison Company of New York, Inc. Team members: Innoventive Power and Verizon Communications Consolidated Edison...

  6. Grid Transformation Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-03-Grid-Transformation-Workshop Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  7. Exploiting the Computational Grid Lecture 1 Globus and the Grid

    E-Print Network [OSTI]

    Exploiting the Computational Grid Lecture 1 ­ Globus and the Grid · The grid needs middleware to enable things such as logins etc · The toolkit model for the grid is to define a set of standards for the grid and then develop applications on top. The low level stuff is then hidden from the user · Globus

  8. Mapping Unstructured Grids to Structured Grids and Multigrid

    E-Print Network [OSTI]

    Chapter 4 Mapping Unstructured Grids to Structured Grids and Multigrid Many problems based solution is to map the unstructured grid onto a structured grid and then apply multigrid to a sequence). We 65 #12; CHAPTER 4. MAPPING UNSTRUCTURED GRIDS 66 show that unless great care is taken

  9. Fuel Cell Demonstration Program

    SciTech Connect (OSTI)

    Gerald Brun

    2006-09-15T23:59:59.000Z

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

  10. Grid Architecture William E. Johnston

    E-Print Network [OSTI]

    Grid Architecture William E. Johnston Lawrence Berkeley National Lab and NASA Ames Research Center wejohnston@lbl.gov (These slides are available at grid.lbl.gov/~wej/Grids) #12;Distributed Resources Condor Internet optical networks space-based networks Grid Communication Functions Communications BasicGrid

  11. Smart Grid: Transforming the Electric System

    SciTech Connect (OSTI)

    Widergren, Steven E.

    2010-04-13T23:59:59.000Z

    This paper introduces smart grid concepts, summarizes the status of current smart grid related efforts, and explains smart grid priorities.

  12. GridOPTICS(TM) A Novel Software Framework for Integrating Power Grid Data Storage, Management and Analysis

    SciTech Connect (OSTI)

    Gorton, Ian; Yin, Jian; Akyol, Bora A.; Ciraci, Selim; Critchlow, Terence; Liu, Yan; Gibson, Tara D.; Purohit, Sumit; Sharma, Poorva; Vlachopoulou, Maria

    2013-01-09T23:59:59.000Z

    This paper describes the architecture and design of GridOPTICSTM, a novel software framework to integrate a collection of software tools developed by PNNL’s Future Power Grid Initiative (FPGI) into a coherent, powerful operations and planning tool for the power grid of the future. GridOPTICSTM enables plug-and-play of various analysis, modeling and visualization software tools for fast and accurate control of the power grid. To bridge the data access for different control purposes, GridOPTICSTM provides a scalable and thin layer of event processing that hides the complexity of data storage and management. The initial prototype of GridOPTICSTM was demonstrated with several use cases from PNNL’s FPGI.

  13. Sandia Energy - Smart Grid Tools and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Tools and Technology Home Stationary Power Grid Modernization Renewable Energy Integration Smart Grid Tools and Technology Smart Grid Tools and TechnologyTara...

  14. Modern Grid Strategy: Enhanced GridLAB-D Capabilities Final Report

    SciTech Connect (OSTI)

    Schneider, Kevin P.; Fuller, Jason C.; Tuffner, Francis K.; Chen, Yousu

    2009-09-09T23:59:59.000Z

    GridLAB-D is a software simulation environment that was initially developed by the US Department of Energy (DOE) Office of Electricity (OE) for the purpose of enabling the effective analysis of emerging smart grid technologies. In order to achieve this goal GridLAB-D was developed using an open source approach with the intent that numerous people and organizations would contribute to the ongoing development. Because of the breadth and complexity of the emerging smart grid technologies the inclusion of multiple groups of developers is essential in order to address the many aspects of the smart grid. As part of the continuing Modern Grid Strategy (MGS) the Pacific Northwest National Laboratory (PNNL) has been tasked with developing an advanced set of GridLAB-D capabilities. These capabilities were developed to enable the analysis of complex use case studies which will allow for multi-disciplinary analysis of smart grid operations. The advanced capabilities which were developed include the implementation of an unbalanced networked power flow algorithm, the implementation of an integrated transmission and distribution system solver, and a set of use cases demonstrating the capabilities of the new solvers.

  15. The CMS integration grid testbed

    SciTech Connect (OSTI)

    Graham, Gregory E.

    2004-08-26T23:59:59.000Z

    The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distribution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuous two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. In this paper, we describe the process that led to one of the world's first continuously available, functioning grids.

  16. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    IEEE Transactions on Smart Grid, vol. 2, no. 2, June [21] O.Malicious Data Attacks on Smart Grid State Estimation:Framework and Roadmap for Smart Grid Interoperability Stan-

  17. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    IEEE Transactions on Smart Grid, vol. 2, no. 2, June [21] O.Malicious Data Attacks on Smart Grid State Estimation:Attack and Detection in Smart Grid,” to appear in IEEE

  18. Smart Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Meters, Conductor, Surge Protection Devices, Connectors, Lighting Controls, Grid-Scale Battery Storage, Grid-Scale Flywheel Energy for Frequency Regulation, Automation...

  19. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News, News & Events, Renewable Energy, SMART Grid, Systems Analysis, Transmission Grid Integration, Wind Energy Sandia finalized and submitted the updated "WECC Wind Power Plant...

  20. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IEC 61400-26 Availability Standard On June 12, 2014, in Analysis, Distribution Grid Integration, Energy, Grid Integration, Infrastructure Security, News, News & Events,...

  1. Sandia National Laboratories: grid modernization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid modernization Renewables, Other Energy Issues To Be Focus of Enhanced Sandia-SINTEF Collaboration On May 28, 2014, in Biofuels, CRF, Distribution Grid Integration, Energy,...

  2. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Safety Workshop On April 7, 2014, in Capabilities, CINT, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Grid...

  3. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Offers Approach to Help Utilities Understand Effects of PV Variability on the Grid On March 7, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety,...

  4. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Specialists (PVSC) Conference On August 14, 2013, in DETL, Distribution Grid Integration, Energy, Facilities, Grid Integration, News, News & Events, Photovoltaic,...

  5. Sandia National Laboratories: Grid Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    InfrastructureEnergy AssuranceGrid Capabilities Grid Capabilities Goal: To develop and implement a comprehensive Sandia program to support the modernization of the U.S. electric...

  6. Real Time Simulation of Power Grid Disruptions

    SciTech Connect (OSTI)

    Chinthavali, Supriya [ORNL; Dimitrovski, Aleksandar D [ORNL; Fernandez, Steven J [ORNL; Groer, Christopher S [ORNL; Nutaro, James J [ORNL; Olama, Mohammed M [ORNL; Omitaomu, Olufemi A [ORNL; Shankar, Mallikarjun [ORNL; Spafford, Kyle L [ORNL; Vacaliuc, Bogdan [ORNL

    2012-11-01T23:59:59.000Z

    DOE-OE and DOE-SC workshops (Reference 1-3) identified the key power grid problem that requires insight addressable by the next generation of exascale computing is coupling of real-time data streams (1-2 TB per hour) as the streams are ingested to dynamic models. These models would then identify predicted disruptions in time (2-4 seconds) to trigger the smart grid s self healing functions. This project attempted to establish the feasibility of this approach and defined the scientific issues, and demonstrated example solutions to important smart grid simulation problems. These objectives were accomplished by 1) using the existing frequency recorders on the national grid to establish a representative and scalable real-time data stream; 2) invoking ORNL signature identification algorithms; 3) modeling dynamically a representative region of the Eastern interconnect using an institutional cluster, measuring the scalability and computational benchmarks for a national capability; and 4) constructing a prototype simulation for the system s concept of smart grid deployment. The delivered ORNL enduring capability included: 1) data processing and simulation metrics to design a national capability justifying exascale applications; 2) Software and intellectual property built around the example solutions; 3) demonstrated dynamic models to design few second self-healing.

  7. Future Grid: The Environment Future Grid Initiative White Paper

    E-Print Network [OSTI]

    Future Grid: The Environment Future Grid Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Future Grid: The Environment Prepared for the Project "The Future Grid to Enable Sustainable Energy Systems" Funded by the U

  8. GridWise Alliance

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the GRIDWISE ALLIANCE including its mission, today and tomorrow's grid, membership, work groups, and key policy initiatives.

  9. Random array grid collimator

    DOE Patents [OSTI]

    Fenimore, E.E.

    1980-08-22T23:59:59.000Z

    A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  10. Cyber Security & Smart Grid

    E-Print Network [OSTI]

    Shapiro, J.

    2011-01-01T23:59:59.000Z

    of the impacts of long-term power shortages from the destruction of critical electric infrastructure. ? A Hitachi factory north of Tokyo that makes 60% of the world?s supply of airflow sensors was shut down. This caused General Motors to shut a plant... at The University of Texas at Dallas ? Next Generation Control Systems ? Trustworthy Cyber Infrastructure for the Power Grid ? Active Defense Systems ? System Vulnerability Assessments ? Grid Test Bed ? Integrated Risk Analysis ? Modeling and Simulation...

  11. GRIDS: Grid-Scale Rampable Intermittent Dispatchable Storage

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    GRIDS Project: The 12 projects that comprise ARPA-E’s GRIDS Project, short for “Grid-Scale Rampable Intermittent Dispatchable Storage,” are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.

  12. Toms Creek IGCC Demonstration Project

    SciTech Connect (OSTI)

    Virr, M.J.

    1992-01-01T23:59:59.000Z

    The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020[degree]F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

  13. Toms Creek IGCC Demonstration Project

    SciTech Connect (OSTI)

    Virr, M.J.

    1992-11-01T23:59:59.000Z

    The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020{degree}F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

  14. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30T23:59:59.000Z

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  15. A New Method for Occupancy Grid Maps Merging: Application to Multi-vehicle Cooperative Local

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A New Method for Occupancy Grid Maps Merging: Application to Multi-vehicle Cooperative Local that are challenging for a single vehicle system. In this paper, a new method for occupancy grid maps merging the proposed occupancy grid maps merging method is also introduced. Real-data tests are given to demonstrate

  16. NREL Smart Grid Projects

    SciTech Connect (OSTI)

    Hambrick, J.

    2012-01-01T23:59:59.000Z

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  17. Time Stamp Attack on Wide Area Monitoring System in Smart Grid

    E-Print Network [OSTI]

    Zhang, Zhenghao; Li, Husheng; Pei, Changxing

    2011-01-01T23:59:59.000Z

    Security becomes an extremely important issue in smart grid. To maintain the steady operation for smart power grid, massive measurement devices must be allocated widely among the power grid. Previous studies are focused on false data injection attack to the smart grid system. In practice, false data injection attack is not easy to implement, since it is not easy to hack the power grid data communication system. In this paper, we demonstrate that a novel time stamp attack is a practical and dangerous attack scheme for smart grid. Since most of measurement devices are equipped with global positioning system (GPS) to provide the time information of measurements, it is highly probable to attack the measurement system by spoofing the GPS. By employing the real measurement data in North American Power Grid, simulation results demonstrate the effectiveness of the time stamp attack on smart grid.

  18. Navy fuel cell demonstration project.

    SciTech Connect (OSTI)

    Black, Billy D.; Akhil, Abbas Ali

    2008-08-01T23:59:59.000Z

    This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

  19. Results of the Grid Friendly Appliance Project

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.

    2010-04-14T23:59:59.000Z

    As part of the Pacific Northwest GridWise™ Testbed Demonstration funded by the U.S. Department of Energy and others, Pacific Northwest National Laboratory (PNNL) collaborated with Whirlpool Corporation, Invensys Controls, the Bonneville Power Administration, PacifiCorp, Portland General Electric and several smaller utilities to install 150 new Sears Kenmore clothes dryers and to retrofit 50 existing electric water heaters in homes in Washington and Oregon. Each dryer and water heater was configured to respond to the Grid Friendly™ appliance controller, a small electronic circuit that sensed underfrequency grid conditions and requested that electric load be shed by the appliances. These controllers and appliances were observed for over a year in residences spread over a wide geographic area. The controllers were found to respond predictably and reliably despite their geographic separation. Over 350 minor underfrequency events were observed during the experiment. This paper presents the distributions of these events by season and by time of day. Based on measured load profiles for the dryers and water heaters, the average electrical load that can be shed by each of the two appliance types was estimated by time of day and by season. Battelle Memorial Institute and PNNL have been assembling a suite of grid-responsive functions and benefits that can be achieved through the control of relatively small, distributed loads and resources on a power grid. These controllers should eventually receive acceptance for the opportunities they offer for circuit protection, regulation services, facilitation of demand responsiveness, and even power quality.

  20. Visual Analytics for Power Grid Contingency Analysis

    SciTech Connect (OSTI)

    Wong, Pak C.; Huang, Zhenyu; Chen, Yousu; Mackey, Patrick S.; Jin, Shuangshuang

    2014-01-20T23:59:59.000Z

    Contingency analysis is the process of employing different measures to model scenarios, analyze them, and then derive the best response to remove the threats. This application paper focuses on a class of contingency analysis problems found in the power grid management system. A power grid is a geographically distributed interconnected transmission network that transmits and delivers electricity from generators to end users. The power grid contingency analysis problem is increasingly important because of both the growing size of the underlying raw data that need to be analyzed and the urgency to deliver working solutions in an aggressive timeframe. Failure to do so may bring significant financial, economic, and security impacts to all parties involved and the society at large. The paper presents a scalable visual analytics pipeline that transforms about 100 million contingency scenarios to a manageable size and form for grid operators to examine different scenarios and come up with preventive or mitigation strategies to address the problems in a predictive and timely manner. Great attention is given to the computational scalability, information scalability, visual scalability, and display scalability issues surrounding the data analytics pipeline. Most of the large-scale computation requirements of our work are conducted on a Cray XMT multi-threaded parallel computer. The paper demonstrates a number of examples using western North American power grid models and data.

  1. Technology Demonstration Partnership Policy

    Broader source: Energy.gov [DOE]

    This City Council memorandum establishes a framework for engaging in and evaluating demonstration partnerships with the goal of developing, testing, and demonstrating emerging technologies, product, and service innovations.

  2. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments Home StationaryFAQs HomeProgramSCADASMART Grid

  3. Essential Grid Workflow Monitoring Elements

    SciTech Connect (OSTI)

    Gunter, Daniel K.; Jackson, Keith R.; Konerding, David E.; Lee,Jason R.; Tierney, Brian L.

    2005-07-01T23:59:59.000Z

    Troubleshooting Grid workflows is difficult. A typicalworkflow involves a large number of components networks, middleware,hosts, etc. that can fail. Even when monitoring data from all thesecomponents is accessible, it is hard to tell whether failures andanomalies in these components are related toa given workflow. For theGrid to be truly usable, much of this uncertainty must be elim- inated.We propose two new Grid monitoring elements, Grid workflow identifiersand consistent component lifecycle events, that will make Gridtroubleshooting easier, and thus make Grids more usable, by simplifyingthe correlation of Grid monitoring data with a particular Gridworkflow.

  4. Unlocking the smart grid

    SciTech Connect (OSTI)

    Rokach, Joshua Z.

    2010-10-15T23:59:59.000Z

    The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)

  5. APEC Smart Grid Initiative

    SciTech Connect (OSTI)

    Bloyd, Cary N.

    2012-03-01T23:59:59.000Z

    This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

  6. Sandia National Laboratories: International Smart Grid Action...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Action Network Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution Grid Integration,...

  7. Networked Loads in the Distribution Grid

    E-Print Network [OSTI]

    Wang, Zhifang; Li, Xiao; Muthukumar, Vishak; Scaglione, Anna; Peisert, Sean; McParland, Chuck

    2012-01-01T23:59:59.000Z

    Lu, and Deborah A. Frincke. Smart-Grid Security Issues. IEEELoads in the Distribution Grid Zhifang Wang ? , Xiao Li † ,Transformer   sensors   Grid   Cyber  system   Cooling    

  8. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01T23:59:59.000Z

    New England Outlook: Smart Grid is About Consumers,” Apr. [Transmission in the Smart Grid By Kory Walter Hedman ATransmission in the Smart Grid by Kory Walter Hedman Doctor

  9. Smart Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Usage Smart Grid Smart Grid October 21, 2014 Line workers get hands-on experience with an electrical pole as part of their training. | Photo courtesy of David Weaver....

