Sample records for grid advanced metering

  1. Efficient and Secure Wireless Communications for Advanced Metering Infrastructure in Smart Grids

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    1 Efficient and Secure Wireless Communications for Advanced Metering Infrastructure in Smart Grids metering infrastructure (AMI) [3] is a key task in smart grid [6] [4]. In such a system, each power user is equipped with a smart meter with the capability of two- way communications, which can monitor the power

  2. NATL Grid Map 50-Meter Grid

    E-Print Network [OSTI]

    Slatton, Clint

    NATL-east NATL Grid Map 50-Meter Grid Locations in NATL can be specified by reference to a grid intervals. Each gridline intersection ("grid point") is identified by its two gridlines (e.g., E5). Each 50x50-m block formed by the gridlines is identified by the grid point in its northwest corner (e

  3. Energy Theft in the Advanced Metering Infrastructure

    E-Print Network [OSTI]

    McDaniel, Patrick Drew

    , with this infrastructure comes new risk. In this paper, we consider ad- versary means of defrauding the electrical gridEnergy Theft in the Advanced Metering Infrastructure Stephen McLaughlin, Dmitry Podkuiko, and Patrick McDaniel Systems and Internet Infrastructure Security Laboratory (SIIS) Pennsylvania State

  4. Ellsworth Air Force Base Advanced Metering Project

    Broader source: Energy.gov [DOE]

    Presentation covers the Ellsworth Air Force Base Advanced Metering project and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  5. Assessment of Demand Response and Advanced Metering

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    #12;#12;2008 Assessment of Demand Response and Advanced Metering Staff Report Federal Energy metering penetration and potential peak load reduction from demand response have increased since 2006. Significant activity to promote demand response or to remove barriers to demand response occurred at the state

  6. FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced Computational Kernels OBJECTIVE The U of the power grid will also have to evolve to insure accurate and timely simulations. On the other hand, the software tools available for power grid simulation today are primarily sequential single core programs

  7. Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design

    E-Print Network [OSTI]

    Wong, Vincent

    meter. All smart meters are connected to not only the power grid but also a communication infrastructure. This allows two-way communication among smart meters and the utility company. We analytically model each user1 Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design Pedram Samadi

  8. Smart Meters and a Smarter Grid | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmart Meters and a Smarter Grid Smart Meters

  9. Framework for Advance Sustainable Building Design. Smart Micro-Grid Enabled Buildings and Utility-Side of the Meter Energy Markets

    E-Print Network [OSTI]

    Goldberg, Bennett

    and Requirements System Information · Temperature, wind, sun, pollution ·Built Environment Impact on Infrastructure/Transmission and Retail/Distribution Cost and Congestion Modeling," First IEEE Conf. on Smart Grid Communic., Gaithersburg-Time Power Markets for Energy and Reserves Incorporating Local Distribution Network Costs and Congestion," 48

  10. Smart Meters and a Smarter Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart Grid RFIGrid: Enabler ofSmart Meters

  11. A Distortion-Theoretic Perspective for Redundant Metering Security in a Smart Grid

    E-Print Network [OSTI]

    Kundur, Deepa

    A Distortion-Theoretic Perspective for Redundant Metering Security in a Smart Grid Mustafa El--In a smart grid environment some customers employ third-party meters and terminals for integrity verification of the smart meter power measurements reported by the electric utility company. We address the security issues

  12. Compressed Meter Reading for Delay-sensitive and Secure Load Report in Smart Grid

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    of smart meters, which collects the current load of smart meters installed at each home and then forwards1 Compressed Meter Reading for Delay-sensitive and Secure Load Report in Smart Grid Husheng Li, Rukun Mao, Lifeng Lai and Robert. C. Qiu Abstract-- It is a key task in smart grid to send the readings

  13. Survivable Smart Grid Communication: Smart-Meters Meshes to the Rescue

    E-Print Network [OSTI]

    Tague, Patrick

    Survivable Smart Grid Communication: Smart-Meters Meshes to the Rescue Arjun P. Athreya and Patrick flattening process. This process involves smart-meters and other disaster surviving elements of higher system as a function of outage area, smart-meter density and smart-meter's neighborhood size. The results from

  14. Advanced metering techniques in the federal sector

    SciTech Connect (OSTI)

    Szydlowski, R.F.; Chvala, W.D. Jr.; Halverson, M.A.

    1994-12-01T23:59:59.000Z

    The lack of utility metering in the federal sector has hampered introduction of direct billing of individual activities at most military installations. Direct billing will produce accountability for the amount of energy used and is a positive step toward self-directed energy conservation. For many installations, automatic meter reading (AMR) is a cost-effective way to increase the number of meters while reducing labor requirements and providing energy conservation analysis capabilities. The communications technology used by some of the AMR systems provides other demand-side management (DSM) capabilities. This paper summarizes the characteristics and relative merits of several AMR/DSM technologies that may be appropriate for the federal sector. A case study of an AMR system being installed at Fort Irwin, California, describes a cost-effective two-way radio communication system used for meter reading and load control.

  15. Towards a Secure, Wireless-Based, Home Area Network for Metering in Smart Grids

    E-Print Network [OSTI]

    Namboodiri, Vinod

    1 Towards a Secure, Wireless-Based, Home Area Network for Metering in Smart Grids Vinod Namboodiri and the consumer. This work takes a comprehensive look at wireless security in the smart meter-based home, Student Member, IEEE, Ward Jewell, Fellow, IEEE Abstract--Compared to the conventional grid, the smart

  16. Capacity Analysis of a Wireless Backhaul for Metering in the Smart Grid

    E-Print Network [OSTI]

    Namboodiri, Vinod

    Capacity Analysis of a Wireless Backhaul for Metering in the Smart Grid Babak Karimi and Vinod. With the introduction of AMI technology, two-way communication between a smart meter (SM) and the control center, as well as between the smart meter and customer loads would be facilitated for demand response, dynamic

  17. Value creation and value capture of advanced electricity meter information

    E-Print Network [OSTI]

    Oesterlin, Ulf

    2011-01-01T23:59:59.000Z

    Advanced or smart metering has been a hot topic in the electricity community for several years. Despite the excitement about the technology, few business cases are actually able to justify the investment cost. One reason ...

  18. advanced metering techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Assessment of Demand Response and Advanced Metering Power Transmission, Distribution and Plants Websites...

  19. Advanced Metering Implementations - A Perspective from Federal Sector

    SciTech Connect (OSTI)

    Eaarni, Shankar

    2014-08-11T23:59:59.000Z

    Federal mandate (EPACT 2005) requires that federal buildings install advanced electrical meters-meters capable of providing data at least daily and measuring the consumption of electricity at least hourly. This work presents selected advanced metering implementations to understand some of the existing practices related to data capture and to understand how the data is being translated into information and knowledge that can be used to improve building energy and operational performance to meet federal energy reduction mandates. This study highlights case studies to represent some of the various actions that are being taken based on the data that are being collected to improve overall energy performance of these buildings. Some of these actions include- individualized tenant billing and energy forecasting, benchmarking, identifying energy conservation measures, measurement and verification.

  20. Vids4Grids: Smart Meters and Super Cables

    Broader source: Energy.gov [DOE]

    Find out more about the power engineers behind the exciting new technologies that are essential to constructing a national Smart Grid.

  1. High-Performance Computing for Advanced Smart Grid Applications

    SciTech Connect (OSTI)

    Huang, Zhenyu; Chen, Yousu

    2012-07-06T23:59:59.000Z

    The power grid is becoming far more complex as a result of the grid evolution meeting an information revolution. Due to the penetration of smart grid technologies, the grid is evolving as an unprecedented speed and the information infrastructure is fundamentally improved with a large number of smart meters and sensors that produce several orders of magnitude larger amounts of data. How to pull data in, perform analysis, and put information out in a real-time manner is a fundamental challenge in smart grid operation and planning. The future power grid requires high performance computing to be one of the foundational technologies in developing the algorithms and tools for the significantly increased complexity. New techniques and computational capabilities are required to meet the demands for higher reliability and better asset utilization, including advanced algorithms and computing hardware for large-scale modeling, simulation, and analysis. This chapter summarizes the computational challenges in smart grid and the need for high performance computing, and present examples of how high performance computing might be used for future smart grid operation and planning.

  2. 2010 U.S. Smart Grid Vendor Ecosystem Report on the companies...

    Energy Savers [EERE]

    smart grid landscape The Smart Grid vendor ecosystem is an increasingly interdependent web of companies. Vendors of Advanced Metering Infrastructure (AMI) products (meters,...

  3. The practical equity implications of advanced metering infrastructure

    SciTech Connect (OSTI)

    Felder, Frank A.

    2010-07-15T23:59:59.000Z

    Reductions in advanced metering costs and the efficiency benefits of dynamic pricing make a compelling case to adopt both, particularly for industrial and commercial facilities. Regulators should seriously consider such policies for residential households as well. Regulators can take meaningful steps to mitigate, if not entirely offset, the possibility that some low-income ratepayers may have higher electricity bills with AM and DP. (author)

  4. ESB Smart Meter Projects (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek42EOPEPODESB Smart Meter

  5. On the Scalable Collection of Metering Data in Smart Grids through Message Concatenation

    E-Print Network [OSTI]

    Namboodiri, Vinod

    , demand-side management, to name a few. A big challenge for smart grid application scenarios issue of how to communicate and handle consumer data collected by electric utilities and manage limited center, as well as between the smart meter and consumer appliances, would be facilitated for demand

  6. A Scalable Communication Architecture for Advanced Metering Infrastructure

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , Communication Architecture, Inter-connecting Overlays. I. INTRODUCTION In AMI system, smart meters measure of data is collected from each smart meter every 15 minutes [Bernaudo et al 2010]. In addition, meter data, the connection from the MDMSs to smart meters following the client-server model as normally to be compatible

  7. Designing and Operating Through Compromise: Architectural Analysis of CKMS for the Advanced Metering Infrastructure

    SciTech Connect (OSTI)

    Duren, Mike [Sypris Electronics, LLC] [Sypris Electronics, LLC; Aldridge, Hal [ORNL] [ORNL; Abercrombie, Robert K [ORNL] [ORNL; Sheldon, Frederick T [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Compromises attributable to the Advanced Persistent Threat (APT) highlight the necessity for constant vigilance. The APT provides a new perspective on security metrics (e.g., statistics based cyber security) and quantitative risk assessments. We consider design principals and models/tools that provide high assurance for energy delivery systems (EDS) operations regardless of the state of compromise. Cryptographic keys must be securely exchanged, then held and protected on either end of a communications link. This is challenging for a utility with numerous substations that must secure the intelligent electronic devices (IEDs) that may comprise complex control system of systems. For example, distribution and management of keys among the millions of intelligent meters within the Advanced Metering Infrastructure (AMI) is being implemented as part of the National Smart Grid initiative. Without a means for a secure cryptographic key management system (CKMS) no cryptographic solution can be widely deployed to protect the EDS infrastructure from cyber-attack. We consider 1) how security modeling is applied to key management and cyber security concerns on a continuous basis from design through operation, 2) how trusted models and key management architectures greatly impact failure scenarios, and 3) how hardware-enabled trust is a critical element to detecting, surviving, and recovering from attack.

  8. Basis for the US Modern Grid Strategy - A Changing World

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Metering Infrastructure, distributed generation, wind turbine farms, and a few Demand Response programs. Value of the Electricity Grid The electric grid plays an...

  9. Maturity Model for Advancing Smart Grid Interoperability

    SciTech Connect (OSTI)

    Knight, Mark; Widergren, Steven E.; Mater, J.; Montgomery, Austin

    2013-10-28T23:59:59.000Z

    Abstract—Interoperability is about the properties of devices and systems to connect and work properly. Advancing interoperability eases integration and maintenance of the resulting interconnection. This leads to faster integration, lower labor and component costs, predictability of projects and the resulting performance, and evolutionary paths for upgrade. When specifications are shared and standardized, competition and novel solutions can bring new value streams to the community of stakeholders involved. Advancing interoperability involves reaching agreement for how things join at their interfaces. The quality of the agreements and the alignment of parties involved in the agreement present challenges that are best met with process improvement techniques. The GridWise® Architecture Council (GWAC) sponsored by the United States Department of Energy is supporting an effort to use concepts from capability maturity models used in the software industry to advance interoperability of smart grid technology. An interoperability maturity model has been drafted and experience is being gained through trials on various types of projects and community efforts. This paper describes the value and objectives of maturity models, the nature of the interoperability maturity model and how it compares with other maturity models, and experiences gained with its use.

  10. Advanced Grid Integration (AGI) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVM LoanActiveMission » Advanced Grid Integration

  11. Category:Smart Grid Projects - Advanced Metering Infrastructure | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo BackLocation MediaGrant Projects

  12. US Recovery Act Smart Grid Projects - Advanced Metering Infrastructure |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpTypefor Africa |Green6NFCRCOpen Energy

  13. ODUSD (I&E) Facilities Energy Program Advanced Metering Policy

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers the U.S. Department of Defense's (DoD's) metering policy, including implementation challenges and utility partnerships.

  14. What will the Smart Grid Look Like?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and education they need to effectively utilize the new options provided by the Smart Grid. CE includes solutions such as Advanced Metering Infrastructure (AMI), home...

  15. ARPA-E: Advancing the Electric Grid

    ScienceCinema (OSTI)

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2014-03-13T23:59:59.000Z

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  16. ARPA-E: Advancing the Electric Grid

    SciTech Connect (OSTI)

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2014-02-24T23:59:59.000Z

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  17. advanced info-communications infrastructure: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: and delivery systems are transi- tioning to a new computerized "smart grid". One of the principle com- ponents of the smart grid is an advanced metering...

  18. Smart Grid Newsletter ? The Regulators Role in Grid Modernization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Smart Grid by providing them with information, control and options. AMI includes smart meters for advanced measurement, an integrated two- way communications...

  19. A Grid Resource Broker Supporting Advance Reservations and

    E-Print Network [OSTI]

    Elmroth, Erik

    for resource selection. Based on the user's identification of relevant benchmarks and an estimated executionA Grid Resource Broker Supporting Advance Reservations and Benchmark-Based Resource Selection Erik of the resource manager include advance reservations, resource selection based on computer benchmark results

  20. Advanced Metering Plan for Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings

    SciTech Connect (OSTI)

    Pope, Jason E.; Olson, Norman J.; Berman, Marc J.; Schielke, Dale R.

    2011-08-17T23:59:59.000Z

    This updated Advanced Metering Plan for monitoring whole building energy use in Pacific Northwest National Laboratory (PNNL) EMS4 buildings on the PNNL campus has been prepared in accordance with the requirements of the Energy Policy Act of 2005 (EPAct 2005), Section 103, U.S. Department of Energy (DOE) Order 430.2B, and Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Federal Energy Management Program, October 2007 (Sullivan et al. 2007). The initial PNNL plan was developed in July 2007 (Olson 2007), updated in September 2008 (Olson et al. 2008), updated in September 2009 (Olson et al. 2009), and updated again in August 2010 (Olson et al. 2010).

  1. South Mississippi Electric Power Association Smart Grid Project (Mississippi)

    Broader source: Energy.gov [DOE]

    South Mississippi Electric Power Association’s (SMEPA) smart grid project involves the deployment of advanced metering infrastructure (AMI) and covers the Generation and Transmission (G&T)...

  2. Self-Organization of a Mesh Hierarchy for Smart Grid Monitoring in Outage Scenarios

    E-Print Network [OSTI]

    Tague, Patrick

    communication infrastructure in the smart grid is not robust for data collection from smart meters during/generating elements in the smart environment to a gateway. We envision this gateway to be a smart meter. The collection of smart-meters and collectors form the smart grid Advanced Metering Infrastructure (AMI) [1

  3. Achieving Differential Privacy of Data Disclosure in the Smart Grid

    E-Print Network [OSTI]

    Wang, Yu

    -grained usage data collection. For example, smart metering data could reveal highly accurate real-time home. Index Terms--Smart Grid, Smart Meter, Privacy, Differential Privacy, Data Disclosure I. INTRODUCTION With the rapid development of the advanced meter infras- tructure (AMI) [1] as part of a move to smart grids

  4. Social Network of Smart-Metered Homes and SMEs for Grid-based Renewable Energy Exchange

    E-Print Network [OSTI]

    Steels, Luc

    makes innovations on smart technologies and processes by building a demand- response decision support and aggregate data from multiple autonomous physical or virtual meters, and (iv) manage the actual energy demand and ensure the achievement of demand response for the community involved. The approach is centered

  5. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews &Appliances Tips:Smart Meters

  6. Cost benefit analysis for the implementation of smart metering...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  7. Net Energy Metering (NEM)

    Broader source: Energy.gov (indexed) [DOE]

    the Arizona Public Service Co. (APS) request for a charge on future rooftop solar panel installations connected to the grid under the state's net energy metering (NEM)...

  8. Chain ReAKTing: Collaborative Advanced Knowledge Technologies in the Combechem Grid

    E-Print Network [OSTI]

    Chen-Burger, Yun-Heh (Jessica)

    and the Combechem grid. The deeper integration supports the publication at source research objective of Combechem.g. the smart laboratory (smart- tea.org), grid-enabled instrumentation, data tracking for analysis, methodologyChain ReAKTing: Collaborative Advanced Knowledge Technologies in the Combechem Grid Michelle

  9. On the Capacity of a Wireless Backhaul for the Distribution Level of the Smart Grid

    E-Print Network [OSTI]

    Namboodiri, Vinod

    , Advanced Metering Infrastructure (AMI), Communications, Smart Meter, Capacity. I. INTRODUCTION THE need1 On the Capacity of a Wireless Backhaul for the Distribution Level of the Smart Grid Babak Karimi distribution. The advanced metering infrastructure (AMI) is one such application scenario where bidirectional

  10. Houston's Smart Grid: Transforming the Future of Electric Distribution & Energy Consumption 

    E-Print Network [OSTI]

    Bartel, W.

    2012-01-01T23:59:59.000Z

    % saved 52% on event days 13 What?s Next? Smart Meters Were Just The Beginning HAN Devices Smart Appliances Smart Meter Texas Portal Intelligent Grid Phase 1: Customer Insight Smart Meters Storage Electric vehicles Phase 2...: Customer Engagement Micro Grids Aggregated Demand Management Phase 3: Customer Co-Creator of Value 2010 2020 2014 2013 2012 2011 Price control / load control Advanced Grid 14 We can?t do it alone Per the DOE Grant Agreement,: ?If you...

  11. Advancing Smart Grid Interoperability and Implementing NIST's Interoperability Roadmap

    SciTech Connect (OSTI)

    Basso,T.; DeBlasio, R.

    2010-04-01T23:59:59.000Z

    The IEEE American National Standards project P2030TM addressing smart grid interoperability and the IEEE 1547 series of standards addressing distributed resources interconnection with the grid have been identified in priority action plans in the Report to NIST on the Smart Grid Interoperability Standards Roadmap. This paper presents the status of the IEEE P2030 development, the IEEE 1547 series of standards publications and drafts, and provides insight on systems integration and grid infrastructure. The P2030 and 1547 series of standards are sponsored by IEEE Standards Coordinating Committee 21.

  12. 2014 Advanced Grid Modeling Peer Review Presentations - Day One...

    Broader source: Energy.gov (indexed) [DOE]

    Measurement-Based Tools For Proactive Operator Decision-Support - Alberto Del Rosso, EPRI Dynamic Paradigm for Grid Operations - Henry Huang, PNNL Development of Dynamic Models...

  13. 2014 Advanced Grid Modeling Peer Review Presentations - Day One...

    Broader source: Energy.gov (indexed) [DOE]

    Function Based Remedial Action Screening Tool Using Real-Time Data - Joydeep Mitra, Michigan State University Next Generation Data Grid Architecture - Arjun Shankar, UTK,...

  14. 2014 Advanced Grid Modeling Peer Review Presentations - Day Two...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Grid Optimization under Uncertainty: Formulations, Algorithms, and High-Performance Computing - Victor Zavala, ANL, Jianhui Wang, ANL Chance-constrained OPF and Unit...

  15. Solar Electric Grid Integration- Advanced Concepts (SEGIS-AC) Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Solar Electric Grid Integration – Advanced Concepts (SEGIS-AC) program, DOE is funding solar projects that are targeting ways to develop power electronics and build smarter, more...

  16. 2014 Advanced Grid Modeling Peer Review Presentations - Day Two...

    Office of Environmental Management (EM)

    with Advanced Computing - Yousu Chen, PNNL Advancing the Adoption of High Performance Computing for Time Domain Simulation - Liang Min, LLNL, Carol Woodward, LLNL An...

  17. Human Factors Evaluation of Advanced Electric Power Grid Visualization Tools

    SciTech Connect (OSTI)

    Greitzer, Frank L.; Dauenhauer, Peter M.; Wierks, Tamara G.; Podmore, Robin

    2009-04-01T23:59:59.000Z

    This report describes initial human factors evaluation of four visualization tools (Graphical Contingency Analysis, Force Directed Graphs, Phasor State Estimator and Mode Meter/ Mode Shapes) developed by PNNL, and proposed test plans that may be implemented to evaluate their utility in scenario-based experiments.

