Sample records for grid connection plug

  1. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01T23:59:59.000Z

    in the context of regional grid structure and operations,and Regional U.S. Power Grids. Part 1: Technical Analysis;ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-In

  2. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01T23:59:59.000Z

    mail: ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-by either gasoline or electricity, but unlike hybrids, PHEVsto use very low-carbon electricity resources, such as

  3. GROWDERS Demonstration of Grid Connected Electricity Systems...

    Open Energy Info (EERE)

    GROWDERS Demonstration of Grid Connected Electricity Systems (Smart Grid Project) (Spain) Jump to: navigation, search Project Name GROWDERS Demonstration of Grid Connected...

  4. Grid Connectivity Research, Development & Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connectivity Research, Development & Demonstration Projects Grid Connectivity Research, Development & Demonstration Projects 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  5. Modeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter

    E-Print Network [OSTI]

    Bak, Claus Leth

    Modeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter based in the same grid interface conditions by means of impedance-based analysis and modeling. Unlike the single grid connected inverter, it is found that multiple parallel connected inverters and grid impedance can

  6. Opportunity to Plug Your Car Into the Electric Grid is Arriving

    SciTech Connect (OSTI)

    Griego, G.

    2010-06-01T23:59:59.000Z

    Plug-in hybrid electric vehicles are hitting the U.S. market for the first time this year. Similar to hybrid electric vehicles, they feature a larger battery and plug-in charger that allows consumers to replace a portion of their fossil fuel by simply plugging their cars into standard 110-volt outlets at home or wherever outlets are available. If these vehicles become widely accepted, consumers and the environment will benefit, according to a computer modeling study by Xcel Energy and the Department of Energy's National Renewable Energy Laboratory. Researchers found that each PHEV would cut carbon dioxide emissions in half and save owners up to $450 in annual fuel costs and up to 240 gallons of gasoline. The study also looked at the impact of PHEVs on the electric grid in Colorado if used on a large scale. Integrating large numbers of these vehicles will depend on the adoption of smart-grid technology - adding digital elements to the electric power system to improve efficiency and enable more dynamic communication between consumers and producers of electricity. Using an intelligent monitoring system that keeps track of all electricity flowing in the system, a smart grid could enable optimal PHEV battery-charging much the same way it would enable users to manage their energy use in household appliances and factory processes to reduce energy costs. When a smart grid is implemented, consumers will have many low-cost opportunities to charge PHEVs at different times of the day. Plug-in vehicles could contribute electricity at peak times, such as summer evenings, while taking electricity from the grid at low-use times such as the middle of the night. Electricity rates could offer incentives for drivers to 'give back' electricity when it is most needed and to 'take' it when it is plentiful. The integration of PHEVs, solar arrays and wind turbines into the grid at larger scales will require a more modern electricity system. Technology already exists to allow customers to feed excess power from their own renewable energy systems back to the grid. As more homes and businesses find opportunities to plan power flows to and from the grid for economic gain using their renewable energy systems and PHEVs, more sophisticated systems will be needed. A smart grid will improve the efficiency of energy consumption, manage real-time power flows and provide two-way metering needed to compensate small power producers. Many states are working toward the smart-grid concept, particularly to incorporate renewable sources into their utility grids. According to the Department of Energy, 30 states have developed and adopted renewable portfolio standards, which require up to 20 percent of a state's energy portfolio to come exclusively from renewable sources by this year, and up to 30 percent in the future. NREL has been laying the foundation for both PHEVs and the smart grid for many years with work including modifying hybrid electric cars with plug-in technology; studying fuel economy, batteries and power electronics; exploring options for recharging batteries with solar and wind technologies; and measuring reductions in greenhouse gas emissions. The laboratory participated in development of smart-grid implementation standards with industry, utilities, government and others to guide the integration of renewable and other small electricity generation and storage sources. Dick DeBlasio, principal program manager for electricity programs, is now leading the Institute of Electrical and Electronics Engineers Standards efforts to connect the dots regarding power generation, communication and information technologies.

  7. The Canadian Plug-in Electric Vehicle Survey (CPEVS 2013): Anticipating Purchase, Use, and Grid Interactions

    E-Print Network [OSTI]

    The Canadian Plug-in Electric Vehicle Survey (CPEVS 2013): Anticipating Purchase, Use, and Grid investigates consumer interest in plug-in electric vehicles (PEVs), summarizing preliminary results from ownership, electricity use, familiarity with PEV technology, and personal values and lifestyle; vehicle

  8. Honeywell Parallon Grid-connect Tests Honeywell Grid-connect Tests

    E-Print Network [OSTI]

    Appendix C Honeywell Parallon Grid-connect Tests 12/20/2000 #12;Honeywell Grid-connect Tests 12 power Engine Speed Figure C-1: Ramp Down Tests ­ Power and Shaft Speed ­ 15 kW Steps #12;Honeywell Grid Figure C-2: Ramp Down Tests ­ Power and Turbine Exit Temperature ­ 15 kW Steps #12;Honeywell Grid

  9. Impact of Plug-in Hybrid Vehicles on the Electric Grid

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL

    2006-11-01T23:59:59.000Z

    Plug-in hybrid vehicles (PHEVs) are being developed around the world; much work is going on to optimize engine and battery operations for efficient operation, both during discharge and when grid electricity is available for recharging. However, there has generally been the expectation that the grid will not be greatly affected by the use of the vehicles, because the recharging would only occur during offpeak hours, or the number of vehicles will grow slowly enough that capacity planning will respond adequately. But this expectation does not incorporate that endusers will have control of the time of recharging and the inclination for people will be to plug in when convenient for them, rather than when utilities would prefer. It is important to understand the ramifications of introducing a number of plug-in hybrid vehicles onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require both the addition of new electric capacity along with an increase in the utilization of existing capacity. Local distribution grids will see a change in their utilization pattern, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to recharge the vehicles will be different depending on the region of the country and timing when the PHEVs recharge. We conducted an analysis of what the grid impact may be in 2018 with one million PHEVs added to the VACAR sub-region of the Southeast Electric Reliability Council, a region that includes South Carolina, North Carolina, and much of Virginia. To do this, we used the Oak Ridge Competitive Electricity Dispatch model, which simulates the hourly dispatch of power generators to meet demand for a region over a given year. Depending on the vehicle, its battery, the charger voltage level, amperage, and duration, the impact on regional electricity demand varied from 1,400 to 6,000 MW. If recharging occurred in the early evening, then peak loads were raised and demands were met largely by combustion turbines and combined cycle plants. Nighttime recharging had less impact on peak loads and generation adequacy, but the increased use of coal-fired generation changed the relative amounts of air emissions. Costs of generation also fluctuated greatly depending on the timing. However, initial analysis shows that even charging at peak times may be less costly than using gasoline to operate the vehicles. Even if the overall region may have sufficient generating power, the region's transmission system or distribution lines to different areas may not be large enough to handle this new type of load. A largely residential feeder circuit may not be sized to have a significant proportion of its customers adding 1.4 to 6 kW loads that would operate continuously for two to six hours beginning in the early evening. On a broader scale, the transmission lines feeding the local substations may be similarly constrained if they are not sized to respond to this extra growth in demand. This initial analysis identifies some of the complexities in analyzing the integrated system of PHEVs and the grid. Depending on the power level, timing, and duration of the PHEV connection to the grid, there could be a wide variety of impacts on grid constraints, capacity needs, fuel types used, and emissions generated. This paper provides a brief description of plug-in hybrid vehicle characteristics in Chapter 2. Various charging strategies for vehicles are discussed, with a consequent impact on the grid. In Chapter 3 we describe the future electrical demand for a region of the country and the impact on this demand with a number of plug-in hybrids. We apply that demand to an inventory of power plants for the region using the Oak Ridge Competitive Electricity Dispatch (ORCED) model to evaluate the change in power production and emissions. In Chapter 4 we discuss the impact of demand increases on local distribution systems. In Chapter 5 we conclude and provide insights into the impacts of plug-ins. Future

  10. Integration Technology for PHEV-Grid-Connectivity, with Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards Integration Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards 2010...

  11. SmartGridCityTM: Plugging renewables into the

    E-Print Network [OSTI]

    - Wisconsin 3.4 million electricity customers 1.9 million natural gas customers Traditionally regulated #12 response Limited real-time data Reactive outage management system #12;5 How it works: Adding Renewable Widespread distributed generation Plug-in hybrid electric vehicles #12;6 Longer-term hypotheses Can we

  12. Selective compensation of voltage harmonics in grid-connected microgrids

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    1 Selective compensation of voltage harmonics in grid-connected microgrids Mehdi Savaghebia , Juan is proposed for selective compensation of main voltage harmonics in a grid- connected microgrid. The aim level. Keywords Distributed Generator (DG); microgrid; grid-connected; voltage harmonics compensation. 1

  13. GridOPTICS(TM): A Design for Plug-and-Play Smart Grid Software Architecture

    SciTech Connect (OSTI)

    Gorton, Ian; Liu, Yan; Yin, Jian

    2012-06-03T23:59:59.000Z

    As the smart grid becomes reality, software architectures for integrating legacy systems with new innovative approaches for grid management are needed. These architectures must exhibit flexibility, extensibility, interoperability and scalability. In this position paper, we describe our preliminary work to design such an architecture, known as GridOPTICS, that will enable the deployment and integration of new software tools in smart grid operations. Our preliminary design is based upon use cases from PNNL’s Future Power Grid Initiative, which is a developing a collection of advanced software technologies for smart grid management and control. We describe the motivations for GridOPTICS, and the preliminary design that we are currently prototyping for several distinct use cases.

  14. Public Meeting: Physical Characterization of Smart and Grid-Connected...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and...

  15. Modeling Grid-Connected Hybrid Electric Vehicles Using ADVISOR

    SciTech Connect (OSTI)

    Markel, T.; Wipke, K.

    2001-01-01T23:59:59.000Z

    Presents an electric utility grid-connected energy management strategy for a parallel hybrid electric vehicle using ADVISOR, a modeling tool.

  16. The challenges and policy options for integrating plug-in hybrid electric vehicle into the electric grid

    SciTech Connect (OSTI)

    Srivastava, Anurag K.; Annabathina, Bharath; Kamalasadan, Sukumar

    2010-04-15T23:59:59.000Z

    Plug-in hybrid electric vehicle may be prime candidates for the next generation of vehicles, but they offer several technological and economical challenges. This article assesses current progress in PHEV technology, market trends, research needs, challenges ahead and policy options for integrating PHEVs into the electric grid. (author)

  17. IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS

    E-Print Network [OSTI]

    National Laboratory(a) ABSTRACT The U.S. electric power infrastructure is a strategic national asset.S. electric infrastructure is designed to meet the highest expected demand for power and, as a resultIMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS

  18. Impact Assessment of Plug-in Hybrid Vehicles on the U.S. Power Grid

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Nguyen, Tony B.; Jin, Chunlian; Balducci, Patrick J.; Secrest, Thomas J.

    2010-09-30T23:59:59.000Z

    The US electricity grid is a national infrastructure that has the potential to deliver significant amounts of the daily driving energy of the US light duty vehicle (cars, pickups, SUVs, and vans) fleet. This paper discusses a 2030 scenario with 37 million plug-in hybrid electric vehicles (PHEVs) on the road in the US demanding electricity for an average daily driving distance of about 33 miles (53 km). The paper addresses the potential grid impacts of the PHEVs fleet relative to their effects on the production cost of electricity, and the emissions from the electricity sector. The results of this analysis indicate significant regional difference on the cost impacts and the CO2 emissions. Battery charging during the day may have twice the cost impacts than charging during the night. The CO2 emissions impacts are very region-dependent. In predominantly coal regions (Midwest), the new PHEV load may reduce the CO2 emission intensity (ton/MWh), while in others regions with significant clean generation (hydro and renewable energy) the CO2 emission intensity may increase. Discussed will the potential impact of the results with the valuation of carbon emissions.

  19. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01T23:59:59.000Z

    Distributed Generation, Plug-in Electric Vehicles (PEVs), Energy Management, Multi-Building Modeling and Simulation Introduction The Green Islands

  20. High Penetration, Grid Connected Photovoltaic Technology Codes and Standards: Preprint

    SciTech Connect (OSTI)

    Basso, T. S.

    2008-05-01T23:59:59.000Z

    This paper reports the interim status in identifying and reviewing photovoltaic (PV) codes and standards (C&S) and related electrical activities for grid-connected, high-penetration PV systems with a focus on U.S. electric utility distribution grid interconnection.

  1. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01T23:59:59.000Z

    S. Beer, J. Lay and V. Battaglia. 2010. “The added economicJ. Lai, C. Marnay, and V. Battaglia. 2010. “Plug-in Electric

  2. Connecting to the Grid | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submitCollector/ReceiverConflict Betweengrape growersConnecting to

  3. The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids

    SciTech Connect (OSTI)

    Stadler, Michael; Momber, Ilan; Megel, Olivier; Gomez, Tomás; Marnay, Chris; Beer, Sebastian; Lai, Judy; Battaglia, Vincent

    2010-08-25T23:59:59.000Z

    Connection of electric storage technologies to smartgrids or microgrids will have substantial implications for building energy systems. In addition to potentially supplying ancillary services directly to the traditional centralized grid (or macrogrid), local storage will enable demand response. As an economically attractive option, mobile storage devices such as plug-in electric vehicles (EVs) are in direct competition with conventional stationary sources and storage at the building. In general, it is assumed that they can improve the financial as well as environmental attractiveness of renewable and fossil based on-site generation (e.g. PV, fuel cells, or microturbines operating with or without combined heat and power). Also, mobile storage can directly contribute to tariff driven demand response in commercial buildings. In order to examine the impact of mobile storage on building energy costs and carbon dioxide (CO2) emissions, a microgrid/distributed-energy-resources (DER) adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs applying CO2 taxes/CO2 pricing schemes. The problem is solved for a representative office building in the San Francisco Bay Area in 2020. By using employees' EVs for energy management, the office building can arbitrage its costs. But since the car battery lifetime is reduced, a business model that also reimburses car owners for the degradation will be required. In general, the link between a microgrid and an electric vehicle can create a win-win situation, wherein the microgrid can reduce utility costs by load shifting while the electric vehicle owner receives revenue that partially offsets his/her expensive mobile storage investment. For the California office building with EVs connected under a business model that distributes benefits, it is found that the economic impact is very limited relative to the costs of mobile storage for the site analyzed, i.e. cost reductions from electric vehicle connections are modest. Nonetheless, this example shows that some economic benefit is created because of avoided demand charges and on-peak energy. The strategy adopted by the office building is to avoid these high on-peak costs by using energy from the mobile storage in the business hours. CO2 emission reduction strategy results indicate that EVs' contribution at the selected office building are minor.

  4. DOE Publishes Notice of Public Meeting for Smart Grid-connected...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Smart Grid-connected Buildings DOE Publishes Notice of Public Meeting for Smart Grid-connected Buildings April 8, 2014 - 9:30am Addthis DOE has published a notice of public...

  5. First U.S. Grid-Connected Offshore Wind Turbine Installed Off...

    Office of Environmental Management (EM)

    First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine October 1, 2013 -...

  6. Performance Test Protocol for Evaluating Inverters Used in Grid-Connected

    E-Print Network [OSTI]

    Performance Test Protocol for Evaluating Inverters Used in Grid-Connected Photovoltaic Systems....................................................................................... 6 4.1 Inverter Size

  7. Mitigation of Voltage and Current Harmonics in Grid-Connected Microgrids

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Mitigation of Voltage and Current Harmonics in Grid-Connected Microgrids Mehdi Savaghebi1 , Josep M-connected microgrids. Two modes of compensation are considered, i.e. voltage and current compensation modes-electronic interface converter to the utility grid or microgrid. Microgrid is a local grid consisting of DGs, energy

  8. Storage Size Determination for Grid-Connected Photovoltaic Systems

    E-Print Network [OSTI]

    Ru, Yu; Martinez, Sonia

    2011-01-01T23:59:59.000Z

    In this paper, we study the problem of determining the size of battery storage used in grid-connected photovoltaic (PV) systems. In our setting, electricity is generated from PV and is used to supply the demand from loads. Excess electricity generated from the PV can be stored in a battery to be used later on, and electricity must be purchased from the electric grid if the PV generation and battery discharging cannot meet the demand. The objective is to minimize the electricity purchase from the electric grid while at the same time choosing an appropriate battery size. More specifically, we want to find a unique critical value (denoted as $E_{max}^c$) of the battery size such that the cost of electricity purchase remains the same if the battery size is larger than or equal to $E_{max}^c$, and the cost is strictly larger if the battery size is smaller than $E_{max}^c$. We propose an upper bound on $E_{max}^c$, and show that the upper bound is achievable for certain scenarios. For the case with ideal PV generat...

  9. Performance Parameters for Grid-Connected PV Systems

    SciTech Connect (OSTI)

    Marion, B.; Adelstein, J.; Boyle, K.; Hayden, H.; Hammond, B.; Fletcher, T.; Canada, B.; Narang, D.; Shugar, D.; Wenger, H.; Kimber, A.; Mitchell, L.; Rich, G.; Townsend, T.

    2005-02-01T23:59:59.000Z

    The use of appropriate performance parameters facilitates the comparison of grid-connected photovoltaic (PV) systems that may differ with respect to design, technology, or geographic location. Four performance parameters that define the overall system performance with respect to the energy production, solar resource, and overall effect of system losses are the following: final PV system yield, reference yield, performance ratio, and PVUSA rating. These performance parameters are discussed for their suitability in providing desired information for PV system design and performance evaluation and are demonstrated for a variety of technologies, designs, and geographic locations. Also discussed are methodologies for determining system a.c. power ratings in the design phase using multipliers developed from measured performance parameters.The use of appropriate performance parameters facilitates the comparison of grid-connected photovoltaic (PV) systems that may differ with respect to design, technology, or geographic location. Four performance parameters that define the overall system performance with respect to the energy production, solar resource, and overall effect of system losses are the following: final PV system yield, reference yield, performance ratio, and PVUSA rating. These performance parameters are discussed for their suitability in providing desired information for PV system design and performance evaluation and are demonstrated for a variety of technologies, designs, and geographic locations. Also discussed are methodologies for determining system a.c. power ratings in the design phase using multipliers developed from measured performance parameters.

  10. Emissions Impacts and Benefits of Plug-In Hybrid Electric Vehicles and Vehicle-to-Grid Services

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2009-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and by improving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEV fleet of up to 15% of light-duty vehicles can actually decrease net generator NO{sub x} emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO{sub 2}, SO{sub 2}, and NO{sub x} emissions can be reduced even further.

  11. Grid-Integrated Fleet & Workplace Charging for Plug-in Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration and the Carrying Capacity

  12. Plug Load

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum38 (1996)representative of thePlug-Load Sign In

  13. An economic analysis of grid-connected residential solar photovoltaic power systems

    E-Print Network [OSTI]

    Carpenter, Paul R.

    The question of the utility grid-connected residential market for photovoltaics is examined from a user-ownership perspective. The price is calculated at which the user would be economically indifferent between

  14. Designs for ultra-high efficiency grid-connected power conversion

    E-Print Network [OSTI]

    Pierquet, Brandon J. (Brandon Joseph)

    2011-01-01T23:59:59.000Z

    Grid connected power conversion is an absolutely critical component of many established and developing industries, such as information technology, telecommunications, renewable power generation (e.g. photovoltaic and wind), ...

  15. QUALIFIED FORECAST OF ENSEMBLE POWER PRODUCTION BY SPATIALLY DISPERSED GRID-CONNECTED PV SYSTEMS

    E-Print Network [OSTI]

    Heinemann, Detlev

    QUALIFIED FORECAST OF ENSEMBLE POWER PRODUCTION BY SPATIALLY DISPERSED GRID- CONNECTED PV SYSTEMS: The contribution of power production by Photovoltaic (PV) systems to the electricity supply is constantly of the electricity grids and for energy trading. This paper presents an approach to predict regional PV power output

  16. Novel MIMO Linear Zero Dynamic Controller for the Grid-connected Photovoltaic System with

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    connected PV system also has its own draw- backs, the conversion efficiency of the inverter is low under low (PV) system. The relative degree is investigated through the concept of Lie derivative to execute the LZDC for three phase grid connected PV system. To implement the control theory, system stability

  17. 564 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 4, OCTOBER 2012 Dynamic Stability of Three-Phase Grid-Connected

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    564 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 4, OCTOBER 2012 Dynamic Stability of Three-Phase Grid-Connected Photovoltaic System Using Zero Dynamic Design Approach M. A. Mahmud, Student Member of the dynamic response of a three-phase grid-connected photovoltaic (PV) system. To control the grid cur- rent

  18. Abstract--This paper focuses on reviewing grid connection of large offshore wind farms (OWFs) employing current state-of-

    E-Print Network [OSTI]

    Bak, Claus Leth

    1 Abstract--This paper focuses on reviewing grid connection of large offshore wind farms (OWFs Farms. I. INTRODUCTION owadays, offshore wind penetration into the electrical grid is rapidly increasing grid connection in e.g. the UK. Index Terms--HVDC transmission, Pulse width modulation converters, Wind

  19. The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    Lai, C. Marnay, and V. Battaglia (2010), “Plug-in ElectricBeer, Judy Lai, and Vincent Battaglia Environmental EnergyLai a) , and Vincent Battaglia a) Ernest Orlando Lawrence

  20. Controlling of grid connected photovoltaic lighting system with fuzzy logic

    SciTech Connect (OSTI)

    Saglam, Safak; Ekren, Nazmi; Erdal, Hasan [Technical Education Faculty, Marmara University, Istanbul 34722 (Turkey)

    2010-02-15T23:59:59.000Z

    In this study, DC electrical energy produced by photovoltaic panels is converted to AC electrical energy and an indoor area is illuminated using this energy. System is controlled by fuzzy logic algorithm controller designed with 16 rules. Energy is supplied from accumulator which is charged by photovoltaic panels if its energy would be sufficient otherwise it is supplied from grid. During the 1-week usage period at the semester time, 1.968 kWh energy is used from grid but designed system used 0.542 kWh energy from photovoltaic panels at the experiments. Energy saving is determined by calculations and measurements for one education year period (9 months) 70.848 kWh. (author)

  1. Transatlantic Workshop on Electric Vehicles and Grid Connectivity |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopoCarbon DioxideTrainingEnergy

  2. First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project in

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrentEmergencyU.S.U.S. DOEField

  3. Performance Parameters for Grid-Connected PV Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPO WebsitePalmsthe Price (Percent)5National Renewable

  4. Smart Grid Control and Optimization | SciTech Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here Home »SmallNew RFID SensorsSmart

  5. Smart Grid: Building a Wireless Connection | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafely Delivering DOE'sEnergy3 SGIG Programthe Grid

  6. Smart Energy Management and Control for Fuel Cell Based Micro-Grid Connected Neighborhoods

    SciTech Connect (OSTI)

    Dr. Mohammad S. Alam

    2006-03-15T23:59:59.000Z

    Fuel cell power generation promises to be an efficient, pollution-free, reliable power source in both large scale and small scale, remote applications. DOE formed the Solid State Energy Conversion Alliance with the intention of breaking one of the last barriers remaining for cost effective fuel cell power generation. The Alliance’s goal is to produce a core solid-state fuel cell module at a cost of no more than $400 per kilowatt and ready for commercial application by 2010. With their inherently high, 60-70% conversion efficiencies, significantly reduced carbon dioxide emissions, and negligible emissions of other pollutants, fuel cells will be the obvious choice for a broad variety of commercial and residential applications when their cost effectiveness is improved. In a research program funded by the Department of Energy, the research team has been investigating smart fuel cell-operated residential micro-grid communities. This research has focused on using smart control systems in conjunction with fuel cell power plants, with the goal to reduce energy consumption, reduce demand peaks and still meet the energy requirements of any household in a micro-grid community environment. In Phases I and II, a SEMaC was developed and extended to a micro-grid community. In addition, an optimal configuration was determined for a single fuel cell power plant supplying power to a ten-home micro-grid community. In Phase III, the plan is to expand this work to fuel cell based micro-grid connected neighborhoods (mini-grid). The economic implications of hydrogen cogeneration will be investigated. These efforts are consistent with DOE’s mission to decentralize domestic electric power generation and to accelerate the onset of the hydrogen economy. A major challenge facing the routine implementation and use of a fuel cell based mini-grid is the varying electrical demand of the individual micro-grids, and, therefore, analyzing these issues is vital. Efforts are needed to determine the most appropriate means of implementing micro-grids and the costs and processes involved with their extended operation. With the development and availability of fuel cell based stand-alone power plants, an electrical mini-grid, encompassing several connected residential neighborhoods, has become a viable concept. A primary objective of this project is to define the parameters of an economically efficient fuel cell based mini-grid. Since pure hydrogen is not economically available in sufficient quantities at the present time, the use of reforming technology to produce and store excess hydrogen will also be investigated. From a broader perspective, the factors that bear upon the feasibility of fuel cell based micro-grid connected neighborhoods are similar to those pertaining to the electrification of a small town with a localized power generating station containing several conventional generating units. In the conventional case, the town or locality would also be connected to the larger grid system of the utility company. Therefore, in the case of the fuel cell based micro-grid connected neighborhoods, this option should also be available. The objectives of this research project are: To demonstrate that smart energy management of a fuel cell based micro-grid connected neighborhood can be efficient and cost-effective;To define the most economical micro-grid configuration; and, To determine how residential micro-grid connected fuel cell(s) can contribute to America's hydrogen energy future.