  10. Stability of elastic grid shells

    E-Print Network [OSTI]

    Mesnil, Romain, M. Eng. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    The elastic grid shell is a solution that combines double curvature and ease of mounting. This structural system, based on the deformation of an initially at grid without shear stiffness was invented more than fifty years ...

  11. A Framework for Modeling Cyber-Physical Switching Attacks in Smart Grid

    E-Print Network [OSTI]

    Liu, Shan; Mashayekh, Salman; Kundur, Deepa; Zourntos, Takis; Butler-Purry, Karen

    2014-01-02T23:59:59.000Z

    and demonstrate how existence of the switching vulnerability is dependent on the local structure of the power grid. We identify and demonstrate how through successful cyber intrusion and local knowledge of the grid an opponent can compute and apply a coordinated... providing opponent(s) opportunities for remotely controlling physical power system components such as modern circuit breakers possibly via illicit security breaches and intrusion. Thus, our vulnerability is applicable to a smart grid system with remotely...

  12. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    SciTech Connect (OSTI)

    None

    2012-02-08T23:59:59.000Z

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

  13. LIMB Demonstration Project Extension and Coolside Demonstration

    SciTech Connect (OSTI)

    Goots, T.R.; DePero, M.J.; Nolan, P.S.

    1992-11-10T23:59:59.000Z

    This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO[sub 2]) and nitrogen oxides (NO[sub x]) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0[sub 2] removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0[sub 2] emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

  14. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Initiative GridWise Alliance GridWise Architecture Council European SmartGrid Technology Platform 19 MODERN GRID S T R A T E G Y Questions? Office of Electricity...

  15. GridMat: Matlab Toolbox for GridLAB-D to Analyse Grid Impact and Validate Residential Microgrid Level

    E-Print Network [OSTI]

    Al Faruque, Mohammad Abdullah

    GridMat: Matlab Toolbox for GridLAB-D to Analyse Grid Impact and Validate Residential Microgrid, in this paper, we present a new Matlab toolbox (GridMat) to integrate the capabilities of domain-specific modeling & simulation tools from power system (GridLAB-D) and control (Matlab). The GridMat tool supports

  16. Grid Transfer Remark 4.1 Contents of this chapter. Consider a grid with grid size h and the

    E-Print Network [OSTI]

    John, Volker

    Chapter 4 Grid Transfer Remark 4.1 Contents of this chapter. Consider a grid with grid size h that there might be an iterative method for solving this system efficiently, which uses also coarser grids way between the grids. 2 4.1 The Coarse Grid System and the Residual Equa- tion Remark 4.2 Basic idea

  17. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H.Rohit Prasankumar

  18. Strategy Guideline: Demonstration Home

    SciTech Connect (OSTI)

    Savage, C.; Hunt, A.

    2012-12-01T23:59:59.000Z

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  19. SPEC CPI Demonstration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton n u a l r e p o TechnicalMA MA

  20. Modern Grid Initiative Distribution Taxonomy Final Report

    SciTech Connect (OSTI)

    Schneider, Kevin P.; Chen, Yousu; Chassin, David P.; Pratt, Robert G.; Engel, David W.; Thompson, Sandra E.

    2008-11-01T23:59:59.000Z

    This is the final report for the development of a toxonomy of prototypical electrical distribution feeders. Two of the primary goals of the Department of Energy's (DOE) Modern Grid Initiative (MGI) are 'to accelerate the modernization of our nation's electricity grid' and to 'support demonstrations of systems of key technologies that can serve as the foundation for an integrated, modern power grid'. A key component to the realization of these goals is the effective implementation of new, as well as existing, 'smart grid technologies'. Possibly the largest barrier that has been identified in the deployment of smart grid technologies is the inability to evaluate how their deployment will affect the electricity infrastructure, both locally and on a regional scale. The inability to evaluate the impacts of these technologies is primarily due to the lack of detailed electrical distribution feeder information. While detailed distribution feeder information does reside with the various distribution utilities, there is no central repository of information that can be openly accessed. The role of Pacific Northwest National Laboratory (PNNL) in the MGI for FY08 was to collect distribution feeder models, in the SynerGEE{reg_sign} format, from electric utilities around the nation so that they could be analyzed to identify regional differences in feeder design and operation. Based on this analysis PNNL developed a taxonomy of 24 prototypical feeder models in the GridLAB-D simulations environment that contain the fundamental characteristics of non-urban core, radial distribution feeders from the various regions of the U.S. Weighting factors for these feeders are also presented so that they can be used to generate a representative sample for various regions within the United States. The final product presented in this report is a toolset that enables the evaluation of new smart grid technologies, with the ability to aggregate their effects to regional and national levels. The distribution feeder models presented in this report are based on actual utility models but do not contain any proprietary or system specific information. As a result, the models discussed in this report can be openly distributed to industry, academia, or any interested entity, in order to facilitate the ability to evaluate smart grid technologies.

  1. Lattice QCD Thermodynamics on the Grid

    E-Print Network [OSTI]

    Jakub T. Mo?cicki; Maciej Wo?; Massimo Lamanna; Philippe de Forcrand; Owe Philipsen

    2009-11-30T23:59:59.000Z

    We describe how we have used simultaneously ${\\cal O}(10^3)$ nodes of the EGEE Grid, accumulating ca. 300 CPU-years in 2-3 months, to determine an important property of Quantum Chromodynamics. We explain how Grid resources were exploited efficiently and with ease, using user-level overlay based on Ganga and DIANE tools above standard Grid software stack. Application-specific scheduling and resource selection based on simple but powerful heuristics allowed to improve efficiency of the processing to obtain desired scientific results by a specified deadline. This is also a demonstration of combined use of supercomputers, to calculate the initial state of the QCD system, and Grids, to perform the subsequent massively distributed simulations. The QCD simulation was performed on a $16^3\\times 4$ lattice. Keeping the strange quark mass at its physical value, we reduced the masses of the up and down quarks until, under an increase of temperature, the system underwent a second-order phase transition to a quark-gluon plasma. Then we measured the response of this system to an increase in the quark density. We find that the transition is smoothened rather than sharpened. If confirmed on a finer lattice, this finding makes it unlikely for ongoing experimental searches to find a QCD critical point at small chemical potential.

  2. LIMB demonstration project extension

    SciTech Connect (OSTI)

    Not Available

    1990-09-21T23:59:59.000Z

    The purpose of the DOE limestone injection multistage burner (LIMB) Demonstration Project Extension is to extend the data base on LIMB technology and to expand DOE's list of Clean Coal Technologies by demonstrating the Coolside process as part of the project. The main objectives of this project are: to demonstrate the general applicability of LIMB technology by testing 3 coals and 4 sorbents (total of 12 coal/sorbent combinations) at the Ohio Edison Edgewater plant; and to demonstrate that Coolside is a viable technology for improving precipitator performance and reducing sulfur dioxide emissions while acceptable operability is maintained. Progress is reported. 3 figs.

  3. Data Management in the GridRPC GridRPC Data Management API

    E-Print Network [OSTI]

    Caniou, Yves

    Data Management in the GridRPC Issues Conclusion GridRPC Data Management API Implementations, Le Mahec, Nakada GridRPC DM API: Implem. and Interop. Issues (1/13) #12;Data Management in the GridRPC Issues Conclusion Goal GridRPC DM types: Reminder 1 Data Management in the GridRPC Goal GridRPC DM types

  4. Grid Interaction Tech Team, and International Smart Grid Collaboration

    Broader source: Energy.gov (indexed) [DOE]

    Provider BAHNHOF POTSDAMER PLATZ Home Area Network (HAN) Grid Operations Coal Natural Gas Nuclear Hydro Renewable Fuel Oil Misc Generation Energy Service Interface (ESI)...

  5. Sandia Energy - Grid Modernization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInAppliedEnergyGeothermal HomeGrid

  6. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailureGlobal ClimateGrid

  7. Grid-based Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC)Graphite ReactorGregGrid-Connected

  8. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting the StageCanon! Shared Solar:Sharing

  9. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbon CaptureBiofuels

  10. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbon

  11. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbonEnergy Sandia

  12. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H.Rohit Prasankumar HomeEnergy

  13. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed Services U.S.GregoryGrid6733

  14. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed Services U.S.GregoryGrid6733141

  15. NERSC Grid Certificates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVA Portal: Submit2014 NERSCFranklinGrid

  16. Machine Learning for Demand Forecasting in Smart Grid Saima Aman, Wei Yin, Yogesh Simmhan, and Viktor Prasanna

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    planning and conservation. These experiments are part of the Los Angeles Smart Grid Demonstration ProjectMachine Learning for Demand Forecasting in Smart Grid Saima Aman, Wei Yin, Yogesh Simmhan of AMIs and data collection in a Smart Grid environment means that all applications, including demand

  17. Bridging the Gap Between Feature-and Grid-based SLAM Kai M. Wurm Cyrill Stachniss Giorgio Grisetti

    E-Print Network [OSTI]

    Stachniss, Cyrill

    be used or whether a dense representation such as occupancy grid maps is more appropriate. In this paper a landmark-based representation and a dense grid map. In practical experiments, we demonstrate that our of the individual representations. Key words: SLAM, features, grid maps, learning, dual representation 1

  18. Time Synchronization Attack in Smart Grid-Part I: Impact and Analysis

    E-Print Network [OSTI]

    Zhang, Zhenghao; Dimitrovski, Aleksandar D; Li, Husheng

    2012-01-01T23:59:59.000Z

    Many operations in power grids, such as fault detection and event location estimation, depend on precise timing information. In this paper, a novel Time Synchronization Attack (TSA) is proposed to attack the timing information in smart grid. Since many applications in smart grid utilize synchronous measurements and most of the measurement devices are equipped with global positioning system (GPS) for precise timing, it is highly probable to attack the measurement system by spoofing the GPS. The effectiveness of TSA is demonstrated for three applications of phasor measurement unit (PMU) in smart grid, namely transmission line fault detection, voltage stability monitoring and event locationing. The validity of TSA is demonstrated by numerical simulations.

  19. The Energy Network & Demonstration Site

    E-Print Network [OSTI]

    Su, Xiao

    EE 136, EE 239, Smart Grid Design, end use applications · Contacts with SJSU FD&0 [Chris Nordby, [700Kg] Other: · Communications Internet IEEE Power Systems Communications Committee [PSCC] Smart Meter A First Step/Cont. · End Use Technology Solar Inverter: 48VDC to Grid [120VAC], Xantrex, 3000 W, [60 Kg

  20. Grid Integration of Robotic Telescopes

    E-Print Network [OSTI]

    F. Breitling; T. Granzer; H. Enke

    2009-03-23T23:59:59.000Z

    Robotic telescopes and grid technology have made significant progress in recent years. Both innovations offer important advantages over conventional technologies, particularly in combination with one another. Here, we introduce robotic telescopes used by the Astrophysical Institute Potsdam as ideal instruments for building a robotic telescope network. We also discuss the grid architecture and protocols facilitating the network integration that is being developed by the German AstroGrid-D project. Finally, we present three user interfaces employed for this purpose.

  1. Smart Grid Enabled EVSE

    SciTech Connect (OSTI)

    None, None

    2014-10-15T23:59:59.000Z

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  2. LED Lighting Off the Grid

    Energy Savers [EERE]

    D. & Kammen, D. M. Decentralized energy systems for clean electricity access. Nature Climate Change accepted, in press, (2015). Off-Grid Status Quo : Fuel Based Lighting...

  3. 2014 Modern Power Grid Video

    SciTech Connect (OSTI)

    None

    2014-06-02T23:59:59.000Z

    A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

  4. Smart Grid | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  5. Buildings to Grid Integration & Interoperability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings to Grid Integration & Interoperability Joe Hagerman, Senior Advisor DOE Building Technologies Office March 11, 2013 EERE: Office of Energy Efficiency and Renewable Energy...

  6. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    Against Data Injection Attacks on Power Grids”, IEEER. Thomas, and L. Tong, “Malicious Data Attacks on SmartState Estimation: Attack Strategies and Countermeasures,”

  7. National Grid Energy Efficiency Plans

    Broader source: Energy.gov [DOE]

    Presentation covers the National Grid Energy Efficiency plans and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  8. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia-Electric Power Research Institute Partnership Publishes Photovoltaic Reliability Report On January 21, 2014, in Energy, Facilities, Grid Integration, Modeling & Analysis,...

  9. National Grid Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Presentation covers the National Grid Energy Efficiency programs and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  10. Environmental Impacts of Smart Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a substantial number of pollutants. This paper focuses on the particulate and gaseous emission pollutants that are byproducts of electricity generation, and on how the Smart Grid...

  11. Sandia Energy - Smart Grid Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reliability, efficiency, flexibility, and cost effectiveness. Smart-grid features include demand-response capabilities, advanced controls, DER integration, increased situational...

  12. 2014 Modern Power Grid Video

    ScienceCinema (OSTI)

    None

    2014-07-22T23:59:59.000Z

    A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

  13. Smart-Grid Security Issues

    SciTech Connect (OSTI)

    Khurana, Himanshu; Hadley, Mark D.; Lu, Ning; Frincke, Deborah A.

    2010-01-29T23:59:59.000Z

    TITLE: Smart-Grid Security Issues (Editorial Material, English) IEEE SECURITY & PRIVACY 8 (1). JAN-FEB 2010. p.81-85 IEEE COMPUTER SOC, LOS ALAMITOS

  14. Core Drilling Demonstration

    Broader source: Energy.gov [DOE]

    Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

  15. Sensor Grid: Integration of Wireless Sensor Networks and the Grid

    E-Print Network [OSTI]

    Teo, Yong-Meng

    Sensor Grid: Integration of Wireless Sensor Networks and the Grid Hock Beng Lim1 , Yong Meng Teo1 Microsystems, Inc. E-mail: [limhb, teoym]@comp.nus.edu.sg Abstract Wireless sensor networks have emerged to the sharing of sensor resources in wireless sensor networks. There are several issues and challenges

  16. Enhancing Power Grid Stability through Analytics

    E-Print Network [OSTI]

    Lakoba, Taras I.

    the "Smart" Grid? · Premise #1: the grid has long been pretty smart (Edison, Tesla, Steinmetz et al were of Vermont Seminar October 23, 2013 3 What Drives the "Smart" Grid? · Premise #2: As well operated as grid of Vermont Seminar October 23, 2013 4 What Drives the "Smart" Grid? · Premise #3: new technology is providing

  17. GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical...

    Office of Environmental Management (EM)

    Challenges More Documents & Publications QER - Comment of GridWise Alliance 1 SmartGrid Consortium: Smart Grid Roadmap for the State of New York Smart Grid: Enabler of the...

  18. Grid Integration and the Carrying Capacity of the U.S. Grid to...

    Energy Savers [EERE]

    Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate...

  19. From the Grid to the Smart Grid, Topologically

    E-Print Network [OSTI]

    Pagani, Giuliano Andrea

    2013-01-01T23:59:59.000Z

    The Smart Grid is not just about the digitalization of the Power Grid. In its more visionary acceptation, it is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the Smart Grid a reality will the Distribution Grid have to be updated? We assume a positive answer to the question and we consider the lower layers of Medium and Low Voltage to be the most affected by the change. In our previous work, we have analyzed samples of the Dutch Distribution Grid in our previous work and we have considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains in another previous work. In this paper, we take an extra important further step by defining a methodology for evolving any existing physical Power Grid to a good Smart Grid model th...

  20. New Technology Demonstration Program

    E-Print Network [OSTI]

    New Technology Demonstration Program Technical Brief FEMPFederal Energy Management Program Tom for saving energy in refrigerated walk-in coolers, and to evaluate the potential for this technology in Federal facilities. The focus of this study was on a single manufacturer of the technology, Nevada Energy

  1. MAJORANA Demonstrator Motivation

    E-Print Network [OSTI]

    Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

    1 #12;OVERVIEW MAJORANA Demonstrator Motivation Neutrinoless double beta decay Search for axions: MAJORANA Collaboration #12;NEUTRINOLESS DOUBLE BETA DECAY Emission of 2 electrons from Ge-76 and application to neutrinoless double beta decay search in Ge- 76." Journal of Instrumentation 6 (2011).13 #12

  2. GATEWAY Demonstration Special Reports

    Broader source: Energy.gov [DOE]

    DOE shares the results of completed GATEWAY demonstration projects, publishing detailed reports that include analysis of data collected, projected energy savings, economic analyses, and user feedback. Report briefs summarize key findings in a quick-scan format. Both the reports and briefs are available as Adobe Acrobat PDFs.

