National Library of Energy BETA

Sample records for grenada ku kuwait

  1. Energy Transition Initiative, Island Energy Snapshot - Grenada (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-03-01

    This profile provides a snapshot of the energy landscape of Grenada - a small island nation consisting of the island of Grenada and six smaller islands in the southeastern Caribbean Sea - three of which are inhabited: Grenada, Carriacou, and Petite Martinique.

  2. Grenada-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Grenada-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Grenada-Caribbean Community (CARICOM) Sustainable Energy Roadmap and...

  3. Grenada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Grenada Population 109,590 GDP 790,000,000 Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code GD 3-letter ISO code GRD Numeric ISO...

  4. Grenada-Pilot Program for Climate Resilience (PPCR) | Open Energy...

    Open Energy Info (EERE)

    Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Grenada-Pilot Program for Climate Resilience (PPCR) AgencyCompany Organization World Bank Sector...

  5. Uses of Ku70

    DOE Patents [OSTI]

    Li, Gloria C.; Cordon-Cardo, Carlos; Ouyang, Honghai

    2004-10-26

    This invention provides a method of diagnosing a predisposition to cancer in a subject comprising: (a) obtaining a nucleic acid sample from the subject; and; (b) determining whether one or more of the subject's Ku70 alleles or regulatory regions to those alleles are deleted or different from the wild type so as to reduce or eliminate the subject's expression of polypeptide having tumor suppressor activity. This invention also provides a method of assessing the severity of cancer in a subject comprising: (a) obtaining a nucleic acid sample from the subject; and (b) determining whether one or more of the subject's Ku70 alleles or regulatory regions to those alleles are deleted or different from the wild type so as to reduce or eliminate the subject's expression of polypeptide having tumor suppressor activity. This invention also provides a method of assessing the severity of cancer in a subject comprising: determining the subcellular localization of Ku70 in the subject, wherein an abnormal subcellular localization of Ku70 indicates a predisposition to cancer.

  6. Kuwait Petroleum Corporation | Open Energy Information

    Open Energy Info (EERE)

    in the world. The corporation brings all state-owned corporations under one corporate umbrella. References "Kuwait Petroeum Corporation" "About KPC" Retrieved from "http:...

  7. Kuwait: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Kuwait Population 2,213,403 GDP 173,438,000,000 Energy Consumption 1.19 Quadrillion Btu 2-letter ISO code KW 3-letter ISO code KWT Numeric ISO...

  8. Seung-Hoe Ku | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seung-Hoe Ku Contact Information Phone: 609-243-2684 Email: sku

  9. 8KU Renewables GmbH | Open Energy Information

    Open Energy Info (EERE)

    KU Renewables GmbH Jump to: navigation, search Name: 8KU Renewables GmbH Place: Berlin, Germany Zip: 10117 Sector: Renewable Energy Product: Berlin-based start-up renewables...

  10. Successful operation of a large LPG plant. [Kuwait

    SciTech Connect (OSTI)

    Shtayieh, S.; Durr, C.A.; McMillan, J.C.; Collins, C.

    1982-03-01

    The LPG plant located at Mina-Al Ahmadi, Kuwait, is the heart of Kuwait Oil Co.'s massive Gas Project to use the associated gas from Kuwait's oil production. Operation of this three-train plant has been very successful. A description is given of the three process trains consisting of four basic units: extraction, fractionation, product treating, and refrigeration. Initial problems relating to extraction, fractionation, product treating and, refrigeration are discussed. 1 ref.

  11. U.S. Energy Secretary Visits Kuwait | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kuwait's Petrochemical Industries Company (PIC) and U.S. company Union Carbide, a ... primarily for export to Asia and Europe. PIC and Union Carbide each have a 45 percent ...

  12. Secretary of Energy Samuel W. Bodman Meets with U.S. Troops in Kuwait |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Meets with U.S. Troops in Kuwait Secretary of Energy Samuel W. Bodman Meets with U.S. Troops in Kuwait November 13, 2005 - 2:24pm Addthis ARIFJAN, KUWAIT - U.S. Secretary of Energy Samuel Bodman and his wife Diane Bodman had dinner and conversed with Pfc. James Clark, Logistics Task Force 28, Capt. Zachary Lange, Headquarters and Headquarters Company 37th Transportation Group and Spc. Anna Goicoechea, Logistics Task Force 180, during their visit to Arifjan, Kuwait on

  13. Initial assessment of an airborne Ku-band polarimetric SAR.

    SciTech Connect (OSTI)

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940's. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analyst's understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.

  14. Ku-band 6-bit RF MEMS time delay network. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Ku-band 6-bit RF MEMS time delay network. Citation Details In-Document Search Title: Ku-band 6-bit RF MEMS time delay network. No abstract prepared. Authors: Nordquist, Christopher Daniel ; Sullivan, Charles Thomas ; Kraus, Garth Merlin ; Austin, Franklin, IV [1] ; Finnegan, Patrick Sean [1] ; Ballance, Mark H. [1] ; Dyck, Christopher William + Show Author Affiliations (LMATA Government Services, LLC, Albuquerque, NM) Publication Date: 2008-10-01 OSTI Identifier: 966236 Report

  15. NNSA Signs Memorandum with Kuwait to Increase Cooperation on Nuclear Safeguards and Nonproliferation

    ScienceCinema (OSTI)

    Thomas D'Agostino

    2010-09-01

    On June 23, 2010, the National Nuclear Security Administration (NNSA) signed a Memorandum of Cooperation on nuclear safeguards and other nonproliferation topics with the Kuwait National Nuclear Energy Committee (KNNEC). NNSA Administrator Thomas D'Agostino and KNNEC's Secretary General, Dr. Ahmad Bishara, signed the memorandum at a ceremony at U.S. Department of Energy headquarters in Washington.

  16. Assessment of damage to the desert surfaces of Kuwait due to the Gulf War

    SciTech Connect (OSTI)

    El-Baz, F. . Center for Remote Sensing); Al-Ajmi, D. . Environmental and Earth Sciences Div.)

    1993-01-01

    This is a preliminary report on a joint research project by Boston University and the Kuwait Institute for Scientific Research that commenced in April 1992. The project aim is to establish the extent and nature of environmental damage to the desert surface and coastal zone of Kuwait due to the Gulf War and its aftermath. Change detection image enhancement techniques were employed to enhance environmental change by comparison of Landsat Thematic Mapper images obtained before the wars and after the cessation of the oil and well fires. Higher resolution SPOT images were also utilized to evaluate the nature of the environmental damage to specific areas. The most prominent changes were due to: (1) the deposition of oil and course-grained soot on the desert surface as a result of oil rain'' from the plume that emanated from the oil well fires; (2) the formation of hundreds of oil lakes, from oil seepage at the damaged oil well heads; (3) the mobilization of sand and dust and (4) the pollution of segments of the coastal zone by the deposition of oil from several oil spills. Interpretation of satellite image data are checked in the field to confirm the observations, and to assess the nature of the damage. Final results will be utilized in establishing the needs for remedial action to counteract the harmful effects of the various types of damage to the environment of Kuwait.

  17. DISPLAYING THE HETEROGENEITY OF THE SN 2002cx-LIKE SUBCLASS OF TYPE Ia SUPERNOVAE WITH OBSERVATIONS OF THE Pan-STARRS-1 DISCOVERED SN 2009ku

    SciTech Connect (OSTI)

    Narayan, G.; Foley, R. J.; Berger, E.; Chornock, R.; Rest, A.; Soderberg, A. M.; Kirshner, R. P.; Botticella, M. T.; Smartt, S.; Valenti, S.; Huber, M. E.; Scolnic, D.; Grav, T.; Burgett, W. S.; Chambers, K. C.; Flewelling, H. A.; Gates, G.; Kaiser, N.; Magnier, E. A.; Morgan, J. S. E-mail: rfoley@cfa.harvard.edu

    2011-04-10

    SN 2009ku, discovered by Pan-STARRS-1, is a Type Ia supernova (SN Ia), and a member of the distinct SN 2002cx-like class of SNe Ia. Its light curves are similar to the prototypical SN 2002cx, but are slightly broader and have a later rise to maximum in g. SN 2009ku is brighter ({approx}0.6 mag) than other SN 2002cx-like objects, peaking at M{sub V} = -18.4 mag, which is still significantly fainter than typical SNe Ia. SN 2009ku, which had an ejecta velocity of {approx}2000 km s{sup -1} at 18 days after maximum brightness, is spectroscopically most similar to SN 2008ha, which also had extremely low-velocity ejecta. However, SN 2008ha had an exceedingly low luminosity, peaking at M{sub V} = -14.2 mag, {approx}4 mag fainter than SN 2009ku. The contrast of high luminosity and low ejecta velocity for SN 2009ku is contrary to an emerging trend seen for the SN 2002cx class. SN 2009ku is a counterexample of a previously held belief that the class was more homogeneous than typical SNe Ia, indicating that the class has a diverse progenitor population and/or complicated explosion physics. As the first example of a member of this class of objects from the new generation of transient surveys, SN 2009ku is an indication of the potential for these surveys to find rare and interesting objects.

  18. Pacific Northwest Laboratory Gulfstream I measurements of the Kuwait oil-fire plume, July--August 1991

    SciTech Connect (OSTI)

    Busness, K.M.; Hales, J.M.; Hannigan, R.V.; Thorp, J.M.; Tomich, S.D.; Warren, M.J. ); Al-Sunaid, A.A. ); Daum, P.H.; Mazurek, M. )

    1992-11-01

    In 1991, the Pacific Northwest Laboratory conducted a series of aircraft measurements to determine pollutant and radiative properties of the smoke plume from oil fires in Kuwait. This work was sponsored by the US Department emanating of Energy, in cooperation with several other agencies as part of an extensive effort coordinated by the World Meteorological Organization, to obtain a comprehensive data set to assess the characteristics of the plume and its environmental impact. This report describes field measurement activities and introduces the various data collected, but provides only limited analyses of these data. Results of further data analyses will be presented in subsequent open-literature publications.

  19. Proposal of a gigawatt-class L/Ku dual-band magnetically insulated transmission line oscillator

    SciTech Connect (OSTI)

    Ju, J.-C. Fan, Y.-W.; Shu, T.; Zhong, H.-H.

    2014-10-15

    We present a gigawatt (GW)-class magnetically insulated transmission line oscillator (MILO) which is capable of generating dual-band high power microwaves (HPMs). The proposed device, deriving from previously studied complex MILO and dual-frequency MILO, is designed to produce two HPMs in L-band and Ku-band, respectively. It is found in particle-in-cell (PIC) simulation that when the diode voltage is 610?kV, HPMs with frequencies of 1.72 GHz and 14.6?GHz can be achieved with powers of 3.3?GW and 2.4?GW, respectively. The corresponding total power conversion efficiency is approximately 12.8%. Power difference of the two generated HPMs is approximately 1.4?dB, and frequency difference of them reaches a level as high as ?10?dB.

  20. Simulation of a gigawatt level Ku-band overmoded Cerenkov type oscillator operated at low guiding magnetic field

    SciTech Connect (OSTI)

    Zhang, Hua; Shu, Ting Ju, Jinchuan; Wu, Dapeng

    2014-03-15

    We present the simulation results of a Ku-band overmoded Cerenkov type high power microwave oscillator. A guiding magnetic field as low as 0.6?T has been operated in the device. Overmoded slow wave structures with gradually tapered vanes are used in order to increase power capacity and the efficiency of beam-wave interaction. The drift cavity is adopted to enhance the beam-wave interaction of the device. After numerical optimization, the designed generator with an output microwave power of 1.2?GW, a frequency of 13.8 GHz, and a power conversion efficiency as high as 38% can be achieved, when the diode voltage and current are, respectively, 540?kV and 5.8?kA. The power compositions of TM{sub 0n} modes of the output microwave have been analyzed, the results of which show that TM{sub 01} mode takes over almost 95% of the power proportion.

  1. Grenada-Caribbean Solar Finance Program | Open Energy Information

    Open Energy Info (EERE)

    through: (1) a training program for lending officers, (2) a consumer awareness campaign, and (3) a pilot lending operation." References "OAS Project Database" Retrieved...

  2. User:GregZiebold/International Programs | Open Energy Information

    Open Energy Info (EERE)

    Strategy Inter-American Development Bank World Watch Institute (WWI) Grenada-Caribbean Solar Finance Program Organization of American States (OAS) Grenada-Pilot Program for...

  3. State of Kuwait Ministry of Oil | Open Energy Information

    Open Energy Info (EERE)

    of the rules or laws organizing the drilling and exploring process simultaneously with production and export operations and to protect such wealth for the next generations....

  4. NREL: Technology Transfer - Kuwait Visitors Interested in NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to improve energy efficiency in their refining operations. KOC may also apply concentrated solar power technology to produce some of the steam needed in the company's operations...

  5. OLADE-Latin American and Caribbean Energy Efficiency Seminar...

    Open Energy Info (EERE)

    Panama, Mexico, Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela, Barbados, Cuba, Grenada, Haiti, Jamaica,...

  6. Energy-Economic Information System (SIEE) | Open Energy Information

    Open Energy Info (EERE)

    Panama, Mexico, Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela, Barbados, Cuba, Grenada, Haiti, Jamaica,...

  7. OLADE Sustainable Energy Planning Manual | Open Energy Information

    Open Energy Info (EERE)

    Panama, Mexico, Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela, Barbados, Cuba, Grenada, Haiti, Jamaica,...

  8. Legal Energy Information System (SIEL) Database | Open Energy...

    Open Energy Info (EERE)

    Panama, Mexico, Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela, Barbados, Cuba, Grenada, Haiti, Jamaica,...

  9. Caribbean-NREL Cooperation | Open Energy Information

    Open Energy Info (EERE)

    internatio Country Anguilla, Antigua and Barbuda, Aruba, Bahamas, Barbados, Cuba, Dominica, Dominican Republic, Grenada, Guadeloupe, Haiti, Jamaica, Martinique, Saint...

  10. Caribbean-GTZ Renewable Energy Program | Open Energy Information

    Open Energy Info (EERE)

    enpraxis95 Country Antigua & Barbuda, Aruba, Bahamas, Barbados, Cayman Islands, Cuba, Dominica, Dominican Republic, Grenada, Guadeloupe, Haiti, Jamaica, Martinique, Puerto...

  11. Climate-Smart Agriculture Country Profiles | Open Energy Information

    Open Energy Info (EERE)

    featuredproductscsa-country-profiles Country: Argentina, Colombia, Costa Rica, El Salvador, Grenada, Mexico, Peru Cost: Free OpenEI Keyword(s): Agriculture, country profiles,...

  12. NREL: Technology Deployment - More Than 70 Countries Turn to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy access and clean energy project finance programs in Chile Helping Grenada meet ... Kitts Establishing geothermal development and policy in the Caribbean Establishing ...

  13. Costs of Imported Crude Oil by Selected Country

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Baharain, Iran, Iraq, Kuwait, Neutral Zone, Qatar, Saudi Arabia, and United Arab Emirates. c Includes Algeria, Indonesia, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi...

  14. untitled

    Gasoline and Diesel Fuel Update (EIA)

    Baharain, Iran, Iraq, Kuwait, Neutral Zone, Qatar, Saudi Arabia, and United Arab Emirates. c Includes Algeria, Indonesia, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi...

  15. untitled

    Gasoline and Diesel Fuel Update (EIA)

    Baharain, Iran, Iraq, Kuwait, Neutral Zone, Qatar, Saudi Arabia, and United Arab Emirates. b Includes Algeria, Indonesia, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi...

  16. Table 25. Landed Costs of Imported Crude Oil by Selected Country

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Baharain, Iran, Iraq, Kuwait, Neutral Zone, Qatar, Saudi Arabia, and United Arab Emirates. b Includes Algeria, Indonesia, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi...

  17. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Gulf Includes Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and the United Arab Emirates. Total OPEC Includes Algeria, Indonesia, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar,...

  18. Planning and care mark repair of 14-year old leak in Kuwait Oil Co. LPG tank 95

    SciTech Connect (OSTI)

    Shtayieh, S.

    1983-01-10

    This paper points out that the leak, which had been present for such a long time, completely saturated the perlite insulation with hydrocarbons, thus rendering the entire operation of inspection, repair, and maintenance of the inner tank a hazardous operation. It emphasizes the safety aspects, which were complicated by the saturated perlite as well as by the fact that the tank is situated in the middle of the LPG storage area with LPG tanks on either side. Tank design, making preparations, inspection, and repair are discussed. The fact that the leaking flanges were originally installed damaged, indicated the future need of tighter company quality control of all contractors work.

  19. Smokes from the oil fires following the Gulf War: A review and new perspectives

    SciTech Connect (OSTI)

    Radke, L.F.

    1996-12-31

    Emissions resulting from the oil fires in Kuwait and environmental effects from those emissions are described.

  20. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    of individual company data. a Free on Board. See Glossary. b Includes Baharain, Iran, Iraq, Kuwait, Neutral Zone, Qatar, Saudi Arabia, and United Arab Emirates. c Includes...

  1. Costs of Imported Crude Oil by Selected Country

    U.S. Energy Information Administration (EIA) Indexed Site

    of individual company data. a Free on Board. See Glossary. b Includes Baharain, Iran, Iraq, Kuwait, Neutral Zone, Qatar, Saudi Arabia, and United Arab Emirates. c Includes...