  7. Direct power control of grid connected PV systems with three level NPC inverter

    SciTech Connect (OSTI)

    Alonso-Martinez, Jaime; Eloy-Garcia, Joaquin; Arnaltes, Santiago [Dept. of Electrical Engineering, University Carlos III of Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain)

    2010-07-15T23:59:59.000Z

    This paper presents the control of a three-level Neutral Point Clamped (NPC) voltage source inverter for grid connected photovoltaic (PV) systems. The control method used is the Extended Direct Power Control (EDPC), which is a generic approach for Direct Power Control (DPC) of multilevel inverters based on geometrical considerations. Maximum Power Point Tracking (MPPT) algorithms, that allow maximal power conversion into the grid, have been included. These methods are capable of extracting maximum power from each of the independent PV arrays connected to each DC link voltage level. The first one is a conventional MPPT which outputs DC link voltage references to EDPC. The second one is based on DPC concept. This new MPPT outputs power increment references to EDPC, thus avoiding the use of a DC link voltage regulator. The whole control system has been tested on a three-level NPC voltage source inverter connected to the grid and results confirm the validity of the method. (author)

  8. Modeling Electric Vehicle Benefits Connected to Smart Grids

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Mendes, Goncalo; Kloess, Maximillian; Cardoso, Goncalo; Mégel, Olivier; Siddiqui, Afzal

    2011-07-01T23:59:59.000Z

    Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

  9. Reactive power control of grid-connected wind farm based on adaptive dynamic programming

    E-Print Network [OSTI]

    He, Haibo

    Reactive power control of grid-connected wind farm based on adaptive dynamic programming Yufei Tang Wind farm Power system Adaptive control a b s t r a c t Optimal control of large-scale wind farm has of wind farm with doubly fed induction generators (DFIG). Specifically, we investigate the on

  10. Environmental impacts of large-scale grid-connected ground-mounted PV installations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Environmental impacts of large-scale grid-connected ground-mounted PV installations Antoine Beylota-scale ground-mounted PV installations by considering a life-cycle approach. The methodology is based. Mobile PV installations with dual-axis trackers show the largest impact potential on ecosystem quality

  11. Grid-Connected Marine Current Generation System Power Smoothing Control Using Supercapacitors

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    will require the generator to accelerate/decelerate frequently under swell effect and therefore cause severe speed model are described. [n Section III, the turbine model and the generator-side power smooth controlGrid-Connected Marine Current Generation System Power Smoothing Control Using Supercapacitors

  12. Utility Grid-Connected Distributed Power Systems National Solar Energy Conference

    E-Print Network [OSTI]

    Utility Grid-Connected Distributed Power Systems National Solar Energy Conference ASES Solar 96 at least half of its energy obtained from energy efficiency and renewable resources by the year 2000. Solar energy, distributed generation resource. Investments made in solar power today are expected to provide

  13. REDUCING MISMATCH LOSSES IN GRID-CONNECTED RESIDENTIAL BIPV ARRAYS USING ACTIVE POWER CONVERSION COMPONENTS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in plant energy production. The introduction of additional power converters in the plant layout intends/Simulink© environment for each topology using a 3 kWp rooftop-type plant. Simulation results show that a considerableREDUCING MISMATCH LOSSES IN GRID-CONNECTED RESIDENTIAL BIPV ARRAYS USING ACTIVE POWER CONVERSION

  14. Battery Management for Grid-Connected PV Systems with a Battery

    E-Print Network [OSTI]

    Pedram, Massoud

    components such as the PV array and PV inverters. The mainstream research is related to maxi- mum power pointBattery Management for Grid-Connected PV Systems with a Battery Sangyoung Park1, Yanzhi Wang2}@usc.edu ABSTRACT Photovoltaic (PV) power generation systems are one of the most promising renewable power sources

  15. Development of New Three-Level Current-Source Inverter for Grid Connected Photovoltaic System

    E-Print Network [OSTI]

    Fujimoto, Hiroshi

    photovoltaic system 1. INTRODUCTION Solid state inverters allow to put photovoltaic (PV) systems into the powerDevelopment of New Three-Level Current-Source Inverter for Grid Connected Photovoltaic System-phase three-level current source inverter (CSI) driven by a single gate-drive power supply in both chopper

  16. MODULAR MULTI-LEVEL CONVERTER BASED HVDC SYSTEM FOR GRID CONNECTION OF OFFSHORE WIND

    E-Print Network [OSTI]

    Chaudhary, Sanjay

    MODULAR MULTI-LEVEL CONVERTER BASED HVDC SYSTEM FOR GRID CONNECTION OF OFFSHORE WIND POWER PLANT U off-shore wind power plants. The MMC consists of a large number of simple voltage sourced converter offshore wind power plants (WPP) because they offer higher energy yield due to a superior wind profile

  17. Impacts Assessment of Plug-in Hybrid Vehicles on Electric Utilities and Regional US Power Grids: Part 1: Technical Analysis

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Schneider, Kevin P.; Pratt, Robert G.

    2007-01-31T23:59:59.000Z

    This initial paper estimates the regional percentages of the energy requirements for the U.S. light duty vehicle stock that could be supported by the existing grid, based on 12 NERC regions. This paper also discusses the impact of overall emissions of criteria gases and greenhouse gases as a result of shifting emission from millions of tailpipes to a relatively few power plants. The paper concludes with an outlook of the technology requirements necessary to manage the additional and potentially sizable new load to maintain grid reliability.

  18. The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System

    E-Print Network [OSTI]

    Greer, Mark R

    2012-01-01T23:59:59.000Z

    Ferdowsi, M. (2007). Plug-hybrid vehicles – A vision for thepower: battery, hybrid and fuel cell vehicles as resources2010). Plug-in hybrid electric vehicles as regulating power

  19. Bellows sealed plug valve

    DOE Patents [OSTI]

    Dukas, Jr., Stephen J. (Idaho Falls, ID)

    1990-01-01T23:59:59.000Z

    A bellows sealed plug valve includes a valve body having an inlet passage and an outlet passage, a valve chamber between the inlet and outlet passages. A valve plug has substantially the same shape as the valve chamber and is rotatably disposed therein. A shaft is movable linearly in response to a signal from a valve actuator. A bellows is sealingly disposed between the valve chamber and the valve actuator and means are located between the bellows and the valve plug for converting linear movement of the shaft connected to the valve actuator to rotational movement of the plug. Various means are disclosed including helical thread mechanism, clevis mechanism and rack and pinion mechanism, all for converting linear motion to rotational motion.

  20. PVUSA experience with power conversion for grid-connected photovoltaic systems

    SciTech Connect (OSTI)

    Stolte, W.

    1995-11-01T23:59:59.000Z

    The Photovoltaics for Utility Scale Application (PVUSA) project was established to demonstrate photovoltaic (PV) systems in grid-connected utility applications. One of PVUSA`s key objectives is to evaluate the performance, reliability, and cost of the PV balance of system (BOS). Power conditioning units (PCUs) are the interface between the dc PV arrays and the ac utility lines, and have proved to be the most critical element in grid-connected PV systems. There are five different models of PCUs at PVUSA`s Davis and Kerman sites. This report describes the design, testing, performance characteristics, and maintenance history of each of these PCUs. PVUSA required PCUs in the power range 25 kW to 500 kW which could operate automatically and reliably under changing conditions of sunlight and changing conditions on the utility grid. Although a number of manufacturers can provide PCUs in this power range, none of these PCUs have been produced in sufficient quantity to allow refinement of a particular model into the highly reliable unit needed for long-term, unattended operation. Factory tests were useful but limited by the inability to test under full power and changing power conditions. The inability to completely test PCUs at the factory resulted in difficulty during startup, field testing, and subsequent operation. PVUSA has made significant progress in understanding the requirements for PCUs in grid-connected PV applications and improving field performance. This record of PVUSA`s experience with a variety of PCUs is intended to help utilities and their suppliers identify and retain the good performance characteristics of PCUs, and to make improvements where necessary to meet the needs of utilities.

  1. July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Broader source: Energy.gov [DOE]

    These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

  2. Electricity storage for grid-connected household dwellings with PV panels

    SciTech Connect (OSTI)

    Mulder, Grietus; Six, Daan [Vlaamse Instelling voor Technologisch Onderzoek, Unit Energy Technology, Mol (Belgium); Ridder, Fjo De [Vrije Universiteit Brussel (Belgium)

    2010-07-15T23:59:59.000Z

    Classically electricity storage for PV panels is mostly designed for stand-alone applications. In contrast, we focus in this article on houses connected to the grid with a small-scale storage to store a part of the solar power for postponed consumption within the day or the next days. In this way the house owner becomes less dependent on the grid and does only pay for the net shortage of his energy production. Local storage solutions pave the way for many new applications like omitting over-voltage of the line and bridging periods of power-line black-out. Since 2009 using self-consumption of PV energy is publicly encouraged in Germany, which can be realised by electric storage. This paper develops methods to determine the optimal storage size for grid-connected dwellings with PV panels. From measurements in houses we were able to establish calculation rules for sizing the storage. Two situations for electricity storage are covered: - the storage system is an optimum to cover most of the electricity needs; - it is an optimum for covering the peak power need of a dwelling. After these calculation rules a second step is needed to determine the size of the real battery. The article treats the aspects that should be taken into consideration before buying a specific battery like lead-acid and lithium-ion batteries. (author)

  3. Understanding the Benefits of Dispersed Grid-Connected Photovoltaics: From Avoiding the Next Major Outage to Taming Wholesale Power Markets

    SciTech Connect (OSTI)

    Letendre, Steven E.; Perez, Richard

    2006-07-15T23:59:59.000Z

    Thanks to new solar resource assessment techniques using cloud cover data available from geostationary satellites, it is apparent that grid-connected PV installations can serve to enhance electric grid reliability, preventing or hastening recovery from major power outages and serving to mitigate extreme price spikes in wholesale energy markets. (author)

  4. The inverter is a major component of photovoltaic (PV) systems either autonomous or grid connected. It affects the

    E-Print Network [OSTI]

    Oregon, University of

    ABSTRACT The inverter is a major component of photovoltaic (PV) systems either autonomous or grid connected. It affects the overall performance of the PV system. Any problems or issues with an inverter. INTRODUCTION For any grid tied photovoltaic (PV) system, the inverter is the essential piece of equipment

  5. Coupling Electric Vehicles and Power Grid through Charging-In-Motion and Connected Vehicle Technology

    SciTech Connect (OSTI)

    Li, Jan-Mou [ORNL; Jones, Perry T [ORNL; Onar, Omer C [ORNL; Starke, Michael R [ORNL

    2014-01-01T23:59:59.000Z

    A traffic-assignment-based framework is proposed to model the coupling of transportation network and power grid for analyzing impacts of energy demand from electric vehicles on the operation of power distribution. Although the reverse can be investigated with the proposed framework as well, electricity flowing from a power grid to electric vehicles is the focus of this paper. Major variables in transportation network (including link flows) and power grid (including electricity transmitted) are introduced for the coupling. Roles of charging-in-motion technology and connected vehicle technology have been identified in the framework of supernetwork. A linkage (i.e. individual energy demand) between the two networks is defined to construct the supernetwork. To determine equilibrium of the supernetwork can also answer how many drivers are going to use the charging-in-motion services, in which locations, and at what time frame. An optimal operation plan of power distribution will be decided along the determination simultaneously by which we have a picture about what level of power demand from the grid is expected in locations during an analyzed period. Caveat of the framework and possible applications have also been discussed.

  6. MHK Projects/Evopod E35 35kW grid connected demonstrator | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: EnergyMARECInformation kW grid connected

  7. A grid-connected photovoltaic power conversion system with single-phase multilevel inverter

    SciTech Connect (OSTI)

    Beser, Ersoy; Arifoglu, Birol; Camur, Sabri; Beser, Esra Kandemir [Department of Electrical Engineering, Kocaeli University (Turkey)

    2010-12-15T23:59:59.000Z

    This paper presents a grid-connected photovoltaic (PV) power conversion system based on a single-phase multilevel inverter. The proposed system fundamentally consists of PV arrays and a single-phase multilevel inverter structure. First, configuration and structural parts of the PV assisted inverter system are introduced in detail. To produce reference output voltage waves, a simple switching strategy based on calculating switching angles is improved. By calculated switching angles, the reference signal is produced as a multilevel shaped output voltage wave. The control algorithm and operational principles of the proposed system are explained. Operating PV arrays in the same load condition is a considerable point; therefore a simulation study is performed to arrange the PV arrays. After determining the number and connection types of the PV arrays, the system is configured through the arrangement of the PV arrays. The validity of the proposed system is verified through simulations and experimental study. The results demonstrate that the system can achieve lower total harmonic distortion (THD) on the output voltage and load current, and it is capable of operating synchronous and transferring power values having different characteristic to the grid. Hence, it is suitable to use the proposed configuration as a PV power conversion system in various applications. (author)

  8. Ford Plug-In Project: Bringing PHEVs to Market

    Broader source: Energy.gov (indexed) [DOE]

    projects: - analysis of infield results of the Escape PHEVs, - field demonstration of Smart Meter communication, and - creation of a model studying plug-in vehicles as a grid...

  9. A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Onar, Omer C [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

  10. Optimal Design of Grid-Connected PEV Charging Systems With Integrated Distributed Resources

    E-Print Network [OSTI]

    Perreault, David J.

    The penetration of plug-in electric vehicles and renewable distributed generation is expected to increase over the next few decades. Large scale unregulated deployment of either technology can have a detrimental impact on ...

  11. Agenda for Public Meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    Download the agenda below for the July 11 Public Meeting on the Physical Characterization of Grid-Connected Commercial and  Residential Buildings End-Use Equipment and Appliances.

  12. Plug-In Hybrid Electric Vehicle Penetration Scenarios

    SciTech Connect (OSTI)

    Balducci, Patrick J.

    2008-04-03T23:59:59.000Z

    This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

  13. OFF-SHORE WIND AND GRID-CONNECTED PV: HIGH PENETRATION PEAK SHAVING FOR NEW YORK CITY

    E-Print Network [OSTI]

    Perez, Richard R.

    OFF-SHORE WIND AND GRID-CONNECTED PV: HIGH PENETRATION PEAK SHAVING FOR NEW YORK CITY Richard Perez-shore wind and PV generation using the city of New York as a test case. While wind generation is not known one year's worth of hourly site & time-specific data including electrical demand PV and off-shore wind

  14. FORECAST OF ENSEMBLE POWER PRODUCTION BY GRID-CONNECTED PV SYSTEMS Elke Lorenz*, Detlev Heinemann*, Hashini Wickramarathne*, Hans Georg Beyer +

    E-Print Network [OSTI]

    Heinemann, Detlev

    FORECAST OF ENSEMBLE POWER PRODUCTION BY GRID-CONNECTED PV SYSTEMS Elke Lorenz*, Detlev HeinemannH, Spicherer Straße 48, D-86157 Augsburg, Germany ABSTRACT: The contribution of power production by PV systems and evaluate an approach to forecast regional PV power production. The forecast quality was investigated

  15. Utility Scale Wind Turbines on a Grid Connected Island Mohit Dua, Anthony L. Rogers, James F. Manwell,

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Utility Scale Wind Turbines on a Grid Connected Island Mohit Dua, Anthony L. Rogers, James F utility scale wind turbines on Fox Islands, located 12 miles from the coast of Maine in the United States of electricity itself. Three locations are analyzed in detail as potential sites for wind turbine installations

  16. Connecting Renewables Directly to the Grid: Resilient Multi-Terminal HVDC Networks with High-Voltage High-Frequency Electronics

    SciTech Connect (OSTI)

    None

    2012-01-23T23:59:59.000Z

    GENI Project: GE is developing electricity transmission hardware that could connect distributed renewable energy sources, like wind farms, directly to the grid—eliminating the need to feed the energy generated through intermediate power conversion stations before they enter the grid. GE is using the advanced semiconductor material silicon carbide (SiC) to conduct electricity through its transmission hardware because SiC can operate at higher voltage levels than semiconductors made out of other materials. This high-voltage capability is important because electricity must be converted to high-voltage levels before it can be sent along the grid’s network of transmission lines. Power companies do this because less electricity is lost along the lines when the voltage is high.

  17. Abstract--This paper deals with the design of a nonlinear con-troller for single-phase grid-connected photovoltaic (PV) systems

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    of solar irradiations and interfacing of inverters with the grid. The intermittent PV generation varies-connected photovoltaic (PV) systems to maintain the current injected into the grid in phase with grid voltage. This paper also deals with the stability of internal dynamics of PV systems which is a basic requirement

  18. Compatibility Study of Protective Relaying in a Grid-Connected Fuel Cell

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-04-15T23:59:59.000Z

    A 200-kW fuel cell produced by International Fuel Cells (IFC), a United Technologies Company, began operation at the National Transportation Research Center (NTRC) in early June 2003. The NTRC is a joint Oak Ridge National laboratory (ORNL) and University of Tennessee research facility located in Knoxville, Tennessee. This research activity investigated the protective relaying functions of this fully commercialized fuel cell power plant, which uses ''synthesized'' protective relays. The project's goal is to characterize the compatibility between the fuel cell's interconnection protection system and the local distribution system or electric power system (EPS). ORNL, with assistance from the Electric Power Research Institute-Power Electronics Applications Center (EPRI-PEAC) in Knoxville, Tennessee, monitored and characterized the system compatibility over a period of 6 months. Distribution utility engineers are distrustful of or simply uncomfortable with the protective relaying and hardware provided as part of distributed generation (DG) plants. Part of this mistrust is due to the fact that utilities generally rely on hardware from certain manufacturers whose reliability is well established based on performance over many years or even decades. Another source of concern is the fact that fuel cells and other types of DG do not use conventional relays but, instead, the protective functions of conventional relays are simulated by digital circuits in the distributed generator's grid interface control unit. Furthermore, the testing and validation of internal protection circuits of DG are difficult to accomplish and can be changed by the vendor at any time. This study investigated and documented the safety and protective relaying present in the IFC fuel cell, collected data on the operation of the fuel cell, recorded event data during EPS disturbances, and assessed the compatibility of the synthesized protective circuits and the local distribution system. The project also addressed other important and timely issues. For instance, the study includes an evaluation of the effectiveness of the fuel cell's synthesized relay protection scheme relative to the recently issued IEEE 1547 interconnection standard. Together, these activities should serve to reduce the number of unknowns pertaining to unconventional protective circuits, to the benefit of DG manufacturers, vendors, prospective and current users of DG, and electricity suppliers/distributors. Although more grid-connect fuel cell interruptions were encountered in this study than originally anticipated, and the investigation and findings became quite complex, every effort was made to clearly summarize the interconnection causes and issues throughout the report and especially in the summary found in Sect. 4. ORNL's funding of this study is sponsored equally by (1) the Department of Energy's (DOE's) Office of Distributed Energy Resources and (2) the Distributed Generation Technologies program of the Tennessee Valley Authority (TVA).

  19. Optimal Control of a Grid-Connected Hybrid Electrical Energy Storage System for Homes

    E-Print Network [OSTI]

    Pedram, Massoud

    . There are several ways to perform such a demand side management [3]. In this paper, we focus on integrating PV power companies can employ dynamic electricity pricing strategies incentivizing consumers to perform demand side management by adjusting their power demand from the Grid to match the power generation capacity of the Grid

  20. Power control of a wind farm with active stall wind turbines and AC grid connection

    E-Print Network [OSTI]

    turbines and active stall wind farms with HVDC connection are described in [6-7] and [8], respectivelly

  1. 2014-04-30 Public Meeting Agenda: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    This document is the agenda for the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting being held on April 30, 2014.

  2. 2014-04-30 Public Meeting Presentation Slides: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  3. Modeling medical devices for plug-and-play interoperability

    E-Print Network [OSTI]

    Hofmann, Robert Matthew

    2007-01-01T23:59:59.000Z

    One of the challenges faced by clinical engineers is to support the connectivity and interoperability of medical-electrical point-of-care devices. A system that could enable plug-and-play connectivity and interoperability ...

  4. PVGIS approach for assessing the performances of the first PV grid-connected power plant in Morocco

    E-Print Network [OSTI]

    Barhdadi, Abdelfettah

    2012-01-01T23:59:59.000Z

    In this paper, we apply the PVGIS method for estimating the performance of the first grid-connected PV micro-power plant in Morocco. PVGIS approach provides analysis and assessment of in-site solar energy resources and predicts with good accuracy the potential of PV systems in term of electricity production. We find that annual total power generation of the micro-power is slightly higher than that initially expected at the installation stage and actually measured. The yearly predicted and measured power production values agree to about 2 %. However, individual monthly production can have larger discrepancy.

  5. "Catching the second wave" of the Plug in Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    "Catching the second wave" of the Plug in Electric Vehicle Market PEV market update from ITS PHEV on gasoline, diesel, natural gas, biofuels and other liquid or gaseous fuels. · HEV = Hybrid electric vehicles Vehicles are like HEVs, but have bigger batteries, and can store electricity from plugging into the grid

  6. Three-Phase Modular Cascaded H-Bridge Multilevel Inverter with Individual MPPT for Grid-Connected Photovoltaic Systems

    SciTech Connect (OSTI)

    Xiao, Bailu [ORNL; Hang, Lijun [ORNL; Riley, Cameron [University of Tennessee, Knoxville (UTK); Tolbert, Leon M [ORNL; Ozpineci, Burak [ORNL

    2013-01-01T23:59:59.000Z

    A three-phase modular cascaded H-bridge multilevel inverter for a grid-connected photovoltaic (PV) system is presented in this paper. To maximize the solar energy extraction of each PV string, an individual maximum power point tracking (MPPT) control scheme is applied, which allows the independent control of each dc-link voltage. PV mismatches may introduce unbalanced power supplied to the three-phase system. To solve this issue, a control scheme with modulation compensation is proposed. The three-phase modular cascaded multilevel inverter prototype has been built. Each H-bridge is connected to a 185 W solar panel. Simulation and experimental results are presented to validate the proposed ideas.

