National Library of Energy BETA

Sample records for greenhouse gases improve

  1. Greenhouse Gases into Gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning Greenhouse Gases into Gold Greenhouse Gases into Gold NERSC simulations reveal reaction mechanism behind CO₂ conversion into carbon-neutral fuels and chemicals November 6, 2013 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Environmentalists have long lamented the destructive effects of greenhouse gases, with carbon dioxide (CO2) often accused of being the primary instigator of global climate change. As a result, numerous efforts are under way to find ways to prevent,

  2. Greenhouse Gases Converted to Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greenhouse Gases Converted to Fuel Greenhouse Gases Converted to Fuel carbon-conversion-fig-1.jpg Key Challenges: An important strategy for reducing global CO2 emissions calls for...

  3. Voluntary Reporting of Greenhouse Gases

    Reports and Publications (EIA)

    2011-01-01

    The Voluntary Reporting of Greenhouse Gases Program was suspended May 2011. It was a mechanism by which corporations, government agencies, individuals, voluntary organizations, etc., could report to the Energy Information Administration, any actions taken that have or are expected to reduce/avoid emissions of greenhouse gases or sequester carbon.

  4. ARM - What are Greenhouse Gases?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What are Greenhouse Gases? Carbon Dioxide Methane Gas Oxides of Nitrogen Halocarbons Ozone Water Vapor Greenhouse gases are atmospheric gases that trap infrared radiation emitted from the earth, lower atmosphere, or clouds or aerosols and, as

  5. Where do California's greenhouse gases come from?

    SciTech Connect (OSTI)

    Fischer, Marc

    2009-01-01

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  6. Where do California's greenhouse gases come from?

    ScienceCinema (OSTI)

    Fischer, Marc

    2013-05-29

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  7. EIA-Voluntary Reporting of Greenhouse Gases Program - What are...

    U.S. Energy Information Administration (EIA) Indexed Site

    What are Greenhouse Gases? Voluntary Reporting of Greenhouse Gases Program What are Greenhouse Gases? Many chemical compounds found in the Earth's atmosphere act as "greenhouse ...

  8. EIA-Voluntary Reporting of Greenhouse Gases Program

    U.S. Energy Information Administration (EIA) Indexed Site

    of Greenhouse Gases Program Voluntary Reporting of Greenhouse Gases Program ***THE VOLUNTARY REPORTING OF GREENHOUSE GASES ("1605(b)") PROGRAM HAS BEEN SUSPENDED.*** This affects ...

  9. EIA-Voluntary Reporting of Greenhouse Gases Program - About the...

    U.S. Energy Information Administration (EIA) Indexed Site

    of Greenhouse Gases Program About the 1605(b) Program History Established by Section 1605(b) of the Energy Policy Act of 1992, the Voluntary Reporting of Greenhouse Gases ...

  10. EIA-Voluntary Reporting of Greenhouse Gases Program - Under Constructi...

    U.S. Energy Information Administration (EIA) Indexed Site

    of Greenhouse Gases Program This Page is Currently Under Construction Please check back at a later time For more information on the Voluntary Reporting of Greenhouse Gases ...

  11. EIA-Voluntary Reporting of Greenhouse Gases Program -Data and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data and Reports Voluntary Reporting of Greenhouse Gases Program Data and Reports The first reporting cycle under the revised Voluntary Reporting of Greenhouse Gases Program closed ...

  12. EIA-Voluntary Reporting of Greenhouse Gases Program - Getting...

    U.S. Energy Information Administration (EIA) Indexed Site

    Getting Started Voluntary Reporting of Greenhouse Gases Program Getting Started Form ... The Voluntary Reporting of Greenhouse Gases Program suggests that prospective reporters ...

  13. EIA-Voluntary Reporting of Greenhouse Gases Program - Contact

    U.S. Energy Information Administration (EIA) Indexed Site

    Contact Voluntary Reporting of Greenhouse Gases Program Contact For more information on the Voluntary Reporting of Greenhouse Gases Program, contact us via e-mail, phone, fax, or ...

  14. Voluntary reporting of greenhouse gases, 1995

    SciTech Connect (OSTI)

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  15. EIA-Voluntary Reporting of Greenhouse Gases Program - Section...

    U.S. Energy Information Administration (EIA) Indexed Site

    Section 1605 Text Voluntary Reporting of Greenhouse Gases Program Section 1605 Text Energy ... national aggregate emissions of each greenhouse gas for each calendar year of the ...

  16. EIA-Voluntary Reporting of Greenhouse Gases Program - Original...

    U.S. Energy Information Administration (EIA) Indexed Site

    Program Voluntary Reporting of Greenhouse Gases Program Original 1605(b) Program Section 1605(b) of the Energy Policy Act of 1992 established the Voluntary Reporting of Greenhouse ...

  17. EIA-Voluntary Reporting of Greenhouse Gases Program - Emission...

    U.S. Energy Information Administration (EIA) Indexed Site

    Emission Factors Voluntary Reporting of Greenhouse Gases Program Emission Factors and Global Warming Potentials The greenhouse gas emission factors and global warming potentials ...

  18. EIA-Voluntary Reporting of Greenhouse Gases Program - Original...

    U.S. Energy Information Administration (EIA) Indexed Site

    of Greenhouse Gases Program Original 1605(b) Program Calculation Tools The workbooks below were developed to assist participants in the original Voluntary Reporting of Greenhouse ...

  19. Managing biogeochemical cycles to reduce greenhouse gases

    SciTech Connect (OSTI)

    Post, Wilfred M; Venterea, Rodney

    2012-01-01

    This special issue focuses on terrestrial biogeochemical cycles as they relate to North America-wide budgeting and future projection of biogenic greenhouse gases (GHGs). Understanding the current magnitude and providing guidance on the future trajectories of atmospheric concentrations of these gases requires investigation of their (i) biogeochemical origins, (ii) response to climate feedbacks and other environmental factors, and (iii) susceptibility to management practices. This special issue provides a group of articles that present the current state of continental scale sources and sinks of biogenic GHGs and the potential to better manage them in the future.

  20. Voluntary reporting of greenhouse gases 1997

    SciTech Connect (OSTI)

    1999-05-01

    The Voluntary Reporting of Greenhouse Gases Program, required by Section 1605(b) of the Energy Policy Act of 1992, records the results of voluntary measures to reduce, avoid, or sequester greenhouse gas emissions. In 1998, 156 US companies and other organizations reported to the Energy information Administration that, during 1997, they had achieved greenhouse gas emission reductions and carbon sequestration equivalent to 166 million tons of carbon dioxide, or about 2.5% of total US emissions for the year. For the 1,229 emission reduction projects reported, reductions usually were measured by comparing an estimate of actual emissions with an estimate of what emissions would have been had the project not been implemented.

  1. Where Greenhouse Gases Come From | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Where Greenhouse Gases Come From In the United States, greenhouse gas emissions come primarily from the burning of fossil fuels in energy use. Carbon Dioxide Carbon Dioxide is the main greenhouse gas. In 2013, 82% of human-caused greenhouse gas emissions were carbon dioxide emissions, resulting from the burning of fossil fuels, solid waste, trees, wood, and other chemical reactions. Methane and Other Gases Another greenhouse gas, methane, comes from landfills, coal mines, oil and natural gas

  2. EIA-Voluntary Reporting of Greenhouse Gases Program - Why Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Reporting of Greenhouse Gases Program Why Report What Is the Purpose of Form EIA-1605? Form EIA-1605 provides the means for the voluntary reporting of greenhouse gas emissions, ...

  3. EIA-Voluntary Reporting of Greenhouse Gases Program - Original...

    U.S. Energy Information Administration (EIA) Indexed Site

    Schedule Voluntary Reporting of Greenhouse Gases Program Revised Launch Schedule EIA will begin accepting both Start Year and Reporting Year reports using the Workbook Form on ...

  4. Greenhouse gases: What is their role in climate change

    SciTech Connect (OSTI)

    Edmonds, J.A.; Chandler, W.U. ); Wuebbles, D. )

    1990-12-01

    This paper summarizes information relevant to understanding the role of greenhouse gases in the atmosphere. It examines the nature of the greenhouse effect, the Earth's radiation budget, the concentrations of these gases in the atmosphere, how these concentrations have been changing, natural processes which regulate these concentrations of greenhouse gases, residence times of these gases in the atmosphere, and the rate of release of gases affecting atmospheric composition by human activities. We address the issue of the greenhouse effect itself in the first section. In the second section we examine trends in atmospheric concentration of greenhouse gases and emissions sources. In the third section, we examine the natural carbon cycle and its role in determining the atmospheric residence time of carbon dioxide (CO{sub 2}). In the fourth section, we examine the role atmospheric chemistry plays in the determining the concentrations of greenhouse gases. This paper is not intended to be an exhaustive treatment of these issues. Exhaustive treatments can be found in other volumes, many of which are cited throughout this paper. Rather, this paper is intended to summarize some of the major findings, unknowns, and uncertainties associated with the current state of knowledge regarding the role of greenhouse gases in the atmosphere. 57 refs., 11 figs., 11 tabs.

  5. Finalize Historic National Program to Reduce Greenhouse Gases...

    Open Energy Info (EERE)

    greenhouse gas emissions and improve fuel economy. EPA is finalizing the first-ever national greenhouse gas (GHG) emissions standards under the Clean Air Act References...

  6. World Energy Projection System Plus Model Documentation: Greenhouse Gases Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Greenhouse Gases Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  7. EIA - Emissions of Greenhouse Gases in the United States 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    ‹ Environment Emissions of Greenhouse Gases in the U. S. Release Date: March 31, 2011 | Next Release Date: Report Discontinued | Report Number: DOE/EIA-0573(2009) This report-the eighteenth annual report-presents the U.S. Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. Download the GHG Report Introduction For this report, activity data on coal and natural gas consumption and electricity sales and losses

  8. Peru mitigation assessment of greenhouse gases: Sector -- Energy. Peru climate change country study; Final report

    SciTech Connect (OSTI)

    1996-08-01

    The aim of this study is to determine the Inventory and propose Greenhouse Gases Mitigation alternatives in order to face the future development of the country in a clean environmental setting without delaying the development process required to improve Peruvian standard of living. The main idea of this executive abstract is to show concisely the results of the Greenhouse Gases Mitigation for Peru in the period 1990--2015. The studies about mitigation for the Energy Sector are shown in this summary.

  9. Emissions of greenhouse gases in the United States, 1985--1990

    SciTech Connect (OSTI)

    Not Available

    1993-11-10

    The Earth`s capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ``greenhouse gases.`` Their warming capacity, called ``the greenhouse effect,`` is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth`s absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available.

  10. Emissions of greenhouse gases in the United States 1997

    SciTech Connect (OSTI)

    1998-10-01

    This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

  11. Welcome to Greenhouse Gases: Science and Technology: Editorial

    SciTech Connect (OSTI)

    Oldenburg, C.M.; Maroto-Valer, M.M.

    2011-02-01

    This editorial introduces readers and contributors to a new online journal. Through the publication of articles ranging from peer-reviewed research papers and short communications, to editorials and interviews on greenhouse gas emissions science and technology, this journal will disseminate research results and information that address the global crisis of anthropogenic climate change. The scope of the journal includes the full spectrum of research areas from capture and separation of greenhouse gases from flue gases and ambient air, to beneficial utilization, and to sequestration in deep geologic formations and terrestrial (plant and soil) systems, as well as policy and technoeconomic analyses of these approaches.

  12. Energy Efficiency and Greenhouse Gases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The team strives to improve energy efficiency and reduce greenhouse gas emissions through a measurable reduction of energy intensity. Energy efficiency evaluations and initiatives ...

  13. Steam-reforming of fossil fuels and wastes to produce energy and chemicals without greenhouse gases

    SciTech Connect (OSTI)

    Galloway, T.R.

    1998-07-01

    Worldwide concern has demanded a re-examination of the energy- and chemical-producing plants that use fossil fuel sources and release large quantities of greenhouse gases. Plant retrofits with steam-reformer/gasifiers will increase plant efficiencies, improve economics and avoid releasing troublesome amounts of greenhouse gases, such as carbon dioxide. In this paper, the authors describe and illustrate the several new steam-reforming/gasification plants that are processing waste streams and fossil fuels. These plants range in size from 1 ton/day to 2,000 tons/day. They are commercial and economically successful. These new concepts can be used to both upgrade fossil plants for improved economics while eliminating the release of greenhouse gases. By aggressively retrofitting old coal plants and sequestering CO{sub 2}, a 15% reduction in 1990 CO{sub 2} emissions can be met by the US by 2010.

  14. Greenhouse gases mitigation options and strategies for Tanzania

    SciTech Connect (OSTI)

    Mwandosya, M.J.; Meena, H.E.

    1996-12-31

    Tanzania became a party to the United Nations Framework on Climate Change (UN FCCC) when she ratified the Convention in March, 1996. Now that Tanzania and other developing countries are Parties to the UN FCCC, compliance with its provisions is mandatory. The legal requirements therefore provide a basis for their participation in climate change studies and policy formulation. All parties to the Convention are required by Article 4.1 of the United Nations Convention on Climate Change (UN FCCC) to develop, periodically update, publish, and make available national inventories of anthropogenic emissions and removal of greenhouse gases that are not controlled by the Montreal Protocol. This study on possible options for the mitigation of greenhouse gases in Tanzania is a preliminary effort towards the fulfilment of the obligation. In order to fulfil their obligations under the UN FCCC and have a meaningful mitigation assessment, identification and quantification of anthropogenic sources of atmospheric emissions of greenhouse gases in the country was undertaken. In this respect, the study of anthropogenic emissions by source and removals by sink of GHGs in Tanzania was done with the main objective of increasing the quantity and quality of base-line data available in order to further scientific understanding of the relationship of greenhouse gas emissions to climate change. Furthermore, the study facilitated identification of national policy and technological options that could reduce the level of emissions in the country.

  15. PPPL wins Department of Energy award for reducing greenhouse gases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab wins Department of Energy award for reducing greenhouse gases By Jeanne Jackson DeVoe October 2, 2012 Tweet Widget Google Plus One Share on Facebook PPPL engineer Tim Stevenson checks for possible leaks of sulfur hexafluoride (SF6), the gas used to insulate electronic equipment that has the potential to cause global warming at many times the rate of carbon dioxide. PPPL reduced leaks of SF6 by 65 percent over three years - reducing overall greenhouse gas

  16. Emissions Of Greenhouse Gases From Rice Agriculture

    SciTech Connect (OSTI)

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small. 4). Nitrous Oxide Emissions From Rice Fields Increase as Methane Emissions Drop. Inundated conditions favor anaerobic methane production with high emission rates and de-nitrification resulting in modest nitrous oxide emissions. Under drier conditions such as intermittent flooding, methane emissions fall and nitrous oxide emissions increase. Increased nitrogen fertilizer use increases nitrous oxide emissions and is usually accompanied by reduced organic matter applications which decreases methane emissions. These mechanisms cause a generally inverse relationship between methane and nitrous oxide emissions. Reduction of methane from rice agriculture to control global warming comes with tradeoffs with increased nitrous oxide emissions. 5). High Spatial Resolution Maps of Emissions Produced. Maps of methane and nitrous oxide emissions at a resolution of 5 min × 5 min have been produced based on the composite results of this research. These maps are necessary for both scientific and policy uses.