  2. Table 25. Landed Costs of Imported Crude Oil by Selected Country

    U.S. Energy Information Administration (EIA) Indexed Site

    W Withheld to avoid disclosure of individual company data. a Includes Baharain, Iran, Iraq, Kuwait, Neutral Zone, Qatar, Saudi Arabia, and United Arab Emirates. b Includes...

  3. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    W Withheld to avoid disclosure of individual company data. a Includes Baharain, Iran, Iraq, Kuwait, Neutral Zone, Qatar, Saudi Arabia, and United Arab Emirates. b Includes...

  4. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    No data reported. W Withheld to avoid disclosure of individual company data. 1 Includes Bahrain, Iran, Iraq, Kuwait, Neutral Zone, Qatar, Saudi Arabia, and United Arab Emirates....

  5. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    W Withheld to avoid disclosure of individual company data. 1 Includes Bahrain, Iran, Iraq, Kuwait, Neutral Zone, Qatar, Saudi Arabia, and United Arab Emirates. 2 Includes...

  6. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    W Withheld to avoid disclosure of individual company data. a Includes Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. b Includes Algeria,...

  7. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    to avoid disclosure of individual company data. 3 Free on Board. See Glossary. 1 Includes Bahrain, Iran, Iraq, Kuwait, Neutral Zone, Qatar, Saudi Arabia, and United Arab Emirates....

  8. Governance for Sustainable Development in the Arab Region | Open...

    Open Energy Info (EERE)

    Resource Type Guidemanual Website http:www.escwa.un.orginform Country Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Sudan, Syria, United Arab...

  9. Best Practices and Tools for Large-scale Deployment of Renewable...

    Open Energy Info (EERE)

    www.escwa.un.orginformationpublicationsedituploadsdpd-09-TP3.pdf Country: Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Sudan, Syria, United Arab...

  10. United Nations Economic and Social Commission for Western Asia...

    Open Energy Info (EERE)

    Background Membership "ESCWA comprises 14 Arab countries in Western Asia: Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Sudan, Syria, United Arab...

  11. This Week In Petroleum Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    table below indicates, Persian Gulf producers (Saudi Arabia, Kuwait, the United Arab Emirates, Qatar and Iran) appear to have accounted for 80 percent of the overall cutback over...

  12. National Technology Enterprises Co | Open Energy Information

    Open Energy Info (EERE)

    Technology Enterprises Co Jump to: navigation, search Name: National Technology Enterprises Co Place: Kuwait Sector: Services Product: Services & Support (Clean Energy) (...

  13. Properties of (Ga,Mn)As codoped with Li (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan) WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)...

  14. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K. Parker and P.E. Hodgson, Nucl. Phys. 21 (1960) 383 1960KO1C Kotin, Rev. Mex. Fisica 9 (1960) 73 1960KU1B Kunz, Ann. Phys. 11 (1960) 275 1960KU1C Kulchitskii and...

  15. A = 11B (68AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    68AJ02) (See Energy Level Diagrams for 11B) GENERAL: See Table 11.3 Table of Energy Levels (in PDF or PS). Shell model:(KU56, KU57A, BI60, TA60L, BA61D, BA61N, KO61L, KU61E,...

  16. A=12C (68AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AF64, DU64A, PA64M, RE64B, KR65, MA65Z, DE66J, DU66B, PH66A, AU67A, KA67B, ZI67). Transition probabilities: (EL56, KU57A, KU62E, WA62, BO63R, KI63F, KU63B, MA63S, CL64C, GR65E,...

  17. Hawaii Department of Transportation Harbors Divsion | Open Energy...

    Open Energy Info (EERE)

    Hawaii Department of Transportation Harbors Divsion Jump to: navigation, search Name: Hawaii Department of Transportation Harbors Division Address: Hale Awa Ku Moku Building 79...

  18. SMC Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Place: Namdong-ku Inchon, Incheon, Korea (Republic) Zip: 405-310 Product: Supplier of lithium ion battery packs for portable electronic devices to OEMs worldwide. References: SMC...

  19. Kentucky Utilities Co (Tennessee) | Open Energy Information

    Open Energy Info (EERE)

    Co (Tennessee) Jump to: navigation, search Name: Kentucky Utilities Co (Tennessee) Place: Tennessee Phone Number: 800-981-0600 Website: lge-ku.comcustomer-serviceou Outage...

  20. Berlin, Germany: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Berlin, Germany Ecologic Institute German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety Registered Energy Companies in Berlin, Germany 8KU...

  1. Sandia National Laboratories: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Initial assessment of an airborne Ku-band polarimetric SAR. Raynal, Ann Marie; Doerry, Armin Walter Feb. 2013 Sandia National Laboratories (SNL-NM), Albuquerque, NM...

  2. Measuring the Costs of U.S. Oil Dependence and the Benefits of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    exporters operating as OPEC." Prof. M. Adelman, MIT, 2004. Algeria Angola Ecuador Iran Iraq Kuwait Libya Nigeria Qatar Saudi Arabia UAE Venezuela 0 20 40 60 80 100 120...

  3. TABLE23.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    II-Imports of Crude Oil and Petroleum Products by Country of Origin, a January 1998 Arab OPEC ... 6,219 0 0 0 0 0 0 0 0 0 Kuwait...

  4. This Week In Petroleum Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    from September 2008 production levels. Saudi Arabia, Kuwait, the United Arab Emirates (UAE), and Qatar accounted for about three-fourths of the 2.6 million bbld of actual...

  5. TABLE37.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Zaire. e Includes Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. (s) Less than 500 barrels per day. Note: Totals may not equal sum of components...

  6. TABLE42.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Zaire. e Includes Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. (s) Less than 500 barrels per day. Note: Totals may not equal sum of components...

  7. Energy & Financial Markets - U.S. Energy Information Administration...

    Gasoline and Diesel Fuel Update (EIA)

    ... Iraq invades Kuwait 7: Asian financial crisis 8: OPEC cuts production targets 1.7 mmbpd 9: 9-11 attacks 10: Low spare capacity 11: Global financial collapse 12: OPEC cuts ...

  8. Middle East oil and gas

    SciTech Connect (OSTI)

    Not Available

    1984-12-01

    The following subjects are covered in this publication: (1) position of preeminence of the Middle East; (2) history of area's oil operations for Iran, Iraq, Bahrain, Kuwait, Saudi Arabia, neutral zone, Qatar, United Arab Emirates, Oman and Egypt; (3) gas operations of Saudi Arabia, Iran, Kuwait, Qatar, Iraq and United Arab Emirates; (4) changing relationships with producing countries; (5) a new oil pricing environment; (6) refining and other industrial activities; and (7) change and progress. 10 figs., 12 tabs.

  9. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and E.W. Titterton, Nucl. Phys. 44 (1963) 453 1963KE1B Kelson, Phys. Rev. 132 (1963) 2189 1963KU05 J.A. Kuehner, J.D. Prentice and E. Almqvist, Phys. Lett. 4 (1963) 332 1963KU19...

  10. A=13N (70AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70AJ04) (See Energy Level Diagrams for 13N) GENERAL: See Table 13.21 Table of Energy Levels (in PDF or PS). Model calculations:(LA55B, HU57D, BA59N, PH60A, TA60L, KU61A, KU61E,...

  11. A=11B (1975AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1970CO1H, 1971BA2Y, 1971NO02, 1972LE1L, 1973HA49, 1973KU03, 1973SA30, 1974ME19). Cluster and collective models: (1969BA1J, 1970BA1Q, 1971NO02, 1972LE1L, 1973KU03). Special...

  12. A=10Be (74AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Levels (in PDF or PS). Shell model: (KO61L, FA68C, SA69K, BO70P, KA70H, KU73D, SA73S). Cluster and alpha-particle model: (KU73D). Special levels: (BO70P, FR70H, PE70F, SA73S)....

  13. Oil/gas separator for installation at burning wells

    DOE Patents [OSTI]

    Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.

    1993-03-09

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  14. Oil/gas separator for installation at burning wells

    DOE Patents [OSTI]

    Alonso, Carol T.; Bender, Donald A.; Bowman, Barry R.; Burnham, Alan K.; Chesnut, Dwayne A.; Comfort, III, William J.; Guymon, Lloyd G.; Henning, Carl D.; Pedersen, Knud B.; Sefcik, Joseph A.; Smith, Joseph A.; Strauch, Mark S.

    1993-01-01

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  15. Oil and gas developments in Middle East in 1985

    SciTech Connect (OSTI)

    Hemer, D.O.; Gohrbandt, K.H.A.

    1986-10-01

    Petroleum production in Middle East countries during 1985 totaled 3,837,580,000 bbl (an average rate of 10,513,917 BOPD), down 2.2% from the revised 1984 total of 3,924,034,000 bbl. Iran, Iraq, Dubai, Oman, and Syria had significant increases; Kuwait, Kuwait-Saudi Arabia Divided Neutral Zone, Saudi Arabia, and Qatar had significant decreases. New fields went on production in Iraq, Abu Dhabi, Oman, and Syria. In North Yemen, the first ever oil production in that country was nearing the start-up stage at year end. 9 figures, 9 tables.

  16. LOWER BOUNDS ON MAGNETIC FIELDS IN INTERGALACTIC VOIDS FROM LONG...

    Office of Scientific and Technical Information (OSTI)

    Noji Higashi, Kusatsu, Shiga 525-8577 (Japan) Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Furo-cho, Chikusa-ku, Nagoya ...

  17. Kentucky Utilities Company and Louisville Gas & Electric- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Utilities Company (KU) offers rebates to all commercial customers who pay a DSM charge on monthly bills. Rebates are available on lighting measures, sensors, air conditioners, heat pumps,...

  18. CX-010674: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mead KU2A Emergency Bushing Replacement CX(s) Applied: B1.3 Date: 07/02/2013 Location(s): Nevada Offices(s): Western Area Power Administration-Desert Southwest Region

  19. Feb

    Office of Scientific and Technical Information (OSTI)

    JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan 2 Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo...

  20. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    "Graduate School of Engineering, Tohoku University, 6-6 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8579" Name Name ORCID Search Authors Type: All BookMonograph ConferenceEvent...

  1. Search for: All records | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Neupane, Madhab (4) Sanchez, Daniel S. (4) Guo, Cheng (2) Hsu, Chuang-Han (2) Jia, Shuang (2) Ku, Wei (2) Neupert, Titus (2) Save Results Excel (limit 2000) CSV (limit 5000) XML ...

  2. A=12N (1975AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for 12N) GENERAL: See also (1968AJ02) and Table 12.25 Table of Energy Levels (in PDF or PS). Model calculations: (1973HA49, 1973KU1L, 1973SA30). Muon and neutrino interactions:...

  3. A=14O (1976AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    76AJ04) (See Energy Level Diagrams for 14O) GENERAL: See also (1970AJ04) and Table 14.29 Table of Energy Levels (in PDF or PS). Nuclear models: (1973SA30, 1974KU1F). Special...

  4. A=9Li (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ01) (See Energy Level Diagrams for 9Li) GENERAL: See also (1984AJ01) and Table 9.1 Table of Energy Levels (in PDF or PS). Model calculations: (1983KU17, 1984CH24, 1984VA06)....

  5. 7Be

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7Be(EC); measured decay products, E, I; deduced precise T12 values for different materials. Measurements for Branching Ratios 1938RU01: 7Be. 1948KU10: 7Be; measured E....

  6. BWXTymes January 2007

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... In fact, the Southern Poverty Law Center recognizes 10 extrem- ist groups in East Tennessee. While encountering domestic terrorists, such as the Ku Klux Klan, is much more likely, ...

  7. M Setek Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Setek Co Ltd Jump to: navigation, search Name: M Setek Co Ltd Place: Taito-ku, Tokyo, Japan Zip: 110-0001 Sector: Solar Product: Tokyo-based manufacturer of TCS, polysilicon,...

  8. Asian Development Bank Institute | Open Energy Information

    Open Energy Info (EERE)

    Address: Kasumigaseki Building 8F 3-2-5, Kasumigaseki, Chiyoda-ku, Place: Tokyo, Japan Phone Number: + 81-3-3593-5500 Website: www.adbi.org Coordinates: 35.6894875,...

  9. Dai Nippon Printing Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Dai Nippon Printing Co Ltd Place: Shinjuku-ku, Tokyo, Japan Zip: 162-8001 Sector: Solar Product: Print conglomerate which is involved with...

  10. PowerPoint ?????????

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6) 1) National Institute of Polar Research, Kaga 1-9-10, Itabashi-ku, Tokyo 173-8515, Japan 2) Energy Sharing Co., Toride, Japan, 3) University of Toyama, Toyama, Japan, 4)...

  11. SiC Power Module

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    479-575-7967 mantooth@uark.edu 3. Rohm Co., LTD 21 Saiin Mizosaki-cho, Ukyo-ku Kyoto, Japan 615-8585 Phone: Fax: 81 75 315 0172 Takukazu Otsuka, Engineer takukazu.otsuka@dsn.rohm...

  12. Yukita Electric Wire Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Yukita Electric Wire Co Ltd Place: Joto-Ku, Osaka, Japan Zip: 536-0001 Product: Osaka-based electric cable and power supply cords manufacturer....

  13. GS Yuasa Mitsubishi JV | Open Energy Information

    Open Energy Info (EERE)

    JV Jump to: navigation, search Name: GS Yuasa & Mitsubishi JV Place: Minami-ku, Kyoto, Japan Sector: Vehicles Product: Japan-based JV and manufacturer of batteries for use in...

  14. GS Yuasa Corp | Open Energy Information

    Open Energy Info (EERE)

    Corp Jump to: navigation, search Name: GS Yuasa Corp Place: Minato-Ku, Kyoto, Japan Zip: 601-8520 Sector: Solar Product: Kyoto-based company involved in battery manufacturing and...

  15. Canadian Solar Japan KK | Open Energy Information

    Open Energy Info (EERE)

    Japan KK Jump to: navigation, search Name: Canadian Solar Japan KK Place: Shinjuku-ku, Tokyo, Japan Zip: 160-0022 Sector: Solar Product: Tokyo-based subsidiary of Canadian Solar,...

  16. University of Kansas: Technical Design Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Report of a 400W Portable Wind Turbine For Submission to the First NREL National Collegiate Wind Competition Departments of Aerospace and Mechanical Engineering Release Date: April 18, 2013 Jayhawk Windustries 2 Acknowledgments Jayhawk Windustries would like to acknowledge the significant guidance and consultation of Professors Dr. Kyle Wetzel from Wetzel Engineering, Dr. Rick Hale from the KU Aerospace Engineering Department, Dr. Chris Depcik from the KU Mechanical Engineering

  17. Oil and gas developments in Middle East in 1981

    SciTech Connect (OSTI)

    Hemer, D.O; Mason, J.F.; Hatch, G.C.

    1982-11-01

    Petroleum production in Middle East countries during 1981 totaled 5,741,096,000 bbl, or an average rate of 15,729,030 BOPD, down 14.9% from 1980. Increases were in Oman, Dubai, and Turkey. Significant decreases occurred in Iraq, Iran, Kuwait, Divided Neutral Zone, Qatar, and Abu Dhabi. New discoveries were made in Oman, Saudi Arabia, and Abu Dhabi.

  18. A=6He (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ01) (See Energy Level Diagrams for 6He) GENERAL: See also (1984AJ01) and Table 6.1 [Table of Energy Levels] (PDF or PS) here. Model calculations: (1983GA12, 1983LE14, 1984FI14, 1984PA08, 1984VA06, 1985EM01, 1985FI1E, 1986EM02, 1986FI07, 1986KU08, 1986KU1F, 1986VA13, 1986VO09, 1987DA1H, 1988KA1J). Special states: (1984FI1A, 1984FI14, 1984VA06, 1985EM01, 1985FI1E, 1986EM02, 1986FI07, 1986KU08, 1986VA13, 1986VO09, 1986WI04, 1987BL18, 1987DA1G, 1987DA1H, 1987KO39, 1987KUZI, 1988DA1E).

  19. Fall 2013 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 C STEC W orking G roup S chedule Thrust I ( IPV) Selected W ednesdays 1:30---2:30pm September 25 1100 Dow Matt Dejarld (Millunchick), Michael Kuo (Ku) October 16 MSE Conf. Simon Huang (Goldman), Brian Roberts (Ku) November 6 MSE Conf. Mike Abere (Yalisove), Jimmy Chen (Phillips) December 11 MSE Conf. Dylan Bayerl (Kioupakis), Larry Aagesen (Thornton) Thrust I I ( TE) Selected F ridays 1:30---2:30pm September 20 1100 Dow Vladimir Stoica (Clarke) October 18 1100 Dow Wei Liu (Uher) November 8

  20. The Gulf War and the environment

    SciTech Connect (OSTI)

    El-Baz, F. (ed.) (Boston Univ., MA (United States). Center for Remote Sensing); Makharita, R.M. (ed.) (World Bank, Washington, DC (United States))

    1994-01-01

    The Gulf War inflicted dramatic environmental damage upon the fragile desert and shore environments of Kuwait and northeastern Saudi Arabia. Coastal and marine environments experienced oil spills of more than 8 million barrels, which killed wildlife and damaged the fishing industry. In inland Kuwait, hundreds of oil lakes are scattered across the desert surface: these lakes emit noxious gases, drown insects and birds, and may seep to pollute groundwater. Exploding and burning oil wells released soot particles, oil droplets, and noxious chemicals into the atmosphere, spreading air pollution, acid rain, and respiratory problems. Military diggings, constructions, and vehicles have destroyed much of the desert pavement, resulting in increased dust storms and large, moving dunes.