  3. Micro-Grids for Colonias (TX)

    SciTech Connect (OSTI)

    Dean Schneider; Michael Martin; Renee Berry; Charles Moyer

    2012-07-31T23:59:59.000Z

    This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing power generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid power. However, the operational costs are reasonable if grid power is unavailable, e.g. in a remote area or in a disaster recovery situation. In fact, avoided fuel costs for the smaller of the systems in use during this project would have a payback of the capital costs of that system in 2.3 years, far short of the effective system life.

  4. INFOGRAPHIC: Understanding the Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    can I participate? Send us your questions about how the grid works using GridWeek on Facebook, Twitter and Google+. Join the GridWeek Twitter chat on Thursday, November 20 at 2PM...

  5. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01T23:59:59.000Z

    Life Cycle Assessment of Off-Grid Lighting Applications:Testing for Emerging Off-grid White-LED Illumination SystemsBudget: The Economics of Off-Grid Lighting for Small

  6. Artificial Intelligence for the Smart Grid

    E-Print Network [OSTI]

    Artificial Intelligence for the Smart Grid NICTA is developing technology to automate costs. The Future · Cover more of Smart Grid control (diagnosis, reconfiguration, protection, voltage) products for the Smart Grid. Contact Details: Technical Jussi Rintanen Canberra Research Laboratory Tel

  7. Parametrization-independent elliptic surface grid generation

    E-Print Network [OSTI]

    Rasmussen, Britt Bille

    2009-01-01T23:59:59.000Z

    The generation of computational grids on surfaces of three-dimensional configurations is an important component of many areas of computational research, both as a boundary grid for volume grid generation or to perform ...

  8. Considering Prefabulous and Almost Off the Grid

    E-Print Network [OSTI]

    Grenier, Lotus; Beba, Zoe; Gray, Art

    2013-01-01T23:59:59.000Z

    Prefabulous and Almost Off the Grid Introduction Two recentPrefabulous and Almost Off the Grid by Sheri Koones In herand Almost O?fz‘/Je Grid (Abrams, 2012), Sheri Koones pro?

  9. CEC-500-2010-FS-004 Development and Demonstration of

    E-Print Network [OSTI]

    -competitiveness of concentrating PV systems. · Improving grid stability by using an active inverter capable of injectingCEC-500-2010-FS-004 Development and Demonstration of a Concentrating PV System With Integrated Active Micro-Inverters RENEWABLE ENERGY RESEARCH PIER Renewable Energy Research www

  10. Smart Grid Status and Metrics Report

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Weimar, Mark R.; Kirkham, Harold

    2014-07-01T23:59:59.000Z

    To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. It measures 21 metrics to provide insight into the grid’s capacity to embody these characteristics. This report looks across a spectrum of smart grid concerns to measure the status of smart grid deployment and impacts.

  11. National Smart Water Grid

    SciTech Connect (OSTI)

    Beaulieu, R A

    2009-07-13T23:59:59.000Z

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US-Mexico border; and decreased eutrophication (excessive plant growth and decay) in the Gulf of Mexico to name a few. The National Smart Water Grid{trademark} will pay for itself in a single major flood event.

  12. AVNG system demonstration

    SciTech Connect (OSTI)

    Thron, Jonathan Louis [Los Alamos National Laboratory; Mac Arthur, Duncan W [Los Alamos National Laboratory; Kondratov, Sergey [VNIIEF; Livke, Alexander [VNIIEF; Razinkov, Sergey [VNIIEF

    2010-01-01T23:59:59.000Z

    An attribute measurement system (AMS) measures a number of unclassified attributes of potentially classified material. By only displaying these unclassified results as red or green lights, the AMS protects potentially classified information while still generating confidence in the measurement result. The AVNG implementation that we describe is an AMS built by RFNC - VNIIEF in Sarov, Russia. To provide additional confidence, the AVNG was designed with two modes of operation. In the secure mode, potentially classified measurements can be made with only the simple red light/green light display. In the open mode, known unclassified material can be measured with complete display of the information collected from the radiation detectors. The AVNG demonstration, which occurred in Sarov, Russia in June 2009 for a joint US/Russian audience, included exercising both modes of AVNG operation using a number of multi-kg plutonium sources. In addition to describing the demonstration, we will show photographs and/or video taken of AVNG operation.

  13. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1988-09-15T23:59:59.000Z

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO and NO emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  14. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1989-06-15T23:59:59.000Z

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  15. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1989-11-15T23:59:59.000Z

    The basic goal of the Limestone Injection Mitigation Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  16. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1988-12-15T23:59:59.000Z

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  17. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1988-03-15T23:59:59.000Z

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  18. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1989-03-15T23:59:59.000Z

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  19. Nucla CFB Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    This report documents Colorado-Ute Electric Association's Nucla Circulating Atmospheric Fluidized-Bed Combustion (AFBC) demonstration project. It describes the plant equipment and system design for the first US utility-size circulating AFBC boiler and its support systems. Included are equipment and system descriptions, design/background information and appendices with an equipment list and selected information plus process flow and instrumentation drawings. The purpose of this report is to share the information gathered during the Nucla circulating AFBC demonstration project and present it so that the general public can evaluate the technical feasibility and cost effectiveness of replacing pulverized or stoker-fired boiler units with circulating fluidized-bed boiler units. (VC)

  20. Sandia Energy - Grid Cyber Vulnerability & Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consequences and Impacts It's important to recognize that adopting these advanced grid-control technologies doesn't just have the potential to increase power grid reliability...

  1. Protecting Intelligent Distributed Power Grids Against Cyber...

    Broader source: Energy.gov (indexed) [DOE]

    will help protect intelligent distributed power grids from cyber attacks. Intelligent power grids are interdependent energy management systems-encompassing generation,...

  2. Sandia National Laboratories: smart-grid technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart-grid technologies New Jersey Transit FutureGrid MOU Signing On October 4, 2013, in Analysis, Energy Surety, Infrastructure Security, Microgrid, Modeling, Modeling & Analysis,...

  3. Sandia National Laboratories: energy resilient smart grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resilient smart grid Hoboken Hopes To Reduce Power Outages With New 'Smart Grid' System On June 20, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems,...

  4. Conference Proceedings Available - The Smart Grid Experience...

    Energy Savers [EERE]

    the Grid Through Integration Conservation and Optimization via VoltVar Control Systems Driving the Integrated Grid - Including DMS, DA, DERMS, DRMS Communications and Cyber...

  5. Sandia National Laboratories: Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration Wind Generator Modeling On June 26, 2014, in Computational Modeling & Simulation, Energy, Energy Surety, Grid Integration, Infrastructure Security,...

  6. Tribal Renewable Energy Foundational Course: Electricity Grid...

    Office of Environmental Management (EM)

    Electricity Grid Basics Tribal Renewable Energy Foundational Course: Electricity Grid Basics Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar...

  7. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self heals - acts as the grid's "immune system" Supports grid reliability, security, and power quality Today Tomorrow Protects assets following disruption (e.g. trip relay)...

  8. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modern Grid Wisconsin Public Utility Institute and UW Energy Institute Joe Miller, Steve Pullins, Steve Bossart - Modern Grid Team April 29, 2008 1 Conducted by the National Energy...

  9. Sandia National Laboratories: Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Supply Transformation Needed On February 20, 2013, in DETL, Distribution Grid Integration, Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure...

  10. Sandia National Laboratories: Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments On March 3, 2015, in Capabilities, Distribution Grid Integration,...

  11. National Grid (Gas)- Commercial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    National Grid’s Commercial Energy Efficiency Program provides support services and incentives to commercial customers who install energy efficient natural gas related measures. Prescriptive...

  12. Sandia National Laboratories: Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety,...

  13. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1991-09-15T23:59:59.000Z

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (1) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems; (2) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit; and (3) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater. The demonstration project consists of several distinct phases: a preliminary phase to develop the LIMB process design applicable to the host boiler, a construction and start-up phase, and an operating and evaluation phase. The first major activity, the development of the Edgewater LIMB design, was completed in January 1986 and detailed engineering is now complete. Major boiler-related components were installed during a September 1986 boiler outage. Start-up activities began in March of 1987 with tuning of the low NO{sub x} burners. Sorbent injection activities were underway as of July 1987. 3 figs.

  14. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1990-09-21T23:59:59.000Z

    The DOE LIMB Demonstration Project Extension is a continuation of the EPA Limestone Injection Multistage Burner (LIMB) Demonstration. EPA ultimately expects to show that LIMB is a low cost control technology capable of producing moderate SO{sub x} and NO{sub x} control (50--60 percent) with applicability for retrofit to the major portion of the existing coal-fired boiler population. The current EPA Wall-Fired LIMB Demonstration is a four-year project that includes design and installation of a LIMB system at the 105-MW Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. LIMB Extension testing continued during the quarter with lignosulfonated hydrated lime, pulverized limestone, and hydrated dolomitic lime while firing 1.8% and 3% sulfur coals. Sulfur dioxide removal efficiencies were equivalent to the results found during EPA, base LIMB testing. Sulfur dioxide removal efficiencies were lower than expected while testing with pulverized limestone without humidification. A slight increase in sulfur capture was noted while injecting pulverized limestone at the 187' elevation and with the humidifier outlet temperature at 145{degree}F.

  15. Smart Grid | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here HomeSmart Grid Smart Grid Smart

  16. Time Stamp Attack in Smart Grid: Physical Mechanism and Damage Analysis

    E-Print Network [OSTI]

    Gong, Shuping; Li, Husheng; Dimitrovski, Aleksandar D

    2012-01-01T23:59:59.000Z

    Many operations in power grids, such as fault detection and event location estimation, depend on precise timing information. In this paper, a novel time stamp attack (TSA) is proposed to attack the timing information in smart grid. Since many applications in smart grid utilize synchronous measurements and most of the measurement devices are equipped with global positioning system (GPS) for precise timing, it is highly probable to attack the measurement system by spoofing the GPS. The effectiveness of TSA is demonstrated for three applications of phasor measurement unit (PMU) in smart grid, namely transmission line fault detection, voltage stability monitoring and event locationing.

  17. Introduction to FireGrid 

    E-Print Network [OSTI]

    Welch, Stephen; Usmani, Asif; Upadhyay, Rochan; Berry, Dave; Potter, Stephen; Torero, Jose L

    2007-11-14T23:59:59.000Z

    FireGrid is an ambitious and innovative project, seeking to develop the technology to support a new way of managing emergency response in the modern built environment. Specific novel aspects include the integration of ...

  18. Grid Pricing of Fed Cattle

    E-Print Network [OSTI]

    Schroeder, Ted C.; Hogan, Robert J.; Anderson, David P.

    2009-03-02T23:59:59.000Z

    There are several value-based fed cattle pricing systems, including formula pricing, price grids and alliances. This publication describes the different cattle pricing methods and helps you decide which is best for you....

  19. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid relies on power transmission from the production source-be it a coal-fired plant, solar array, or wind farm-to the consumer. Long-distance transmission results in sizeable...

  20. Reinventing Batteries for Grid Storage

    ScienceCinema (OSTI)

    Banerjee, Sanjoy

    2013-05-29T23:59:59.000Z

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  1. Smart Wire Grid: Resisting Expectations

    ScienceCinema (OSTI)

    Ramsay, Stewart; Lowe, DeJim

    2014-04-09T23:59:59.000Z

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  2. Smart Wire Grid: Resisting Expectations

    SciTech Connect (OSTI)

    Ramsay, Stewart; Lowe, DeJim

    2014-03-03T23:59:59.000Z

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  3. Reinventing Batteries for Grid Storage

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2012-01-01T23:59:59.000Z

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  4. NREL: Transmission Grid Integration - Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecasting NREL researchers use

  5. NREL: Transmission Grid Integration - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecastingNews The following news

  6. NREL: Transmission Grid Integration - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecastingNews The

  7. NREL: Transmission Grid Integration - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecastingNews ThePublications

  8. NREL: Transmission Grid Integration - Webinars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning and Analysis

  9. NREL: Transmission Grid Integration - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning and AnalysisWebmaster

  10. OPNET/Simulink Based Testbed for Disturbance Detection in the Smart Grid

    SciTech Connect (OSTI)

    Sadi, Mohammad A. H. [University of Memphis; Dasgupta, Dipankar [ORNL; Ali, Mohammad Hassan [University of Memphis; Abercrombie, Robert K [ORNL

    2015-01-01T23:59:59.000Z

    The important backbone of the smart grid is the cyber/information infrastructure, which is primarily used to communicate with different grid components. A smart grid is a complex cyber physical system containing a numerous and variety number of sources, devices, controllers and loads. Therefore, the smart grid is vulnerable to grid related disturbances. For such dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and Opnet based co-simulated platform to carry out a cyber-intrusion in cyber network for modern power systems and the smart grid. The IEEE 30 bus power system model is used to demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack. Different disturbance situations in the considered test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.

  11. A design visualization machine : an agile prototype for architectural plans on a finite grid

    E-Print Network [OSTI]

    Huang, Yu Linlin

    2013-01-01T23:59:59.000Z

    This thesis project proposes a rapid visualization machine that can produce agile prototypes of simple architectural plans on a finite grid system. While various visualization systems to demonstrate instantaneous three ...

  12. Jennings Demonstration PLant

    SciTech Connect (OSTI)

    Russ Heissner

    2010-08-31T23:59:59.000Z

    Verenium operated a demonstration plant with a capacity to produce 1.4 million gallons of cellulosic ethanol from agricultural resiues for about two years. During this time, the plant was able to evaluate the technical issues in producing ethanol from three different cellulosic feedstocks, sugar cane bagasse, energy cane, and sorghum. The project was intended to develop a better understanding of the operating parameters that would inform a commercial sized operation. Issues related to feedstock variability, use of hydrolytic enzymes, and the viability of fermentative organisms were evaluated. Considerable success was achieved with pretreatment processes and use of enzymes but challenges were encountered with feedstock variability and fermentation systems. Limited amounts of cellulosic ethanol were produced.

  13. Fusion Power Demonstration III

    SciTech Connect (OSTI)

    Lee, J.D. (ed.)

    1985-07-01T23:59:59.000Z

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report.

  14. Networks, smart grids: new model for synchronization

    E-Print Network [OSTI]

    - 1 - Networks, smart grids: new model for synchronization May 21, 2013 Networks of individual scenarios and in smart grid applications. "Smart grid" refers to technology to modernize utility electricity in a volatile smart grid scenario that included fluctuating loads with random power demand, renewable energy

  15. Benchmarking Grid Information Systems Laurence Field1

    E-Print Network [OSTI]

    Sakellariou, Rizos

    Benchmarking Grid Information Systems Laurence Field1 and Rizos Sakellariou2 1 CERN, Geneva. Grid information systems play a central role in today's pro- duction Grid infrastructures, enabling the discovery of a range of in- formation about the Grid services that exist in an infrastructure. As the number

  16. Grid Architecture Release 2.3

    E-Print Network [OSTI]

    Draft Grid Architecture Release 2.3 November 2014 Draft #12;Grid Architecture Release 2.3 November..................................................................................................... 2.1 3.0 Brief Introduction to Grid Architecture........................................................................................ 3.2 3.1 How Grid Architecture Can Be Used

  17. Evidential Grids Information Management in Dynamic Environments

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of Compiègne CNRS Heudiasyc UMR 7253, France Email: surname.name@utc.fr Abstract--An occupancy grid map conditions. The perception strategy involves map and scan grids [9], [10]. Indeed, an instantaneous scan grid-detections. The map grid acts as a filter that accumulate information and allows to detect moving objects. In dynamic

  18. Smart Grid e-Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Smart Grid Task Force Smart Grid e-Forum Smart Grid e-Forum DOE conducted a series of Smart Grid E-Forums to discuss various issues surrounding Smart Grid including...