  17. Emissions of greenhouse gases in the United States 1996

    SciTech Connect (OSTI)

    1997-10-01

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1990, with annual updates thereafter. This report is the fifth annual update, covering national emissions over the period 1989--1995, with preliminary estimates of emissions for 1996. The estimates contained in this report have been revised from those in last year`s report. Emissions estimates for carbon dioxide are reported in metric tons of carbon; estimates for other gases are reported in metric tons of gas. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapter 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Five appendixes are included with this report. 216 refs., 11 figs., 38 tabs.

  18. Emissions of greenhouse gases in the United States 1995

    SciTech Connect (OSTI)

    1996-10-01

    This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

  19. In-Situ Microbial Conversion of Sequestered Greenhouse Gases

    SciTech Connect (OSTI)

    Scott, A R; Mukhopadhyay, M; Balin, D F

    2012-09-06

    The objectives of the project are to use microbiological in situ bioconversion technology to convert sequestered or naturally-occurring greenhouse gases, including carbon dioxide and carbon monoxide, into methane and other useful organic compounds. The key factors affecting coal bioconversion identified in this research include (1) coal properties, (2) thermal maturation and coalification process, (3) microbial population dynamics, (4) hydrodynamics (5) reservoir conditions, and (6) the methodology of getting the nutrients into the coal seams. While nearly all cultures produced methane, we were unable to confirm sustained methane production from the enrichments. We believe that the methane generation may have been derived from readily metabolized organic matter in the coal samples and/or biosoluble organic material in the coal formation water. This raises the intriguing possibility that pretreatment of the coal in the subsurface to bioactivate the coal prior to the injection of microbes and nutrients might be possible. We determined that it would be more cost effective to inject nutrients into coal seams to stimulate indigenous microbes in the coal seams, than to grow microbes in fermentation vats and transport them to the well site. If the coal bioconversion process can be developed on a larger scale, then the cost to generate methane could be less than $1 per Mcf

  20. EIA - Emissions of Greenhouse Gases in the United States 2009

    Gasoline and Diesel Fuel Update (EIA)

    The data can be converted to carbon equivalent units by multiplying by 1244. Data on ozone-depleting gases with high global warming potentials (high-GWP gases) are obtained ...

  1. The Greenhouse Gases, Regulated Emissions, and Energy Use in...

    Open Energy Info (EERE)

    Energy Use in Transportation Model (GREET Fleet) AgencyCompany Organization: Argonne National Laboratory Sector: Energy Focus Area: Greenhouse Gas, Transportation Phase:...

  2. EIA-Voluntary Reporting of Greenhouse Gases Program - Reporting...

    Gasoline and Diesel Fuel Update (EIA)

    For more information and background on the Revised Guidelines, please refer to the DOE's Office of Policy and International Affairs Web site. voluntary reporting of greenhouse ...

  3. Table 1. U.S. emissions of greenhouse gases, based on global warming potential,

    U.S. Energy Information Administration (EIA) Indexed Site

    emissions of greenhouse gases, based on global warming potential, 1990-2009" " (Million Metric Tons of Carbon Dioxide Equivalent)" " Greenhouse Gas",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 "Carbon

  4. EIA's Energy in Brief: What are greenhouse gases and how much are emitted

    Gasoline and Diesel Fuel Update (EIA)

    by the United States? greenhouse gases and how much are emitted by the United States? Last Updated: January 20, 2016 Greenhouse gases trap heat from the sun and warm the planet's surface. Most U.S. greenhouse gas emissions are related to energy production and consumption. Most of those emissions are carbon dioxide (CO2) from the burning of fossil fuels. From 1990 to 2014, energy-related carbon dioxide emissions in the United States increased on average by about 0.3% per year. Because

  5. Greenhouse Gases - Energy Explained, Your Guide To Understanding...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Without the greenhouse effect, the average temperature of the earth would be about -2F rather than the 57F we currently experience. Many chemical compounds found in the ...

  6. EIA - Greenhouse Gas Emissions - High-GWP gases

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Emissions estimates for the high-GWP gases are provided to EIA by the EPA's Office of Air ... to the U.S. schedule mandated in the Clean Air Act, 2010 was a target year to end ...

  7. EPA's Recent Advance Notice on Greenhouse Gases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of Energy The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2014 Fuel Economy Guide, providing consumers with a valuable resource to identify and choose the most fuel efficient and low greenhouse gas-emitting vehicles that meet their needs. The 2014 models include efficient and low-emission vehicles in a variety of classes and sizes, ensuring a wide variety of choices available for consumers. "For American families, the financial and

  8. Greenhouse gases in the corn-to-fuel ethanol pathway.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1998-06-18

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen.

  9. Documentation for Emissions of Greenhouse Gases in the United States 2008

    Reports and Publications (EIA)

    2011-01-01

    The Energy Policy Act of 1992 required the U.S. Energy Information Administration (EIA) to prepare an inventory of aggregate U.S. national emissions of greenhouse gases for the period 1987-1990, with annual updates thereafter. This report documents the methodology for the seventeenth annual inventory, covering national emissions over the period 1990-2008.

  10. Greenhouse gases emission from municipal waste management: The role of separate collection

    SciTech Connect (OSTI)

    Calabro, Paolo S.

    2009-07-15

    The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO{sub 2}, CH{sub 4}, N{sub 2}O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.

  11. Emissions of greenhouse gases in the United States, 1987--1994

    SciTech Connect (OSTI)

    1995-09-25

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1992, with annual updates thereafter. This is the third annual update report,covering national emissions over the period 1987--1993, with preliminary estimates of US carbon dioxide and halocarbon emissions for 1994. Calculating national aggregate emissions(or ``national inventories``) of greenhouse gases is a recently developed form of intellectual endeavor. Greenhouse gas emissions are rarely measured directly or reported to statistical agencies. Thus, to prepare emissions inventories usually requires inferring emissions indirectly from information collected for other purposes. Both the available information and the inferences drawn may be of varying reliability. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapters 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes.

  12. Table 5. Greenhouse gases and 100-year net global warming potentials

    U.S. Energy Information Administration (EIA) Indexed Site

    Greenhouse gases and 100-year net global warming potentials" "Greenhouse Gas Name","Formula","GWP" ,,"SAR1","TAR2","AR43" "(1) Carbon Dioxide","CO2",1,1,1 "(2) Methane","CH4",21,23,25 "(3) Nitrous Oxide","N2O",310,296,298 "(4) Hydroflourocarbons" "HFC-23 (trifluoromethane)","CHF3",11700,12000,14800 "HFC-32

  13. Are Greenhouse Gases Changing ENSO Precursors in the Western North Pacific?

    SciTech Connect (OSTI)

    Wang, S-Y; Heureux, Michelle L.; Yoon, Jin-Ho

    2013-09-01

    Using multiple observational and modeling datasets, we document a strengthening relationship between boreal winter sea surface temperature anomalies (SSTA) in the western North Pacific (WNP) and the development of the El Nino-Southern Oscillation (ENSO) one year later. The increased WNP-ENSO association emerged in the mid 20th century and has grown through the present, reaching correlation coefficients as high as ~0.70 in recent decades. Fully coupled climate experiments with the Community Earth System Model (CESM) replicate the WNP-ENSO association and indicate that greenhouse gases (GHG) are largely responsible for the observed increase. We speculate that shifts in the location and amplitudes of positive SST trends in the subtropical-tropical western Pacific impacts the low-level circulation so that WNP variability is increasingly influencing the development of ENSO one year later. A strengthened GHG-driven relationship between the WNP and ENSO provides an example of how anthropogenic climate change can potentially improve the skill of intraseasonal-to-interannual climate prediction.

  14. Voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992

    SciTech Connect (OSTI)

    Holt, E. Jr.; Vernet, J.E. Jr.

    1994-12-31

    DOE is developing guidelines for the voluntary reporting of greenhouse gas emissions and their reductions, under Section 1605(b) of the Energy Policy Act of 1992. The establishment of this voluntary program should encourage the reduction of greenhouse gases while providing the opportunity to share innovative approaches to achieving such reductions. This social learning aspect is an important element of the program. In addition to greenhouse gas reductions achieved during a given year, reporters are encouraged to also report their actual emissions of such gases for 1987 through 1990. Due to the voluntary nature of this program, and the myriad differences among the potential reporting entities and possible uses for the data reported, the guidelines will need to be structured so as to maximize participation without compromising the usefulness of the data collected. Through a broad notice of inquiry, published in the Federal Register on July 27, 1993, the Department began seeking input into development of the guidelines. Subsequently, to gain a better understanding of the various sectors of the economy, six public workshops were held during the 1993. One workshop addressed institutional issues of potential interest to all sectors of the economy, with the other five workshops focusing more on matters of concern to specific sectors. These meetings were structured so as to provide broad representation from potential reporting entities along with public interest organizations. It is clear that there are significant variations among those reporting greenhouse information. Presently voluntary, the program will need flexibility to encourage broad participation.

  15. The Marginal Damage Costs of Different Greenhouse Gases: An Application of FUND

    SciTech Connect (OSTI)

    Waldhoff, Stephanie T.; Anthoff, David; Rose, Steven K.; Tol, Richard

    2014-01-01

    We use FUND 3.8 to estimate the social cost of four greenhouse gases: carbon dioxide, methane, nitrous oxide, and sulphur hexafluoride emissions. The damage potential for each gas—the ratio of the social cost of the non-carbon dioxide greenhouse gas to the social cost of carbon dioxide—is also estimated. The damage potentials are compared to several metrics, focusing in particular on the global warming potentials, which are frequently used to measure the trade-off between gases in the form of carbon dioxide equivalents. We find that damage potentials could be significantly higher than global warming potentials. This finding implies that previous papers have underestimated the relative importance of reducing non-carbon dioxide greenhouse gas emissions from an economic damage perspective. We show results for a range of sensitivity analyses: carbon dioxide fertilization on agriculture productivity, terrestrial feedbacks, climate sensitivity, discounting, equity weighting, and socioeconomic and emissions scenarios. The sensitivity of the results to carbon dioxide fertilization is a primary focus as it is an important element of climate change that has not been considered in much of the previous literature. We estimate that carbon dioxide fertilization has a large positive impact that reduces the social cost of carbon dioxide with a much smaller effect on the other greenhouse gases. As a result, our estimates of the damage potentials of methane and nitrous oxide are much higher compared to estimates that ignore carbon dioxide fertilization. As a result, our base estimates of the damage potential for methane and nitrous oxide that include carbon dioxide fertilization are twice their respective global warming potentials. Our base estimate of the damage potential of sulphur hexafluoride is similar to the one previous estimate, both almost three times the global warming potential.

  16. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    SciTech Connect (OSTI)

    DeLuchi, M.A.

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  17. Interactive Photochemistry in Earth System Models to Assess Uncertainty in Ozone and Greenhouse Gases. Final report

    SciTech Connect (OSTI)

    Prather, Michael J.; Hsu, Juno; Nicolau, Alex; Veidenbaum, Alex; Smith, Philip Cameron; Bergmann, Dan

    2014-11-07

    Atmospheric chemistry controls the abundances and hence climate forcing of important greenhouse gases including N2O, CH4, HFCs, CFCs, and O3. Attributing climate change to human activities requires, at a minimum, accurate models of the chemistry and circulation of the atmosphere that relate emissions to abundances. This DOE-funded research provided realistic, yet computationally optimized and affordable, photochemical modules to the Community Earth System Model (CESM) that augment the CESM capability to explore the uncertainty in future stratospheric-tropospheric ozone, stratospheric circulation, and thus the lifetimes of chemically controlled greenhouse gases from climate simulations. To this end, we have successfully implemented Fast-J (radiation algorithm determining key chemical photolysis rates) and Linoz v3.0 (linearized photochemistry for interactive O3, N2O, NOy and CH4) packages in LLNL-CESM and for the first time demonstrated how change in O2 photolysis rate within its uncertainty range can significantly impact on the stratospheric climate and ozone abundances. From the UCI side, this proposal also helped LLNL develop a CAM-Superfast Chemistry model that was implemented for the IPCC AR5 and contributed chemical-climate simulations to CMIP5.

  18. Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kochanov, R. V.; Gordon, I. E.; Rothman, L. S.; Sharpe, S. W.; Johnson, T. J.; Sams, R. L.

    2015-08-25

    In the recent article by Byrne and Goldblatt, "Radiative forcing for 28 potential Archean greenhouse gases", Clim. Past. 10, 1779–1801 (2014), the authors employ the HITRAN2012 spectroscopic database to evaluate the radiative forcing of 28 Archean gases. As part of the evaluation of the status of the spectroscopy of these gases in the selected spectral region (50–1800 cm-1), the cross sections generated from the HITRAN line-by-line parameters were compared with those of the PNNL database of experimental cross sections recorded at moderate resolution. The authors claimed that for NO2, HNO3, H2CO, H2O2, HCOOH, C2H4, CH3OH and CH3Br there exist largemore » or sometimes severe disagreements between the databases. In this work we show that for only three of these eight gases a modest discrepancy does exist between the two databases and we explain the origin of the differences. For the other five gases, the disagreements are not nearly at the scale suggested by the authors, while we explain some of the differences that do exist. In summary, the agreement between the HITRAN and PNNL databases is very good, although not perfect. Typically differences do not exceed 10 %, provided that HITRAN data exist for the bands/wavelengths of interest. It appears that a molecule-dependent combination of errors has affected the conclusions of the authors. In at least one case it appears that they did not take the correct file from PNNL (N2O4 (dimer)+ NO2 was used in place of the monomer). Finally, cross sections of HO2 from HITRAN (which do not have a PNNL counterpart) were not calculated correctly in BG, while in the case of HF misleading discussion was presented there based on the confusion by foreign or noise features in the experimental PNNL spectra.« less

  19. From SO{sub 2} to greenhouse gases: trends and events shaping future emissions trading programs in the United States

    SciTech Connect (OSTI)

    Joseph Kruger

    2005-06-15

    Cap-and-trade programs have become widely accepted for the control of conventional air pollution in the United States. However, there is still no political consensus to use these programs to address greenhouse gases. Meanwhile, in the wake of the success of the US SO{sub 2} and NOx trading programs, private companies, state governments, and the European Union are developing new trading programs or other initiatives that may set precedents for a future national US greenhouse gas trading scheme. This paper summarizes the literature on the 'lessons learned' from the SO{sub 2} trading program for greenhouse gas trading, including lessons about the potential differences in design that may be necessary because of the different sources, science, mitigation options, and economics inherent in greenhouse gases. The paper discusses how the programs and initiatives mentioned above have been shaped by lessons from past trading programs and whether they are making changes to the SO{sub 2} model to address greenhouse gases. It concludes with an assessment of the implications of these initiatives for a future US national greenhouse gas trading program. 91 refs., 2 tabs.