  18. Advanced Security Acceleration Project for Smart Grid (ASAP-SG...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Acceleration Project for Smart Grid (ASAP-SG) June 12, 2013 Problem Statement: The goal of this project is to develop a set of computer and network security requirements...

  19. An Advanced Framework for Improving Situational Awareness in Electric Power Grid Operation

    SciTech Connect (OSTI)

    Chen, Yousu; Huang, Zhenyu; Zhou, Ning

    2011-10-17T23:59:59.000Z

    With the deployment of new smart grid technologies and the penetration of renewable energy in power systems, significant uncertainty and variability is being introduced into power grid operation. Traditionally, the Energy Management System (EMS) operates the power grid in a deterministic mode, and thus will not be sufficient for the future control center in a stochastic environment with faster dynamics. One of the main challenges is to improve situational awareness. This paper reviews the current status of power grid operation and presents a vision of improving wide-area situational awareness for a future control center. An advanced framework, consisting of parallel state estimation, state prediction, parallel contingency selection, parallel contingency analysis, and advanced visual analytics, is proposed to provide capabilities needed for better decision support by utilizing high performance computing (HPC) techniques and advanced visual analytic techniques. Research results are presented to support the proposed vision and framework.

  20. Net Metering (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    Ontario's net metering regulation allows you to send electricity generated from renewable sources to the electrical grid for a credit toward your energy costs. Here's how it works. Your utility...

  1. 2014 Advanced Grid Modeling Program Peer Review Presentations...

    Broader source: Energy.gov (indexed) [DOE]

    Modeling Research Program leverages scientific research in mathematics for application to power system models and software tools. 17 projects were presented at the 2014 Advanced...

  2. Unified Architecture for Large-Scale Attested Metering Michael LeMay, George Gross, Carl A. Gunter, Sanjam Garg

    E-Print Network [OSTI]

    Gross, George

    Unified Architecture for Large-Scale Attested Metering Michael LeMay, George Gross, Carl A. Gunter introduce a secure architecture called an attested me- ter for advanced metering that supports large, if they are not based upon a secure system architecture, they could in fact become one of the grid's most significant

  3. EWEC 2006 Scientific Track Advanced Forecast Systems for the Grid Integration of 25 GW

    E-Print Network [OSTI]

    Heinemann, Detlev

    forecasts, smoothing effects Abstract The economic success of offshore wind farms in liberalised electricity of offshore wind farms, their electricity production must be known well in advance to allow an efficient Oldenburg, Germany Key words: Offshore wind power, grid integration, short-term prediction, regional

  4. Grid Resource Brokering Algorithms Enabling Advance Reservations and Resource Selection Based on Performance Predictions

    E-Print Network [OSTI]

    Elmroth, Erik

    and an estimated execution time on some spec- ified resource, the broker estimates the execution time for all resources of interest. This requires that a relevant set of benchmark results are available fromGrid Resource Brokering Algorithms Enabling Advance Reservations and Resource Selection Based

  5. Advanced Modeling Grid Research Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVM LoanActiveMission »Advanced Modeling

  6. ECE 437/537 -Smart Grid Catalog Description: Fundamentals of smart power grids. Technology advances in transmission

    E-Print Network [OSTI]

    . · Smart generation. Energy storage. Microgrids. · Substation intelligence. · Transmission systems. PhasorECE 437/537 - Smart Grid Catalog Description: Fundamentals of smart power grids. Technology Cotilla-Sanchez Course content: · Introduction to smart power grids. Technology and policy background

  7. Net Metering

    Broader source: Energy.gov [DOE]

    In April 2008, Kentucky enacted legislation that expanded its net metering law by requiring utilities to offer net metering to customers that generate electricity with photovoltaic (PV), wind,...

  8. IEEE TRANSACTIONS ON SMART GRID, VOL. 2, NO. 4, DECEMBER 2011 835 Cyber Attack Exposure Evaluation Framework for

    E-Print Network [OSTI]

    Manimaran, Govindarasu

    . The coupling of the power infrastructure with complex computer networks substantially expand current cyber, that is, threats, vulnerabilities, and attack consequences for current and emerging power grid systems. The substantial attack surface presented by the advanced metering infrastructure (AMI) along

  9. Smart Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Meters, Conductor, Surge Protection Devices, Connectors, Lighting Controls, Grid-Scale Battery Storage, Grid-Scale Flywheel Energy for Frequency Regulation, Automation...

  10. Net Metering

    Broader source: Energy.gov [DOE]

    In Massachusetts, the state's investor-owned utilities must offer net metering. Municipal utilities are not obligated to offer net metering, but they may do so voluntarily. (There are no electric...

  11. Net Metering

    Broader source: Energy.gov [DOE]

    The Indiana Utility Regulatory Commission (IURC) adopted rules for net metering in September 2004, requiring the state's investor-owned utilities (IOUs) to offer net metering to all electric...

  12. Net Metering

    Broader source: Energy.gov [DOE]

    New Jersey's net-metering rules apply to all residential, commercial and industrial customers of the state's investor-owned utilities and energy suppliers (and certain competitive municipal...

  13. Net Metering

    Broader source: Energy.gov [DOE]

    Wyoming enacted legislation in February 2001 that established statewide net metering. The law applies to investor-owned utilities, electric cooperatives and irrigation districts. Eligible...

  14. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering has been available in Oklahoma since 1988 under Oklahoma Corporation Commission (OCC) Order 326195. The OCC's rules require investor-owned utilities and electric cooperatives under...

  15. Net Metering

    Broader source: Energy.gov [DOE]

    Missouri enacted legislation in June 2007 (S.B. 54)* requiring all electric utilities -- investor-owned utilities, municipal utilities and electric cooperatives -- to offer net metering to...

  16. Metering Approaches

    Broader source: Energy.gov [DOE]

    Metering approaches vary depending on facility design and intended purpose (e.g., administrative offices, laboratory, warehouse, etc.). No one approach fits all applications. In fact, different...

  17. Net Metering

    Broader source: Energy.gov [DOE]

    Illinois enacted legislation in August 2007 (S.B. 680) requiring investor-owned utilities in Illinois to begin offering net metering by April 1, 2008. In May 2008, the Illinois Commerce Commissio...

  18. Net Metering

    Broader source: Energy.gov [DOE]

    NOTE: In December 15, 2014 the New York Public Service Commission (PSC) issued an order directing the investor owned utilities in the State to file net metering tariff revisions doubling the agg...

  19. Net Metering

    Broader source: Energy.gov [DOE]

    Nevada's original net-metering law for renewable-energy systems was enacted in 1997 and amended in 2001, 2003, 2005, 2007, 2011, 2013, and 2015. Systems up to one megawatt (MW) in capacity that...

  20. Net Metering

    Broader source: Energy.gov [DOE]

    Note: The program web site listed above links to the Maryland Public Service Commission's Net Metering Working Group page, which contains a variety of information resources related to the ongoing...

  1. Net Metering

    Broader source: Energy.gov [DOE]

    [http://nebraskalegislature.gov/FloorDocs/101/PDF/Final/LB436.pdf LB 436], signed in May 2009, established statewide net metering rules for all electric utilities in Nebraska. The rules apply to...

  2. Net Metering

    Broader source: Energy.gov [DOE]

    The North Carolina Utilities Commission (NCUC) requires the state’s three investor-owned utilities -- Duke Energy, Progress Energy and Dominion North Carolina Power -- to make net metering...

  3. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to all "qualifying facilities" (QFs), as defined by the federal Public Utility Regulatory Policies Act of 1978 (PURPA)*, which pertains to systems up to 80 megawatts (MW)...

  4. Net Metering

    Broader source: Energy.gov [DOE]

    Montana's net-metering law, enacted in July 1999, applies to all customers of investor-owned utilities. Systems up to 50 kilowatts (kW) in capacity that generate electricity using solar, wind or...

  5. Net Metering

    Broader source: Energy.gov [DOE]

    The Public Service Commission of Wisconsin (PSC) issued an order on January 26, 1982 requiring all regulated utilities to file tariffs allowing net metering to customers that generate electricity...

  6. Net Metering

    Broader source: Energy.gov [DOE]

    Rhode Island allows net metering for systems up to five megawatts (MW) in capacity that are designed to generate up to 100% of the electricity that a home or other facility uses. Systems that...

  7. Net Metering

    Broader source: Energy.gov [DOE]

    '''''Note: In March 2011, Virginia enacted HB 1983, which increased the residential net-metering limit to 20 kW. However, residential facilities with a capacity of greater than 10 kW must pay a...

  8. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering in West Virginia is available to all retail electricity customers. System capacity limits vary depending on the customer type and electric utility type, according to the following...

  9. Net Metering

    Broader source: Energy.gov [DOE]

    North Dakota's net-metering policy, adopted in 1991 by the state Public Service Commission (PSC), applies to renewable-energy systems and combined heat and power (CHP) systems up to 100 kilowatts ...

  10. Net Metering

    Broader source: Energy.gov [DOE]

    Oregon has established separate net-metering programs for the state's primary investor-owned utilities (PGE and PacifiCorp), and for its municipal utilities and electric cooperatives.

  11. Net Metering

    Broader source: Energy.gov [DOE]

    '''''The MPSC is reviewing state interconnection and net metering policies in [http://efile.mpsc.state.mi.us/efile/viewcase.php?casenum=15919&submit.x=... Case U-15919].'''''...

  12. Net Metering

    Broader source: Energy.gov [DOE]

    '''''NOTE: Legislation enacted in 2011 and 2012 (S.B. 1652, H.B. 3036, and S.B. 3811) has changed several aspects of net metering in Illinois. For customers in competitive classes as of July 1,...

  13. Net Metering

    Broader source: Energy.gov [DOE]

    Utah law requires their only investor-owned utility, Rocky Mountain Power (RMP), and most electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wind...

  14. Net Metering

    Broader source: Energy.gov [DOE]

    Washington's net-metering law applies to systems up to 100 kilowatts (kW) in capacity that generate electricity using solar, wind, hydro, biogas from animal waste, or combined heat and power...

  15. Net Metering

    Broader source: Energy.gov [DOE]

    '''''Note: H.F. 729, enacted in May 2013, includes many changes to Minnesota's net metering law. These changes are described above, but most will not take effect until rules are implemented at the...

  16. automated seepage meters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Index 1 An Overview on Advance Metering System CiteSeer Summary: Abstract The term "Smart meter " typically refers to an electrical meter, but the term is also starting to be...

  17. Smart Meter Security Infrastructure: Some Observations

    E-Print Network [OSTI]

    Ladkin, Peter B.

    , access Smart Grid nodes via the Smart Meter, or pretend electricity use that is other than the actual use companies must prepare for large scale failure of Smart Grid nodes. There must be fallback strategies if there are no special precautions that isolate Smart Grid nodes from compromised nodes. To clean a compromised Smart

  18. Accelerating development of advanced inverters : evaluation of anti-islanding schemes with grid support functions and preliminary laboratory demonstration.

    SciTech Connect (OSTI)

    Neely, Jason C.; Gonzalez, Sigifredo; Ropp, Michael [Northern Plains Power Technologies, Brookings, SD] [Northern Plains Power Technologies, Brookings, SD; Schutz, Dustin [Northern Plains Power Technologies, Brookings, SD] [Northern Plains Power Technologies, Brookings, SD

    2013-11-01T23:59:59.000Z

    The high penetration of utility interconnected photovoltaic (PV) systems is causing heightened concern over the effect that variable renewable generation will have on the electrical power system (EPS). These concerns have initiated the need to amend the utility interconnection standard to allow advanced inverter control functionalities that provide: (1) reactive power control for voltage support, (2) real power control for frequency support and (3) better tolerance of grid disturbances. These capabilities are aimed at minimizing the negative impact distributed PV systems may have on EPS voltage and frequency. Unfortunately, these advanced control functions may interfere with island detection schemes, and further development of advanced inverter functions requires a study of the effect of advanced functions on the efficacy of antiislanding schemes employed in industry. This report summarizes the analytical, simulation and experimental work to study interactions between advanced inverter functions and anti-islanding schemes being employed in distributed PV systems.

  19. Saturation meter

    DOE Patents [OSTI]

    Gregurech, S.

    1984-08-01T23:59:59.000Z

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  20. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean...

  1. Technologie Smart metering Technologie Smart metering

    E-Print Network [OSTI]

    Technologie Smart metering Technologie Smart metering 29Bulletin 9/2014 Innovative Dienste mit intelligenten Stromzählern Standby- und Kühlgeräteverbrauch aus Smart-Meter-Daten Smart Meter ermöglichen weit, kommunikationsfähigen Stromzählern, fort. Smart Meter ermöglichen eine effizi- entere Rechnungsstellung, da sie Mess

  2. Scotia Energy Electricity- Net Metering Program (Nova Scotia, Canada)

    Broader source: Energy.gov [DOE]

    Nova Scotia Power Inc. Net Metering allows residential and commercial customers to connect small, renewable energy generating units to the provincial power grid.

  3. Energy Secretary Chu Announces Five Million Smart Meters Installed...

    Office of Environmental Management (EM)

    metering infrastructure (AMI), distribution automation technologies, new electricity pricing programs, and advanced monitoring equipment for the transmission system. The goal...

  4. Palau- Net Metering

    Broader source: Energy.gov [DOE]

    The Palau Net Metering Act of 2009 established net metering on the Island of Palau. Net metering was implemented in order to:

  5. Overture: An advanced object-oriented software system for moving overlapping grid computations

    SciTech Connect (OSTI)

    Brown, D.L.; Henshaw, W.D.

    1996-09-01T23:59:59.000Z

    While the development of high-level, easy-to-use, software libraries for numerical computations has been successful in some areas (e.g. linear system solvers, ODE solvers, grid generation), this has been an elusive goal for developers of partial differential equation (PDE) solvers. The advent of new high level languages such as C++ has begun to make this an achievable goal. This report discusses an object- oriented environment that we are developing for solving problems on overlapping (Chimera) grids. The goal of this effort is to support flexible PDE solvers on adaptive, moving, overlapping grids that cover a domain and overlap where they meet. Solutions values at the overlap are determined by interpolation. The overlapping grid approach is particularly efficient for rapidly generating high- quality grids for moving geometries since as the component grids move, only the list of interpolation points changes, and the component grids do not have to be regenerated. We use structured component grids so that efficient, fast finite-difference algorithms can be used. Oliger-Berger-Corella type mesh refinement is used to efficiently resolve fine features of the flow.

  6. Grid Cryptographic Simulation: A Simulator to Evaluate the Scalability of the X.509 Standard in the Smart Grid

    E-Print Network [OSTI]

    -granularity management of the power grid. The basic unit of the consumer-side smart grid is the electric meter. A meter from many meters to make intelligent service decisions. Visions of the smart grid range from at minimum in the Smart Grid Tucker L. Ward Senior Honors Thesis Dartmouth College, Hanover, NH, USA Dartmouth Computer

  7. PHY and MAC Layer Design of Hybrid Spread Spectrum Based Smart Meter Network

    SciTech Connect (OSTI)

    Kuruganti, Phani Teja [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    The smart grid is a combined process of revitalizing the traditional power grid applications and introducing new applications to improve the efficiency of power generation, transmission and distribution. This can be achieved by leveraging advanced communication and networking technologies. Therefore the selection of the appropriate communication technology for different smart grid applications has been debated a lot in the recent past. After comparing different possible technologies, a recent research study has arrived at a conclusion that the 3G cellular technology is the right choice for distribution side smart grid applications like smart metering, advanced distribution automation and demand response management system. In this paper, we argue that the current 3G/4G cellular technologies are not an appropriate choice for smart grid distribution applications and propose a Hybrid Spread Spectrum (HSS) based Advanced Metering Infrastructure (AMI) as one of the alternatives to 3G/4G technologies. We present a preliminary PHY and MAC layer design of a HSS based AMI network and evaluate their performance using matlab and NS2 simulations. Also, we propose a time hierarchical scheme that can significantly reduce the volume of random access traffic generated during blackouts and the delay in power outage reporting.

  8. Advanced simulation for analysis of critical infrastructure : abstract cascades, the electric power grid, and Fedwire.

    SciTech Connect (OSTI)

    Glass, Robert John, Jr.; Stamber, Kevin Louis; Beyeler, Walter Eugene

    2004-08-01T23:59:59.000Z

    Critical Infrastructures are formed by a large number of components that interact within complex networks. As a rule, infrastructures contain strong feedbacks either explicitly through the action of hardware/software control, or implicitly through the action/reaction of people. Individual infrastructures influence others and grow, adapt, and thus evolve in response to their multifaceted physical, economic, cultural, and political environments. Simply put, critical infrastructures are complex adaptive systems. In the Advanced Modeling and Techniques Investigations (AMTI) subgroup of the National Infrastructure Simulation and Analysis Center (NISAC), we are studying infrastructures as complex adaptive systems. In one of AMTI's efforts, we are focusing on cascading failure as can occur with devastating results within and between infrastructures. Over the past year we have synthesized and extended the large variety of abstract cascade models developed in the field of complexity science and have started to apply them to specific infrastructures that might experience cascading failure. In this report we introduce our comprehensive model, Polynet, which simulates cascading failure over a wide range of network topologies, interaction rules, and adaptive responses as well as multiple interacting and growing networks. We first demonstrate Polynet for the classical Bac, Tang, and Wiesenfeld or BTW sand-pile in several network topologies. We then apply Polynet to two very different critical infrastructures: the high voltage electric power transmission system which relays electricity from generators to groups of distribution-level consumers, and Fedwire which is a Federal Reserve service for sending large-value payments between banks and other large financial institutions. For these two applications, we tailor interaction rules to represent appropriate unit behavior and consider the influence of random transactions within two stylized networks: a regular homogeneous array and a heterogeneous scale-free (fractal) network. For the stylized electric power grid, our initial simulations demonstrate that the addition of geographically unrestricted random transactions can eventually push a grid to cascading failure, thus supporting the hypothesis that actions of unrestrained power markets (without proper security coordination on market actions) can undermine large scale system stability. We also find that network topology greatly influences system robustness. Homogeneous networks that are 'fish-net' like can withstand many more transaction perturbations before cascading than can scale-free networks. Interestingly, when the homogeneous network finally cascades, it tends to fail in its entirety, while the scale-free tends to compartmentalize failure and thus leads to smaller, more restricted outages. In the case of stylized Fedwire, initial simulations show that as banks adaptively set their individual reserves in response to random transactions, the ratio of the total volume of transactions to individual reserves, or 'turnover ratio', increases with increasing volume. The removal of a bank from interaction within the network then creates a cascade, its speed of propagation increasing as the turnover ratio increases. We also find that propagation is accelerated by patterned transactions (as expected to occur within real markets) and in scale-free networks, by the 'attack' of the most highly connected bank. These results suggest that the time scale for intervention by the Federal Reserve to divert a cascade in Fedwire may be quite short. Ongoing work in our cascade analysis effort is building on both these specific stylized applications to enhance their fidelity as well as embracing new applications. We are implementing markets and additional network interactions (e.g., social, telecommunication, information gathering, and control) that can impose structured drives (perturbations) comparable to those seen in real systems. Understanding the interaction of multiple networks, their interdependencies, and in particular, the underlying mechanisms f

  9. Comments of DRSG to DOE Smart Grid RFI: Addressing Policy and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to smart grid Implementation: eMeter Response to Department of Energy RFI Association of Home Appliance Manufacturers Comments on Smart Grid RFI ASHRAE draft regarding Smart Grid...

  10. Optimal Privacy-Preserving Energy Management for Smart Meters

    E-Print Network [OSTI]

    Reisslein, Martin

    Optimal Privacy-Preserving Energy Management for Smart Meters Lei Yang, Xu Chen, Junshan Zhang Abstract--Smart meters, designed for information collection and system monitoring in smart grid, report a tradeoff between the smart meter data privacy and the electricity bill. In general, a major challenge

  11. Security Architecture of Smart Metering Systems Natasa Zivic1

    E-Print Network [OSTI]

    Boyer, Edmond

    Security Architecture of Smart Metering Systems Natasa Zivic1 and Christoph Ruland1 1 University.Zivic, Christoph.Ruland}@uni-siegen.de Abstract. The main goals of smart metering are the reduction of costs dynamically the power generation and distribution to the requested energy by smart grids. Metering devices

  12. Advanced Metering - Using advanced Metering to Improve Building...

    Broader source: Energy.gov (indexed) [DOE]

    * Tenant Perspective- Impact their needs have on Energy Bottomline - ie Computer RoomsData Centers OT Utility Requests Office of Facilities Management & Services Programs 56...

  13. Addressing Policy and Logistical Challenges to smart grid Implementati...

    Energy Savers [EERE]

    Addressing Policy and Logistical Challenges to smart grid Implementation: eMeter Response to Department of Energy RFI Addressing Policy and Logistical Challenges to smart grid...