  19. BORREGO SPRINGS MICROGRID DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    None, None

    2013-09-30T23:59:59.000Z

    SDG&E has been developing and implementing the foundation for its Smart Grid platform for three decades – beginning with its innovations in automation and control technologies in the 1980s and 1990s, through its most recent Smart Meter deployment and re-engineering of operational processes enabled by new software applications in its OpEx 20/20 (Operational Excellence with a 20/20 Vision) program. SDG&E’s Smart Grid deployment efforts have been consistently acknowledged by industry observers. SDG&E’s commitment and progress has been recognized by IDC Energy Insights and Intelligent Utility Magazine as the nation’s “Most Intelligent Utility” for three consecutive years, winning this award each year since its inception. SDG&E also received the “Top Ten Utility” award for excellence in Smart Grid development from GreenTech Media.

  20. Smart Grid Information Security (IS) Functional Requirement

    E-Print Network [OSTI]

    Ling, Amy Poh Ai

    2011-01-01T23:59:59.000Z

    It is important to implement safe smart grid environment to enhance people's lives and livelihoods. This paper provides information on smart grid IS functional requirement by illustrating some discussion points to the sixteen identified requirements. This paper introduces the smart grid potential hazards that can be referred as a triggering factor to improve the system and security of the entire grid. The background of smart information infrastructure and the needs for smart grid IS is described with the adoption of hermeneutic circle as methodology. Grid information technology and security-s session discusses that grid provides the chance of a simple and transparent access to different information sources. In addition, the transformation between traditional versus smart grid networking trend and the IS importance on the communication field reflects the criticality of grid IS functional requirement identification is introduces. The smart grid IS functional requirements described in this paper are general and ...

  1. EconoGrid: A detailed Simulation Model of a Standards-based Grid Compute Economy

    E-Print Network [OSTI]

    EconoGrid: A detailed Simulation Model of a Standards-based Grid Compute Economy EconoGrid is a detailed simulation model, implemented in SLX1 , of a grid compute economy that implements selected of users. In a grid compute economy, computing resources are sold to users in a market where price

  2. A Core Grid Ontology for the Semantic Grid Wei Xing Marios D. Dikaiakos

    E-Print Network [OSTI]

    Pallis, George

    A Core Grid Ontology for the Semantic Grid Wei Xing Marios D. Dikaiakos Department of Computer, we propose a Core Grid Ontology (CGO) that defines fundamental Grid-specific concepts, and the re- lationships between them. One of the key goals is to make this Core Grid Ontology general enough and easily

  3. Modeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter

    E-Print Network [OSTI]

    Bak, Claus Leth

    Modeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter based in the same grid interface conditions by means of impedance-based analysis and modeling. Unlike the single grid connected inverter, it is found that multiple parallel connected inverters and grid impedance can

  4. What is a Grid? Grid Today, AUGUST 12, 2002: VOL. 1 NO. 9

    E-Print Network [OSTI]

    What is a Grid? Grid Today, AUGUST 12, 2002: VOL. 1 NO. 9 (http://www.gridtoday.com/02/0812/020812.html) I would like to provide perspective on the question of what is a Grid - a perspective derived from several years of building production Grids. For a significant segment of the Grid community, most

  5. Analysis of grid imprinting on geodesic spherical icosahedral grids Pedro S. Peixoto, Saulo R. M. Barros

    E-Print Network [OSTI]

    Analysis of grid imprinting on geodesic spherical icosahedral grids Pedro S. Peixoto, Saulo R. M-090 S~ao Paulo, Brazil Abstract Numerical grid imprinting errors have often been observed in global atmospheric models on icosahedral grids. In this paper we analyse the sources of grid imprinting error related

  6. Voltage grid support of DFIG wind turbines during grid faults Anca D. Hansen1

    E-Print Network [OSTI]

    Voltage grid support of DFIG wind turbines during grid faults Anca D. Hansen1 , Gabriele Michalke2 Abstract The fault ride-through and grid support capabilities of the doubly fed induction generator (DFIG and their contribution to support the grid, i.e. to the voltage control in the power system, during grid faults

  7. International Journal of Smart Grid and Clean Energy Smart Grid Security: Threats, Vulnerabilities and Solutions

    E-Print Network [OSTI]

    Aloul, Fadi

    to be able to communicate with smart meters via a Home Area Network (HAN) facilitating efficient powerInternational Journal of Smart Grid and Clean Energy Smart Grid Security: Threats, Vulnerabilities is currently evolving into the smart grid. Smart grid integrates the traditional electrical power grid

  8. GRID-Launcher v.1.0

    E-Print Network [OSTI]

    N. Deniskina; M. Brescia; S. Cavuoti; G. d'Angelo; O. Laurino; G. Longo

    2008-06-06T23:59:59.000Z

    GRID-launcher-1.0 was built within the VO-Tech framework, as a software interface between the UK-ASTROGRID and a generic GRID infrastructures in order to allow any ASTROGRID user to launch on the GRID computing intensive tasks from the ASTROGRID Workbench or Desktop. Even though of general application, so far the Grid-Launcher has been tested on a few selected softwares (VONeural-MLP, VONeural-SVM, Sextractor and SWARP) and on the SCOPE-GRID.

  9. POWER GRID RELIABILITY AND SECURITY

    SciTech Connect (OSTI)

    Bose, Anjan; Venkatasubramanian, Vaithianathan; Hauser, Carl; Bakken, David; Anderson, David; Zhao, Chuanlin; Liu, Dong; Yang, Tao; Meng, Ming; Zhang, Lin; Ning, Jiawei; Tashman, Zaid

    2014-09-30T23:59:59.000Z

    This project has led to the development of a real-time simulation platform for electric power grids called Grid Simulator or GridSim for simulating the dynamic and information network interactions of large- scale power systems. The platform consists of physical models of power system components including synchronous generators, loads and control, which are simulated using a modified commercial power simulator namely Transient Stability Analysis Tool (TSAT) [1] together with data cleanup components, as well as an emulated substation level and wide-area power analysis components. The platform also includes realistic representations of communication network middleware that can emulate the real-time information flow back and forth between substations and control centers in wide-area power systems. The platform has been validated on a realistic 6000-bus model of the western American power system. The simulator GridSim developed in this project is the first of its kind in its ability to simulate real-time response of large-scale power grids, and serves as a cost effective real-time stability and control simulation platform for power industry.

  10. The Vermont-Sandia Smart Grid Partnership Powering the Future: The Vermont Smart Grid and Beyond

    E-Print Network [OSTI]

    Hayden, Nancy J.

    The Vermont-Sandia Smart Grid Partnership Powering the Future: The Vermont Smart Grid and Beyond BURLINGTON SHERATON HOTEL & CONFERENCE CENTER MAY Laboratories 9:10-10:15 a.m. Opening Plenary: The Vermont-Sandia Smart Grid

  11. GENI: Grid Hardware and Software

    SciTech Connect (OSTI)

    None

    2012-01-09T23:59:59.000Z

    GENI Project: The 15 projects in ARPA-E’s GENI program, short for “Green Electricity Network Integration,” aim to modernize the way electricity is transmitted in the U.S. through advances in hardware and software for the electric grid. These advances will improve the efficiency and reliability of electricity transmission, increase the amount of renewable energy the grid can utilize, and provide energy suppliers and consumers with greater control over their power flows in order to better manage peak power demand and cost.

  12. Convectively cooled electrical grid structure

    DOE Patents [OSTI]

    Paterson, J.A.; Koehler, G.W.

    1980-11-10T23:59:59.000Z

    Undesirable distortions of electrical grid conductors from thermal cycling are minimized and related problems such as unwanted thermionic emission and structural failure from overheating are avoided by providing for a flow of fluid coolant within each conductor. The conductors are secured at each end to separate flexible support elements which accommodate to individual longitudinal expansion and contraction of each conductor while resisting lateral displacements, the coolant flow preferably being directed into and out of each conductor through passages in the flexible support elements. The grid may have a modular or divided construction which facilitates manufacture and repairs.

  13. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstituteThree-DimensionalTransmission Grid

  14. Sandia Energy - Grid Modernization Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailureGlobal ClimateGridGrid

  15. Technology Demonstrations | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Demonstrations Technology Demonstrations Efficient new building technologies can help meet our country's energy goals, stimulate U.S. manufacturing, create jobs, and improve the...

  16. Smart Grid Newsletter ? The Regulators Role in Grid Modernization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Title: "The Regulator's Role in Grid Modernization" Sponsor: The Modern Grid Strategy is a DOE-funded project conducted by the National Energy Technology Laboratory Leadership from...

  17. DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity

    E-Print Network [OSTI]

    DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity: Vol. 2, Privacy and the Smart Grid The Smart Grid Interoperability Panel ­ Smart Grid Cybersecurity Committee #12;DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity: Vol. 2, Privacy and the Smart Grid The Smart Grid

  18. LANL physicists discuss electrical grid in journal article

    E-Print Network [OSTI]

    - 1 - LANL physicists discuss electrical grid in journal article October 17, 2013 Electrical grids of distribution grids. Revolutionary changes to the electric grid will lead to grids that are more random that could make a major impact on the future grid: · probabilistic measures of electrical grid reliability

  19. Grid Applications Dr Gabrielle Allen

    E-Print Network [OSTI]

    Allen, Gabrielle

    of chemistry and other codes (www.gridchem.org) ! Petroleum Engineering " UCoMS: Grid-enabling reservoir ! Requires incredible mix of technologies & expertise! ! Many scientific/engineering components " Physics? Finite elements? " Elliptic equations: multigrid, Krylov subspace,... " Mesh refinement ! Many different

  20. ELECTRIC GRID PROTECTION THE INTERNATIONAL

    E-Print Network [OSTI]

    Schrijver, Karel

    interference, Electromagnetic Pulse (EMP), or Intentional Electromagnetic Interference (IEMI). See below the status of national electric grid evaluation and protection against electromagnetic threats in 11 counties sensitivity to the full range of electromagnetic threats1 . This historic and ongoing situation has resulted

  1. Grid Logging: Best Practices Guide

    SciTech Connect (OSTI)

    Tierney, Brian L; Tierney, Brian L; Gunter, Dan

    2008-04-01T23:59:59.000Z

    The purpose of this document is to help developers of Grid middleware and application software generate log files that will be useful to Grid administrators, users, developers and Grid middleware itself. Currently, most of the currently generated log files are only useful to the author of the program. Good logging practices are instrumental to performance analysis, problem diagnosis, and security auditing tasks such as incident tracing and damage assessment. This document does not discuss the issue of a logging API. It is assumed that a standard log API such as syslog (C), log4j (Java), or logger (Python) is being used. Other custom logging API or even printf could be used. The key point is that the logs must contain the required information in the required format. At a high level of abstraction, the best practices for Grid logging are: (1) Consistently structured, typed, log events; (2) A standard high-resolution timestamp; (3) Use of logging levels and categories to separate logs by detail and purpose; (4) Consistent use of global and local identifiers; and (5) Use of some regular, newline-delimited ASCII text format. The rest of this document describes each of these recommendations in detail.

  2. FermiGrid - experience and future plans

    SciTech Connect (OSTI)

    Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Timm, S.; Yocum, D.; /Fermilab

    2007-09-01T23:59:59.000Z

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and the Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.

  3. Final Report - Navajo Electrification Demonstration Project - FY2004

    SciTech Connect (OSTI)

    Kenneth L. Craig, Interim General Manager

    2007-03-31T23:59:59.000Z

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year projects which addresses the needs of unserved Navajo Nation residents without basic electricity services. The Navajo Nation is the United States' largest tribe, in terms of population and land. An estimated 18,000 Navajo Nation homes do not have basic grid-tied electricity--and this third year of funding, known as NEDP-3, provided 351 power line extensions to Navajo families.

  4. Sandia National Laboratories: Training and Technology Demonstration Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche HomeCybernetics: VisualTraining and Technology Demonstration

  5. EV-Smart Grid Research & Interoperability Activities 2014 DOE...

    Broader source: Energy.gov (indexed) [DOE]

    - Codes & Standards Support, Grid Connectivity R&D, International Cooperation and EV-Smart Grid Interoperability Center (funding began in FY 2013) Grid Integration * PEV J1772...

  6. Product Quality Assurance for Off-Grid Lighting in Africa

    E-Print Network [OSTI]

    Mills, Evan; World Bank

    2008-01-01T23:59:59.000Z

    services in many off-grid applications, come with first costassurance for off- grid applications in developing countriesand design for off-grid applications. • Train laboratory

  7. alloy battery grid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power supply challenges Adverse trends associated with the grid- Costs, reliability, peak loads, asset underutilization, TLRs, grid divorce The benefits of a modernized grid...

  8. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    data  integration  for  Smart  Grid”,  B 2010  3rd  IEEE simulation  integration,  the  next generation smart grid the Smart Grid vision requires the efficient integration of 

  9. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...

    Energy Savers [EERE]

    Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid...

  10. Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical...

    Energy Savers [EERE]

    Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Okaloosa Gas District Smart Grid RFI: Addressing Policy and...

  11. Demand Response Spinning Reserve Demonstration

    SciTech Connect (OSTI)

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01T23:59:59.000Z

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  12. Articles about Grid Integration and Transmission | Department...

    Broader source: Energy.gov (indexed) [DOE]

    grid integration and transmission featured by the U.S. Department of Energy (DOE) Wind Program. May 18, 2015 New Report Says Western Grid Can Weather Disturbances with High Wind,...

  13. Cybersecurity and the Smarter Grid (2014)

    Broader source: Energy.gov [DOE]

    An article by OE’s Carol Hawk and Akhlesh Kaushiva in The Electricity Journal discusses cybersecurity for the power grid and how DOE and the energy sector are partnering to keep the smart grid reliable and secure.

  14. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self heals - acts as the grid's "immune system" Supports grid reliability, security, and power quality The blackout of August 2003 took hours to build up. Once it breached the...

  15. Assistant Secretary Hoffman Discusses Grid Modernization with...

    Broader source: Energy.gov (indexed) [DOE]

    Assistant Secretary Hoffman Discusses Grid Modernization with the New York Times and E&E TV Assistant Secretary Hoffman Discusses Grid Modernization with the New York Times and E&E...

  16. Vids4Grids- Controls, Connectors & Surge Protectors

    Broader source: Energy.gov [DOE]

    Modernizing our grid means exciting new devices in the power sector. Find out how new lighting controls, connectors and surge protection will bring out electric grid to the next level.

  17. Past and future of grid shell structures

    E-Print Network [OSTI]

    Paoli, Céline (Céline Aude)

    2007-01-01T23:59:59.000Z

    Because of their original organic shape and the column free space that they provide, the design of grid shell structures challenges architects and structural engineers in more than one way. Very few grid shell building ...

  18. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01T23:59:59.000Z

    as a point of comparison with LED lighting product embodieda fairer comparison between off- grid LED lighting and other

  19. Articles about Grid Integration and Transmission

    Broader source: Energy.gov [DOE]

    Stories about grid integration and transmission featured by the U.S. Department of Energy (DOE) Wind Program.

  20. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01T23:59:59.000Z

    Planning . 102 vi Transmission Line Maintenance Scheduling 103 Just-in-time Transmission 103 Flexible Transmission in the Smart Grid

  1. Criticality of the European Electricity Grid Network

    E-Print Network [OSTI]

    Arrowsmith, David

    1 Criticality of the European Electricity Grid Network MANMADE EU NEST FUNDING D.K. Arrowsmith (catastrophic failure of network components), functional (electricity grid blackouts, supply chain), volatility the qualitative characteristics of power disruptions from a large synchronously-connected electricity grid

  2. Cyber Security in Smart Grid Substations

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Cyber Security in Smart Grid Substations Thijs Baars Lucas van den Bemd Michail Theuns Robin van.089 3508 TB Utrecht The Netherlands #12;CYBER SECURITY IN SMART GRID SUBSTATIONS Thijs Baars T.Brinkkemper@uu.nl Abstract. This report describes the state of smart grid security in Europe, specifically the Netherlands

  3. Power Grid Vulnerability to Geographically Correlated Failures

    E-Print Network [OSTI]

    Shepard, Kenneth

    Power Grid Vulnerability to Geographically Correlated Failures ­ Analysis and Control Implications such as telecommunications networks [14]. The power grid is vulnerable to natural disasters, such as earthquakes, hurricanes [17], [34]. Thus, we focus on the vulnerability of the power grid to an outage of several lines

  4. Earth resistivity measurement near substation ground grids

    SciTech Connect (OSTI)

    Lodwig, S.G.; Mateja, S.A. [ComEd, Chicago, IL (United States)

    1996-11-01T23:59:59.000Z

    Proper substation grounding grid design requires good, accurate soil resistivity measurements. This data is essential to model the substation ground grid to design a safe ground grid with a satisfactory ground grid resistance at minimum cost. For substations with several decades of service, there is some concern that a grid may have deteriorated, been damaged during equipment installation or excavation, or that initial soil resistivity measurements were lost or may not have been correctly performed. Ground grid conductors change the substation surface voltage distribution. Any voltage measurements taken at the complete substation will also vary from the tests made without conductors present. During testing, current was injected in the soil by probes placed near the ground grid. The current tends to follow the ground grid conductors since copper is a far better conductor than the soil it is placed in. Resistance readings near grids will be lower than readings in undisturbed soil. Since computer models were unavailable for many years, analyzing the effect of the grid conductors on soil resistivity measurements was very difficult. As a result, soil resistivity measurements made close to substations were of little use to the engineer unless some means of correcting the measured values could be developed. This paper will present results of soil resistivity measurements near a substation ground grid before and after a ground grid has been installed and describes a means of calculating the undisturbed soil model.