  20. Proceedings of the International Workshop on Sustainable ForestManagement: Monitoring and Verification of Greenhouse Gases

    SciTech Connect (OSTI)

    Sathaye , Jayant; Makundi , Willy; Goldberg ,Beth; Andrasko , Ken; Sanchez , Arturo

    1997-07-01

    The International Workshop on Sustainable Forest Management: Monitoring and Verification of Greenhouse Gases was held in San Jose, Costa Rica, July 29-31, 1996. The main objectives of the workshop were to: (1) assemble key practitioners of forestry greenhouse gas (GHG) or carbon offset projects, remote sensing of land cover change, guidelines development, and the forest products certification movement, to offer presentations and small group discussions on findings relevant to the crucial need for the development of guidelines for monitoring and verifying offset projects, and (2) disseminate the findings to interested carbon offset project developers and forestry and climate change policy makers, who need guidance and consistency of methods to reduce project transaction costs and increase probable reliability of carbon benefits, at appropriate venues. The workshop brought together about 45 participants from developed, developing, and transition countries. The participants included researchers, government officials, project developers, and staff from regional and international agencies. Each shared his or her perspectives based on experience in the development and use of methods for monitoring and verifying carbon flows from forest areas and projects. A shared sense among the participants was that methods for monitoring forestry projects are well established, and the techniques are known and used extensively, particularly in production forestry. Introducing climate change with its long-term perspective is often in conflict with the shorter-term perspective of most forestry projects and standard accounting principles. The resolution of these conflicts may require national and international agreements among the affected parties. The establishment of guidelines and protocols for better methods that are sensitive to regional issues will be an important first step to increase the credibility of forestry projects as viable mitigation options. The workshop deliberations led to three primary outputs: (1) a Workshop Statement in the JI Quarterly, September, 1996; (2) the publication of a series of selected peer-reviewed technical papers from the workshop in a report of the Lawrence Berkeley National Laboratory (LBNL. 40501); and (3) a special issue of the journal ''Mitigation and Adaptation Strategies for Global Change'', Kluwer Academic Publishers. The outputs will be distributed to practitioners in this field and to negotiators attending the Framework Convention on Climate Change (FCCC) deliberations leading up to the Third conference of Parties in Kyoto, in December 1997.

  1. Impact of rising greenhouse gases on mid-latitude storm tracks and associated hydroclimate variability and change

    SciTech Connect (OSTI)

    Seager, Richard

    2014-12-08

    Project Summary This project aimed to advance physical understanding of how and why the mid-latitude jet streams and storm tracks shift in intensity and latitude in response to changes in radiative forcing with an especial focus on rising greenhouse gases. The motivation, and much of the work, stemmed from the importance that these mean and transient atmospheric circulation systems have for hydroclimate. In particular drying and expansion of the subtropical dry zones has been related to a poleward shift of the mid-latitude jets and storm tracks. The work involved integrated assessment of observation and model projections as well as targeted model simulations.

  2. Modeling the infrastructure dynamics of China -- Water, agriculture, energy, and greenhouse gases

    SciTech Connect (OSTI)

    Conrad, S.H.; Drennen, T.E.; Engi, D.; Harris, D.L.; Jeppesen, D.M.; Thomas, R.P.

    1998-08-01

    A comprehensive critical infrastructure analysis of the People`s Republic of China was performed to address questions about China`s ability to meet its long-term grain requirements and energy needs and to estimate greenhouse gas emissions in China likely to result from increased agricultural production and energy use. Four dynamic computer simulation models of China`s infrastructures--water, agriculture, energy and greenhouse gas--were developed to simulate, respectively, the hydrologic budgetary processes, grain production and consumption, energy demand, and greenhouse gas emissions in China through 2025. The four models were integrated into a state-of-the-art comprehensive critical infrastructure model for all of China. This integrated model simulates diverse flows of commodities, such as water and greenhouse gas, between the separate models to capture the overall dynamics of the integrated system. The model was used to generate projections of China`s available water resources and expected water use for 10 river drainage regions representing 100% of China`s mean annual runoff and comprising 37 major river basins. These projections were used to develop estimates of the water surpluses and/or deficits in the three end-use sectors--urban, industrial, and agricultural--through the year 2025. Projections of the all-China demand for the three major grains (corn, wheat, and rice), meat, and other (other grains and fruits and vegetables) were also generated. Each geographic region`s share of the all-China grain demand (allocated on the basis of each region`s share of historic grain production) was calculated in order to assess the land and water resources in each region required to meet that demand. Growth in energy use in six historically significant sectors and growth in greenhouse gas loading were projected for all of China.

  3. Gamma greenhouse: A chronic facility for crops improvement and agrobiotechnology

    SciTech Connect (OSTI)

    Azhar, M. Ahsanulkhaliqin, A. W.

    2014-02-12

    Gamma irradiation is one of the most common procedures in plant mutagenesis and agrobiotechnology activities. The procedures consist of chronic and acute gamma radiation. Generally, {sup 60}Co and {sup 137}Cs are gamma radiation sources for radiation processing with relatively high energy (half-life 5.27 years for {sup 60}Co and 30.1 years for {sup 137}Cs). The energy associated with gamma radiation is high enough to break the molecular bonds and ionize atoms without affecting structure of the atomic nucleus (avoiding induction of radioactivity). The Gamma Green House (GGH) is the only chronic irradiation facility in Malaysia, located at Malaysian Nuclear Agency (Nuclear Malaysia). GGH is used for induction of mutation in plants and other biological samples at low dose radiation over period of time depending on the nature and sensitivity of the plant species. The GGH consist of circular green house with 30 meters radius, control room and irradiator with interlock system. The irradiator produces low dose gamma radiation derived from Caesium-137 radioactive source. The biological samples can be exposed to low dose radiation in days, weeks, months or years. The current irradiation rate for GGH is 2.67 Gy/hr at 1 meter from the source. Chronic gamma irradiation produces a wider mutation spectrum and useful for minimizing radiation damages towards obtaining new improved traits for research and commercial values. The prospect of the gamma greenhouse is its uses in research, educations and services on induced mutation techniques for the improvement of plant varieties and microbes. In generating awareness and attract users to the facility, Nuclear Malaysia provides wide range of irradiation services for plant species and mutagenesis consultancies to academicians, students scientists, and plant breeders, from local universities, other research institutes, and growers. Charges for irradiation and consultancy services are at nominal rates. The utilization activities of the gamma greenhouse mainly cover Research and Development, Research Collaboration, Exchange of Information, Irradiation Services, Training Programs, Education, Exchange of Scientists and Seminars/ Conferences.

  4. Greenhouse gases, Regulated Emissions, and Energy use in Transportation fuel-cyl

    Energy Science and Technology Software Center (OSTI)

    2000-06-20

    The GREET model estimates the full fuel-cycle energy use and emissions associated with various transportation fuels and advanced vehile technologies applied to motor vehicles. GREET 1.5 includes the following cycles: petroleum to conventional gasoline, reformulated gasoline, conventional diesel, reformulated diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied natural gas, liquefied petroleum gas, methanol, Fischer-Tropsch diesel, dimethyl ether, hydrogen, and electricity; coal to electricity; corn, woody biomass, andmore » herbaceous biomass to ethanol; soybeans to biodiesel; flared gas to methanol, Fischer-Tropsch diesel, and dimethyl ether; and landfill gases to methanol. For a given fuel/transportation technology combination, GREET 1.5 calculates (1) the fuel-cycle consumption of total energy (all energy sources), fossil fuels (petroleum, natural gas, and coal), and petroleum; (2) the fuel-cycle emissions of GHGs -- primarily carbon dioxide (CO2), methane (CH4), and nitrous oxide (N20); and (3) the fuel-cycle emissions of five criteria pollutants: volatile organic compounds (VOCs), carbon monoxide (C0), nitrogen oxides (N0x), sulfur oxides (S0x), and particulate matter with a diameter measuring 10 micrometers or less (PM10). The model is designed to readily allow researchers to input their own assumptions and generate fuel-cycle energy and emission results for specified fuel/technology combinations.« less

  5. Greenhouse gases, Regulated Emissions, and Energy use in Transportation fuel-cyl

    SciTech Connect (OSTI)

    Wang, Michael

    2000-06-20

    The GREET model estimates the full fuel-cycle energy use and emissions associated with various transportation fuels and advanced vehile technologies applied to motor vehicles. GREET 1.5 includes the following cycles: petroleum to conventional gasoline, reformulated gasoline, conventional diesel, reformulated diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied natural gas, liquefied petroleum gas, methanol, Fischer-Tropsch diesel, dimethyl ether, hydrogen, and electricity; coal to electricity; corn, woody biomass, and herbaceous biomass to ethanol; soybeans to biodiesel; flared gas to methanol, Fischer-Tropsch diesel, and dimethyl ether; and landfill gases to methanol. For a given fuel/transportation technology combination, GREET 1.5 calculates (1) the fuel-cycle consumption of total energy (all energy sources), fossil fuels (petroleum, natural gas, and coal), and petroleum; (2) the fuel-cycle emissions of GHGs -- primarily carbon dioxide (CO2), methane (CH4), and nitrous oxide (N20); and (3) the fuel-cycle emissions of five criteria pollutants: volatile organic compounds (VOCs), carbon monoxide (C0), nitrogen oxides (N0x), sulfur oxides (S0x), and particulate matter with a diameter measuring 10 micrometers or less (PM10). The model is designed to readily allow researchers to input their own assumptions and generate fuel-cycle energy and emission results for specified fuel/technology combinations.

  6. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    SciTech Connect (OSTI)

    Niu Dongjie; Huang Hui; Dai Xiaohu; Zhao Youcai

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.

  7. EIA - Greenhouse Gas Emissions - Land use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Other greenhouse gases, such as methane released from wood that is burned ... usually is assessed by considering all the upstream and downstream emissions of greenhouse gases. ...

  8. Greenhouse Gases into Gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    so it is easier to transform it into something else. This requires exposing the CO2 to an energy source in combination with a catalyst such as pyridinium. Researchers have shown...

  9. Analysis of potential for reducing emissions of greenhouse gases in municipal solid waste in Brazil, in the state and city of Rio de Janeiro

    SciTech Connect (OSTI)

    Loureiro, S.M.; Rovere, E.L.L.; Mahler, C.F.

    2013-05-15

    Highlights: ? We constructed future scenarios of emissions of greenhouse gases in waste. ? Was used the IPCC methodology for calculating emission inventories. ? We calculated the costs of abatement for emissions reduction in landfill waste. ? The results were compared to Brazil, state and city of Rio de Janeiro. ? The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030. To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management.

  10. EIA - Greenhouse Gas Emissions Overview

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Data Tables 1 U.S. emissions of greenhouse gases, based on global warming potential, 1990-2009 2 U.S. greenhouse gas intensity and related factors, 1990-2009 3 Distribution of ...

  11. Energy Efficiency and Greenhouse Gases

    Broader source: Energy.gov [DOE]

    The team establishes an energy conservation program, as deemed appropriate for LM operations and approved by LM, as defined in:

  12. Peru`s national greenhouse gas inventory, 1990. Peru climate change country study

    SciTech Connect (OSTI)

    1996-07-01

    The aim of this study has been to determine the Inventory and to propose greenhouse gases mitigation alternatives in order to face the future development of the country in a clean environmental setting, improving in this way the Peruvian standard of life. The main objective of this executive summary is to show concisely the results of the National Inventory about greenhouse gases emitted by Peru in 1990.

  13. EIA - Greenhouse Gas Emissions Overview

    Gasoline and Diesel Fuel Update (EIA)

    Greenhouse Gas Tables (1990-2009) Table Title Formats Overview 1 U.S. emissions of greenhouse gases, based on global warming potential 2 U.S. greenhouse gas intensity and related factors 3 Distribution of total U.S. greenhouse gas emissions by end-use sector 4 World energy-related carbon dioxide emissions by region 5 Greenhouse gases and 100-year net global warming potentials Carbon dioxide emissions 6 U.S. carbon dioxide emissions from energy and industry 7 U.S. energy-related carbon dioxide

  14. Reliable Muddle: Transportation Scenarios for the 80% Greenhouse Gas Reduction Goal for 2050 (Presentation)

    SciTech Connect (OSTI)

    Melaina, M.; Webster, K.

    2009-10-28

    Presentation describing transportation scenarios for meeting the 2050 DOE goal of reducing greenhouse gases by 80%.

  15. Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes.

    SciTech Connect (OSTI)

    Wang, M.; Han, J.; Haq, Z; Tyner, .W.; Wu, M.; Elgowainy, A.

    2011-05-01

    Use of ethanol as a transportation fuel in the United States has grown from 76 dam{sup 3} in 1980 to over 40.1 hm{sup 3} in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

  16. Flint Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Flint Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Flint...

  17. Bigfork Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Bigfork Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Bigfork Greenhouses Greenhouse Low Temperature Geothermal Facility Facility...

  18. Crook's Greenhouse Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Crook's Greenhouse Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Crook's Greenhouse Greenhouse Low Temperature Geothermal Facility Facility...

  19. Castlevalley Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Castlevalley Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Castlevalley Greenhouses Greenhouse Low Temperature Geothermal Facility...

  20. Bliss Greenhouse Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouse Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Bliss Greenhouse Greenhouse Low Temperature Geothermal Facility Facility Bliss Greenhouse...

  1. Jackson Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Jackson...

  2. Wards Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Wards Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Wards Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Wards...

  3. Liskey Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Liskey Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Liskey Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Liskey...

  4. The Greenhouse Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name The Greenhouse Greenhouse Low Temperature Geothermal Facility Facility The Greenhouse Sector...

  5. Warm Springs Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility...

  6. Greenhouse gas emissions from landfill leachate treatment plants...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 54 ENVIRONMENTAL SCIENCES; 12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; AGING; CARBON DIOXIDE; GREENHOUSE GASES; LEACHATES; ...

  7. SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane

    SciTech Connect (OSTI)

    Eugene A. Fritzler

    2005-09-01

    The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

  8. Green House Gases | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green House Gases Did You Know? If it were not for naturally occurring greenhouse gases, the Earth would be too cold to support life as we know it. Without the greenhouse effect, the average temperature of the Earth would be about -2°F rather than the 57°F we currently experience. However, levels of several important greenhouse gases have increased by about 40% since industrialization began around 150 years ago. During the past 20 years, about three-quarters of human-caused (anthropogenic)

  9. EIA-Voluntary Reporting of Greenhouse Gases Program - Greenhouse...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.). ...

  10. Voluntary Reporting of Greenhouse Gases Program - Electricity...

    Gasoline and Diesel Fuel Update (EIA)

    Jet Fuel ( Jet A, JP-8) 70.88 kg CO2 MMBtu 9.57 kg CO2 gallon Kerosene 72.31 kg CO2 MMBtu 9.76 kg CO2 gallon Heavy Fuel Oil (No. 5, 6 fuel oil), bunker fuel 78.80 kg CO2 ...

  11. ARM - Danger of Increased Greenhouse Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  12. Microtrap assembly for greenhouse gas and air pollution monitoring

    SciTech Connect (OSTI)

    Mitra, Somenath; Saridara, Chutarat

    2015-08-25

    A microtrap assembly includes a carbon nanotube sorbent. The microtrap assembly may be employed as a preconcentrator operable to deliver a sample to an analytical device to measure the concentrations of greenhouse gases. A system includes a microtrap having a carbon nanotube sorbent for measuring the concentrations of greenhouse gases in a sample.

  13. Mitigating Greenhouse Gas Emissions: Voluntary Reporting 1996

    Reports and Publications (EIA)

    1997-01-01

    Presents information on voluntary actions to reduce greenhouse gases or remove such gases from the atmosphere in 1995. It provides an overview of participation in the Voluntary Reporting Program, a perspective on the composition of activities reported, and a review of some key issues in interpreting and evaluating achievements associated with reported emissions mitigation initiatives.

  14. EIA - Greenhouse Gas Emissions - Table-Figure Notes and Sources

    Gasoline and Diesel Fuel Update (EIA)

    A1. Notes and Sources Tables Chapter 1: Greenhouse gas emissions overview Table 1. U.S. emissions of greenhouse gases, based on global warming potential, 1990-2009: Sources: Emissions: EIA estimates. Data in this table are revised from the data contained in the previous EIA report, Emissions of Greenhouse Gases in the United States 2008, DOE/EIA-0573(2008) (Washington, DC, December 2009). Global warming potentials: Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical

  15. FETC Programs for Reducing Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called `greenhouse gases.` Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth`s atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide.