  1. TABLE29.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9. Net Imports of Crude Oil and Petroleum Products into the United States by Country, (Thousand Barrels per Day) January 1998 Arab OPEC .................................. 1,726 37 20 0 (s) 41 -3 (s) 296 391 2,116 Algeria ...................................... 0 37 0 0 0 27 0 0 252 316 316 Iraq ........................................... 36 0 0 0 0 0 0 0 0 0 36 Kuwait ....................................... 252 0 0 0 0 0 0 (s) (s) (s) 252 Qatar ........................................ 0 0 0 0 0 0

  2. East Coast (PADD 1) Imports from All Countries

    Gasoline and Diesel Fuel Update (EIA)

    Import Area: East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Country: All Countries Persian Gulf OPEC Algeria Angola Ecuador Iraq Kuwait Libya Nigeria Qatar Saudi Arabia United Arab Emirates Venezuela Non OPEC Albania Argentina Aruba Australia Austria Azerbaijan Bahamas Bahrain Barbados Belarus Belgium Bosnia and

  3. Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    3b : Non-OPEC Petroleum and Other Liquids Supply (Million Barrels per Day) Either scripts and active content are not permitted to run or Adobe Flash Player version ${version_major}.${version_minor}.${version_revision} or greater is not installed. Get Adobe Flash Player - = no data available OPEC = Organization of Petroleum Exporting Countries: Algeria, Angola, Ecuador, Indonesia, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, the United Arab Emirates, Venezuela. Notes: The approximate

  4. Middle East

    SciTech Connect (OSTI)

    Hemer, D.O.; Mason, J.F.; Hatch, G.C.

    1981-10-01

    Petroleum production in Middle East countries during 1980 totaled 6,747,719,000 bbl or an average rate of 18,436,390,000 bbl/d, down 13.9% from 1979. Increases were in Saudi Arabia and Syria. Significant decreases occurred in Iraq, Iran, Kuwait, and Turkey. New discoveries were made in Abu Dhabi, Iran, Saudi Arabia, Sharjah, and Oman. New areas were explored in Bahrain, Oman, Syria, and Yemen. 9 figures, 16 tables.

  5. Middle East: Output expansions boost drilling

    SciTech Connect (OSTI)

    1996-08-01

    Iraqi exports may return to the market in limited fashion, but none of the region`s producers seems particularly concerned. They believe that global oil demand is rising fast enough to justify their additions to productive capacity. The paper discusses exploration, drilling and development, and production in Saudi Arabia, Kuwait, the Neutral Zone, Abu Dhabi, Dubai, Oman, Iran, Iraq, Yemen, Qatar, Syria, Turkey, and Sharjah. The paper also briefly mentions activities in Bahrain, Israel, Jordan, and Ras al Khaimah.

  6. Oil and gas developments in Middle East in 1982

    SciTech Connect (OSTI)

    Hemer, D.O.; Hatch, G.C.

    1983-10-01

    Petroleum production in Middle East countries during 1982 totaled 4,499,464,000 bbl (an average rate of 12,162,915 BOPD), down 21.5% from 1981. Increases were in Iraq, Iran, and Oman. Significant decreases occurred in Kuwait, Divided Neutral Zone, Saudi Arabia, Qatar, and Abu Dhabi. New discoveries were reported in Oman, Syria, Abu Dhabi, Dubai, Iran, and Saudi Arabia.

  7. Somebody better find some rigs

    SciTech Connect (OSTI)

    1997-08-01

    The paper discusses the outlook for the gas and oil industries of the Middle East. Field development projects abound, as the larger exporting nations pursue ambitious policies of production expansion. However, their plans may be hampered by the growing worldwide shortage of rigs. Separate evaluations are given for Saudi Arabia, Kuwait, Neutral Zone, Abu Dhabi, Iran, Iraq, Qatar, Yemen, Syria, Dubai, Turkey, Sharjah, and briefly for Bahrain, Israel, Jordan, UAE-Ajman, and UAE-Ras al-Khaimah.

  8. Total Crude Oil and Products Imports from All Countries

    U.S. Energy Information Administration (EIA) Indexed Site

    Country: All Countries Persian Gulf OPEC Algeria Angola Ecuador Iraq Kuwait Libya Nigeria Qatar Saudi Arabia United Arab Emirates Venezuela Non OPEC Albania Argentina Aruba Australia Austria Azerbaijan Bahamas Bahrain Barbados Belarus Belgium Belize Benin Bolivia Bosnia and Herzegovina Brazil Brunei Bulgaria Burma Cameroon Canada Chad Chile China Colombia Congo (Brazzaville) Congo (Kinshasa) Cook Islands Costa Rica Croatia Cyprus Czech Republic Denmark Dominican Republic Egypt El Salvador

  9. Total Net Imports of Crude Oil and Petroleum Products into the U.S.

    U.S. Energy Information Administration (EIA) Indexed Site

    Country: Total All Countries Persian Gulf OPEC Algeria Angola Ecuador Iran Iraq Kuwait Libya Nigeria Qatar Saudi Arabia United Arab Emirates Venezuela Non OPEC Afghanistan Albania Andora Anguilla Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bolivia Bosnia and Herzegovina Botswana Brazil Brunei Bulgaria Burkina Faso Burma Cambodia Cameroon Canada Cayman Islands Chad Chile China Cocos (Keeling)

  10. U.S. Imports from All Countries

    U.S. Energy Information Administration (EIA) Indexed Site

    Import Area: U.S. Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Country: All Countries Persian Gulf OPEC Algeria Angola Ecuador Iraq Kuwait Libya Nigeria Qatar Saudi Arabia United Arab Emirates Venezuela Non OPEC Albania Argentina Aruba Australia Austria Azerbaijan Bahamas Bahrain Barbados Belarus Belgium Belize Benin Bolivia Bosnia and Herzegovina Brazil Brunei Bulgaria Burma Cameroon Canada Chad Chile China

  11. NREL: Geothermal Technologies - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 November 17, 2015 New Geothermal Lab Manager Joins NREL Henry (Bud) Johnston joined NREL on October 12 as the new Laboratory Program Manager for the Geothermal Technologies Program. June 10, 2015 Geothermal Energy Association Honors Two NRELians with Top Recognition Dan Getman and Jordan Macknick were recognized by the Geothermal Energy Association (GEA) during its National Geothermal Summit on June 3, 2015, in Reno, Nevada. June 8, 2015 Kuwait Visitors Interested in NREL Solar and Geothermal

  12. Winter 2013 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 :00---2:00pm; M SE C onference R oom ( 3062 H H D ow) January 1 7 Jimmy Chen ( Phillips g roup) February 7 Michael K uo ( Ku g roup) February 2 8 Vladimir S toica (note: l...

  13. A=18O (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for 18O) GENERAL: See also (1972AJ02) and Table 18.2 Table of Energy Levels (in PDF or PS). Shell model: (1970FL1A, 1970SA1M, 1971KU1F, 1972BB07, 1972EN03, 1972GA02, 1972LE13,...

  14. A=13C (1986AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ01) (See Energy Level Diagrams for 13C) GENERAL: See also (1981AJ01) and Table 13.4 Table of Energy Levels (in PDF or PS). Nuclear models: (1982KU1B, 1983JA09, 1983SH38,...

  15. A=07Li (66LA04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    66LA04) (See Energy Level Diagrams for 7Li) GENERAL: See (HU57D, BA59K, BA59N, BR59M, FE59E, MA59E, MA59H, KU60A, PE60E, PH60A, SH60C, TA60L, BA61H, BA61N, BL61C, CL61D, KH61,...

  16. A=19O (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    83AJ01) (See Energy Level Diagrams for 19O) GENERAL: See (1978AJ03) and Table 19.1 Table of Energy Levels (in PDF or PS). Shell model: (1977GR16, 1979DA15, 1980KU05, 1982KI02)....

  17. A=10B (66LA04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    66LA04) (See Energy Level Diagrams for 10B) GENERAL: See (BA59F, BR59M, TA60L, TR61, IN62, BU63D, KU63B, ME63A, MO63C, OL63B, VL63A, WA63C, AM64, BA64V, FR64D, GR64C, MA64HH,...

  18. A=6He (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 6He) GENERAL: See also (1979AJ01) and Table 6.1 Table of Energy Levels (in PDF or PS). Model Calculations: (1979SH1C, 1980FI1D, 1981KU13,...

  19. A=07Be (66LA04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    66LA04) (See Energy Level Diagrams for 7Be) GENERAL: See (FR57, PH60A, SH60C, TA60L, KU61E, TA61G, TO61B, GL62A, IN62, AR64D, BA64I, GR64C, HO64D, LI64G, MO64F, NE64D, PA64N, PH64,...

  20. A=12B (68AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    68AJ02) (See Energy Level Diagrams for 12B) GENERAL: See Table 12.1 Table of Energy Levels (in PDF or PS). See (KU56, FL59A, TA60L, RE63, RU63A, MA64B, NA64D, ST64, UB65B, MA66S,...

  1. A=13C (70AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70AJ04) (See Energy Level Diagrams for 13C) GENERAL: See Table 13.4 Table of Energy Levels (in PDF or PS). Model calculations:(BR59M, PH60A, TA60L, ZE60, BA61L, BA61N, KU61A,...

  2. A=7Li (74AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7Li) GENERAL: See also (66LA04) and Table 7.1 Table of Energy Levels (in PDF or PS). Shell model:(KO61L, CO65I, KU65D, VO65A, BA66T, HA66F, WI66E, BO67R, BO67V, CO67M, FA67A,...

  3. A=7Li (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    See also (1984AJ01) and Table 7.2 Table of Energy Levels (in PDF or PS) here. Shell model: (1983BU1B, 1983KU17, 1983SH1D, 1983VA31, 1984CH24, 1984REZZ, 1984VA06,...

  4. A=6Li (74AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SU70C, ZO70, CO71J, JA71D, LO71, NO71C, LE72, LO72M, VE72E, HA73M, JO73D, KU73D). Cluster and -particle model: (NE65E, HA66C, AL67C, BA67DD, HA67H, LO67B, SI67D, TH67E,...

  5. A=9Be (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PDF or PS). Shell model: (1975KU27, 1975SC1K, 1977CA08, 1977JA14, 1978BO31). and cluster models: (1974CH19, 1974GR42, 1974PA1B, 1975AB1E, 1975CH28, 1975KR1D, 1975RO1B,...

  6. A=17O (1977AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1973KU04, 1973LA1D, 1973RE17, 1973SM1C, 1974LO04, 1974RI09, 1976PO01). Collective and cluster models: (1969FE1A, 1971AR1R, 1972LE1L, 1972NE1B). Special levels: (1968KA1C,...

  7. A=18F (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1979DA15, 1980GO01, 1980KU05, 1980MA18, 1981EL1D, 1981ER03, 1981GR06, 1982KI02). Cluster, collective and deformed models: (1977BU22, 1978BU03, 1978PI1E, 1978SA15,...

  8. A=18O (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1979DA15, 1979WU06, 1980GO01, 1980KU05, 1980MA18, 1981EL1D, 1982KI02, 1982OL01). Cluster, collective and deformed models: (1977BU22, 1978BU03, 1978CH26, 1978PI1E,...

  9. A=19O (72AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EL68, GU68A, HA68H, HA68T, MO68A, FE69C, HO69U, KU69G, MA69N, TA70H, AR71L, WI71B). Cluster, collective and deformed models: (CH63A, FE65B, FE69C). Astrophysical questions:...

  10. A=10B (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deformed models: (1978FU13, 1979FL06, 1979KU05, 1980NI1F, 1981BO1Y, 1981DE2G, 1982BA52). Cluster and -particle models: (1979AD1A, 1980FU1G, 1980NI1F, 1980OK1B, 1981KR1J,...

  11. A=8Be (74AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8Be*(16.63) is very low: 5% compared to 8Be*(16.91) as expected by predictions of the cluster model (MA66B: Ep 40.8 MeV). See also (KU67C) and reaction 21 in 9Be in (66LA04)....

  12. A=19F (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1978DA1N, 1978MA2H, 1979DA15, 1980KU05, 1980MC1L, 1981ER03, 1981GR06, 1982KI02). Cluster, collective and rotational models: (1977BU22, 1977FO1E, 1978BR21, 1978CH26,...

  13. A=5Li (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    n)4He is very close. See also (KU55B, BO57G, BR57E). Above Ed 3.71 MeV, deuteron breakup (reaction (b)) is observed (HE55D). 4. 3He(d, d)3He Eb 16.555 Differential cross...

  14. A=15O (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a similar experiment, excitations of 5.185 and 5.244 MeV are reported (K.W. Allen, R. Middleton and S. Hinds, private communication). See also (PO52B, KU53A). 22. 17O(p, t)15O Qm ...

  15. 2011-2012 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K yle R enshaw ( Forrest) February 6 2:30pm GG Brown 2315 Brian R oberts ( Ku) a nd S haohui Z heng ( Dunietz) February 2 0 2:30pm GG Brown 2315 Hossein H ashemi ( Kieffer) a nd X ...

  16. TABLE21.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1. Imports of Crude Oil and Petroleum Products into the United States by Country of Origin, a January 1998 Arab OPEC .................................. 53,500 1,139 2,258 115 625 0 0 1,267 0 0 Algeria ...................................... 0 1,139 1,174 115 0 0 0 824 0 0 Iraq ........................................... 1,110 0 0 0 0 0 0 0 0 0 Kuwait ....................................... 7,822 0 0 0 0 0 0 0 0 0 Saudi Arabia ............................. 44,568 0 1,084 0 625 0 0 443 0 0 Other

  17. TABLE23.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3. PAD District II-Imports of Crude Oil and Petroleum Products by Country of Origin, a January 1998 Arab OPEC ................................... 6,219 0 0 0 0 0 0 0 0 0 Kuwait ....................................... 1,253 0 0 0 0 0 0 0 0 0 Saudi Arabia ............................. 4,966 0 0 0 0 0 0 0 0 0 Other OPEC .................................. 4,136 0 0 0 0 0 0 0 0 0 Nigeria ...................................... 540 0 0 0 0 0 0 0 0 0 Venezuela ................................. 3,596 0 0

  18. TABLE24.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4. PAD District III-Imports of Crude Oil and Petroleum Products by Country of Origin, a January 1998 Arab OPEC ................................... 38,701 294 2,258 0 0 0 0 443 0 0 Algeria ....................................... 0 294 1,174 0 0 0 0 0 0 0 Kuwait ........................................ 5,270 0 0 0 0 0 0 0 0 0 Saudi Arabia .............................. 33,431 0 1,084 0 0 0 0 443 0 0 Other OPEC .................................. 41,555 0 1,652 0 0 0 0 0 0 0 Nigeria

  19. TABLE25A.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    PAD District V PAD District IV January 1998 Non OPEC .................................... 3,980 424 0 0 13 0 140 0 0 0 Canada ..................................... 3,980 424 0 0 13 0 140 0 0 0 Total .............................................. 3,980 424 0 0 13 0 140 0 0 0 Arab OPEC .................................. 2,409 0 0 0 0 0 0 0 0 0 Iraq ........................................... 1,110 0 0 0 0 0 0 0 0 0 Kuwait ....................................... 1,299 0 0 0 0 0 0 0 0 0 Saudi Arabia

  20. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    6 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 3.3c Petroleum Trade: Imports From OPEC Countries (Thousand Barrels per Day) Algeria a Angola b Ecuador c Iraq Kuwait d Libya e Nigeria f Saudi Arabia d Vene- zuela Other g Total OPEC 1960 Average ...................... a ( ) b ( ) c ( ) 22 182 e ( ) f ( ) 84 911 34 1,233 1965 Average ...................... a ( ) b ( ) c ( ) 16 74 42 f ( ) 158 994 155 1,439 1970 Average ...................... 8 b ( ) c ( ) - 48

  1. Oil and gas developments in Middle East in 1984

    SciTech Connect (OSTI)

    Hemer, D.O.; Lyle, J.H.

    1985-10-01

    Petroleum production in Middle East countries during 1984 totaled 4,088,853,000 bbl (an average rate of 11,144,407 BOPD), down less than 1.0% from the revised total of 4,112,116,000 bbl produced in 1983. Iraq, Kuwait, Qatar, and Oman had significant increases; Iran and Dubai had significant decreases. Jordan produced oil, although a minor amount, for the first time ever, and new production facilities were in the planning stage in Syria, North Yemen, and Oman, which will bring new fields on stream when completed.

  2. Oil and gas developments in Middle East in 1986

    SciTech Connect (OSTI)

    Hemer, D.O.; Gohrbandt, K.H.A.

    1987-10-01

    Petroleum production in Middle East countries during 1986 totaled 4,493,973,000 bbl (an average rate of 12,312,254 BOPD), up 22.3% from the revised 1985 total of 3,673,729,000 bbl. Iraq, Kuwait, Saudi Arabia, Abu Dhabi, and Oman had significant increased; Iran was the only Middle East country with a significant decrease. New fields went on production in Oman and Yemen Arab Republic, and significant discoveries were reported in Iraq, Yemen Arab Republic, Oman, and Syria. However, exploration was generally down in most countries. Exploration and production operations continued to be affected by war in Iraq and Iran. 8 figures, 7 tables.

  3. Oil and gas developments in Middle East in 1984

    SciTech Connect (OSTI)

    Hemer, D.O.; Lyle, J.H.