  14. Probability-Based Software for Grid Optimization: Improved Power System Operations Using Advanced Stochastic Optimization

    SciTech Connect (OSTI)

    None

    2012-02-24T23:59:59.000Z

    GENI Project: Sandia National Laboratories is working with several commercial and university partners to develop software for market management systems (MMSs) that enable greater use of renewable energy sources throughout the grid. MMSs are used to securely and optimally determine which energy resources should be used to service energy demand across the country. Contributions of electricity to the grid from renewable energy sources such as wind and solar are intermittent, introducing complications for MMSs, which have trouble accommodating the multiple sources of price and supply uncertainties associated with bringing these new types of energy into the grid. Sandia’s software will bring a new, probability-based formulation to account for these uncertainties. By factoring in various probability scenarios for electricity production from renewable energy sources in real time, Sandia’s formula can reduce the risk of inefficient electricity transmission, save ratepayers money, conserve power, and support the future use of renewable energy.

  15. Pacific Northwest Demand Response Project Lee Hall, BPA Smart Grid Program Manager

    E-Print Network [OSTI]

    Pacific Northwest Demand Response Project Lee Hall, BPA Smart Grid Program Manager February 14 utilities to invest in DR Regional situational analysis ­ issues to address #12;Nationally ­ Demand ResponseSource: FERC Demand Response & Advanced Metering Report, February 2011 Peak DR 65,000 MW 1,062 MW Peak DR

  16. A Multi-layer, Data-driven Advanced Reasoning Tool for Intelligent Data Mining and Analysis for Smart Grids

    SciTech Connect (OSTI)

    Lu, Ning; Du, Pengwei; Greitzer, Frank L.; Guo, Xinxin; Hohimer, Ryan E.; Pomiak, Yekaterina G.

    2012-12-31T23:59:59.000Z

    This paper presents the multi-layer, data-driven advanced reasoning tool (M-DART), a proof-of-principle decision support tool for improved power system operation. M-DART will cross-correlate and examine different data sources to assess anomalies, infer root causes, and anneal data into actionable information. By performing higher-level reasoning “triage” of diverse data sources, M-DART focuses on early detection of emerging power system events and identifies highest priority actions for the human decision maker. M-DART represents a significant advancement over today’s grid monitoring technologies that apply offline analyses to derive model-based guidelines for online real-time operations and use isolated data processing mechanisms focusing on individual data domains. The development of the M-DART will bridge these gaps by reasoning about results obtained from multiple data sources that are enabled by the smart grid infrastructure. This hybrid approach integrates a knowledge base that is trained offline but tuned online to capture model-based relationships while revealing complex causal relationships among data from different domains.

  17. Sandia National Laboratories: Advanced Electric Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Electric Systems grid-slide1 grid-slide2 grid-slide3 grid-slide4 Advanced Electric Systems Integrating Renewable Energy into the Electric Grid Why is Grid...

  18. Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system that can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.

  19. Advances in quasioptical grid array technology for millimeter-wave plasma imaging diagnostics

    SciTech Connect (OSTI)

    Rosenau, S. A.; Liang, C.; Chang, C.-C.; Hsu, P. L.; Luhmann, N. C.; Zhang, W.-K.; Li, W.-Y.; Domier, C. W.; Hsia, R. P.

    2001-01-01T23:59:59.000Z

    Quasioptical grid array technologies can provide low cost, wide bandwidth sources supplying 100--500 mW power levels needed for reflectometric and electron cyclotron imaging of fusion plasmas. Broadband quasioptical overmoded waveguide frequency multiplier grid array systems have been designed, simulated, fabricated, and are under test with a goal of providing Watt level output powers from 50 to 200 GHz. Both 1x8, one-dimensional and 4x4, two-dimensional phased antenna arrays utilizing Schottky varactor loaded transmission lines have been designed, simulated, fabricated, and are being tested. Microelectromechanical systems have been designed and fabricated on silicon wafers with traditional integrated circuit processing techniques, resulting in devices with physical dimensions on the order of a few tens of microns.

  20. Kansas- Net Metering

    Broader source: Energy.gov [DOE]

    Kansas adopted the Net Metering and Easy Connection Act in May 2009 (see K.S.A. 66-1263 through 66-1271), establishing net metering for customers of investor-owned utilities in Kansas. Net metering...

  1. Smart Grid Publications Archive | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    July 2009 The Smart Grid Stakeholder Roundtable Group Perspectives (September 2009) Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A...

  2. IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 4, DECEMBER 2013 2347 Load Curve Data Cleansing and Imputation Via

    E-Print Network [OSTI]

    Giannakis, Georgios

    IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 4, DECEMBER 2013 2347 Load Curve Data Cleansing load curve data corroborate the convergence and effectiveness of the novel D-PCP algorithm. Index Terms--Advanced metering infrastructure, distributed al- gorithms, load curve cleansing and imputation, principal compo

  3. APAC'03 on Advanced Computing, Grid Applications and eResearch Gold Coast, Australia, 29th Sep2nd Oct 2003

    E-Print Network [OSTI]

    Phipps, Steven J.

    , Hobart, Australia 2 CSIRO Marine Research, Hobart, Australia 1 #12;incoming solar radiation [Ebert et al., 1995] and consequently reduces the absorption of solar energy into the upper ocean. The thermodynamicAPAC'03 on Advanced Computing, Grid Applications and eResearch Gold Coast, Australia, 29th Sep­2nd

  4. International Journal of Smart Grid and Clean Energy Smart Grid Security: Threats, Vulnerabilities and Solutions

    E-Print Network [OSTI]

    Aloul, Fadi

    to be able to communicate with smart meters via a Home Area Network (HAN) facilitating efficient powerInternational Journal of Smart Grid and Clean Energy Smart Grid Security: Threats, Vulnerabilities is currently evolving into the smart grid. Smart grid integrates the traditional electrical power grid

  5. AUSTRIAN GRID AUSTRIAN GRID

    E-Print Network [OSTI]

    AUSTRIAN GRID 1/18 AUSTRIAN GRID THE INITIAL VERSION OF SEE-GRID Document Identifier: AG-DA1c-1) #12;AUSTRIAN GRID 2/18 Delivery Slip Name Partner Date Signature From Károly Bósa RISC 31 See cover on page 3 #12;AUSTRIAN GRID 3/18 THE INITIAL VERSION OF SEE-GRID Karoly Bosa Wolfgang

  6. Advancing the State of the Grid in Tennessee | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram Overview 20151SolicitationAdvancedDepartmentDepartment

  7. Advancing the State of the Grid in Tennessee | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartmentDepartment2 DOEX-RayDepartment ofofAdvancing

  8. Advanced Security Acceleration Project for Smart Grid (ASAP-SG) | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvanced ModelingNuclearSecurity

  9. Demand Response and Smart Metering Policy Actions Since the Energy...

    Broader source: Energy.gov (indexed) [DOE]

    This report represents a review of policy developments on demand response and other related areas such as smart meters and smart grid. It has been prepared by the Demand Response...

  10. LADWP- Net Metering (California)

    Broader source: Energy.gov [DOE]

    LADWP allows its customers to net meter their photovoltaic (PV), wind, and hybrid systems with a capacity of not more than one megawatt. LADWP will provide the necessary metering equipment unless...

  11. LADWP- Net Metering

    Broader source: Energy.gov [DOE]

    LADWP allows its customers to net meter their photovoltaic (PV), wind, and hybrid systems with a capacity of not more than one megawatt. LADWP will provide the necessary metering equipment unless...

  12. Progress Energy- Net Metering

    Broader source: Energy.gov [DOE]

    In August 2009, the South Carolina Public Service Commission issued an order mandating net metering be made available by the regulated electric utilities; the order incorporates a net metering...

  13. Net Metering Rules (Arkansas)

    Broader source: Energy.gov [DOE]

    The Net Metering Rules are promulgated under the authority of the Arkansas Public Service Commission. These rules are created to establish rules for net energy metering and interconnection. These...

  14. Duke Energy- Net Metering

    Broader source: Energy.gov [DOE]

    In August 2009, the South Carolina Public Service Commission issued an order mandating net metering be made available by the regulating utilities; the order incorporates a net metering settlement...

  15. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—discusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  16. Metering and the New Federal Requirements of Energy Policy Act 2005

    E-Print Network [OSTI]

    Ream, A.; Verdict, M.

    2006-01-01T23:59:59.000Z

    agencies to meter electricity use in all federal buildings by Oct. 1, 2012 using advanced meters or metering devices that provide data at least daily. Six months after the enactment of EPAct, DOE’s Federal Energy Management Program, or FEMP... Station, Texas ABSTRACT Section 103 of the Energy Policy Act of 2005 (EPAct 2005) (1) mandates the installation of meters and advanced electric meters on all Federal Buildings by 2012 using guidelines developed by the US Department of Energy...

  17. Long Island Smart Metering Pilot Project

    SciTech Connect (OSTI)

    None

    2012-03-30T23:59:59.000Z

    The Long Island Power Authority (LIPA) Smart Meter Pilots provided invaluable information and experience for future deployments of Advanced Metering Infrastructure (AMI), including the deployment planned as part of LIPAâ??s Smart Grid Demonstration Project (DE-OE0000220). LIPA will incorporate lessons learned from this pilot in future deployments, including lessons relating to equipment performance specifications and testing, as well as equipment deployment and tracking issues. LIPA ultimately deployed three AMI technologies instead of the two that were originally contemplated. This enabled LIPA to evaluate multiple systems in field conditions with a relatively small number of meter installations. LIPA experienced a number of equipment and software issues that it did not anticipate, including issues relating to equipment integration, ability to upgrade firmware and software â??over the airâ? (as opposed to physically interacting with every meter), and logistical challenges associated with tracking inventory and upgrade status of deployed meters. In addition to evaluating the technology, LIPA also piloted new Time-of-Use (TOU) rates to assess customer acceptance of time-differentiated pricing and to evaluate whether customers would respond by adjusting their activities from peak to non-peak periods. LIPA developed a marketing program to educate customers who received AMI in the pilot areas and to seek voluntary participation in TOU pricing. LIPA also guaranteed participating customers that, for their initial year on the rates, their electricity costs under the TOU rate would not exceed the amount they would have paid under the flat rates they would otherwise enjoy. 62 residential customers chose to participate in the TOU rates, and every one of them saved money during the first year. 61 of them also elected to stay on the TOU rate â?? without the cost guarantee â?? at the end of that year. The customer who chose not to continue on the rate was also the one who achieved the greatest savings. However, after the first year, the customer in question installed equipment that would have made TOU rates a more costly option than the residential flat rate. During the second year, all but one customer saved money. That customer increased usage during peak hours, and as a result saw an increase in annual costs (as compared to the flat rate) of $24.17. The results were less clear for commercial customers, which LIPA attributes to rate design issues that it will take into account for future deployments. LIPA views this pilot as a complete success. Not only is LIPA better prepared for a larger deployment of AMI, but it is confident that residential customers will accept AMI and TOU rates and shift their energy consumption from peak to non-peak periods in response to pricing. On a larger scale, this will benefit LIPA and all of its customers by potentially lowering peak demand when energy costs are highest.

  18. Sandia Energy - Grid Cyber Vulnerability & Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consequences and Impacts It's important to recognize that adopting these advanced grid-control technologies doesn't just have the potential to increase power grid reliability...

  19. Sandia National Laboratories: Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments On March 3, 2015, in Capabilities, Distribution Grid Integration,...

  20. Deployment of High Resolution Real-Time Distribution Level Metering on Maui: Preprint

    SciTech Connect (OSTI)

    Bank, J.

    2013-01-01T23:59:59.000Z

    In order to support the ongoing Maui Smart Grid demonstration project advanced metering has been deployed at the distribution transformer level in Maui Electric Company's Kihei Circuit on the Island of Maui. This equipment has been custom designed to provide accurately time-stamped Phasor and Power Quality data in real time. Additionally, irradiance sensors have been deployed at a few selected locations in proximity to photovoltaic (PV) installations. The received data is being used for validation of existing system models and for impact studies of future system hardware. Descriptions of the hardware and its installation, and some preliminary metering results are presented. Real-time circuit visualization applications for the data are also under development.

  1. FUTURE POWER GRID INITIATIVE GridOPTICSTM

    E-Print Network [OSTI]

    of individual software products November 2012 PNNL-SA-90162 Ian Gorton Pacific Northwest National Laboratory (509) 375-3850 ian.gorton@pnnl.gov ABOUT FPGI The Future Power Grid Initiative (FPGI) will deliver next National Laboratory's (PNNL) national electric grid research facility, the FPGI will advance the science

  2. artificial grid distortion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Samuel 3 A Distortion-Theoretic Perspective for Redundant Metering Security in a Smart Grid Computer Technologies and Information Sciences Websites Summary: A...

  3. Questions and Answers for the Smart Grid Investment Grant Program...

    Office of Environmental Management (EM)

    Questions and answers related to the reporting of meter installations in the SmartGrid Integrated Project Reporting Information System (SIPRIS), both for the intial report...

  4. Improving the Reliability and Resiliency of the US Electric Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving the Reliability and Resiliency of the US Electric Grid: SGIG Article in Metering International, March 2012 Improving the Reliability and Resiliency of the US Electric...

  5. DC attenuation meter

    DOE Patents [OSTI]

    Hargrove, Douglas L.

    2004-09-14T23:59:59.000Z

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  6. PSEG Long Island- Net Metering

    Broader source: Energy.gov [DOE]

    Although PSEG Long Island’s net metering policy is not governed by the State’s net metering law, the provisions are similar to the State law. Net metering is available for residential, non-reside...

  7. Green Energy Workshop Student Posters Smart Communication of Energy Use and Prediction in a Smart Grid

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    and Prediction in a Smart Grid Software Architecture * Saima Aman, Yogesh Simmhan The increasing deployment of smart meters and other sensor technologies in the Smart Grid. This information-rich Smart Grid environment has opened up research opportunities

  8. Smart Meter Company Boosting Production, Workforce

    Broader source: Energy.gov [DOE]

    A manufacturing facility in South Carolina is producing enough smart meters to reduce annual electricity use by approximately 1.7 million megawatt hours -- and through advanced manufacturing tax credits, just increased the facility's production capability by 20 percent and created 420 jobs.

  9. Guam- Net Metering

    Broader source: Energy.gov [DOE]

    Guam's Public Utilities Commission (PUC) reviewed net metering and interconnection during a regular meeting in February 2009 (Docket 08-10). Please contact the [http://www.guampuc.com/ Guam PUC]...

  10. Puerto Rico- Net Metering

    Broader source: Energy.gov [DOE]

    Puerto Rico enacted net-metering legislation in August 2007, allowing customers of Puerto Rico Electric Power Authority (PREPA) to use electricity generated by solar, wind or "other" renewable...

  11. Economics of Energy Metering

    E-Print Network [OSTI]

    Duncan, J. D.

    1979-01-01T23:59:59.000Z

    become necessary to accurately measure energy usage (primarily fuel and steam) throughout the plant. There are currently several projects in the million dollar range to upgrade and add new metering to these flows. This paper will discuss the justification...

  12. Avista Utilities- Net Metering

    Broader source: Energy.gov [DOE]

    Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

  13. Ashland Electric- Net Metering

    Broader source: Energy.gov [DOE]

    In 1996, Ashland adopted a net-metering program that includes simple interconnection guidelines. The program encourages the adoption of renewable-energy systems by committing the city to purchase,...

  14. Idaho Power- Net Metering

    Broader source: Energy.gov [DOE]

    Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

  15. Washington City Power- Net Metering

    Broader source: Energy.gov [DOE]

    Washington City adopted a net-metering program, including interconnection procedures, in January 2008.* Net metering is available to residential and commercial customers that generate electricity...

  16. Reports on Initial Results of Smart Grid Investment Grant Projects...

    Energy Savers [EERE]

    and time-based rates; adding advanced voltage and volt-ampere reactive (VAR) optimization (VVO) technologies; and installing advanced metering infrastructure (AMI). For more...

  17. Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

    2011-02-01T23:59:59.000Z

    Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

  18. Sandia Energy - Smart Grid Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reliability, efficiency, flexibility, and cost effectiveness. Smart-grid features include demand-response capabilities, advanced controls, DER integration, increased situational...

  19. Houston's Smart Grid: Transforming the Future of Electric Distribution & Energy Consumption

    E-Print Network [OSTI]

    Bartel, W.

    2012-01-01T23:59:59.000Z

    of a Smart Grid Smart Meters Intelligent Grid Expanded Energy Sources 3 Digital Meters Meter Data Management System Common Portal / Data Repository Home Area Network CNP?s smart grid journey A history of stakeholder commitment 1990s... Existing Consumer Education & Engagement ? Maximize consumer awareness of CNP?s smart grid program ? Develop consumer understanding of the new technology ? Facilitate active consumer engagement in smart energy management ? In Home Display Pilot...

  20. Alleviating Solar Energy Congestion in the Distribution Grid via Smart

    E-Print Network [OSTI]

    Ansari, Nirwan

    metering. Ç 1 INTRODUCTION THE electric power grid is one of the national critical infrastructures electric facilities and equipment in the grid are based on old technologies. While the power grid operation]. The conventional power grid has been built under a centralized infrastructure such that a single far-end power

  1. Pacific Northwest Smart GridPacific Northwest Smart Grid Demonstration ProjectDemonstration Project

    E-Print Network [OSTI]

    customers to choose to control their energy usage ­ Smart meters ­ Home/building/industrial energy controls and displays · Automated home energy use 4 #12;The End-user is the Centerpiece of the Smart Grid 5Pacific Northwest Smart GridPacific Northwest Smart Grid Demonstration ProjectDemonstration Project

  2. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Hsu, Hsiao-Hua (Los Alamos, NM); Casson, William H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM); Kleck, Jeffrey H. (Menlo Park, CA); Beverding, Anthony (Foster City, CA)

    1996-01-01T23:59:59.000Z

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  3. Energy Metering Audit Procedure

    E-Print Network [OSTI]

    Whitaker, W. S.

    Energy Meterilg Audtt Procedure Wiliam S Whitaker Engineering Specialist T X E INC. laPorte Texas INTROOUCI'ION This paper describes the recent audit of the utility distriooticn meters in a petrochanica1 plant. These meters measure the steam... audit Will also identify losses in the distriooticn eMrtem itself. '!he results of the audit can be used to recx:umand charYJes in operatin] procedures ~th respect to energy soorces. In aci:iiticn, ,the audit oou1d \\.Il'1COVer prob1ans...

  4. Private Memoirs of a Smart Meter Andres Molina-Markham, Prashant Shenoy, Kevin Fu, Emmanuel Cecchet, and David Irwin

    E-Print Network [OSTI]

    Shenoy, Prashant

    Private Memoirs of a Smart Meter Andr´es Molina-Markham, Prashant Shenoy, Kevin Fu, Emmanuel,shenoy,kevinfu,cecchet,irwin}@cs.umass.edu Abstract Household smart meters that measure power consumption in real-time at fine granularities are the foundation of a future smart electricity grid. However, the widespread deployment of smart meters has serious

  5. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

    1994-01-01T23:59:59.000Z

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  6. Topic 7 : Smart Grid Privacy and Security 1Networking and Distributed Systems

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    to manage their load / bills. · Energy Detective®, Google Power meter®, ... #12;Smart Meter Privacy Concerns Grid 8 · Each appliance has a "signature": Power Usage to Personal Activity Mapping #12;Smart Meter have their own signature. · Laptop computers have their own signature #12;Smart Meter Privacy Concerns

  7. Second thoughts now on advanced metering

    SciTech Connect (OSTI)

    NONE

    2009-05-15T23:59:59.000Z

    The problem with AMI is that the costs are relatively well-known, but many of the expected benefits are yet to be proven. This is particularly true about the residential sector.