  7. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 10, OCTOBER 2010 3431 A Universal Grid-Connected Fuel-Cell Inverter for

    E-Print Network [OSTI]

    Mazumder, Sudip K.

    . INTRODUCTION THE utilization of fuel cells for distributed power gen- eration requires the development of a low-cost-Connected Fuel-Cell Inverter for Residential Application Sudip K. Mazumder, Senior Member, IEEE, Rajni K. Burra--This paper describes a universal fuel-cell-based grid- connected inverter design with digital

  8. Rotating arc spark plug

    DOE Patents [OSTI]

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27T23:59:59.000Z

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  9. Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3,NeutronNeutrons

  10. April 30 Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014. The first document includes the first presentation from the meeting: DOE Vision and Objectives. The second document includes all other presentations from the meeting: Terminology and Definitions; End-User and Grid Services; Physical Characterization Framework; Value, Benefits & Metrics.

  11. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    SciTech Connect (OSTI)

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken [Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, Nakamachi (Japan)

    2010-12-15T23:59:59.000Z

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)

  12. Voltage and frequency control of islanded microgrids: a plug-and-play approach

    E-Print Network [OSTI]

    Ferrari-Trecate, Giancarlo

    by microgrids that normally operate in grid-connected mode and that can be switched off- grid for guaranteeing

  13. Nozzle dam having a unitary plug

    DOE Patents [OSTI]

    Veronesi, L.; Wepfer, R.M.

    1992-12-15T23:59:59.000Z

    Apparatus for sealing the primary-side coolant flow nozzles of a nuclear steam generator is disclosed. The steam generator has relatively small diameter manway openings for providing access to the interior of the steam generator including the inside surface of each nozzle, the manway openings having a diameter substantially less than the inside diameter of each nozzle. The apparatus includes a bracket having an outside surface for matingly sealingly engaging the inside surface of the nozzle. The bracket also has a plurality of openings longitudinally therethrough and a plurality of slots transversely therein in communication with each opening. A plurality of unitary plugs sized to pass through the manway opening are matingly sealingly disposed in each opening of the bracket for sealingly plugging each opening. Each plug includes a plurality of arms operable to engage the slots of the bracket for connecting each plug to the bracket, so that the nozzle is sealed as the plugs seal the openings and are connected to the bracket. 16 figs.

  14. Connecting Distributed Energy Resources to the Grid: Their Benefits to the DER Owner etc.

    SciTech Connect (OSTI)

    Poore, WP

    2003-07-09T23:59:59.000Z

    The vision of the Distributed Energy Research Program (DER) program of the U.S. Department of Energy (DOE) is that the United States will have the cleanest and most efficient and reliable energy system in the world by maximizing the use of affordable distributed energy resources. Electricity consumers will be able to choose from a diverse number of efficient, cost-effective, and environmentally friendly distributed energy options and easily connect them into the nation's energy infrastructure while providing benefits to their owners and other stakeholders. The long-term goal of this vision is that DER will achieve a 20% share of new electric capacity additions in the United States by 2010, thereby helping to make the nation's electric power generation and delivery system more efficient, reliable, secure, clean, economical, and diverse in terms of fuel use (oil, natural gas, solar, hydroelectric, etc.) and prime mover resource (solar, wind, gas turbines, etc.). Near- and mid-term goals are to develop new technologies for implementing and operating DER and address barriers associated with DER usage and then to reduce costs and emissions and improve the efficiency and reliability of DER. Numerous strategies for meeting these goals have been developed into a research, development, and demonstration (RD&D) program that supports generation and delivery systems architecture, including modeling and simulation tools. The benefits associated with DER installations are often significant and numerous. They almost always provide tangible economic benefits, such as energy savings or transmission and distribution upgrade deferrals, as well as intangible benefits, such as power quality improvements that lengthen maintenance or repair intervals for power equipment. Also, the benefits routinely are dispersed among end users, utilities, and the public. For instance, an end user may use the DER to reduce their peak demand and save money due to lower demand charges. Reduced end user peak demand, in turn, may lower a distribution system peak load such that upgrades are deferred or avoided. This could benefit other consumers by providing them with higher reliability and power quality as well as avoiding their cost share of a distribution system upgrade. In this example, the costs of the DER may be born by the end user, but that user reaps only a share of the benefits. This report, the first product of a study to quantify the value of DER, documents initial project efforts to develop an assessment methodology. The focus of currently available site-specific DER assessment techniques are typically limited to two parties, the owner/user and the local utility. Rarely are the impacts on other stakeholders, including interconnected distribution utilities, transmission system operators, generating system operators, other local utility customers, local and regional industry and business, various levels of government, and the environment considered. The goal of this assessment is to quantify benefits and cost savings that accrue broadly across a region, recognizing that DER installations may have local, regional, or national benefits.

  15. Grid regulation services for energy storage devices based on grid frequency

    DOE Patents [OSTI]

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02T23:59:59.000Z

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  16. Grid regulation services for energy storage devices based on grid frequency

    DOE Patents [OSTI]

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2014-04-15T23:59:59.000Z

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  17. Plugging Abandoned Water Wells

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2002-02-28T23:59:59.000Z

    This brochure explains the threat of abandoned water wells to groundwater resources and the responsibility and liability of Texas property owners. It offers information to landowners on ways to plug such wells....

  18. Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and

    E-Print Network [OSTI]

    Kemner, Ken

    " for the smart grid ­ How many plug-in electric vehicle purchasers be upset with smart grid costs? ­ Will smart, high income early adopters insist on no-hassle smart grid technology? Renewable performance standards Vehicles By Dan Santini Argonne National Laboratory dsantini@anl.gov Clean Cities Coordinators' Webinar

  19. Optimal Power Market Participation of Plug-In Electric Vehicles Pooled by Distribution Feeder

    E-Print Network [OSTI]

    Caramanis, Michael

    Optimal Power Market Participation of Plug-In Electric Vehicles Pooled by Distribution Feeder : Power system markets, Power system economics Key Words: Load management, Electric vehicle grid Transactions on Power Systems #12;WORKING PAPER 1 Optimal Power Market Participation of Plug-In Electric

  20. A Generalized Class of Stationary Frame-Current Controllers for Grid-Connected AC–DC Converters

    E-Print Network [OSTI]

    Hwang, J. George

    Within power systems, high-power pulsewidth-modulated ac-dc converters are used in flexible ac transmission systems controllers and for interfacing renewable energy sources to the grid. These converters traditionally ...

  1. A simulation-based assessment of plug-in hybrid electric vehicle architectures

    E-Print Network [OSTI]

    Sotingco, Daniel (Daniel S.)

    2012-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are vehicles that utilize power from both an internal combustion engine and an electric battery that can be recharged from the grid. Simulations of series, parallel, and split-architecture ...

  2. Plugging in the consumer

    E-Print Network [OSTI]

    for senior executives around critical public and private sector issues. This executive brief is basedPlugging in the consumer Innovating utility business models for the future Energy and Utilities IBM and figuratively. But the confluence of climate change concerns, rising energy costs and technology advances

  3. Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM

    E-Print Network [OSTI]

    Momber, Ilan

    2010-01-01T23:59:59.000Z

    Environmental Benefits of Electric Vehicles Integration onusing plug-in hybrid electric vehicle battery packs for gridwith Connection of Electric Vehicles TABLE IV D ECISION V

  4. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    SciTech Connect (OSTI)

    None

    2013-12-31T23:59:59.000Z

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology and interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.

  5. Abstract--Wind power generation is growing rapidly. However, maintaining the wind turbine connection to grid is a real

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    by the year 2020 [2]. Wind turbines can operate either with a fixed speed or a variable speed. In the case and then as fluctuations in the electrical power on the grid. The variable-speed turbine operation offers several major acoustical [3]. Among variable speed constant-frequency wind turbines, the doubly fed induction generator

  6. Monitoring and analysis of two grid connected PV systems Michael BRESSAN* Valrie DUPE**, Bruno JAMMES**, Thierry TALBERT*, Corinne ALONSO**

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Adapted to all kinds of equipment, it can be installed on any inverter or PV array. This monitoring system l building ha u" (1 inverte mum power ur rideau" a monitoring (latitude 43 V technolog PV array. A microco meter can m PV inverte re 1: Monitor grid con el systems study PV s a non linear everal pape

  7. FUTURE POWER GRID INITIATIVE Intelligent Networked Sensors

    E-Print Network [OSTI]

    , demand- response, and plug-in electric vehicles. It: » Lays the software platform groundwork and planning and ensure a more secure, efficient and reliable future grid. Building on the Electricity

  8. Grid-Connected Inverter Anti-Islanding Test Results for General Electric Inverter-Based Interconnection Technology

    SciTech Connect (OSTI)

    Ye, Z.; Dame, M.; Kroposki, B.

    2005-01-01T23:59:59.000Z

    This report covers testing of General Electric-proposed anti-islanding schemes. The objectives were to: (1) Validate the effectiveness of the proposed anti-islanding schemes; (2) Conduct parametric evaluation of the schemes with respect to control settings and load conditions, including controller gains, load power levels, and load quality factors; and (3) Examine the ability of the distributed resource to ride through a low-voltage condition on the utility grid.

  9. AUSTRIAN GRID AUSTRIAN GRID

    E-Print Network [OSTI]

    AUSTRIAN GRID 1/18 AUSTRIAN GRID THE INITIAL VERSION OF SEE-GRID Document Identifier: AG-DA1c-1) #12;AUSTRIAN GRID 2/18 Delivery Slip Name Partner Date Signature From Károly Bósa RISC 31 See cover on page 3 #12;AUSTRIAN GRID 3/18 THE INITIAL VERSION OF SEE-GRID Karoly Bosa Wolfgang

  10. EV-Smart Grid Research & Interoperability Activities 2014 DOE...

    Broader source: Energy.gov (indexed) [DOE]

    - Codes & Standards Support, Grid Connectivity R&D, International Cooperation and EV-Smart Grid Interoperability Center (funding began in FY 2013) Grid Integration * PEV J1772...

  11. High-efficiency grid-connected photovoltaic module integrated converter system with high-speed communication interfaces for small-scale distribution power generation

    SciTech Connect (OSTI)

    Choi, Woo-Young; Lai, Jih-Sheng (Jason) [Future Energy Electronics Center, Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA (United States)

    2010-04-15T23:59:59.000Z

    This paper presents a high-efficiency grid-connected photovoltaic (PV) module integrated converter (MIC) system with reduced PV current variation. The proposed PV MIC system consists of a high-efficiency step-up DC-DC converter and a single-phase full-bridge DC-AC inverter. An active-clamping flyback converter with a voltage-doubler rectifier is proposed for the step-up DC-DC converter. The proposed step-up DC-DC converter reduces the switching losses by eliminating the reverse-recovery current of the output rectifying diodes. To reduce the PV current variation introduced by the grid-connected inverter, a PV current variation reduction method is also suggested. The suggested PV current variation reduction method reduces the PV current variation without any additional components. Moreover, for centralized power control of distributed PV MIC systems, a PV power control scheme with both a central control level and a local control level is presented. The central PV power control level controls the whole power production by sending out reference power signals to each individual PV MIC system. The proposed step-up DC-DC converter achieves a high-efficiency of 97.5% at 260 W output power to generate the DC-link voltage of 350 V from the PV voltage of 36.1 V. The PV MIC system including the DC-DC converter and the DC-AC inverter achieves a high-efficiency of 95% with the PV current ripple less than 3% variation of the rated PV current. (author)

  12. Moving HomePlug to Industrial Applications with Power-Line Communication Network

    E-Print Network [OSTI]

    Zhao, Z.W.

    Home networking is becoming an attractive application not only for the Internet access but also for home automation. Being a high-speed and dominant standard presently, HomePlug has an important role in home LAN connecting ...

  13. Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator

    SciTech Connect (OSTI)

    Albuquerque, Fabio L.; Moraes, Adelio J.; Guimaraes, Geraldo C.; Sanhueza, Sergio M.R.; Vaz, Alexandre R. [Universidade Federal de Uberlandia, Uberlandia-MG, CEP 38400-902 (Brazil)

    2010-07-15T23:59:59.000Z

    In the case of photovoltaic (PV) systems acting as distributed generation (DG) systems, the DC energy that is produced is fed to the grid through the power-conditioning unit (inverter). The majority of contemporary inverters used in DG systems are current source inverters (CSI) operating at unity power factor. If, however, we assume that voltage source inverters (VSI) can replace CSIs, we can generate reactive power proportionally to the remaining unused capacity at any given time. According to the theory of instantaneous power, the inverter reactive power can be regulated by changing the amplitude of its output voltage. In addition, the inverter active power can be adjusted by modifying the phase angle of its output voltage. Based on such theory, both the active power supply and the reactive power compensation (RPC) can be carried out simultaneously. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of a PV system can still be used to improve the inverter utilisation factor. Some MATLAB simulation results are included here to show the feasibility of the method. (author)

  14. Panel: Microgrid Research and Field Testing IEEE PES General Meeting, 24-28 June 2007, Tampa, FL 1 In general, a microgrid can operate in both the grid-connected

    E-Print Network [OSTI]

    Panel: Microgrid Research and Field Testing IEEE PES General Meeting, 24-28 June 2007, Tampa, FL 1 Abstract In general, a microgrid can operate in both the grid-connected mode and the islanded mode where the microgrid is interfaced to the main power system by a fast semiconductor switch called static switch, (SS

  15. This document is a preprint of the final paper: C. Zhang, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero "Resonance damping techniques for grid-connected voltage source converters with

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    of these methods. Keywords: LCL filter, Active damp methods, Passive damp methods Grid-connected inverter I advanced control strategies in order to maintain better stability performance [2]. So that many passive feedback" approach, these two strategies aim at modifying the transfer function of LCL filter in closed

  16. NREL: Learning - Plug-In Hybrid Electric Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isDataWorking withFuel CellPlug-In Hybrid

  17. Sensitivity analysis for optimal sizing of a PV grid connected home G.WARKOZEK S.PLOIX* M.JACOMINO* F.WURTZ

    E-Print Network [OSTI]

    Boyer, Edmond

    : solver Xg Xs XbPpv PLoad GridBatteryPhotovoltaic panel solver Xg Xs XbPpv PLoad GridBatteryPhotovoltaic, published in "European Energy Conference 2010, Barcelone : Spain (2010)" #12;temperature, possible

  18. Evaluating the Impact of Plug-in Hybrid Electric Vehicles on Regional Electricity Supplies

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL

    2007-01-01T23:59:59.000Z

    Plug-in Hybrid Electric Vehicles (PHEVs) have the potential to increase the use of electricity to fuel the U.S. transportation needs. The effect of this additional demand on the electric system will depend on the amount and timing of the vehicles' periodic recharging on the grid. We used the ORCED (Oak Ridge Competitive Electricity Dispatch) model to evaluate the impact of PHEVs on the Virginia-Carolinas (VACAR) electric grid in 2018. An inventory of one million PHEVs was used and charging was begun in early evening and later at night for comparison. Different connection power levels of 1.4 kW, 2 kW, and 6 kW were used. The results include the impact on capacity requirements, fuel types, generation technologies, and emissions. Cost information such as added cost of generation and cost savings versus use of gasoline were calculated. Preliminary results of the expansion of the study to all regions of the country are also presented. The results show distinct differences in fuels and generating technologies when charging times are changed. At low specific power and late in the evening, coal was the major fuel used, while charging more heavily during peak times led to more use of combustion turbines and combined cycle plants.

  19. Connecting the world's electrical grids

    SciTech Connect (OSTI)

    Valenti, M.

    1994-01-01T23:59:59.000Z

    This article examines the technology available for transmission of bulk power over long distances for global energy networks. The topics of the article include former Soviet Union technology in HVAC systems, Brazil's HVDC link, Italy's multiterminal HVDC systems, the Quebec to New England multiterminal HVDC link, improvements in thyristors for more controllable AC systems using thyristor controlled series compensators, and continued thyristor development.

  20. Plug-and-Play Photovoltaics Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Plug-and-Play Photovoltaics program, DOE will advance the development of a commercial plug-and-play photovoltaic (PV) system, an off-the-shelf product that is fully inclusive with...

  1. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy

    SciTech Connect (OSTI)

    Mellit, Adel [Department of Electronics, Faculty of Sciences and Technology, LAMEL, Jijel University, Ouled-aissa, P.O. Box 98, Jijel 18000 (Algeria); Pavan, Alessandro Massi [Department of Materials and Natural Resources, University of Trieste Via A. Valerio, 2 - 34127 Trieste (Italy)

    2010-05-15T23:59:59.000Z

    Forecasting of solar irradiance is in general significant for planning the operations of power plants which convert renewable energies into electricity. In particular, the possibility to predict the solar irradiance (up to 24 h or even more) can became - with reference to the Grid Connected Photovoltaic Plants (GCPV) - fundamental in making power dispatching plans and - with reference to stand alone and hybrid systems - also a useful reference for improving the control algorithms of charge controllers. In this paper, a practical method for solar irradiance forecast using artificial neural network (ANN) is presented. The proposed Multilayer Perceptron MLP-model makes it possible to forecast the solar irradiance on a base of 24 h using the present values of the mean daily solar irradiance and air temperature. An experimental database of solar irradiance and air temperature data (from July 1st 2008 to May 23rd 2009 and from November 23rd 2009 to January 24th 2010) has been used. The database has been collected in Trieste (latitude 45 40'N, longitude 13 46'E), Italy. In order to check the generalization capability of the MLP-forecaster, a K-fold cross-validation was carried out. The results indicate that the proposed model performs well, while the correlation coefficient is in the range 98-99% for sunny days and 94-96% for cloudy days. As an application, the comparison between the forecasted one and the energy produced by the GCPV plant installed on the rooftop of the municipality of Trieste shows the goodness of the proposed model. (author)

  2. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  3. Hot cell shield plug extraction apparatus

    DOE Patents [OSTI]

    Knapp, Philip A. (Moore, ID); Manhart, Larry K. (Pingree, ID)

    1995-01-01T23:59:59.000Z

    An apparatus is provided for moving shielding plugs into and out of holes in concrete shielding walls in hot cells for handling radioactive materials without the use of external moving equipment. The apparatus provides a means whereby a shield plug is extracted from its hole and then swung approximately 90 degrees out of the way so that the hole may be accessed. The apparatus uses hinges to slide the plug in and out and to rotate it out of the way, the hinge apparatus also supporting the weight of the plug in all positions, with the load of the plug being transferred to a vertical wall by means of a bolting arrangement.

  4. Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation

    SciTech Connect (OSTI)

    Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.; DeVault, Robert C [ORNL

    2009-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The purpose of this project is to identify and evaluate value-added propositions for PHEVs that will help overcome this market barrier. Candidate value propositions for the initial case study were chosen to enhance consumer acceptance of PHEVs and/or compatibility with the grid. Potential benefits of such grid-connected vehicles include the ability to supply peak load or emergency power requirements of the grid, enabling utilities to size their generation capacity and contingency resources at levels below peak. Different models for vehicle/battery ownership, leasing, financing and operation, as well as the grid, communications, and vehicle infrastructure needed to support the proposed value-added functions were explored during Phase 1. Rigorous power system, vehicle, financial and emissions modeling were utilized to help identify the most promising value propositions and market niches to focus PHEV deployment initiatives.

  5. Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices

    SciTech Connect (OSTI)

    None

    2012-01-25T23:59:59.000Z

    Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’s new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.

  6. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    SciTech Connect (OSTI)

    Short, W.; Denholm, P.

    2006-04-01T23:59:59.000Z

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  7. Plug Load Behavioral Change Demonstration Project

    SciTech Connect (OSTI)

    Metzger, I.; Kandt, A.; VanGeet, O.

    2011-08-01T23:59:59.000Z

    This report documents the methods and results of a plug load study of the Environmental Protection Agency's Region 8 Headquarters in Denver, Colorado, conducted by the National Renewable Energy Laboratory. The study quantified the effect of mechanical and behavioral change approaches on plug load energy reduction and identified effective ways to reduce plug load energy. Load reduction approaches included automated energy management systems and behavioral change strategies.

  8. IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 3, SEPTEMBER 2013 1297 Decentralized Voltage Control to Minimize

    E-Print Network [OSTI]

    Peng, Huei

    a decentralized voltage control algorithm that minimizes power losses for micro- grids. Its optimality and plug sometimes are installed in rural areas away from the main electric grid, forming micro- grids [1 storage systems and provide vehicle-to-grid (V2G) functions using the on-board generators [8

  9. Plug-In Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.

    2006-05-08T23:59:59.000Z

    Provides an overview on the current status, long-term prospects, and key challenges in the development of plug-in hybrid electric vehicle technology.

  10. Non-plugging injection valve

    DOE Patents [OSTI]

    Carey, Jr., Henry S. (Wilsonville, AL)

    1985-01-01T23:59:59.000Z

    A valve for injecting fluid into a conduit carrying a slurry subject to separation to form deposits capable of plugging openings into the conduit. The valve comprises a valve body that is sealed to the conduit about an aperture formed through the wall of the conduit to receive the fluid to be injected and the valve member of the valve includes a punch portion that extends through the injection aperture to the flow passage, when the valve is closed, to provide a clear channel into the conduit, when the valve is opened, through deposits which might have formed on portions of the valve adjacent the conduit.

  11. Plug Smart | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation, search Name:PipoPleasantonPlug Smart Jump to:

  12. Software Roadmap to Plug and Play Petaflop/s

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    1993). LBNL Software Roadmap to Plug and Play Petaflop/s 7.16, 2005. LBNL Software Roadmap to Plug and Play Petaflop/sChombo. LBNL Software Roadmap to Plug and Play Petaflop/s

  13. Applications (Grid Tools)

    E-Print Network [OSTI]

    Buyya, Rajkumar

    Grid Fabric Software Grid Applications Core Grid Middleware User-Level Middleware (Grid Tools) !"# $ %& ' ( ) * #& + '& ' , - . / # ) ) 0 # * 1 PDB CDB Grid Fabric Hardware &+ '' + ) , '1 '1 ' % - * # ( Grid Fabric Software Grid Applications Core Grid Middleware User-Level Middleware (Grid Tools) !"# $ %& ' ( ) * #& + '& ' , - . / # ) ) 0

  14. Plugging Vehicles into Clean Energy October, 2012

    E-Print Network [OSTI]

    California at Davis, University of

    Plugging Vehicles into Clean Energy 1 October, 2012 Plugging Vehicles into Clean Energy Max-in electric vehicles and clean energy. Giving consumers options to offset energy and emissions associated briefly summarizes the relationship between clean energy and vehicle electrification and describes five

  15. Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions...

  16. Power to the Plug: An Introduction to Energy, Electricity, Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Below is...

  17. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

  18. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01T23:59:59.000Z

    M. , 2006. Plug-in hybrid vehicle analysis. Milestonegas emissions from plug-in hybrid vehicles: implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

  19. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation 2011 DOE...

  20. Energy Department Announces Funding to Develop "Plug-and-Play...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Develop "Plug-and-Play" Solar Energy Systems for Homeowners Energy Department Announces Funding to Develop "Plug-and-Play" Solar Energy Systems for Homeowners April 24, 2012 -...

  1. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    arravt068vssmiyasato2011o .pdf More Documents & Publications SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid...