  16. Full-Column Greenhouse Gas Sampling 2012-2014 Final Campaign...

    Office of Scientific and Technical Information (OSTI)

    With the launch of the Orbiting Carbon Observatory - 2 (OCO - 2) and Greenhouse gases Observing Satellite ( GOSAT ) satellites, we look forward to proposing additional sampling and ...

  17. Alternatives to Traditional Transportation Fuels 1994 Volume 2 Greenhouse Gas Emissions

    Reports and Publications (EIA)

    1996-01-01

    This report provides information on greenhouse gases GHGs) as required by Section 503 a(4) and b(3) of the Energy Policy Act of 1992 (EPACT).

  18. Edward's Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    of Technology's Geo-Heat Center Retrieved from "http:en.openei.orgwindex.php?titleEdward%27sGreenhousesGreenhouseLowTemperatureGeothermalFacility&oldid305261" ...

  19. Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Show Map Loading map... "minzoom":false,"mappingservice"...

  20. Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals

    Reports and Publications (EIA)

    2006-01-01

    This report responds to a request from Senator Ken Salazar that the Energy Information Administration (EIA) analyze the impacts of implementing alternative variants of an emissions cap-and-trade program for greenhouse gases (GHGs).

  1. PPPL wins Department of Energy award for reducing greenhouse...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins Department of Energy award for reducing greenhouse gases By Jeanne Jackson DeVoe October 2, 2012 Tweet Widget Google Plus One Share on Facebook PPPL engineer Tim Stevenson...

  2. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry

    SciTech Connect (OSTI)

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the U.S. (U.S. EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the U.S. This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the cost-effective energy savings potential in case B increases to 22%.

  3. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the US pulp and paper industry

    SciTech Connect (OSTI)

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the US (US EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the US This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the cost-effective energy savings potential in case B increases to 22%.

  4. Improved Laser Induced Breakdown Spectroscopy (LIBS) Elemental Composition Detection System: A device to measure subsurface gases, liquids, and solids at subsurface conditions

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2016-02-23

    This device can measure subsurface gases, liquids, and solids at subsurface conditions. Atomic identification and concentration measurements can be made on solids, liquids, and gases at down hole pressure and temperature conditions....

  5. High Country Rose Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Rose Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name High Country Rose Greenhouses Greenhouse Low Temperature Geothermal Facility...

  6. Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal...

  7. Minimising greenhouse gas emissions from fossil fuels

    SciTech Connect (OSTI)

    Freund, P.

    1997-07-01

    Combustion of fossil fuels is the main anthropogenic source of carbon dioxide, the principal greenhouse gas. Generation of electricity is the single largest user of fossil fuels, world-wide. If there is international agreement about the need to make substantial reductions in greenhouse gas emissions, then having access to suitable, effective technology would be important. This would help avoid the need for precipitate action, such as radical changes in the energy supply systems. Capture and disposal of greenhouse gases from flue gases can achieve substantial reductions in greenhouse gas emissions. This can be realized with known technology. In this paper, the range of options will be summarized and steps needed to achieve further progress will be identified. Emissions of other gases, such as methane, are also expected to influence the climate. Methane is emitted from many anthropogenic sources; the IEA Greenhouse Gas programme is investigating ways of reducing these emissions. Opportunities for abatement of methane emissions associated with coal mining will be described. Reduction in emissions from drainage gas is relatively straightforward and can, in appropriate circumstances, generate useful income for the none operator. More substantial amounts of methane are discharged in mine ventilation air but these are more difficult to deal with. In this paper, a summary will be given of recent progress in reducing methane emissions. Opportunities will be examined for further research to progress these technologies.

  8. The Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    2009-01-18

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH,

  9. Greenhouse gas mitigation options for Washington State

    SciTech Connect (OSTI)

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  10. Idaho National Laboratory FY12 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2013-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  11. Idaho National Laboratory's FY11 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2012-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2011 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho.

  12. Emissions of Greenhouse Gases in the United States 2009, DOE...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... the waste management system distributions for dairy ... attention to black carbon's contribution to climate change. ... particulate matter, a class of criteria pollutant under ...

  13. Greenhouse Gases, Regulated Emissions, and Energy use in Transportatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CYCLE (GREET1) VEHICLE CYCLE (GREET2) RECYCLING OF MATERIALS WELL TO PUMP Raw material extraction Material processing Component manufacture and Vehicle assembly Vehicle recycling

  14. Atmospheric Chemistry and Greenhouse Gases (Book) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Chapter 4 of the IPCC Third Assessment Report Climate Change ... Questions 2774.6 Overall Impact of Global Atmospheric ... Language: English Subject: 54 ENVIRONMENTAL SCIENCES; ...

  15. ARM - Amount of Greenhouse Gases in the Global Atmosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  16. Emissions of greenhouse gases from the use of transportation...

    Office of Scientific and Technical Information (OSTI)

    maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The...

  17. Greenhouse Gases, Regulated Emissions, and Energy Use in Transportatio...

    Open Energy Info (EERE)

    and emission impacts of advanced vehicle technologies and new transportation fuels. The model allows users to evaluate various vehicle and fuel combinations. LEDSGP green...

  18. Atmospheric Chemistry and Greenhouse Gases (Book) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    J. ; Pickering, K. ; Pitari, G. ; Roelofs, G.-J. ; Rogers, H. ; Rognerud, B. ; Smith, Steven J. ; Solomon, S. ; Staehelin, J. ; Steele, P. ; Stevenson, D. S. ; Sundet, J. ; ...

  19. EIA-Voluntary Reporting of Greenhouse Gases Program - What's...

    Gasoline and Diesel Fuel Update (EIA)

    ... its kind to be released as an HTML-enabled Web page, as opposed to a PDF. We hope you find ... The revised Form and Instructions are available as PDF files on EIA's Web site at http:...

  20. Global Research Alliance on Agricultural Greenhouse Gases | Open...

    Open Energy Info (EERE)

    Topics GHG inventory, Policiesdeployment programs Resource Type Guidemanual, Lessons learnedbest practices Website http:globalresearchalliance. References Global...

  1. Argonne researchers create more accurate model for greenhouse gases from

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    peatlands | Argonne National Laboratory Tufted bulrush in a peat bog near Sitka, Alaska. Photo by Mary Stensvold/U.S. Dept of Agriculture. (Click image to enlarge) Tufted bulrush in a peat bog near Sitka, Alaska. Photo by Mary Stensvold/U.S. Dept of Agriculture. (Click image to enlarge) Tundra dangles over the top of this peat formation in southeast Alaska. Photo by Travis S./Flickr. (Click image to enlarge) Tundra dangles over the top of this peat formation in southeast Alaska. Photo by

  2. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, Santi; Kulkarni, Sudhir S.

    1986-01-01

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  3. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, S.

    1986-08-19

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  4. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  5. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, Santi

    1986-01-01

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  6. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions. These technology pathways (which are described in greater detail in Appendix B, Technology Pathways) address three areas: energy efficiency, clean energy, and carbon sequestration (removing carbon from emissions and enhancing carbon storage). Based on an assessment of each of these technology pathways over a 30-year planning horizon, the directors of the Department of Energy's (DOE's) national laboratories conclude that success will require pursuit of multiple technology pathways to provide choices and flexibility for reducing greenhouse gas emissions. Advances in science and technology are necessary to reduce greenhouse gas emissions from the United States while sustaining economic growth and providing collateral benefits to the nation.

  7. Carbon Bearing Trace Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Bearing Trace Gases A critical scientific and policy oriented question is what are the present day sources and sinks of carbon dioxide (CO2) in the natural environment and...

  8. Method for controlling corrosion in thermal vapor injection gases

    DOE Patents [OSTI]

    Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

    1981-01-01

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  9. Using Coupled Harmonic Oscillators to Model Some Greenhouse Gas Molecules

    SciTech Connect (OSTI)

    Go, Clark Kendrick C.; Maquiling, Joel T.

    2010-07-28

    Common greenhouse gas molecules SF{sub 6}, NO{sub 2}, CH{sub 4}, and CO{sub 2} are modeled as harmonic oscillators whose potential and kinetic energies are derived. Using the Euler-Lagrange equation, their equations of motion are derived and their phase portraits are plotted. The authors use these data to attempt to explain the lifespan of these gases in the atmosphere.

  10. Greenhouse Gas Management Program Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    Program fact sheet highlighting federal requirements for GHG emissions management, FEMP services to help agencies reduce emissions, and additional resources. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) assists Federal agencies with managing their greenhouse gas (GHG) emissions. GHG management entails measuring emissions and understanding their sources, setting a goal for reducing emissions, developing a plan to meet this goal, and implementing the plan to achieve reductions in emissions. FEMP provides the following services to help Federal agencies meet the requirements of inventorying and reducing their GHG emissions: (1) FEMP offers one-on-one technical assistance to help agencies understand and implement the Federal Greenhouse Gas Accounting and Reporting Guidance and fulfill their inventory reporting requirements. (2) FEMP provides training, tools, and resources on FedCenter to help agencies complete their annual inventories. (3) FEMP serves a leadership role in the interagency Federal Working Group on Greenhouse Gas Accounting and Reporting that develops recommendations to the Council on Environmental Quality (CEQ) for the Federal Greenhouse Gas Accounting and Reporting Guidance. (4) As the focus continues to shift from measuring emissions (completing inventories) to mitigating emissions (achieving reductions), FEMP is developing a strategic planning framework and resources for agencies to prioritize among a variety of options for mitigating their GHG emissions, so that they achieve their reduction goals in the most cost-effective manner. These resources will help agencies analyze their high-quality inventories to make strategic decisions about where to use limited resources to have the greatest impact on reducing emissions. Greenhouse gases trap heat in the lower atmosphere, warming the earth's surface temperature in a natural process known as the 'greenhouse effect.' GHGs include carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), perfluorocarbons (PFCs), hydrofluorocarbons (HFCs), and sulfur hexafluoride (SF{sub 6}). Human activities have caused a rapid increase in GHG concentrations. This rising level contributes to global climate change, which contributes to environmental and public health problems.

  11. Assessment of basic research needs for greenhouse gas control technologies

    SciTech Connect (OSTI)

    Benson, S.M.; Chandler, W.; Edmonds, J.; Houghton, J.; Levine, M.; Bates, L.; Chum, H.; Dooley, J.; Grether, D.; Logan, J.; Wiltsee, G.; Wright, L.

    1998-09-01

    This paper is an outgrowth of an effort undertaken by the Department of Energy's Office of Energy Research to assess the fundamental research needs to support a national program in carbon management. Five topics were identified as areas where carbon management strategies and technologies might be developed: (1) capture of carbon dioxide, decarbonization strategies, and carbon dioxide disposal and utilization; (2) hydrogen development and fuel cells; (3) enhancement of the natural carbon cycle; (4) biomass production and utilization; and (5) improvement of the efficiency of energy production, conversion, and utilization. Within each of these general areas, experts came together to identify targets of opportunity for fundamental research likely to lead to the development of mid- to long-term solutions for stabilizing or decreasing carbon dioxide and other greenhouse gases in the atmosphere. Basic research to support the options outlined above are far reaching-from understanding natural global processes such as the ocean and terrestrial carbon cycles to development of new materials and concepts for chemical separation. Examples of fundamental research needs are described in this paper.

  12. Greenhouse Gas Source Attribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greenhouse Gas Source Attribution - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  13. Tsuji Nurseries Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Nurseries Greenhouse Low Temperature Geothermal Facility Facility Tsuji Nurseries Sector Geothermal energy Type Greenhouse Location Susanville, California Coordinates...

  14. Continuous cryopump with a method for removal of solidified gases

    DOE Patents [OSTI]

    Carlson, Larry W.; Herman, Harold

    1989-01-01

    An improved cryopump for the removal of gases from a high vacuum, comprising a cryopanel incorporating honeycomb structure, refrigerant means thermally connected to the cryopanel, and a rotatable channel moving azimuthally around an axis located near the center of the cryopanel, removing gases absorbed within the honeycomb structure by subliming them and conducting them outside the vacuum vessel.

  15. Continuous cryopump with a method for removal of solidified gases

    DOE Patents [OSTI]

    Carlson, L.W.; Herman, H.

    1988-05-05

    An improved cryopump for the removal of gases from a high vacuum, comprising a cryopanel incorporating honeycomb structure, refrigerant means thermally connected to the cryopanel, and a rotatable channel moving azimuthally around an axis located near the center of the cryopanel, removing gases adsorbed within the honeycomb structure by subliming them and conducting them outside the vacuum vessel. 4 figs.

  16. Mitigating greenhouse gas emissions: Voluntary reporting

    SciTech Connect (OSTI)

    1997-10-01

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  17. The quest for greenhouse-constrained technologies amid other concerns for environment and energy

    SciTech Connect (OSTI)

    McGill, R.N.

    1991-01-01

    As we approach the 21st century, sentiments run high in the US for improved air quality in our cities and for a more secure energy future, hopefully to be manifest in lesser dependence on foreign supplies of oil. These sentiments are reflected in intense political activity on both the federal and state levels to enact legislation that will help alleviate both problems. At the same time though, the recent emergence of awareness of a threat of global warming due to ever increasing emissions of greenhouse gases has only served as an additional complicating factor, one which has not been fully dealt with either socially or politically in the US. Much discussion and deliberation on the issue of the greenhouse effect is underway in the US and aimed at understanding the size of the problem as well as identifying options for solutions. This paper will review the recent political climate on issues of environment and energy and will include brief descriptions of the recent US Clean Air Act Amendments, the California Clean Air Act, the National Energy Strategy, and the Alternative Motor Fuels Act of 1988. These policies and programs form a backdrop for the additional and more recent challenges brought about by the issue of global warming. To integrate all of these concerns will require complex solutions. First an understanding and discussion of all the options must exist. It is that integration process that is currently underway in the US. The paper will also review the current understanding of greenhouse gas emissions as well as options for mitigating them, especially as related to the transportation sector. 15 refs., 13 figs., 6 tabs.

  18. Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

  19. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 2: Part 4, Transportation sector; Part 5, Forestry sector; Part 6, Agricultural sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This volume, the second of two such volumes, contains sector-specific guidance in support of the General Guidelines for the voluntary reporting of greenhouse gas emissions and carbon sequestration. This voluntary reporting program was authorized by Congress in Section 1605(b) of the Energy Policy Act of 1992. The General Guidelines, bound separately from this volume, provide the overall rationale for the program, discuss in general how to analyze emissions and emission reduction/carbon sequestration projects, and address programmatic issues such as minimum reporting requirements, time parameters, international projects, confidentiality, and certification. Together, the General Guidelines and the guidance in these supporting documents will provide concepts and approaches needed to prepare the reporting forms. This second volume of sector-specific guidance covers the transportation sector, the forestry sector, and the agricultural sector.

  20. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

  1. Greenhouse gas emissions from forest, land use and biomass burning in Tanzania

    SciTech Connect (OSTI)

    Matitu, M.R.