  8. DRAFT NISTIR 7823 Advanced Metering Infrastructure

    E-Print Network [OSTI]

    to Jim Foti, Nelson Hastings, and Marianne Swanson of NIST, Victoria Pillitteri of Booz Allen Hamilton

  9. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled NameplateTotal

  10. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled

  11. Advanced Metering Infrastructure Security Considerations | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy:Whether you're a16-17, 201529, 2015Lead Performer:Energy The

  12. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont" "Technology by1Alaska"

  13. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont" "Technology by1Alaska"Arizona"

  14. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont" "Technology

  15. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont" "TechnologyColorado" "Technology

  16. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont" "TechnologyColorado"

  17. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont" "TechnologyColorado"Delaware"

  18. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont"

  19. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont"Florida" "Technology by sector",

  20. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont"Florida" "Technology by

  1. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont"Florida" "Technology byHawaii"

  2. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont"Florida" "Technology

  3. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont"Florida" "TechnologyIllinois"

  4. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont"Florida"

  5. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont"Florida"Iowa" "Technology by

  6. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont"Florida"Iowa" "Technology

  7. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont"Florida"Iowa"

  8. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont"Florida"Iowa"Louisiana"

  9. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"

  10. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology by sector", 2013, 2012, 2011, 2010, 2009,

  11. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology by sector", 2013, 2012, 2011, 2010,

  12. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology by sector", 2013, 2012, 2011,

  13. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology by sector", 2013, 2012,

  14. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology by sector", 2013, 2012,Mississippi"

  15. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology by sector", 2013,

  16. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology by sector", 2013,Montana"

  17. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology by sector",

  18. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology by sector",Nevada" "Technology

  19. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology by sector",Nevada"

  20. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology by sector",Nevada"Jersey"

  1. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology by

  2. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology byYork" "Technology by sector",

  3. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology byYork" "Technology by

  4. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology byYork" "Technology byDakota"

  5. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology byYork" "Technology

  6. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology byYork" "TechnologyOklahoma"

  7. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology byYork"

  8. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology byYork"Pennsylvania"

  9. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology byYork"Pennsylvania"Rhode

  10. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "Technology

  11. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "TechnologyDakota" "Technology by sector",

  12. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "TechnologyDakota" "Technology by

  13. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "TechnologyDakota" "Technology byTexas"

  14. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "TechnologyDakota" "Technology

  15. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "TechnologyDakota" "TechnologyUtah"

  16. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "TechnologyDakota"

  17. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "TechnologyDakota"Virginia" "Technology by

  18. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "TechnologyDakota"Virginia" "Technology

  19. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "TechnologyDakota"Virginia" "TechnologyWest

  20. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "TechnologyDakota"Virginia"

  1. Advanced Metering Infrastructure Security Considerations | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartment of Energy LWRTheOperation withEnergy

  2. Smart-Metering for Monitoring Building Power Distribution Network using Instantaneous Phasor Computations of Electrical Signals

    E-Print Network [OSTI]

    K.R., Krishnanand

    2013-01-01T23:59:59.000Z

    Man, H. and L. Jae-Hyun, Smart home energy management systemand implementation of smart home energy management systemsSocial network of smart-metered homes and SMEs for grid-

  3. N. Mariana Islands- Net Metering

    Broader source: Energy.gov [DOE]

    Note: The Commonwealth Utility Corporation issued a moratorium on net metering. However, Public Law 18-62 signed September 6, 2014 states that net metering should be available to all residential...

  4. Rocky Mountain Power- Net Metering

    Broader source: Energy.gov [DOE]

    Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has a net-metering...

  5. SCE&G- Net Metering

    Broader source: Energy.gov [DOE]

    In August 2009, the South Carolina Public Service Commission issued an order mandating net metering be made available by the regulated electric utilities; the order incorporates a net metering...

  6. EPAct 2005 Metering Guidance Overview

    Office of Environmental Management (EM)

    * Agency policiesguidance Potential Roles for Utilities * Guidanceupdates on time-based pricing * Metering services * Finance installations * Other? Useful Documents * Guidance...

  7. Applications (Grid Tools)

    E-Print Network [OSTI]

    Buyya, Rajkumar

    Grid Fabric Software Grid Applications Core Grid Middleware User-Level Middleware (Grid Tools) !"# $ %& ' ( ) * #& + '& ' , - . / # ) ) 0 # * 1 PDB CDB Grid Fabric Hardware &+ '' + ) , '1 '1 ' % - * # ( Grid Fabric Software Grid Applications Core Grid Middleware User-Level Middleware (Grid Tools) !"# $ %& ' ( ) * #& + '& ' , - . / # ) ) 0

  8. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

    1990-01-01T23:59:59.000Z

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  9. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

    1999-02-02T23:59:59.000Z

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  10. 2012 Advanced Applications Research & Development Peer Review...

    Broader source: Energy.gov (indexed) [DOE]

    2012 Advanced Applications R&D Peer Review - Mode Meter Development - Ning Zhou, PNNL 2012 Advanced Applications R&D Peer Review - Oscillation Monitoring System - Mani...

  11. Student Research Abstract: Trustworthy Remote Entities in the Smart Grid

    E-Print Network [OSTI]

    Oxford, University of

    Student Research Abstract: Trustworthy Remote Entities in the Smart Grid Andrew J. Paverd to enhance user privacy by introducing a novel element into the smart grid architecture. The Trustworthy a group of smart meters and the external smart grid entities. The TRE enhances user privacy by providing

  12. advanced thermionic systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zoran 42 An Overview on Advance Metering System CiteSeer Summary: Abstract The term "Smart meter " typically refers to an electrical meter, but the term is also starting to be...

  13. advanced mud system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David 47 An Overview on Advance Metering System CiteSeer Summary: Abstract The term "Smart meter " typically refers to an electrical meter, but the term is also starting to be...

  14. advanced technology systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    133 An Overview on Advance Metering System CiteSeer Summary: Abstract The term "Smart meter " typically refers to an electrical meter, but the term is also starting to be...

  15. advanced assay systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zoran 38 An Overview on Advance Metering System CiteSeer Summary: Abstract The term "Smart meter " typically refers to an electrical meter, but the term is also starting to be...

  16. advanced transportation system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Henry 134 An Overview on Advance Metering System CiteSeer Summary: Abstract The term "Smart meter " typically refers to an electrical meter, but the term is also starting to be...

  17. advanced lubrication systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    51 An Overview on Advance Metering System CiteSeer Summary: Abstract The term "Smart meter " typically refers to an electrical meter, but the term is also starting to be...

  18. advanced ecrh systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zoran 43 An Overview on Advance Metering System CiteSeer Summary: Abstract The term "Smart meter " typically refers to an electrical meter, but the term is also starting to be...

  19. advanced noxtech system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zoran 36 An Overview on Advance Metering System CiteSeer Summary: Abstract The term "Smart meter " typically refers to an electrical meter, but the term is also starting to be...

  20. advanced bioreactor systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50 An Overview on Advance Metering System CiteSeer Summary: Abstract The term "Smart meter " typically refers to an electrical meter, but the term is also starting to be...

  1. advanced reprocessing system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zoran 40 An Overview on Advance Metering System CiteSeer Summary: Abstract The term "Smart meter " typically refers to an electrical meter, but the term is also starting to be...

  2. IEEE TRANSACTIONS ON SMART GRID 1 Cognitive Radio Network for the Smart Grid

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    smart meter wireless transmissions in the presence of strong wideband interference. The performanceIEEE Proof W eb Version IEEE TRANSACTIONS ON SMART GRID 1 Cognitive Radio Network for the Smart of applying the next generation wireless technology, cognitive radio network, for the smart grid

  3. O&M Metering Guidance

    Broader source: Energy.gov [DOE]

    Presentation covers the O&M Metering Guidance and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

  4. Net Metering (New Brunswick, Canada)

    Broader source: Energy.gov [DOE]

    The NB Power Net Metering program provides customers with the option to connect their own environmentally sustainable generation unit to NB Power's distribution system. The program allows customers...

  5. Electric Metering | Department of Energy

    Energy Savers [EERE]

    The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power outlets. The purpose is to measure...

  6. Metrics for Assessment of Smart Grid Data Integrity Attacks

    SciTech Connect (OSTI)

    Annarita Giani; Miles McQueen; Russell Bent; Kameshwar Poolla; Mark Hinrichs

    2012-07-01T23:59:59.000Z

    There is an emerging consensus that the nation’s electricity grid is vulnerable to cyber attacks. This vulnerability arises from the increasing reliance on using remote measurements, transmitting them over legacy data networks to system operators who make critical decisions based on available data. Data integrity attacks are a class of cyber attacks that involve a compromise of information that is processed by the grid operator. This information can include meter readings of injected power at remote generators, power flows on transmission lines, and relay states. These data integrity attacks have consequences only when the system operator responds to compromised data by redispatching generation under normal or contingency protocols. These consequences include (a) financial losses from sub-optimal economic dispatch to service loads, (b) robustness/resiliency losses from placing the grid at operating points that are at greater risk from contingencies, and (c) systemic losses resulting from cascading failures induced by poor operational choices. This paper is focused on understanding the connections between grid operational procedures and cyber attacks. We first offer two examples to illustrate how data integrity attacks can cause economic and physical damage by misleading operators into taking inappropriate decisions. We then focus on unobservable data integrity attacks involving power meter data. These are coordinated attacks where the compromised data are consistent with the physics of power flow, and are therefore passed by any bad data detection algorithm. We develop metrics to assess the economic impact of these attacks under re-dispatch decisions using optimal power flow methods. These metrics can be use to prioritize the adoption of appropriate countermeasures including PMU placement, encryption, hardware upgrades, and advance attack detection algorithms.

  7. Secure Interoperable Open Smart Grid Demonstration Project

    SciTech Connect (OSTI)

    Magee, Thoman

    2014-12-31T23:59:59.000Z

    The Consolidated Edison, Inc., of New York (Con Edison) Secure Interoperable Open Smart Grid Demonstration Project (SGDP), sponsored by the United States (US) Department of Energy (DOE), demonstrated that the reliability, efficiency, and flexibility of the grid can be improved through a combination of enhanced monitoring and control capabilities using systems and resources that interoperate within a secure services framework. The project demonstrated the capability to shift, balance, and reduce load where and when needed in response to system contingencies or emergencies by leveraging controllable field assets. The range of field assets includes curtailable customer loads, distributed generation (DG), battery storage, electric vehicle (EV) charging stations, building management systems (BMS), home area networks (HANs), high-voltage monitoring, and advanced metering infrastructure (AMI). The SGDP enables the seamless integration and control of these field assets through a common, cyber-secure, interoperable control platform, which integrates a number of existing legacy control and data systems, as well as new smart grid (SG) systems and applications. By integrating advanced technologies for monitoring and control, the SGDP helps target and reduce peak load growth, improves the reliability and efficiency of Con Edison’s grid, and increases the ability to accommodate the growing use of distributed resources. Con Edison is dedicated to lowering costs, improving reliability and customer service, and reducing its impact on the environment for its customers. These objectives also align with the policy objectives of New York State as a whole. To help meet these objectives, Con Edison’s long-term vision for the distribution grid relies on the successful integration and control of a growing penetration of distributed resources, including demand response (DR) resources, battery storage units, and DG. For example, Con Edison is expecting significant long-term growth of DG. The SGDP enables the efficient, flexible integration of these disparate resources and lays the architectural foundations for future scalability. Con Edison assembled an SGDP team of more than 16 different project partners, including technology vendors, and participating organizations, and the Con Edison team provided overall guidance and project management. Project team members are listed in Table 1-1.

  8. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    400,000 metered customers INVESTMENT IN PNWSGDP: * 2.1 million HIGHLIGHTS: * Demand response program * Distribution Voltage Reduciton * Advanced AMI communicatons net- work *...

  9. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y AMI Demand Response Distribution Management Systems Advanced OMS Distribution Automation...

  10. Grid Integration

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

  11. Impact of orifice metering uncertainties

    SciTech Connect (OSTI)

    Stuart, J.W. (Pacific Gas and Electric Co., San Francisco, CA (USA))

    1990-12-01T23:59:59.000Z

    In a recent utility study, attributed 38% of its unaccounted-for UAF gas to orifice metering uncertainty biasing caused by straightening vanes. How this was determined and how this applied to the company's orifice meters is described. Almost all (97%) of the company's UAF gas was found to be attributed to identifiable accounting procedures, measurement problems, theft and leakage.

  12. Secure Compressed Reading in Smart Grids

    E-Print Network [OSTI]

    Cai, Sheng; Chen, Minghua; Yan, Jianxin; Jaggi, Sidharth

    2012-01-01T23:59:59.000Z

    Smart Grids measure energy usage in real-time and tailor supply and delivery accordingly, in order to improve power transmission and distribution. For the grids to operate effectively, it is critical to collect readings from massively-installed smart meters to control centers in an efficient and secure manner. In this paper, we propose a secure compressed reading scheme to address this critical issue. We observe that our collected real-world meter data express strong temporal correlations, indicating they are sparse in certain domains. We adopt Compressed Sensing technique to exploit this sparsity and design an efficient meter data transmission scheme. Our scheme achieves substantial efficiency offered by compressed sensing, without the need to know beforehand in which domain the meter data are sparse. This is in contrast to traditional compressed-sensing based scheme where such sparse-domain information is required a priori. We then design specific dependable scheme to work with our compressed sensing based ...

  13. Secretary Chu Announces Two Million Smart Grid Meters Installed...

    Energy Savers [EERE]

    demand, and significantly reduce carbon emissions. Follow the Department of Energy on Facebook, Twitter, Youtube and Flickr. Follow Secretary Chu on his Facebook page. Media...

  14. ESB Smart Meter Projects (Smart Grid Project) (Limerick, Ireland) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek42EOPEPOD

  15. Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle School (6-8)NeedandInnovator" on| Department of

  16. Cyprus Smart metering demo (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosaPage EditCrystalsolapproval JumpCyprus

  17. Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »Usage »DownloadSolarSequestration |FutureGen 2.0toDataIndustrial|

  18. Minimizing Private Data Disclosures in the Smart Grid Weining Yang

    E-Print Network [OSTI]

    McDaniel, Patrick Drew

    Minimizing Private Data Disclosures in the Smart Grid Weining Yang Purdue University yang469@cs@cse.psu.edu Patrick McDaniel Penn State University mcdaniel@cse.psu.edu ABSTRACT Smart electric meters pose monitors, smart meter data can reveal precise home appliance usage information. An emerging solution

  19. NREL Smart Grid Projects

    SciTech Connect (OSTI)

    Hambrick, J.

    2012-01-01T23:59:59.000Z

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  20. Advances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14Scripting for Advanced Workflows Jack

  1. The key to fully tapping the promise of the smart grid in the electric utility industry is highly secure and reliable communications--without that the data is, essentially, meaning-

    E-Print Network [OSTI]

    Fisher, Kathleen

    of solely in terms of meter solutions. However, the smart grid encompasses the entire grid--it must be used's environmental footprint.While the smart grid is starting with meter reads and outage information, it will soonThe key to fully tapping the promise of the smart grid in the electric utility industry is highly

  2. Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    E-Print Network [OSTI]

    Fan, Zhong; Gormus, Sedat; Efthymiou, Costas; Kalogridis, Georgios; Sooriyabandara, Mahesh; Zhu, Ziming; Lambotharan, Sangarapillai; Chin, Woon Hau

    2011-01-01T23:59:59.000Z

    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.

  3. VISITOR PARKING Pay station parking meters are available around

    E-Print Network [OSTI]

    temporary parking needs. Daily scratch-off permits are available in advance from Parking Services. LOT METER PAY STATION RATES (SUMMER RATES MAY BE DISCOUNTED) HOW DO I GET A PERMIT? When parking on campus, a CSM parking permit is required Monday through Friday, from 7AM until 5 PM. Permits authorize parking

  4. Valley Electric Association- Net Metering

    Broader source: Energy.gov [DOE]

    The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

  5. Electric Metering | Department of Energy

    Energy Savers [EERE]

    has installed meters in the James Forrestal Building that will enable DOE to measure electricity use and costs in its headquarters facility. You may explore this data further by...

  6. Austin Energy- Net Metering (Texas)

    Broader source: Energy.gov [DOE]

    Austin Energy, the municipal utility of Austin Texas, offers net metering for renewable energy systems up to 20 kilowatts (kW) to its non-residential retail electricity customers. The definition of...

  7. Healthcare Energy Metering Guidance (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This brochure is intended to help facility and energy managers plan and prioritize investments in energy metering. It offers healthcare-specific examples of metering applications, benefits, and steps that other health systems can reproduce. It reflects collaborative input from the U.S. Department of Energy national laboratories and the health system members of the DOE Hospital Energy Alliance's Benchmarking and Measurement Project Team.

  8. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  9. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  10. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  11. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  12. Grid Security

    E-Print Network [OSTI]

    Sinnott, R.O.

    Sinnott,R.O. National Centre for e-Social Science book, Grid Computing: Technology, Service and Application, CRC Press, November 2008.

  13. IEEE Network September/October 20116 0890-8044/11/$25.00 2011 IEEE he current centrally controlled electrical grid is a

    E-Print Network [OSTI]

    Zhang, Yan

    meters are basic components in the smart grid, which are capable of collecting and delivering power consumption infor- mation to remote utilities much more efficiently than conven- tional meters[7]. Smart-as- gateway or meter-as-device. Smart meters/sensors/actuators will be strategically implemented in the smart

  14. An Analysis of Security and Privacy Issues in Smart Grid Software Architectures on Yogesh Simmhan, Alok Gautam Kumbhare, Baohua Cao, and Viktor Prasanna

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    Grids that use large scale smart meter deployments at power consumers for bi-directional realtime, the growth of third party Smart Grid applications for consumers, such as Google PowerMeter1 and MicrosoftAn Analysis of Security and Privacy Issues in Smart Grid Software Architectures on Clouds Yogesh

  15. To learn more about AT&T Smart Grid Solutions, visit www.att.com/smartgrid or have us contact you.

    E-Print Network [OSTI]

    Fisher, Kathleen

    solutions leverage smart grid investments and provide true customer to cash (previously "meter to cash a utility has deployed a full smart grid network, or seeks to deploy meters strategically to serve customersTo learn more about AT&T Smart Grid Solutions, visit www.att.com/smartgrid or have us contact you

  16. Abstract--Compared to the conventional grid, the smart grid requires active participation of consumers to improve the quality

    E-Print Network [OSTI]

    Namboodiri, Vinod

    of consumers to improve the quality and reliability of power delivery. Advanced metering infrastructure (AMIBee NOMENCLATURE HAN Home area network AMI Advanced metering infrastructure EV Electric vehicles WHAN-SM Wireless HAN for AMI I. INTRODUCTION HE electric power industry is undergoing major changes in the twenty

  17. advanced weigh-in-motion system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zoran 40 An Overview on Advance Metering System CiteSeer Summary: Abstract The term "Smart meter " typically refers to an electrical meter, but the term is also starting to be...

  18. advanced in-core monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T. 94 An Overview on Advance Metering System CiteSeer Summary: Abstract The term "Smart meter " typically refers to an electrical meter, but the term is also starting to be...

  19. Smart Grid Investments Improve Grid Reliability, Resilience,...

    Office of Environmental Management (EM)

    Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November...

  20. IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 1, JANUARY 2014 303 Opportunistic Routing for Smart Grid With Power

    E-Print Network [OSTI]

    Bahk, Saewoong

    IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 1, JANUARY 2014 303 Opportunistic Routing for Smart communications (PLCs) have recently absorbed interest in the smart grid since they offer communi- cation a bit-meter per second maximization problem and solves it in a distributed manner. Through simulations

  1. An Ontology for Scientific Information in a Grid Environment: the Earth System Grid.

    E-Print Network [OSTI]

    Chervenak, Ann

    An Ontology for Scientific Information in a Grid Environment: the Earth System Grid. Line Pouchard.S. Department of Energy Scientific Discovery through Advanced Computing (SciDAC) program. The Earth System Grid, 5 Carl Kesselman,5 Arie Shoshani, 6 Alex Sim6 [1] Oak Ridge National Laboratory, [2] Argonne

  2. SensorGrid: Integrating Sensor Networks and Grid Computing Chen-Khong Tham1

    E-Print Network [OSTI]

    Melbourne, University of

    SensorGrid: Integrating Sensor Networks and Grid Computing Chen-Khong Tham1 and Rajkumar Buyya2 Keywords: Sensors, Sensor Networks, Grid computing, SensorML, SensorWeb. 1. Introduction Recent advances in electronic circuit miniaturization and micro-electromechanical systems (MEMS) have led to the creation

  3. Precision metering of germinated seeds

    E-Print Network [OSTI]

    Elliot, Gregory Lawrence

    1990-01-01T23:59:59.000Z

    actuated by an electrical solenoid was used to mechanically capture individual seeds. Air was used to eject the seeds from the system. A new single file device employing dilution flow was tested at rates as high as ten seeds per second. It produced... distribution was found to adequately represent the data. The metering system was tested at ejection rates ranging from 1. 3 to 4. 5 seeds per second, with most tests at rates between two and three seeds per second. The performance of the metering system...

  4. Design of a Net-Metering and PV Exhibit for the 2005 Solar Decathlon

    SciTech Connect (OSTI)

    Wassmer, M.; Warner, C.

    2005-01-01T23:59:59.000Z

    In the 2005 Solar Decathlon competition, 19 collegiate teams will design, build, and operate grid-independent homes powered by photovoltaic (PV) arrays on the National Mall. The prominence of grid-interconnected systems in the marketplace has provided the impetus for the development of a net-metering exhibit to be installed and operated during the competition. The exhibit will inform the visiting public about PV basics and appropriate alternatives to grid-independent systems. It will consist of four interactive components. One will be designed to educate people about the principles of net metering using a small PV array, a grid-interactive inverter, and a variable load. Additional components of the exhibit will demonstrate the effects of orientation, cloud cover, and nighttime on performance. The nighttime component will discuss appropriate storage options for different applications.