    1985-10-01

    Petroleum production in Middle East countries during 1984 totaled 4,088,853,000 bbl (an average rate of 11,144,407 BOPD), down less than 1.0% from the revised total of 4,112,116,000 bbl produced in 1983. Iraq, Kuwait, Qatar, and Oman had significant increases; Iran and Dubai had significant decreases. Jordan produced oil, although a minor amount, for the first time ever, and new production facilities were in the planning stage in Syria, North Yemen, and Oman, which will bring new fields on stream when completed. 4 figures, 9 tables.

  4. A=10Be (66LA04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    66LA04) (See Energy Level Diagrams for 10Be) GENERAL: See (KU56, FR57, BA59F, KU60A, TA60L, BA61N, TR61, BU63D, VL63A, WA63C, FR64D, GR64C, VO64C, WA64H, WA64K). See also Table 10.1 [Table of Energy Levels] (in PDF or PS). 1. 10Be(β-)10B Qm = 0.555 The weighted mean end-point energy is 0.556 ± 0.003 MeV (LI51A). The mean half life is (2.7 ± 0.4) x 106 y (HU49A): log ft = 13.65 (FE51B). The spectrum is of the D2 type (WU50). 2. (a) 7Li(t, α)6He Qm = 9.834 Eb = 17.250 (b) 7Li(t, 2n)8Be Qm =

  5. A=11B (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (See the Energy Level Diagram for 11B) GENERAL: See also Table 11.1 [Table of Energy Levels] (in PDF or PS). Theory: See (KU56, KU57A, FR58B). 1. 7Li(α, γ)11B Qm = 8.670 Three resonances are reported below Eα = 2.5 MeV (BE51, HE54B): see Table 11.2 (in PDF or PS). Study of α-γ and γ-γ angular correlations, taken together with the relative γ-intensities, leads to the following assignments: 9.28 MeV level, J = 5/2+; 9.19 MeV, J = 5/2-; 8.93 MeV, J = 3/2 or 5/2; 6.81 MeV, J = 3/2-;

  6. A=11C (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (See the Energy Level Diagram for 11C) GENERAL: See also Table 11.8 [Table of Energy Levels] (in PDF or PS). Theory: See (KU56, KU57A, FR58B). 1. 11C(β+)11B Qm = 1.981 The spectrum is simple; Eβ+(max) = 968 ± 8 keV (WO54A). The mean of half-lives reported in (55AJ61) is 20.36 ± 0.05 min. Recent values of the half-lives are 20.26 ± 0.1 min (BA55E), 20.8 ± 0.2 min (PR57B) and 20.11 ± 0.13 min (AR58); log ft = 3.62 (WO54A). The ratio of K-capture to positron emission is 0.19 ± 0.03

  7. A=15O (70AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70AJ04) (See Energy Level Diagrams for 15O) GENERAL: See Table 15.18 [Table of Energy Levels] (in PDF or PS) here. Model calculations:(TA60H, TA60L, CO63B, KU63I, AL64P, AM64, BR64Z, RI64B, CO65I, GI65D, GR65E, GU65A, HU65D, BO66J, EL66B, RI66G, SO66A, BO67B, EL67C, DE68K, EL68E, HO68, MA68DD, SH68D, WO68D, ZH68, ZU68, DE69M, EL69B, GU69, SA69). General calculations and reviews:(EV64, FA67A, NE67B, BI68C). Electromagnetic transitions:(RO65O, PO66F, RO66C, WA66D, KU67J, PO67G, WA67I, BI68C,

  8. A=17F (71AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    71AJ02) (See Energy Level Diagrams for 17F) GENERAL: See also Table 17.17 [Table of Energy Levels] (in PDF or PS). Shell model: (WI57H, TA60L, BH62, TA62F, KU63I, LE65G, MA65J, DE66M, MA66BB, SO66A, EL67C, BI68A, EL68E, HO68, MA68DD, EL69B, KU69G, MA69U, WA70A). Collective model: (FA59E, RA60B, AR62C, MA62J, MA62O, BA64AA, BI68A, MA68DD, MA69U). Electromagnetic transitions: (BA59M, FA59E, RA60B, BA64AA, GR65E, KA65F, MA66BB, KA67J, KH69, MA69U, EL70D, GO70D, SI70B). Special levels: (EV60A, WI61,

  9. A=20F (72AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    72AJ02) (See Energy Level Diagrams for 20F) GENERAL: See Table 20.4 [Table of Energy Levels] (in PDF or PS). Model calculations:(BR59M, KU63F, MO64M, DE65B, DE65Q, CH66H, PI66A, BO67K, GU67, GU67A, AR68C, CO68L, GU68A, HA68H, HA68T, HO69U, AN70G, BA70DD, AR71L, JO71, WI71B). Other theoretical calculations:(ST67G, CE68A, DW68, SC69F, LE71I, TE71B). General experimental work:(FA70, AR71). Ground state: μ = +2.0935 ± 0.009 nm (GU67D; see also (TS63, FU69E). See also (KU63F, LI64H, ST64, SH67N,

  10. A=8Li (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8Li (59AJ76) (See the Energy Level Diagram for 8Li) GENERAL: See also Table 8.1 [Table of Energy Levels] (in PDF or PS). Theory: See (LA55A, KU56, FR57, KU57). 1. 8Li(β-)8Be Qm = 16.001 The weighted mean of half-lives reported in (55AJ61) is 0.848 ± 0.004 sec. A value of 0.873 ± 0.013 sec is given by (VE58A). See also (IM58). The decay is complex: see 8Be. 2. 6Li(t, p)8Li Qm = 0.803 Q0 = 0.790 ± 0.011 (AL54E). The ground state reaction has been observed by (MO52, PE52, AL54E, CU55B). (CU55B)

  11. Risk Analysis and Decision-Making Under Uncertainty: A Strategy and its

    Office of Environmental Management (EM)

    Applications | Department of Energy Analysis and Decision-Making Under Uncertainty: A Strategy and its Applications Risk Analysis and Decision-Making Under Uncertainty: A Strategy and its Applications Ming Ye (mye@fsu.edu) Florida State University Mary Hill (mchill@ku.edu) University of Kansas This research is supported by DOE Early Career Award: DE-SC0008272 Acknowledge the efforts of ISCMEM Working Group 2- Federal Scientists Working for Coordinated Uncertainty Analysis and Parameter

  12. Princeton and PPPL projects selected to run on super-powerful computer to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be delivered to Oak Ridge Leadership Computing Facility | Princeton Plasma Physics Lab Princeton and PPPL projects selected to run on super-powerful computer to be delivered to Oak Ridge Leadership Computing Facility By John Greenwald June 1, 2015 Tweet Widget Google Plus One Share on Facebook Computer simulation and visualization of edge turbulence in a fusion plasma. (Simulation: Seung-Hoe Ku/PPPL. Visualization: David Pugmire/ORNL) Computer simulation and visualization of edge turbulence

  13. Princeton and PPPL projects selected to run on super-powerful computer to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be delivered to Oak Ridge Leadership Computing Facility | Princeton Plasma Physics Lab Princeton and PPPL projects selected to run on super-powerful computer to be delivered to Oak Ridge Leadership Computing Facility By John Greenwald June 1, 2015 Tweet Widget Google Plus One Share on Facebook Computer simulation and visualization of edge turbulence in a fusion plasma. (Simulation: Seung-Hoe Ku/PPPL. Visualization: David Pugmire/ORNL) Computer simulation and visualization of edge turbulence

  14. Microsoft Word - MOU_UTokyo_LBNL.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEMORANDUM OF UNDERSTANDING between The University of Tokyo, Information Technology Center and The University of California, as Management and Operating Contractor for Lawrence Berkeley National Laboratory PREAMBLE This Memorandum of Understanding (MOU) is entered into by and between the University of Tokyo, Information Technology Center, hereafter "Todai", with a registered address at 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8658, Japan, and the University of California, as Management and

  15. Physics of Intrinsic Plasma Rotation Explained for First Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics of Intrinsic Plasma Rotation Explained for First Time Physics of Intrinsic Plasma Rotation Explained for First Time Key understanding for modeling future fusion reactors such as ITER July 23, 2013 CHANG.JPG Flamelets or hot spots along the plasma edge (a) drive turbulence intensity (b), temperature intensity (c), and intrinsic torque (d) inward, converting heat into toroidal rotation. (S. Ku et al.) If humans could harness nuclear fusion, the process that powers stars like our sun, the

  16. Microsoft Word - orf2.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Basis for the Promiscuous Biosynthetic Prenylation of Aromatic Natural Products Tomohisa Kuzuyama 1,2 , Joseph P. Noel 1 & Stéphane B. Richard 1 1 Jack Skirball Chemical Biology and Proteomics Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA. 2 Laboratory of Cell Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan Prenylation is a general term for

  17. wkpd080.tmp

    Office of Scientific and Technical Information (OSTI)

    Properties of High ~, Quasi-Axisymmetric NCSX Stellarator Contlgurations L. P. Ku, G. Y. Fu, D. Monticello, A. Reiman Princeton Plasma Physics Laboratory Princeton, NJ 08543 A. Boozer Columbia University New, York, NY 10027 ABSTRACT Quasi-axisy~etry, external kinks and ballooning stability are studied wi~hrespect to the plasma shaping and variation in the pressure and current profiles for NCSX. We show that while the kink stability may require a delicate boundary shaping, most quasi- axisymmetry

  18. Microsoft PowerPoint - 6 Mary Hill & Ming Ye

    Office of Environmental Management (EM)

    Risk Analysis and Decision-Making Under Uncertainty: A Strategy and its Applications Ming Ye (mye@fsu.edu) Florida State University Mary Hill (mchill@ku.edu) University of Kansas 1 This research is supported by DOE Early Career Award: DE-SC0008272 Acknowledge the efforts of ISCMEM Working Group 2- Federal Scientists Working for Coordinated Uncertainty Analysis and Parameter Estimation Since 2002 Learning from the NAS workshop * Anna Willett, director of the Interstate Technology and Regulatory

  19. Acute Normal Tissue Reactions in Head-and-Neck Cancer Patients Treated With IMRT: Influence of Dose and Association With Genetic Polymorphisms in DNA DSB Repair Genes

    SciTech Connect (OSTI)

    Werbrouck, Joke Ruyck, Kim de; Duprez, Frederic; Veldeman, Liv; Claes, Kathleen; Eijkeren, Marc van; Boterberg, Tom; Willems, Petra; Vral, Anne; Neve, Wilfried de; Thierens, Hubert

    2009-03-15

    Purpose: To investigate the association between dose-related parameters and polymorphisms in DNA DSB repair genes XRCC3 (c.-1843A>G, c.562-14A>G, c.722C>T), Rad51 (c.-3429G>C, c.-3392G>T), Lig4 (c.26C>T, c.1704T>C), Ku70 (c.-1310C>G), and Ku80 (c.2110-2408G>A) and the occurrence of acute reactions after radiotherapy. Materials and Methods: The study population consisted of 88 intensity-modulated radiation therapy (IMRT)-treated head-and-neck cancer patients. Mucositis, dermatitis, and dysphagia were scored using the Common Terminology Criteria (CTC) for Adverse Events v.3.0 scale. The population was divided into a CTC0-2 and CTC3+ group for the analysis of each acute effect. The influence of the dose on critical structures was analyzed using dose-volume histograms. Genotypes were determined by polymerase chain reaction (PCR) combined with restriction fragment length polymorphism or PCR-single base extension assays. Results: The mean dose (D{sub mean}) to the oral cavity and constrictor pharyngeus (PC) muscles was significantly associated with the development of mucositis and dysphagia, respectively. These parameters were considered confounding factors in the radiogenomics analyses. The XRCC3c.722CT/TT and Ku70c.-1310CG/GG genotypes were significantly associated with the development of severe dysphagia (CTC3+). No association was found between the investigated polymorphisms and the development of mucositis or dermatitis. A risk analysis model for severe dysphagia, which was developed based on the XRCC3c.722CT/TT and Ku70c.-1310CG/GG genotypes and the PC dose, showed a sensitivity of 78.6% and a specificity of 77.6%. Conclusions: The XRCC3c.722C>T and Ku70c.-1310C>G polymorphisms as well as the D{sub mean} to the PC muscles were highly associated with the development of severe dysphagia after IMRT. The prediction model developed using these parameters showed a high sensitivity and specificity.

  20. A=18Ne (1959AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1959AJ76) (Not illustrated) Theory: See (RA57). 1. 18Ne(β+)18F Qm = 4.227 The maximum energy of the positrons is 3.2 ± 0.2 MeV, the half-life is 1.6 ± 0.2 sec: log ft = 2.9 ± 0.2 (GO54D). See also (DZ56). 2. 16O(3He, n)18Ne Qm = -2.966 See (KU53A). 3. 19F(p, 2n)18Ne Qm = -15.424 See (GO54D). 4. 20Ne(p, t)18Ne Qm = -19.812 Not reported

  1. Progress Toward Attractive Stellarators

    Office of Scientific and Technical Information (OSTI)

    9 PPPL- 4589 Progress Toward Attractive Stellarators January, 2011 G.H. Neilson, L. Bromberg, T.G. Brown, D.A. Gates, L.P. Ku, M.C. Zarnstorff, A.H. Boozer, J.H. Harris, O. Meneghini, H.E. Mynick, N. Pomphrey, A.H. Reiman and P. Xanthopoulos Princeton Plasma Physics Laboratory Report Disclaimers Full Legal Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

  2. Local-moment magnetism in superconducting FeTe0.35Se0.65 as seen via

    Office of Scientific and Technical Information (OSTI)

    inelastic neutron scattering (Journal Article) | DOE PAGES Local-moment magnetism in superconducting FeTe0.35Se0.65 as seen via inelastic neutron scattering « Prev Next » Title: Local-moment magnetism in superconducting FeTe0.35Se0.65 as seen via inelastic neutron scattering Authors: Xu, Zhijun ; Wen, Jinsheng ; Xu, Guangyong ; Chi, Songxue ; Ku, Wei ; Gu, Genda ; Tranquada, J. M. Publication Date: 2011-08-11 OSTI Identifier: 1100533 Type: Publisher's Accepted Manuscript Journal Name:

  3. Magnetic states of the two-leg-ladder alkali metal iron selenides AFe2Se3

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | DOE PAGES states of the two-leg-ladder alkali metal iron selenides AFe2Se3 « Prev Next » Title: Magnetic states of the two-leg-ladder alkali metal iron selenides AFe2Se3 Authors: Luo, Qinlong ; Nicholson, Andrew ; Rincón, Julián ; Liang, Shuhua ; Riera, José ; Alvarez, Gonzalo ; Wang, Limin ; Ku, Wei ; Samolyuk, German D. ; Moreo, Adriana ; Dagotto, Elbio Publication Date: 2013-01-08 OSTI Identifier: 1101865 Type: Publisher's Accepted Manuscript Journal Name:

  4. All-dielectric three-dimensional broadband Eaton lens with large refractive index range

    SciTech Connect (OSTI)

    Yin, Ming; Yong Tian, Xiao, E-mail: leoxyt@mail.xjtu.edu.cn; Ling Wu, Ling; Chen Li, Di [State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049 (China)

    2014-03-03

    We proposed a method to realize three-dimensional (3D) gradient index (GRIN) devices requiring large refractive index (RI) range with broadband performance. By combining non-resonant GRIN woodpile photonic crystals structure in the metamaterial regime with a compound liquid medium, a wide RI range (16.32) was fulfilled flexibly. As a proof-of-principle for the low-loss and non-dispersive method, a 3D Eaton lens was designed and fabricated based on 3D printing process. Full-wave simulation and experiment validated its omnidirectional wave bending effects in a broad bandwidth covering Ku band (12?GHz18?GHz)

  5. Winter 2014 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 C STEC W orking G roup S chedule Thrust I ( IPV) Selected W ednesdays 10:30---11:30am February 12 POD room Sung Joo Kim (Pan) March 19 POD room Matt DeJarld (Millunchick) Alan Teran (Phillips) April 16 POD room Mike Abere (Yalisove) Brian Roberts (Ku) May 21 POD room Simon Huang (Goldman) Dylan Bayerl (Kioupakis) Larry Aagesen (Thornton) Thrust I I ( TE) Selected M ondays 10:00---11:00am February 3 267B West Hall Gunho Kim (Pipe) March 10 267B West Hall Wonho Jeong (Reddy) Youngsang Kim

  6. paper_r.dvi

    Office of Scientific and Technical Information (OSTI)

    UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA PHYSICS LABORATORY PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY PPPL-3538 PPPL-3538 UC-70 Recent Advances in the Design of Quasi-Axisymmetric Stellarator Plasma configurations by A. Reiman, L. Ku, D. Monticello, S. Hirschman, S. Hudson, C. Kessel, E. Lazarus, D. Mikkelsen, M. Zarnstorff, L.A. Berry, A. Boozer, A. Brooks, W.A. Cooper, M. Drevlak, E. Fredrickson, G. Fu, R. Goldston, R. Hatcher, M. Isaev, C. Jun, S. Knowlton, J. Lewandowski, Z. Lin,

  7. I

    Office of Legacy Management (LM)

    "U ,-r-r-r ..- - ku 117 Booker case Pilu Jtav. prot. Duror.0 -1.Y.S. Dupartaant of Lau lkw York, Icu rork I A. Pmduetlom klnion: 591 drmr of K-65 have been dumped into the lower aectlon otthe 0 toimr sina* the iwuption or operst1ona. making a tatal or 199e tom 6f slud@ mow stored therein. Irfteentona ot SSP 505Test Bonctor roda shippad rzy IPOC to Bridy"" Panas Corpsn~ to be cold dryprior to m.%hWng" e Mlaoellaneou~ rod shlplsnt.reremad.toBstbLaba-Stab Co-,

  8. Relativistic theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals

    SciTech Connect (OSTI)

    Xiao, Yunlong; Zhang, Yong; Liu, Wenjian

    2014-10-28

    Both kinetically balanced (KB) and kinetically unbalanced (KU) rotational London orbitals (RLO) are proposed to resolve the slow basis set convergence in relativistic calculations of nuclear spin-rotation (NSR) coupling tensors of molecules containing heavy elements [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)]. While they perform rather similarly, the KB-RLO Ansatz is clearly preferred as it ensures the correct nonrelativistic limit even with a finite basis. Moreover, it gives rise to the same direct relativistic mapping between nuclear magnetic resonance shielding and NSR coupling tensors as that without using the London orbitals [Y. Xiao, Y. Zhang, and W. Liu, J. Chem. Theory Comput. 10, 600 (2014)].