  5. "Reliability, Resiliency, and Restoration for Smarter Grid

    E-Print Network [OSTI]

    Ohta, Shigemi

    "Reliability, Resiliency, and Restoration for Smarter Grid Workshop" Save the Date April 3 and 4 at mohlsen@bnl.gov "The Resilient Smart Grid" to be held at Brookhaven National Laboratory Upton, Long Island://www.bnl.gov/maps/. This is the 5th workshop that BNL is hosting on the Smart Grid. This Workshop will build on the previous

  6. Grid adaptation for multiscale plasma simulations

    E-Print Network [OSTI]

    Ito, Atsushi

    Grid adaptation for multiscale plasma simulations Gian Luca Delzanno Los Alamos National Laboratory In collaboration with L. Chacon and J.M. Finn #12;delzanno@lanl.gov Outline · Introduction and motivation · Grid tests · New directions · Conclusions #12;delzanno@lanl.gov Outline · Introduction and motivation · Grid

  7. GRID Technologies => `Education' = `Distance Michalis Xenos

    E-Print Network [OSTI]

    Boyer, Edmond

    GRID Technologies => `Education' = `Distance Education' Michalis Xenos 1,2 , Bill Vassiliadis 1 possibilities that Grid technologies create in education, presents current learning paradigms and makes a prediction about the way in which Grid technologies may affect the future of education. The case

  8. Distributing MCell Simulations on the Grid

    E-Print Network [OSTI]

    Sejnowski, Terrence J.

    Distributing MCell Simulations on the Grid Henri Casanova casanova@cs.ucsd.edu Tom Bartol The Computational Grid [21] is a promising platform for the deployment of large-scale scientific and engineering that structure, PSAs are particularly well suited to the Grid infrastructure and can be deployed on very large

  9. Programming, Composing, Deploying for the Grid

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Programming, Composing, Deploying for the Grid Laurent Baduel, Fran¸coise Baude, Denis Caromel FirstName.LastName@sophia.inria.fr Abstract. Grids raise new challenges in the following way: heterogene objects and components. We especially target Grid computing, but our approach also applies to application

  10. Multiprocessor computer overset grid method and apparatus

    DOE Patents [OSTI]

    Barnette, Daniel W. (Veguita, NM); Ober, Curtis C. (Los Lunas, NM)

    2003-01-01T23:59:59.000Z

    A multiprocessor computer overset grid method and apparatus comprises associating points in each overset grid with processors and using mapped interpolation transformations to communicate intermediate values between processors assigned base and target points of the interpolation transformations. The method allows a multiprocessor computer to operate with effective load balance on overset grid applications.

  11. Algorithms in grid classes Ruth Hoffmann

    E-Print Network [OSTI]

    St Andrews, University of

    signs c1, . . . , cs and row signs, r1, . . . , rt and let = {(k, ) : Mk, = 0}. The map : GridAlgorithms in grid classes Ruth Hoffmann University of St Andrews, School of Computer Science Permutation Patterns 2013 Universit´e Paris Diderot 2nd July 2013 Ruth Hoffmann Algorithms in grid classes 1

  12. Large-Scale Data Challenges in Future Power Grids

    SciTech Connect (OSTI)

    Yin, Jian; Sharma, Poorva; Gorton, Ian; Akyol, Bora A.

    2013-03-25T23:59:59.000Z

    This paper describes technical challenges in supporting large-scale real-time data analysis for future power grid systems and discusses various design options to address these challenges. Even though the existing U.S. power grid has served the nation remarkably well over the last 120 years, big changes are in the horizon. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components. The whole system becomes highly dynamic and needs constant adjustments based on real time data. Even though millions of sensors such as phase measurement units (PMUs) and smart meters are being widely deployed, a data layer that can support this amount of data in real time is needed. Unlike the data fabric in cloud services, the data layer for smart grids must address some unique challenges. This layer must be scalable to support millions of sensors and a large number of diverse applications and still provide real time guarantees. Moreover, the system needs to be highly reliable and highly secure because the power grid is a critical piece of infrastructure. No existing systems can satisfy all the requirements at the same time. We examine various design options. In particular, we explore the special characteristics of power grid data to meet both scalability and quality of service requirements. Our initial prototype can improve performance by orders of magnitude over existing general-purpose systems. The prototype was demonstrated with several use cases from PNNL’s FPGI and was shown to be able to integrate huge amount of data from a large number of sensors and a diverse set of applications.

  13. Smart Grids: Fact or Fiction? A Discussion of Smart Grids in New Zealand

    E-Print Network [OSTI]

    Hickman, Mark

    May 2013 1 Smart Grids: Fact or Fiction? A Discussion of Smart Grids in New Zealand Dr Allan Miller. Introduction The term `smart grid' is used extensively today, even though there are diverse opinions on what to some extent, and the key questions should not be about what constitutes a `smart grid', but what

  14. Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave INFORME para la Sostenibilidad Energética y Ambiental, FUNSEAM. #12;Smart Grids: Sectores y actividades clave eléctrica y los diferentes sectores que forman la smart grid. 6 Figura 2. Evolución y previsión de

  15. Honeywell Parallon Grid-connect Tests Honeywell Grid-connect Tests

    E-Print Network [OSTI]

    Appendix C Honeywell Parallon Grid-connect Tests 12/20/2000 #12;Honeywell Grid-connect Tests 12 power Engine Speed Figure C-1: Ramp Down Tests ­ Power and Shaft Speed ­ 15 kW Steps #12;Honeywell Grid Figure C-2: Ramp Down Tests ­ Power and Turbine Exit Temperature ­ 15 kW Steps #12;Honeywell Grid

  16. The Adjustable Grid: A Grid-Based Cursor Control Solution using Speech Recognition

    E-Print Network [OSTI]

    Gray, Jeffrey G.

    The Adjustable Grid: A Grid-Based Cursor Control Solution using Speech Recognition Tarif Haque1 of grid-based cursor control systems using speech recognition have been developed. These systems typically overlay a numbered 3x3 grid on the screen and allow the user to recursively drill the cursor down

  17. Information GRID in the Corporate World Information GRID in the Corporate World

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Information GRID in the Corporate World Information GRID in the Corporate World .Bogonikolos Zeus Ontology Grid) project, an EU project funded under the Information Society Technologies programme and EAI Tools is discussed. The COG (Corporate Ontology Grid) project addresses the problem of accessing

  18. GridBank: A Grid Accounting Services Architecture (GASA) for Distributed Systems Sharing and Integration

    E-Print Network [OSTI]

    Buyya, Rajkumar

    GridBank: A Grid Accounting Services Architecture (GASA) for Distributed Systems Sharing Australia Nedlands, Western Australia, 6009 barmouta@csse.uwa.edu.au Rajkumar Buyya Grid Computing and Distributed Systems (GRIDS) Lab Dept. of Computer Science and Software Engineering The University of Melbourne

  19. GRID superscalar and SAGA: forming a high-level and platform-independent Grid

    E-Print Network [OSTI]

    Kielmann, Thilo

    GRID superscalar and SAGA: forming a high-level and platform-independent Grid programming Universiteit, Amsterdam, The Netherlands {merzky|kielmann}@cs.vu.nl Abstract. The Simple API for Grid Applications (SAGA), as currently standardized within GGF, aims to provide a simple yet powerful Grid API; its

  20. A Multi-solver Scheme for Viscous Flows Using Adaptive Cartesian Grids and Meshless Grid

    E-Print Network [OSTI]

    Jameson, Antony

    A Multi-solver Scheme for Viscous Flows Using Adaptive Cartesian Grids and Meshless Grid of an adaptive multi-solver approach for CFD sim- ulation of viscous flows. Curvilinear grids are used near solid bodies to capture boundary layers, and stuctured adaptive Cartesian grids are used away from the body

  1. Semantic-based Grid Resource Discovery and its Integration with the Grid Service Broker

    E-Print Network [OSTI]

    Melbourne, University of

    1 Semantic-based Grid Resource Discovery and its Integration with the Grid Service Broker Thamarai Chromepet, Chennai ­ 600044, India Email : stselvi@annauniv.edu 2 Grid Computing and Distributed Systems :mohanram@cdacb.ernet.in Abstract: This paper addresses the need of semantic component in the grid

  2. Using the GridSim Toolkit for Enabling Grid Computing Education Manzur Murshed

    E-Print Network [OSTI]

    Melbourne, University of

    with (Grid-enabled) resources or their agents using middleware services, map tasks to resources (schedulingUsing the GridSim Toolkit for Enabling Grid Computing Education Manzur Murshed Gippsland School: Grid Simulation; Education; Scheduling; Resource Management. Abstract Numerous research groups

  3. Demonstration of Promising Energy Storage Technologies

    SciTech Connect (OSTI)

    Bollinger, Benjamin

    2014-12-31T23:59:59.000Z

    This project develops and demonstrates a megawatt (MW)-scale Energy Storage System that employs compressed air as the storage medium. An isothermal compressed air energy storage (ICAESTM) system rated for 1 MW or more will be demonstrated in a full-scale prototype unit. Breakthrough cost-effectiveness will be achieved through the use of proprietary methods for isothermal gas cycling and staged gas expansion implemented using industrially mature, readily-available components. The ICAES approach uses an electrically driven mechanical system to raise air to high pressure for storage in low-cost pressure vessels, pipeline, or lined-rock cavern (LRC). This air is later expanded through the same mechanical system to drive the electric motor as a generator. The approach incorporates two key efficiency-enhancing innovations: (1) isothermal (constant temperature) gas cycling, which is achieved by mixing liquid with air (via spray or foam) to exchange heat with air undergoing compression or expansion; and (2) a novel, staged gas-expansion scheme that allows the drivetrain to operate at constant power while still allowing the stored gas to work over its entire pressure range. The ICAES system will be scalable, non-toxic, and cost-effective, making it suitable for firming renewables and for other grid applications.

  4. CIRED Workshop "Grid operation and congestion management" -Rome, 11-12 June 2014 Paper No 0371 Page 1 / 4

    E-Print Network [OSTI]

    Boyer, Edmond

    project. The project aims at developing a smart solar neighbourhood in an urban area near the city of NiceCIRED Workshop "Grid operation and congestion management" - Rome, 11-12 June 2014 Paper 0371 Paper IN THE NICE GRID DEMONSTRATOR Andrea MICHIORRI Georges KARINIOTAKIS Fiona FOUCAULT MINES ParisTech ­ France

  5. Grid Technology Overview and Status Geoffrey Fox1,2

    E-Print Network [OSTI]

    Grid Technology Overview and Status Geoffrey Fox1,2 , Alex Ho2 , Marlon Pierce1 1 Community Grids...................................................................................................................... 1 2 What is a Grid? ................................................................................................................ 1 3 Grid Technologies and Capabilities

  6. Transdisciplinary electric power grid science

    E-Print Network [OSTI]

    Brummitt, Charles D; Dobson, Ian; Moore, Cristopher; D'Souza, Raissa M

    2013-01-01T23:59:59.000Z

    The 20th-century engineering feat that most improved the quality of human life, the electric power system, now faces discipline-spanning challenges that threaten that distinction. So multilayered and complex that they resemble ecosystems, power grids face risks from their interdependent cyber, physical, social and economic layers. Only with a holistic understanding of the dynamics of electricity infrastructure and human operators, automatic controls, electricity markets, weather, climate and policy can we fortify worldwide access to electricity.

  7. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLongEnergy StorageB.

  8. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia's Stan AtcittyRenewables

  9. Sandia Energy » Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This authorEnergy &EC,Team

  10. Sandia Energy » SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche ThisStrategicThird AnnualSandia

  11. Building the International Lattice Data Grid

    E-Print Network [OSTI]

    G. Beckett; B. Joo; C. M. Maynard; D. Pleiter; O. Tatebe; T. Yoshie

    2009-10-09T23:59:59.000Z

    We present the International Lattice Data Grid (ILDG), a loosely federated grid of grids for sharing data from Lattice Quantum Chromodynamics (LQCD) simulations. The ILDG comprises of metadata, file format and web-service standards, which can be used to wrap regional data-grid interfaces, allowing seamless access to catalogues and data in a diverse set of collaborating regional grids. We discuss the technological underpinnings of the ILDG, primarily the metadata and the middleware, and offer a critique of its various aspects with the hindsight of the design work and the first full year of production.

  12. Spacer grid assembly and locking mechanism

    DOE Patents [OSTI]

    Snyder, Jr., Harold J. (Rancho Santa Fe, CA); Veca, Anthony R. (San Diego, CA); Donck, Harry A. (San Diego, CA)

    1982-01-01T23:59:59.000Z

    A spacer grid assembly is disclosed for retaining a plurality of fuel rods in substantially parallel spaced relation, the spacer grids being formed with rhombic openings defining contact means for engaging from one to four fuel rods arranged in each opening, the spacer grids being of symmetric configuration with their rhombic openings being asymmetrically offset to permit inversion and relative rotation of the similar spacer grids for improved support of the fuel rods. An improved locking mechanism includes tie bars having chordal surfaces to facilitate their installation in slotted circular openings of the spacer grids, the tie rods being rotatable into locking engagement with the slotted openings.

  13. Fact Sheet: Protecting Intelligent Distributed Power Grids Against...

    Office of Environmental Management (EM)

    and hierarchical security layer specific to intelligent grid design Intelligent power grids are interdependent energy management systems- encompassing generation,...

  14. Deploying Systems Interoperability and Customer Choice within Smart Grid

    E-Print Network [OSTI]

    Ghatikar, Girish

    2014-01-01T23:59:59.000Z

    twiki- sggrid/bin/view/SmartGrid/PriorityActionPlanssggrid/bin/view/SmartGrid/TTMeetingOnPriceCommunications The

  15. Integration of Computing and Information on Grids Geoffrey Fox

    E-Print Network [OSTI]

    by Fran Berman, Tony Hey and myself. (http://www.grid2002.org/ ) · Grids support e-Science representing

  16. New Report Characterizes Existing Offshore Wind Grid Interconnection...

    Office of Environmental Management (EM)

    New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities September 3,...

  17. Smart Grid Interoperability Maturity Model

    SciTech Connect (OSTI)

    Widergren, Steven E.; Levinson, Alex; Mater, J.; Drummond, R.

    2010-04-28T23:59:59.000Z

    The integration of automation associated with electricity resources (including transmission and distribution automation and demand-side resources operated by end-users) is key to supporting greater efficiencies and incorporating variable renewable resources and electric vehicles into the power system. The integration problems faced by this community are analogous to those faced in the health industry, emergency services, and other complex communities with many stakeholders. To highlight this issue and encourage communication and the development of a smart grid interoperability community, the GridWise Architecture Council (GWAC) created an Interoperability Context-Setting Framework. This "conceptual model" has been helpful to explain the importance of organizational alignment in addition to technical and informational interface specifications for "smart grid" devices and systems. As a next step to building a community sensitive to interoperability, the GWAC is investigating an interoperability maturity model (IMM) based on work done by others to address similar circumstances. The objective is to create a tool or set of tools that encourages a culture of interoperability in this emerging community. The tools would measure status and progress, analyze gaps, and prioritize efforts to improve the situation.