    1994-12-31

    Carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) gases are the main contributors to the greenhouse effect that consequently results in global warming. This paper examines the sources and sinks of these gases from/to forest, land use and biomass burning and their likely contribution to climate change using IPCC/OECD methodology. Emissions have been calculated in mass units of carbon and nitrogen Emissions and uptake have been summed for each gas and the emissions converted to full molecular weights. Mismanagement of forests and land misuse have contributed much to greenhouse gas emissions in Tanzania. For example, cultivation methods, forest clearing, burning of savannah grass and indiscriminate logging (non-sustainable logging) have contributed significantly to greenhouse gas emissions. These categories contribute more than 90% of total CO{sub 2} emissions. However, the study shows that shifting cultivation, savannah burning and forest clearing for conversion to permanent crop land and pasture are the main contributors.

  2. Countryman Well Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Countryman Well Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Countryman Well Greenhouse Low Temperature Geothermal Facility Facility Countryman...

  3. Express Farms Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Express Farms Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Express Farms Greenhouse Low Temperature Geothermal Facility Facility Express Farms...

  4. ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; GREENHOUSES...

    Office of Scientific and Technical Information (OSTI)

    fuel-fired peak heating for geothermal greenhouses Rafferty, K. 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; GREENHOUSES; AUXILIARY HEATING; CAPITALIZED COST; OPERATING...

  5. Investigating and Using Biomass Gases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigating and Using Biomass Gases Grades: 9-12 Topic: Biomass Authors: Eric Benson and Melissa Highfill Owner: National Renewable Energy Laboratory This educational material is...

  6. (Limiting the greenhouse effect)

    SciTech Connect (OSTI)

    Rayner, S.

    1991-01-07

    Traveler attended the Dahlem Research Conference organized by the Freien Universitat, Berlin. The subject of the conference was Limiting the Greenhouse Effect: Options for Controlling Atmospheric CO{sub 2} Accumulation. Like all Dahlem workshops, this was a meeting of scientific experts, although the disciplines represented were broader than usual, ranging across anthropology, economics, international relations, forestry, engineering, and atmospheric chemistry. Participation by scientists from developing countries was limited. The conference was divided into four multidisciplinary working groups. Traveler acted as moderator for Group 3 which examined the question What knowledge is required to tackle the principal social and institutional barriers to reducing CO{sub 2} emissions'' The working rapporteur was Jesse Ausubel of Rockefeller University. Other working groups examined the economic costs, benefits, and technical feasibility of options to reduce emissions per unit of energy service; the options for reducing energy use per unit of GNP; and the significant of linkage between strategies to reduce CO{sub 2} emissions and other goals. Draft reports of the working groups are appended. Overall, the conference identified a number of important research needs in all four areas. It may prove particularly important in bringing the social and institutional research needs relevant to climate change closer to the forefront of the scientific and policy communities than hitherto.

  7. Limiting net greenhouse gas emissions in the United States

    SciTech Connect (OSTI)

    Bradley, R A; Watts, E C; Williams, E R

    1991-09-01

    In 2988 the Congress requested DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. This report presents the results of that study. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity), and the relationship between energy production and use and the emission of radiactively important gases. Topics discussed include: energy and environmental technology to reduce greenhouse gas emissions, fossil energy production and electricity generation technologies, nuclear energy technology, renewable energy technologies, energy storage, transmission, and distribution technology, transportation, technology, industrial technology, residential and commercial building technology, greenhouse gas removal technology, approaches to restructuring the demand for energy.

  8. Energy Market and Economic Impacts Proposal to Reduce Greenhouse Gas Intensity with a Cap and Trade System

    Reports and Publications (EIA)

    2007-01-01

    This report was prepared by the Energy Information Administration (EIA), in response to a September 27, 2006, request from Senators Bingaman, Landrieu, Murkowski, Specter, Salazar, and Lugar. The Senators requested that EIA assess the impacts of a proposal that would regulate emissions of greenhouse gases (GHGs) through an allowance cap-and-trade system. The program would set the cap to achieve a reduction in emissions relative to economic output, or greenhouse gas intensity.

  9. Greenhouse gas reduction strategy: A team approach to resource management

    SciTech Connect (OSTI)

    Ngai, C.C.; Borchert, G.; Ho, K.T.; Lee, S.

    1996-12-31

    In spite of the conflicting evidence of global warming due to greenhouse gas emission, PanCanadian accepts the reduction of greenhouse gas as both a political and environmental reality. While PanCanadian is committed to participate in the government and industry sponsored voluntary climate change challenge, we are also acutely aware of its potential impact on our competitiveness considering our status as a hydrocarbon producer and exporter. This paper describes a multi-discipline team approach to the challenge of reducing greenhouse gas. This includes identification of all greenhouse gas emission sources, listing the opportunities and relative impact of each remedial solution, and estimated cost associated with the reduction. Both immediate solutions and long term strategies are explored. This includes energy conservation, improving process efficiency and promoting environmental training and awareness programs. A number of important issues become evident in greenhouse gas reduction related to the exploration and production of hydrocarbons: depleting pressure and water encroachment in reservoirs; energy required for producing oil as opposed to producing gas; and public perception of flaring as compared with venting. A cost and benefit study of greenhouse gas reduction opportunities in terms of net present values is discussed. This paper describes a process that can be adapted by other producers in managing air emissions.

  10. Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    Denholm, P.

    2007-03-01

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

  11. ,"Virginia Natural Gas Nonhydrocarbon Gases Removed (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Natural Gas Nonhydrocarbon Gases Removed ... 2:52:09 AM" "Back to Contents","Data 1: Virginia Natural Gas Nonhydrocarbon Gases Removed ...

  12. (Limiting the greenhouse effect)

    SciTech Connect (OSTI)

    Fulkerson, W.

    1991-01-10

    The Dahlem Conference on controlling CO{sub 2} in the atmosphere focused on research needs broadly defined. The RD D needs discussed tended to be social-institutional rather than technically oriented perhaps because of the propensity of most attendees, but many important ideas emerged, including those related to questions on technology adoption by both developed, emerging, or transition economics. The European attendees appeared to be strongly devoted to reducing emissions, and doing it soon using efficiency improvement and ultimately renewables. The importance of efficiency improvement was universally accepted, but the extent to which it can be relied upon is a major uncertainty for everyone except the most zealous. There was no detailed discussion of what could be done to encourage the more rapid adoption of renewables. Most attendees seemed to have discounted nuclear, but, at any rate, the problems of reviving nuclear worldwide were not discussed in detail.

  13. Regional respiratory tract absorption of inhaled reactive gases

    SciTech Connect (OSTI)

    Miller, F.J.; Overton, J.H.; Kimbell, J.S.; Russell, M.L.

    1992-06-29

    Highly reactive gases present unique problems due to the number of factors which must be taken into account to determine regional respiratory tract uptake. The authors reviewed some of the physical, chemical, and biological factors that affect dose and that must be understood to interpret toxicological data, to evaluate experimental dosimetry studies, and to develop dosimetry models. Selected dosimetry experiments involving laboratory animals and humans were discussed, showing the variability and uptake according to animal species and respiratory tract region for various reactive gases. New experimental dosimetry approaches, such as those involving isotope ratio mass spectroscopy and cyclotron generation reactive gases, were discussed that offer great promise for improving the ability to study regional respiratory tract absorption of reactive gases. Various dosimetry modeling applications were discussed which demonstrate: the importance of airflow patterns for site-specific dosimetry in the upper respiratory tract, the influence of the anatomical model used to make inter- and intraspecies dosimetric comparisons, the influence of tracheobronchial path length on predicted dose curves, and the implications of ventilatory unit structure and volume on dosimetry and response. Collectively, these examples illustrate important aspects of regional respiratory tract absorption of inhaled reactive gases. Given the complex nature of extent and pattern of injury in the respiratory tract from exposure to reactive gases, understanding interspecies differences in the absorption of reactive gases will continue to be an important area for study.

  14. EIA - Greenhouse Gas Emissions Overview

    Gasoline and Diesel Fuel Update (EIA)

    1. Greenhouse Gas Emissions Overview 1.1 Total emissions Total U.S. anthropogenic (human-caused) greenhouse gas emissions in 2009 were 5.8 percent below the 2008 total (Table 1). The decline in total emissions-from 6,983 million metric tons carbon dioxide equivalent (MMTCO2e) in 2008 to 6,576 MMTCO2e in 2009-was the largest since emissions have been tracked over the 1990-2009 time frame. It was largely the result of a 419-MMTCO2e drop in carbon dioxide (CO2) emissions (7.1 percent). There was a

  15. Method of producing pyrolysis gases from carbon-containing materials

    DOE Patents [OSTI]

    Mudge, Lyle K.; Brown, Michael D.; Wilcox, Wayne A.; Baker, Eddie G.

    1989-01-01

    A gasification process of improved efficiency is disclosed. A dual bed reactor system is used in which carbon-containing feedstock materials are first treated in a gasification reactor to form pyrolysis gases. The pyrolysis gases are then directed into a catalytic reactor for the destruction of residual tars/oils in the gases. Temperatures are maintained within the catalytic reactor at a level sufficient to crack the tars/oils in the gases, while avoiding thermal breakdown of the catalysts. In order to minimize problems associated with the deposition of carbon-containing materials on the catalysts during cracking, a gaseous oxidizing agent preferably consisting of air, oxygen, steam, and/or mixtures thereof is introduced into the catalytic reactor at a high flow rate in a direction perpendicular to the longitudinal axis of the reactor. This oxidizes any carbon deposits on the catalysts, which would normally cause catalyst deactivation.

  16. Method for detecting trace impurities in gases

    DOE Patents [OSTI]

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1981-01-01

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (.about.2 ppm) present in commercial Xe and ppm levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  17. Method for detecting trace impurities in gases

    DOE Patents [OSTI]

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  18. Building and using the solar greenhouse

    SciTech Connect (OSTI)

    1983-01-01

    Thorough directions are given for planning, constructing and using a solar greenhouse attached to a house. Included is a method of calculating the savings accruing from the use of the greenhouse. (LEW)

  19. Investigating and Using Biomass Gases

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students will be introduced to biomass gasification and will generate their own biomass gases. Students generate these everyday on their own and find it quite amusing, but this time they’ll do it by heating wood pellets or wood splints in a test tube. They will collect the resulting gases and use the gas to roast a marshmallow. Students will also evaluate which biomass fuel is the best according to their own criteria or by examining the volume of gas produced by each type of fuel.

  20. Greenhouse Gas Reductions: SF6

    ScienceCinema (OSTI)

    Anderson, Diana

    2013-04-19

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas ? one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  1. Spatial mapping of greenhouse gases using laser absorption spectrometers at local scales of interest

    SciTech Connect (OSTI)

    Dobler, Jeremy

    2015-09-22

    This presentation provides and overview of the development off the GreenLITE system for spatial mapping of atmospheric CO2. The original system was developed for supporting MRV activities for ground carbon storage facilities and has since been expanded to cover larger areas and other applications.

  2. A methodology to estimate greenhouse gases emissions in Life Cycle Inventories of wastewater treatment plants

    SciTech Connect (OSTI)

    Rodriguez-Garcia, G.; Moreira, M.T.

    2012-11-15

    The main objective of this paper is to present the Direct Emissions Estimation Model (DEEM), a model for the estimation of CO{sub 2} and N{sub 2}O emissions from a wastewater treatment plant (WWTP). This model is consistent with non-specific but widely used models such as AS/AD and ASM no. 1 and presents the benefits of simplicity and application over a common WWTP simulation platform, BioWin Registered-Sign , making it suitable for Life Cycle Assessment and Carbon Footprint studies. Its application in a Spanish WWTP indicates direct N{sub 2}O emissions to be 8 times larger than those associated with electricity use and thus relevant for LCA. CO{sub 2} emissions can be of similar importance to electricity-associated ones provided that 20% of them are of non-biogenic origin. - Highlights: Black-Right-Pointing-Pointer A model has been developed for the estimation of GHG emissions in WWTP. Black-Right-Pointing-Pointer Model was consistent with both ASM no. 1 and AS/AD. Black-Right-Pointing-Pointer N{sub 2}O emissions are 8 times more relevant than the one associated with electricity. Black-Right-Pointing-Pointer CO{sub 2} emissions are as important as electricity if 20% of it is non-biogenic.

  3. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coordination. Gases are stored either in the racks between buildings 6 and 7; toxic and corrosive gases are stored in Building 6, room 6C across the walkway from beamline...

  4. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the...

  5. Limiting net greenhouse gas emissions in the United States

    SciTech Connect (OSTI)

    Bradley, R A; Watts, E C; Williams, E R

    1991-09-01

    In 1988, Congress requested that DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity) and the relationship between energy production and use and the emission of radiatively important gases. Topics discussed include: state of the science in estimating atmosphere/climate change relationships, the potential consequences of atmosphere/climate change, us greenhouse emissions past and present, an approach to analyzing the technical potential and cost of reducing US energy-related greenhouse gas emissions, current policy base and National Energy Strategy actions, fiscal instruments, regulatory instruments, combined strategies and instruments, macroeconomic impacts, carbon taxation and international trade, a comparison to other studies.

  6. Method for removing acid gases from a gaseous stream

    DOE Patents [OSTI]

    Gorin, Everett; Zielke, Clyde W.

    1981-01-01

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  7. Nakashima Nurseries Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Facility Nakashima Nurseries Sector Geothermal energy Type Greenhouse Location Coachella, California Coordinates 33.6803003, -116.173894 Show Map Loading map......

  8. Greenhouse Gas Technology Center | Open Energy Information

    Open Energy Info (EERE)

    Name: Greenhouse Gas Technology Center Place: North Carolina Zip: 27709 Product: North Carolina-based partnership focused on environmental technology verification. References:...

  9. SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature...

    Open Energy Info (EERE)

    Geothermal Facility Facility SWTDI Geothermal Aquaculture Facility Sector Geothermal energy Type Greenhouse Location Las Cruces, New Mexico Coordinates 32.3123157,...

  10. Low Temperature Direct Use Greenhouse Geothermal Facilities ...

    Open Energy Info (EERE)

    Low Temperature Direct Use Greenhouse Geothermal Facilities Jump to: navigation, search Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYBR...

  11. ARM - Greenhouse Effect and Global Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListGreenhouse Effect and Global Warming Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students ...

  12. Geothermal greenhouse development | Open Energy Information

    Open Energy Info (EERE)

    LibraryAdd to library Journal Article: Geothermal greenhouse development Author P. J. Lienau Published Journal Geo-Heat Center, 1990 DOI Not Provided Check for DOI...

  13. Idaho National Laboratory's FY13 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2014-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2013 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only the large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  14. Proceedings of the Great Lakes Solar Greenhouse Conference V

    SciTech Connect (OSTI)

    Currin, C.G. (ed.)

    1983-01-01

    Proceedings of the Fifth Great Lakes Greenhouse Conference are presented. Topics included are: a review of a greenhouses, greenhouses as integral part of an earth-sheltered home, solar architecture, design criteria, heat contribution for solar greenhouses, and the future of solar greenhouses.

  15. Proceedings of the Great Lakes Solar Greenhouse Conference V

    SciTech Connect (OSTI)

    Currin, C.G. (ed.)

    1983-01-01

    Proceedings of the Fifth Great Lakes Solar Greenhouse Conference are presented. Topics included are a review of greenhouses, greenhouses as integral part of an earth-sheltered house, solar architecture, design criteria, heat contribution from solar greenhouses, and the future for solar greenhouses.

  16. Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various counties and US cities

    SciTech Connect (OSTI)

    Wang, M.Q.; Marr, W.W.