  9. EV-13

    Office of Legacy Management (LM)

    ?a/71 2.z=' 1. lg EV-13 Notification of Xced for So!?e Form of Reoedial Action, in Ikyo Ca~;~op., Los Alanos, New Mexico s. lkycrs, HEI-90 4 EV/IXT has dctcrnincd that portions of Szyo Ca~yor? aztr contapAnat& vith radioactive residue as a result of activities conducteiI for the ku!hsttzi F r- sider this -n...lnecr I?istrict and ntornic Lncrg Cocaissio2. vc con- site to be low priority as potential e!xp,osw'c rates to the general putilic are relatively low under the p&en: Enclosed in

  10. New constraints in absorptive capacity and the optimum rate of petroleum output

    SciTech Connect (OSTI)

    El Mallakh, R

    1980-01-01

    Economic policy in four oil-producing countries is analyzed within a framework that combines a qualitative assessment of the policy-making process with an empirical formulation based on historical and current trends in these countries. The concept of absorptive capacity is used to analyze the optimum rates of petroleum production in Iran, Iraq, Saudi Arabia, and Kuwait. A control solution with an econometric model is developed which is then modified for alternative development strategies based on analysis of factors influencing production decisions. The study shows the consistencies and inconsistencies between the goals of economic growth, oil production, and exports, and the constraints on economic development. Simulation experiments incorporated a number of the constraints on absorptive capacity. Impact of other constraints such as income distribution and political stability is considered qualitatively. (DLC)

  11. Net Imports of Total Crude Oil and Products into the U.S. by Country

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Total All Countries 9,441 8,450 7,393 6,237 5,065 4,651 1973-2015 Persian Gulf 1,705 1,842 2,149 1,988 1,861 1,496 1993-2015 OPEC* 4,787 4,429 4,093 3,483 2,996 2,652 1993-2015 Algeria 510 355 241 108 109 105 1993-2015 Angola 393 346 233 215 154 136 1993-2015 Ecuador 135 147 117 153 116 104 1993-2015 Iran 0 0 1993-2014 Iraq 415 459 476 341 369 229 1996-2015 Kuwait 197 191 305 328 311 206 1993-2015 Libya 70 15 60 58 5 7 2004-2015 Nigeria 1,006 803 419

  12. Word Pro - S11

    Gasoline and Diesel Fuel Update (EIA)

    66 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 11.1a World Crude Oil Production: OPEC Members (Thousand Barrels per Day) Algeria Angola Ecuador Iran Iraq Kuwait a Libya Nigeria Qatar Saudi Arabia a United Arab Emirates Vene- zuela Total OPEC b 1973 Average .................... 1,097 162 209 5,861 2,018 3,020 2,175 2,054 570 7,596 1,533 3,366 29,661 1975 Average .................... 983 165 161 5,350 2,262 2,084 1,480 1,783 438 7,075 1,664 2,346 25,790 1980

  13. East Coast (PADD 1) Distillate Fuel Oil Imports

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History All Countries 104 104 76 92 133 130 1981-2015 Persian Gulf 1995-2015 OPEC* 10 1993-2015 Algeria 1994-2010 Angola 1995-2003 Kuwait 1995-2012 Libya 2013-2013 Nigeria 10 1993-2015 Qatar 1995-2015 Saudi Arabia 1995-2015 United Arab Emirates 1995-2014 Venezuela 1993-2014 Non OPEC* 104 104 76 92 133 120 1993-2015 Argentina 1995-2015 Aruba 2005-2012 Bahamas 1994-2014 Bahrain 1995-2007 Belarus 2006-2009 Belgium 1995-2015 Brazil 1994-2014 Cameroon

  14. Table 5.20 Value of Crude Oil Imports From Selected Countries, 1973-2011 (Thousand Dollars )

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Value of Crude Oil Imports From Selected Countries, 1973-2011 (Thousand Dollars 1) Year Persian Gulf 3 Selected OPEC 2 Countries Selected Non-OPEC 2 Countries Total 5 Kuwait Nigeria Saudi Arabia Venezuela Total OPEC 4 Canada Colombia Mexico Norway United Kingdom Total Non-OPEC 4 1973 1,729,733 W 1,486,278 904,979 753,195 5,237,483 1,947,422 W – 0 0 2,351,931 7,589,414 1974 4,419,410 W 3,347,351 1,858,788 1,309,916 11,581,515 3,314,999 0 W – 0 4,054,475 15,635,990 1975 5,169,811 W 3,457,766

  15. 12C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 05/14/2012) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 2009MA70 12C(α, γ0): σ 0 - 2.27 X4 05/01/2012 2012OU01 12C(α, γ): deduced S-factor Ecm = 0.3 - 3.5 X4 02/12/2015 1997KU18 12C(α, γ): analyzed S-factor Ecm = 0.9 - 3 X4 05/10/2012 1987RE02 12C(α, γ): σ, deduced S-factor 0.94 - 2.84 X4 05/09/2012 2001HA31 12C(α, γ): deduced S-factors Ecm = 0.95 - 2.78 E1, E2 06/18/2012 2001KU09 12C(α, γ): deduced S-factor Ecm = 0.95 - 2.8 X4 05/09/2012

  16. A=12C (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (See the Energy Level Diagram for 12C) GENERAL: See also Table 12.4 [Table of Energy Levels] (in PDF or PS). Theory: See (FE55A, HE55F, CA56E, EL56, GL56A, HA56G, HA56H, KU56, MO56, NA56B, PE56A, RE56B, WI56K, BA57, BI57F, HE57B, KU57A, PA57A, RE57, SA57C, CA58C, FR58B). 1. 7Li(6Li, n)12C Qm = 20.931 See (NO57A). 2. (a) 9Be(3He, n)11C Qm = 7.565 Eb = 26.286 (b) 9Be(3He, p)11B Qm = 10.329 (c) 9Be(3He, α)8Be Qm = 18.911 (d) 9Be(3He, d)10B Qm = 1.093 The yields and angular distributions of

  17. 11C

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C β+-Decay Evaluated Data Measurements 1940MO09, 1954WO23: 11C. 1941SM11: 11C; measured T1/2. 1941SO01: 11C; measured T1/2. 1944SI30: 11C; measured T1/2. 1951DI12: 11C; measured T1/2. 1953KU08: 11C; measured T1/2. 1955BA63: 11C; measured T1/2. 1957PR53: 11C; measured T1/2. 1957SC29, 1967CA09: 11C; measured K/β+. 1958AR15: 11C; measured T1/2. 1964KA31: 11C; measured not abstracted; deduced nuclear properties. 1965PA10: 11C; measured not abstracted; deduced nuclear properties. 1969AW02: 11C;

  18. 11C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C(p, X) (Current as of 03/01/2016) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2013SO11 11C(p, γ): deduced astrophysical reaction rates and S-factors X4 12/14/2015 2003LI51 11C(p, γ): deduced S-factor low X4 09/12/2011 2003TA02 11C(p, γ): deduced S-factor 0 - 0.7 X4 09/12/2011 2003KU36 11C(p, p): elastic scattering σ ~ 0.2 - 3.2 θcm = 180° 09/08/2011 Back to (p, X) Main Page Back to (α, X) Main Page Back to Datacomp Home Page Last modified: 02 March

  19. 9Be Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 01/21/2015) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1994WR01 9Be(α, n): σ, thick target yield, deduced S-factor Ecm = 0.16 - 1.87 S(E) X4 01/24/2012 2011GI05 9Be(α, nγ): σ for n1 0.3 - 7.9 linear scale, log scale 06/18/2012 1968DA05 9Be(α, n): excitation function at θ = 0° 0.34 - 0.68 n0, n1 X4 07/19/2011 1994HA32 9Be(α, n): excitation function 480- 740 keV 1 01/24/2012 1994LE18 9Be(α, α): σ at θ = 170.5° 0.5- 3 X4 01/11/2012 1996KU07

  20. A=12B (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (See the Energy Level Diagram for 12B) GENERAL: See also Table 12.1 [Table of Energy Levels] (in PDF or PS). Theory: See (KU56, FR58B). 1. 12B(β-)12C Qm = 13.376 The spectrum is complex: see 12C. The transition to 12Cg.s. is allowed; hence J(12B) = 1+. 2. 6Li(7Li, p)12B Qm = 8.338 Three groups of protons are reported, corresponding to the ground state and to the excited states at 0.95 and 1.67 MeV. At E(7Li) = 2.0 MeV, θ = 90° (lab), the relative intensities are 1 : 1.1 : 0.8 (NO57).

  1. A=12C (1990AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    90AJ01) (See Energy Level Diagrams for 12C) GENERAL: See also (1985AJ01) and Table 12.6 [Table of Energy Levels] (in PDF or PS) here. Shell model: (1984CA1N, 1984ZW1A, 1985AN16, 1985AR07, 1985CA23, 1985KO2B, 1985MI23, 1986YO1F, 1987DZ1A, 1987GU1C, 1987KI1C, 1987PR01, 1987SC1J, 1988GU13, 1988JA13, 1988OR1C, 1988WO04, 1989KW1A). Deformed Models: (1984LO05, 1984SA37, 1985RO1G, 1986KU1P, 1986LE16, 1987HO1C, 1987PR03, 1988KH07). Cluster Model: (1983DZ1A, 1983JA09, 1984KR10, 1985DE05, 1985KO2B,

  2. A=17O (1986AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ04) (See Energy Level Diagrams for 17O) GENERAL: See also (1982AJ01) and Table 17.7 [Table of Energy Levels] (in PDF or PS). Shell model: (1978WI1B, 1982BA53, 1982KU1B, 1982WA1Q, 1982YA1D, 1982ZH01, 1984ZI04). Collective and cluster models: (1983JA09, 1983ME18, 1984ZI04, 1985ME06). Special states: (1978WI1B, 1981WI1K, 1982BA53, 1982HA43, 1982ZA1D, 1983AU1B, 1983LI10, 1983ME18, 1983SH15, 1984ANZV, 1984ST1E, 1984WI17, 1985AR1H, 1985ME06, 1985SH24). Electromagnetic transitions and giant

  3. A=19F (1959AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1959AJ76) (See Energy Level Diagram for 19F) GENERAL: See also Table 19.3 [Table of Energy Levels] (in PDF or PS). Theory: See (EL55, EL55A, RE55, RE55B, BA56E, PA56A, PA57, RA57, AB58, KU58A, RE58). 1. 9Be(14N, α)19F Qm = 13.263 See (GO58E). 2. 15N(α, γ)19F Qm = 3.993 Three resonances are observed (PR57A): see Table 19.4 [Resonances in 15N(α, γ)19F] (in PDF or PS). The γ-transition strengths indicate that all three yield dipole or E2 radiation. The indicated assignments are derived from

  4. A=7Be (1974AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 7Be) GENERAL: See also (1966LA04) and Table 7.5 [Table of Energy Levels] (in PDF or PS). Shell model: (1961KO1A, 1965VO1A, 1966BA26, 1966HA18, 1967FA1A, 1968GO01, 1969TA1H, 1971CO28, 1971NO02, 1972LE1L, 1973HA49). Cluster model: (1965NE1B, 1968HA1G, 1971NO02, 1972HI16, 1972KU12, 1972LE1L). Rotational and deformed models: (1965VO1A, 1966EL08). Special levels: (1966BA26, 1966EL08, 1967FA1A, 1969HA1G, 1969HA1F, 1971CO28, 1971NO02, 1972BB26, 1973AS02, 1973FE1J).

  5. A=7Be (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 7Be) GENERAL: See also (1979AJ01) and Table 7.7 [Table of Energy Levels] (in PDF or PS). Nuclear models: (1978RE1A, 1979WI1B, 1980HA1M, 1981KU13, 1982FI13, 1983WA1M). Astrophysical questions: (1978BU1B, 1979MO04, 1979RA20, 1979RA1C, 1980CA1C, 1980LA1G, 1980WI1M, 1983LI01). Applied work: (1979LA1E, 1982HA1D, 1983HA1W). Complex reactions involving 7Be: (1978DI1A, 1978DU1B, 1978HA40, 1978HE1C, 1979BO22, 1979KA07, 1979LO11, 1979PO10, 1979RA20, 1979SC1D,

  6. A=7Li (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (See the Energy Level Diagram for 7Li) GENERAL: See also Table 7.1 [Table of Energy Levels] (in PDF or PS). Theory: See (AU55, DA55, LA55A, AB56, FE56, KU56, ME56, FE57C, FR57, LE57F, MA57E, MA57J, SO57, HA58D, SK58). 1. 3H(α, γ)7Li Qm = 2.465 For Eα = 0.5 to 1.9 MeV, capture radiation is observed to 7Li(0) and 7Li*(0.48), with intensity ratio 5 : 2. The smooth rise of the cross section suggests a direct capture process. The angular distribution is not isotropic, indicating l > 0

  7. A=8Be (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8Be (59AJ76) (See the Energy Level Diagram for 8Be) GENERAL: See also Table 8.3 [Table of Energy Levels] (in PDF or PS). Theory: See (HE55F, KU56, PE56A, BI57F, FR57, WI58G). 1. 8Be --> 4He + 4He Qm = 0.094 Recent Q-values are 93.7 ± 0.9 keV (CO57D: 9Be(p, d)8Be), 90 ± 5 keV (TR55: 11B(p, α)8Be): the weighted mean of all measurements is 94.1 ± 0.7 keV (VA57). The width of the ground state is 4.5 ± 3 eV (RU56A: 15% of Wigner limit), < / = 3.5 eV (HE56B). The second value leads to τm

  8. Design of pulsed guiding magnetic field for high power microwave generators

    SciTech Connect (OSTI)

    Ju, J.-C. Zhang, H.; Zhang, J.; Shu, T.; Zhong, H.-H.

    2014-09-15

    In this paper, we present a comprehensive study on designing solenoid together with the corresponding power supply system to excite pulsed magnetic field required for high power microwave generators. Particularly, a solenoid is designed and the excited magnetic field is applied to a Ku-band overmoded Cerenkov generator. It is found in experiment that the electron beam is properly guided by the magnetic field and a 1.1 GW high power microwave is achieved at a central frequency of 13.76 GHz. Pulsed solenoid system has the advantages of compactness and low energy consumption, which are of great interest for repetitive operation. The reported studies and results can be generalized to other applications which require magnetic fields.

  9. Fall 2012 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 C STEC W orking G roup S chedule Thrust I --- s elected Thursdays; M SE C onference R oom ( 3062 H H D ow) October 1 1 Dylan B ayerl ( Kioupakis g roup) 3:00---4:00pm November 1 Andy M artin ( Millunchick g roup) 2:00---3:00pm December 1 3 Brian R oberts ( Ku g roup) 2:00---3:00pm Thrust II --- s elected T hursdays, 3 :30---4:30pm; M SE C onference R oom ( 3062 H H D ow) September 2 7 Hang C hi ( Uher g roup) October 1 8 Reddy g roup November 2 9 Gunho Kim (Pipe group) Thrust III --- s elected

  10. Co-targeting Deoxyribonucleic AcidDependent Protein Kinase and Poly(Adenosine Diphosphate-Ribose) Polymerase-1 Promotes Accelerated Senescence of Irradiated Cancer Cells

    SciTech Connect (OSTI)

    Azad, Arun; Bukczynska, Patricia; Jackson, Susan; Haput, Ygal; Cullinane, Carleen; McArthur, Grant A.; Solomon, Benjamin

    2014-02-01

    Purpose: To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. Methods and Materials: The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs, and accelerated senescence after radiation. Results: Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (?H2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive ?-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (?H2AX) staining and prominent ?-galactosidase activity. Conclusion: Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination.

  11. Global warming and the regions in the Middle East

    SciTech Connect (OSTI)

    Alvi, S.H.; Elagib, N.