  5. Grid Architecture

    Broader source: Energy.gov (indexed) [DOE]

    Integration of Distributed Generation", John McDonald, et.al. Electrical Transmission and Smart Grids, Springer, 2013. 4.25 Figure 4.17. Common Distribution Looping Arrangements In...

  6. This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON SMART GRID 1

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    Metering for Power Market Pricing in Smart Grid Husheng Li, Lifeng Lai, and Robert Caiming Qiu Abstract--Remote metering is a key task in smart grid to col- lect the power load information for the pricing in power market. A wireless communication infrastructure is assumed for the smart meter network. The dynamics

  7. False Data Injection Attacks against State Estimation in Electric Power Grids

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    @cs.unc.edu Abstract--A power grid is a complex system connecting electric power generators to consumers through power estimate the power grid state through analysis of meter measure- ments and power system models. Various malicious attacks. I. INTRODUCTION A power grid is a complex system connecting a variety of electric power

  8. PNNL Future Power Grid Initiative-developed GridOPTICS Software System (GOSS)

    SciTech Connect (OSTI)

    None

    2014-11-03T23:59:59.000Z

    The power grid is changing and evolving. One aspect of this change is the growing use of smart meters and other devices, which are producing large volumes of useful data. However, in many cases, the data can’t be translated quickly into actionable guidance to improve grid performance. There's a need for innovative tools. The GridOPTICS(TM) Software System, or GOSS, developed through PNNL's Future Power Grid Initiative, is open source and became publicly available in spring 2014. The value of this middleware is that it easily integrates grid applications with sources of data and facilitates communication between them. Such a capability provides a foundation for developing a range of applications to improve grid management.

  9. Smart Meter Privacy: A Utility-Privacy Framework

    E-Print Network [OSTI]

    Rajagopalan, S Raj; Mohajer, Soheil; Poor, H Vincent

    2011-01-01T23:59:59.000Z

    End-user privacy in smart meter measurements is a well-known challenge in the smart grid. The solutions offered thus far have been tied to specific technologies such as batteries or assumptions on data usage. Existing solutions have also not quantified the loss of benefit (utility) that results from any such privacy-preserving approach. Using tools from information theory, a new framework is presented that abstracts both the privacy and the utility requirements of smart meter data. This leads to a novel privacy-utility tradeoff problem with minimal assumptions that is tractable. Specifically for a stationary Gaussian Markov model of the electricity load, it is shown that the optimal utility-and-privacy preserving solution requires filtering out frequency components that are low in power, and this approach appears to encompass most of the proposed privacy approaches.

  10. Metered Rack PDU The American Power Conversion (APC) Metered

    E-Print Network [OSTI]

    van Hemmen, J. Leo

    StruXureManager interfaces. Outlets. The Rack PDU has twenty (20) IEC-320-C13 outlets and four (4) IEC-320-C19 outlets. The 10-foot (3.05-meter) power cord terminates with a IEC-309 32 A connector. AP7853 #12;*990-1898-001* 990-1898-001 08/2004 Specifications for AP7853 Electrical Input connector IEC-309 32 A plug Output

  11. GENI: Grid Hardware and Software

    SciTech Connect (OSTI)

    None

    2012-01-09T23:59:59.000Z

    GENI Project: The 15 projects in ARPA-E’s GENI program, short for “Green Electricity Network Integration,” aim to modernize the way electricity is transmitted in the U.S. through advances in hardware and software for the electric grid. These advances will improve the efficiency and reliability of electricity transmission, increase the amount of renewable energy the grid can utilize, and provide energy suppliers and consumers with greater control over their power flows in order to better manage peak power demand and cost.

  12. A restructuring agenda for developing competitive retail electric markets that is based on a low-cost, real-time, smart-kilowatt-hour meter adapter

    SciTech Connect (OSTI)

    Chasek, N.E.

    1997-12-31T23:59:59.000Z

    This paper proposes six agenda items that should expedite a politically smooth transition into a most efficient economically viable market-driven public power system. The agenda would introduce: the virtual marketplace for retail electric power, smart meters, smart meter readers, near-real-time load balancing and load apportionment, advanced supply and demand or commodity-style pricing, and reliability metering.

  13. Meters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from aRodMIT-Harvard Center forMetallicH. Skinner,sc 620

  14. Meters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverview and HistoryMEMS: Inside theand RP-1

  15. Government Program Briefing: Smart Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  16. Government Program Briefing: Smart Metering

    SciTech Connect (OSTI)

    Doris, E.; Peterson, K.

    2011-09-01T23:59:59.000Z

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  17. Heating Energy Meter Validation for Apartments

    E-Print Network [OSTI]

    Cai, B.; Li, D.; Hao, B.

    2006-01-01T23:59:59.000Z

    Household heat metering is the core of heating system reform. Because of many subjective and objective factors, household heat metering has not been put into practice to a large extent in China. In this article, the research subjects are second...

  18. Heating Energy Meter Validation for Apartments 

    E-Print Network [OSTI]

    Cai, B.; Li, D.; Hao, B.

    2006-01-01T23:59:59.000Z

    Household heat metering is the core of heating system reform. Because of many subjective and objective factors, household heat metering has not been put into practice to a large extent in China. In this article, the research subjects are second...

  19. Long Island Power Authority- Net Metering

    Broader source: Energy.gov [DOE]

    : Note: In October 2012 the LIPA Board of Trustees adopted changes to the utility's net metering tariff that permit remote net metering for non-residential solar and wind energy systems, and farm...

  20. City of St. George- Net Metering

    Broader source: Energy.gov [DOE]

    The St. George City Council adopted a [http://www.sgcity.org/wp/power/NetMeteringPolicy.pdf net-metering program for area utilities], including interconnection procedures, in October 2005.* The...

  1. Privacy-Preserving Smart Metering Alfredo Rial

    E-Print Network [OSTI]

    Bernstein, Phil

    Privacy-Preserving Smart Metering Alfredo Rial K.U.Leuven, ESAT/COSIC & IBBT Leuven, Belgium General Terms Security Keywords Billing, Smart metering, Cryptographic Protocol, Verifiable Computing 1 of smart meter data for more accurate forecasting, Permission to make digital or hard copies of all or part

  2. FINAL REPORT - CENTER FOR GRID MODERNIZATION

    SciTech Connect (OSTI)

    Markiewicz, Daniel R

    2008-06-30T23:59:59.000Z

    The objective of the CGM was to develop high-priority grid modernization technologies in advanced sensors, communications, controls and smart systems to enable use of real-time or near real-time information for monitoring, analyzing and managing distribution and transmission grid conditions. The key strategic approach to carry out individual CGM research and development (R&D) projects was through partnerships, primarily with the GridApp™ Consortium utility members.

  3. Fact Sheet: Community Energy Storage for Grid Support (October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detroit Edison American Recovery and Reinvestment Act (ARRA) Community Energy Storage for Grid Support Demonstrating advanced implementation of community energy storage...

  4. PQMII POWER QUALITY METER INSTRUCTION MANUAL 11 PQMII Power Quality Meter

    E-Print Network [OSTI]

    Meyers, Steven D.

    #12;#12;#12;PQMII POWER QUALITY METER ­ INSTRUCTION MANUAL 1­1 PQMII Power Quality Meter Chapter 1 Multilin PQMII Power Quality Meter is an ideal choice for continuous monitoring of a single or three-phase system. It provides metering for current, voltage, real power, reactive power, apparent power, energy use

  5. Smart Grid Status and Metrics Report Appendices

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

    2014-07-01T23:59:59.000Z

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

  6. Playas Grid Reliability and Distributed Energy Research

    SciTech Connect (OSTI)

    Romero, Van; Weinkauf, Don; Khan, Mushtaq; Helgeson, Wes; Weedeward, Kevin; LeClerc, Corey; Fuierer, Paul

    2012-06-30T23:59:59.000Z

    The future looks bright for solar and renewable energies in the United States. Recent studies claim that by 2050, solar power could supply a third of all electricity demand in the country’s western states. Technology advances, soft policy changes, and increased energy consciousness will all have to happen to achieve this goal. But the larger question is, what would it take to do more throughout the United States? The studies tie future solar and renewable growth in the United States to programs that aim to lower the soft costs of solar adoption, streamline utility interconnections, and increase technology advances through research and development. At the state and local levels, the most important steps are: • Net metering: Net metering policies lets customers offset their electric bills with onsite solar and receive reliable and fair compensation for the excess electricity they provide to the grid. Not surprisingly, what utilities consider fair is not necessarily a rate that’s favorable to solar customers. • Renewable portfolio standards (RPS): RPS policies require utilities to provide a certain amount of their power from renewable sources; some set specific targets for solar and other renewables. California’s aggressive RPS1 of 33% renewable energy by 2020 is not bankrupting the state, or its residents. • Strong statewide interconnection policies: Solar projects can experience significant delays and hassles just to get connected to the grid. Streamlined feasibility and impact analysis are needed. Good interconnection policies are crucial to the success of solar or renewable energy development. • Financing options: Financing is often the biggest obstacle to solar adoption. Those obstacles can be surmounted with policies that support creative financing options like third-party ownership (TPO) and property assessed clean energy (PACE). Attesting to the significance of TPO is the fact that in Arizona, it accounted for 86% of all residential photovoltaic (PV) installations in Q1 20132. Policies beyond those at the state level are also important for solar. The federal government must play a role including continuation of the federal Investment tax credit,3 responsible development of solar resources on public lands, and support for research and development (R&D) to reduce the cost of solar and help incorporate large amounts of solar into the grid. The local level can’t be ignored. Local governments should support: solar rights laws, feed-in tariffs (FITs), and solar-friendly zoning rules. A great example of how effective local policies can be is a city like Gainesville, Florida4, whose FIT policy has put it on the map as a solar leader. This is particularly noteworthy because the Sunshine State does not appear anywhere on the list of top solar states, despite its abundant solar resource. Lancaster, California5, began by streamlining the solar permitting process and now requires solar on every new home. Cities like these point to the power of local policies, and the ability of local governments to get things done. A conspicuously absent policy is Community Choice energy6, also called community choice aggregation (CCA). This model allows local governments to pool residential, business, and municipal electricity loads and to purchase or generate on their behalf. It provides rate stability and savings and allows more consumer choice and local control. The model need not be focused on clean energy, but it has been in California, where Marin Clean Energy7, the first CCA in California, was enabled by a state law -- highlighting the interplay of state and local action. Basic net metering8 has been getting a lot of attention. Utilities are attacking it9 in a number of states, claiming it’s unfair to ratepayers who don’t go solar. On the other hand, proponents of net metering say utilities’ fighting stance is driven by worries about their bottom line, not concern for their customers. Studies in California10, Vermont11, New York12, and Texas13 have found that the benefits of net metering (like savings on investments

  7. Smart Grid Integrity Attacks: Characterizations and Countermeasures

    SciTech Connect (OSTI)

    Annarita Giani; Eilyan Bitar; Miles McQueen; Pramod Khargonekar; Kameshwar Poolla

    2011-10-01T23:59:59.000Z

    Real power injections at loads and generators, and real power flows on selected lines in a transmission network are monitored, transmitted over a SCADA network to the system operator, and used in state estimation algorithms to make dispatch, re-balance and other energy management system [EMS] decisions. Coordinated cyber attacks of power meter readings can be arranged to be undetectable by any bad data detection algorithm. These unobservable attacks present a serious threat to grid operations. Of particular interest are sparse attacks that involve the compromise of a modest number of meter readings. An efficient algorithm to find all unobservable attacks [under standard DC load flow approximations] involving the compromise of exactly two power injection meters and an arbitrary number of power meters on lines is presented. This requires O(n2m) flops for a power system with n buses and m line meters. If all lines are metered, there exist canonical forms that characterize all 3, 4, and 5-sparse unobservable attacks. These can be quickly detected in power systems using standard graph algorithms. Known secure phase measurement units [PMUs] can be used as countermeasures against an arbitrary collection of cyber attacks. Finding the minimum number of necessary PMUs is NP-hard. It is shown that p + 1 PMUs at carefully chosen buses are sufficient to neutralize a collection of p cyber attacks.

  8. Electric Metering | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome | Documents MemorandumEEOElectric Metering

  9. Discussion series on PURPA related topics: metering

    SciTech Connect (OSTI)

    Sturgeon, J I

    1980-08-01T23:59:59.000Z

    Time-differentiated metering of electricity consumption and demand is required in both rate-structure experimentation and the implementation of most time-of-use rate designs. Time-differentiated metering takes three major forms: multi-register watthour meters, magnetic-tape recording meters, and remote automatic meter-reading systems. The majority of projects selected magnetic-tape meters for their flexibility with respect to rate structure, load-survey capabilities, and ready availability. The small-scale, experimental nature of the projects reduced the significance of the large difference in per-unit cost and operational/maintenance complexity between this form of metering and the multi-register form. Magnetic-tape meters are not likely candidates for system-wide implementation of time-differentiated metering. Automatic remote-meter-reading systems were not adequately available during the project years; those projects attempting to use these were unable to bring them to full operational status before project termination, due to the many problems of design, quality control, and equipment acquisition encountered. Delays in acquisition and problems of quality control also followed the selection of magnetic-tape meters and multi-register meters by a number of the projects. Though less complex than automatic remote-reading systems, these technologies are still new and more complex than standard watthour metering. Thus, both equipment vendors and utilities encountered numerous problems in getting properly functioning meters to the service entrances on time. A variety of factors contributed to installation delays, including unforeseen space limitations, incompatible wiring, problems of task organization, and customer reluctance.

  10. activity meters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dienste mit intelligenten Stromzhlern Standby- und Khlgerteverbrauch aus Smart-Meter-Daten Smart Meter ermglichen weit, kommunikationsfhigen...

  11. IEEE TRANSACTIONS ON SMART GRID CALL FOR PAPERS

    E-Print Network [OSTI]

    Guan, Yongpei

    IEEE TRANSACTIONS ON SMART GRID CALL FOR PAPERS Special Issue on "Optimization Methods and Algorithms Applied to Smart Grid" With recent developments in advanced monitoring, information, and communication technologies applied to smart grid, electric power systems will be able to respond more

  12. 851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161

    E-Print Network [OSTI]

    to the electricity system. This includes advanced metering, smart-grid applications, and other technological

  13. International Microgrid Assessment: Governance, INcentives, and Experience (IMAGINE)

    E-Print Network [OSTI]

    Marnay, Chris

    2014-01-01T23:59:59.000Z

    Cyber-security of electric grid (virtual secure enclave) Smart grid technologies & applications (advanced metering infrastructure, substation and distribution

  14. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Net metering rules developed by the New Mexico Public Regulation Commission (PRC) apply to the state's investor-owned utilities and electric cooperatives. Municipal utilities, which are not...

  15. Protecting the Smart Grid: A Risk Based Approach

    SciTech Connect (OSTI)

    Clements, Samuel L.; Kirkham, Harold; Elizondo, Marcelo A.; Lu, Shuai

    2011-10-10T23:59:59.000Z

    This paper describes a risk-based approach to security that has been used for years in protecting physical assets, and shows how it could be modified to help secure the digital aspects of the smart grid and control systems in general. One way the smart grid has been said to be vulnerable is that mass load fluctuations could be created by quickly turning off and on large quantities of smart meters. We investigate the plausibility.

  16. GridOPTICS(TM): A Design for Plug-and-Play Smart Grid Software Architecture

    SciTech Connect (OSTI)

    Gorton, Ian; Liu, Yan; Yin, Jian

    2012-06-03T23:59:59.000Z

    As the smart grid becomes reality, software architectures for integrating legacy systems with new innovative approaches for grid management are needed. These architectures must exhibit flexibility, extensibility, interoperability and scalability. In this position paper, we describe our preliminary work to design such an architecture, known as GridOPTICS, that will enable the deployment and integration of new software tools in smart grid operations. Our preliminary design is based upon use cases from PNNL’s Future Power Grid Initiative, which is a developing a collection of advanced software technologies for smart grid management and control. We describe the motivations for GridOPTICS, and the preliminary design that we are currently prototyping for several distinct use cases.

  17. Now Available: Smart Grid Investments Improve Grid Reliability...

    Energy Savers [EERE]

    Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and...

  18. Advanced Systems of Efficient Use of Electrical Energy SURE ...

    Open Energy Info (EERE)

    Advanced Systems of Efficient Use of Electrical Energy SURE (Smart Grid Project) Jump to: navigation, search Project Name Advanced Systems of Efficient Use of Electrical Energy...

  19. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wholesale markets and regional transmission organizations * Regulatory programs such as Demand Response, interruptible rates, net metering, "de- coupling", etc. * Consumer...

  20. Proton recoil scintillator neutron rem meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Seagraves, David T. (Los Alamos, NM)

    2003-01-01T23:59:59.000Z

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  1. Smart (In-home) Power Scheduling for Demand Response on the Smart Grid

    E-Print Network [OSTI]

    Yener, Aylin

    1 Smart (In-home) Power Scheduling for Demand Response on the Smart Grid Gang Xiong, Chen Chen for the home and produces a demand that is more level over time. Index Terms--Smart grid, power management to control power usage across the home. The EMC may be standalone or embedded either in the smart meter

  2. EELE408 Photovoltaics Lecture 22: Grid Tied Systems

    E-Print Network [OSTI]

    Kaiser, Todd J.

    14 Inverter Electrical Panel Monitoring Exterior Labeled PV Disconnect Required 15 Inverter 16 Photovoltaic Generator AC Load Inverter & Metering 2 Generator Grid g Example: Most Home Systems Roof Anchor City Hall 11 Two inverters in this systems Photovoltaic & Solar Heating 12 Hot water tilted for winter

  3. Reconciling Security Protection and Monitoring Requirements in Advanced Metering Infrastructures

    E-Print Network [OSTI]

    Sanders, William H.

    , and intrusion detection. In particular, encrypted messages preclude the use of most intrusion detection between the confidentiality requirements for protecting sensitive AMI traffic through encryption, and the monitoring necessary for full inspection of this traffic. The way to reconcile those conflicting requirements

  4. Operations and Maintenance Savings from Advanced Metering Infrastructure - Initial Results

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartmentGas and Oil ResearchEnergyOnHSS Independent Activity U.S.

  5. 2010 Assessment of Demand Response and Advanced Metering - Staff Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENTTechnologies09 SPRofNuclearDepartmentOffice

  6. Regression analysis of WMATA metering information

    SciTech Connect (OSTI)

    Not Available

    1983-12-01T23:59:59.000Z

    The PEPCO provided a magnetic tape that contained energy usage (pulses) data as given in the PEPCO account. The data had 15-min pulses for 26 traction energy meters which were in operation during 1980. The time span was January 20, 1980, to January 19, 1981. Out of 26 traction metering data provided by PEPCO, 18 meters were in DC, 5 meters were in MD, and 3 meters were in VA jurisdictions. The data were converted into Fortran readable form, using program RU0A09.FOR. The system flow chart is shown. Using A, plots were created of summary statistics, which provided through bar charts information on mean, standard deviation, and maximum of power demand. Using B, regression analyses of power vs. car-miles/hour and degree-days for revenue operating and nonoperating periods were established. Using C, energy consumption histograms on each time period for various meters were created. The regression analysis which was done on PEPCO metering data in order to determine the dependence of traction energy usages on car-miles and daily temperature is described in detail.

  7. Security on the US Fusion Grid

    SciTech Connect (OSTI)

    Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01T23:59:59.000Z

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  8. Data security on the national fusion grid

    SciTech Connect (OSTI)

    Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01T23:59:59.000Z

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  9. Working With Your Utility to Obtain Metering Services

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers the government metering requirement, the U.S. Department of Defense (DoD) metering directive, and customer metering services available from utilities.

  10. Portable Liquid Flow Metering for Energy Conservation Programs

    E-Print Network [OSTI]

    Miles, F. J.

    1982-01-01T23:59:59.000Z

    Flow metering is absolutely required for evaluation of energy usage. In fact, determining usages and heat balances without metering are simply educated guesses. Recent technological innovations in flow metering have produced clamp-on, portable flow...

  11. U.S. Virgin Islands- Net Metering

    Broader source: Energy.gov [DOE]

    In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energ...

  12. Murray City Power- Net Metering Pilot Program

    Broader source: Energy.gov [DOE]

    Under a pilot program, Murray City Power offers net metering to customers that generate electricity using photovoltaic (PV), wind-electric or hydroelectric systems with a maximum capacity of 10...

  13. BPA Metering Services Editing and Estimating Procedures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be used to scale the estimated interval data with a shape projection applied. If SCADA data is available and has been mapped to the point of metering, it may be used for...

  14. Hydro-Québec Net Metering (Quebec, Canada)

    Broader source: Energy.gov [DOE]

    In line with Hydro-Québec's commitment to the environment and sustainable development, Hydro-Québec is supporting self-generation with a new rate offering: the net metering option. This option...