    1994-02-10

    Electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, we estimate greenhouse gas emission reductions for EVs, including these important aspects. We select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the United States) and analyze greenhouse emission impacts of EVs in each city or country. We also select six driving cycles developed around the world (i.e., the US federal urban driving cycle, the Economic Community of Europe cycle 15, the Japanese 10-mode cycle, the Los Angeles 92 cycle, the New York City cycle, and the Sydney cycle). Note that we have not analyzed EVs in high-speed driving (e.g., highway driving), where the results would be less favorable to EVs; here, EVs are regarded as urban vehicles only. We choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Finally, we estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and powerplant and vehicle operations.

  17. Green Canyon Hot Springs Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Green Canyon Hot Springs Greenhouse Low Temperature Geothermal Facility Facility Green Canyon Hot...

  18. Lake County Ag Park Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Ag Park Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Lake County Ag Park Greenhouse Low Temperature Geothermal Facility Facility Lake County Ag...

  19. Milgro No. 3 Greenhouse Low Temperature Geothermal Facility ...

    Open Energy Info (EERE)

    3 Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Milgro No. 3 Greenhouse Low Temperature Geothermal Facility Facility Milgro No. 3 Sector...

  20. Agriculture and Land Use National Greenhouse Gas Inventory Software...

    Open Energy Info (EERE)

    Agriculture and Land Use National Greenhouse Gas Inventory Software Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Agriculture and Land Use National Greenhouse Gas...

  1. IPCC Guidelines for National Greenhouse Gas Inventories | Open...

    Open Energy Info (EERE)

    Guidelines for National Greenhouse Gas Inventories Jump to: navigation, search Tool Summary Name: IPCC Guidelines for National Greenhouse Gas Inventories AgencyCompany...

  2. Greenhouse Gas Reductions: SF6 | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greenhouse Gas Reductions: SF6 Share Description Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of...

  3. Ethiopia-National Greenhouse Gas Emissions Baseline Scenarios...

    Open Energy Info (EERE)

    National Greenhouse Gas Emissions Baseline Scenarios: Learning from Experiences in Developing Countries Jump to: navigation, search Name Ethiopia-National Greenhouse Gas Emissions...

  4. Managing the National Greenhouse Gas Inventory Process | Open...

    Open Energy Info (EERE)

    Managing the National Greenhouse Gas Inventory Process Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Managing the National Greenhouse Gas Inventory Process Agency...

  5. Big Bend Preventorium Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Big Bend Preventorium Greenhouse Low Temperature Geothermal Facility Facility Big Bend...

  6. EIA Energy Efficiency-Energy Related Greenhouse Gas Emissions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Related Greenhouse Gas Emissions Links Energy Related Greenhouse Gas Emissions Links Posted Date: May 2007 Page Last Modified: September 2010 EIA Links Disclaimer: These pages...

  7. Milgro No. 2 Greenhouse Low Temperature Geothermal Facility ...

    Open Energy Info (EERE)

    Milgro No. 2 Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Milgro No. 2 Greenhouse Low Temperature Geothermal Facility Facility Milgro No. 2...

  8. Regional Greenhouse Gas Initiative Inc RGGI | Open Energy Information

    Open Energy Info (EERE)

    Greenhouse Gas Initiative Inc RGGI Jump to: navigation, search Name: Regional Greenhouse Gas Initiative, Inc (RGGI) Place: New York Zip: NY 10007 Sector: Services Product: New...

  9. Utah Roses Greenhouse Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Roses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Utah Roses Greenhouse Low Temperature Geothermal Facility Facility Utah Roses Sector...

  10. Cal Flint Floral Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Cal Flint Floral Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Cal Flint Floral Greenhouse Low Temperature Geothermal Facility Facility Cal Flint...

  11. Cove Hot Spring Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Cove Hot Spring Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Cove Hot Spring Greenhouse Low Temperature Geothermal Facility Facility Cove Hot...

  12. Hunt Brothers Floral Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Brothers Floral Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Hunt Brothers Floral Greenhouse Low Temperature Geothermal Facility Facility Hunt...

  13. Chico Hot Springs Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Chico Hot Springs Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Chico Hot Springs Greenhouse Low Temperature Geothermal Facility Facility Chico...

  14. Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility Facility...

  15. Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation...

    Open Energy Info (EERE)

    Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation Potential in Agriculture) Jump to: navigation, search Logo: Monitoring and Assessment of Greenhouse Gas...

  16. J & K Growers Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    J & K Growers Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name J & K Growers Greenhouse Low Temperature Geothermal Facility Facility J & K Growers...

  17. Fact #589: September 21, 2009 Proposed Fuel Economy and Greenhouse...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: September 21, 2009 Proposed Fuel Economy and Greenhouse Gas Emissions Standards Fact 589: September 21, 2009 Proposed Fuel Economy and Greenhouse Gas Emissions Standards On ...

  18. Weiser Hot Springs Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Weiser Hot Springs Greenhouse Low Temperature Geothermal Facility Facility Weiser Hot...

  19. White House Announces New Executive Order To Reduce Greenhouse...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    White House Announces New Executive Order To Reduce Greenhouse Gas Emissions in the Federal Government White House Announces New Executive Order To Reduce Greenhouse Gas Emissions ...

  20. Revised Draft Guidance on Consideration of Greenhouse Gas Emissions...

    Energy Savers [EERE]

    Draft Guidance on Consideration of Greenhouse Gas Emissions and Climate Change in NEPA Reviews Revised Draft Guidance on Consideration of Greenhouse Gas Emissions and Climate ...

  1. Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility...

  2. Energy Information Administration--Energy and Greenhouse Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Efficiency > Energy and Greenhouse Gas Analysis Energy and Greenhouse Gas Analysis Posted Date: October 1999 Page Last Modified: August 2007 This section contains analysis covering...

  3. Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Greenhouse Gas Emissions: The Combined Potential of Hybrid Technology and Behavioral Adaptation Title Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

  4. APPARATUS FOR CATALYTICALLY COMBINING GASES

    DOE Patents [OSTI]

    Busey, H.M.

    1958-08-12

    A convection type recombiner is described for catalytically recombining hydrogen and oxygen which have been radiolytically decomposed in an aqueous homogeneous nuclear reactor. The device is so designed that the energy of recombination is used to circulate the gas mixture over the catalyst. The device consists of a vertical cylinder having baffles at its lower enda above these coarse screens having platinum and alumina pellets cemented thereon, and an annular passage for the return of recombined, condensed water to the reactor moderator system. This devicea having no moving parts, provides a simple and efficient means of removing the danger of accumulated hot radioactive, explosive gases, and restoring them to the moderator system for reuse.

  5. ARM - Lesson Plans: Your Own Greenhouse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    When you have a chance to visit some cold countries like New Zealand and some parts of Australia, try to visit a greenhouse and see how its environment is different to that ...

  6. Bibliography of greenhouse-gas reduction strategies

    SciTech Connect (OSTI)

    Tompkins, M.M.; Mintz, M.M.

    1995-03-01

    A bibliography of greenhouse-gas reduction strategies has been compiled to assist the Climate change Action Plan Task Force in their consideration of strategies to reduce greenhouse-gas emissions from personal motor vehicles. The document contains a summary of the literature, including it major directions and implications; and annotated listing of 32 recent pertinent documents; and a listing of a larger group of related reports.

  7. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report

    SciTech Connect (OSTI)

    Cushman, R.M.

    2001-11-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  8. Method of concurrently filtering particles and collecting gases

    DOE Patents [OSTI]

    Mitchell, Mark A; Meike, Annemarie; Anderson, Brian L

    2015-04-28

    A system for concurrently filtering particles and collecting gases. Materials are be added (e.g., via coating the ceramic substrate, use of loose powder(s), or other means) to a HEPA filter (ceramic, metal, or otherwise) to collect gases (e.g., radioactive gases such as iodine). The gases could be radioactive, hazardous, or valuable gases.

  9. Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model

    SciTech Connect (OSTI)

    Greenblatt, Jeffery B.

    2013-10-10

    A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHG- emitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 ?m) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants, targets were less well-defined, but while all three scenarios were able to make significant reductions in ROG, NOx and PM2.5 both statewide and in the two regional air basins, they may nonetheless fall short of what will be required by future federal standards. Specifically, in Scenario 1, regional NOx emissions are approximately three times the estimated targets for both 2023 and 2032, and in Scenarios 2 and 3, NOx emissions are approximately twice the estimated targets. Further work is required in this area, including detailed regional air quality modeling, in order to determine likely pathways for attaining these stringent targets.

  10. The future of energy gases

    SciTech Connect (OSTI)

    Howell, D.G.

    1995-04-01

    Natural gas, mainly methane, produces lower CO {sub 2}, CO, NO{sub x}, SO {sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce each 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the above rates of recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions stemming from the need to drill an enormous number of wells, many in ecologically sensitive areas. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane is known to exist in the mantle and lower crust. Near the Earth`s surface, methane occurs in enormous oil and/or gas reservoirs in rock, and is absorbed in coal, dissolved in water, and trapped in a latticework of ice-like material called gas hydrate. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, methane accounts for roughly 25 percent of current U.S. consumption, but its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.

  11. Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases

    DOE Patents [OSTI]

    Natesan, Krishnamurti (Naperville, IL)

    1992-01-01

    An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9-30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000.degree.-1100.degree. C.

  12. Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases

    DOE Patents [OSTI]

    Natesan, K.

    1992-11-17

    An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9--30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000--1100 C. 7 figs.

  13. Light Collection in Liquid Noble Gases

    SciTech Connect (OSTI)

    McKinsey, Dan [Yale University

    2013-05-29

    Liquid noble gases are increasingly used as active detector materials in particle and nuclear physics. Applications include calorimeters and neutrino oscillation experiments as well as searches for neutrinoless double beta decay, direct dark matter, muon electron conversion, and the neutron electric dipole moment. One of the great advantages of liquid noble gases is their copious production of ultraviolet scintillation light, which contains information about event energy and particle type. I will review the scintillation properties of the various liquid noble gases and the means used to collect their scintillation light, including recent advances in photomultiplier technology and wavelength shifters.

  14. Federal Offshore--Gulf of Mexico Nonhydrocarbon Gases Removed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Referring Pages: Nonhydrocarbon Gases Removed from Natural Gas Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and Production Nonhydrocarbon Gases Removed from ...

  15. Method and apparatus for separating mixtures of gases using an...

    Office of Scientific and Technical Information (OSTI)

    Method and apparatus for separating mixtures of gases using an acoustic wave Title: Method and apparatus for separating mixtures of gases using an acoustic wave A thermoacoustic ...

  16. FLAMMABILITY CHARACTERISTICS OF COMBUSTIBLE GASES AND VAPORS

    Office of Scientific and Technical Information (OSTI)

    ... of escaping gases increased the pressure due to resistance to fluid flow by the obstacle. ... and Volatile Solids. N F P A 325, 60 Battery march St., Boston 10, Mass., 1960, 126 pp. ...

  17. Denitrification of combustion gases. [Patent application

    DOE Patents [OSTI]

    Yang, R.T.

    1980-10-09

    A method for treating waste combustion gas to remove the nitrogen oxygen gases therefrom is disclosed wherein the waste gas is first contacted with calcium oxide which absorbs and chemically reacts with the nitrogen oxide gases therein at a temperature from about 100/sup 0/ to 430/sup 0/C. The thus reacted calcium oxide (now calcium nitrate) is then heated at a temperature range between about 430/sup 0/ and 900/sup 0/C, resulting in regeneration of the calcium oxide and production of the decomposition gas composed of nitrogen and nitrogen oxide gas. The decomposition gases can be recycled to the calcium oxide contacting step to minimize the amount of nitrogen oxide gases in the final product gas.

  18. Biological production of products from waste gases

    DOE Patents [OSTI]

    Gaddy, James L.

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  19. Techno-economic analysis of wood biomass boilers for the greenhouse industry

    SciTech Connect (OSTI)

    Chau, J.; Sowlati, T.; Sokhansanj, Shahabaddine; Bi, X.T.; Preto, F.; Melin, Staffan

    2009-01-01

    The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO2) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas.

  20. Chemical production from industrial by-product gases: Final report

    SciTech Connect (OSTI)

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  1. Secretary Chu Announces $256 Million Investment to Improve the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These technologies can be deployed in industrial and residential settings to improve efficiency, control costs, and limit greenhouse gas emissions - making U.S. industry more ...

  2. Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency

    Broader source: Energy.gov [DOE]

    For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to improve vehicle fuel efficiency, as well as guidance and best practices for each strategy.

  3. Annual Greenhouse Gas and Sustainability Data Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greenhouse Gas and Sustainability Data Report Annual Greenhouse Gas and Sustainability Data Report This Excel workbook (version 6-1) is a tool to use for comprehensive reporting of fiscal year 2015 for energy, costs, square footage, and associated operational data for calculating and reporting greenhouse gas data. This document is to be used by top-tier Federal departments and agencies. This Data Report collects agency-aggregated data necessary for calculating scope 1, 2, and 3 greenhouse gas

  4. Urban Options Solar Greenhouse Demonstration Project. Final report

    SciTech Connect (OSTI)

    Cipparone, L.

    1980-10-15

    The following are included: the design process, construction, thermal performance, horticulture, educational activities, and future plans. Included in appendices are: greenhouse blueprints, insulating curtain details, workshop schedules, sample data forms, summary of performance calculations on the Urban Options Solar Greenhouse, data on vegetable production, publications, news articles on th Solar Greenhouse Project, and the financial statement. (MHR)

  5. SUMMARY GREENHOUSE GAS EMISSIONS DATA WORKSHEET JANUARY 2015 | Department

    Energy Savers [EERE]

    of Energy SUMMARY GREENHOUSE GAS EMISSIONS DATA WORKSHEET JANUARY 2015 SUMMARY GREENHOUSE GAS EMISSIONS DATA WORKSHEET JANUARY 2015 File SUMMARY_GREENHOUSE_GAS_EMISSIONS_DATA_WORKSHEET_JANUARY_2015.xlsx More Documents & Publications Attachment C - Summary GHG Emissions Data FINAL Attachment C Summary GHG Emissions Data FINAL Full Service Leased Space Data Report

  6. Biofuels & Greenhouse Gas Emissions: Myths versus Facts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy myth versus facts about biofuels and greenhouse gas emissions. PDF icon Biofuels & Greenhouse Gas Emissions: Myths versus Facts More Documents & Publications Microsoft Word - 47C468D4-69BA-281F40.doc Biofuels & Greenhouse Gas Emissions: Myths versus Facts

  7. Biofuels & Greenhouse Gas Emissions: Myths versus Facts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy myths versus facts of ethanol and greenhouse gas emissions. PDF icon Biofuels & Greenhouse Gas Emissions: Myths versus Facts More Documents & Publications Biofuels & Greenhouse Gas Emissions: Myths versus Facts Microsoft Word - 47C468D4-69BA-281F40.doc

  8. Idaho National Laboratory’s FY14 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Frerichs, Kimberly Irene

    2015-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2014 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL’s GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL’s organizational boundaries, but are a consequence of INL’s activities). This inventory found that INL generated 73,521 metric tons (MT) of CO2 equivalent (CO2e ) emissions during FY14. The following conclusions were made from looking at the results of the individual contributors to INL’s FY14 GHG inventory: • Electricity (including the associated transmission and distribution losses) is the largest contributor to INL’s GHG inventory, with over 50% of the CO2e emissions • Other sources with high emissions were stationary combustion (facility fuels), employee commuting, mobile combustion (fleet fuels), business air travel, and waste disposal (including fugitive emissions from the onsite landfill and contracted disposal) • Sources with low emissions were wastewater treatment (onsite and contracted), business ground travel (in personal and rental vehicles), and fugitive emissions from refrigerants. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only the large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  9. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the ALS. See Shipping and Receiving for information on any non-gas deliveries. Contacts: Gas purchase or delivery: ALS Receiving, 510-486-4494 Gas use and storage: Experiment Coordination, 510-486-7222, This e-mail address is being protected from spambots. You need JavaScript enabled to view it Gas Storage: Berkeley Lab

  10. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the ALS. See Shipping and Receiving for information on any non-gas deliveries. Contacts: Gas purchase or delivery: ALS Receiving, 510-486-4494 Gas use and storage: Experiment Coordination, 510-486-7222, This e-mail address is being protected from spambots. You need JavaScript enabled to view it Gas Storage: Berkeley Lab

  11. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the ALS. See Shipping and Receiving for information on any non-gas deliveries. Contacts: Gas purchase or delivery: ALS Receiving, 510-486-4494 Gas use and storage: Experiment Coordination, 510-486-7222, This e-mail address is being protected from spambots. You need JavaScript enabled to view it Gas Storage: Berkeley Lab

  12. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the ALS. See Shipping and Receiving for information on any non-gas deliveries. Contacts: Gas purchase or delivery: ALS Receiving, 510-486-4494 Gas use and storage: Experiment Coordination, 510-486-7222, This e-mail address is being protected from spambots. You need JavaScript enabled to view it Gas Storage: Berkeley Lab

  13. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the ALS. See Shipping and Receiving for information on any non-gas deliveries. Contacts: Gas purchase or delivery: ALS Receiving, 510-486-4494 Gas use and storage: Experiment Coordination, 510-486-7222, This e-mail address is being protected from spambots. You need JavaScript enabled to view it Gas Storage: Berkeley Lab

  14. Oxidation of ultrathin GaSe

    SciTech Connect (OSTI)

    Thomas Edwin Beechem; McDonald, Anthony E.; Ohta, Taisuke; Howell, Stephen W.; Kalugin, Nikolai G.; Kowalski, Brian M.; Brumbach, Michael T.; Spataru, Catalin D.; Pask, Jesse A.