    1996-12-31

    The announcement of NASA scientist James Hansen made at a United States Senate`s hearing in June 1988 about the onset of global warming ignited a whirlwind of public concern in United States and elsewhere in the world. Although the temperature had shown only a slight shift, its warming has the potential of causing environmental catastrophe. According to atmosphere scientists, the effect of higher temperatures will change rainfall patterns--some areas getting drier, some much wetter. The phenomenon of warming in the Arabian Gulf region was first reported by Alvi for Bahrain and then for Oman. In the recent investigations, the authors have found a similar warming in other regions of the Arabian Gulf and in several regions of Sudan in Africa. The paper will investigate the observed data on temperature and rainfall of Seeb in Oman, Bahrain, International Airport in Kuwait as index stations for the Arabian Gulf and Port Sudan, Khartoum and Malakal in the African Continent of Sudan. Based on various statistical methods, the study will highlight a drying of the regions from the striking increase in temperature and decline of rainfall amount. Places of such environmental behavior are regarded as desertifying regions. Following Hulme and Kelly, desertification is taken to mean land degradation in dryland regions, or the permanent decline in the potential of the land to support biological activity, and hence human welfare. The paper will also, therefore, include the aspect of desertification for the regions under consideration.

  12. The motor gasoline industry: Past, present, and future. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Motor gasoline constitutes the largest single component of US demand for petroleum products and is the Nation's most widely used transportation fuel. Because of its importance as a transportation fuel, motor gasoline has been the focus of several regulatory and tax policy initiatives in recent years. Much of the US refining capacity is specifically geared toward maximizing motor gasoline production, and future investments by the petroleum industry in refining infrastructure are likely to be made largely to produce larger volumes of clean motor gasoline. This report addresses major events and developments that have had an impact on motor gasoline supply, distribution, prices, and demand. The report provides historical perspective as well as analyses of important events from the 1970's and 1980's. Long-term forecasts are provided for the period from 1990 to 2010 in an effort to present and analyze possible future motor gasoline trends. Other forecasts examine the near-term impact of the invasion of Kuwait. 18 figs., 10 tabs.

  13. Strategic Petroleum Reserve quarterly report

    SciTech Connect (OSTI)

    Not Available

    1991-08-15

    This August 15, 1991, Strategic Petroleum Reserve Quarterly Report describes activities related to the site development, oil acquisition, budget and cost of the Reserve during the period April 1, 1991, through June 30, 1991. The Strategic Petroleum Reserve storage facilities development program is proceeding on schedule. The Reserve's capacity is currently 726 million barrels. A total of 5.5 million barrels of new gross cavern volume was developed at Big Hill and Bayou Choctaw during the quarter. There were no crude oil deliveries to the Strategic Petroleum Reserve during the calendar quarter ending June 30, 1991. Acquisition of crude oil for the Reserve has been suspended since August 2, 1990, following the invasion of Kuwait by Iraq. As of June 30, 1991, the Strategic Petroleum Reserve inventory was 568.5 million barrels. The reorganization of the Office of the Strategic Petroleum Reserve became effective June 28, 1991. Under the new organization, the Strategic Petroleum Reserve Project Management Office in Louisiana will report to the Strategic Petroleum Reserve Program Office in Washington rather than the Oak Ridge Field Office in Tennessee. 2 tabs.

  14. The oil policies of the Gulf Arab Nations

    SciTech Connect (OSTI)

    Ripple, R.D.; Hagen, R.E.

    1995-03-01

    At its heart, Arab oil policy is inseparable from Arab economic and social policy. This holds whether we are talking about the Arab nations as a group or each separately. The seven Arab nations covered in this report-Bahrain, Iraq, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates--participate in several organizations focusing on regional cooperation regarding economic development, social programs, and Islamic unity, as well as organizations concerned with oil policies. This report focuses on the oil-related activities of the countries that may reveal the de facto oil policies of the seven Persian Gulf nations. Nevertheless it should be kept in mind that the decision makers participating in the oil policy organizations are also involved with the collaborative efforts of these other organizations. Oil policies of five of the seven Arab nations are expressed within the forums of the Organization of Petroleum Exporting Countries (OPEC) and the Organization of Arab Petroleum Exporting Countries (OAPEC). Only Oman, among the seven, is not a member of either OAPEC or OPEC; Bahrain is a member of OAPEC but not of OPEC. OPEC and OAPEC provide forums for compromise and cooperation among their members. Nevertheless, each member state maintains its own sovereignty and follows its own policies. Each country deviates from the group prescription from time to time, depending upon individual circumstances.

  15. State companies dominate OGJ100 list of non-U. S. oil producers

    SciTech Connect (OSTI)

    Not Available

    1993-09-20

    State owned oil and gas companies dominate the OGJ100 list of non-U.S. producers. Because many of them report only operating information, companies on the worldwide list cannot be ranked by assets or revenues. The list, therefore, is organized regionally, based on location of companies' corporate headquarters. The leading nongovernment company in both reserves and production is Royal Dutch/Shell. It ranks sixth in the world in liquids production and 11th in liquids reserves, as it has for the past 2 years. British Petroleum is the next largest nongovernment company. BP ranks 11th in liquids production and 16th in liquids reserves. Elf Aquitaine, 55.8% government-controlled, ranked 17th in liquids production. AGIP was 20th in liquids production. Kuwait Petroleum returned to the list of top 20 producers, ranking 12th, as it restored production shut in by facilities damage sustained during the Persian Gulf crisis. New to the top 20 reserves list is Petroleo Brasileiro, which moved to 20th position. The top 20 companies in the OGJ100 held reserves estimated at 869.3 billion bbl in 1992 vs. 869.5 billion bbl in 1991 and 854.2 billion bbl in 1990.

  16. CO sub 2 emissions from developing countries: Better understanding the role of energy in the long term

    SciTech Connect (OSTI)

    Sathaye, J.; Goldman, N.

    1991-07-01

    Recent years have witnessed a growing recognition of the link between emissions of carbon dioxide (CO{sub 2}) and changes in the global climate. of all anthropogenic activities, energy production and use generate the single largest portion of these greenhouse gases. Although developing countries currently account for a small share of global carbon emissions, their contribution is increasing rapidly. Due to the rapid expansion of energy demand in these nations, the developing world's share in global modern energy use rose from 16 to 27 percent between 1970 and 1990. If the growth rates observed over the past 20 years persist, energy demand in developing nations will surpass that in the countries of the Organization for Economic Cooperation and Development (OECD) early in the 21st century. The study seeks to examine the forces that galvanize the growth of energy use and carbon emissions, to assess the likely future levels of energy and CO{sub 2} in selected developing nations and to identify opportunities for restraining this growth. The purpose of this report is to provide the quantitative information needed to develop effective policy options, not to identify the options themselves. A combined study was carried out for the countries of the Gulf Cooperation Council (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates).

  17. CO{sub 2} emissions from developing countries: Better understanding the role of energy in the long term. Volume 4, Ghana, Sierra Leone, Nigeria and the Gulf Cooperation Council (GCC) countries

    SciTech Connect (OSTI)

    Sathaye, J.; Goldman, N.

    1991-07-01

    Recent years have witnessed a growing recognition of the link between emissions of carbon dioxide (CO{sub 2}) and changes in the global climate. of all anthropogenic activities, energy production and use generate the single largest portion of these greenhouse gases. Although developing countries currently account for a small share of global carbon emissions, their contribution is increasing rapidly. Due to the rapid expansion of energy demand in these nations, the developing world`s share in global modern energy use rose from 16 to 27 percent between 1970 and 1990. If the growth rates observed over the past 20 years persist, energy demand in developing nations will surpass that in the countries of the Organization for Economic Cooperation and Development (OECD) early in the 21st century. The study seeks to examine the forces that galvanize the growth of energy use and carbon emissions, to assess the likely future levels of energy and CO{sub 2} in selected developing nations and to identify opportunities for restraining this growth. The purpose of this report is to provide the quantitative information needed to develop effective policy options, not to identify the options themselves. A combined study was carried out for the countries of the Gulf Cooperation Council (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates).

  18. East Coast (PADD 1) Total Crude Oil and Products Imports

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History All Countries 922,432 859,818 727,383 661,835 605,839 627,574 1981-2015 Persian Gulf 32,645 36,655 49,578 36,276 39,750 28,276 1993-2015 OPEC* 297,725 276,478 216,695 191,739 122,057 96,004 1993-2015 Algeria 28,538 27,871 29,164 9,781 6,440 4,234 1993-2015 Angola 44,554 45,631 30,832 30,371 25,299 17,880 1993-2015 Ecuador 550 347 1,813 1,223 411 931 1995-2015 Iraq 8,024 12,382 17,247 3,260 15,112 8,123 1995-2015 Kuwait 325 250 605 591 1995-2014 Libya

  19. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 5.20 Value of Crude Oil Imports From Selected Countries, 1973-2011 (Billion Dollars 1 ) Year Persian Gulf 3 Selected OPEC 2 Countries Selected Non-OPEC 2 Countries Total 5 Kuwait Nigeria Saudi Arabia Venezuela Total OPEC 4 Canada Colombia Mexico Norway United Kingdom Total Non-OPEC 4 1973 1.7 W 1.5 0.9 0.8 5.2 1.9 W - 0.0 0.0 2.4 7.6 1974 4.4 W 3.3 1.9 1.3 11.6 3.3 .0 W - .0 4.1 15.6 1975 5.2 W 3.5 3.2 1.8 14.9 2.8 .0 .3 .1 - 4.1 19.0 1976 8.7 W 5.1 5.8 1.0 22.2 1.8 - .4 .2 W 3.6 25.8

  20. Domestic petroleum-product prices around the world. Survey: free market or government price controls

    SciTech Connect (OSTI)

    Not Available

    1983-01-27

    In this issue, Energy Detente draws from their regular Western and Eastern Hemisphere Fuel Price/Tax Series, each produced monthly, and adds other survey data and analysis for a broad view of 48 countries around the world. They find that seven Latin American nations, including OPEC members Venezuela and Ecuador, are among the ten countries with lowest gasoline prices. In this Fourth Special Price Report, Energy Detente provides a first-time presentation of which prices are government-controlled, and which are free to respond to market forces. South Korea, with fixed prices since 1964, has the highest premium-grade gasoline price in our survey, US $5.38 per gallon. Paraguay, with prices fixed by PETROPAR, the national oil company, has the second highest premium gasoline price, US $4.21 per gallon. Nicaragua, also with government price controls, ranks third highest in the survey, with US $3.38 per gallon for premium gasoline. Kuwait shows the lowest price at US $0.55 per gallon. Several price changes from the previous survey reflect changes in currency exchange as all prices are converted to US dollars. The Energy Detente fuel price/tax series is presented for Western Hemisphere countries.

  1. World crude output overcomes Persian Gulf disruption

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    Several OPEC producers made good on their promises to replace 2.7 MMbpd of oil exports that vanished from the world market after Iraq took over Kuwait. Even more incredibly, they accomplished this while a breathtaking 1.2- MMbopd reduction in Soviet output took place during the course of 1991. After Abu Dhabi, Indonesia, Iran, Libya, Nigeria, Saudi Arabia and Venezuela turned the taps wide open, their combined output rose 2.95 MMbopd. Put together with a 282,000-bopd increase by Norway and contributions from smaller producers, this enabled world oil production to remain within 400,000 bopd of its 1990 level. The 60.5-MMbopd average was off by just 0.7%. This paper reports that improvement took place in five of eight regions. Largest increases were in Western Europe and Africa. Greatest reductions occurred in Eastern Europe and the Middle East. Fifteen nations produced 1 MMbopd or more last year, compared with 17 during 1990.

  2. Oil and gas development in Middle East in 1987

    SciTech Connect (OSTI)

    Hemer, D.O.; Gohrbandt, K.H.A.; Phillips, C.B.

    1988-10-01

    Petroleum production in Middle East countries during 1987 totaled an estimated 4,500,500,000 bbl (an average rate of 12,330,137 b/d), up slightly from the revised 1986 total of 4,478,972,000 bbl. Iran, Iraq, Syria, and Yemen Arab Republic had significant increases; Kuwait and Saudi Arabia had significant decreases. Production was established for the first time in People's Democratic Republic of Yemen. New fields went on production in Iraq, Oman, People's Democratic Republic of Yemen, and Syria, and significant oil discoveries were reported in Iraq, Oman, People's Democratic Republic of Yemen, Syria, and Yemen Arab Republic. The level of exploration increased in 1987 with new concessions awarded in some countries, drilling and seismic activities on the increase, new regions in mature areas explored for the first time, and significant reserve additions reported in new and old permits. The Iraq-Iran war still had a negative impact in some regions of the Middle East, particularly in and around the Gulf. 11 figs., 4 tabs.

  3. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells

    SciTech Connect (OSTI)

    Wang, Jing; Department of Oncology, Affiliated Hospital of Qingdao University Medical College, Shandong Province ; Yang, Qifeng; Haffty, Bruce G.; Li, Xiaoyan; Moran, Meena S.

    2013-02-08

    Highlights: ? Fulvestrant radiosensitizes MCF-7 cells. ? Fulvestrant increases G1 arrest and decreases S phase in MCF-7 cells. ? Fulvestrant down-regulates DNA-PKcs and RAD51 in MCF-7 cells. -- Abstract: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F + RT). This study was conducted to assess the effects of fulvestrant alone vs. F + RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F + RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy fulvestrant. The effects of F + RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F + RT was 0.885 0.013 vs. 0.622 0.029 @2 Gy, 0.599 0.045 vs. 0.475 0.054 @4 Gy, and 0.472 0.021 vs. 0.380 0.018 @6 Gy RT (p = 0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F + RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p < 0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F + RT compared with irradiation alone. F + RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F + RT increases breast cancer cell radiosensitivity compared with radiation alone. These findings have salient implications for designing clinical trials using fulvestrant and radiation therapy.

  4. A General Investigation of Optimized Atmospheric Sample Duration

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Miley, Harry S.

    2012-11-28

    ABSTRACT The International Monitoring System (IMS) consists of up to 80 aerosol and xenon monitoring systems spaced around the world that have collection systems sensitive enough to detect nuclear releases from underground nuclear tests at great distances (CTBT 1996; CTBTO 2011). Although a few of the IMS radionuclide stations are closer together than 1,000 km (such as the stations in Kuwait and Iran), many of them are 2,000 km or more apart. In the absence of a scientific basis for optimizing the duration of atmospheric sampling, historically scientists used a integration times from 24 hours to 14 days for radionuclides (Thomas et al. 1977). This was entirely adequate in the past because the sources of signals were far away and large, meaning that they were smeared over many days by the time they had travelled 10,000 km. The Fukushima event pointed out the unacceptable delay time (72 hours) between the start of sample acquisition and final data being shipped. A scientific basis for selecting a sample duration time is needed. This report considers plume migration of a nondecaying tracer using archived atmospheric data for 2011 in the HYSPLIT (Draxler and Hess 1998; HYSPLIT 2011) transport model. We present two related results: the temporal duration of the majority of the plume as a function of distance and the behavior of the maximum plume concentration as a function of sample collection duration and distance. The modeled plume behavior can then be combined with external information about sampler design to optimize sample durations in a sampling network.

  5. Oil prices in a new light

    SciTech Connect (OSTI)

    Fesharaki, F. )

    1994-05-01

    For a clear picture of how oil prices develop, the author steps away from the price levels to which the world is accustomed, and evaluates scientifically. What makes prices jump from one notch to another The move results from a political or economic shock or the perception of a particular position by the futures market and the media. The shock could range from a war or an assassination to a promise of cooperation among OPEC members (when believed by the market) or to speculation about another failure at an OPEC meeting. In the oil market, only a couple of factual figures can provide a floor to the price of oil. The cost of production of oil in the Gulf is around $2 to $3/bbl, and the cost of production of oil (capital and operating costs) in key non-OPEC areas is well under $10/bbl. With some adjustments for transport and quality, a price range of $13/bbl to $16/bbl would correspond to a reasonable sustainable floor price. The reason for prices above the floor price has been a continuous fear of oil supply interruptions. That fear kept prices above the floor price for many years. The fear factor has now almost fully disappeared. The market has gone through the drama of the Iranian Revolution, the Iran-Iraq war, the tanker war, the invasion of Kuwait, and the expulsions of the Iraqis. And still the oil flowed -- all the time. It has become abundantly clear that fears above the oil market were unjustified. Everyone needs to export oil, and oil will flow under the worst circumstances. The demise of the fear factor means that oil prices tend toward the floor price for a prolonged period.

  6. Homologous recombination and non-homologous end-joining repair pathways in bovine embryos with different developmental competence

    SciTech Connect (OSTI)

    Henrique Barreta, Marcos; Laboratorio de Biotecnologia e Reproducao Animal-BioRep, Universidade Federal de Santa Maria, Santa Maria, RS ; Garziera Gasperin, Bernardo; Braga Rissi, Vitor; Cesaro, Matheus Pedrotti de; Ferreira, Rogerio; Oliveira, Joao Francisco de; Goncalves, Paulo Bayard Dias; Bordignon, Vilceu

    2012-10-01

    This study investigated the expression of genes controlling homologous recombination (HR), and non-homologous end-joining (NHEJ) DNA-repair pathways in bovine embryos of different developmental potential. It also evaluated whether bovine embryos can respond to DNA double-strand breaks (DSBs) induced with ultraviolet irradiation by regulating expression of genes involved in HR and NHEJ repair pathways. Embryos with high, intermediate or low developmental competence were selected based on the cleavage time after in vitro insemination and were removed from in vitro culture before (36 h), during (72 h) and after (96 h) the expected period of embryonic genome activation. All studied genes were expressed before, during and after the genome activation period regardless the developmental competence of the embryos. Higher mRNA expression of 53BP1 and RAD52 was found before genome activation in embryos with low developmental competence. Expression of 53BP1, RAD51 and KU70 was downregulated at 72 h and upregulated at 168 h post-insemination in response to DSBs induced by ultraviolet irradiation. In conclusion, important genes controlling HR and NHEJ DNA-repair pathways are expressed in bovine embryos, however genes participating in these pathways are only regulated after the period of embryo genome activation in response to ultraviolet-induced DSBs.