  15. City of New Orleans- Net Metering

    Broader source: Energy.gov [DOE]

    In May 2007, the New Orleans City Council adopted net-metering rules that are similar to rules adopted by the Louisiana Public Service Commission (PSC) in November 2005. The City Council's rules...

  16. Algorithms for revenue metering and their evaluation 

    E-Print Network [OSTI]

    Martinez-Lagunes, Rodrigo

    2000-01-01T23:59:59.000Z

    Power components are measured for revenue metering and other purposes such as power control and power factor compensation. The definitions of the power components (active, reactive and apparent power, as well as, power factor) under sinusoidal...

  17. Algorithms for revenue metering and their evaluation

    E-Print Network [OSTI]

    Martinez-Lagunes, Rodrigo

    2000-01-01T23:59:59.000Z

    ALGORITHMS FOR REVENUE METERING AND THEIR EVALUATION A Thesis by RODRIGO MARTINEZ-LAGUNES Submitted to the Office of Graduate Studies of Texas AdcM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 2000 Major Subject: Electrical Engineering ALGORITHMS FOR REVENUE METERING AND THEIR EVALUATION A Thesis By RODRIGO MARTINEZ-LAGUNES Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

  18. Sandia National Laboratories: advanced energy generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid integration of renewable-energy resources, real-time residential and industrial energy management and control, lifetime degradation and science and various forms of advanced...

  19. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals...

    Broader source: Energy.gov (indexed) [DOE]

    plant. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals Through Data (July 2011) More Documents & Publications Nissan North America: How Sub-Metering...

  20. LM to Meet Energy Metering Goals Through Enhanced Data Collection...

    Office of Environmental Management (EM)

    to Meet Energy Metering Goals Through Enhanced Data Collection at Groundwater Treatment Systems LM to Meet Energy Metering Goals Through Enhanced Data Collection at Groundwater...

  1. Metering Best Practices: A Guide to Achieving Utility Resource...

    Office of Environmental Management (EM)

    Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information...

  2. NREL: Transmission Grid Integration - Grid Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecasting NREL researchersGrid

  3. Modern Grid Strategy: Enhanced GridLAB-D Capabilities Final Report

    SciTech Connect (OSTI)

    Schneider, Kevin P.; Fuller, Jason C.; Tuffner, Francis K.; Chen, Yousu

    2009-09-09T23:59:59.000Z

    GridLAB-D is a software simulation environment that was initially developed by the US Department of Energy (DOE) Office of Electricity (OE) for the purpose of enabling the effective analysis of emerging smart grid technologies. In order to achieve this goal GridLAB-D was developed using an open source approach with the intent that numerous people and organizations would contribute to the ongoing development. Because of the breadth and complexity of the emerging smart grid technologies the inclusion of multiple groups of developers is essential in order to address the many aspects of the smart grid. As part of the continuing Modern Grid Strategy (MGS) the Pacific Northwest National Laboratory (PNNL) has been tasked with developing an advanced set of GridLAB-D capabilities. These capabilities were developed to enable the analysis of complex use case studies which will allow for multi-disciplinary analysis of smart grid operations. The advanced capabilities which were developed include the implementation of an unbalanced networked power flow algorithm, the implementation of an integrated transmission and distribution system solver, and a set of use cases demonstrating the capabilities of the new solvers.

  4. Grid Information Security Functional Requirement - Fulfilling Information Security of a Smart Grid System

    E-Print Network [OSTI]

    Ling, Amy Poh Ai; 10.5121/ijgca.2011.2201

    2011-01-01T23:59:59.000Z

    This paper describes the background of smart information infrastructure and the needs for smart grid information security. It introduces the conceptual analysis to the methodology with the application of hermeneutic circle and information security functional requirement identification. Information security for the grid market cover matters includes automation and communications industry that affects the operation of electric power systems and the functioning of the utilities that manage them and its awareness of this information infrastructure has become critical to the reliability of the power system. Community benefits from of cost savings, flexibility and deployment along with the establishment of wireless communications. However, concern revolves around the security protections for easily accessible devices such as the smart meter and the related communications hardware. On the other hand, the changing points between traditional versus smart grid networking trend and the information security importance on...

  5. automatic meter reading: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Engineering Websites Summary: in transforming the current electrical grid to the smart grid. The smart grid promises to improve the efficiencyNeighborhood Watch: Security...

  6. automatic survey meter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Engineering Websites Summary: in transforming the current electrical grid to the smart grid. The smart grid promises to improve the efficiencyNeighborhood Watch: Security...

  7. Smart Grid Consortium, Response of New York State Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consortium, Response of New York State Smart Grid Addressing Policy and Logistical Challenges Smart Grid Consortium, Response of New York State Smart Grid Addressing Policy and...

  8. Grid Interaction Tech Team, and International Smart Grid Collaboration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Team, and International Smart Grid Collaboration Grid Interaction Tech Team, and International Smart Grid Collaboration 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  9. 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Panel Discussion 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel Discussion The Office of Electricity Delivery and Energy Reliability held its...

  10. Advanced Security Infrastructures for Grid Education

    E-Print Network [OSTI]

    Sinnott, R.O.

    Sinnott,R.O. Watt,J. Stell,A.J. Chadwick,D.W. The 12th International Conference on Information Systems Analysis and Synthesis (ISAS 2006), Orlando, Florida, July 2006

  11. Monitoring Massive Appliances by a Minimal Number of Smart Meters

    E-Print Network [OSTI]

    Wang, Yongcai

    56 Monitoring Massive Appliances by a Minimal Number of Smart Meters YONGCAI WANG, XIAOHONG HAO. This article presents a framework for deploying a minimal number of smart meters to accurately track the ON of required smart meters is studied by an entropy-based approach, which qualifies the impact of meter

  12. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis, News, Partnership, SMART Grid Vermont-a leader in energy efficiency and deployment of so-called smart-grid...

  13. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis, News, Partnership, SMART Grid Vermont-a leader in energy efficiency and deployment of so-called smart-grid...

  14. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration Energy Supply Transformation Needed On February 20, 2013, in DETL, Distribution Grid Integration, Energy, Energy Assurance, Energy Surety, Grid Integration,...

  15. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution Grid Integration, Energy, Energy...

  16. Grid Logging: Best Practices Guide

    E-Print Network [OSTI]

    Tierney, Brian L

    2008-01-01T23:59:59.000Z

    Revision date: March 1, 2008 Grid Logging: Best Practicesis to help developers of Grid middleware and applicationlog files that will be useful to Grid administrators, users,

  17. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offers Approach to Help Utilities Understand Effects of PV Variability on the Grid On March 7, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid...

  18. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    Data Injection Attacks on Power Grids”, IEEE Transactionson Smart Grid, vol. 2, no. 2, June [21] O. Kosut, L.Data Attacks on Smart Grid State Estimation: Attack

  19. Sandia National Laboratories: electric grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid Integration,...

  20. For the Grid and Through the Grid: The Role of Power Line Communications in the Smart Grid

    E-Print Network [OSTI]

    Galli, Stefano; Wang, Zhifang

    2010-01-01T23:59:59.000Z

    Is Power Line Communication (PLC) a good candidate for Smart Grid applications? The objective of this paper is to address this important question. To do so we provide an overview of what PLC can deliver today by surveying its history and describing the most recent technological advances in the area. We then address Smart Grid applications as instances of sensor networking and network control problems and discuss the main conclusion one can draw from the literature on these subjects. The application scenario of PLC within the Smart Grid is then analyzed in detail. Since a necessary ingredient of network planning is modeling, we also discuss two aspects of engineering modeling that relate to our question. The first aspect is modeling the PLC channel through fading models. The second aspect we review is the Smart Grid control and traffic modeling problem which allows us to achieve a better understanding of the communications requirements. Finally, this paper reports recent studies on the electrical and topologic...

  1. Smart Grid Overview

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Overview Ben Kroposki, PhD, PE Director, Energy Systems IntegraLon NaLonal Renewable Energy Laboratory What is t he S mart Grid? and DER Source: NISTEPRI Architecture...

  2. Fuel rod support grid

    DOE Patents [OSTI]

    Downs, Robert E. (Monroeville, PA); Schwallie, Ambrose L. (Greensburg, PA)

    1985-01-01T23:59:59.000Z

    A grid for the support of nuclear fuel rods arranged in a triangular array. The grid is formed by concentric rings of strap joined by radially arranged web sections.

  3. The soft grid

    E-Print Network [OSTI]

    Kardasis, Ari (Ari David)

    2011-01-01T23:59:59.000Z

    The grid in architecture is a systematic organization of space. The means that architects use to organize space are, almost by definition, rigid and totalizing. The Cartesian grid, which will serve as the antagonist of the ...

  4. Method of grid generation

    DOE Patents [OSTI]

    Barnette, Daniel W. (Veguita, NM)

    2002-01-01T23:59:59.000Z

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  5. Liquid metal Flow Meter - Final Report

    SciTech Connect (OSTI)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30T23:59:59.000Z

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  6. SOLVENT DISPERSION AND FLOW METER CALCULATION RESULTS

    SciTech Connect (OSTI)

    Nash, C.; Fondeur, F.; Peters, T.

    2013-06-21T23:59:59.000Z

    Savannah River National Laboratory (SRNL) found that the dispersion numbers for the six combinations of CSSX:Next Generation Solvent (NGS) “blend” and pure NGS versus salt solution, caustic wash, and strip aqueous solutions are all good. The dispersion numbers are indications of processability with centrifugal contactors. A comparison of solvent physical and thermal properties shows that the Intek™ solvent flow meter in the plant has a reading biased high versus calibrated flow when NGS is used, versus the standard CSSX solvent. The flow meter, calibrated for CSSX solvent, is predicted to read 2.8 gpm of NGS in a case where the true flow of NGS is 2.16 gpm.

  7. FUTURE POWER GRID INITIATIVE A Statistical State Prediction

    E-Print Network [OSTI]

    and analytics capabilities for the power November 2012 PNNL-SA-90022 Ning Zhou Pacific Northwest National Laboratory (509) 372-6438 ning.zhou@pnnl.gov ABOUT FPGI The Future Power Grid Initiative (FPGI) will deliver Northwest National Laboratory's (PNNL) national electric grid research facility, the FPGI will advance

  8. Brookhaven National Laboratory Solar Energy and Smarter Grid

    E-Print Network [OSTI]

    Brookhaven National Laboratory Solar Energy and Smarter Grid Research Update Presented to BNL CAC on Market Barriers #12;5 BNL's research agenda for solar energy and smarter electric grid focuses on two key areas Advancement of Solar Energy Generation in Northeast · Characterization of renewable generation

  9. Introduction The electric power grid and electric power

    E-Print Network [OSTI]

    of systems" that integrates an end-to-end, advanced com- munications infrastructure into the electric powerIntroduction The electric power grid and electric power industry are undergoing a dramatic transforma- tion. By linking information technologies with the electric power grid--to provide "electricity

  10. GridWise Standards Mapping Overview

    SciTech Connect (OSTI)

    Bosquet, Mia L.

    2004-04-01T23:59:59.000Z

    ''GridWise'' is a concept of how advanced communications, information and controls technology can transform the nation's energy system--across the spectrum of large scale, central generation to common consumer appliances and equipment--into a collaborative network, rich in the exchange of decision making information and an abundance of market-based opportunities (Widergren and Bosquet 2003) accompanying the electric transmission and distribution system fully into the information and telecommunication age. This report summarizes a broad review of standards efforts which are related to GridWise--those which could ultimately contribute significantly to advancements toward the GridWise vision, or those which represent today's current technological basis upon which this vision must build.

  11. Department of Energy Announces $8.5 Million to Advance Solar...

    Office of Environmental Management (EM)

    8.5 Million to Advance Solar Energy Grid Integration Systems Department of Energy Announces 8.5 Million to Advance Solar Energy Grid Integration Systems September 7, 2010 -...

  12. Game Theoretic Methods for the Smart Grid

    E-Print Network [OSTI]

    Saad, Walid; Poor, H Vincent; Ba?ar, Tamer

    2012-01-01T23:59:59.000Z

    The future smart grid is envisioned as a large-scale cyber-physical system encompassing advanced power, communications, control, and computing technologies. In order to accommodate these technologies, it will have to build on solid mathematical tools that can ensure an efficient and robust operation of such heterogeneous and large-scale cyber-physical systems. In this context, this paper is an overview on the potential of applying game theory for addressing relevant and timely open problems in three emerging areas that pertain to the smart grid: micro-grid systems, demand-side management, and communications. In each area, the state-of-the-art contributions are gathered and a systematic treatment, using game theory, of some of the most relevant problems for future power systems is provided. Future opportunities for adopting game theoretic methodologies in the transition from legacy systems toward smart and intelligent grids are also discussed. In a nutshell, this article provides a comprehensive account of the...

  13. Advanced Workshop in Regulation and

    E-Print Network [OSTI]

    Lin, Xiaodong

    Advanced Workshop in Regulation and Competition 2011-2012 Conflicting Technological and Competitive Forces in Regulated Industries January 13, 2012 Smart Grid and Rates Location: Rutgers Business School 1:40pm "Smart Grid in Maryland" Kurt Strunk, NERA Economic Consulting, 1:40pm-2:05pm "Gas Pipeline Rates

  14. Laser Power Meter Large, bright, backlit LCD

    E-Print Network [OSTI]

    Woodall, Jerry M.

    Laser Power Meter FEATURES · Large, bright, backlit LCD display · Digital accuracy with analog-like movement for laser tuning · Works with thermopile and optical sensors · Intuitive button-driven user COMPATIBILITY · PowerMax® thermal sensors · Optical sensors FieldMaxII-TO Coherent Laser Measurement and Control

  15. The economics of net metering Larry Hughes

    E-Print Network [OSTI]

    Hughes, Larry

    . In jurisdictions that permit net metering, the owners of these facilities (the customer-generators) can supply of financial compensation on the selection of generation equipment from the perspective of the customer that generate electricity intermittently (typically renewables such as wind and solar) need not be concerned

  16. Hardware Metering: A Survey Farinaz Koushanfar

    E-Print Network [OSTI]

    , the problem has recently gained an increased attention by the industry, government, and research community passive and active hardware metering methods available. Electrical and Computer Engineering Department only be performed in state-of-art fabrication facilities. Building or maintaining such facilities

  17. 2011 W. Meyer Qualifizierungsbedarf Smart Metering

    E-Print Network [OSTI]

    Ulm, Universität

    1 2011 W. Meyer Qualifizierungsbedarf Smart Metering Qualifizierungsbedarf im Bereich Smart Netze und E - Mobility Willi Meyer Zentrum für Elektro- und Schulungsleiter Informationstechnik Nürnberg #12;2 2011 W. Meyer Alle Angaben wurden mit Sorgfalt und nach bestem Wissen und Gewissen erstellt. Es

  18. Understanding The Smart Grid

    SciTech Connect (OSTI)

    NONE

    2007-11-15T23:59:59.000Z

    The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology providers involved in the Smart Grid and provides profiles on them including contact information, company overviews, technology reviews, and key Smart Grid activities.

  19. FY 2012 Budget Request Advanced Research Projects Agency - Energy

    Energy Savers [EERE]

    36,000 Transmission Reliability 18,000 Advanced Modeling Grid Research 11,000 Energy Systems Predictive Capability 7,000 Smart Grid 24,400 Cyber Security for Energy Delivery...

  20. EL Program: Smart Grid Program Manager: George Arnold, Designated Goal Liaison; David Wollman,

    E-Print Network [OSTI]

    Magee, Joseph W.

    EL Program: Smart Grid Program Manager: George Arnold, Designated Goal Liaison; David Wollman, Smart Grid and Cyber-Physical Systems Program Office, Engineering Laboratory Office, x2433; Dean and power flows, and additional advancements to create a smart grid. In response to a mandate given

  1. FUTURE POWER GRID INITIATIVE A Multi-layer Data-Driven

    E-Print Network [OSTI]

    » Enhances the ability of control center personnel to anticipate and proactively address electric power grid on the Electricity Infrastructure Operations Center (EIOC), the Pacific Northwest National Laboratory's (PNNLFUTURE POWER GRID INITIATIVE A Multi-layer Data-Driven Advanced Reasoning Tool for Smart Grid

  2. Survey Paper Cyber security in the Smart Grid: Survey and challenges q

    E-Print Network [OSTI]

    Wang, Wenye

    importantly, with the integration of advanced computing and communication technologies, the Smart GridSurvey Paper Cyber security in the Smart Grid: Survey and challenges q Wenye Wang , Zhuo Lu Accepted 29 December 2012 Available online 17 January 2013 Keywords: Smart Grid Cyber security Attacks

  3. Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators

    SciTech Connect (OSTI)

    Rose, James; Varnado, Laurel

    2009-04-01T23:59:59.000Z

    As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer���¢��������s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

  4. Fuel cell membrane hydration and fluid metering

    DOE Patents [OSTI]

    Jones, Daniel O. (Glenville, NY); Walsh, Michael M. (Fairfield, CT)

    2003-01-01T23:59:59.000Z

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  5. Fuel cell membrane hydration and fluid metering

    DOE Patents [OSTI]

    Jones, Daniel O. (Glenville, NY); Walsh, Michael M. (Fairfield, CT)

    1999-01-01T23:59:59.000Z

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  6. High-Power Zinc-Air Energy Storage: Enhanced Metal-Air Energy Storage System with Advanced Grid-Interoperable Power Electronics Enabling Scalability and Ultra-Low Cost

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    GRIDS Project: Fluidic is developing a low-cost, rechargeable, high-power module for Zinc-air batteries that will be used to store renewable energy. Zinc-air batteries are traditionally found in small, non-rechargeable devices like hearing aids because they are well-suited to delivering low levels of power for long periods of time. Historically, Zinc-air batteries have not been as useful for applications which require periodic bursts of power, like on the electrical grid. Fluidic hopes to fill this need by combining the high energy, low cost, and long run-time of a Zinc-air battery with new chemistry providing high power, high efficiency, and fast response. The battery module could allow large grid-storage batteries to provide much more power on very short demand—the most costly kind of power for utilities—and with much more versatile performance.

  7. The Need for Essential Consumer Protections: Smart metering proposals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    metering proposals and the move to time-based pricing. August 2010 The Need for Essential Consumer Protections: Smart metering proposals and the move to time-based pricing. August...

  8. Wireless Electricity Metering of Miscellaneous and Electronic Devices in Buildings

    E-Print Network [OSTI]

    Culler, David E.

    Wireless Electricity Metering of Miscellaneous and Electronic Devices in Buildings, University of California, Berkeley, USA Abstract- Miscellaneous and electronic devices hundreds of miscellaneous and electronic devices where metered for several months

  9. Grid Transformation Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-03-Grid-Transformation-Workshop Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  10. Numerical Simulation for eHealth: Grid-enabled Medical Simulation Services Siegfried Benknera

    E-Print Network [OSTI]

    Middleton, Stuart E.

    advanced bio-medical simulation applications. Often, however, such applications have a very limited methodology advances. The European GEMSS Project [7] is concerned with the creation of medical Grid service1 Numerical Simulation for eHealth: Grid-enabled Medical Simulation Services Siegfried Benknera

  11. Author's personal copy Ramp metering and freeway bottleneck capacity

    E-Print Network [OSTI]

    Levinson, David M.