  2. Performance Test Protocol for Evaluating Inverters Used in Grid...

    Office of Scientific and Technical Information (OSTI)

    Performance Test Protocol for Evaluating Inverters Used in Grid-Connected Photovoltaic Systems. Re-direct Destination: Abstract not provided....

  3. Project Information Form Project Title Advanced Energy Management Strategy Development for Plug-in Hybrid

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Advanced Energy Management Strategy Development for Plug management strategy, which determines how energy flows in a hybrid powertrain should be managed in response for PHEVs using connected vehicle technology. Different energy management strategies will be developed

  4. Plug and Play: Purchase, Install, and Connect Residential Solar...

    Energy Savers [EERE]

    roof mounting system, eliminating the need for racking systems. Once the lightweight solar panels are in place, the system then self-tests for proper installation and...

  5. Plug-in Hybrid Initiative

    SciTech Connect (OSTI)

    Goodman, Angie; Moore, Ray; Rowden, Tim

    2013-09-27T23:59:59.000Z

    Our main project objective was to implement Plug-in Electric Vehicles (PEV) and charging infrastructure into our electric distribution service territory and help reduce barriers in the process. Our research demonstrated the desire for some to be early adopters of electric vehicles and the effects lack of education plays on others. The response of early adopters was tremendous: with the initial launch of our program we had nearly 60 residential customers interested in taking part in our program. However, our program only allowed for 15 residential participants. Our program provided assistance towards purchasing a PEV and installation of Electric Vehicle Supply Equipment (EVSE). The residential participants have all come to love their PEVs and are more than enthusiastic about promoting the many benefits of driving electric.

  6. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint

    SciTech Connect (OSTI)

    Markel, T.

    2010-04-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs)--which include all-electric vehicles and plug-in hybrid electric vehicles--provide a new opportunity for reducing oil consumption by drawing power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure--from battery manufacturing to communication and control between the vehicle and the grid--must provide access to clean electricity, satisfy stakeholder expectations, and ensure safety. Currently, codes and standards organizations are collaborating on a PEV infrastructure plan. Establishing a PEV infrastructure framework will create new opportunities for business and job development initiating the move toward electrified transportation. This paper summarizes the components of the PEV infrastructure, challenges and opportunities related to the design and deployment of the infrastructure, and the potential benefits.

  7. A Bidirectional High-Power-Quality Grid Interface With a Novel Bidirectional Noninverted Buck Boost Converter for PHEVs

    SciTech Connect (OSTI)

    Onar, Omer C [ORNL

    2012-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) will play a vital role in future sustainable transportation systems due to their potential in terms of energy security, decreased environmental impact, improved fuel economy, and better performance. Moreover, new regulations have been established to improve the collective gas mileage, cut greenhouse gas emissions, and reduce dependence on foreign oil. This paper primarily focuses on two major thrust areas of PHEVs. First, it introduces a grid-friendly bidirectional alternating current/direct current ac/dc dc/ac rectifier/inverter for facilitating vehicle-to-grid (V2G) integration of PHEVs. Second, it presents an integrated bidirectional noninverted buck boost converter that interfaces the energy storage device of the PHEV to the dc link in both grid-connected and driving modes. The proposed bidirectional converter has minimal grid-level disruptions in terms of power factor and total harmonic distortion, with less switching noise. The integrated bidirectional dc/dc converter assists the grid interface converter to track the charge/discharge power of the PHEV battery. In addition, while driving, the dc/dc converter provides a regulated dc link voltage to the motor drive and captures the braking energy during regenerative braking.

  8. Plug-In Electric Vehicle Handbook for Fleet Managers

    E-Print Network [OSTI]

    Plug-In Electric Vehicle Handbook for Fleet Managers #12;Plug-In Electric Vehicle Handbook Infrastructure Successfully deploying plug-in electric vehicles (PEVs) and charging infrastructure requires at www.cleancities.energy.gov. #12;Plug-In Electric Vehicle Handbook for Fleets 3 You've heard the buzz

  9. Improving Grid Performance with Electric Vehicle Charging 2011San Diego Gas & Electric Company. All copyright and trademark rights reserved.

    E-Print Network [OSTI]

    California at Davis, University of

    Improving Grid Performance with Electric Vehicle Charging © 2011San Diego Gas & Electric Company · Education SDG&E Goal ­ Grid Integrated Charging · More plug-in electric vehicles · More electric grid to a hairdryer) per PEV in the population · Instantaneous demand, 40 all-electric vehicles for one day (8

  10. Grid Integration

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

  11. Criticality of the European Electricity Grid Network

    E-Print Network [OSTI]

    Arrowsmith, David

    1 Criticality of the European Electricity Grid Network MANMADE EU NEST FUNDING D.K. Arrowsmith (catastrophic failure of network components), functional (electricity grid blackouts, supply chain), volatility the qualitative characteristics of power disruptions from a large synchronously-connected electricity grid

  12. Home Area Networks and the Smart Grid

    SciTech Connect (OSTI)

    Clements, Samuel L.; Carroll, Thomas E.; Hadley, Mark D.

    2011-04-01T23:59:59.000Z

    With the wide array of home area network (HAN) options being presented as solutions to smart grid challenges for the home, it is time to compare and contrast their strengths and weaknesses. This white paper examines leading and emerging HAN technologies. The emergence of the smart grid is bringing more networking players into the field. The need for low consistent bandwidth usage differs enough from the traditional information technology world to open the door to new technologies. The predominant players currently consist of a blend of the old and new. Within the wired world Ethernet and HomePlug Green PHY are leading the way with an advantage to HomePlug because it doesn't require installing new wires. In the wireless the realm there are many more competitors but WiFi and ZigBee seem to have the most momentum.

  13. Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S

    2010-01-01T23:59:59.000Z

    converted plug-in hybrid vehicles. Transportation ResearchM. , 2006. Plug-In Hybrid Vehicle Analysis. Nationalgas emissions from plug-in hybrid vehicles: implications for

  14. A mean field game analysis of electric vehicles in the smart grid

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 A mean field game analysis of electric vehicles in the smart grid Romain Couillet1, Samir Medina electrical vehicles (EV) or electrical hybrid oil-electricity vehicles (PHEV) in the smart grid energy market It is widely recognized [1], [2], [3] that the future intense penetration of electrical vehicles (EV) and plug

  15. Grid Security

    E-Print Network [OSTI]

    Sinnott, R.O.

    Sinnott,R.O. National Centre for e-Social Science book, Grid Computing: Technology, Service and Application, CRC Press, November 2008.

  16. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicle On-Road Demonstration Data Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road Demonstration Data Through the American Recovery and...

  17. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01T23:59:59.000Z

    M. (2006) Plug-In Hybrid Vehicle Analysis, Milestone Report,gas emissions from plug-in hybrid vehicles: Implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

  18. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01T23:59:59.000Z

    M. (2006) Plug-In Hybrid Vehicle Analysis, Milestone Report,gas emissions from plug-in hybrid vehicles: Implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

  19. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington D.C. vssarravt068miyasato2010p.pdf More Documents & Publications Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation SCAQMD:Plug-In...

  20. Software Roadmap to Plug and Play Petaflop/s

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Chem. , 14, 1347–1363 (1993). LBNL Software Roadmap to PlugSpain, Sep. 12–16, 2005. LBNL Software Roadmap to Plug andeffective. ANL, ORNL, and LBNL have expertise here. Memory

  1. GridOPTICS(TM) A Novel Software Framework for Integrating Power Grid Data Storage, Management and Analysis

    SciTech Connect (OSTI)

    Gorton, Ian; Yin, Jian; Akyol, Bora A.; Ciraci, Selim; Critchlow, Terence; Liu, Yan; Gibson, Tara D.; Purohit, Sumit; Sharma, Poorva; Vlachopoulou, Maria

    2013-01-09T23:59:59.000Z

    This paper describes the architecture and design of GridOPTICSTM, a novel software framework to integrate a collection of software tools developed by PNNL’s Future Power Grid Initiative (FPGI) into a coherent, powerful operations and planning tool for the power grid of the future. GridOPTICSTM enables plug-and-play of various analysis, modeling and visualization software tools for fast and accurate control of the power grid. To bridge the data access for different control purposes, GridOPTICSTM provides a scalable and thin layer of event processing that hides the complexity of data storage and management. The initial prototype of GridOPTICSTM was demonstrated with several use cases from PNNL’s FPGI.

  2. Bond strength of cementitious borehole plugs in welded tuff

    SciTech Connect (OSTI)

    Akgun, H.; Daemen, J.J.K. [Arizona Univ., Tucson, AZ (USA). Dept. of Mining and Geological Engineering

    1991-02-01T23:59:59.000Z

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young`s modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs.

  3. Plug-In Hybrid Electric Vehicle Value Proposition Study

    E-Print Network [OSTI]

    Pennycook, Steve

    Plug-In Hybrid Electric Vehicle Value Proposition Study IInntteerriimm RReeppoorrtt:: PPhhaassee 11 Government or any agency thereof. ORNL/TM-2008/076 #12;Plug-in Hybrid Electric Vehicle Value Proposition 2009 i ACKNOWLEDGEMENTS The Plug-In Hybrid Electric Vehicle (PHEV) Value Proposition Study

  4. Plug-In Hybrid Electric Vehicle Value Proposition Study

    E-Print Network [OSTI]

    Pennycook, Steve

    Plug-In Hybrid Electric Vehicle Value Proposition Study Phase 1, Task 3:Phase 1, Task 3: Technic Government or any agency thereof. #12;ORNL/TM-2008/068 Plug-in Hybrid Electric Vehicle Value Proposition The Plug-In Hybrid Electric Vehicle (PHEV) Value Proposition Study is a collaborative effort between

  5. Smart Grid Investments Improve Grid Reliability, Resilience,...

    Office of Environmental Management (EM)

    Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November...

  6. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    15,1998 pp. 1424-1431 [140] Grid 2020: Towards a Policy ofInverter connected to the Grid via LCL Filter Papavasiliou,Act, Title XIII- Smart Grid, Section 1301-Statement of

  7. GROWDERS Demonstration of Grid Connected Electricity Systems (Smart Grid

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604°Wisconsin:FyreStormGLOBAL FINANCIALGP

  8. Abstract--This paper examines the problem of optimizing the charge trajectory of a plug-in hybrid electric vehicle (PHEV),

    E-Print Network [OSTI]

    Krstic, Miroslav

    Abstract-- This paper examines the problem of optimizing the charge trajectory of a plug-in hybrid this optimization with two objectives in mind, namely, (i) minimizing the overall cost of daily PHEV energy the power grid. Two objectives are considered in this optimization. First, we minimize the total cost

  9. RTDS-Based Design and Simulation of Distributed P-Q Power Resources in Smart Grid

    E-Print Network [OSTI]

    Taylor, Zachariah David

    2014-01-01T23:59:59.000Z

    micro-wind turbines are connected to grid by cascading rectifier stages with an inverter stage. Energy storage

  10. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum38 (1996)representative of thePlug-Load

  11. An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Kammen, Daniel M.

    An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles-in hybrid electric vehicles D M Lemoine1 , D M Kammen1,2,3 and A E Farrell1,4,5 1 Energy and Resources Group.iop.org/ERL/3/014003 Abstract Plug-in hybrid electric vehicles (PHEVs) can use both grid-supplied electricity

  12. Grid Architecture

    Broader source: Energy.gov (indexed) [DOE]

    Integration of Distributed Generation", John McDonald, et.al. Electrical Transmission and Smart Grids, Springer, 2013. 4.25 Figure 4.17. Common Distribution Looping Arrangements In...

  13. SmartConnect: Data connectivity for peripheral health facilities

    E-Print Network [OSTI]

    Anderson, Richard

    : Solar Panels (not in use) 6/15/2010 17NSDR 2010 #12;Nicaragua Public Health System · Health Post for SMS connectivity · Cellular connectivity is reaching remote areas · Relatively low cost for 161-visit · Target facilities with vaccine storage ­ Grid power or solar power ­ Associate the device

  14. Grid Connectivity Research, Development & Demonstration Projects

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Grid Connectivity Research, Development & Demonstration Projects

    Broader source: Energy.gov (indexed) [DOE]

    implement the SAE J28472 DC charging communication protocol Power Line Communication (PLC) over 1 kHz pilot wire requires a broad range of coexistence, crosstalk and...

  16. Geothermal/Grid Connection | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd toWell Testing andGeothermal/Environmentsource

  17. Grid Connected Functionalities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment of aLoggingsubscriber toSenate |Lead Performer:

  18. Geothermal/Grid Connection | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005)EnergyAmatitlan GeothermalEnergyArizona

  19. FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced Computational Kernels OBJECTIVE The U of the power grid will also have to evolve to insure accurate and timely simulations. On the other hand, the software tools available for power grid simulation today are primarily sequential single core programs

  20. Grid Security: Expecting the Mingchao Ma

    E-Print Network [OSTI]

    University College London

    of a communications line; Power failure; Internet connection failure; Mis-configuration; · Security incidents ­ SystemGrid Security: Expecting the Unexpected Mingchao Ma STFC ­ Rutherford Appleton Laboratory, UK #12;Slide 2 Overview · Security Service Challenges (SSC) Review · Grid Security Incident ­ What had happened

  1. Photo illustration by George Lange, with Michael Miller (Plug) Popular Mechanics Impact of PlugImpact of Plug--in Hybrids on thein Hybrids on the

    E-Print Network [OSTI]

    1 1 Photo illustration by George Lange, with Michael Miller (Plug) ­Popular Mechanics Impact system Turbo Diesel hybrid Future options Gasoline Turbo Diesel Hybrid plug-in hybrid Battery electric Fuel Cell Audi Turbo Diesel GM Volt Hyundai's Fuel Cell Tesla's Battery electric car #12;7 13 Barriers

  2. NATL Grid Map 50-Meter Grid

    E-Print Network [OSTI]

    Slatton, Clint

    NATL-east NATL Grid Map 50-Meter Grid Locations in NATL can be specified by reference to a grid intervals. Each gridline intersection ("grid point") is identified by its two gridlines (e.g., E5). Each 50x50-m block formed by the gridlines is identified by the grid point in its northwest corner (e

  3. Grid-based Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC)Graphite ReactorGregGrid-Connected

  4. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  5. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  6. Battery Choices for Different Plug-in HEV Configurations (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2006-07-12T23:59:59.000Z

    Presents battery choices for different plug-in hybrid electric vehicle (HEV) configurations to reduce cost and to improve performance and life.

  7. anal fistula plug: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surplus power they generate. Plugging in the consumer Innovating utility business models for the future, the relationship between utilities and consumers has been rather...

  8. activity plug-in: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surplus power they generate. Plugging in the consumer Innovating utility business models for the future, the relationship between utilities and consumers has been rather...

  9. amplatzer vascular plug: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surplus power they generate. Plugging in the consumer Innovating utility business models for the future, the relationship between utilities and consumers has been rather...

  10. Plug-In Electric Vehicle Handbook for Public Charging

    E-Print Network [OSTI]

    about the new generation of plug-in electric vehicles (PEVs) like the Chevy Volt and Nissan Leaf. You. Gasoline- and diesel-powered ICE vehicles ended

  11. Plug-In Electric Vehicle Handbook for Electrical Contractors (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  12. Electro-thermal-mechanical Simulation and Reliability for Plug...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Evaluation Meeting ape026hefner2012o.pdf More Documents & Publications Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters...

  13. EECS 498 Special Topic Grid Integration of Alternative

    E-Print Network [OSTI]

    Eustice, Ryan

    . 7. Design of renewable energy systems using HOMER. 8. Plug-in electric vehicles: local and large with energy processing technologies that are required for power system connection. System integration issues will be addressed, with consideration given to impacts on current power system design philosophies and operating

  14. Power converter connection configuration

    DOE Patents [OSTI]

    Beihoff, Bruce C. (Wauwatosa, WI); Kehl, Dennis L. (Milwaukee, WI); Gettelfinger, Lee A. (Brown Deer, WI); Kaishian, Steven C. (Milwaukee, WI); Phillips, Mark G. (Brookfield, WI); Radosevich, Lawrence D. (Muskego, WI)

    2008-11-11T23:59:59.000Z

    EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  15. Oregon Plugging Record Form | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:Energy Information Fees forInformationPlugging Record Form

  16. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    House” by Tron Architecture conceptually This is relative to what might be used in a plug-in hybrid or battery

  17. Ion mobility spectrometer with virtual aperture grid

    DOE Patents [OSTI]

    Pfeifer, Kent B. (Los Lunas, NM); Rumpf, Arthur N. (Albuquerque, NM)

    2010-11-23T23:59:59.000Z

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  18. Software Roadmap to Plug and Play Petaflop/s Editor: Bill Kramer (wtkramer@lbl.gov)

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    LBNL-59999 Software Roadmap to Plug and Play Petaflop/s Editor: Bill Kramer (wtkramer Software Roadmap to Plug and Play Petaflop/s 1 Software Roadmap to Plug and Play Petaflop/s In the next

  19. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    for Plug-in Hybrid Electric Vehicles (PHEVs): Goals andE. , Plug-in Hybrid-Electric Vehicle Powertrain Design andLithium Batteries for Plug-in Electric Vehicles Andrew Burke

  20. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    Plug-in Electric Vehicles include plug-in hybrid vehicles and all-electric vehicles. Hybrid Electric Vehicles derive all of their energy from gasoline and cannot be plugged...

  1. Space Heaters, Computers, Cell Phone Chargers: How Plugged In AreCommercial Buildings?

    SciTech Connect (OSTI)

    Sanchez, Marla; Webber, Carrie; Brown, Richard; Busch, John; Pinckard, Margaret; Roberson, Judy

    2007-02-28T23:59:59.000Z

    Evidenceof electric plug loads in commercial buildings isvisible everyday: space heaters, portable fans, and the IT technician'stwo monitors connected to one PC. The Energy Information Administrationestimates that office and miscellaneous equipment together will consume2.18 quads in 2006, nearly 50 percent of U.S. commercial electricity use.Although the importance of commercial plug loads is documented, its verynature (diverse product types, products not installed when buildinginitially constructed, and products often hidden in closets) makes itdifficult to accurately count and categorize the end use.We auditedsixteen buildings in three cities (San Francisco, Atlanta, Pittsburgh)including office, medical and education building types. We inventoriedthe number and types of office and miscellaneous electric equipment aswell as estimated total energy consumption due to these product types. Intotal, we audited approximately 4,000 units of office equipment and 6,000units of miscellaneous equipment and covered a diverse range of productsranging from electric pencil sharpeners with a unit energy consumption(UEC) of 1 kWh/yr to a kiln with a UEC of 7,000 kWh/yr. Our paperpresents a summary of the density and type of plug load equipment foundas well as the estimated total energy consumption of the equipment.Additionally, we present equipment trends observed and provide insightsto how policy makers can target energy efficiency for this growing enduse.

  2. 2010 Plug-In Hybrid and Electric Vehicle Research

    E-Print Network [OSTI]

    2010 Plug-In Hybrid and Electric Vehicle Research Center TRANSPORTATION ENERGY RESEARCH PIER The PlugIn and Hybrid Electric Vehicle Researc Center conducts research in: · Battery second life applications. Plugin hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are promising

  3. Plug-In Hybrid Electric Vehicle Value Proposition Study

    E-Print Network [OSTI]

    Pennycook, Steve

    Plug-In Hybrid Electric Vehicle Value Proposition Study Phase 1, Task 2: Select Value Propositions Government or any agency thereof. #12;ORNL/TM-2008/056 Plug-in Hybrid Electric Vehicle Value Proposition-In Hybrid Electric Vehicle (PHEV) Value Propositions Workshop held in Washington, D.C. in December 2007

  4. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  5. Distributed Computing for Plug-and-Play Network Service Configuration

    E-Print Network [OSTI]

    White, Tony

    Distributed Computing for Plug-and-Play Network Service Configuration Abstract Configuration, Distributed Computing, Plug-and-Play, PnP, Mobile Agents, Jini, CORBA 1. Introduction Network Management advertisement over the network. The process of service provisioning is completed with arranging, distributing

  6. Competitive Charging Station Pricing for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Huang, Jianwei

    . To overcome this challenge, we develop a low-complexity algorithm that efficiently computes the pricingCompetitive Charging Station Pricing for Plug-in Electric Vehicles Wei Yuan, Member, IEEE, Jianwei considers the problem of charging station pricing and station selection of plug-in electric vehicles (PEVs

  7. Electric plugs--repair or replace The problem

    E-Print Network [OSTI]

    need s New plug­if your old one cannot be used. (Buy one with a UL label) s A screwdriver s A knife How to 1. Cut the cord off at the damaged part (Fig. 1). 2. Slip the plug back on the cord (Fig. 2). 3

  8. Network Connections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (except HPSS) are reached by use of programs that implement the Secure Shell (SSH) communication and encryption protocol, version 2, or by Grid tools that use trusted...

  9. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    supervises testing in the Hybrid Vehicle Propulsion Systemsbattery for plug-in hybrid vehicle is complicated processstorage for Plug-in Hybrid vehicles EVS24 International

  10. High-Power Electrochemical Storage Devices and Plug-in Hybrid...

    Energy Savers [EERE]

    High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric Vehicle Battery Development High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric Vehicle...

  11. False Data Injection Attacks against State Estimation in Electric Power Grids

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    @cs.unc.edu Abstract--A power grid is a complex system connecting electric power generators to consumers through power estimate the power grid state through analysis of meter measure- ments and power system models. Various malicious attacks. I. INTRODUCTION A power grid is a complex system connecting a variety of electric power

  12. Electrical Vehicles in the Smart Grid: A Mean Field Game Analysis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Electrical Vehicles in the Smart Grid: A Mean Field Game Analysis Romain Couillet, Samir M interaction between electrical vehicles or hybrid oil- electricity vehicles in a Cournot market consisting electricity peak demand. I. INTRODUCTION Electrical vehicles (EV) and plug-in hybrid electrical vehicles (PHEV

  13. PEV-Based Combined Frequency and Voltage Regulation for Smart Grid

    E-Print Network [OSTI]

    Huang, Jianwei

    by either adjusting supply or changing demand. While various demand side management programs have used benefit both users and utilities. Index Terms--Smart grid, plug-in electric vehicles, demand side management, reactive power compensation, ancillary ser- vices, frequency regulation, voltage regulation

  14. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL; Tsvetkova, Alexandra A [ORNL

    2008-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

  15. Now Available: Smart Grid Investments Improve Grid Reliability...

    Energy Savers [EERE]

    Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and...

  16. Drum plug piercing and sampling device and method

    DOE Patents [OSTI]

    Counts, Kevin T. (Aiken, SC)

    2011-04-26T23:59:59.000Z

    An apparatus and method for piercing a drum plug of a drum in order to sample and/or vent gases that may accumulate in a space of the drum is provided. The drum is not damaged and can be reused since the pierced drum plug can be subsequently replaced. The apparatus includes a frame that is configured for engagement with the drum. A cylinder actuated by a fluid is mounted to the frame. A piercer is placed into communication with the cylinder so that actuation of the cylinder causes the piercer to move in a linear direction so that the piercer may puncture the drum plug of the drum.

  17. Grid Interaction Tech Team

    Broader source: Energy.gov (indexed) [DOE]

    with IC manufacturers Transmission technology * Power line communications: Broadband PLC: HomePlug, the IEEE p1901 and ITU-T G.hn Narrow band PLC: IEEE p1901.2, ITU-T G.hnem...

  18. Plug-In Electric Vehicle Handbook for Consumers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum38 (1996)representative of thePlug-Load Sign

  19. Plug-In Electric Vehicle Handbook for Workplace Charging Hosts (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum38 (1996)representative of thePlug-LoadWorkplace

  20. 2014 Smart Grid R&D Program Peer Review Meeting Microgrid...