  7. Formation mechanisms of precursors of radiation-induced color centers during fabrication of silica optical fiber preform

    SciTech Connect (OSTI)

    Tomashuk, A. L.; Zabezhailov, M. O.

    2011-04-15

    Samples in the form of transverse slices of rods and optical fiber preforms made from the high-hydroxyl KU-1 and low-hydroxyl KS-4V silica by the plasma outside deposition (POD) method are {gamma}-irradiated to a dose of {approx}1 MGy (SiO{sub 2}). Next, the radial dependences of the radiation-induced nonbridging oxygen hole center (NBOHC) and E'-center (three-coordinated silicon) in the samples are constructed by measuring the amplitudes of their 4.8 and 5.8 eV absorption bands, respectively. Based on the analysis of these radial dependences and considering the temperature and duration of the preirradiation heat treatment of the rods and preforms at the POD-installation, we determine the ratio of the oscillator strengths of the above bands and the microscopic thermoinduced processes occurring during preform fabrication and producing precursors of the radiation-induced NBOHC and E'-center. These processes are found to be associated with the escape of either H{sub 2} or H{sub 2}O from neighboring hydroxyl groups, and, therefore, can occur in high-hydroxyl silica only. It is concluded that enhancement of the radiation resistance of high-hydroxyl silica optical fibers requires decreasing the temperature and duration of the preform fabrication process, in particular, changing from the POD-technology to the low-temperature plasmachemical vapor deposition (PCVD) or surface PCVD (SPCVD)-technology.

  8. Activation of eNOS in endothelial cells exposed to ionizing radiation involves components of the DNA damage response pathway

    SciTech Connect (OSTI)

    Nagane, Masaki; Yasui, Hironobu; Sakai, Yuri; Yamamori, Tohru; Niwa, Koichi; Hattori, Yuichi; Kondo, Takashi; Inanami, Osamu

    2015-01-02

    Highlights: eNOS activity is increased in BAECs exposed to X-rays. ATM is involved in this increased eNOS activity. HSP90 modulates the radiation-induced activation of ATM and eNOS. - Abstract: In this study, the involvement of ataxia telangiectasia mutated (ATM) kinase and heat shock protein 90 (HSP90) in endothelial nitric oxide synthase (eNOS) activation was investigated in X-irradiated bovine aortic endothelial cells. The activity of nitric oxide synthase (NOS) and the phosphorylation of serine 1179 of eNOS (eNOS-Ser1179) were significantly increased in irradiated cells. The radiation-induced increases in NOS activity and eNOS-Ser1179 phosphorylation levels were significantly reduced by treatment with either an ATM inhibitor (Ku-60019) or an HSP90 inhibitor (geldanamycin). Geldanamycin was furthermore found to suppress the radiation-induced phosphorylation of ATM-Ser1181. Our results indicate that the radiation-induced eNOS activation in bovine aortic endothelial cells is regulated by ATM and HSP90.

  9. 14C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C(p, X) (Incomplete) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1969SI04 14C(p, γ): γ-rays yield for 230 - 690 keV Eγ ≥ 2.8 MeV 08/15/2013 1990GO25 14C(p, γ): σ, deduced S-factor 250 - 740 keV X4 10/28/2014 1968HE12 14C(p, γ): γ-ray yield 0.6 - 2.7 γ0 01/06/2015 1991WA02 14C(p, n): σ 1.0 - 1.55 X4 10/28/2014 1968HA27 14C(p, p): σ at θcm = 1.0 - 2.7 39.2°, 54.7°, 90°, 125.3°, 161.4° 08/15/2013 1971KU01 14C(p, γ0): excitation function at θ = 90° 1.3 - 2.6 1

  10. 16O Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6O(α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1971TO06 16O(α, γ): σ 0.85 - 1.8 X4 09/15/2011 1953CA44 16O(α, α): σ 0.94 - 4.0 X4 09/15/2011 1997KU18 16O(α, γ): analyzed S-factor 1 - 3.25 X4 05/10/2012 1980MA27 16O(α, α): σ 1.305 - 1.330; 2.950 - 3.075 X4 02/14/2012 16O(α, γ): σ 1.37, 2.6, 2.9, 3.036 1987HA24 16O(α, γ): σ Ecm = 1.7 - 2.35 X4 02/14/2012 1990LE06 16O(α, α): σ 1.8 - 5 X4 03/12/2011 1985JA17 16O(α, α): σ 2

  11. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20Ne(α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1983SC17 20Ne(α, γ): deduced S-factor of capture σ 0.55 - 3.2 X4 09/15/2011 1997WI12 20Ne(α, γ): deduced primary transitions yield 1.64 - 2.65 X4 09/15/2011 1999KO34 20Ne(α, γ): γ-ray yield for the transition 1.9 - 2.8 g.s. 01/03/2012 1369 keV g.s. 10917 keV g.s., 1369 keV 11016 keV g.s. 1975KU06 20Ne(α, γ): σ 2.5 - 20 X4 09/15/2011 1968HI02 20Ne(α, γ): σ 3 - 6 X4 09/15/2011

  12. A=20O (72AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    72AJ02) (See Energy Level Diagrams for 20O) GENERAL: See Table 20.1 [Table of Energy Levels] (in PDF or PS). Model calulations:(BR59M, TA60L, TA62, PA63C, CO64B, MO64M, PA64C, TR64A, DE65B, FE65B, AR66H, BR66C, TR66, FE67A, FL67D, LA67N, PI67B, AR68C, BE68DD, CO68K, FL68B, GU68A, HA68H, HA68T, MO68A, PA68K, FE69C, KU69G, SO69A, AR71L). Other theoretical calculations:(JA61L, KE66C, ST67G, SU68D, SC69F, LA71C, LE71I). General experimental work:(AR69E, AR71, AR71M). 1. 20O(β-)20F Qm = 3.815 20O

  13. A High Resolution, Light-Weight, Synthetic Aperture Radar for UAV Application

    SciTech Connect (OSTI)

    Doerry, A.W.; Hensley, W.H.; Stence, J.; Tsunoda, S.I. Pace, F.; Walker, B,C.; Woodring, M.

    1999-05-27

    (U) Sandia National Laboratories in collaboration with General Atomics (GA) has designed and built a high resolution, light-weight, Ku-band Synthetic Aperture Radar (SAR) known as "Lynx". Although Lynx can be operated on a wide variety of manned and unmanned platforms, its design is optimized for use on medium altitude Unmanned Aerial Vehicles (UAVS). In particular, it can be operated on the Predator, I-GNAT, and Prowler II platforms manufactured by GA. (U) The radar production weight is less than 120 lb and operates within a 3 GHz band from 15.2 GHz to 18.2 GHz with a peak output power of 320 W. Operating range is resolution and mode dependent but can exceed 45 km in adverse weather (4 mm/hr rain). Lynx has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode, over substantial depression angles (5 to 60 deg) and squint angles (broadside 45 deg). Real-time Motion Compensation is implemented to allow high-quality image formation even during vehicle turns and other maneuvers.

  14. The Mid-Latitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect (OSTI)

    Petersen,W.; Jensen,M.; Genio, A. D.; Giangrande, S.; Heymsfield, A.; Heymsfield, G.; Hou, A.; Kollias, P.; Orr, B.; Rutledge, S.; Schwaller, M.; Zipser, E.

    2010-03-15

    The Midlatitude Continental Convective Cloud Experiment (MC3E) will take place in central Oklahoma during the April-May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy Atmospheric Radition Measurement Program and the National Aeronautics and Space Administration's (NASA) Global Precipitation Measurement (GPM) mission Ground Validation program. The Intensive Observation Period leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall observations over land that have never before been available. Several different components of convective processes tangible to the convective parameterization problem are targeted such as, pre-convective environment and convective initiation, updraft / downdraft dynamics, condensate transport and detrainment, precipitation and cloud microphysics, influence on the environment and radiation and a detailed description of the large-scale forcing. MC3E will use a new multi-scale observing strategy with the participation of a network of distributed sensors (both passive and active). The approach is to document in 3-D not only the full spectrum of precipitation rates, but also clouds, winds and moisture in an attempt to provide a holistic view of convective clouds and their feedback with the environment. A goal is to measure cloud and precipitation transitions and environmental quantities that are important for satellite retrieval algorithms, convective parameterization in large-scale models and cloud-resolving model simulations. This will be accomplished through the deployment of several different elements that complement the existing (and soon to become available) ARM facilities: a network of radiosonde stations, NASA scanning multi-frequency/parameter radar systems at three different frequencies (Ka/Ku/S), high-altitude remote sensing and in situ aircraft, wind profilers and a network of surface disdrometers. In addition to these special MC3E instruments, there will be important new instrumentation deployed by DOE at the ARM site including: 3 networked scanning X-band radar systems, a C-band scanning radar, a dual wavelength (Ka/W) scanning cloud radar, a Doppler lidar and upgraded vertically pointing millimeter cloud radar (MMCR) and micropulse lidar (MPL).To fully describe the properties of precipitating cloud systems, both in situ and remote sensing airborne observations are necessary. The NASA GPM-funded University of North Dakota (UND) Citation will provide in situ observations of precipitation-sized particles, ice freezing nuclei and aerosol concentrations. As a complement to the UND Citation's in situ observations, the NASA ER-2 will provide a high altitude satellite simulator platform that carrying a Ka/Ku band radar and passive microwave radiometers (10-183 GHZ).

  15. Principles and applications of measurement and uncertainty analysis in research and calibration

    SciTech Connect (OSTI)

    Wells, C.V.

    1992-11-01

    Interest in Measurement Uncertainty Analysis has grown in the past several years as it has spread to new fields of application, and research and development of uncertainty methodologies have continued. This paper discusses the subject from the perspectives of both research and calibration environments. It presents a history of the development and an overview of the principles of uncertainty analysis embodied in the United States National Standard, ANSI/ASME PTC 19.1-1985, Measurement Uncertainty. Examples are presented in which uncertainty analysis was utilized or is needed to gain further knowledge of a particular measurement process and to characterize final results. Measurement uncertainty analysis provides a quantitative estimate of the interval about a measured value or an experiment result within which the true value of that quantity is expected to lie. Years ago, Harry Ku of the United States National Bureau of Standards stated that The informational content of the statement of uncertainty determines, to a large extent, the worth of the calibrated value.'' Today, that statement is just as true about calibration or research results as it was in 1968. Why is that true What kind of information should we include in a statement of uncertainty accompanying a calibrated value How and where do we get the information to include in an uncertainty statement How should we interpret and use measurement uncertainty information This discussion will provide answers to these and other questions about uncertainty in research and in calibration. The methodology to be described has been developed by national and international groups over the past nearly thirty years, and individuals were publishing information even earlier. Yet the work is largely unknown in many science and engineering arenas. I will illustrate various aspects of uncertainty analysis with some examples drawn from the radiometry measurement and calibration discipline from research activities.

  16. Principles and applications of measurement and uncertainty analysis in research and calibration

    SciTech Connect (OSTI)

    Wells, C.V.

    1992-11-01

    Interest in Measurement Uncertainty Analysis has grown in the past several years as it has spread to new fields of application, and research and development of uncertainty methodologies have continued. This paper discusses the subject from the perspectives of both research and calibration environments. It presents a history of the development and an overview of the principles of uncertainty analysis embodied in the United States National Standard, ANSI/ASME PTC 19.1-1985, Measurement Uncertainty. Examples are presented in which uncertainty analysis was utilized or is needed to gain further knowledge of a particular measurement process and to characterize final results. Measurement uncertainty analysis provides a quantitative estimate of the interval about a measured value or an experiment result within which the true value of that quantity is expected to lie. Years ago, Harry Ku of the United States National Bureau of Standards stated that ``The informational content of the statement of uncertainty determines, to a large extent, the worth of the calibrated value.`` Today, that statement is just as true about calibration or research results as it was in 1968. Why is that true? What kind of information should we include in a statement of uncertainty accompanying a calibrated value? How and where do we get the information to include in an uncertainty statement? How should we interpret and use measurement uncertainty information? This discussion will provide answers to these and other questions about uncertainty in research and in calibration. The methodology to be described has been developed by national and international groups over the past nearly thirty years, and individuals were publishing information even earlier. Yet the work is largely unknown in many science and engineering arenas. I will illustrate various aspects of uncertainty analysis with some examples drawn from the radiometry measurement and calibration discipline from research activities.

  17. Final Scientific/Technical Report – DE-EE0002960 Recovery Act. Detachment faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation of Pearl Hot Spring, Nevada

    SciTech Connect (OSTI)

    Stockli, Daniel F.

    2015-11-30

    The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportable template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.

  18. TAILORING X-RAY BEAM ENERGY SPECTRUM TO ENHANCE IMAGE QUALITY OF NEW RADIOGRAPHY CONTRAST AGENTS BASED ON GD OR OTHER LANTHANIDES.

    SciTech Connect (OSTI)

    DILMANIAN,F.A.; WEINMANN,H.J.; ZHONG,Z.; BACARIAN,T.; RIGON,L.; BUTTON,T.M.; REN,B.; WU,X.Y.; ZHONG,N.; ATKINS,H.L.

    2001-02-17

    Gadovist, a 1.0-molar Gd contrast agent from Schering AG, Berlin Germany, in use in clinical MPI in Europe, was evaluated as a radiography contrast agent. In a collaboration with Brookhaven National Laboratory (BNL), Schering AG is developing several such lanthanide-based contrast agents, while BNL evaluates them using different x-my beam energy spectra. These energy spectra include a ''truly'' monochromatic beam (0.2 keV energy bandwidth) from the National Synchrotron Light Source (NSLS), BNL, tuned above the Gd K-edge, and x-ray-tube beams from different kVp settings and beam filtrations. Radiographs of rabbits' kidneys were obtained with Gadovist at the NSLS. Furthermore, a clinical radiography system was used for imaging rabbits' kidneys comparing Gadovist and Conray, an iodinated contrast agent. The study, using 74 kVp and standard Al beam filter for Conray and 66 kVp and an additional 1.5 mm Cu beam filter for Gadovist, produced comparable images for Gadovist and Conray; the injection volumes were the same, while the radiation absorbed dose for Gadovist was slightly smaller. A bent-crystal silicon monochromator operating in the Laue diffraction mode was developed and tested with a conventional x-ray tube beam; it narrows the energy spectrum to about 4 keV around the anode tungsten's Ku line. Preliminary beam-flux results indicate that the method could be implemented in clinical CT if x-ray tubes with {approximately} twice higher output become available.

  19. Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes

    SciTech Connect (OSTI)

    Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton

    2009-03-31

    Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications, Kansas Geological Survey Open-file reports, Master's theses, and postings on the project website: http://www.kgs.ku.edu/SEISKARST.

  20. The importance of retaining a phylogenetic perspective in traits-based community analyses

    SciTech Connect (OSTI)

    Poteat, Monica D; Buchwalter, David; Jacobus, Luke

    2015-01-01

    1) Many environmental stressors manifest their effects via physiological processes (traits) that can differ significantly among species and species groups. We compiled available data for three traits related to the bioconcentration of the toxic metal cadmium (Cd) from 42 aquatic insect species representing orders Ephemeroptera (mayfly), Plecoptera (stonefly), and Trichoptera (caddisfly). These traits included the propensity to take up Cd from water (uptake rate constant, ku), the ability to excrete Cd (efflux rate constant, ke), and the net result of these two processes (bioconcentration factor, BCF). 2) Ranges in these Cd bioaccumulation traits varied in magnitude across lineages (some lineages had a greater tendency to bioaccumulate Cd than others). Overlap in the ranges of trait values among different lineages was common and highlights situations where species from different lineages can share a similar trait state, but represent the high end of possible physiological values for one lineage and the low end for another. 3) Variance around the mean trait state differed widely across clades, suggesting that some groups (e.g., Ephemerellidae) are inherently more variable than others (e.g., Perlidae). Thus, trait variability/lability is at least partially a function of lineage. 4) Akaike information criterion (AIC) comparisons of statistical models were more often driven by clade than by other potential biological or ecological explanation tested. Clade-driven models generally improved with increasing taxonomic resolution. 5) Together, these findings suggest that lineage provides context for the analysis of species traits, and that failure to consider lineage in community-based analysis of traits may obscure important patterns of species responses to environmental change.