    ; Hall and Agyemang-Duah, 1991; Banks, 1991a,b). The two-capacity hypothesis argues that metering can

  12. Exploiting the Computational Grid Lecture 1 Globus and the Grid

    E-Print Network [OSTI]

    Exploiting the Computational Grid Lecture 1 ­ Globus and the Grid · The grid needs middleware to enable things such as logins etc · The toolkit model for the grid is to define a set of standards for the grid and then develop applications on top. The low level stuff is then hidden from the user · Globus

  13. Mapping Unstructured Grids to Structured Grids and Multigrid

    E-Print Network [OSTI]

    Chapter 4 Mapping Unstructured Grids to Structured Grids and Multigrid Many problems based solution is to map the unstructured grid onto a structured grid and then apply multigrid to a sequence). We 65 #12; CHAPTER 4. MAPPING UNSTRUCTURED GRIDS 66 show that unless great care is taken

  14. Security and Smart Metering Sophia Kaplantzis and Y. Ahmet Sekercioglu

    E-Print Network [OSTI]

    Sekercioglu, Y. Ahmet

    Security and Smart Metering Sophia Kaplantzis and Y. Ahmet S¸ekercioglu Department of Electrical the transmission network, to the suppliers back office. It encompasses concepts such as smart metering, smart does this threat translate to smart metering applications? In this article, we focus on the security

  15. Privacy Preserving Smart Metering System Based Retail Level Electricity Market

    E-Print Network [OSTI]

    Franchetti, Franz

    1 Privacy Preserving Smart Metering System Based Retail Level Electricity Market Cory Thoma, Tao Cui, Student Member, IEEE, Franz Franchetti, Member, IEEE Abstract--Smart metering systems multi-party compu- tation (SMC) based privacy preserving smart metering system. Using the proposed SMC

  16. Secure Multiparty Computation Based Privacy Preserving Smart Metering System

    E-Print Network [OSTI]

    Franchetti, Franz

    Secure Multiparty Computation Based Privacy Preserving Smart Metering System Cory Thoma Information Ave. Pittsburgh, PA 15213 Email: {tcui,franzf}@ece.cmu.edu Abstract--Smart metering systems provide privacy preserving protocol for smart meter based load management. Using SMC and a proper designed

  17. Smart Meter Aware Domestic Energy Trading Agents Nicola Capodieci

    E-Print Network [OSTI]

    Aiello, Marco

    Smart Meter Aware Domestic Energy Trading Agents Nicola Capodieci University of Modena and RE illustrate an implementation includ- ing the interfacing with a physical Smart Meter and provide initial--Intelligent agents, Multiagent systems General Terms Design, Economy Keywords Energy trade, agents, smart meter 1

  18. Leveraging smart meter data to recognize home appliances Markus Weiss+#

    E-Print Network [OSTI]

    Leveraging smart meter data to recognize home appliances Markus Weiss+# , Adrian Helfenstein -- The worldwide adoption of smart meters that measure and communicate residential electricity consumption gives demand. In this paper we present an infrastructure and a set of algorithms that make use of smart meters

  19. Grid Architecture William E. Johnston

    E-Print Network [OSTI]

    Grid Architecture William E. Johnston Lawrence Berkeley National Lab and NASA Ames Research Center wejohnston@lbl.gov (These slides are available at grid.lbl.gov/~wej/Grids) #12;Distributed Resources Condor Internet optical networks space-based networks Grid Communication Functions Communications BasicGrid

  20. OTRA-THS MAC to reduce Power Outage Data Collection Latency in a smart meter network

    SciTech Connect (OSTI)

    Garlapati, Shravan K [ORNL] [ORNL; Kuruganti, Phani Teja [ORNL] [ORNL; Buehrer, Richard M [ORNL] [ORNL; Reed, Jeffrey H [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The deployment of advanced metering infrastructure by the electric utilities poses unique communication challenges, particularly as the number of meters per aggregator increases. During a power outage, a smart meter tries to report it instantaneously to the electric utility. In a densely populated residential/industrial locality, it is possible that a large number of smart meters simultaneously try to get access to the communication network to report the power outage. If the number of smart meters is very high of the order of tens of thousands (metropolitan areas), the power outage data flooding can lead to Random Access CHannel (RACH) congestion. Several utilities are considering the use of cellular network for smart meter communications. In 3G/4G cellular networks, RACH congestion not only leads to collisions, retransmissions and increased RACH delays, but also has the potential to disrupt the dedicated traffic flow by increasing the interference levels (3G CDMA). In order to overcome this problem, in this paper we propose a Time Hierarchical Scheme (THS) that reduces the intensity of power outage data flooding and power outage reporting delay by 6/7th, and 17/18th when compared to their respective values without THS. Also, we propose an Optimum Transmission Rate Adaptive (OTRA) MAC to optimize the latency in power outage data collection. The analysis and simulation results presented in this paper show that both the OTRA and THS features of the proposed MAC results in a Power Outage Data Collection Latency (PODCL) that is 1/10th of the 4G LTE PODCL.

  1. Smart-Metering for Monitoring Building Power Distribution Network using Instantaneous Phasor Computations of Electrical Signals

    E-Print Network [OSTI]

    K.R., Krishnanand

    2013-01-01T23:59:59.000Z

    efficient operation of a smart meter network . in IndustrialGood standards for smart meters . in European EnergyHardware development for Smart Meter based innovations . in

  2. Smart Grid: Transforming the Electric System

    SciTech Connect (OSTI)

    Widergren, Steven E.

    2010-04-13T23:59:59.000Z

    This paper introduces smart grid concepts, summarizes the status of current smart grid related efforts, and explains smart grid priorities.

  3. Vice President Biden Announces Plan to Put One Million Advanced...

    Energy Savers [EERE]

    leading manufacturer Ener1, Inc., which produces advanced lithium-ion battery systems for electric vehicles, grid energy storage and industrial electronics. In his State of the...

  4. Sandia Energy - Smart Grid Tools and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Tools and Technology Home Stationary Power Grid Modernization Renewable Energy Integration Smart Grid Tools and Technology Smart Grid Tools and TechnologyTara...

  5. NUCLEAR MIXING METERS FOR CLASSICAL NOVAE

    SciTech Connect (OSTI)

    Kelly, Keegan J.; Iliadis, Christian; Downen, Lori; Champagne, Art [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); José, Jordi [Departament de Física i Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, E-08036 Barcelona (Spain)

    2013-11-10T23:59:59.000Z

    Classical novae are caused by mass transfer episodes from a main-sequence star onto a white dwarf via Roche lobe overflow. This material possesses angular momentum and forms an accretion disk around the white dwarf. Ultimately, a fraction of this material spirals in and piles up on the white dwarf surface under electron-degenerate conditions. The subsequently occurring thermonuclear runaway reaches hundreds of megakelvin and explosively ejects matter into the interstellar medium. The exact peak temperature strongly depends on the underlying white dwarf mass, the accreted mass and metallicity, and the initial white dwarf luminosity. Observations of elemental abundance enrichments in these classical nova events imply that the ejected matter consists not only of processed solar material from the main-sequence partner but also of material from the outer layers of the underlying white dwarf. This indicates that white dwarf and accreted matter mix prior to the thermonuclear runaway. The processes by which this mixing occurs require further investigation to be understood. In this work, we analyze elemental abundances ejected from hydrodynamic nova models in search of elemental abundance ratios that are useful indicators of the total amount of mixing. We identify the abundance ratios ?CNO/H, Ne/H, Mg/H, Al/H, and Si/H as useful mixing meters in ONe novae. The impact of thermonuclear reaction rate uncertainties on the mixing meters is investigated using Monte Carlo post-processing network calculations with temperature-density evolutions of all mass zones computed by the hydrodynamic models. We find that the current uncertainties in the {sup 30}P(p, ?){sup 31}S rate influence the Si/H abundance ratio, but overall the mixing meters found here are robust against nuclear physics uncertainties. A comparison of our results with observations of ONe novae provides strong constraints for classical nova models.

  6. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    IEEE Transactions on Smart Grid, vol. 2, no. 2, June [21] O.Malicious Data Attacks on Smart Grid State Estimation:Framework and Roadmap for Smart Grid Interoperability Stan-

  7. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    IEEE Transactions on Smart Grid, vol. 2, no. 2, June [21] O.Malicious Data Attacks on Smart Grid State Estimation:Attack and Detection in Smart Grid,” to appear in IEEE

  8. Widget:GoalMeter | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to:WestwoodCreatePageFormFieldsDisplayToggleGoalMeter Jump

  9. 2010 Smart Meter Installations | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJune 17, 2015 SEABOnlyTipsWorkingErichsecurity10 Smart Meter

  10. greenMeter | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,Eaga SolarZoloHome Dc'scloudgridgreenMeter

  11. Power Metering Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prev next > Sun Mon Tue Wed May 28-29,Metering Project Power

  12. March 31, 2011 14:43 World Scientific Review Volume -9in x 6in ws-rv9x6 Cognitive Radio Network for Smart Grid

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    of smart meter wireless transmissions in the presence of strong wideband interference. Security Network for Smart Grid Raghuram Ranganathan, Robert Qiu, Zhen Hu, Shujie Hou, Zhe Chen, Marbin Pazos, rqiu, zhu21, zchen42, shou42, mpazos, nguo}@tntech.edu Recently, Cognitive radio and Smart Grid are two

  13. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartmentEnergy Integrated EnergyIntegratedAdapting

  14. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy:Whether you're a home builder1 of 12 SantiagoSome manufacturers are

  15. False Data Injection Attacks against State Estimation in Electric Power Grids

    E-Print Network [OSTI]

    Reiter, Michael

    the measurements of meters at physically protected locations such as substations, such attacks can introduce13 False Data Injection Attacks against State Estimation in Electric Power Grids YAO LIU and PENG also defeat malicious measurements injected by attackers. In this article, we expose an unknown

  16. False Data Injection Attacks against State Estimation in Electric Power Grids

    E-Print Network [OSTI]

    Ning, Peng

    the measurements of meters at physically protected locations such as substations, such attacks can introduceFalse Data Injection Attacks against State Estimation in Electric Power Grids Yao Liu and Peng Ning also defeat malicious measurements injected by attackers. In this paper, we expose an unknown

  17. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News, News & Events, Renewable Energy, SMART Grid, Systems Analysis, Transmission Grid Integration, Wind Energy Sandia finalized and submitted the updated "WECC Wind Power Plant...

  18. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IEC 61400-26 Availability Standard On June 12, 2014, in Analysis, Distribution Grid Integration, Energy, Grid Integration, Infrastructure Security, News, News & Events,...

  19. Sandia National Laboratories: grid modernization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid modernization Renewables, Other Energy Issues To Be Focus of Enhanced Sandia-SINTEF Collaboration On May 28, 2014, in Biofuels, CRF, Distribution Grid Integration, Energy,...

  20. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Safety Workshop On April 7, 2014, in Capabilities, CINT, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Grid...

  1. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Offers Approach to Help Utilities Understand Effects of PV Variability on the Grid On March 7, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety,...

  2. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Specialists (PVSC) Conference On August 14, 2013, in DETL, Distribution Grid Integration, Energy, Facilities, Grid Integration, News, News & Events, Photovoltaic,...

  3. Sandia National Laboratories: Grid Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    InfrastructureEnergy AssuranceGrid Capabilities Grid Capabilities Goal: To develop and implement a comprehensive Sandia program to support the modernization of the U.S. electric...

  4. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-03-30T23:59:59.000Z

    Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.

  5. Future Grid: The Environment Future Grid Initiative White Paper

    E-Print Network [OSTI]

    Future Grid: The Environment Future Grid Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Future Grid: The Environment Prepared for the Project "The Future Grid to Enable Sustainable Energy Systems" Funded by the U

  6. GridWise Alliance

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the GRIDWISE ALLIANCE including its mission, today and tomorrow's grid, membership, work groups, and key policy initiatives.

  7. Random array grid collimator

    DOE Patents [OSTI]

    Fenimore, E.E.

    1980-08-22T23:59:59.000Z

    A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  8. Cyber Security & Smart Grid

    E-Print Network [OSTI]

    Shapiro, J.

    2011-01-01T23:59:59.000Z

    of the impacts of long-term power shortages from the destruction of critical electric infrastructure. ? A Hitachi factory north of Tokyo that makes 60% of the world?s supply of airflow sensors was shut down. This caused General Motors to shut a plant... at The University of Texas at Dallas ? Next Generation Control Systems ? Trustworthy Cyber Infrastructure for the Power Grid ? Active Defense Systems ? System Vulnerability Assessments ? Grid Test Bed ? Integrated Risk Analysis ? Modeling and Simulation...

  9. Method and apparatus for reading meters from a video image

    DOE Patents [OSTI]

    Lewis, Trevor J. (Irwin, PA); Ferguson, Jeffrey J. (North Huntingdon, PA)

    1997-01-01T23:59:59.000Z

    A method and system to enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relatively non-intrusive manner without making any complicated or expensive electronic connections, and without requiring intensive manpower.

  10. GRIDS: Grid-Scale Rampable Intermittent Dispatchable Storage

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    GRIDS Project: The 12 projects that comprise ARPA-E’s GRIDS Project, short for “Grid-Scale Rampable Intermittent Dispatchable Storage,” are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.

  11. Thirty Meter Telescope Detailed Science Case: 2015

    E-Print Network [OSTI]

    Skidmore, Warren; Fukugawa, Misato; Goswami, Aruna; Hao, Lei; Jewitt, David; Laughlin, Greg; Steidel, Charles; Hickson, Paul; Simard, Luc; Schöck, Matthias; Treu, Tommaso; Cohen, Judith; Anupama, G C; Dickinson, Mark; Harrison, Fiona; Kodama, Tadayuki; Lu, Jessica R; Macintosh, Bruce; Malkan, Matt; Mao, Shude; Narita, Norio; Sekiguchi, Tomohiko; Subramaniam, Annapurni; Tanaka, Masaomi; Tian, Feng; A'Hearn, Michael; Akiyama, Masayuki; Ali, Babar; Aoki, Wako; Bagchi, Manjari; Barth, Aaron; Bhalerao, Varun; Bradac, Marusa; Bullock, James; Burgasser, Adam J; Chapman, Scott; Chary, Ranga-Ram; Chiba, Masashi; Cooray, Asantha; Crossfield, Ian; Currie, Thayne; Das, Mousumi; Dewangan, G C; de Grijs, Richard; Do, Tuan; Dong, Subo; Evslin, Jarah; Fang, Taotao; Fang, Xuan; Fassnacht, Christopher; Fletcher, Leigh; Gaidos, Eric; Gal, Roy; Ghez, Andrea; Giavalisco, Mauro; Grady, Carol A; Greathouse, Thomas; Gogoi, Rupjyoti; Guhathakurta, Puragra; Ho, Luis; Hasan, Priya; Herczeg, Gregory J; Honda, Mitsuhiko; Imanishi, Masa; Inanmi, Hanae; Iye, Masanori; Kamath, U S; Kane, Stephen; Kashikawa, Nobunari; Kasliwal, Mansi; Kirby, Vishal KasliwalEvan; Konopacky, Quinn M; Lepine, Sebastien; Li, Di; Li, Jianyang; Liu, Junjun; Liu, Michael C; Lopez-Rodriguez, Enrigue; Lotz, Jennifer; Lubin, Philip; Macri, Lucas; Maeda, Keiichi; Marchis, Franck; Marois, Christian; Marscher, Alan; Martin, Crystal; Matsuo, Taro; Max, Claire; McConnachie, Alan; McGough, Stacy; Melis, Carl; Meyer, Leo; Mumma, Michael; Muto, Takayuki; Nagao, Tohru; Najita, Joan R; Navarro, Julio; Pierce, Michael; Prochaska, Jason X; Oguri, Masamune; Ojha, Devendra K; Okamoto, Yoshiko K; Orton, Glenn; Otarola, Angel; Ouchi, Masami; Packham, Chris; Padgett, Deborah L; Pandey, Shashi Bhushan; Pilachowsky, Catherine; Pontoppidan, Klaus M; Primack, Joel; Puthiyaveettil, Shalima; Ramirez-Ruiz, Enrico; Reddy, Naveen; Rich, Michael; Richter, Matthew J; Schombert, James; Sen, Anjan Ananda; Shi, Jianrong; Sheth, Kartik; Srianand, R; Tan, Jonathan C; Tanaka, Masayuki; Tanner, Angelle; Tominaga, Nozomu; Tytler, David; U, Vivian; Wang, Lingzhi; Wang, Xiaofeng; Wang, Yiping; Wilson, Gillian; Wright, Shelley; Wu, Chao; Wu, Xufeng; Xu, Renxin; Yamada, Toru; Yang, Bin; Zhao, Gongbo; Zhao, Hongsheng

    2015-01-01T23:59:59.000Z

    The TMT Detailed Science Case describes the transformational science that the Thirty Meter Telescope will enable. Planned to begin science operations in 2024, TMT will open up opportunities for revolutionary discoveries in essentially every field of astronomy, astrophysics and cosmology, seeing much fainter objects much more clearly than existing telescopes. Per this capability, TMT's science agenda fills all of space and time, from nearby comets and asteroids, to exoplanets, to the most distant galaxies, and all the way back to the very first sources of light in the Universe. More than 150 astronomers from within the TMT partnership and beyond offered input in compiling the new 2015 Detailed Science Case. The contributing astronomers represent the entire TMT partnership, including the California Institute of Technology (Caltech), the Indian Institute of Astrophysics (IIA), the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), the National Astronomical Observatory of Japan (NAOJ),...

  12. Smart Metering and Electricity Demand: Technology, Economics and International Experience

    E-Print Network [OSTI]

    Brophy Haney, A; Jamasb, Tooraj; Pollitt, Michael G.

    www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R Abstract Smart Metering and Electricity Demand: Technology, Economics and International Experience EPRG Working Paper EPRG0903 Cambridge Working Paper in Economics 0905 Aoife... Brophy Haney, Tooraj Jamasb and Michael G. Pollitt In recent years smart metering of electricity demand has attracted attention around the world. A number of countries and regions have started deploying new metering systems; and many others have...

  13. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30T23:59:59.000Z

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  14. Abstract--Currently, there are multiple national directives that call for the development of a smarter electrical grid. This

    E-Print Network [OSTI]

    Oren, Shmuel S.

    of the electric transmission grid. The USA Energy Policy Act of 2005, Sec.1223.a.5, includes: "encourage of a smarter electrical grid. This includes, but is not limited to, the development of advanced transmission a smarter, more flexible transmission grid. Index Terms--Power system economics, power system reliability

  15. Optimization Online - A Security Framework for Smart Metering with ...

    E-Print Network [OSTI]

    Cristina Rottondi

    2011-12-05T23:59:59.000Z

    Dec 5, 2011 ... Abstract: The increasing diffusion of Automatic Meter Reading (AMR) has raised many concerns about the protection of personal data related to ...

  16. Hydro-Québec Net Metering (Quebec, Canada) | Open Energy Information

    Open Energy Info (EERE)

    Canada) Policy Type Net Metering Affected Technologies Geothermal Electric, Solar Photovoltaics Active Policy Yes Implementing Sector Utility Funding Source Hydro-Quebec Primary...

  17. The Intersection of Net Metering and Retail Choice: An Overview...

    Energy Savers [EERE]

    and utilities provide net metering options for their customers. They then provided case studies to illustrate the models. Date December 2010 Topic Financing, Incentives &...

  18. Wavelength meter having single mode fiber optics multiplexed inputs

    DOE Patents [OSTI]

    Hackel, Richard P. (Livermore, CA); Paris, Robert D. (San Ramon, CA); Feldman, Mark (Pleasanton, CA)

    1993-01-01T23:59:59.000Z

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  19. Two-Meter Temperature Surveys for Geothermal Exploration Project...

    Open Energy Info (EERE)

    being considered in this project. Initial results from two-meter temperature surveys on Navy managed land near Fallon, Nevada indicate the presence of several temperature...

  20. Wavelength meter having single mode fiber optics multiplexed inputs

    DOE Patents [OSTI]

    Hackel, R.P.; Paris, R.D.; Feldman, M.

    1993-02-23T23:59:59.000Z

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  1. Maritime Electric- Net Metering (Prince Edward Island, Canada)

    Broader source: Energy.gov [DOE]

    In December 2005 The Renewable Energy Act and associated Regulations came into effect. A Government policy objective incorporated in the Act was the introduction of net metering for...

  2. High Performance Computing Data Center Metering Protocol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHighLouisiana | Department ofHigh

  3. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01T23:59:59.000Z

    Study: The Economic Cost of Net-Metering in Maryland: WhoEnergy (DSIRE), 2010. Map of Net Metering Policies [WWWdocuments/summarymaps/Net_Metering_map.ppt De Jonghe, C. ,

  4. 2012 Advanced Applications Research & Development Peer Review...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Review - Real-Time Wide-Area Montoring Tool Based on CELL Method - Yuri Makarov, PNNL 2012 Advanced Applications R&D Peer Review - Modal Analysis for Grid Operations (MANGO)...

  5. Cyber Security & Smart Grid 

    E-Print Network [OSTI]

    Shapiro, J.

    2011-01-01T23:59:59.000Z

    to complexity, proprietary nature and different management teams ? Ripe for exploitation ? Intel, Microsoft, Security vendors are not focused on this technology ? Many are NOT PC?s ? Many can be infected and the devices cannot be cleaned ESL-KT-11...-11-23 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 Inherent Vulnerabilities ? Two-way communications ? Distributed connectivity ? Customer usage data ? Metering devices ? Weak authentication and access control ? Lack of adequate training ? Lack...

  6. Shallow (2-meter) temperature surveys in Colorado

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Colorado 2m Survey Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: Shallow temperature surveys are useful in early-stage geothermal exploration to delineate surface outflow zones, with the intent to identify the source of upwelling, usually a fault. Detailed descriptions of the 2-meter survey method and equipment design can be found in Coolbaugh et al. (2007) and Sladek et al. (2007), and are summarized here. The survey method was devised to measure temperature as far below the zone of solar influence as possible, have minimal equilibration time, and yet be portable enough to fit on the back of an all-terrain vehicle (ATV); Figure 2). This method utilizes a direct push technology (DPT) technique where 2.3 m long, 0.54” outer diameter hollow steel rods are pounded into the ground using a demolition hammer. Resistance temperature devices (RTD) are then inserted into the rods at 2-meter depths, and allowed to equilibrate for one hour. The temperatures are then measured and recorded, the rods pulled out of the ground, and re-used at future sites. Usually multiple rods are planted over the course of an hour, and then the sampler returns back to the first station, measures the temperatures, pulls the rods, and so on, to eliminate waiting time. At Wagon Wheel Gap, 32 rods were planted around the hot springs between June 20 and July 1, 2012. The purpose was to determine the direction of a possible upflow fault or other structure. Temperatures at 1.5m and 2m depths were measured and recorded in the attribute table of this point shapefile. Several anomalous temperatures suggest that outflow is coming from a ~N60W striking fault or shear zone that contains the quartz-fluorite-barite veins of the adjacent patented mining claims. It should be noted that temperatures at 2m depth vary according to the amount of solar heating from above, as well as possible geothermal heating from below. Spatial Domain: Extent: Top: 4490310.560635 m Left: 150307.008238 m Right: 433163.213617 m Bottom: 4009565.915398 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  7. Electrical energy metering application at a large research facility

    SciTech Connect (OSTI)

    Falke, S.S.