    Energy Savers [EERE]

    GridLAB-D by PNNL: checks engineering feasibility for islanded operations * DER-CAM by LBNL: analyze financial benefits and emissions while grid-connected 2 December 2008...

  1. Plug-and-play voltage and frequency control of islanded microgrids with meshed topology

    E-Print Network [OSTI]

    Ferrari-Trecate, Giancarlo

    generation since, differently from common diesel generators, power is produced and delivered to the main grid Generation Units (DGUs). Local controllers regulate voltage and frequency at the Point of Common Coupling Distributed Generation Units (DGUs) designed to operate safely and reliably in absence of a connection

  2. alternate tube plugging: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performed by a plug-in privacy component that is put into the communication link between Smart Meter and supplier's back-end systems and requires no change to Smart Meter hardware...

  3. Workplace Plug-in Electric Vehicle Ride and Drive

    Broader source: Energy.gov [DOE]

    Workplace plug-in electric vehicle (PEV) Ride and Drive events are one of the most effective ways to drive PEV adoption. By providing staff the opportunity to experience PEVs first hand, they can...

  4. Plug-in electric vehicle introduction in the EU

    E-Print Network [OSTI]

    Sisternes, Fernando J. de $q (Fernando José Sisternes Jiménez)

    2010-01-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs) could significantly reduce gasoline consumption and greenhouse gas (GHG) emissions in the EU's transport sector. However, PEV well-towheel (WTW) emissions depend on improvements in vehicle ...

  5. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01T23:59:59.000Z

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  6. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01T23:59:59.000Z

    237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

  7. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01T23:59:59.000Z

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  8. Plug-In Demo Charges up Clean Cities Coalitions | Department...

    Broader source: Energy.gov (indexed) [DOE]

    show. But five fortunate Clean Cities coordinators were able to test Toyota's plug-in hybrid electric vehicle (PHEV) as part of the demonstration project for the PHEV Prius,...

  9. Inert plug formation in the DDT of granular energetic materials

    SciTech Connect (OSTI)

    Son, S.F.; Asay, B.W.; Bdzil, J.B.

    1995-09-01T23:59:59.000Z

    A mechanism is proposed to explain the {open_quotes}plugs{close_quotes} that have been observed in deflagration-to-detonation transition (DDT) of granular explosives. Numerical simulations are performed that demonstrate the proposed mechanism. Observed trends are reproduced.

  10. Plug-In Electric Vehicle Handbook for Electrical

    E-Print Network [OSTI]

    Handbook for Electrical Contractors 3 You've heard about the new generation of plug-in electric vehicles line improved the usabil- ity and affordability of ICE vehicles. Gasoline- and diesel-powered ICE

  11. A New Integrated Onboard Charger and Accessory Power Converter for Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2014-01-01T23:59:59.000Z

    In this paper, a new approach is presented for integrating the function of onboard battery charging into the traction drive system and accessory dc-dc converter of a plug-in electric vehicle (PEV). The idea is to utilize the segmented traction drive system of a PEV as the frond converter of the charging circuit and the transformer and high voltage converter of the 14 V accessory dc-dc converter to form a galvanically isolated onboard charger. Moreover, a control method is presented for suppressing the battery current ripple component of twice the grid frequency with the reduced dc bus capacitor in the segmented inverter. The resultant integrated charger has lower cost, weight, and volume than a standalone charger due to a substantially reduced component count. The proposed integrated charger topology was verified by modeling and experimental results on a 5.8 kW charger prototype.

  12. Experimental investigations on sodium plugging in narrow flow channels.

    SciTech Connect (OSTI)

    Momozaki, Y.; Cho, D. H.; Sienicki, J. J.; Moisseytsev, A.; Nuclear Engineering Division

    2010-08-01T23:59:59.000Z

    A series of experiments was performed to investigate the potential for plugging of narrow flow channels of sodium by impurities (e.g., oxides). In the first phase of the experiments, clean sodium was circulated through the test sections simulating flow channels in a compact diffusion-bonded heat exchanger such as a printed circuit heat exchanger. The primary objective was to see if small channels whose cross sections are semicircles of 2, 4, and 6 mm in diameter are usable in liquid sodium applications where sodium purity is carefully controlled. It was concluded that the 2-mm channels, the smallest of the three, could be used in clean sodium systems at temperatures even as low as 100 to 110 C without plugging. In the second phase, sodium oxide was added to the loop, and the oxygen concentration in the liquid sodium was controlled by means of varying the cold-trap temperature. Intentional plugging was induced by creating a cold spot in the test sections, and the subsequent plugging behavior was observed. It was found that plugging in the 2-mm test section was initiated by lowering the cold spot temperature below the cold-trap temperature by 10 to 30 C. Unplugging of the plugged channels was accomplished by heating the affected test section.

  13. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    pink vertical line represents a driving threshold for plug-vertical lines representing the typical driving thresholds52mi of driving per refueling (chapter 2) At full, red-line

  14. AVTA: ARRA EV Project Electric Grid Impact Report

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following report describes lessons learned about the impact on the electrical grid from the EV Project. The EV Project partnered with city, regional and state governments, utilities, and other organizations in 16 cities to deploy about 14,000 Level 2 PEV chargers and 300 DC fast chargers. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. This research was conducted by Idaho National Laboratory.

  15. Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory

    SciTech Connect (OSTI)

    Parks, K.; Denholm, P.; Markel, T.

    2007-05-01T23:59:59.000Z

    The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

  16. NREL: Transmission Grid Integration - Grid Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecasting NREL researchersGrid

  17. A conceptual framework for the vehicle-to-grid (V2G) implementation Christophe Guille , George Gross

    E-Print Network [OSTI]

    Gross, George

    2009 Available online 13 June 2009 Keywords: Power systems Electric vehicles Smart grid a b s t r a c, the development of the battery vehicles or BVs in the form of either plug-in hybrid vehicles (PHEVs) or all-electric numbers, constitute a new load that the electricity system must supply. However, a BV can be much more

  18. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01T23:59:59.000Z

    ST - Solar thermal, PV - Photovoltaics. Technology costs aresolar thermal b) PV Table 1 - Technical and economic characteristics of DG/CHP technologiesavailable space for solar technologies. PV is extensively

  19. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01T23:59:59.000Z

    Thermal storage, ST - Solar thermal, PV - Photovoltaics.possible PV and solar thermal adoption are considered 3 .Figure 3. In the case of solar thermal, the cost curve was

  20. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01T23:59:59.000Z

    in additional PV and battery storage. Keywords: Distributedelectrical stationary battery storage with the main goal ofof 1.3MWh of stationary battery storage 7 . This highly

  1. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01T23:59:59.000Z

    utility purchases by investment in additional PV and battery storage. Keywords: Distributed Generation,

  2. he prospect of millions of vehicles plugging into the nation's electric grid in the coming decades

    E-Print Network [OSTI]

    Firestone, Jeremy

    PHEVstomarkethasemerged,bolsteredbytheunde- niable economic and national-security benefits that result from displacing gasoline with electricity. One fuel costs, reduce petroleum consumption, and decrease harmful emissions is described elsewhere.1 of the increased load that PHEVs would represent under a range of assumptions. Next, we evaluate PHEVs serving

  3. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01T23:59:59.000Z

    some extent the carbon footprint. Also, whenever possible,of reducing the carbon footprint associated with the fuel

  4. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01T23:59:59.000Z

    investment in additional PV and battery storage. Keywords:favor investments on PV and battery storage rather than onvehicles, PV – photovoltaics, SOC – battery state-of-charge.

  5. ESIF Plugs Utility-Scale Hardware into Simulated Grids to Assess Integration Effects (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    At NREL's Energy Systems Integration Facility (ESIF), integrated, megawatt-scale power hardware-in-the-loop (PHIL) capability allows researchers and manufacturers to test new energy technologies at full power in real-time simulations - safely evaluating component and system performance and reliability before going to market.

  6. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01T23:59:59.000Z

    renewable energy sources, which are available (geothermal and hydro) but that are not currently used at its full potential

  7. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01T23:59:59.000Z

    tariff driven demand response in commercial buildings. PEVsbuilding), (USD), C DR is the total sum of demand response-

  8. Defending against Unidentifiable Attacks in Electric Power Grids

    E-Print Network [OSTI]

    Li, Qun

    Defending against Unidentifiable Attacks in Electric Power Grids Zhengrui Qin, Student Member, IEEE THE electric power grid is a distribution network that connects the electric power generators to customers, Qun Li, Senior Member, IEEE, and Mooi-Choo Chuah, Senior Member, IEEE Abstract--The electric power

  9. Solar Grid Integration Industrial Research Perspectives

    E-Print Network [OSTI]

    Homes, Christopher C.

    with 25 inverters) Substation 1 Substation 2 Solar Power Generation Wind Generation 100 MW Wide variety of power levels and grid connections #12;5 Presenter and Event 3/30/2011 PV Generation Segmentation 1 and Event 3/30/2011 Essential PV power plant features Reliable power conversion Extensive service network

  10. Smart Grid Consortium, Response of New York State Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consortium, Response of New York State Smart Grid Addressing Policy and Logistical Challenges Smart Grid Consortium, Response of New York State Smart Grid Addressing Policy and...

  11. Grid Interaction Tech Team, and International Smart Grid Collaboration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Team, and International Smart Grid Collaboration Grid Interaction Tech Team, and International Smart Grid Collaboration 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  12. 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Panel Discussion 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel Discussion The Office of Electricity Delivery and Energy Reliability held its...

  13. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    SciTech Connect (OSTI)

    Simpson, M.; Markel, T.

    2012-08-01T23:59:59.000Z

    The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

  14. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulaseFuels andConversionsAssumptions andPlug-InPlug-In

  15. The Impact of Grid on Health Care Digital Repositories

    E-Print Network [OSTI]

    Donno, Flavia; CERN. Geneva. IT Department

    2008-01-01T23:59:59.000Z

    Grid computing has attracted worldwide attention in a variety of applications like Health Care. In this paper we identified the Grid services that could facilitate the integration and interoperation of Health Care data and frameworks world-wide. While many of the current Health Care Grid projects address issues such as data location and description on the Grid and the security aspects, the problems connected to data storage, integrity, preservation and distribution have been neglected. We describe the currently available Grid storage services and protocols that can come in handy when dealing with those problems. We further describe a Grid infrastructure to build a cooperative Health Care environment based on currently available Grid services and a service able to validate it.

  16. FUTURE POWER GRID INITIATIVE GridOPTICSTM

    E-Print Network [OSTI]

    of individual software products November 2012 PNNL-SA-90162 Ian Gorton Pacific Northwest National Laboratory (509) 375-3850 ian.gorton@pnnl.gov ABOUT FPGI The Future Power Grid Initiative (FPGI) will deliver next National Laboratory's (PNNL) national electric grid research facility, the FPGI will advance the science

  17. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis, News, Partnership, SMART Grid Vermont-a leader in energy efficiency and deployment of so-called smart-grid...

  18. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis, News, Partnership, SMART Grid Vermont-a leader in energy efficiency and deployment of so-called smart-grid...

  19. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration Energy Supply Transformation Needed On February 20, 2013, in DETL, Distribution Grid Integration, Energy, Energy Assurance, Energy Surety, Grid Integration,...

  20. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution Grid Integration, Energy, Energy...

  1. Grid Logging: Best Practices Guide

    E-Print Network [OSTI]

    Tierney, Brian L

    2008-01-01T23:59:59.000Z

    Revision date: March 1, 2008 Grid Logging: Best Practicesis to help developers of Grid middleware and applicationlog files that will be useful to Grid administrators, users,

  2. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offers Approach to Help Utilities Understand Effects of PV Variability on the Grid On March 7, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid...

  3. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    Data Injection Attacks on Power Grids”, IEEE Transactionson Smart Grid, vol. 2, no. 2, June [21] O. Kosut, L.Data Attacks on Smart Grid State Estimation: Attack

  4. Sandia National Laboratories: electric grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid Integration,...

  5. Secretary Chu Announces up to $10 Million to Support Plug-In...

    Office of Environmental Management (EM)

    0 Million to Support Plug-In Hybrid Electric School Buses Secretary Chu Announces up to 10 Million to Support Plug-In Hybrid Electric School Buses April 17, 2009 - 12:00am Addthis...

  6. Emissions and Fuel Consumption Test Results from a Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus 2010 DOE Vehicle...

  7. Fact #856 January 19, 2015 Plug-in and Hybrid Cars Receive High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction Fact 856 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction...

  8. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric...

  9. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History Fact 796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales...

  10. Development and Deployment of Generation 3 Plug-In Hybrid Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation 3 Plug-In Hybrid Electric School Buses Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses 2011 DOE Hydrogen and Fuel Cells Program, and...

  11. EV Everywhere: Electric Drive Systems Bring Power to Plug-in...

    Energy Savers [EERE]

    EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles January 31, 2014 -...

  12. Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid...

    Energy Savers [EERE]

    2: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles Fact 562: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles Estimates from the GREET model...

  13. DOE Supports PG&E Development of Next Generation Plug-in Hybrid...

    Energy Savers [EERE]

    DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks February 25, 2015 -...

  14. Fact #876: June 8, 2015 Plug-in Electric Vehicle Penetration...

    Broader source: Energy.gov (indexed) [DOE]

    2015 Plug-in Electric Vehicle Penetration by State, 2014 fotw876web.xlsx More Documents & Publications Fact 856 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for...

  15. Smart Grid Overview

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Overview Ben Kroposki, PhD, PE Director, Energy Systems IntegraLon NaLonal Renewable Energy Laboratory What is t he S mart Grid? and DER Source: NISTEPRI Architecture...

  16. Fuel rod support grid

    DOE Patents [OSTI]

    Downs, Robert E. (Monroeville, PA); Schwallie, Ambrose L. (Greensburg, PA)

    1985-01-01T23:59:59.000Z

    A grid for the support of nuclear fuel rods arranged in a triangular array. The grid is formed by concentric rings of strap joined by radially arranged web sections.

  17. The soft grid

    E-Print Network [OSTI]

    Kardasis, Ari (Ari David)

    2011-01-01T23:59:59.000Z

    The grid in architecture is a systematic organization of space. The means that architects use to organize space are, almost by definition, rigid and totalizing. The Cartesian grid, which will serve as the antagonist of the ...

  18. Method of grid generation

    DOE Patents [OSTI]

    Barnette, Daniel W. (Veguita, NM)

    2002-01-01T23:59:59.000Z

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  19. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    and Batteries for Hybrid Vehicle Applications, 23 rdSimulations of Plug-in Hybrid Vehicles using Advancedultracapacitors in plug-in hybrid vehicles (PHEVs) with high

  20. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    detour? Presentation at SAE 2008 Hybrid Vehicle Technologiesdrive vehicles, including plug-in hybrid vehicles. -vi-including plug-in hybrid vehicles. 7.0 References Anderman,

  1. Cost-Benefit Analysis of Plug-In Hybrid-Electric Vehicle Technology (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Simpson, A.

    2006-10-01T23:59:59.000Z

    Presents a cost-benefit of analysis of plug-in hybrid electric vehicle technology, including potential petroleum use reduction.

  2. Fiscal year 1993 well plugging and abandonment program, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from December 1992 through August 20, 1993. A total of 70 wells and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the US Department of Energy, Y-12 Plant, Oak Ridge, Tennessee (HSW, Inc. 1991).

  3. Fiscal Year 1993 Well Plugging and Abandonment Program Summary Report Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from October 1993 through August 1994. A total of 57 wells and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the U.S. Department of Energy, Y-12 Plant, Oak Ridge, Tennessee.

  4. Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid

    E-Print Network [OSTI]

    Hansen, René Rydhof

    Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault to the grid connection of wind turbines. The second chapter elucidates recent thinking in the area of grid Risø National Laboratory Vestas Wind Systems A/S #12;#12;I Modelling and Analysis of Variable Speed

  5. False Data Injection Attacks against State Estimation in Electric Power Grids

    E-Print Network [OSTI]

    Ning, Peng

    False Data Injection Attacks against State Estimation in Electric Power Grids Yao Liu, Peng Ning@cs.unc.edu ABSTRACT A power grid is a complex system connecting electric power generators to consumers through power using IEEE test systems. Our results indicate that security protection of the electric power grid must

  6. Transdisciplinary electric power grid science Charles D. Brummitta,b,1

    E-Print Network [OSTI]

    D'Souza, Raissa

    storm damage or build distributed generation?). The "smart grid," which monitors and controls electrical to cities couples distant regions. Connections among regions of a power grid spread risk, like in otherOPINION Transdisciplinary electric power grid science Charles D. Brummitta,b,1 , Paul D. H. Hinesc

  7. Prospects for Plug-in Hybrid Electric Vehicles in the United States: A General Equilibrium Analysis

    E-Print Network [OSTI]

    Prospects for Plug-in Hybrid Electric Vehicles in the United States: A General Equilibrium Analysis, Technology and Policy Program #12;#12;3 Prospects for Plug-in Hybrid Electric Vehicles in the United States Engineering ABSTRACT The plug-in hybrid electric vehicle (PHEV) could significantly contribute to reductions

  8. Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks in

    E-Print Network [OSTI]

    Victoria, University of

    Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks Committee Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks) Departmental Member Plug-in hybrid electric vehicles (PHEVs) represent a promising future direction

  9. Microfluidic cartridges preloaded with nanoliter plugs of reagents: an alternative to 96-well plates for screening

    E-Print Network [OSTI]

    Ismagilov, Rustem F.

    Microfluidic cartridges preloaded with nanoliter plugs of reagents: an alternative to 96-well equipment and techniques required to dispense nanoliter volumes of fluid. Plug-based microfluidics confines techniques that rely on microfluidic cartridges preloaded with nano- liter plugs of reagents. 96-Well plates

  10. An Experimental Study of Microfabricated Nickel Spark Plug Georgia Institute of technology

    E-Print Network [OSTI]

    electrodeposition through polymer molds. The nickel spark plugs are tested at 20 Hz using spark energies of 5 mAn Experimental Study of Microfabricated Nickel Spark Plug Georgia Institute of technology Atlanta presents experimental. results of the erosion and wear characteristics of micromachined nickel spark plugs

  11. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  12. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for consumers describes the basics of PEV technology, PEV benefits, how to select the right PEV, charging a PEV, and PEV maintenance.

  13. INFLATABLE PLUG FOR THREAT MITIGATION IN TRANSPORTATION TUNNELS

    E-Print Network [OSTI]

    Barbero, Ever J.

    INFLATABLE PLUG FOR THREAT MITIGATION IN TRANSPORTATION TUNNELS Xavier Martinez1 , Julio Davalos2 and government entities. Fires, noxious fumes, deadly gasses, and flooding threats have occurred in major are of difficult and limited accessibility, but also because most of the potential threats, such as fires, flooding

  14. Plug-and-Play Decentralized Model Predictive Control Stefano Riverso

    E-Print Network [OSTI]

    Ferrari-Trecate, Giancarlo

    Plug-and-Play Decentralized Model Predictive Control Stefano Riverso , Marcello Farina. When this is possible, we show how to automatize the design of local controllers so that it can information with neighboring subsystems. In particular, local controllers exploit tube-based Model Predictive

  15. Why Electric Cars? The Arrival of Plug-in

    E-Print Network [OSTI]

    Minnesota, University of

    Why Electric Cars? Dan Davids President #12;The Arrival of Plug-in Electric Vehicles Dan Davids President #12;#12;Toyota RAV4EV 1997-2003 #12;#12;#12;#12;#12;· Saving Cars ­ GM EV1 ­ Ford Ranger EV;#12;#12;· Saving Cars ­ GM EV1 (destroyed) ­ Ford Ranger EV (some saved) ­ Honda EV Plus (destroyed) ­ Th!nk City

  16. Progress in year 1995 1. Optically plugged magnetic quadrupole trap

    E-Print Network [OSTI]

    Progress in year 1995 1. Optically plugged magnetic quadrupole trap In 1995, we have demonstrated samples of ultracold atoms at unprecedented densities (>1014 cm-3) and to evaporatively cool atoms to Bose Dressed-StateEnergyMagneticField Atoms During evaporative cooling, the cloud shrunk and finally split up

  17. Novel Spark Plugs Improve Energy Efficiency of Compressed Natural

    E-Print Network [OSTI]

    Novel Spark Plugs Improve Energy Efficiency of Compressed Natural Gas Engines Energy Innovations use affects climate change. Vehicles operating on compressed natural gas reduce petroleum fuel use, the vast majority of compressed natural gas (CNG) engines are used in transit buses serving the public

  18. Inert plug formation in the DDT of granular energetic materials

    SciTech Connect (OSTI)

    Son, S.F.; Asay, B.W.; Bdzil, J.B. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States of America)

    1996-05-01T23:59:59.000Z

    A mechanism is proposed to explain the {open_quotes}plugs{close_quotes} that have been observed in deflagration-to-detonation transition (DDT) of granular explosives. Numerical simulations are performed that demonstrate the proposed mechanism. Observed trends are reproduced. {copyright} {ital 1996 American Institute of Physics.}

  19. Sminaire de thme NEI Elveflow Plug and Play microfluidic

    E-Print Network [OSTI]

    Ingrand, François

    Séminaire de thème NEI Elveflow Plug and Play microfluidic Le 12 Mars 2013 à 14h Intervenant in microfluidic. We will present the last brand of Elveflow products for microfluidic: - OB1: pressure and flow rate controller for high precision multi channel microfluidic flow control - AF1 Standard: nomad

  20. Plug-In Electric Vehicle Handbook for Consumers

    E-Print Network [OSTI]

    for Consumers 3 You've heard about the new generation of plug-in electric vehicles (PEVs) like the Chevy Volt. Gasoline- and diesel-powered ICE vehicles ended up dominating trans- portation in the 20th century. However Electric Ranger. Although many vehicles from this generation were discon- tinued in the early 2000s

  1. Understanding The Smart Grid

    SciTech Connect (OSTI)

    NONE

    2007-11-15T23:59:59.000Z

    The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology providers involved in the Smart Grid and provides profiles on them including contact information, company overviews, technology reviews, and key Smart Grid activities.

  2. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    House” by Tron Architecture conceptually This is relative to what might be used in a plug-in hybrid or battery

  3. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    House” by Tron Architecture conceptually This is relative to what might be used in a plug-in hybrid or battery

  4. Plug and Play: Purchase, Install, and Connect Residential Solar Power in

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM5Parabolic TroughPhotoCell|Disease | Department ofwait...

  5. Plug and Play: Purchase, Install, and Connect Residential Solar Power in

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA Administrative Judgea.Work Plan for FY 2013 AThe cityHours |

  6. Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications

    SciTech Connect (OSTI)

    Chakraborty, S.; Kramer, W.; Kroposki, B.; Martin, G.; McNutt, P.; Kuss, M.; Markel, T.; Hoke, A.

    2011-06-01T23:59:59.000Z

    The objective of this report is to provide a test plan for V2G testing. The test plan is designed to test and evaluate the vehicle's power electronics capability to provide power to the grid, and to evaluate the vehicle's ability to connect and disconnect from the utility according to a subset of the IEEE Std. 1547 tests.

  7. Comfort demand leading the optimization to energy supply from the Smart Grid 

    E-Print Network [OSTI]

    Aduba,K.; Zeiler,W.; Boxem,G.