    2015-10-26

    Oxidation of exfoliated gallium selenide (GaSe) is investigated through Raman, photoluminescence, Auger, and X-ray photoelectron spectroscopies. Photoluminescence and Raman intensity reductions associated with spectral features of GaSe are shown to coincide with the emergence of signatures emanating from the by-products of the oxidation reaction, namely, Ga2Se3 and amorphous Se. Furthermore, photoinduced oxidation is initiated over a portion of a flake highlighting the potential for laser based patterning of two-dimensional heterostructures via selective oxidation.

  15. Oxidation of ultrathin GaSe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thomas Edwin Beechem; McDonald, Anthony E.; Ohta, Taisuke; Howell, Stephen W.; Kalugin, Nikolai G.; Kowalski, Brian M.; Brumbach, Michael T.; Spataru, Catalin D.; Pask, Jesse A.

    2015-10-26

    Oxidation of exfoliated gallium selenide (GaSe) is investigated through Raman, photoluminescence, Auger, and X-ray photoelectron spectroscopies. Photoluminescence and Raman intensity reductions associated with spectral features of GaSe are shown to coincide with the emergence of signatures emanating from the by-products of the oxidation reaction, namely, Ga2Se3 and amorphous Se. Furthermore, photoinduced oxidation is initiated over a portion of a flake highlighting the potential for laser based patterning of two-dimensional heterostructures via selective oxidation.

  16. The potential for biomass to mitigate greenhouse gas emissions in the Northeastern US. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    Bernow, S.S.; Gurney, K.; Prince, G.; Cyr, M.

    1992-04-01

    This study, for the Northeast Regional Biomass Program (NRBP) of the Coalition of Northeast Governors (CONEG), evaluates the potential for local, state and regional biomass policies to contribute to an overall energy/biomass strategy for the reduction of greenhouse gas releases in the Northeastern United States. Biomass is a conditionally renewable resource that can play a dual role: by reducing emissions of greenhouse gases in meeting our energy needs; and by removing carbon from the atmosphere and sequestering it in standing biomass stocks and long-lived products. In this study we examine the contribution of biomass to the energy system in the Northeast and to the region`s net releases of carbon dioxide and methane, and project these releases over three decades, given a continuation of current trends and policies. We then compare this Reference Case with three alternative scenarios, assuming successively more aggressive efforts to reduce greenhouse gas emissions through strategic implementation of energy efficiency and biomass resources. Finally, we identify and examine policy options for expanding the role of biomass in the region`s energy and greenhouse gas mitigation strategies.

  17. Greenhouse gas emissions trading in U.S. States: observations and lessons from the OTC NOx Budget Program

    SciTech Connect (OSTI)

    Andrew Aulisi; Alexander E. Farrell; Jonathan Pershing; Stacy VanDeveer

    2005-07-01

    A number of U.S. states are considering market-based policies to reduce emissions of greenhouse gases (GHGs). The experience gained from emissions trading for sulfur dioxide and oxides of nitrogen (NOx) offers a useful body of information and data to draw on to design a GHG emissions trading system. This report examines NOx trading under the Ozone Transport Commission (OTC) NOx Budget Program, which resulted principally from the leadership, decisions, and actions by a group of states, ultimately becoming the first multilateral cap-and-trade system for emissions of air pollutants. 72 refs.

  18. Greenhouse Gas Concerns and Power Sector Planning (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Concerns about potential climate change driven by rising atmospheric concentrations of Greenhouse Gases (GHG) have grown over the past two decades, both domestically and abroad. In the United States, potential policies to limit or reduce GHG emissions are in various stages of development at the state, regional, and federal levels. In addition to ongoing uncertainty with respect to future growth in energy demand and the costs of fuel, labor, and new plant construction, U.S. electric power companies must consider the effects of potential policy changes to limit or reduce GHG emissions that would significantly alter their planning and operating decisions. The possibility of such changes may already be affecting planning decisions for new generating capacity.

  19. A comparison of three cap-and-trade market designs and incentives for new technologies to reduce Greenhouse gases

    SciTech Connect (OSTI)

    Van Horn, Andrew; Remedios, Edward

    2008-03-15

    A source-based market design is preferable for its simplicity, lower costs, faster implementation, more accurate tracking and verification, and greater incentives for the adoption of lower-emitting technologies. (author)

  20. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOE Patents [OSTI]

    Turick, Charles E. (Idaho Falls, ID)

    1997-01-01

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases.

  1. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOE Patents [OSTI]

    Turick, C.E.

    1997-06-10

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases. 3 figs.

  2. Refinery Yield of Liquefied Refinery Gases

    U.S. Energy Information Administration (EIA) Indexed Site

    Refinery Yield (Percent) Product: Liquefied Refinery Gases Finished Motor Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Residual Fuel Oil Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes

  3. Glass Membrane For Controlled Diffusion Of Gases

    DOE Patents [OSTI]

    Shelby, James E.; Kenyon, Brian E.

    2001-05-15

    A glass structure for controlled permeability of gases includes a glass vessel. The glass vessel has walls and a hollow center for receiving a gas. The glass vessel contains a metal oxide dopant formed with at least one metal selected from the group consisting of transition metals and rare earth metals for controlling diffusion of the gas through the walls of the glass vessel. The vessel releases the gas through its walls upon exposure to a radiation source.

  4. Method for introduction of gases into microspheres

    DOE Patents [OSTI]

    Hendricks, Charles D.; Koo, Jackson C.; Rosencwaig, Allan

    1981-01-01

    A method for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500.mu. with both thin walls (0.5 to 4.mu.) and thick walls (5 to 20.mu.) that contain various fill gases, such as Ar, Kr, Xe, Br, DT, H.sub.2, D.sub.2, He, N.sub.2, Ne, CO.sub.2, etc. in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace. Almost any gas can be introduced into the inner cavity of a glass microsphere by this method during the formation of the microsphere provided that the gas is diffused into the gel membrane or microsphere prior to its transformation into glass. The process of this invention provides a significant savings of time and related expense of filling glass microspheres with various gases. For example, the time for filling a glass microballoon with 1 atmosphere of DT is reduced from about two hours to a few seconds.

  5. Method for introduction of gases into microspheres

    DOE Patents [OSTI]

    Hendricks, C.D.; Koo, J.C.; Rosencwaig, A.

    A method is described for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500..mu.. with both thin walls (0.5 to 4/sub ..mu../) and thick walls (5 to 20/sub ..mu../) that contain various fill gases, such as Ar, Kr, Xe, Br, D, H/sub 2/, DT, He, N/sub 2/, Ne, CO/sub 2/, etc., in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-form-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace.

  6. Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs

    SciTech Connect (OSTI)

    MaClean, H.L.; Lave, L.B.

    2000-01-15

    The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases could be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency.

  7. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas

    Energy Savers [EERE]

    from the United States | Department of Energy Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States This analysis calculates the life cycle greenhouse gas (GHG) emissions for regional coal and imported natural gas power in Europe and Asia. The primary research questions are as follows: *How does exported liquefied natural gas (LNG) from the U.S. compare

  8. Buildings Greenhouse Gas Mitigation Estimator Worksheet | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Buildings Greenhouse Gas Mitigation Estimator Worksheet Buildings Greenhouse Gas Mitigation Estimator Worksheet Excel tool helps agencies estimate the greenhouse gas (GHG) mitigation reduction from implementing energy efficiency measures across a portfolio of buildings. It is designed to be applied to groups of office buildings. For example, at a program level (regional or site) that can be summarized at the agency level. While the default savings and cost estimates apply to office

  9. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH

    Office of Scientific and Technical Information (OSTI)

    DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012 (Conference) | SciTech Connect GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012 Citation Details In-Document Search Title: GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012 Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions

  10. White House Announces New Executive Order To Reduce Greenhouse Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions in the Federal Government | Department of Energy White House Announces New Executive Order To Reduce Greenhouse Gas Emissions in the Federal Government White House Announces New Executive Order To Reduce Greenhouse Gas Emissions in the Federal Government March 19, 2015 - 2:45pm Addthis The White House today announced that President Obama issued a new executive order that will cut the federal government's greenhouse gas emissions 40% over the next decade (from 2008 levels) and

  11. OPTIMA: Low Greenhouse Gas Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OPTIMA: Low Greenhouse Gas Fuels OPTIMA: Low Greenhouse Gas Fuels Plenary IV: Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines OPTIMA: Low Greenhouse Gas Fuels Blake Simmons, Biofuels Program Lead, Sandia National Laboratories PDF icon simmons_bioenergy_2015.pdf More Documents & Publications Co-Optima Stakeholder Listening Day Summary Report Optima Stakeholder Listening Day Agenda Optima Program Overview

  12. DOE Strengthens Public Registry to Track Greenhouse Gas Emissions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Public Registry to Track Greenhouse Gas Emissions DOE Strengthens Public Registry to Track Greenhouse Gas Emissions April 17, 2006 - 10:20am Addthis Announces Revised Guidelines for U.S. Companies to Report and Register Reductions WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today announced revised guidelines for the department's Voluntary Greenhouse Gas Reporting Program, known as "1605 (b)" that encourage broader reporting of emissions and

  13. DOE Technical Assistance on Greenhouse Gas Reduction Strategies in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Sector | Department of Energy DOE Technical Assistance on Greenhouse Gas Reduction Strategies in the Electric Power Sector DOE Technical Assistance on Greenhouse Gas Reduction Strategies in the Electric Power Sector The U.S. Department of Energy (DOE) will continue to offer analysis and technical support for state, local, tribal and regional planning efforts related to reducing greenhouse gas emissions in the electric power sector. DOE is ready to support state, local, and

  14. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the United States | Department of Energy Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States On May 29, 2014, the Department of Energy's (DOE) Office of Fossil Energy announced the availability for public review and comment the report Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States (LCA GHG Report).

  15. Greenhouse Gas Emissions Reduction Benefits of Workplace Charging |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Greenhouse Gas Emissions Reduction Benefits of Workplace Charging Greenhouse Gas Emissions Reduction Benefits of Workplace Charging Reducing greenhouse gas emissions (GHG) from employees' commutes, also known as Scope 3 emissions, is a top priority for many organizations interested in minimizing their carbon footprint. Scope 3 emissions are indirect GHG emissions from sources not owned or directly controlled by the organization but are related to their activities,

  16. Energy Department Releases New Greenhouse Gas Reporting Guidance, Seeks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Comment | Department of Energy Greenhouse Gas Reporting Guidance, Seeks Public Comment Energy Department Releases New Greenhouse Gas Reporting Guidance, Seeks Public Comment March 22, 2005 - 10:54am Addthis Program Will Ensure Greater Accuracy & Completeness WASHINGTON, D.C. - The U.S. Department of Energy (DOE) today asked for further public comment on its revised guidelines for voluntary reporting of greenhouse gas emissions, sequestration and emission reductions. The program

  17. HYDROGEN GREENHOUSE PLANETS BEYOND THE HABITABLE ZONE

    SciTech Connect (OSTI)

    Pierrehumbert, Raymond; Gaidos, Eric E-mail: gaidos@hawaii.edu

    2011-06-10

    We show that collision-induced absorption allows molecular hydrogen to act as an incondensible greenhouse gas and that bars or tens of bars of primordial H{sub 2}-He mixtures can maintain surface temperatures above the freezing point of water well beyond the 'classical' habitable zone defined for CO{sub 2} greenhouse atmospheres. Using a one-dimensional radiative-convective model, we find that 40 bars of pure H{sub 2} on a three Earth-mass planet can maintain a surface temperature of 280 K out to 1.5 AU from an early-type M dwarf star and 10 AU from a G-type star. Neglecting the effects of clouds and of gaseous absorbers besides H{sub 2}, the flux at the surface would be sufficient for photosynthesis by cyanobacteria (in the G star case) or anoxygenic phototrophs (in the M star case). We argue that primordial atmospheres of one to several hundred bars of H{sub 2}-He are possible and use a model of hydrogen escape to show that such atmospheres are likely to persist further than 1.5 AU from M stars, and 2 AU from G stars, assuming these planets have protecting magnetic fields. We predict that the microlensing planet OGLE-05-390Lb could have retained an H{sub 2}-He atmosphere and be habitable at {approx}2.6 AU from its host M star.

  18. Centre for Energy and Greenhouse Technologies | Open Energy Informatio...

    Open Energy Info (EERE)

    200px Name: Centre for Energy and Greenhouse Technologies Address: 50 Northways Rd, Churchill Victoria 3842, Australia Place: Churchill Victoria, Australia Website:...

  19. Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation...

    Open Energy Info (EERE)

    the MAGHG project is to support developing countries assess and report their greenhouse gas (GHG) emissions from agriculture, including assessment of mitigation options for...

  20. Asia Least-Cost Greenhouse Gas Abatement Study | Open Energy...

    Open Energy Info (EERE)

    Gas Abatement Study Jump to: navigation, search Name Asia Least-Cost Greenhouse Gas Abatement Study (ALGAS) AgencyCompany Organization Global Environment Facility,...

  1. NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...

    Open Energy Info (EERE)

    search Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model AgencyCompany Organization: National Energy Technology...

  2. Navigating the Numbers: Greenhouse Gas Data and International...

    Open Energy Info (EERE)

    Gas Data and International Climate Policy1 Overview "This report examines greenhouse gas (GHG) emissions at the global, national, sectoral, and fuel levels and identifies...