    1991-05-08T23:59:59.000Z

    A brief history of electric energy metering at Lawrence Livermore National Laboratory is presented. Use of electromechanical watthour demand, solid state single function transducers, analog multifunction, and digital multifunction per-phase metering are discussed. Applications for interdepartment revenue transfer based on energy and power flow, load profiling, system planning, and use as a troubleshooting tool are described. 6 refs.

  8. A Global Personal Energy Meter University of Cambridge Computer Laboratory

    E-Print Network [OSTI]

    Cambridge, University of

    - sumption figures scaled by a predetermined factor for the type of energy used and divided equally amongstA Global Personal Energy Meter Simon Hay University of Cambridge Computer Laboratory Abstract of goods and provision of services. I envisage a personal energy meter which can record and apportion

  9. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments Home StationaryFAQs HomeProgramSCADASMART Grid

  10. To Begin the World Anew: Smart Grids and the Need for a Comprehensive U.S. Energy Policy

    SciTech Connect (OSTI)

    Foster, Nikolas AF

    2011-12-01T23:59:59.000Z

    The United States is in the midst of a monumental transformation of its electric power grid. Advances in information and communication technologies and grid measurement and control devices have initiated the transition toward a more resilient, sustainable and efficient future power grid. Deployment of these technologies is being driven by policies encouraging the shift to a greener grid, incorporating clean and low carbon energy; as well as rising consumer demand for smarter ways to use existing resources.

  11. Solid state watt-hour meter

    SciTech Connect (OSTI)

    Hurley, J.R.; Gilker, C.S.

    1984-08-21T23:59:59.000Z

    A watt-hour meter is disclosed which includes: a microprocessor coupled to a solid-state Hall-Effect sensor; an electrically alterable ROM coupled to the microprocessor; a power supply; a power outage timing means using the discharge characteristic of a capacitor; apparatus for supplying a 60 Hz clock signal to the microprocessor; a readout device coupled to the microprocessor to provide an indication of the power consumed; an output on the microprocessor for controlling a circuit breaker; and a switch for overriding the microprocessor controlled circuit breaker. The microprocessor and the electrically alterable ROM are connected and programmed: to sense the time of day as determined from an initial time of day and setting the 60 Hz clock signal; to sense and compute the power used by the consumer; to automatically open the circuit breaker when power demand on the electric power source is high and/or the cost per kilowatt hour is high; to automatically close the circuit breaker when the power demand on the source of electric power is low and/or the cost per kilowatt power is low; and to allow a consumer to override the microprocessor's control of the circuit breaker.

  12. Measurement of neutron dose equivalent outside and inside of the treatment vault of GRID therapy

    SciTech Connect (OSTI)

    Wang, Xudong; Charlton, Michael A.; Esquivel, Carlos; Eng, Tony Y.; Li, Ying; Papanikolaou, Nikos [University of Texas Health Science Center, San Antonio, Texas 78229 (United States)] [University of Texas Health Science Center, San Antonio, Texas 78229 (United States)

    2013-09-15T23:59:59.000Z

    Purpose: To evaluate the neutron and photon dose equivalent rates at the treatment vault entrance (H{sub n,D} and H{sub G}), and to study the secondary radiation to the patient in GRID therapy. The radiation activation on the grid was studied.Methods: A Varian Clinac 23EX accelerator was working at 18 MV mode with a grid manufactured by .decimal, Inc. The H{sub n,D} and H{sub G} were measured using an Andersson–Braun neutron REM meter, and a Geiger Müller counter. The radiation activation on the grid was measured after the irradiation with an ion chamber ?-ray survey meter. The secondary radiation dose equivalent to patient was evaluated by etched track detectors and OSL detectors on a RANDO{sup ®} phantom.Results: Within the measurement uncertainty, there is no significant difference between the H{sub n,D} and H{sub G} with and without a grid. However, the neutron dose equivalent to the patient with the grid is, on average, 35.3% lower than that without the grid when using the same field size and the same amount of monitor unit. The photon dose equivalent to the patient with the grid is, on average, 44.9% lower. The measured average half-life of the radiation activation in the grid is 12.0 (±0.9) min. The activation can be categorized into a fast decay component and a slow decay component with half-lives of 3.4 (±1.6) min and 15.3 (±4.0) min, respectively. There was no detectable radioactive contamination found on the surface of the grid through a wipe test.Conclusions: This work indicates that there is no significant change of the H{sub n,D} and H{sub G} in GRID therapy, compared with a conventional external beam therapy. However, the neutron and scattered photon dose equivalent to the patient decrease dramatically with the grid and can be clinical irrelevant. Meanwhile, the users of a grid should be aware of the possible high dose to the radiation worker from the radiation activation on the surface of the grid. A delay in handling the grid after the beam delivery is suggested.

  13. Essential Grid Workflow Monitoring Elements

    SciTech Connect (OSTI)

    Gunter, Daniel K.; Jackson, Keith R.; Konerding, David E.; Lee,Jason R.; Tierney, Brian L.

    2005-07-01T23:59:59.000Z

    Troubleshooting Grid workflows is difficult. A typicalworkflow involves a large number of components networks, middleware,hosts, etc. that can fail. Even when monitoring data from all thesecomponents is accessible, it is hard to tell whether failures andanomalies in these components are related toa given workflow. For theGrid to be truly usable, much of this uncertainty must be elim- inated.We propose two new Grid monitoring elements, Grid workflow identifiersand consistent component lifecycle events, that will make Gridtroubleshooting easier, and thus make Grids more usable, by simplifyingthe correlation of Grid monitoring data with a particular Gridworkflow.

  14. Unlocking the smart grid

    SciTech Connect (OSTI)

    Rokach, Joshua Z.

    2010-10-15T23:59:59.000Z

    The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)

  15. APEC Smart Grid Initiative

    SciTech Connect (OSTI)

    Bloyd, Cary N.

    2012-03-01T23:59:59.000Z

    This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

  16. Smart-Grid-Vendor.pdf | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmart Meters and a Smarter Grid Smart

  17. Sandia National Laboratories: International Smart Grid Action...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Action Network Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution Grid Integration,...

  18. GROWDERS Demonstration of Grid Connected Electricity Systems...

    Open Energy Info (EERE)

    GROWDERS Demonstration of Grid Connected Electricity Systems (Smart Grid Project) (Spain) Jump to: navigation, search Project Name GROWDERS Demonstration of Grid Connected...

  19. Networked Loads in the Distribution Grid

    E-Print Network [OSTI]

    Wang, Zhifang; Li, Xiao; Muthukumar, Vishak; Scaglione, Anna; Peisert, Sean; McParland, Chuck

    2012-01-01T23:59:59.000Z

    Lu, and Deborah A. Frincke. Smart-Grid Security Issues. IEEELoads in the Distribution Grid Zhifang Wang ? , Xiao Li † ,Transformer   sensors   Grid   Cyber  system   Cooling    

  20. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01T23:59:59.000Z

    New England Outlook: Smart Grid is About Consumers,” Apr. [Transmission in the Smart Grid By Kory Walter Hedman ATransmission in the Smart Grid by Kory Walter Hedman Doctor

  1. Considerations for sensitivity analysis, uncertainty quantification, and data assimilation for grid-to-rod fretting

    SciTech Connect (OSTI)

    Michael Pernice

    2012-10-01T23:59:59.000Z

    Grid-to-rod fretting is the leading cause of fuel failures in pressurized water reactors, and is one of the challenge problems being addressed by the Consortium for Advanced Simulation of Light Water Reactors to guide its efforts to develop a virtual reactor environment. Prior and current efforts in modeling and simulation of grid-to-rod fretting are discussed. Sources of uncertainty in grid-to-rod fretting are also described.

  2. Advanced Inverter Functions to Support High Levels of Distributed Solar: Policy and Regulatory Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01T23:59:59.000Z

    This paper explains how advanced inverter functions (sometimes called 'smart inverters') contribute to the integration of high levels of solar PV generation onto the electrical grid and covers the contributions of advanced functions to maintaining grid stability. Policy and regulatory considerations associated with the deployment of advanced inverter functions are also introduced.

  3. Embedded Firmware Diversity for Smart Electric Meters Stephen McLaughlin, Dmitry Podkuiko, Adam Delozier

    E-Print Network [OSTI]

    McDaniel, Patrick Drew

    Embedded Firmware Diversity for Smart Electric Meters Stephen McLaughlin, Dmitry Podkuiko, Adam}@cse.psu.edu Abstract Smart meters are now being aggressively deployed world- wide, with tens of millions of meters- niques can limit large-scale attacks on smart meters. We show how current meter designs do not possess

  4. Smart Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Usage Smart Grid Smart Grid October 21, 2014 Line workers get hands-on experience with an electrical pole as part of their training. | Photo courtesy of David Weaver....

  5. Stability of elastic grid shells

    E-Print Network [OSTI]

    Mesnil, Romain, M. Eng. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    The elastic grid shell is a solution that combines double curvature and ease of mounting. This structural system, based on the deformation of an initially at grid without shear stiffness was invented more than fifty years ...

  6. Innovative Distributed Power Grid Interconnection and Control Systems: Final Report, December 11, 2000 - August 30, 2005

    SciTech Connect (OSTI)

    DePodesta, K.; Birlingmair, D.; West, R.

    2006-03-01T23:59:59.000Z

    The contract goal was to further advance distributed generation in the marketplace by making installations more cost-effective and compatible with existing systems. This was achieved by developing innovative grid interconnection and control systems.

  7. Monitoring and analysis of two grid connected PV systems Michael BRESSAN* Valrie DUPE**, Bruno JAMMES**, Thierry TALBERT*, Corinne ALONSO**

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Adapted to all kinds of equipment, it can be installed on any inverter or PV array. This monitoring system l building ha u" (1 inverte mum power ur rideau" a monitoring (latitude 43 V technolog PV array. A microco meter can m PV inverte re 1: Monitor grid con el systems study PV s a non linear everal pape

  8. Electrical energy metering use at a large research facility

    SciTech Connect (OSTI)

    Falke, S.S.

    1992-01-01T23:59:59.000Z

    A brief history of electric energy metering at a large research laboratory is presented. Limited orientation on metering of power and energy quantities derived from single dimension magnitudes is introduced. Operation and application of electromechanical watthour demand, solid state single function transducers, analog multifunction, and digital multifunction discussed. Applications for interdepartmental revenue transfer based on energy and power flow, load profiling, system planning, and use as a troubleshooting tool are described. The material is presented in a perspective for persons familiar with protective relaying components, but lacking similar experience in energy metering.

  9. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    SciTech Connect (OSTI)

    None

    2012-02-08T23:59:59.000Z

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

  10. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Initiative GridWise Alliance GridWise Architecture Council European SmartGrid Technology Platform 19 MODERN GRID S T R A T E G Y Questions? Office of Electricity...

  11. GridMat: Matlab Toolbox for GridLAB-D to Analyse Grid Impact and Validate Residential Microgrid Level

    E-Print Network [OSTI]

    Al Faruque, Mohammad Abdullah

    GridMat: Matlab Toolbox for GridLAB-D to Analyse Grid Impact and Validate Residential Microgrid, in this paper, we present a new Matlab toolbox (GridMat) to integrate the capabilities of domain-specific modeling & simulation tools from power system (GridLAB-D) and control (Matlab). The GridMat tool supports

  12. Grid Transfer Remark 4.1 Contents of this chapter. Consider a grid with grid size h and the

    E-Print Network [OSTI]

    John, Volker

    Chapter 4 Grid Transfer Remark 4.1 Contents of this chapter. Consider a grid with grid size h that there might be an iterative method for solving this system efficiently, which uses also coarser grids way between the grids. 2 4.1 The Coarse Grid System and the Residual Equa- tion Remark 4.2 Basic idea

  13. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    al. ,  “Privacy  for  Smart  Meters:  Towards  Undetectable algorithms.   PMU  and  smart  meters  require  data control and  scheduling.  Smart meter data may be leveraged 

  14. TUM Institute for Advanced Study

    E-Print Network [OSTI]

    Haug, Stephan

    , 85748 Garching When October 21, 2010, 9.00 a.m. With the new home for the TUM Institute for Advanced in Smart Grids Prof. Sandra Hirche (TUM) Dr. Dragan Obradovic (Siemens AG) Electrochemistry and the Future of the Automobile Dr. Frederick T. Wagner (General Motors R&D) 12:00 Lunch · Ideas Market (Faculty of Mechanical

  15. Insights from Smart Meters: The Potential for Peak-Hour Savings from Behavior-Based Programs

    E-Print Network [OSTI]

    Todd, Annika

    2014-01-01T23:59:59.000Z

    2014.  Insights from Smart  Meters: The Potential for Peak available data captured by smart meters and other sources,series Insights from Smart Meters. DRAFT – DO NOT CIRCULATE

  16. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H.Rohit Prasankumar

  17. NREL: Energy Storage - BLAST for Behind-the-Meter Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lite (BLAST-BTM Lite) provides a quick, user-friendly tool to size behind-the-meter energy storage devices used on site by utility customers for facility demand charge...

  18. Smart Meters Offer 'Instant Gratification;' Help Houston Homeowners...

    Broader source: Energy.gov (indexed) [DOE]

    Diorio explains to KPRC Local 2 News how much she's saved with her recently installed smart meter, which allows her to see her savings in real time. Houston resident Ruth...

  19. Smart Meters Helping Oklahoma Consumers Save Hundreds During...

    Broader source: Energy.gov (indexed) [DOE]

    meters give consumers real-time information on how their energy use affects their energy costs. With a two-tiered pricing system, you get a discount during lower usage...

  20. Down to the Meter: Localized Vehicle Pollution Matters

    E-Print Network [OSTI]

    Houston, Douglas; Wu, Jun; Ong, Paul; Winer, Arthur

    2006-01-01T23:59:59.000Z

    Near-Roadway Vehicle Pollution,” American Journal of Publicfor Vehicle-Related Air Pollution Exposure in Minority andMeter: Localized Vehicle Pollution Matters B Y D O U G L A S

  1. 25 years ago: the official farewell to the meter

    E-Print Network [OSTI]

    Thomas Schucker

    2008-10-20T23:59:59.000Z

    On october 21st 1983 took place in S\\`evres on the western outskirts of Paris the official funeral of the meter. With it the notion of distance as a physical observable was buried.

  2. Large-Scale Data Challenges in Future Power Grids

    SciTech Connect (OSTI)

    Yin, Jian; Sharma, Poorva; Gorton, Ian; Akyol, Bora A.

    2013-03-25T23:59:59.000Z

    This paper describes technical challenges in supporting large-scale real-time data analysis for future power grid systems and discusses various design options to address these challenges. Even though the existing U.S. power grid has served the nation remarkably well over the last 120 years, big changes are in the horizon. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components. The whole system becomes highly dynamic and needs constant adjustments based on real time data. Even though millions of sensors such as phase measurement units (PMUs) and smart meters are being widely deployed, a data layer that can support this amount of data in real time is needed. Unlike the data fabric in cloud services, the data layer for smart grids must address some unique challenges. This layer must be scalable to support millions of sensors and a large number of diverse applications and still provide real time guarantees. Moreover, the system needs to be highly reliable and highly secure because the power grid is a critical piece of infrastructure. No existing systems can satisfy all the requirements at the same time. We examine various design options. In particular, we explore the special characteristics of power grid data to meet both scalability and quality of service requirements. Our initial prototype can improve performance by orders of magnitude over existing general-purpose systems. The prototype was demonstrated with several use cases from PNNL’s FPGI and was shown to be able to integrate huge amount of data from a large number of sensors and a diverse set of applications.

  3. Shared Signals: Using Existing Facility Meters for Energy Savings Verification

    E-Print Network [OSTI]

    McBride, J. R.; Bohmer, C. J.; Price, S. D.; Carlson, K.; Lopez, J.

    of metering. Facility engineers wonder whether existing meters can be used for savings verification purposes. They want to know whether an existing energy management and control system (EMCS) can serve double duty and be used for savings verification... an existing EMCS for energy savings verification purposes is even more complex. While at first glance the idea of using an existing EMCS for energy savings verification purposes seems absolutely reasonable, the practicality of the situation must...

  4. Smart-Metering for Monitoring Building Power Distribution Network using Instantaneous Phasor Computations of Electrical Signals

    E-Print Network [OSTI]

    K.R., Krishnanand

    2013-01-01T23:59:59.000Z

    Smart-Metering for Monitoring Building Power Distributionimplementable for smart-meters for a building. Eachcontrol node of a building so as to make smart decisions.

  5. Smart Grid Interoperability Maturity Model Beta Version

    SciTech Connect (OSTI)

    Widergren, Steven E.; Drummond, R.; Giroti, Tony; Houseman, Doug; Knight, Mark; Levinson, Alex; longcore, Wayne; Lowe, Randy; Mater, J.; Oliver, Terry V.; Slack, Phil; Tolk, Andreas; Montgomery, Austin

    2011-12-02T23:59:59.000Z

    The GridWise Architecture Council was formed by the U.S. Department of Energy to promote and enable interoperability among the many entities that interact with the electric power system. This balanced team of industry representatives proposes principles for the development of interoperability concepts and standards. The Council provides industry guidance and tools that make it an available resource for smart grid implementations. In the spirit of advancing interoperability of an ecosystem of smart grid devices and systems, this document presents a model for evaluating the maturity of the artifacts and processes that specify the agreement of parties to collaborate across an information exchange interface. You are expected to have a solid understanding of large, complex system integration concepts and experience in dealing with software component interoperation. Those without this technical background should read the Executive Summary for a description of the purpose and contents of the document. Other documents, such as checklists, guides, and whitepapers, exist for targeted purposes and audiences. Please see the www.gridwiseac.org website for more products of the Council that may be of interest to you.

  6. Selection of Model in Developing Information Security Criteria for Smart Grid Security System

    E-Print Network [OSTI]

    Ling, Amy Poh Ai

    2011-01-01T23:59:59.000Z

    At present, the "Smart Grid" has emerged as one of the best advanced energy supply chains. This paper looks into the security system of smart grid via the smart planet system. The scope focused on information security criteria that impact on consumer trust and satisfaction. The importance of information security criteria is perceived as the main aspect to impact on customer trust throughout the entire smart grid system. On one hand, this paper also focuses on the selection of the model for developing information security criteria on a smart grid.

  7. Data Management in the GridRPC GridRPC Data Management API

    E-Print Network [OSTI]

    Caniou, Yves

    Data Management in the GridRPC Issues Conclusion GridRPC Data Management API Implementations, Le Mahec, Nakada GridRPC DM API: Implem. and Interop. Issues (1/13) #12;Data Management in the GridRPC Issues Conclusion Goal GridRPC DM types: Reminder 1 Data Management in the GridRPC Goal GridRPC DM types

  8. Grid Interaction Tech Team, and International Smart Grid Collaboration

    Broader source: Energy.gov (indexed) [DOE]

    Provider BAHNHOF POTSDAMER PLATZ Home Area Network (HAN) Grid Operations Coal Natural Gas Nuclear Hydro Renewable Fuel Oil Misc Generation Energy Service Interface (ESI)...

  9. Sandia Energy - Grid Modernization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInAppliedEnergyGeothermal HomeGrid

  10. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailureGlobal ClimateGrid

  11. Grid-based Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC)Graphite ReactorGregGrid-Connected

  12. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting the StageCanon! Shared Solar:Sharing

  13. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbon CaptureBiofuels

  14. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbon

  15. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbonEnergy Sandia

  16. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H.Rohit Prasankumar HomeEnergy

  17. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed Services U.S.GregoryGrid6733

  18. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed Services U.S.GregoryGrid6733141

  19. NERSC Grid Certificates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVA Portal: Submit2014 NERSCFranklinGrid

  20. Grid Integration of Robotic Telescopes

    E-Print Network [OSTI]

    F. Breitling; T. Granzer; H. Enke

    2009-03-23T23:59:59.000Z

    Robotic telescopes and grid technology have made significant progress in recent years. Both innovations offer important advantages over conventional technologies, particularly in combination with one another. Here, we introduce robotic telescopes used by the Astrophysical Institute Potsdam as ideal instruments for building a robotic telescope network. We also discuss the grid architecture and protocols facilitating the network integration that is being developed by the German AstroGrid-D project. Finally, we present three user interfaces employed for this purpose.