    2014-01-01T23:59:59.000Z

    stochastic behaviour, which necessitates for a change in the the management of the grid Slootweg et al., 2011 statedthe increase in decentralised active loads such as, micro Combined Heat and Power (µCHP), Electrical-vehicles, heat pumps which can... of uncertainty within Smart Energy Systems by applying offices as LVPP with different types of energy storage on different systems levels, connecting energy demand and supply within offices (nano Grid) with micro Grid (field or street) and public Smart Grid...

  8. The V2G Concept: Connecting utility infrastructure and automobiles.

    E-Print Network [OSTI]

    Firestone, Jeremy

    The V2G Concept: A New For Model Power? Connecting utility infrastructure and automobiles OF as mobile, self-contained, and--in the aggregate--highly reliable power resources. "Electric). When vehicle power is fed into the electric grid, we refer to it as "Vehicle-to-Grid" power, or V2G

  9. Reusable Services from the neuGRID Project for Grid-Based Health Applications

    E-Print Network [OSTI]

    Anjum, Ashiq; Habib, Irfan; Lansdale, Tom; McClatchey, Richard; Mehmood, Yasir

    2012-01-01T23:59:59.000Z

    By abstracting Grid middleware specific considerations from clinical research applications, re-usable services should be developed that will provide generic functionality aimed specifically at medical applications. In the scope of the neuGRID project, generic services are being designed and developed which will be applied to satisfy the requirements of neuroscientists. These services will bring together sources of data and computing elements into a single view as far as applications are concerned, making it possible to cope with centralised, distributed or hybrid data and provide native support for common medical file formats. Services will include querying, provenance, portal, anonymization and pipeline services together with a 'glueing' service for connection to Grid services. Thus lower-level services will hide the peculiarities of any specific Grid technology from upper layers, provide application independence and will enable the selection of 'fit-for-purpose' infrastructures. This paper outlines the desi...

  10. eVMTeVMT Analysis of OnAnalysis of OnRoad Data fromRoad Data from PlugPlugIn Hybrid Electric andIn Hybrid Electric and

    E-Print Network [OSTI]

    California at Davis, University of

    In Hybrid Electric and gov PlugPlug In Hybrid Electric andIn Hybrid Electric and AllAllElectric Vehicles traveled (eVMT) for· Calculated electric vehicle miles traveled (eVMT) for plug-in hybrid electric vehicleseVMTeVMT Analysis of OnAnalysis of OnRoad Data fromRoad Data from PlugPlugIn Hybrid Electric and

  11. Plug and Process Loads Capacity and Power Requirements Analysis

    SciTech Connect (OSTI)

    Sheppy, M.; Gentile-Polese, L.

    2014-09-01T23:59:59.000Z

    This report addresses gaps in actionable knowledge that would help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. Limited initial data, however, suggest that actual PPL densities in leased buildings are substantially lower. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems. Better guidance will enable improved sizing and design of these systems, decrease upfront capital costs, and allow systems to operate more energy efficiently. The main focus of this report is to provide industry with reliable, objective third-party guidance to address the information gap in typical PPL densities for commercial building tenants. This could drive changes in negotiations about PPL energy demands.

  12. Grid Transformation Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-03-Grid-Transformation-Workshop Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  13. IEEE Network September/October 20112 0890-8044/11/$25.00 2011 IEEE he smart power grid uses information and communica-

    E-Print Network [OSTI]

    Koutsopoulos, Iordanis

    and operator premises over the Internet through an RF, wireline or power- line communication infrastructure devices (e.g., uninterrupted power supply, UPS), and plug-in hybrid electric vehicles (PHEVsIEEE Network · September/October 20112 0890-8044/11/$25.00 © 2011 IEEE he smart power grid uses

  14. Exploiting the Computational Grid Lecture 1 Globus and the Grid

    E-Print Network [OSTI]

    Exploiting the Computational Grid Lecture 1 ­ Globus and the Grid · The grid needs middleware to enable things such as logins etc · The toolkit model for the grid is to define a set of standards for the grid and then develop applications on top. The low level stuff is then hidden from the user · Globus

  15. Mapping Unstructured Grids to Structured Grids and Multigrid

    E-Print Network [OSTI]

    Chapter 4 Mapping Unstructured Grids to Structured Grids and Multigrid Many problems based solution is to map the unstructured grid onto a structured grid and then apply multigrid to a sequence). We 65 #12; CHAPTER 4. MAPPING UNSTRUCTURED GRIDS 66 show that unless great care is taken

  16. Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM

    SciTech Connect (OSTI)

    Momber, Ilan; Gomez, Tomás; Venkataramanan, Giri; Stadler, Michael; Beer, Sebastian; Lai, Judy; Marnay, Chris; Battaglia, Vincent

    2010-06-01T23:59:59.000Z

    It is generally believed that plug-in electric vehicles (PEVs) offer environmental and energy security advantages compared to conventional vehicles. Policies are stimulating electric transportation deployment, and PEV adoption may grow significantly. New technology and business models are being developed to organize the PEV interface and their interaction with the wider grid. This paper analyzes the PEVs' integration into a building's Energy Management System (EMS), differentiating between vehicle to macrogrid (V2M) and vehicle to microgrid (V2m) applications. This relationship is modeled by the Distributed Energy Resources Customer Adoption Model (DER-CAM), which finds optimal equipment combinations to meet microgrid requirements at minimum cost, carbon footprint, or other criteria. Results derive battery value to the building and the possibility of a contractual affiliation sharing the benefit. Under simple annual fixed payments and energy exchange agreements, vehicles are primarily used to avoid peak demand charges supplying cheaper off-peak electricity to the building during workdays.

  17. Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles (Revised)

    SciTech Connect (OSTI)

    Denholm, P.; Short, W.

    2006-10-01T23:59:59.000Z

    Hybrid electric vehicles with the capability of being recharged from the grid may provide a significant decrease in oil consumption. These ''plug-in'' hybrids (PHEVs) will affect utility operations, adding additional electricity demand. Because many individual vehicles may be charged in the extended overnight period, and because the cost of wireless communication has decreased, there is a unique opportunity for utilities to directly control the charging of these vehicles at the precise times when normal electricity demand is at a minimum. This report evaluates the effects of optimal PHEV charging, under the assumption that utilities will indirectly or directly control when charging takes place, providing consumers with the absolute lowest cost of driving energy. By using low-cost off-peak electricity, PHEVs owners could purchase the drive energy equivalent to a gallon of gasoline for under 75 cents, assuming current national average residential electricity prices.

  18. Selecting a Control Strategy for Plug and Process Loads

    SciTech Connect (OSTI)

    Lobato, C.; Sheppy, M.; Brackney, L.; Pless, S.; Torcellini, P.

    2012-09-01T23:59:59.000Z

    Plug and Process Loads (PPLs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. PPLs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF) (Lobato et al. 2010). Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. A complex array of technologies that measure and manage PPLs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for PPLs control, and is using this process to evaluate a range of technologies for active PPLs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.

  19. Technology Readiness and the Smart Grid

    SciTech Connect (OSTI)

    Kirkham, Harold; Marinovici, Maria C.

    2013-02-27T23:59:59.000Z

    Technology Readiness Levels (TRLs) originated as a way for the National Aeronautics and Space Administration (NASA) to monitor the development of systems being readied for space. The technique has found wide application as part of the more general topic of system engineering. In this paper, we consider the applicability of TRLs to systems being readied for the smart grid. We find that there are many useful parallels, and much to be gained by this application. However, TRLs were designed for a developer who was also a user. That is not usually the case for smart grid developments. We consider the matter from the point of view of the company responsible for implementation, typically a utility, and we find that there is a need for connecting the many standards in the industry. That connection is explored, and some new considerations are introduced.

  20. residential environment. Electrical connections that are easily pulled apart and single, exposed conductors that are readily

    E-Print Network [OSTI]

    Johnson, Eric E.

    connections. In those early years, although the majority of PV installations were off grid, the early PV code investigations. Many of the first "terrestrial" PV modules were for off- grid applications used by people-interactive systems. But code changes over these several decades have continued to address both off-grid and on

  1. Grid Architecture William E. Johnston

    E-Print Network [OSTI]

    Grid Architecture William E. Johnston Lawrence Berkeley National Lab and NASA Ames Research Center wejohnston@lbl.gov (These slides are available at grid.lbl.gov/~wej/Grids) #12;Distributed Resources Condor Internet optical networks space-based networks Grid Communication Functions Communications BasicGrid

  2. Smart Grid: Transforming the Electric System

    SciTech Connect (OSTI)

    Widergren, Steven E.

    2010-04-13T23:59:59.000Z

    This paper introduces smart grid concepts, summarizes the status of current smart grid related efforts, and explains smart grid priorities.

  3. Sandia Energy - Smart Grid Tools and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Tools and Technology Home Stationary Power Grid Modernization Renewable Energy Integration Smart Grid Tools and Technology Smart Grid Tools and TechnologyTara...

  4. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    IEEE Transactions on Smart Grid, vol. 2, no. 2, June [21] O.Malicious Data Attacks on Smart Grid State Estimation:Framework and Roadmap for Smart Grid Interoperability Stan-

  5. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    IEEE Transactions on Smart Grid, vol. 2, no. 2, June [21] O.Malicious Data Attacks on Smart Grid State Estimation:Attack and Detection in Smart Grid,” to appear in IEEE

  6. Smart Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Meters, Conductor, Surge Protection Devices, Connectors, Lighting Controls, Grid-Scale Battery Storage, Grid-Scale Flywheel Energy for Frequency Regulation, Automation...

  7. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News, News & Events, Renewable Energy, SMART Grid, Systems Analysis, Transmission Grid Integration, Wind Energy Sandia finalized and submitted the updated "WECC Wind Power Plant...

  8. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IEC 61400-26 Availability Standard On June 12, 2014, in Analysis, Distribution Grid Integration, Energy, Grid Integration, Infrastructure Security, News, News & Events,...

  9. Sandia National Laboratories: grid modernization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid modernization Renewables, Other Energy Issues To Be Focus of Enhanced Sandia-SINTEF Collaboration On May 28, 2014, in Biofuels, CRF, Distribution Grid Integration, Energy,...

  10. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Safety Workshop On April 7, 2014, in Capabilities, CINT, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Grid...

  11. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Offers Approach to Help Utilities Understand Effects of PV Variability on the Grid On March 7, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety,...

  12. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Specialists (PVSC) Conference On August 14, 2013, in DETL, Distribution Grid Integration, Energy, Facilities, Grid Integration, News, News & Events, Photovoltaic,...

  13. Sandia National Laboratories: Grid Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    InfrastructureEnergy AssuranceGrid Capabilities Grid Capabilities Goal: To develop and implement a comprehensive Sandia program to support the modernization of the U.S. electric...

  14. Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale

    SciTech Connect (OSTI)

    Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

    2009-07-01T23:59:59.000Z

    Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

  15. U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX...

    Broader source: Energy.gov (indexed) [DOE]

    in Citrix Access Gateway Plug-in for Windows can be exploited by malicious people to compromise a user's system. reference LINKS: Citrix Knowledge Center Secunia...

  16. Plug-in Hybrid Modeling and Application: Cost/Benefit Analysis (Presentation)

    SciTech Connect (OSTI)

    Simpson, A.

    2006-08-24T23:59:59.000Z

    Presents data from a simulation of plug-in hybrid electric vehicle efficiency and cost, including baseline vehicle assumptions, powertrain technology scenarios, and component modeling.

  17. Optimal Control of Plug-In Hybrid Electric Vehicles with Market ...

    E-Print Network [OSTI]

    Lai Wei

    2014-01-13T23:59:59.000Z

    Jan 13, 2014 ... Optimal Control of Plug-In Hybrid Electric Vehicles with Market Impact and Risk Attitude. Lai Wei (laiwei ***at*** ufl.edu) Yongpei Guan (guan ...

  18. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    on fuel cells, advanced batteries, and ultracapacitorof Lithium-ion Batteries of Various Chemistries for Plug-inAdvisor utilizing lithium-ion batteries of the different

  19. Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Gonder, J.; Simpson, A.

    2006-11-01T23:59:59.000Z

    This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

  20. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  1. Risk of damaging the wires by edges of laser drilled holes in the end plugs

    E-Print Network [OSTI]

    Staude, A; Trefzger, T M

    1998-01-01T23:59:59.000Z

    No sign of damage to the wire by edges of the laser drilled hole has been seen, based on a sample of four end plugs.

  2. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    Considerations for Lithium Batteries for Plug-in Electricfast charging of the lithium batteries should be possiblefast charging of the lithium batteries will be is possible

  3. Dynamic Programming Applied to Investigate Energy Management Strategies for a Plug-in HEV

    SciTech Connect (OSTI)

    O'Keefe. M. P.; Markel, T.

    2006-11-01T23:59:59.000Z

    This paper explores two basic plug-in hybrid electric vehicle energy management strategies: an electric vehicle centric control strategy and an engine-motor blended control strategy.

  4. Battery Choices and Potential Requirements for Plug-In Hybrids (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2007-02-13T23:59:59.000Z

    Plug-in Hybrid vehicles energy storage and drive cycle impacts presentation given at the 7th Advanced Automotive Battery Conference.

  5. Project Profile: Plug-and-Play Solar Photovoltaics for American Homes

    Broader source: Energy.gov [DOE]

    Fraunhofer USA, Inc., Center for Sustainable Energy Systems and its partners, under the Plug-and-Play Photovoltaics FOA, are developing technologies, components, systems, and standards that enable...

  6. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  7. Abstract --With the increasing acceptance, micro-grid, combined with distributed generation (DG), may be operated in

    E-Print Network [OSTI]

    Chen, Zhe

    ), may be operated in two modes: grid-connected mode and island mode. In grid connected mode, energy operation point; the coordinate control of voltage and frequency with a feed forward control of the voltage the operation modes. The new droop control method has been validated through simulations by PSCAD software

  8. Plug-in Hybrid Electric Vehicle Value Proposition Study - Final Report

    SciTech Connect (OSTI)

    Sikes, Karen [Sentech, Inc.; Hadley, Stanton W [ORNL; McGill, Ralph N [ORNL; Cleary, Timothy [Sentech, Inc.

    2010-07-01T23:59:59.000Z

    PHEVs have been the subject of growing interest in recent years because of their potential for reduced operating costs, oil displacement, national security, and environmental benefits. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The study Objectives are: (1) To identify and evaluate value-added propositions for PHEVs that will help overcome the initial price premium relative to comparable ICEs and HEVs and (2) to assess other non-monetary benefits and barriers associated with an emerging PHEV fleet, including environmental, societal, and grid impacts. Study results indicate that a single PHEV-30 on the road in 2030 will: (1) Consume 65% and 75% less gasoline than a comparable HEV and ICE, respectively; (2) Displace 7.25 and 4.25 barrels of imported oil each year if substituted for equivalent ICEs and HEVs, respectively, assuming 60% of the nation's oil consumed is imported; (3) Reduce net ownership cost over 10 years by 8-10% relative to a comparable ICE and be highly cost competitive with a comparable HEV; (4) Use 18-22% less total W2W energy than a comparable ICE, but 8-13% more than a comparable HEV (assuming a 70/30 split of E10 and E85 use in 2030); and (5) Emit 10% less W2W CO{sub 2} than equivalent ICEs in southern California and emits 13% more W2W CO{sub 2} than equivalent ICEs in the ECAR region. This also assumes a 70/30 split of E10 and E85 use in 2030. PHEVs and other plug-in vehicles on the road in 2030 may offer many valuable benefits to utilities, business owners, individual consumers, and society as a whole by: (1) Promoting national energy security by displacing large volumes of imported oil; (2) Supporting a secure economy through the expansion of domestic vehicle and component manufacturing; (3) Offsetting the vehicle's initial price premium with lifetime operating cost savings (e.g., lower fuel and maintenance costs); (4) Supporting the use of off-peak renewable energy through smart charging practices. However, smart grid technology is not a prerequisite for realizing the benefits of PHEVs; and (5) Potentially using its bidirectional electricity flow capability to aid in emergency situations or to help better manage a building's or entire grid's load.

  9. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  10. Compact Fluorescent Plug-In Ballast-in-a-Socket

    SciTech Connect (OSTI)

    Rebecca Voelker

    2001-12-21T23:59:59.000Z

    The primary goal of this program was to develop a ballast system for plug-in CFLs (compact fluorescent lamps) that will directly replace standard metal shell, medium base incandescent lampholders (such as Levition No. 6098) for use with portable lamp fixtures, such as floor, table and desk lamps. A secondary goal was to identify a plug-in CFL that is optimized for use with this ballast. This Plug-in CFL Ballastin-a-Socket system will allow fixture manufacturers to easily manufacture CFL-based high-efficacy portable fixtures that provide residential and commercial consumers with attractive, cost-effective, and energy-efficient fixtures for use wherever portable incandescent fixtures are used today. The advantages of this proposed system over existing CFL solutions are that the fixtures can only be used with high-efficacy CFLs, and they will be more attractive and will have lower life-cycle costs than screw-in or adapter-based CFL retrofit solutions. These features should greatly increase the penetration of CFL's into the North American market. Our work has shown that using integrated circuits it is quite feasible to produce a lamp-fixture ballast of a size comparable to the current Edison-screw 3-way incandescent fixtures. As for price points for BIAS-based fixtures, end-users polled by the Lighting Research Institute at RPI indicated that they would pay as much as an additional $10 for a lamp containing such a ballast. The ballast has been optimized to run with a 26 W amalgam triple biax lamp in the base-down position, yet can accept non-amalgam versions of the lamp. With a few part alterations, the ballast can be produced to support 32 W lamps as well. The ballast uses GE's existing L-Comp[1] power topology in the circuit so that the integrated circuit design would be a design that could possibly be used by other CFL and EFL products with minor modifications. This gives added value by reducing cost and size of not only the BIAS, but also possibly other integral CFL and future dimmable integral and plug-in versions of the EFL products.

  11. Plug-In Hybrid Vehicle Analysis (Milestone Report)

    SciTech Connect (OSTI)

    Markel, T.; Brooker, A.; Gonder, J.; O'Keefe, M.; Simpson, A.; Thornton, M.

    2006-11-01T23:59:59.000Z

    NREL's plug-in hybrid electric vehicle (PHEV) analysis activities made great strides in FY06 to objectively assess PHEV technology, support the larger U.S. Department of Energy PHEV assessment effort, and share technical knowledge with the vehicle research community and vehicle manufacturers. This report provides research papers and presentations developed in FY06 to support these efforts. The report focuses on the areas of fuel economy reporting methods, cost and consumption benefit analysis, real-world performance expectations, and energy management strategies.

  12. Communities Plug In To Electric Vehicle Readiness | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoal CombustionSmart GridforCommunities Plug In To Electric

  13. Communities Plug In To Electric Vehicle Readiness | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational| DepartmentCommunities Plug In To Electric

  14. Plug IN Hybrid Vehicle Bus | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlanned AuditsPlasticsPleated CeramicPlug

  15. Plug-In Hybrid Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlannedEvaluation | Department ofPlug-In

  16. Large-Scale Data Challenges in Future Power Grids

    SciTech Connect (OSTI)

    Yin, Jian; Sharma, Poorva; Gorton, Ian; Akyol, Bora A.

    2013-03-25T23:59:59.000Z

    This paper describes technical challenges in supporting large-scale real-time data analysis for future power grid systems and discusses various design options to address these challenges. Even though the existing U.S. power grid has served the nation remarkably well over the last 120 years, big changes are in the horizon. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components. The whole system becomes highly dynamic and needs constant adjustments based on real time data. Even though millions of sensors such as phase measurement units (PMUs) and smart meters are being widely deployed, a data layer that can support this amount of data in real time is needed. Unlike the data fabric in cloud services, the data layer for smart grids must address some unique challenges. This layer must be scalable to support millions of sensors and a large number of diverse applications and still provide real time guarantees. Moreover, the system needs to be highly reliable and highly secure because the power grid is a critical piece of infrastructure. No existing systems can satisfy all the requirements at the same time. We examine various design options. In particular, we explore the special characteristics of power grid data to meet both scalability and quality of service requirements. Our initial prototype can improve performance by orders of magnitude over existing general-purpose systems. The prototype was demonstrated with several use cases from PNNL’s FPGI and was shown to be able to integrate huge amount of data from a large number of sensors and a diverse set of applications.

  17. Modeling Electric Vehicle Benefits Connected to Smart Grids

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    and combined heat and power (CHP) systems with and withouta renewable energy source or CHP system at the building canfuel cell systems with CHP. Due to the heat requirement and

  18. Prospects for grid-connected solar PV in Kenya

    E-Print Network [OSTI]

    Rose, Amy Michelle

    2013-01-01T23:59:59.000Z

    Kenya's electric power system is heavily reliant on hydropower, leaving it vulnerable during recurring droughts. Supply shortfalls are currently met through the use of expensive leased diesel generation. Therefore, plans ...

  19. Modeling Electric Vehicle Benefits Connected to Smart Grids

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    photovoltaic (PV), solar thermal, stationary batteries,AC - absorption cooling, ST-solar thermal, PV-Photovoltaicsbe used during times when solar thermal is not available or

  20. Modeling Electric Vehicle Benefits Connected to Smart Grids

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    Photovoltaics Constraints TABLE III A SSUMED S TATIONARY E NERGY S TORAGE PARAMETERS [16], [17] ES charging efficiency

  1. Cellular Automata Grid of cells, connected to neighbors

    E-Print Network [OSTI]

    Indiana University

    Broadened · Mobile automata ­ A single active cell, which updates its position and state · Turing Machines is replaced with a set of cells · Asynchronously updating systems #12;Mobile automata #12;Turing Machines #12

  2. Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Nationwide: Southeast Propane Autogas Development Program Brings 1200 Propane Vehicles to the Road Mississippi's Community Counseling Services converted 29 vans to run on propane,...

  3. Modeling Electric Vehicle Benefits Connected to Smart Grids

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    storage, and combined heat and power (CHP) systems with and without absorption chillers. Definition of a microgrid

  4. Modeling Electric Vehicle Benefits Connected to Smart Grids

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    there is no PV installed and no stationary battery capacity.limit the solar thermal and PV adoption. TABLE IV EV BATTERYBattery Efficiency Near Top-of-Charge and the Impact on PV

  5. Integration Technology for PHEV-Grid-Connectivity, with Support...

    Broader source: Energy.gov (indexed) [DOE]

    using lower cost, secure, universalized wired and wireless communications technologies. (PLC modem, UMAN, zigbee) Produced functional demonstration of 'Software Defined Radio'...

  6. United States Launches First Grid-Connected Offshore Wind Turbine |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan-Japan JointGreen7/053/03 THUl

  7. V-125: Cisco Connected Grid Network Management System Multiple

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment ofPrivileges | DepartmentDepartmentAttacks

  8. Modeling Electric Vehicle Benefits Connected to Smart Grids

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    tariff-driven demand response in these buildings. By usingbuilding electricity costs distributed energy resources costs fuel costs demand responsebuilding energy systems. Local storage will enable demand response.

  9. Public Meeting: Physical Characterization of Grid-Connected Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Definitions; Characterization Protocol Framework; Illustrative Example: Room Air Conditioner (RAC); Process for Developing Characterization Protocols; Overview of...

  10. SciTech Connect: "smart grid"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells" Find + Advanced Search Termsmart

  11. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on Armed Services U.S. House ofInvestigations Committee

  12. Distributed connected wind farms (Smart Grid Project) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro

  13. Public Meeting: Physical Characterization of Grid-Connected Commercial And

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 |ofDepartment ofPart 1021 |8-458-DEC. 17,OFFICE

  14. Public Meeting: Physical Characterization of Smart and Grid-Connected

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 |ofDepartment ofPart 1021 |8-458-DEC.