  18. North RTL grid scan'' studies

    SciTech Connect (OSTI)

    Emma, P.

    1990-10-17T23:59:59.000Z

    This study was made in response to screen measurements which indicated an emittance growth of nearly a factor of two within the North RTL or linac girder-1. Betatron oscillations are induced at the beginning of the North RTL to search for gross geometric aberrations arising within the RTL or sector-2 of the linac. The oscillations are induced horizontally and vertically with two X or two Y dipole correctors stepped in a nested loop fashion. In both cases the full set of RTL and first girder sector-2 linac beam position monitors (BPMs) are sampled in X and Y for each corrector setting. Horizontal (or vertical) data from pairs of BPMs are then transformed to phase space coordinates by the linear transformation constructed assuming the transport optics between the BPMs is known. A second transformation is then made to normalized phase space coordinates by using Twiss parameters consistent with the assumed transport optics. By careful choice of initial Twiss parameters the initial grid can be made square for convenience in graphical interpretation. A linear grid'' is then fitted to the transformed data points for each pair of BPMs. The area of each grid is calculated and linearity qualitatively evaluated. Furthermore, although not the focus of this study, the beta match at each BPM can be quantified. 6 figs.

  19. 2012 SG Peer Review - Recovery Act: AEP Ohio gridSMART Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    national impact. Life-cycle Funding 2010 - 2013 73,660,317 Technical Scope (Insert graphic here) * 110,000 AMI meters and associated infrastructure * Consumer Managed Energy...

  20. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012)

    Broader source: Energy.gov [DOE]

    East Penn Manufacturing, through its subsidary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery modules integrated in a turnkey battery energy...

  1. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery...

    Broader source: Energy.gov (indexed) [DOE]

    system integration Verified operational readiness Began operation Submit 12-month data analysis report Submit 30-month data analysis report Submit final scientifictechnical...

  2. Locations of Smart Grid Demonstration and Large-Scale Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms Loan Terms TheNaturalemployee

  3. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY Fact Sheet:2012) || Department

  4. Power Authority of the State of New York Smart Grid Demonstration Project |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation to ReducePoseidonPowder RiverPowellAllyOpen

  5. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartmentLast TenPriceDepartment of

  6. Kansas City Power & Light Company Smart Grid Demonstration Project | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island, Florida:Kane County,Energy

  7. Locations of Smart Grid Demonstration and Large-Scale Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for an Energy EmergencyRespond

  8. MHK Projects/Evopod E1 1 10 scale grid connected demonstrator | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHK ProjectsInformation Evopod E1

  9. INL and NREL Demonstrate Power Grid Simulation at a Distance - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen andHypernuclei in HallLeo282INLForReleases |

  10. Los Angeles Department of Water and Power Smart Grid Demonstration Project

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuanInformationLoremo AG Jump to: navigation,|

  11. SustainX, Inc. Smart Grid Demonstration Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseeker Energy Holding AGSuranaSussex Rural

  12. East Penn Manufacturing Co Grid-Scale Energy Storage Demonstration Using

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 in theGroup Report |ofM A N A G E M East Penn

  13. Grid artifact reduction for direct digital radiography detectors based on rotated stationary grids with homomorphic filtering

    SciTech Connect (OSTI)

    Kim, Dong Sik [Department of Electronics Engineering, Hankuk University of Foreign Studies, Gyeonggi-do 449-791 (Korea, Republic of); Lee, Sanggyun [R and D Center, DRTECH Co., Gyeonggi-do 463-782 (Korea, Republic of)

    2013-06-15T23:59:59.000Z

    Purpose: Grid artifacts are caused when using the antiscatter grid in obtaining digital x-ray images. In this paper, research on grid artifact reduction techniques is conducted especially for the direct detectors, which are based on amorphous selenium. Methods: In order to analyze and reduce the grid artifacts, the authors consider a multiplicative grid image model and propose a homomorphic filtering technique. For minimal damage due to filters, which are used to suppress the grid artifacts, rotated grids with respect to the sampling direction are employed, and min-max optimization problems for searching optimal grid frequencies and angles for given sampling frequencies are established. The authors then propose algorithms for the grid artifact reduction based on the band-stop filters as well as low-pass filters. Results: The proposed algorithms are experimentally tested for digital x-ray images, which are obtained from direct detectors with the rotated grids, and are compared with other algorithms. It is shown that the proposed algorithms can successfully reduce the grid artifacts for direct detectors. Conclusions: By employing the homomorphic filtering technique, the authors can considerably suppress the strong grid artifacts with relatively narrow-bandwidth filters compared to the normal filtering case. Using rotated grids also significantly reduces the ringing artifact. Furthermore, for specific grid frequencies and angles, the authors can use simple homomorphic low-pass filters in the spatial domain, and thus alleviate the grid artifacts with very low implementation complexity.

  14. Hydrogen Storage Materials Database Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReview |Panel HydrogenM M a a r r c c|

  15. Smart Grid Status and Metrics Report Appendices

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

    2014-07-01T23:59:59.000Z

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

  16. Solving Partial Differential Equations on Overlapping Grids

    SciTech Connect (OSTI)

    Henshaw, W D

    2008-09-22T23:59:59.000Z

    We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solution of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.

  17. An integrated security framework for GOSS power grid analytics platform

    SciTech Connect (OSTI)

    Gibson, Tara D.; Ciraci, Selim; Sharma, Poorva; Allwardt, Craig H.; Rice, Mark J.; Akyol, Bora A.

    2014-06-23T23:59:59.000Z

    In power grid operations, security is an essential component for any middleware platform. Security protects data against unwanted access as well as cyber attacks. GridOpticsTM Software System (GOSS) is an open source power grid analytics platform that facilitates ease of access between applications and data sources and promotes development of advanced analytical applications. GOSS contains an API that abstracts many of the difficulties in connecting to various heterogeneous data sources. A number of applications and data sources have already been implemented to demonstrate functionality and ease of use. A security framework has been implemented which leverages widely accepted, robust JavaTM security tools in a way such that they can be interchanged as needed. This framework supports the complex fine-grained, access control rules identified for the diverse data sources already in GOSS. Performance and reliability are also important considerations in any power grid architecture. An evaluation is done to determine the overhead cost caused by security within GOSS and ensure minimal impact to performance.

  18. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    SciTech Connect (OSTI)

    None

    2013-12-31T23:59:59.000Z

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology and interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.

  19. Buildings-to-Grid Technical Opportunities: From the Grid Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment ofBUILDING-TO-GRID TECHNICAL OPPORTUNITIES From

  20. Smart Grid Week: Working to Modernize the Nation's Electric Grid |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart Grid RFI PublicDepartmentDepartment

  1. Smart Grid Primer (Smart Grid Books) | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here Home »SmallNew

  2. EcoGrid EU (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport, Maine:EauEcoFactor Inc Jump(Smart Grid

  3. Grid Interaction Tech Team, and International Smart Grid Collaboration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration and the Carrying Capacity of the

  4. Smart Grid Savings and Grid Integration of Renewables in Idaho

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWork Force withNonprofit---5---12DOESmartthe 1 Smart Grid

  5. Energy System Development inAfrica: The case of grid and off-grid power inKenya

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Energy System Development inAfrica: The case of grid and off-grid power inKenya By Katherine Deaton Development inAfrica: The case of grid and off-grid power inKenya Energy System Development inAfrica: The case of grid and off-grid power in Kenya by Katherine Steel Submitted to the Engineering Systems Division

  6. Demand Response Spinning Reserve Demonstration

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

  7. Manufacturing Demonstration Facility Workshop Videos

    Broader source: Energy.gov [DOE]

    Session recordings from the Manufacturing Demonstration Facility Workshop held in Chicago, Illinois, on March 12, 2012, and simultaneously broadcast as a webinar.

  8. Insightful Workflow For Grid Computing

    SciTech Connect (OSTI)

    Dr. Charles Earl

    2008-10-09T23:59:59.000Z

    We developed a workflow adaptation and scheduling system for Grid workflow. The system currently interfaces with and uses the Karajan workflow system. We developed machine learning agents that provide the planner/scheduler with information needed to make decisions about when and how to replan. The Kubrick restructures workflow at runtime, making it unique among workflow scheduling systems. The existing Kubrick system provides a platform on which to integrate additional quality of service constraints and in which to explore the use of an ensemble of scheduling and planning algorithms. This will be the principle thrust of our Phase II work.

  9. Mapping on the HEALPix grid

    E-Print Network [OSTI]

    M. R. Calabretta

    2004-12-23T23:59:59.000Z

    The natural spherical projection associated with the Hierarchical Equal Area and isoLatitude Pixelisation, HEALPix, is described and shown to be one of an infinite class not previously documented in the cartographic literature. Projection equations are derived for the class in general and it is shown that the HEALPix projection suggests a simple method (a) of storing, and (b) visualising data sampled on the grid of the HEALPix pixelisation, and also suggests an extension of the pixelisation that is better suited for these purposes. Potentially useful properties of other members of the class are described. Finally, the formalism is defined for representing any member of the class in the FITS data format.

  10. Grid Integration | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,Glen WattmanInvestigationsandGrid Integration The

  11. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLongEnergy StorageB.DETL Permalink

  12. Sandia Energy - Smart Grid Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSiting and Barrier MitigationSmart

  13. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstituteThree-Dimensional

  14. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's SequimReactors ToDecisionDistribution Grid

  15. Smart Grid | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125EnergyIdaho | Department of Energy SmallSmart Grid

  16. Toward Real Time Data Analysis for Smart Grids

    SciTech Connect (OSTI)

    Yin, Jian; Gorton, Ian; Sharma, Poorva

    2012-11-10T23:59:59.000Z

    This paper describes the architecture and design of a novel system for supporting large-scale real-time data analysis for future power grid systems. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components of the grid. As a result, the whole system becomes highly dynamic and requires constant adjusting based on real time data. Even though millions of sensors such as phase measurement units (PMU) and smart meters are being widely deployed, a data layer that can analyze this amount of data in real time is needed. Unlike the data fabric in other cloud services, the data layer for smart grids has some unique design requirements. First, this layer must provide real time guarantees. Second, this layer must be scalable to allow a large number of applications to access the data from millions of sensors in real time. Third, reliability is critical and this layer must be able to continue to provide service in face of failures. Fourth, this layer must be secure. We address these challenges though a scalable system architecture that integrates the I/O and data processing capability in a devise set of devices. Data process operations can be placed anywhere from sensors, data storage devices, to control centers. We further employ compression to improve performance. We design a lightweight compression customized for power grid data. Our system can reduce end-to-end response time by reduce I/O overhead through compression and overlap compression operations with I/O. The initial prototype of our system was demonstrated with several use cases from PNNL’s FPGI and show that our system can provide real time guarantees to a diverse set of applications.

  17. Robust and efficient overset grid assembly for partitioned unstructured meshes

    SciTech Connect (OSTI)

    Roget, Beatrice, E-mail: broget@uwyo.edu; Sitaraman, Jayanarayanan, E-mail: jsitaram@uwyo.edu

    2014-03-01T23:59:59.000Z

    This paper presents a method to perform efficient and automated Overset Grid Assembly (OGA) on a system of overlapping unstructured meshes in a parallel computing environment where all meshes are partitioned into multiple mesh-blocks and processed on multiple cores. The main task of the overset grid assembler is to identify, in parallel, among all points in the overlapping mesh system, at which points the flow solution should be computed (field points), interpolated (receptor points), or ignored (hole points). Point containment search or donor search, an algorithm to efficiently determine the cell that contains a given point, is the core procedure necessary for accomplishing this task. Donor search is particularly challenging for partitioned unstructured meshes because of the complex irregular boundaries that are often created during partitioning. Another challenge arises because of the large variation in the type of mesh-block overlap and the resulting large load imbalance on multiple processors. Desirable traits for the grid assembly method are efficiency (requiring only a small fraction of the solver time), robustness (correct identification of all point types), and full automation (no user input required other than the mesh system). Additionally, the method should be scalable, which is an important challenge due to the inherent load imbalance. This paper describes a fully-automated grid assembly method, which can use two different donor search algorithms. One is based on the use of auxiliary grids and Exact Inverse Maps (EIM), and the other is based on the use of Alternating Digital Trees (ADT). The EIM method is demonstrated to be more efficient than the ADT method, while retaining robustness. An adaptive load re-balance algorithm is also designed and implemented, which considerably improves the scalability of the method.

  18. Smart Grid Demos Provide Guidance on Integrating DER and RES into the Distribution System with Consideration of Transmission Impacts, Market Signals, and Technologies

    SciTech Connect (OSTI)

    Kueck, John D [ORNL] [ORNL; Hamilton, Stephanie [Electric Power Research Institute (EPRI)] [Electric Power Research Institute (EPRI); Smith, Merrill [U.S. Department of Energy] [U.S. Department of Energy

    2010-01-01T23:59:59.000Z

    This paper describes the overall process for developing a planning criteria and deployment strategy for technology applications under the US Department of Energy (USDOE) and Electric Power Research Institute (EPRI) Smart Grid programs. These activities described provide an understanding of each demonstration and how they individually and as group further industry knowledge of Distributed Energy Resources (DER) and Renewable Energy Sources (RES) impact the grid and how the distribution grid can interact with DER and RES in smart ways. Both USDOE through its Renewable and Distributed Systems Integration (RDSI) and EPRI via its Smart Grid Demonstration Program both assess how DER and RES can be integrated and operated to lower the carbon footprint.

  19. High-Performance Computing for Real-Time Grid Analysis and Operation

    SciTech Connect (OSTI)

    Huang, Zhenyu; Chen, Yousu; Chavarría-Miranda, Daniel

    2013-10-31T23:59:59.000Z

    Power grids worldwide are undergoing an unprecedented transition as a result of grid evolution meeting information revolution. The grid evolution is largely driven by the desire for green energy. Emerging grid technologies such as renewable generation, smart loads, plug-in hybrid vehicles, and distributed generation provide opportunities to generate energy from green sources and to manage energy use for better system efficiency. With utility companies actively deploying these technologies, a high level of penetration of these new technologies is expected in the next 5-10 years, bringing in a level of intermittency, uncertainties, and complexity that the grid did not see nor design for. On the other hand, the information infrastructure in the power grid is being revolutionized with large-scale deployment of sensors and meters in both the transmission and distribution networks. The future grid will have two-way flows of both electrons and information. The challenge is how to take advantage of the information revolution: pull the large amount of data in, process it in real time, and put information out to manage grid evolution. Without addressing this challenge, the opportunities in grid evolution will remain unfulfilled. This transition poses grand challenges in grid modeling, simulation, and information presentation. The computational complexity of underlying power grid modeling and simulation will significantly increase in the next decade due to an increased model size and a decreased time window allowed to compute model solutions. High-performance computing is essential to enable this transition. The essential technical barrier is to vastly increase the computational speed so operation response time can be reduced from minutes to seconds and sub-seconds. The speed at which key functions such as state estimation and contingency analysis are conducted (typically every 3-5 minutes) needs to be dramatically increased so that the analysis of contingencies is both comprehensive and real time. An even bigger challenge is how to incorporate dynamic information into real-time grid operation. Today’s online grid operation is based on a static grid model and can only provide a static snapshot of current system operation status, while dynamic analysis is conducted offline because of low computational efficiency. The offline analysis uses a worst-case scenario to determine transmission limits, resulting in under-utilization of grid assets. This conservative approach does not necessarily lead to reliability. Many times, actual power grid scenarios are not studied, and they will push the grid over the edge and resulting in outages and blackouts. This chapter addresses the HPC needs in power grid analysis and operations. Example applications such as state estimation and contingency analysis are given to demonstrate the value of HPC in power grid applications. Future research directions are suggested for high performance computing applications in power grids to improve the transparency, efficiency, and reliability of power grids.