  1. The Citizen Cyberscience Lectures - 1) Mobile phones and Africa: a success story 2) Citizen Problem Solving

    SciTech Connect (OSTI)

    2009-10-28

    Mobile phones and Africa: a success story Dr. Mo Ibrahim, Mo Ibrahim Foundation Citizen Problem Solving Dr. Alpheus Bingham, InnoCentive The Citizen Cyberscience Lectures are hosted by the partners of the Citizen Cyberscience Centre, CERN, The UN Institute of Training and Research and the University of Geneva. The goal of the Lectures is to provide an inspirational forum for participants from the various international organizations and academic institutions in Geneva to explore how information technology is enabling greater citizen participation in tackling global development challenges as well as global scientific research. The first Citizen Cyberscience Lectures will welcome two speakers who have both made major innovative contributions in this area. Dr. Mo Ibrahim, founder of Celtel International, one of Africas most successful mobile network operators, will talk about Mobile phones and Africa: a success story. Dr. Alpheus Bingham, founder of InnoCentive, a Web-based community that solves industrial R&D; challenges, will discuss Citizen Problem Solving. The Citizen Cyberscience Lectures are open and free of charge. Participants from outside CERN must register by sending an email to Yasemin.Hauser@cern.ch BEFORE the 23rd october to be able to access CERN. THE LECTURES Mobile phones and Africa: a success story Dr. Mo Ibrahim, Mo Ibrahim Foundation Abstract The introduction of mobile phones into Africa changed the continent, enabling business and the commercial sector, creating directly and indirectly, millions of jobs. It enriched the social lives of many people. Surprisingly, it supported the emerging civil society and advanced the course of democracy Bio Dr Mo Ibrahim is a global expert in mobile communications with a distinguished academic and business career. In 1998, Dr Ibrahim founded Celtel International to build and operate mobile networks in Africa. Celtel became one of Africas most successful companies with operations in 15 countries, covering more than a third of the continents population and investing more than US$750 million in Africa. The company was sold to MTC Kuwait in 2005 for $3.4billion. In 2006 Dr Ibrahim established the Mo Ibrahim Foundation to support great African leadership. The Foundation focuses on two major initiatives to stimulate debate around, and improve the quality of, governance in Africa. The Ibrahim Prize for Achievement in African Leadership recognises and celebrates excellence; and the Ibrahim Index of African Governance provides civil society with a comprehensive and quantifiable tool to promote government accountability. Dr Ibrahim is also Founding Chairman of Satya Capital Ltd, an investment company focused on opportunities in Africa. Dr Ibrahim has been awarded an Honorary Doctorate by the University of Londons School of Oriental and African Studies, the University of Birmingham and De Montfort University, Leicester as well as an Honorary Fellowship Award from the London Business School. He has also received the Chairmans Award for Lifetime Achievement from the GSM Association in 2007 and the Economists Innovation Award 2007 for Social & Economic Innovation. In 2008 Dr Ibrahim was presented with the BNP Paribas Prize for Philanthropy, and also listed by TIME magazine as one of the 100 most influential people in the world. Citizen Problem Solving Dr. Alpheus Bingham, InnoCentive Abstract American playwright Damien Runyon (Guys and Dolls) once remarked, "the race is not always to the swift, nor the victory to the strong -- but that IS how you bet." Not only does a system of race handicapping follow from this logic, but the whole notion of expertise and technical qualifications. Such 'credentials' allow one to 'bet' on who might most likely solve a difficult challenge, whether as consultant, contractor or employee. Of course, the approach would differ if one were allowed to bet AFTER the race. When such systems came into broad use, i.e., chat rooms, usenets, innocentive, etc., and were subsequently studied, it was often found that the greate

  2. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    SciTech Connect (OSTI)

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine surfactant concentrations. To reliably quantify both benchmark surfactants and surfactin, a surfactant ion-selective electrode was used as an indicator in the potentiometric titration of the anionic surfactants with Hyamine 1622. The wettability change mediated by dilute solutions of a commercial preparation of SLS (STEOL CS-330) and surfactin was assessed using two-phase separation, and water flotation techniques; and surfactant loss due to retention and adsorption on the rock was determined. Qualitative tests indicated that on a molar basis, surfactin is more effective than STEOL CS-330 in altering wettability of crushed Lansing-Kansas City carbonates from oil-wet to water-wet state. Adsorption isotherms of STEOL CS-330 and surfactin on crushed Lansing-Kansas City outcrop and reservoir material showed that surfactin has higher specific adsorption on these oomoldic carbonates. Amott wettability studies confirmed that cleaned cores are mixed-wet, and that the aging procedure renders them oil-wet. Tests of aged cores with no initial water saturation resulted in very little spontaneous oil production, suggesting that water-wet pathways into the matrix are required for wettability change to occur. Further investigation of spontaneous imbibition and forced imbibition of water and surfactant solutions into LKC cores under a variety of conditions--cleaned vs. crude oil-aged; oil saturated vs. initial water saturation; flooded with surfactant vs. not flooded--indicated that in water-wet or intermediate wet cores, sodium laureth sulfate is more effective at enhancing spontaneous imbibition through wettability change. However, in more oil-wet systems, surfactin at the same concentration performs significantly better.

  3. The Citizen Cyberscience Lectures - 1) Mobile phones and Africa: a success story 2) Citizen Problem Solving

    ScienceCinema (OSTI)

    None

    2011-10-06

    Mobile phones and Africa: a success story Dr. Mo Ibrahim, Mo Ibrahim Foundation Citizen Problem Solving Dr. Alpheus Bingham, InnoCentive The Citizen Cyberscience Lectures are hosted by the partners of the Citizen Cyberscience Centre, CERN, The UN Institute of Training and Research and the University of Geneva. The goal of the Lectures is to provide an inspirational forum for participants from the various international organizations and academic institutions in Geneva to explore how information technology is enabling greater citizen participation in tackling global development challenges as well as global scientific research. The first Citizen Cyberscience Lectures will welcome two speakers who have both made major innovative contributions in this area. Dr. Mo Ibrahim, founder of Celtel International, one of Africa?s most successful mobile network operators, will talk about ?Mobile phones and Africa: a success story?. Dr. Alpheus Bingham, founder of InnoCentive, a Web-based community that solves industrial R&D; challenges, will discuss ?Citizen Problem Solving?. The Citizen Cyberscience Lectures are open and free of charge. Participants from outside CERN must register by sending an email to Yasemin.Hauser@cern.ch BEFORE the 23rd october to be able to access CERN. THE LECTURES Mobile phones and Africa: a success story Dr. Mo Ibrahim, Mo Ibrahim Foundation Abstract The introduction of mobile phones into Africa changed the continent, enabling business and the commercial sector, creating directly and indirectly, millions of jobs. It enriched the social lives of many people. Surprisingly, it supported the emerging civil society and advanced the course of democracy Bio Dr Mo Ibrahim is a global expert in mobile communications with a distinguished academic and business career. In 1998, Dr Ibrahim founded Celtel International to build and operate mobile networks in Africa. Celtel became one of Africa?s most successful companies with operations in 15 countries, covering more than a third of the continent?s population and investing more than US$750 million in Africa. The company was sold to MTC Kuwait in 2005 for $3.4billion. In 2006 Dr Ibrahim established the Mo Ibrahim Foundation to support great African leadership. The Foundation focuses on two major initiatives to stimulate debate around, and improve the quality of, governance in Africa. The Ibrahim Prize for Achievement in African Leadership recognises and celebrates excellence; and the Ibrahim Index of African Governance provides civil society with a comprehensive and quantifiable tool to promote government accountability. Dr Ibrahim is also Founding Chairman of Satya Capital Ltd, an investment company focused on opportunities in Africa. Dr Ibrahim has been awarded an Honorary Doctorate by the University of London?s School of Oriental and African Studies, the University of Birmingham and De Montfort University, Leicester as well as an Honorary Fellowship Award from the London Business School. He has also received the Chairman?s Award for Lifetime Achievement from the GSM Association in 2007 and the Economists Innovation Award 2007 for Social & Economic Innovation. In 2008 Dr Ibrahim was presented with the BNP Paribas Prize for Philanthropy, and also listed by TIME magazine as one of the 100 most influential people in the world. Citizen Problem Solving Dr. Alpheus Bingham, InnoCentive Abstract American playwright Damien Runyon (Guys and Dolls) once remarked, "the race is not always to the swift, nor the victory to the strong -- but that IS how you bet." Not only does a system of race handicapping follow from this logic, but the whole notion of expertise and technical qualifications. Such 'credentials' allow one to 'bet' on who might most likely solve a difficult challenge, whether as consultant, contractor or employee. Of course, the approach would differ if one were allowed to bet AFTER the race. When such systems came into broad use, i.e., chat rooms, usenets, innocentive, etc., and were subsequently studied, it was often found that the greatest probability of solution lies in the "long tail" of the function rather than in the head representing formally vetted 'experts.' Insight into a problem is often the intersection of training, experience, metaphor and provocation (think Archimedes). Examples of "citizens" outside a targeted field of expertise providing uniques solutions will illustrate the principles involved. Bio Dr. Alph Bingham is a pioneer in the field of open innovation and an advocate of collaborative approaches to research and development. He is co-founder, and former president and chief executive officer of InnoCentive Inc., a Web-based community that matches companies facing R&D; challenges with scientists who propose solutions. Through InnoCentive, a platform that leverages the ability to connect to a whole planet of people through the Internet, organizations can access individuals ? problem solvers ? who might never have been found. Alph spent more than 25 years with Eli Lilly and Company, and offers deep experience in pharmaceutical research and development, research acquisitions and collaborations, and R&D; strategic planning. During his career he was instrumental in creating and developing Eli Lilly's portfolio management process as well as establishing the divisions of Research Acquisitions, the Office of Alliance Management and e.Lilly, a business innovation unit, from which various other ventures were spun out that create the advantages of open and networked organizational structures, including: InnoCentive, YourEncore, Inc., Coalesix, Inc., Maaguzi, Inc., Indigo Biosystems, Seriosity, Chorus and Collaborative Drug Discovery, Inc. He currently serves on the Board of Directors of InnoCentive, Inc., and Collaborative Drug Discovery, Inc.; the advisory boards of the Center for Collective Intelligence (MIT), and the Business Innovation Factory, as well as a member of the board of trustees of the Bankinter Foundation for Innovation in Madrid. He has lectured extensively at both national and international events and serves as a Visiting Scholar at the National Center for Supercomputing Application at the University of Illinois at Champaign-Urbana. He is also the former chairman of the Board of Editors of the Research Technology Management Journal. Dr. Bingham was the recipient of the Economist's Fourth Annual Innovation Summit "Business Process Award" for InnoCentive. He was also named as one of Project Management Institute's "Power 50" leaders in October 2005. Dr. Bingham received a Ph.D. in organic chemistry from Stanford University.

  4. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect (OSTI)

    Tao, Wei-Kuo; Houze, Robert, A., Jr.; Zeng, Xiping

    2013-03-14

    This three-year project, in cooperation with Professor Bob Houze at University of Washington, has been successfully finished as planned. Both ARM (the Atmospheric Radiation Measurement Program) data and cloud-resolving model (CRM) simulations were used to identify the water budgets of clouds observed in two international field campaigns. The research results achieved shed light on several key processes of clouds in climate change (or general circulation models), which are summarized below. 1. Revealed the effect of mineral dust on mesoscale convective systems (MCSs) Two international field campaigns near a desert and a tropical coast provided unique data to drive and evaluate CRM simulations, which are TWP-ICE (the Tropical Warm Pool International Cloud Experiment) and AMMA (the African Monsoon Multidisciplinary Analysis). Studies of the two campaign data were contrasted, revealing that much mineral dust can bring about large MCSs via ice nucleation and clouds. This result was reported as a PI presentation in the 3rd ASR Science Team meeting held in Arlington, Virginia in March 2012. A paper on the studies was published in the Journal of the Atmospheric Sciences (Zeng et al. 2013). 2. Identified the effect of convective downdrafts on ice crystal concentration Using the large-scale forcing data from TWP-ICE, ARM-SGP (the Southern Great Plains) and other field campaigns, Goddard CRM simulations were carried out in comparison with radar and satellite observations. The comparison between model and observations revealed that convective downdrafts could increase ice crystal concentration by up to three or four orders, which is a key to quantitatively represent the indirect effects of ice nuclei, a kind of aerosol, on clouds and radiation in the Tropics. This result was published in the Journal of the Atmospheric Sciences (Zeng et al. 2011) and summarized in the DOE/ASR Research Highlights Summaries (see http://www.arm.gov/science/highlights/RMjY5/view). 3. Used radar observations to evaluate model simulations In cooperation with Profs. Bob Houze at University of Washington and Steven Rutledge at Colorado State University, numerical model results were evaluated with observations from W- and C-band radars and CloudSat/TRMM satellites. These studies exhibited some shortcomings of current numerical models, such as too little of thin anvil clouds, directing the future improvement of cloud microphysics parameterization in CRMs. Two papers of Powell et al (2012) and Zeng et al. (2013), summarizing these studies, were published in the Journal of the Atmospheric Sciences. 4. Analyzed the water budgets of MCSs Using ARM data from TWP-ICE, ARM-SGP and other field campaigns, the Goddard CRM simulations were carried out to analyze the water budgets of clouds from TWP-ICE and AMMA. The simulations generated a set of datasets on clouds and radiation, which are available http://cloud.gsfc.nasa.gov/. The cloud datasets were available for modelers and other researchers aiming to improve the representation of cloud processes in multi-scale modeling frameworks, GCMs and climate models. Special datasets, such as 3D cloud distributions every six minutes for TWP-ICE, were requested and generated for ARM/ASR investigators. Data server records show that 86,206 datasets were downloaded by 120 users between April of 2010 and January of 2012. 5. MMF simulations The Goddard MMF (multi-scale modeling framework) has been improved by coupling with the Goddard Land Information System (LIS) and the Goddard Earth Observing System Model, Version 5 (GOES5). It has also been optimized on NASA HEC supercomputers and can be run over 4000 CPUs. The improved MMF with high horizontal resolution (1 x 1 degree) is currently being applied to cases covering 2005 and 2006. The results show that the spatial distribution pattern of precipitation rate is well simulated by the MMF through comparisons with satellite retrievals from the CMOPRH and GPCP data sets. In addition, the MMF results were compared with three reanalyses (MERRA, ERA-Interim and CFSR). Although the MMF tends to produce a higher precipitation rate over some topical regions, it actually well captures the variations in the zonal and meridional means. Among the three reanalyses, ERA-Interim seems to have values close to those of the satellite retrievals especially for GPCP. It is interesting to note that the MMF obtained the best results in the rain forest of Africa even better than those of CFSR and ERA-Interim, when compared to CMORPH. MERRA fails to capture the precipitation in this region. We are now collaborating with Steve Rutledge (CSU) to validate the model results for AMMA 6. MC3E and the diurnal variation of precipitation processes The Midlatitude Continental Convective Clouds Experiment (MC3E) was a joint field campaign between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the NASA Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. It took place in central Oklahoma during the period April 22 _ June 6, 2011. Some of its major objectives involve the use of CRMs in precipitation science such as: (1) testing the fidelity of CRM simulations via intensive statistical comparisons between simulated and observed cloud properties and latent heating fields for a variety of case types, (2) establishing the limits of CRM space-time integration capabilities for quantitative precipitation estimates, and (3) supporting the development and refinement of physically-based GMI, DPR, and DPR-GMI combined retrieval algorithms using ground-based GPM GV Ku-Ka band radar and CRM simulations. The NASA unified WRF model (nu-WRF) was used for real time forecasts during the field campaign, and ten precipitation events were selected for post mission simulations. These events include well-organized squall lines, scattered storms and quasi-linear storms. A paper focused on the diurnal variation of precipitation will be submitted in September 2012. The major highlights are as follows: a. The results indicate that NU-WRF model could capture observed diurnal variation of rainfall (composite not individual); b. NU-WRF model could simulate two different types (propagating and local type) of the diurnal variation of rainfall; c. NU-WRF model simulation show very good agreement with observation in terms of precipitation pattern (linear MCS), radar reflectivity (a second low peak – shallow convection); d. NU-WRF model simulation indicates that the cool-pool dynamic is the main physical process for MCS propagation speed; e. Surface heat fluxes (including land surface model and initial surface condition) do not play a major role in phase of diurnal variation (change rainfall amount slightly); f. Terrain effect is important for initial stage of MCS (rainfall is increased and close to observation by increasing the terrain height that is also close to observed); g. Diurnal variation of radiation is not important for the simulated variation of rainfall. Publications: Zeng, X., W.-K. Tao, S. Powell, R. Houze, Jr., P. Ciesielski, N. Guy, H. Pierce and T. Matsui, 2012: A comparison of the water budgets between clouds from AMMA and TWP-ICE. J. Atmos. Sci., 70, 487-503. Powell, S. W., R. A. Houze, Jr., A. Kumar, and S. A. McFarlane, 2012: Comparison of simulated and observed continental tropical anvil clouds and their radiative heating profiles. J. Atmos. Sci., 69, 2662-2681. Zeng, X., W.-K. Tao, T. Matsui, S. Xie, S. Lang, M. Zhang, D. Starr, and X. Li, 2011: Estimating the Ice Crystal Enhancement Factor in the Tropics. J. Atmos. Sci., 68, 1424-1434. Conferences: Zeng, X., W.-K. Tao, S. Powell, R. Houze, Jr., P. Ciesielski, N. Guy, H. Pierce and T. Matsui, 2012: Comparison of water budget between AMMA and TWP-ICE clouds. The 3rd Annual ASR Science Team Meeting. Arlington, Virginia, Mar. 12-16, 2012. Zeng, X., W.-K. Tao, S. Powell, R. A. Houze Jr., and P. Ciesielski, 2011: Comparing the water budgets between AMMA and TWP-ICE clouds. Fall 2011 ASR Working Group Meeting. Annapolis, September 12-16, 2011. Zeng, X. et al., 2011: Introducing ice nuclei into turbulence parameterizations in CRMs. Fall 2011 ASR Working Group Meeting. Annapolis, September 12-16, 2011.