  15. Connecting to the Grid: A Guide to Distributed Generation Interconnection

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational|ofSeptemberConfrontingFYIssues, 6th Edition,

  16. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartmentCounselGlassGreenHunterCommittee

  17. Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrderNebraska: EnergyStrategyInformationEnergy

  18. Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan -Department ofDepartmentDepartment of Energyto|

  19. Distributed connected wind farms (Smart Grid Project) (Limerick, Ireland) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:Emerling Farm <SiteLtd Di S P JumpOpen Energy

  20. United States Launches First Grid-Connected Offshore Wind Turbine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of Energy $18 MillionPresident Obama's FYofRoadmap to

  1. Grid-Connected Renewable Energy Systems Case Studies | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | OpenInformation BestInformation

  2. Future Grid: The Environment Future Grid Initiative White Paper

    E-Print Network [OSTI]

    Future Grid: The Environment Future Grid Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Future Grid: The Environment Prepared for the Project "The Future Grid to Enable Sustainable Energy Systems" Funded by the U

  3. GridWise Alliance

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the GRIDWISE ALLIANCE including its mission, today and tomorrow's grid, membership, work groups, and key policy initiatives.

  4. Random array grid collimator

    DOE Patents [OSTI]

    Fenimore, E.E.

    1980-08-22T23:59:59.000Z

    A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  5. Cyber Security & Smart Grid

    E-Print Network [OSTI]

    Shapiro, J.

    2011-01-01T23:59:59.000Z

    of the impacts of long-term power shortages from the destruction of critical electric infrastructure. ? A Hitachi factory north of Tokyo that makes 60% of the world?s supply of airflow sensors was shut down. This caused General Motors to shut a plant... at The University of Texas at Dallas ? Next Generation Control Systems ? Trustworthy Cyber Infrastructure for the Power Grid ? Active Defense Systems ? System Vulnerability Assessments ? Grid Test Bed ? Integrated Risk Analysis ? Modeling and Simulation...

  6. GRIDS: Grid-Scale Rampable Intermittent Dispatchable Storage

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    GRIDS Project: The 12 projects that comprise ARPA-E’s GRIDS Project, short for “Grid-Scale Rampable Intermittent Dispatchable Storage,” are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.

  7. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01T23:59:59.000Z

    of Plug-in Hybrid Electric Vehicle Technology, Nationalof Plug-In Hybrid Electric Vehicles on Energy and Emissionsof Plug-In Hybrid Electric Vehicles on Energy and Emissions

  8. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30T23:59:59.000Z

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  9. Influence of Electric Vehicles Connected to the Grid Guangbin Li (gl2423) Influence of Electric Vehicles Connected to the Grid

    E-Print Network [OSTI]

    Lavaei, Javad

    of imported oil. Many automobile companies have taken some actions. Chrysler, General Motors, Ford and some and response to global climatic change. From stats provided from United Nation, among the world-wide oil greenhouse gases, which are notoriously recognized as the top pollution to our atmosphere. Therefore

  10. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    pink vertical line represents a driving threshold for plug-vertical lines representing the typical driving thresholds52mi of driving per refueling (chapter 2) At full, red-line

  11. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    pink vertical line represents a driving threshold for plug-vertical lines representing the typical driving thresholds52mi of driving per refueling (chapter 2) At full, red-line

  12. Study on plasma parameters and dust charging in an electrostatically plugged multicusp plasma device

    SciTech Connect (OSTI)

    Kakati, B.; Kausik, S. S.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur-782 402, Kamrup, Assam (India); Bandyopadhyay, M. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar- 382 428 (India)

    2011-06-15T23:59:59.000Z

    The effect of the electrostatic confinement potential on the charging of dust grains and its relationship with the plasma parameters has been studied in an electrostatically plugged multicusp dusty plasma device. Electrostatic plugging is implemented by biasing the electrically isolated magnetic multicusp channel walls. The experimental results show that voltage applied to the channel walls can be a controlling parameter for dust charging.

  13. CREATING A PLUG-IN ELECTRIC VEHICLE INDUSTRY CLUSTER IN MICHIGAN

    E-Print Network [OSTI]

    Lyon, Thomas P.

    303 CREATING A PLUG-IN ELECTRIC VEHICLE INDUSTRY CLUSTER IN MICHIGAN: PROSPECTS AND POLICY OPTIONS a Plug-In Electric Vehicle Industry Cluster in Michigan: Prospects and Policy Options, 18 MICH. TELECOMM.......................................................308 II. Will the Electric Vehicle Industry Cluster?....................309 A. Why Do Industries

  14. The Status of USITER Diagnostic Port Plug Neutronics Analysis Using Attila

    SciTech Connect (OSTI)

    Feder, Russell [1; Youssef, Mahamoud [2; Klabacha, Jonathan [1

    2013-11-01T23:59:59.000Z

    USITER is one of seven partner domestic agencies (DA) contributing components to the ITER project. Four diagnostic port plug packages (two equatorial ports and two upper ports) will be engineered and fabricated by Princeton Plasma Physics Lab (PPPL). Diagnostic port plugs as illustrated in Fig. 1 are large primarily stainless steel structures that serve several roles on ITER. The port plugs are the primary vacuum seal and tritium confinement barriers for the vessel. The port plugs also house several plasma diagnostic systems and other machine service equipment. Finally, each port plug must shield high energy neutrons and gamma photons from escaping and creating radiological problems in maintenance areas behind the port plugs. The optimization of the balance between adequate shielding and the need for high performance, high throughput diagnostics systems is the focus of this paper. Neutronics calculations are also needed for assessing nuclear heating and nuclear damage in the port plug and diagnostic components. Attila, the commercially available discrete-ordinates software package, is used for all diagnostic port plug neutronics analysis studies at PPPL.

  15. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles must gaso- line consumption, helping to diminish dependency on imported oil. Recognizing these benefits, US

  16. RTDS-Based Design and Simulation of Distributed P-Q Power Resources in Smart Grid

    E-Print Network [OSTI]

    Taylor, Zachariah David

    2014-01-01T23:59:59.000Z

    1.2 MW grid-connected solar panel at bus 8. The power outputis as in Figure 5.11 [104]. Solar Panel Power Injection (pu)The daily output of the solar panel during a cloudy day.

  17. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01T23:59:59.000Z

    market, plug-in hybrid vehicles (PHEVs) are now consideredof Current Knowledge of Hybrid Vehicle Characteristics andalso called PHEV (Plug-in Hybrid Vehicle) because they are

  18. NREL Smart Grid Projects

    SciTech Connect (OSTI)

    Hambrick, J.

    2012-01-01T23:59:59.000Z

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  19. Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design

    E-Print Network [OSTI]

    Wong, Vincent

    meter. All smart meters are connected to not only the power grid but also a communication infrastructure. This allows two-way communication among smart meters and the utility company. We analytically model each user1 Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design Pedram Samadi

  20. 11-level Cascaded H-bridge Grid-tied Inverter Interface with Solar Panels

    E-Print Network [OSTI]

    Tolbert, Leon M.

    11-level Cascaded H-bridge Grid-tied Inverter Interface with Solar Panels Faete Filho, Yue Cao multilevel DC-AC grid-tied inverter. Each inverter bridge is connected to a 200 W solar panel. OPAL-RT lab match. A novel SPWM scheme is proposed in this paper to be used with the solar panels that can account

  1. Where is the ideal location for a US East Coast offshore grid? Michael J. Dvorak,1

    E-Print Network [OSTI]

    weather model data from 2006­2010 were used to approximate wind farm output. The offshore grid was located%, and the combined capacity factor was 48% (gross). By interconnecting offshore wind energy farms 450 km apart of no and full-power events. Offshore grids to connect offshore wind energy (OWE) farms have been proposed

  2. Java Parallel Secure Stream for Grid Computing

    SciTech Connect (OSTI)

    Chen, Jie; Akers, Walter; Chen, Ying; Watson, William

    2001-09-01T23:59:59.000Z

    The emergence of high speed wide area networks makes grid computing a reality. However grid applications that need reliable data transfer still have difficulties to achieve optimal TCP performance due to network tuning of TCP window size to improve the bandwidth and to reduce latency on a high speed wide area network. This paper presents a pure Java package called JPARSS (Java Par-allel Secure Stream) that divides data into partitions that are sent over several parallel Java streams simultaneously and allows Java or Web applications to achieve optimal TCP performance in a gird environment without the necessity of tuning the TCP window size. Several experimental results are provided to show that using parallel stream is more effective than tuning TCP window size. In addi-tion X.509 certificate based single sign-on mechanism and SSL based connection establishment are integrated into this package. Finally a few applications using this package will be discussed.

  3. Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas) reduces the all-electric range of plug-in vehicles by up to 45% compared to milder test cycles (like HWFET

  4. Toward Real Time Data Analysis for Smart Grids

    SciTech Connect (OSTI)

    Yin, Jian; Gorton, Ian; Sharma, Poorva

    2012-11-10T23:59:59.000Z

    This paper describes the architecture and design of a novel system for supporting large-scale real-time data analysis for future power grid systems. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components of the grid. As a result, the whole system becomes highly dynamic and requires constant adjusting based on real time data. Even though millions of sensors such as phase measurement units (PMU) and smart meters are being widely deployed, a data layer that can analyze this amount of data in real time is needed. Unlike the data fabric in other cloud services, the data layer for smart grids has some unique design requirements. First, this layer must provide real time guarantees. Second, this layer must be scalable to allow a large number of applications to access the data from millions of sensors in real time. Third, reliability is critical and this layer must be able to continue to provide service in face of failures. Fourth, this layer must be secure. We address these challenges though a scalable system architecture that integrates the I/O and data processing capability in a devise set of devices. Data process operations can be placed anywhere from sensors, data storage devices, to control centers. We further employ compression to improve performance. We design a lightweight compression customized for power grid data. Our system can reduce end-to-end response time by reduce I/O overhead through compression and overlap compression operations with I/O. The initial prototype of our system was demonstrated with several use cases from PNNL’s FPGI and show that our system can provide real time guarantees to a diverse set of applications.

  5. Laboratory tests of IEC DER object models for grid applications.

    SciTech Connect (OSTI)

    Blevins, John D. (PE Salt River Project, Phoenix, AZ); Menicucci, David F.; Byrd, Thomas, Jr. (,; .); Gonzalez, Sigifredo; Ginn, Jerry W.; Ortiz-Moyet, Juan (Primecore, Inc.)

    2007-02-01T23:59:59.000Z

    This report describes a Cooperative Research and Development Agreement (CRADA) between Salt River Project Agricultural Improvement and Power District (SRP) and Sandia National Laboratories to jointly develop advanced methods of controlling distributed energy resources (DERs) that may be located within SRP distribution systems. The controls must provide a standardized interface to allow plug-and-play capability and should allow utilities to take advantage of advanced capabilities of DERs to provide a value beyond offsetting load power. To do this, Sandia and SRP field-tested the IEC 61850-7-420 DER object model (OM) in a grid environment, with the goal of validating whether the model is robust enough to be used in common utility applications. The diesel generator OM tested was successfully used to accomplish basic genset control and monitoring. However, as presently constituted it does not enable plug-and-play functionality. Suggestions are made of aspects of the standard that need further development and testing. These problems are far from insurmountable and do not imply anything fundamentally unsound or unworkable in the standard.

  6. Control Algorithms for Grid-Scale Battery Energy Storage Systems

    E-Print Network [OSTI]

    Control Algorithms for Grid-Scale Battery Energy Storage Systems This report describes development-connected battery energy storage system. The report was submitted by HNEI to the U.S. Department of Energy Office.2: Energy Storage Systems August 2014 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science

  7. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments Home StationaryFAQs HomeProgramSCADASMART Grid

  8. Plugging of intersubassembly gaps by downward flowing molten steel. [LMFBR

    SciTech Connect (OSTI)

    Sienicki, J.J.; Spencer, B.W.

    1984-01-01T23:59:59.000Z

    In the assessment of the meltout phase of an LMFBR hypothetical core disruptive accident, a pathway for the escape of molten fuel from the disrupted core is provided by the narrow channels separating adjacent subassemblies. However, the removal of fuel through intersubassembly gaps might be impeded by steel blockage formation, if molten steel is postulated to enter the gap network ahead of disrupted fuel. Reported here are the results of an analysis of the conduction freezing controlled penetration behavior of molten steel flowing downward through the voided (of sodium) gap channels nominally separating adjacent subassemblies below the active core region. The objective is to determine the range of conditions under which the steel is predicted to be deposited as a thin crust on the channel walls leaving an open pathway remaining for subsequent fuel flow instead of forming a complete plug which closes off the gap channel and obstructs fuel removal immediately thereafter.

  9. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-09-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  10. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-12-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  11. Testbeam results for the CDF end plug hadron calorimeter

    SciTech Connect (OSTI)

    Liu, J. [Rochester Univ., NY (United States); CDF Plug Upgrade Group Collaboration

    1997-12-01T23:59:59.000Z

    Preliminary testbeam results for the CDF Tile-Fiber End Plug Upgrade Hadron Calorimeter (Hcal) are presented. Data were taken at incident momentum range of 5 to 230 GeV/c during 1996-7. The discussion of the {pi}-p energy response difference is motivated by the proton contamination in the hadron beam. Three effects which result in the {pi}-p response difference are studied. Measurements of the {pi}-p energy response were done at 5.4 and 13.3 GeV/c. The data agree with a calculation based on the three effects. The calculated proton contamination correction is applied to all the hadron data. The linearity and resolution of Hcal to pions are presented. The e/h parameter is extracted from the measurements of the response of Hcal to pions and positrons.

  12. Mechanistic Understanding of Microbial Plugging for Improved Sweep Efficiency

    SciTech Connect (OSTI)

    Steven Bryant; Larry Britton

    2008-09-30T23:59:59.000Z

    Microbial plugging has been proposed as an effective low cost method of permeability reduction. Yet there is a dearth of information on the fundamental processes of microbial growth in porous media, and there are no suitable data to model the process of microbial plugging as it relates to sweep efficiency. To optimize the field implementation, better mechanistic and volumetric understanding of biofilm growth within a porous medium is needed. In particular, the engineering design hinges upon a quantitative relationship between amount of nutrient consumption, amount of growth, and degree of permeability reduction. In this project experiments were conducted to obtain new data to elucidate this relationship. Experiments in heterogeneous (layered) beadpacks showed that microbes could grow preferentially in the high permeability layer. Ultimately this caused flow to be equally divided between high and low permeability layers, precisely the behavior needed for MEOR. Remarkably, classical models of microbial nutrient uptake in batch experiments do not explain the nutrient consumption by the same microbes in flow experiments. We propose a simple extension of classical kinetics to account for the self-limiting consumption of nutrient observed in our experiments, and we outline a modeling approach based on architecture and behavior of biofilms. Such a model would account for the changing trend of nutrient consumption by bacteria with the increasing biomass and the onset of biofilm formation. However no existing model can explain the microbial preference for growth in high permeability regions, nor is there any obvious extension of the model for this observation. An attractive conjecture is that quorum sensing is involved in the heterogeneous bead packs.

  13. Connecting apparatus for limited rotary or rectilinear motion

    DOE Patents [OSTI]

    Hardin, Jr., Roy T. (Greensburg, PA)

    1981-11-10T23:59:59.000Z

    Apparatus for providing connection between two members movable in a horizontal plane with respect to each other in a rotary or linear fashion. The apparatus includes a set of horizontal shelves affixed to each of the two members, vertically aligned across a selected gap. A number of cables or hoses, for electrical, hydraulic or pneumatic connection are arranged on the aligned shelves in a U-shaped loop, connected through their extremities to the two members, so that through a sliding motion portions of the cable are transferred from one shelf to the other, across the gap, upon relative motion of the members. The apparatus is particularly adaptable to the rotating plugs of the reactor vessel head of a nuclear reactor.

  14. Essential Grid Workflow Monitoring Elements

    SciTech Connect (OSTI)

    Gunter, Daniel K.; Jackson, Keith R.; Konerding, David E.; Lee,Jason R.; Tierney, Brian L.

    2005-07-01T23:59:59.000Z

    Troubleshooting Grid workflows is difficult. A typicalworkflow involves a large number of components networks, middleware,hosts, etc. that can fail. Even when monitoring data from all thesecomponents is accessible, it is hard to tell whether failures andanomalies in these components are related toa given workflow. For theGrid to be truly usable, much of this uncertainty must be elim- inated.We propose two new Grid monitoring elements, Grid workflow identifiersand consistent component lifecycle events, that will make Gridtroubleshooting easier, and thus make Grids more usable, by simplifyingthe correlation of Grid monitoring data with a particular Gridworkflow.

  15. Preconceptual systems and equipment for plugging of man-made accesses to a repository in basalt

    SciTech Connect (OSTI)

    Taylor, C.L.; O'Rourke, J.E.; Allirot, D.; O'Connor, K.

    1980-09-01T23:59:59.000Z

    This report presents results of a study leading to preconceptual designs for plugging boreholes, shafts, and tunnels to a nuclear waste repository in basalt. Beginning design criteria include a list of preferred plug materials and plugging machines that were selected to suit the environmental conditions, and depths, diameters, and orientations of the accesses to a nuclear waste repository in the Columbia River basalts located in eastern Washington State. The environmental conditions are described. The fiscal year 1979-1980 Task II work is presented in two parts: preliminary testing of materials for plugging of man-made accesses to a repository in basalt (described in a separate report); and preconceptual systems and equipment for plugging of man-made accesses to a repository in basalt (described in this report). To fulfill the scope of the Task II work, Woodward-Clyde Consultants (WCC) was requested to: provide preconceptual systems for plugging boreholes, tunnels, and shafts in basalt; describe preconceptual borehole plugging equipment for placing the selected materials in man-made accesses; utilize the quality assurance program, program plan and schedule, and work plans previously developed for Task II; and prepare a preliminary report.

  16. Unlocking the smart grid

    SciTech Connect (OSTI)

    Rokach, Joshua Z.

    2010-10-15T23:59:59.000Z

    The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)

  17. APEC Smart Grid Initiative

    SciTech Connect (OSTI)

    Bloyd, Cary N.

    2012-03-01T23:59:59.000Z

    This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

  18. Grid Interconnection and Performance Testing Procedures for Vehicle-To-Grid (V2G) Power Electronics: Preprint

    SciTech Connect (OSTI)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Hoke, A.; Martin, G.; Markel, T.

    2012-03-01T23:59:59.000Z

    Bidirectional power electronics can add vehicle-to-grid (V2G) capability in a plug-in vehicle, which then allows the vehicle to operate as a distributed resource (DR). The uniqueness of the battery-based V2G power electronics requires a test procedure that will not only maintain IEEE interconnection standards, but can also evaluate the electrical performance of the vehicle working as a DR. The objective of this paper is to discuss a recently published NREL technical report that provides interim test procedures for V2G vehicles for their integration into the electrical distribution systems and for their performance in terms of continuous output power, efficiency, and losses. Additionally, some other test procedures are discussed that are applicable to a V2G vehicle that desires to provide power reserve functions. A few sample test results are provided based on testing of prototype V2G vehicles at NREL.

  19. Sandia National Laboratories: International Smart Grid Action...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Action Network Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution Grid Integration,...

  20. Networked Loads in the Distribution Grid

    E-Print Network [OSTI]

    Wang, Zhifang; Li, Xiao; Muthukumar, Vishak; Scaglione, Anna; Peisert, Sean; McParland, Chuck

    2012-01-01T23:59:59.000Z

    Lu, and Deborah A. Frincke. Smart-Grid Security Issues. IEEELoads in the Distribution Grid Zhifang Wang ? , Xiao Li † ,Transformer   sensors   Grid   Cyber  system   Cooling    

  1. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01T23:59:59.000Z

    New England Outlook: Smart Grid is About Consumers,” Apr. [Transmission in the Smart Grid By Kory Walter Hedman ATransmission in the Smart Grid by Kory Walter Hedman Doctor

  2. Connectivity Enhanced Energy Management and Control for EREVs: Cooperative Research and Development Final Report, CRADA Number CRD-11-457

    SciTech Connect (OSTI)

    Gonder, J.

    2014-08-01T23:59:59.000Z

    The projected trend in personal mobility is the use of range extended electric vehicles (EREVs) and plug in hybrids (PHEVs). Although batteries with high power density and compact high power electric machines provide appreciable 'all electric' range, there still exists the need for an onboard range extender. The use of connectivity information such as route, elevation/curvature, traffic etc. enables substantial real world improvement in system efficiency and fuel economy of EREVs and plug-in hybrids through efficient use of stored electrical energy.

  3. Smart Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Usage Smart Grid Smart Grid October 21, 2014 Line workers get hands-on experience with an electrical pole as part of their training. | Photo courtesy of David Weaver....

  4. Stability of elastic grid shells

    E-Print Network [OSTI]

    Mesnil, Romain, M. Eng. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    The elastic grid shell is a solution that combines double curvature and ease of mounting. This structural system, based on the deformation of an initially at grid without shear stiffness was invented more than fifty years ...

  5. Simulating the Household Plug-in Hybrid Electric Vehicle Distribution and its Electric Distribution Network Impacts

    SciTech Connect (OSTI)

    Cui, Xiaohui [ORNL] [ORNL; Kim, Hoe Kyoung [ORNL] [ORNL; Liu, Cheng [ORNL] [ORNL; Kao, Shih-Chieh [ORNL] [ORNL; Bhaduri, Budhendra L [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    This paper presents a multi agent-based simulation framework for modeling spatial distribution of plug-in hybrid electric vehicle ownership at local residential level, discovering plug-in hybrid electric vehicle hot zones where ownership may quickly increase in the near future, and estimating the impacts of the increasing plug-in hybrid electric vehicle ownership on the local electric distribution network with different charging strategies. We use Knox County, Tennessee as a case study to highlight the simulation results of the agent-based simulation framework.

  6. Power System Level Impacts of Plug-In Hybrid Vehicles

    E-Print Network [OSTI]

    (PSERC) is a multi-university Center conducting research on challenges facing the electric power industry to the electric power industry. The impact of PHEVs on the power grid is investigated. The methodology electric and gas, (b) simulation of the electric infrastructure (distribution systems) and the loading

  7. Connecting to NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All NERSC computers (except HPSS) are reached using either the Secure Shell (SSH) communication and encryption protocol (version 2) or by Grid tools that use trusted...

  8. AVTA: Vehicle to Grid Power Flow Regulations and Building Codes Review

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is a review of Vehicle-to-Grid power flow regulations and building codes, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  9. 1. Check to make sure all electrical appliances, such as curling irons, toasters, etc. are unplugged. Exceptions are clocks and refrigerators. Keep your refrigerator plugged in!

    E-Print Network [OSTI]

    Minnesota, University of

    . are unplugged. Exceptions are clocks and refrigerators. Keep your refrigerator plugged in! 2. Secure windows

  10. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    SciTech Connect (OSTI)

    None

    2012-02-08T23:59:59.000Z

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

  11. Small-Scale Spray Releases: Orifice Plugging Test Results

    SciTech Connect (OSTI)

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Blanchard, Jeremy; Kimura, Marcia L.; Kurath, Dean E.

    2012-09-01T23:59:59.000Z

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities, is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations published in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials present in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty introduced by extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches in which the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are largely absent. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine the aerosol release fractions and aerosol generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents (AFA) was assessed with most of the simulants. Orifices included round holes and rectangular slots. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. The purpose of the study described in this report is to provide experimental data for the first key technical area, potential plugging of small breaches, by performing small-scale tests with a range of orifice sizes and orientations representative of the WTP conditions. The simulants used were chosen to represent the range of process stream properties in the WTP. Testing conducted after the plugging tests in the small- and large-scale test stands addresses the second key technical area, aerosol generation. The results of the small-scale aerosol generation tests are included in Mahoney et al. 2012. The area of spray generation from large breaches is covered by large-scale testing in Schonewill et al. 2012.