  20. ARPA-E: Advancing the Electric Grid

    ScienceCinema (OSTI)

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2014-03-13T23:59:59.000Z

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  1. ARPA-E: Advancing the Electric Grid

    SciTech Connect (OSTI)

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2014-02-24T23:59:59.000Z

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  2. Statistical analysis of cascading failures in power grids

    SciTech Connect (OSTI)

    Chertkov, Michael [Los Alamos National Laboratory; Pfitzner, Rene [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory

    2010-12-01T23:59:59.000Z

    We introduce a new microscopic model of cascading failures in transmission power grids. This model accounts for automatic response of the grid to load fluctuations that take place on the scale of minutes, when optimum power flow adjustments and load shedding controls are unavailable. We describe extreme events, caused by load fluctuations, which cause cascading failures of loads, generators and lines. Our model is quasi-static in the causal, discrete time and sequential resolution of individual failures. The model, in its simplest realization based on the Directed Current description of the power flow problem, is tested on three standard IEEE systems consisting of 30, 39 and 118 buses. Our statistical analysis suggests a straightforward classification of cascading and islanding phases in terms of the ratios between average number of removed loads, generators and links. The analysis also demonstrates sensitivity to variations in line capacities. Future research challenges in modeling and control of cascading outages over real-world power networks are discussed.

  3. Hierarchy-Direction Selective Approach for Locally Adaptive Sparse Grids

    SciTech Connect (OSTI)

    Stoyanov, Miroslav K [ORNL

    2013-09-01T23:59:59.000Z

    We consider the problem of multidimensional adaptive hierarchical interpolation. We use sparse grids points and functions that are induced from a one dimensional hierarchical rule via tensor products. The classical locally adaptive sparse grid algorithm uses an isotropic refinement from the coarser to the denser levels of the hierarchy. However, the multidimensional hierarchy provides a more complex structure that allows for various anisotropic and hierarchy selective refinement techniques. We consider the more advanced refinement techniques and apply them to a number of simple test functions chosen to demonstrate the various advantages and disadvantages of each method. While there is no refinement scheme that is optimal for all functions, the fully adaptive family-direction-selective technique is usually more stable and requires fewer samples.

  4. FINAL REPORT - CENTER FOR GRID MODERNIZATION

    SciTech Connect (OSTI)

    Markiewicz, Daniel R

    2008-06-30T23:59:59.000Z

    The objective of the CGM was to develop high-priority grid modernization technologies in advanced sensors, communications, controls and smart systems to enable use of real-time or near real-time information for monitoring, analyzing and managing distribution and transmission grid conditions. The key strategic approach to carry out individual CGM research and development (R&D) projects was through partnerships, primarily with the GridApp™ Consortium utility members.

  5. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-04-23T23:59:59.000Z

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  6. What is the Smart Grid Anyway

    Broader source: Energy.gov [DOE]

    Presentation covers what is the smart grid at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  7. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Time of Use Rates Customer Information System IT upgrades Customer Education Demand Response CE empowers the customer and supports grid operations Office of...

  8. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time of Use Rates Customer Information System IT upgrades and SOA Customer Education Demand Response and DER CE empowers the customer and supports grid operations Office of...

  9. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y AMI Demand Response Distribution Management Systems Advanced OMS Distribution Automation...

  10. Value of a Smart Grid System

    Broader source: Energy.gov (indexed) [DOE]

    2 - Section 1: Smart Grid Opportunities Remarkable things happen when economic forces and new technology converge. Consider how the the Internet -- combined with new, affordable...

  11. The Quest for Sustainable Smart Grids

    E-Print Network [OSTI]

    Nardelli, Pedro H J; Cardieri, Paulo; Latva-aho, Matti

    2013-01-01T23:59:59.000Z

    This paper is a reply to the opinion paper: Transdisciplinary electric power grid science (PNAS), 2013 [arXiv:1307.7305].

  12. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis for Grid Energy Storage DOE-Industry Canada Workshop May 15, 2014 INTRODUCTION HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND CLEAN FUEL PRODUCTION ITM POWER INC. ITM...

  13. Energy Storage for the Power Grid

    ScienceCinema (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-06-12T23:59:59.000Z

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  14. Spherical Harmonic Decomposition on a Cubic Grid

    E-Print Network [OSTI]

    Charles W. Misner

    1999-10-12T23:59:59.000Z

    A method is described by which a function defined on a cubic grid (as from a finite difference solution of a partial differential equation) can be resolved into spherical harmonic components at some fixed radius. This has applications to the treatment of boundary conditions imposed at radii larger than the size of the grid, following Abrahams, Rezzola, Rupright et al.(gr-qc/9709082}. In the method described here, the interpolation of the grid data to the integration 2-sphere is combined in the same step as the integrations to extract the spherical harmonic amplitudes, which become sums over grid points. Coordinates adapted to the integration sphere are not needed.

  15. The Virtual Observatory and Grid in Spain

    E-Print Network [OSTI]

    J. D. Santander-Vela

    2008-07-08T23:59:59.000Z

    The Virtual Observatory (VO) is nearing maturity, and in Spain the Spanish VO (SVO) exists since June 2004. There have also been numerous attempts at providing more or less encompassing grid initiatives at the national level, and finally Spain has an official National Grid Initiative (NGI). In this article we will show the VO and Grid development status of nationally funded initiatives in Spain, and we will hint at potential joint VO-Grid use-cases to be developed in Spain in the near future.

  16. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some Technical Challenges Symposium on Modeling & Control of Alternative Energy Systems Joe Miller - Modern Grid Team Lead April 2, 2009 1 Conducted by the National Energy...

  17. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Viability and Business Case of Alternative Smart Grid Scenarios 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of...

  18. Microsoft Word - Smart Grid Economic Impact Report

    Office of Environmental Management (EM)

    benefits include real estate, wholesale trade, financial services, restaurants, and health care. Smart Grid ARRA investments also supported employment in personal service...

  19. Effects of grids in drift tubes

    SciTech Connect (OSTI)

    Okamura M.; Yamauchi, H.

    2012-05-20T23:59:59.000Z

    In 2011, we upgraded a 201 MHz buncher in the proton injector for the alternating gradient synchrotron (AGS) - relativistic heavy ion collider (RHIC) complex. In the buncher we installed four grids made of tungsten to improve the transit time factor. The grid installed drift tubes have 32 mm of inner diameter and the each grid consists of four quadrants. The quadrants were cut out precisely from 1mm thick tungsten plates by a computerized numerically controlled (CNC) wire cutting electrical discharge machining (EDM). The 3D electric field of the grid was simulated.

  20. Sandia National Laboratories: Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Second Annual Electric Power Research InstituteSandia Photovoltaic Systems Symposium On April 15, 2014, in Concentrating Solar Power, Distribution Grid Integration, Energy,...

  1. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is an essential component of the modern grid: IC creates a dynamic, interactive "mega-infrastructure" for real-time information and power exchange IC allows the various...

  2. Vehicle-Grid Interoperability | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle-Grid Interoperability Charging a test vehicle using the laboratory's solar-powered charging station. Charging a test vehicle using the laboratory's solar-powered charging...

  3. Sandia National Laboratories: Distributed Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Grid Integration Federal Electric Regulatory Commission Revised Its Small Generator Interconnection Procedure and Small Generator Interconnection Agreement On March 4,...

  4. Sandia National Laboratories: electric grid resilience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART Grid, Systems Analysis, Systems Engineering Mayor Says New System Will 'Keep Everyone...

  5. Sandia National Laboratories: electric grid stabilization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART Grid, Systems Analysis, Systems Engineering Mayor Says New System Will 'Keep Everyone...

  6. Sandia National Laboratories: modernize the electric grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART Grid, Systems Analysis, Systems Engineering Mayor Says New System Will 'Keep Everyone...

  7. Ion mobility spectrometer with virtual aperture grid

    DOE Patents [OSTI]

    Pfeifer, Kent B. (Los Lunas, NM); Rumpf, Arthur N. (Albuquerque, NM)

    2010-11-23T23:59:59.000Z

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  8. Optimization Online - Compressed Sensing Off the Grid

    E-Print Network [OSTI]

    Gongguo Tang

    2012-09-13T23:59:59.000Z

    Sep 13, 2012 ... Compressed Sensing Off the Grid. Gongguo Tang(gtang5 ***at*** wisc.edu) Badri Narayan Bhaskar(bnbhaskar ***at*** wisc.edu) Parikshit ...

  9. Opening Remarks, Grid Integration Initiative Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Loads Power Systems Integration Lab PV and Grid Simulators Energy Systems Integration Lab Fuel Cells, Electrolyzers Outdoor Test Area EVs, MV equipment Rooftop PV & Wind Energy...

  10. What will the Smart Grid Look Like?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and education they need to effectively utilize the new options provided by the Smart Grid. CE includes solutions such as Advanced Metering Infrastructure (AMI), home...

  11. Smart Grid Publications Archive | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    July 2009 The Smart Grid Stakeholder Roundtable Group Perspectives (September 2009) Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A...

  12. file://P:\\Smart Grid\\Smart Grid RFI Policy and Logistical Comme

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status: Tracking No. Comments Due: Submission Type: Page 1 of 2 1182010 file:P:Smart GridSmart Grid RFI Policy and Logistical CommentsDraft Comments for DOE-H... I...

  13. Quantifying the Impact of Adverse Events on the Electricity Grid as a Function of Grid Topology

    SciTech Connect (OSTI)

    Coles, Garill A.; Sadovsky, Artyom; Du, Pengwei

    2011-11-30T23:59:59.000Z

    Abstract--Traditional approaches to the study of grid vulnerability have taken an asset based approach, which seeks to identify those assets most likely to result in grid-wide failures or disruptions in the event that they are compromised. We propose an alternative approach to the study of grid vulnerability, one based on the topological structure of the entire grid. We propose a method that will identify topological parameters most closely related to the ability of the grid to withstand an adverse event. We compare these topological parameters in terms of their impact on the vulnerability metric we have defined, referred to as the grid’s “survivability”. Our approach is motivated by Paul Baran’s work on communications networks, which also studied vulnerability in terms of network-wide parameters. Our approach is useful both as a planning model for evaluating proposed changes to a grid and as a risk assessment tool.

  14. An Ontology for Scientific Information in a Grid Environment: the Earth System Grid.

    E-Print Network [OSTI]

    Chervenak, Ann

    An Ontology for Scientific Information in a Grid Environment: the Earth System Grid. Line Pouchard.S. Department of Energy Scientific Discovery through Advanced Computing (SciDAC) program. The Earth System Grid, 5 Carl Kesselman,5 Arie Shoshani, 6 Alex Sim6 [1] Oak Ridge National Laboratory, [2] Argonne

  15. Browse > Journals> Smart Grid, IEEE Transactions ...> Top Accessed Articles 1. Smart Transmission Grid: Vision and Framework

    E-Print Network [OSTI]

    Tennessee, University of

    Browse > Journals> Smart Grid, IEEE Transactions ...> Top Accessed Articles 1. Smart Transmission.2080328 3. A Reliability Perspective of the Smart Grid Moslehi, K. Kumar, R. Page(s): 57 - 64 Digital Object Consumption Scheduling for the Future Smart Grid Mohsenian-Rad, A. Wong, V.W.S. Jatskevich, J. Schober, R

  16. SensorGrid: Integrating Sensor Networks and Grid Computing Chen-Khong Tham1

    E-Print Network [OSTI]

    Melbourne, University of

    SensorGrid: Integrating Sensor Networks and Grid Computing Chen-Khong Tham1 and Rajkumar Buyya2 Keywords: Sensors, Sensor Networks, Grid computing, SensorML, SensorWeb. 1. Introduction Recent advances in electronic circuit miniaturization and micro-electromechanical systems (MEMS) have led to the creation

  17. Distributed Smart Grid Asset Control Strategies for Providing Ancillary Services

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Zhang, Wei; Lian, Jianming; Marinovici, Laurentiu D.; Moya, Christian; Dagle, Jeffery E.

    2013-10-30T23:59:59.000Z

    With large-scale plans to integrate renewable generation driven mainly by state-level renewable portfolio requirements, more resources will be needed to compensate for the uncertainty and variability associated with intermittent generation resources. Distributed assets can be used to mitigate the concerns associated with renewable energy resources and to keep costs down. Under such conditions, performing primary frequency control using only supply-side resources becomes not only prohibitively expensive but also technically difficult. It is therefore important to explore how a sufficient proportion of the loads could assume a routine role in primary frequency control to maintain the stability of the system at an acceptable cost. The main objective of this project is to develop a novel hierarchical distributed framework for frequency based load control. The framework involves two decision layers. The top decision layer determines the optimal gain for aggregated loads for each load bus. The gains are computed using decentralized robust control methods, and will be broadcast to the corresponding participating loads every control period. The second layer consists of a large number of heterogeneous devices, which switch probabilistically during contingencies so that aggregated power change matches the desired amount according to the most recently received gains. The simulation results show great potential to enable systematic design of demand-side primary frequency control with stability guarantees on the overall power system. The proposed design systematically accounts for the interactions between the total load response and bulk power system frequency dynamics. It also guarantees frequency stability under a wide range of time varying operating conditions. The local device-level load response rules fully respect the device constraints (such as temperature setpoint, compressor time delays of HVACs, or arrival and departure of the deferrable loads), which are crucial for implementing real load control programs. The promise of autonomous, Grid Friendly™ response by smart appliances in the form of under-frequency load shedding was demonstrated in the GridWise Olympic Peninsula Demonstration in 2006. Each controller monitored the power grid voltage signal and requested that electrical load be shed by its appliance whenever electric power-grid frequency fell below 59.95 Hz. The controllers and their appliances responded reliably to each shallow under-frequency event, which was an average of one event per day and shed their loads for the durations of these events. Another objective of this project was to perform extensive simulation studies to investigate the impact of a population of Grid Friendly™ Appliances (GFAs) on the bulk power system frequency stability. The GFAs considered in this report are represented as demonstration units with water heaters individually modeled.

  18. Real Time Grid Reliability Management 2005

    SciTech Connect (OSTI)

    Eto, Joe; Eto, Joe; Lesieutre, Bernard; Lewis, Nancy Jo; Parashar, Manu

    2008-07-07T23:59:59.000Z

    The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information about actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.

  19. Grid-tied PV battery systems.

    SciTech Connect (OSTI)

    Barrett, Keith Phillip; Gonzalez, Sigifredo; Hund, Thomas D.

    2010-09-01T23:59:59.000Z

    Grid tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time interval. On a clear day the solar irradiance power curve is offset by about 1h, while on a variable cloudy day the inverter output power curve will be smoothed based on the average solar irradiance. Test results demonstrate that this smoothing algorithm works very well. Battery state of charge was more difficult to manage because of the variable system inefficiencies. Testing continued for 30-days and established consistent operational performance for extended periods of time under a wide variety of resource conditions. Both battery technologies from Exide (Absolyte) and East Penn (ALABC Advanced) proved to cycle well at a Partial state of charge over the time interval tested.

  20. Grid-independent Issue in Numerical Heat Transfer

    E-Print Network [OSTI]

    Yao Wei; Wang Jian; Liao Guangxuan

    2006-09-26T23:59:59.000Z

    Grid independent is associated with the accuracy or even rationality of numerical results. This paper takes two-dimensional steady heat transfer for example to reveal the effect of grid resolution on numerical results. The law of grid dependence is obtained and a simple mathematical formula is presented. The production acquired here can be used as the guidance in choosing grid density in numerical simulation and get exact grid independent value without using infinite fine grid. Through analyzing grid independent, we can find the minimum number of grid cells that is needed to get grid-independent results. Such strategy can save computational resource while ensure a rational computational result.

  1. Demonstration Report: Handheld UXO Discriminator, SERDP No. MR-1667

    E-Print Network [OSTI]

    Gasperikova, E.