  12. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Initiative GridWise Alliance GridWise Architecture Council European SmartGrid Technology Platform 19 MODERN GRID S T R A T E G Y Questions? Office of Electricity...

  13. GridMat: Matlab Toolbox for GridLAB-D to Analyse Grid Impact and Validate Residential Microgrid Level

    E-Print Network [OSTI]

    Al Faruque, Mohammad Abdullah

    GridMat: Matlab Toolbox for GridLAB-D to Analyse Grid Impact and Validate Residential Microgrid, in this paper, we present a new Matlab toolbox (GridMat) to integrate the capabilities of domain-specific modeling & simulation tools from power system (GridLAB-D) and control (Matlab). The GridMat tool supports

  14. Grid Transfer Remark 4.1 Contents of this chapter. Consider a grid with grid size h and the

    E-Print Network [OSTI]

    John, Volker

    Chapter 4 Grid Transfer Remark 4.1 Contents of this chapter. Consider a grid with grid size h that there might be an iterative method for solving this system efficiently, which uses also coarser grids way between the grids. 2 4.1 The Coarse Grid System and the Residual Equa- tion Remark 4.2 Basic idea

  15. Power Conditioning for Plug-In Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Farhangi, Babak

    2014-07-25T23:59:59.000Z

    Plugin Hybrid Electric Vehicles (PHEVs) propel from the electric energy stored in the batteries and gasoline stored in the fuel tank. PHEVs and Electric Vehicles (EVs) connect to external sources to charge the batteries. Moreover, PHEVs can supply...

  16. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H.Rohit Prasankumar

  17. Plug-Load Control and Behavioral Change Research in GSA Office Buildings

    SciTech Connect (OSTI)

    Metzger, I.; Cutler, D.; Sheppy, M.

    2012-10-01T23:59:59.000Z

    The U.S. General Services Administration (GSA) owns and leases over 354 million square feet (ft2) of space in over 9,600 buildings [1]. GSA is a leader among federal agencies in aggressively pursuing energy efficiency (EE) opportunities for its facilities and installing renewable energy (RE) systems to provide heating, cooling, and power to these facilities. According to several energy assessments of GSA's buildings conducted by the National Renewable Energy Laboratory (NREL), plug-loads account for approximately 21% of the total electricity consumed within a standard GSA Region 3 office building. This study aims to provide insight on how to effectively manage plug-load energy consumption and attain higher energy and cost savings for plug-loads. As GSA improves the efficiency of its building stock, plug-loads will become an even greater portion of its energy footprint.

  18. Prospects for plug-in hybrid electric vehicles in the United States : a general equilibrium analysis

    E-Print Network [OSTI]

    Karplus, Valerie Jean

    2008-01-01T23:59:59.000Z

    The plug-in hybrid electric vehicle (PHEV) could significantly contribute to reductions in carbon dioxide emissions from personal vehicle transportation in the United States over the next century, depending on the ...

  19. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    2-29678 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results Tyler Gray Jeffrey Wishart Matthew Shirk July 2013 The Idaho National Laboratory is a U.S....

  20. Fact #789: July 22, 2013 Comparison of State Incentives for Plug...

    Broader source: Energy.gov (indexed) [DOE]

    addition to a Federal government tax credit up to 7,500, consumers who purchase plug-in electric vehicles (PEVs) may also receive state government incentives which are different...

  1. activity plug-in hybrid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and H.R. Pota Dynamic voltage vehicle as a DVR including the dynamic behaviour of the battery has been developed and integrated Pota, Himanshu Roy 5 2010 Plug-In Hybrid and...

  2. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction - Dataset...

  3. Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases...

    Broader source: Energy.gov (indexed) [DOE]

    recently released results of a 2008 survey on plug-in hybrid vehicles (PHEVs) show that 42% of respondents said there was some chance that they would buy a PHEV sometime in the...

  4. Fact #856 January 19, 2015 Plug-in and Hybrid Cars Receive High...

    Broader source: Energy.gov (indexed) [DOE]

    Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction fotw856web.xlsx More Documents & Publications Quarterly Analysis Review February 2015 Fact 853 December 29,...

  5. V-184: Google Chrome Flash Plug-in Lets Remote Users Conduct...

    Broader source: Energy.gov (indexed) [DOE]

    Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks PLATFORM: Google Chrome prior to 27.0.1453.116 ABSTRACT: A vulnerability was reported in Google Chrome....

  6. Cost-Benefit Analysis of Plug-in Hybrid Electric Vehicle Technology

    SciTech Connect (OSTI)

    Simpson, A.

    2006-11-01T23:59:59.000Z

    This paper presents a comparison of vehicle purchase and energy costs, and fuel-saving benefits of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

  7. Project Profile: Development of a Low-Cost Residential Plug-and-Play Photovoltaic System

    Broader source: Energy.gov [DOE]

    North Carolina State University FREEDM Systems Engineering Center and its partners, under the Plug-and-Play Photovoltaics FOA, are performing analysis, design, and innovation to address each stage...

  8. 20 IAEI NEWS July.August 2008 www.iaei.org grid interconnections

    E-Print Network [OSTI]

    Johnson, Eric E.

    breakers be- ing back fed from utility-interactive PV inverters. We can use an equation of breaker ratings.iaei.org T he final connection between the pho- tovoltaic (PV) power system and the electrical utility grid are responsible for safety. These connections vary significant- ly from PV system to system due to the size

  9. 500 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 1, MARCH 2012 The Evolution of Plug-In Electric

    E-Print Network [OSTI]

    Baldick, Ross

    include energy security and its related costs [1], environmental concerns (including climate change anxiety at the cost of incorporating a hybrid electric-gasoline powertrain. Along with the energy density the same basic business model for nearly a century. The various participants include vehicle manufacturers

  10. Control of Inverter-Connected Sources in Autonomous Microgrids Ian A. Hiskens Eric M. Fleming

    E-Print Network [OSTI]

    Hiskens, Ian A.

    microturbines [1], fuel cells [2], and renewable sources such as solar and wind power [3], [4]. This list. Microturbines operate at very high frequency. Grid connection therefore requires a power electronic interface

  11. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    SciTech Connect (OSTI)

    None

    2013-12-31T23:59:59.000Z

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  12. An Optimization Model for Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Malikopoulos, Andreas [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

  13. Plug-in privacy for Smart Metering billing

    E-Print Network [OSTI]

    Jawurek, Marek; Kerschbaum, Florian

    2010-01-01T23:59:59.000Z

    Smart Metering is a concept that allows to collect fine-grained consumption profiles from customers by replacing traditional electricity meters with Smart Meters in customers' households. The recorded consumption profile is the basis for the calculation of time-dependent tariffs but also allows deduction of the inhabitant's personal schedules and habits. The current reporting of such consumption profiles only protects this data from 3rd parties but falls short to protect the customer's privacy from illegitimate abuse by the supplier itself. We propose a privacy-preserving profile reporting protocol that enables billing for time-dependent tariffs without disclosing the actual data of the consumption profile to the supplier. Our approach relies on a zero-knowledge proof based on Pedersen Commitments performed by a plug-in privacy component that is put into the communication link between Smart Meter and supplier's back-end systems and requires no change to Smart Meter hardware and only little change to the softw...

  14. Control and Protection of Wind Power Plants with VSC-HVDC Connection

    E-Print Network [OSTI]

    Chaudhary, Sanjay

    Control and Protection of Wind Power Plants with VSC-HVDC Connection By Sanjay K Chaudhary different methods have been evaluated here for relaying the onshore grid frequency to the offshore grid power oscillations, and hence, lower dc voltage overshoots in the VSC-HVDC system. On the protection

  15. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    is in a remote area, off-grid. The voltage of the DC side ofintended to be recharged off the grid either at the home of

  16. Micro-Grids for Colonias (TX)

    SciTech Connect (OSTI)

    Dean Schneider; Michael Martin; Renee Berry; Charles Moyer

    2012-07-31T23:59:59.000Z

    This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing power generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid power. However, the operational costs are reasonable if grid power is unavailable, e.g. in a remote area or in a disaster recovery situation. In fact, avoided fuel costs for the smaller of the systems in use during this project would have a payback of the capital costs of that system in 2.3 years, far short of the effective system life.

  17. Data Management in the GridRPC GridRPC Data Management API

    E-Print Network [OSTI]

    Caniou, Yves

    Data Management in the GridRPC Issues Conclusion GridRPC Data Management API Implementations, Le Mahec, Nakada GridRPC DM API: Implem. and Interop. Issues (1/13) #12;Data Management in the GridRPC Issues Conclusion Goal GridRPC DM types: Reminder 1 Data Management in the GridRPC Goal GridRPC DM types

  18. Grid Interaction Tech Team, and International Smart Grid Collaboration

    Broader source: Energy.gov (indexed) [DOE]

    Provider BAHNHOF POTSDAMER PLATZ Home Area Network (HAN) Grid Operations Coal Natural Gas Nuclear Hydro Renewable Fuel Oil Misc Generation Energy Service Interface (ESI)...

  19. Sandia Energy - Grid Modernization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInAppliedEnergyGeothermal HomeGrid

  20. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailureGlobal ClimateGrid

  1. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting the StageCanon! Shared Solar:Sharing

  2. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbon CaptureBiofuels

  3. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbon

  4. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbonEnergy Sandia

  5. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H.Rohit Prasankumar HomeEnergy

  6. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed Services U.S.GregoryGrid6733

  7. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed Services U.S.GregoryGrid6733141

  8. NERSC Grid Certificates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVA Portal: Submit2014 NERSCFranklinGrid

  9. Results from the Operational Testing of the Eaton Smart Grid Capable Electric Vehicle Supply Equipment

    SciTech Connect (OSTI)

    Brion Bennett

    2014-10-01T23:59:59.000Z

    The Idaho National Laboratory conducted testing and analysis of the Eaton smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Eaton for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Eaton smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  10. Demand Side Management in the Smart Grid: Information Processing for the Power Switch

    SciTech Connect (OSTI)

    Alizadeh, Mahnoosh; LI, Xiao; Wang, Zhifang; Scagilone, Anna; Melton, Ronald B.

    2012-09-01T23:59:59.000Z

    In this article we discuss the most recent developments in the area of load management, and consider possible interaction schemes of novel architectures with distributed energy resources (DER). In order to handle the challenges faced by tomorrow’s smart grid, which are caused by volatile load and generation profiles (from the large number of plug-in EVs and from renewable integration), the conventional grid operating principle of load-following needs to be changed into load-shaping or generation-following. Demand Side Management will be a most promising and powerful solution to the above challenges. However, many other issues such as load forecasting, pricing structure, market policy, renewable integration interface, and even the AC/DC implementation at the distribution side, need to be taken into the design in order to search for the most effective and applicable solution.

  11. High-Performance Computing for Real-Time Grid Analysis and Operation

    SciTech Connect (OSTI)

    Huang, Zhenyu; Chen, Yousu; Chavarría-Miranda, Daniel

    2013-10-31T23:59:59.000Z

    Power grids worldwide are undergoing an unprecedented transition as a result of grid evolution meeting information revolution. The grid evolution is largely driven by the desire for green energy. Emerging grid technologies such as renewable generation, smart loads, plug-in hybrid vehicles, and distributed generation provide opportunities to generate energy from green sources and to manage energy use for better system efficiency. With utility companies actively deploying these technologies, a high level of penetration of these new technologies is expected in the next 5-10 years, bringing in a level of intermittency, uncertainties, and complexity that the grid did not see nor design for. On the other hand, the information infrastructure in the power grid is being revolutionized with large-scale deployment of sensors and meters in both the transmission and distribution networks. The future grid will have two-way flows of both electrons and information. The challenge is how to take advantage of the information revolution: pull the large amount of data in, process it in real time, and put information out to manage grid evolution. Without addressing this challenge, the opportunities in grid evolution will remain unfulfilled. This transition poses grand challenges in grid modeling, simulation, and information presentation. The computational complexity of underlying power grid modeling and simulation will significantly increase in the next decade due to an increased model size and a decreased time window allowed to compute model solutions. High-performance computing is essential to enable this transition. The essential technical barrier is to vastly increase the computational speed so operation response time can be reduced from minutes to seconds and sub-seconds. The speed at which key functions such as state estimation and contingency analysis are conducted (typically every 3-5 minutes) needs to be dramatically increased so that the analysis of contingencies is both comprehensive and real time. An even bigger challenge is how to incorporate dynamic information into real-time grid operation. Today’s online grid operation is based on a static grid model and can only provide a static snapshot of current system operation status, while dynamic analysis is conducted offline because of low computational efficiency. The offline analysis uses a worst-case scenario to determine transmission limits, resulting in under-utilization of grid assets. This conservative approach does not necessarily lead to reliability. Many times, actual power grid scenarios are not studied, and they will push the grid over the edge and resulting in outages and blackouts. This chapter addresses the HPC needs in power grid analysis and operations. Example applications such as state estimation and contingency analysis are given to demonstrate the value of HPC in power grid applications. Future research directions are suggested for high performance computing applications in power grids to improve the transparency, efficiency, and reliability of power grids.

  12. Kansas Consortium Plug-in Hybrid Medium Duty

    SciTech Connect (OSTI)

    None, None

    2012-03-31T23:59:59.000Z

    On September 30, 2008, the US Department of Energy (DoE), issued a cooperative agreement award, DE-FC26-08NT01914, to the Metropolitan Energy Center (MEC), for a project known as “Kansas Consortium Plug-in Hybrid Medium Duty Certification” project. The cooperative agreement was awarded pursuant to H15915 in reference to H. R. 2764 Congressionally Directed Projects. The original agreement provided funding for The Consortium to implement the established project objectives as follows: (1) to understand the current state of the development of a test protocol for PHEV configurations; (2) to work with industry stakeholders to recommend a medium duty vehicle test protocol; (3) to utilize the Phase 1 Eaton PHEV F550 Chassis or other appropriate PHEV configurations to conduct emissions testing; (4) and to make an industry PHEV certification test protocol recommendation for medium duty trucks. Subsequent amendments to the initial agreement were made, the most significant being a revised Scope of Project Objectives (SOPO) that did not address actual field data since it was not available as originally expected. This project was mated by DOE with a parallel project award given to the South Coast Air Quality Management District (SCAQMD) in California. The SCAQMD project involved designing, building and testing of five medium duty plug-in hybrid electric trucks. SCAQMD had contracted with the Electric Power Research Institute (EPRI) to manage the project. EPRI provided the required match to the federal grant funds to both the SCAQMD project and the Kansas Consortium project. The rational for linking the two projects was that the data derived from the SCAQMD project could be used to validate the protocols developed by the Kansas Consortium team. At the same time, the consortium team would be a useful resource to SCAQMD in designating their test procedures for emissions and operating parameters and determining vehicle mileage. The years between award of the cooperative agreements and their completion were problematic for the US and world economies. This resulted in the President and Congress implementing the American Recovery and Reinvestment Act of 2009, abbreviated ARRA (Pub.L. 111-5), commonly referred to as the Stimulus or The Recovery Act. The stimulus money available for transportation projects encouraged the SCAQMD to seek additional funds. In August of 2009, they eventually were awarded an additional $45.5 M, and the scope of their project was expanded to 378 vehicles. However, as a consequence of the stimulus money and the inundation of DOE with applications for new project under the ARRA, the expected time table for producing and testing vehicles was significantly delayed. As a result, these vehicles were not available for validating the protocols developed by the Kansas Consortium. Therefore, in April of 2011, the Scope of Project Objectives (SOPO) for the project was revised, and limited to producing the draft protocol for PHEV certification as its deliverable.

  13. Connections Transport Layer

    E-Print Network [OSTI]

    Ramkumar, Mahalingam

    Transmission Control Protocol TCP Header A Detailed Example TCP Transmission Policy Timer Management 4 User;Services Connections TCP UDP Connection Oriented Service Reliable delivery of data In the right order are possible Ramkumar TL #12;Services Connections TCP UDP Three-Way Handshake Sequence numbers Both sender

  14. Connective Power: Solar Electrification and Social Change in Kenya

    E-Print Network [OSTI]

    Jacobson, Arne

    Connective Power: Solar Electrification and Social Change in Kenya ARNE JACOBSON * Humboldt State development, Africa, Kenya 1. INTRODUCTION Solar electrification has emerged as a leading alternative to grid technology advocates, but my research in Kenya indicates that solar electrification is, at best, only loosely

  15. Grid Integration of Robotic Telescopes

    E-Print Network [OSTI]

    F. Breitling; T. Granzer; H. Enke

    2009-03-23T23:59:59.000Z

    Robotic telescopes and grid technology have made significant progress in recent years. Both innovations offer important advantages over conventional technologies, particularly in combination with one another. Here, we introduce robotic telescopes used by the Astrophysical Institute Potsdam as ideal instruments for building a robotic telescope network. We also discuss the grid architecture and protocols facilitating the network integration that is being developed by the German AstroGrid-D project. Finally, we present three user interfaces employed for this purpose.

  16. Smart Grid Enabled EVSE

    SciTech Connect (OSTI)

    None, None

    2014-10-15T23:59:59.000Z

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  17. LED Lighting Off the Grid

    Energy Savers [EERE]

    D. & Kammen, D. M. Decentralized energy systems for clean electricity access. Nature Climate Change accepted, in press, (2015). Off-Grid Status Quo : Fuel Based Lighting...

  18. 2014 Modern Power Grid Video

    SciTech Connect (OSTI)

    None

    2014-06-02T23:59:59.000Z

    A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

  19. Smart Grid | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  20. Buildings to Grid Integration & Interoperability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings to Grid Integration & Interoperability Joe Hagerman, Senior Advisor DOE Building Technologies Office March 11, 2013 EERE: Office of Energy Efficiency and Renewable Energy...

  1. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    Against Data Injection Attacks on Power Grids”, IEEER. Thomas, and L. Tong, “Malicious Data Attacks on SmartState Estimation: Attack Strategies and Countermeasures,”

  2. National Grid Energy Efficiency Plans

    Broader source: Energy.gov [DOE]

    Presentation covers the National Grid Energy Efficiency plans and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  3. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia-Electric Power Research Institute Partnership Publishes Photovoltaic Reliability Report On January 21, 2014, in Energy, Facilities, Grid Integration, Modeling & Analysis,...

  4. National Grid Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Presentation covers the National Grid Energy Efficiency programs and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  5. Environmental Impacts of Smart Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a substantial number of pollutants. This paper focuses on the particulate and gaseous emission pollutants that are byproducts of electricity generation, and on how the Smart Grid...

  6. Sandia Energy - Smart Grid Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reliability, efficiency, flexibility, and cost effectiveness. Smart-grid features include demand-response capabilities, advanced controls, DER integration, increased situational...

  7. 2014 Modern Power Grid Video

    ScienceCinema (OSTI)

    None

    2014-07-22T23:59:59.000Z

    A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

  8. Smart-Grid Security Issues

    SciTech Connect (OSTI)

    Khurana, Himanshu; Hadley, Mark D.; Lu, Ning; Frincke, Deborah A.

    2010-01-29T23:59:59.000Z

    TITLE: Smart-Grid Security Issues (Editorial Material, English) IEEE SECURITY & PRIVACY 8 (1). JAN-FEB 2010. p.81-85 IEEE COMPUTER SOC, LOS ALAMITOS

  9. Presented on the European Wind Energy Conference & Exhibition, Brussels, Belgium, March, 31 Network of offshore wind farms connected by gas insulated

    E-Print Network [OSTI]

    Heinemann, Detlev

    ­April, 3 rd 2008. Network of offshore wind farms connected by gas insulated transmission lines? Anja Summary The offshore wind power industry faces two major challenges: the connection of wind farms to the high voltage grid onshore and a smart grid integration of this offshore generated wind power. In terms

  10. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    for plug-in hybrid electric vehicles (PHEVs): Goals and thetechnology: California's electric vehicle program. Scienceand Impacts of Hybrid Electric Vehicle Options for a Compact

  11. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    T. et al. (2006), Plug-in hybrid vehicle analysis, Milestonein conversions of hybrid vehicles are being made availablein Table 3: household hybrid vehicle ownership, respondents’

  12. Using GPS Travel Data to Assess the Real World Driving Energy Use of Plug-In Hybrid Electric Vehicles (PHEVs)

    SciTech Connect (OSTI)

    Gonder, J.; Markel, T.; Simpson, A.; Thornton, M.

    2007-05-01T23:59:59.000Z

    Highlights opportunities using GPS travel survey techniques and systems simulation tools for plug-in hybrid vehicle design improvements, which maximize the benefits of energy efficiency technologies.

  13. Sensor Grid: Integration of Wireless Sensor Networks and the Grid

    E-Print Network [OSTI]

    Teo, Yong-Meng

    Sensor Grid: Integration of Wireless Sensor Networks and the Grid Hock Beng Lim1 , Yong Meng Teo1 Microsystems, Inc. E-mail: [limhb, teoym]@comp.nus.edu.sg Abstract Wireless sensor networks have emerged to the sharing of sensor resources in wireless sensor networks. There are several issues and challenges

  14. Cyber Security & Smart Grid 

    E-Print Network [OSTI]

    Shapiro, J.

    2011-01-01T23:59:59.000Z

    to complexity, proprietary nature and different management teams ? Ripe for exploitation ? Intel, Microsoft, Security vendors are not focused on this technology ? Many are NOT PC?s ? Many can be infected and the devices cannot be cleaned ESL-KT-11...-11-23 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 Inherent Vulnerabilities ? Two-way communications ? Distributed connectivity ? Customer usage data ? Metering devices ? Weak authentication and access control ? Lack of adequate training ? Lack...

  15. Enhancing Power Grid Stability through Analytics

    E-Print Network [OSTI]

    Lakoba, Taras I.

    the "Smart" Grid? · Premise #1: the grid has long been pretty smart (Edison, Tesla, Steinmetz et al were of Vermont Seminar October 23, 2013 3 What Drives the "Smart" Grid? · Premise #2: As well operated as grid of Vermont Seminar October 23, 2013 4 What Drives the "Smart" Grid? · Premise #3: new technology is providing

  16. GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical...

    Office of Environmental Management (EM)

    Challenges More Documents & Publications QER - Comment of GridWise Alliance 1 SmartGrid Consortium: Smart Grid Roadmap for the State of New York Smart Grid: Enabler of the...

  17. Grid Integration and the Carrying Capacity of the U.S. Grid to...

    Energy Savers [EERE]

    Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate...

  18. The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    microgrid, which may include photovoltaic (PV), solar thermal, stationary batteries, thermal storage, and combined heat and power (

  19. The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    EV&PV& stationary battery case, with EV, PV, and stationarybattery state-of-charge (SOC) of 32% (see Table 4). The PVbattery inefficiencies. It needs at least one carbon reducing technology, e.g. PV

  20. From the Grid to the Smart Grid, Topologically

    E-Print Network [OSTI]

    Pagani, Giuliano Andrea

    2013-01-01T23:59:59.000Z

    The Smart Grid is not just about the digitalization of the Power Grid. In its more visionary acceptation, it is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the Smart Grid a reality will the Distribution Grid have to be updated? We assume a positive answer to the question and we consider the lower layers of Medium and Low Voltage to be the most affected by the change. In our previous work, we have analyzed samples of the Dutch Distribution Grid in our previous work and we have considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains in another previous work. In this paper, we take an extra important further step by defining a methodology for evolving any existing physical Power Grid to a good Smart Grid model th...