    2011-01-01T23:59:59.000Z

    summation. The Calibration Grid S/N map is shown in Figureanalyze”. The Blind Test Grid S/N map is shown in Figure 6.to-noise ratio map of the APG Calibration Grid. Colors are

  2. Cyber-Physical Systems Security for Smart Grid

    E-Print Network [OSTI]

    Cyber-Physical Systems Security for Smart Grid Future Grid Initiative White Paper Power Systems-Physical Systems Security for Smart Grid Prepared for the Project "The Future Grid to Enable Sustainable Energy as one of nine white papers in the project "The Future Grid to Enable Sustainable Energy Systems

  3. Cyber-Physical Systems Security for Smart Grid

    E-Print Network [OSTI]

    Cyber-Physical Systems Security for Smart Grid Future Grid Initiative White Paper Power Systems-Physical Systems Security for Smart Grid Prepared for the Project "The Future Grid to Enable Sustainable Energy Acknowledgements This white paper was developed as one of nine white papers in the project "The Future Grid

  4. Computation and Information Hierarchy for a Future Grid

    E-Print Network [OSTI]

    Computation and Information Hierarchy for a Future Grid Future Grid Initiative White Paper Power;#12;Computation and Information Hierarchy for a Future Grid Prepared for the Project "The Future Grid to Enable This white paper was developed as one of nine white papers in the project "The Future Grid to Enable

  5. Towards a Grid Information Knowledge Base , Marios D. Dikaiakos1

    E-Print Network [OSTI]

    Pallis, George

    Towards a Grid Information Knowledge Base Wei Xing1 , Marios D. Dikaiakos1 , and Rizos Sakellariou2 present our work on building a Grid infor- mation knowledge base, which is a key component of a semantic Grid information system. A Core Grid Ontology (CGO) is developed for build- ing a Grid knowledge base

  6. A CHARACTERIZATION OF MAPPING UNSTRUCTURED GRIDS ONTO STRUCTURED

    E-Print Network [OSTI]

    Douglas, Craig C.

    BIT 1997 A CHARACTERIZATION OF MAPPING UNSTRUCTURED GRIDS ONTO STRUCTURED GRIDS AND USING MULTIGRID solution is to map the unstructured grid onto a structured grid and then apply multigrid to a sequence 06520-8285, USA. email: schultz-martin@cs.yale.edu Abstract. Many problems based on unstructured grids

  7. Demand Response and Electric Grid Reliability

    E-Print Network [OSTI]

    Wattles, P.

    2012-01-01T23:59:59.000Z

    Demand Response and Electric Grid Reliability Paul Wattles Senior Analyst, Market Design & Development, ERCOT CATEE Conference, Galveston October 10, 2012 2 North American Bulk Power Grids CATEE Conference October 10, 2012 ? The ERCOT... adequacy ? ?Achieving more DR participation would . . . displace some generation investments, but would achieve the same level of reliability... ? ?Achieving this ideal requires widespread demand response and market structures that enable loads...

  8. Stretched-Grid Model Intercomparison Project

    E-Print Network [OSTI]

    Gruner, Daniel S.

    - Land-sea differences - Surface parameters Applications (besides regional climate variability and change, Russia #12;OUTLINE 1. INTRODUCTION: Exploring the variable- resolution stretched-grid approach (for grid- point models: Staniforth and Mitchell 1978, and for spectral models: Schmidt 1977) to regional climate

  9. SMART WATER GRID PLAN B TECHNICAL REPORT

    E-Print Network [OSTI]

    Julien, Pierre Y.

    SMART WATER GRID PLAN B TECHNICAL REPORT FALL 2014 PREPARED BY: OLGA MARTYUSHEVA IN PARTIAL of water resources is currently under stress due to climatic changes, and continuous increase in water demand linked to the global population increase. A Smart Water Grid (SWG) is a two-way real time network

  10. Decentralized Grid Scheduling with Evolutionary Fuzzy Systems

    E-Print Network [OSTI]

    Feitelson, Dror

    - increasing demand for computing power and storage space. While well-established approaches such as the EGEEDecentralized Grid Scheduling with Evolutionary Fuzzy Systems Alexander F¨olling, Christian Grimme of finding workload exchange policies for decentralized Computational Grids using an Evo- lutionary Fuzzy

  11. Grid Security: Expecting the Mingchao Ma

    E-Print Network [OSTI]

    University College London

    of a communications line; Power failure; Internet connection failure; Mis-configuration; · Security incidents ­ SystemGrid Security: Expecting the Unexpected Mingchao Ma STFC ­ Rutherford Appleton Laboratory, UK #12;Slide 2 Overview · Security Service Challenges (SSC) Review · Grid Security Incident ­ What had happened

  12. Algorithmic Decision Theory and the Smart Grid

    E-Print Network [OSTI]

    1 Algorithmic Decision Theory and the Smart Grid Fred Roberts Rutgers University #12;2 Algorithmic Conference on ADT ­ probably Belgium in Fall 2013. #12;9 ADT and Smart Grid ·Many of the following ideas and planning dating at least to World War II. ·But: algorithms to speed up and improve real-time decision

  13. Polish grid infrastructure for science and research

    E-Print Network [OSTI]

    Ryszard Gokieli; Krzysztof Nawrocki; Adam Padee; Dorota Stojda; Karol Wawrzyniak; Wojciech Wislicki

    2007-10-07T23:59:59.000Z

    Structure, functionality, parameters and organization of the computing Grid in Poland is described, mainly from the perspective of high-energy particle physics community, currently its largest consumer and developer. It represents distributed Tier-2 in the worldwide Grid infrastructure. It also provides services and resources for data-intensive applications in other sciences.

  14. LIMB demonstration project extension and Coolside demonstration: A DOE assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2000-04-30T23:59:59.000Z

    The goal of the US Department of Energy (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have already reached the proof-of-concept stage. This document serves as a DOE post-project assessment of the CCT Round 1 project ``LIMB Demonstration Project Extension and Coolside Demonstration'', described in a report to Congress (Babcock and Wilcox 1987), a paper by DePero et al. (1992), and in a report by Goots et al. (1992). The original limestone injection multistage burner (LIMB) demonstration work was conducted by Babcock and Wilcox Company (B and W) beginning in 1984, under the sponsorship of the US Environmental Protection Agency (EPA) and the State of Ohio Coal Development Office (OCDO). In 1987, B and W and the Ohio Edison Company agreed to extend the full-scale demonstration of LIMB technology under the sponsorship of DOE through its CCT Program, and with support from OCDO and Consolidation Coal Company, now known as CONSOL. In a separate effort, CONSOL had been developing another flue gas desulfurization (FGD) technology known as the Coolside process. Both LIMB and Coolside use sorbent injection to remove SO{sub 2}. The LIMB process injects the sorbent into the furnace and the Coolside injects the sorbent into the flue gas duct. In addition, LIMB uses low-NO{sub x} burners to reduce NO{sub x} emissions; hence it is categorized as a combination SO{sub 2}/NO{sub x} control technology. To take advantage of synergism between the two processes, the CCT project was structured to incorporate demonstration of both the LIMB and Coolside processes. Coolside testing was accomplished between July 1989 and February 1990, and the LIMB Extension test program was conducted between April 1990 and August 1991. The host site for both tests was the 105 MWe coal-fired Unit 4 at Ohio Edison's Edgewater Station in Lorain, Ohio. The major performance objectives of this project were successfully achieved, with SO{sub 2} emissions reductions of up to 70% demonstrated in both processes.

  15. A Strategy for Identifying the Grid Stars for the Space Interferometry Mission (SIM)

    E-Print Network [OSTI]

    Sabine Frink; Andreas Quirrenbach; Debra Fischer; Siegfried Roeser; Elena Schilbach

    2000-11-09T23:59:59.000Z

    We present a strategy to identify several thousand stars that are astrometrically stable at the micro-arcsecond level for use in the SIM (Space Interferometry Mission) astrometric grid. The requirements on the grid stars make this a rather challenging task. Taking a variety of considerations into account we argue for K giants as the best type of stars for the grid, mainly because they can be located at much larger distances than any other type of star due to their intrinsic brightness. We show that it is possible to identify suitable candidate grid K giants from existing astrometric catalogs. However, double stars have to be eliminated from these candidate grid samples, since they generally produce much larger astrometric jitter than tolerable for the grid. The most efficient way to achieve this is probably by means of a radial velocity survey. To demonstrate the feasibility of this approach, we repeatedly measured the radial velocities for a pre-selected sample of 86 nearby Hipparcos K giants with precisions of 5-8 m/s. The distribution of the intrinsic radial velocity variations for the bona-fide single K giants shows a maximum around 20 m/s, which is small enough not to severely affect the identification of stellar companions around other K giants. We use the results of our observations as input parameters for Monte-Carlo simulations on the possible design of a radial velocity survey of all grid stars. Our favored scenario would result in a grid which consists to 68% of true single stars and to 32% of double or multiple stars with periods mostly larger than 200 years, but only 3.6% of all grid stars would display astrometric jitter larger than 1 microarcsecond. This contamination level is probably tolerable.

  16. Buried Waste Integrated Demonstration Plan

    SciTech Connect (OSTI)

    Kostelnik, K.M.

    1991-12-01T23:59:59.000Z

    This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

  17. Security on the US Fusion Grid

    SciTech Connect (OSTI)

    Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01T23:59:59.000Z

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  18. Data security on the national fusion grid

    SciTech Connect (OSTI)

    Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01T23:59:59.000Z

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  19. X-ray grid-detector apparatus

    DOE Patents [OSTI]

    Boone, John M. (Folsom, CA); Lane, Stephen M. (Oakland, CA)

    1998-01-27T23:59:59.000Z

    A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

  20. Physics from Angular Projection of Rectangular Grids

    E-Print Network [OSTI]

    Singh, Ashmeet

    2015-01-01T23:59:59.000Z

    In this paper, we present a mathematical model for the angular projection of a rectangular arrangement of points in a grid. This simple, yet interesting problem, has both a scholarly value and applications for data extraction techniques to study the physics of various systems. Our work can interest undergraduate students to understand subtle points in the angular projection of a grid and describes various quantities of interest in the projection with completeness and sufficient rigour. We show that for certain angular ranges, the projection has non-distinctness, and calculate the details of such angles, and correspondingly, the number of distinct points and the total projected length. We focus on interesting trends obtained for the projected length of the grid elements and present a simple application of the model to determine the geometry of an unknown grid whose spatial extensions are known, using measurement of the grid projection at two angles only. Towards the end, our model is shown to have potential ap...

  1. Propane Vehicle Demonstration Grant Program

    SciTech Connect (OSTI)

    Jack Mallinger

    2004-08-27T23:59:59.000Z

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  2. The Purpose and Value of Successful Technology Demonstrations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    yields electricity supply to consumers without utilities. The instance of commercial and residential consumers going off-grid (Grid Divorce) has increased 33% per year each of the...

  3. GridOPTICS(TM): A Design for Plug-and-Play Smart Grid Software Architecture

    SciTech Connect (OSTI)

    Gorton, Ian; Liu, Yan; Yin, Jian

    2012-06-03T23:59:59.000Z

    As the smart grid becomes reality, software architectures for integrating legacy systems with new innovative approaches for grid management are needed. These architectures must exhibit flexibility, extensibility, interoperability and scalability. In this position paper, we describe our preliminary work to design such an architecture, known as GridOPTICS, that will enable the deployment and integration of new software tools in smart grid operations. Our preliminary design is based upon use cases from PNNL’s Future Power Grid Initiative, which is a developing a collection of advanced software technologies for smart grid management and control. We describe the motivations for GridOPTICS, and the preliminary design that we are currently prototyping for several distinct use cases.

  4. Distributed Demand Response and User Adaptation in Smart Grids

    E-Print Network [OSTI]

    Fan, Zhong

    2010-01-01T23:59:59.000Z

    This paper proposes a distributed framework for demand response and user adaptation in smart grid networks. In particular, we borrow the concept of congestion pricing in Internet traffic control and show that pricing information is very useful to regulate user demand and hence balance network load. User preference is modeled as a willingness to pay parameter which can be seen as an indicator of differential quality of service. Both analysis and simulation results are presented to demonstrate the dynamics and convergence behavior of the algorithm.

  5. Barriers to Electrification for "Under Grid" Households in Rural Kenya

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    of the unelectrified are “off grid,” or too far away toand small, stand-alone off-grid solutions will be requiredgrowing support for off-grid, distributed energy approaches,

  6. Measured Off-Grid LED Lighting System Performance

    E-Print Network [OSTI]

    Granderson, Jessica

    2009-01-01T23:59:59.000Z

    Budget: The Economics of Off-Grid Lighting for SmallA. Jacobson. 2007. "The Off-Grid Lighting Market in WesternTesting for Emerging Off-grid White-LED Illumination Systems

  7. Product Quality Assurance for Off-Grid Lighting in Africa

    E-Print Network [OSTI]

    Mills, Evan; World Bank

    2008-01-01T23:59:59.000Z

    of technological options for off-grid light provision thatQuality Assurance for Off-Grid Lighting in Africa Conferencemarkets for high efficiency off-grid lighting technologies

  8. Barriers to Electrification for "Under Grid" Households in Rural Kenya

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    small, stand-alone off-grid solutions will be required forand commercialize off-grid solutions that can provide ruralof organizations promote off-grid solutions—such as solar

  9. In the OSTI Collections: Keeping Power Grids Stable | OSTI, US...

    Office of Scientific and Technical Information (OSTI)

    -pp. 14-15 (pp. 18-19 of 48), "The Smart Grid: An Introduction"U. S. Department of Energy Figure 2. Test model of a transmission grid. (a) The model grid is composed of 81...

  10. Are You a Smart Grid Champion? | Department of Energy

    Energy Savers [EERE]

    just of the grid, but of our entire energy economy. Watch this video from Con Edison of New York (recipient of two DOE Smart Grid Recovery grants) on the Smart Grid (it's about 2...

  11. Efficient Bulk Data Replication for the Earth System Grid

    E-Print Network [OSTI]

    Sim, Alex

    2010-01-01T23:59:59.000Z

    Bulk Data Replication for the Earth System Grid Alex Sim 1 ,CA 94720, USA Abstract The Earth System Grid (ESG) communityNetLogger 1. Introduction The Earth System Grid (ESG) [1

  12. West Virginia Smart Grid Implementation Plan (WV SGIP) Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    West Virginia Smart Grid Implementation Plan (WV SGIP) Project APERC Report on Assessment of As-Is Grid by Non-Utility Stakeholders Introduction One goal of this grid...

  13. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    system planning, renewable energy, smart grids, storage planning projects will become even more critical as the smart grid planning  models.   Some  of  these  objectives  are  not  well  defined,  like  smart?grid 

  14. Assessing the Usefulness of Distributed Measurements in the Smart Grid

    E-Print Network [OSTI]

    Framhein, Theodore Anthony

    2012-01-01T23:59:59.000Z

    Kezunovic, M. ; , "Smart Fault Location for Smart Grids,"Smart Grid, IEEE Transactions on , vol.2, no.1, pp.11-22,Measurements in the Smart Grid A thesis submitted in partial

  15. Integrating Grid Services into the Cray XT4 Environment

    E-Print Network [OSTI]

    Cholia, Shreyas

    2010-01-01T23:59:59.000Z

    with the system side of the grid work. Before joining NERSC,Franklin login node for grid access. This will simplify thethe feasibility of grid VO based project accounts to share

  16. Efficient Bulk Data Replication for the Earth System Grid

    E-Print Network [OSTI]

    Sim, Alex

    2010-01-01T23:59:59.000Z

    for the Earth System Grid Alex Sim 1 , Dan Gunter 1 , VijayaUSA Abstract The Earth System Grid (ESG) community faces theIntroduction The Earth System Grid (ESG) [1] community faces

  17. WISDOM: A Grid-Enabled Drug Discovery Initiative Against Malaria

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    14 WISDOM: A Grid-Enabled Drug Discovery Initiative Against Malaria Vincent Breton, Doman Kim ................................................................................ 354 14.2 Grid-Enabled Drug Discovery .................................................. 354 14.2.1 In Silico Drug Discovery: Requirements and Grid Added Value

  18. Nested-grid simulation of mercury over North America

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Chemistry and Physics Nested-grid simulation of mercury overY. Zhang et al. : Nested-grid simulation of mercury overand Chen, S. -Y. : Plume-in-grid modeling of atmospheric

  19. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01T23:59:59.000Z

    in the context of regional grid structure and operations,and Regional U.S. Power Grids. Part 1: Technical Analysis;ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-In

  20. Wave Power Demonstration Project at Reedsport, Oregon

    SciTech Connect (OSTI)

    Mekhiche, Mike [Principal Investigator] [Principal Investigator; Downie, Bruce [Project Manager] [Project Manager

    2013-10-21T23:59:59.000Z

    Ocean wave power can be a significant source of large?scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy? to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high?voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon?based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take?off subsystem are complete; additionally the power take?off subsystem has been successfully integrated into the spar.