  3. Verifying Greenhouse Gas Emissions: Methods to Support International...

    Open Energy Info (EERE)

    Climate Agreements Jump to: navigation, search Tool Summary Name: Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements AgencyCompany...

  4. Greenhouse Gas Emission Trends and Projections in Europe 2009...

    Open Energy Info (EERE)

    Liechtenstein, Poland and Turkey provided updated information on emission projections and national programmes in 2009." References "Greenhouse Gas Emission Trends and...

  5. Energy Department Releases New Greenhouse Gas Reporting Guidance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    further public comment on its revised guidelines for voluntary reporting of greenhouse ... "These revised guidelines represent another significant step in our broad national effort ...

  6. Greenhouse Gas Emissions from Aviation and Marine Transportation...

    Open Energy Info (EERE)

    and Policies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies...

  7. The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary...

    Open Energy Info (EERE)

    Interface: Spreadsheet Website: www.ghgprotocol.orgcalculation-toolsall-tools Cost: Free References: Stationary Combustion Guidance1 The Greenhouse Gas Protocol tool for...

  8. The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigerati...

    Open Energy Info (EERE)

    Interface: Spreadsheet Website: www.ghgprotocol.orgcalculation-toolsall-tools Cost: Free References: Refrigerant Guide1 The Greenhouse Gas Protocol tool for refrigeration is...

  9. Greenhouse Gas Initiative Scenario Database | Open Energy Information

    Open Energy Info (EERE)

    TOOL Name: Greenhouse Gas Initiative Scenario Database AgencyCompany Organization: Science for Global Insight Sector: Climate, Energy, Land Topics: Baseline projection, GHG...

  10. The Greenhouse Gas Protocol Initiative: Sector Specific Tools...

    Open Energy Info (EERE)

    World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Industry, Greenhouse Gas Phase: Determine Baseline, Evaluate...

  11. Masson Radium Springs Farm Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Temperature Geothermal Facility Facility Masson Radium Springs Farm Sector Geothermal energy Type Greenhouse Location Radium Springs, New Mexico Coordinates 32.501453,...

  12. Doc Cambell's Post Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Facility Doc Cambell's Post Sector Geothermal energy Type Greenhouse Location Las Cruces, New Mexico Coordinates 32.3123157,...

  13. Lightning Dock KGRA, New Mexico's Largest Geothermal Greenhouse...

    Open Energy Info (EERE)

    Greenhouse, Largest Aquaculture Facility, and First Binary Electrical Power Plant Authors J. C. Witcher, J. W. Lund and D. E. Seawright Published Journal Geo-Heat Center Bulletin,...

  14. #AskBerkeleyLab: Jeff Greenblatt Talks Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Greenblatt, Jeff

    2015-02-02

    We received questions from our social media audience around California's goal to dramatically reduce its greenhouse gas emissions by 2030. Berkeley Lab scientist Jeff Greenblatt answers them here.

  15. Greenhouse Gas Training Program for Inventory and Mitigation...

    Open Energy Info (EERE)

    divisionsfuture-perfect Country: South Korea Eastern Asia Language: English References: Greenhouse Gas Training Program for Inventory and Mitigation Modeling1...

  16. Analysis shows greenhouse gas emissions similar for shale, crude...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Wang, Argonne senior scientist and lead on the GREET model Analysis shows greenhouse gas emissions similar for shale, crude oil By Tona Kunz * October 15, 2015 Tweet ...

  17. GTZ-Greenhouse Gas Calculator for Waste Management | Open Energy...

    Open Energy Info (EERE)

    a great part of the national greenhouse gas production, because landfills produce methane which has a particularly strong effect on climate change. Therefore, it is essential...

  18. The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased...

    Open Energy Info (EERE)

    Outputs include: The tool outputs greenhouse gas emissions (carbon dioxide, methane, nitrous oxide, and carbon dioxide equivalent) for each facility as well as total...

  19. The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport...

    Open Energy Info (EERE)

    Outputs include: The tool outputs greenhouse gas emissions (including carbon dioxide, methane, nitrous oxide, carbon dioxide equivalent, and biogenic carbon dioxide) for each...

  20. CEQ Issues Revised Draft Guidance on Consideration of Greenhouse...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revised Draft Guidance on Consideration of Greenhouse Gas Emissions and the Effects of Climate Change in NEPA Reviews CEQ Issues Revised Draft Guidance on Consideration of ...

  1. The Greenhouse Gas Protocol Initiative: Measurement and Estimation...

    Open Energy Info (EERE)

    GHG Emissions AgencyCompany Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Greenhouse Gas Phase:...

  2. Greenhouse Gas Services AES GE EFS | Open Energy Information

    Open Energy Info (EERE)

    Services (AESGE EFS) Place: Arlington, Virginia Zip: 22203-4168 Product: Develop and invest in a range of projects that reduce greenhouse gas emissions that produce verified GHG...

  3. Knowledge Partnership for Measuring Air Pollution and Greenhouse...

    Open Energy Info (EERE)

    Knowledge Partnership for Measuring Air Pollution and Greenhouse Gas Emissions in Asia Jump to: navigation, search Name Knowledge Partnership for Measuring Air Pollution and...

  4. PPPL Wins Department of Energy Award For Reducing Greenhouse...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PPPL) has received a federal Sustainability Award for reducing overall greenhouse ... Members of the PPPL staff were among the 20 recipients of the Sustainability Awards in a ...

  5. High Performance Builder Spotlight: KB Home GreenHouse

    SciTech Connect (OSTI)

    2011-01-01

    Located in the Lake Burden community in Windermere, FL, the KB Home GreenHouse is expected to produce as much energy as it consumes.

  6. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect (OSTI)

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  7. References and Appendices: U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis, November 2012

    Energy Savers [EERE]

    4 U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis REFERENCES AMO (Advanced Manufacturing Office), EERE (Energy Efficiency and Renewable Energy). 2012a. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators. U.S. Department of Energy. http://www1.eere.energy.gov/manufacturing/tech_deployment/pdfs/steam22_backpressure.pdf AMO (Advanced Manufacturing Office), EERE (Energy Efficiency and Renewable Energy). 2012b. Improving Steam System Performance: A

  8. Traveling dark solitons in superfluid Fermi gases

    SciTech Connect (OSTI)

    Liao Renyuan; Brand, Joachim

    2011-04-15

    Families of dark solitons exist in superfluid Fermi gases. The energy-velocity dispersion and number of depleted particles completely determine the dynamics of dark solitons on a slowly varying background density. For the unitary Fermi gas, we determine these relations from general scaling arguments and conservation of local particle number. We find solitons to oscillate sinusoidally at the trap frequency reduced by a factor of 1/{radical}(3). Numerical integration of the time-dependent Bogoliubov-de Gennes equation determines spatial profiles and soliton-dispersion relations across the BEC-BCS crossover, and proves consistent with the scaling relations at unitarity.

  9. Improvements in Measuring Sorption-Induced Strain and Permeability in Coal

    SciTech Connect (OSTI)

    Eric P. Robertson

    2008-10-01

    Total worldwide CBM in-place reserves estimates are between 3500 Tcf and 9500 Tcf. Unminable coal beds have been recommended as good CO2 sequestration sites as the world prepares to sequester large amounts of greenhouse gases. In the U.S., these coal seams have the capacity to adsorb and sequester roughly 50 years of CO2 emissions from all the U.S. coal-fired power plants at todays output rates. The amount and type of gas ad-sorbed in coal has a strong impact on the permeability of the coal seam. An improved mixed gas adsorption iso-therm model based on the extended-Langmuir theory is discussed and is applied to mixed gas sorption-induced strain based on pure gas strain data and a parameter accounting for gas-gas interactions that is independent of the coal substrate. Advantages and disadvantages of using freestanding versus constrained samples for sorption-induced strain measurements are also discussed. A permeability equation used to model laboratory was found to be very accurate when sorption-induced strain was small, but less accurate with higher strain gases.

  10. Study of electron transport in hydrocarbon gases

    SciTech Connect (OSTI)

    Hasegawa, H.; Date, H.

    2015-04-07

    The drift velocity and the effective ionization coefficient of electrons in the organic gases, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, CH{sub 3}OH, C{sub 2}H{sub 5}OH, C{sub 6}H{sub 6}, and C{sub 6}H{sub 5}CH{sub 3}, have been measured over relatively wide ranges of density-reduced electric fields (E/N) at room temperature (around 300?K). The drift velocity was measured, based on the arrival-time spectra of electrons by using a double-shutter drift tube over the E/N range from 300 to 2800 Td, and the effective ionization coefficient (?????) was determined by the steady-state Townsend method from 150 to 3000 Td. Whenever possible, these parameters were compared with those available in the literature. It has been shown that the swarm parameters for these gases have specific tendencies, depending on their molecular configurations.

  11. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions May 2005 Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions Norman Brinkman, General Motors Corporation Michael Wang, Argonne National Laboratory Trudy Weber, General Motors Corporation Thomas Darlington, Air Improvement Resource, Inc. May

  12. Effect of Noble Gases on Sonoluminescence Temperatures during Multibubble

    Office of Scientific and Technical Information (OSTI)

    Cavitation (Journal Article) | SciTech Connect Effect of Noble Gases on Sonoluminescence Temperatures during Multibubble Cavitation Citation Details In-Document Search Title: Effect of Noble Gases on Sonoluminescence Temperatures during Multibubble Cavitation Sonoluminescence spectra were collected from Cr(CO){sub 6} solutions in octanol and dodecane saturated with various noble gases. The emission from excited-state metal atoms serves as an internal thermometer of cavitation. The intensity

  13. Deviation from the Knudsen law on quantum gases

    SciTech Connect (OSTI)

    Babac, Gulru

    2014-12-09

    Gas flow in micro/nano scale systems has been generally studied for the Maxwell gases. In the limits of very low temperature and very confined domains, the Maxwellian approximation can break down and the quantum character of the gases becomes important. In these cases, Knudsen law, which is one of the important equations to analyze rarefied gas flows is invalid and should be reanalyzed for quantum gases. In this work, the availability of quantum gas conditions in the high Knudsen number cases is discussed and Knudsen law is analyzed for quantum gases.

  14. Test Results For Physical Separation Of Tritium From Noble Gases...

    Office of Environmental Management (EM)

    Test Results For Physical Separation Of Tritium From Noble Gases And It's Implications For Sensitivity And Accuracy In Air And Stack Monitoring Test Results For Physical Separation ...

  15. BOC Lienhwa Industrial Gases BOCLH | Open Energy Information

    Open Energy Info (EERE)

    Lienhwa Industrial Gases (BOCLH) Place: Taipei, Taiwan Sector: Solar Product: BOCLH is a joint venture between the Lien Hwa Industrial Corporation and the BOC Group in the United...

  16. Removal of mercury from waste gases

    SciTech Connect (OSTI)

    Muster, U.; Marr, R.; Pichler, G.; Kremshofer, S.; Wilferl, R.; Draxler, J.

    1996-12-31

    Waste and process gases from thermal power, incineration and metallurgical plants or those from cement and alkali chloride industries contain metallic, inorganic and organic mercury. Widespread processes to remove the major amount of mercury are absorption and adsorption. Caused by the lowering of the emission limit from 200 to 50 {mu}g/m{sup 3} [STP] by national and European legislators, considerable efforts were made to enhance the efficiency of the main separation units of flue gas cleaning plants. Specially impregnated ceramic carriers can be used for the selective separation of metallic, inorganic and organic mercury. Using the ceramic reactor removal rates lower than 5 {mu}g/m{sup 3} [STP] of gaseous mercury and its compounds can be achieved. The ceramic reactor is active, regenerable and stable for a long term operation. 4 refs., 7 figs.

  17. Fact #879: June 29, 2015 Greenhouse Gas Abatement Costs forEmployer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: June 29, 2015 Greenhouse Gas Abatement Costs for Employer-Subsidized Commuting Options Fact 879: June 29, 2015 Greenhouse Gas Abatement Costs for Employer-Subsidized Commuting ...

  18. U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis...

    Office of Environmental Management (EM)

    Manufacturing Energy Use and Greenhouse Gas Emissions Analysis U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis thumbenergyuselossemissionslg.gif How...

  19. Estonian greenhouse gas emissions inventory report

    SciTech Connect (OSTI)

    Punning, J.M.; Ilomets, M.; Karindi, A.; Mandre, M.; Reisner, V.; Martins, A.; Pesur, A.; Roostalu, H.; Tullus, H.

    1996-07-01

    It is widely accepted that the increase of greenhouse gas concentrations in the atmosphere due to human activities would result in warming of the Earth`s surface. To examine this effect and better understand how the GHG increase in the atmosphere might change the climate in the future, how ecosystems and societies in different regions of the World should adapt to these changes, what must policymakers do for the mitigation of that effect, the worldwide project within the Framework Convention on Climate Change was generated by the initiative of United Nations. Estonia is one of more than 150 countries, which signed the Framework Convention on Climate Change at the United Nations Conference on Environment and Development held in Rio de Janeiro in June 1992. In 1994 a new project, Estonian Country Study was initiated within the US Country Studies Program. The project will help to compile the GHG inventory for Estonia, find contemporary trends to investigate the impact of climate change on the Estonian ecosystems and economy and to formulate national strategies for Estonia addressing to global climate change.

  20. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

  1. Interagency Pilot of Greenhouse Gas Accounting Tools: Lessons Learned

    SciTech Connect (OSTI)

    Carpenter, A.; Hotchkiss, E.; Kandt, A.

    2013-02-01

    The Greater Yellowstone Area (GYA) and Tongass National Forest (Tongass) partnered with the National Renewable Energy Laboratory (NREL) to conduct a pilot study of three greenhouse gas (GHG) inventorying tools.

  2. Single particle density of trapped interacting quantum gases

    SciTech Connect (OSTI)

    Bala, Renu; Bosse, J.; Pathak, K. N.

    2015-05-15

    An expression for single particle density for trapped interacting gases has been obtained in first order of interaction using Greens function method. Results are easily simplified for homogeneous quantum gases and are found to agree with famous results obtained by Huang-Yang-Luttinger and Lee-Yang.

  3. Energy Lab Sets Aggressive Greenhouse Gas Reduction Goal - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Energy Lab Sets Aggressive Greenhouse Gas Reduction Goal NREL pledges to cut carbon footprint, impact on environment by 75 percent December 4, 2007 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has pledged to reduce its greenhouse gas emissions by 75 percent from 2005 to 2009. The new goal is part of NREL's participation in the Environmental Protection Agency's (EPA) Climate Leaders program and was announced at the Climate Leaders meeting in Boulder, Colo.,

  4. DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    through Deployment of Advanced Technology | Department of Energy Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology September 22, 2005 - 10:45am Addthis WASHINGTON, DC - The Department of Energy today released for public review and comment a plan for accelerating the development and reducing the cost of new and advanced

  5. DOE Seeks Industry Proposals for Feasibility Study to Produce Greenhouse

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas-Free Hydrogen at Existing Nuclear Power Plants | Department of Energy Proposals for Feasibility Study to Produce Greenhouse Gas-Free Hydrogen at Existing Nuclear Power Plants DOE Seeks Industry Proposals for Feasibility Study to Produce Greenhouse Gas-Free Hydrogen at Existing Nuclear Power Plants April 13, 2006 - 10:19am Addthis WASHINGTON, DC - In support of President Bush's Advanced Energy Initiative (AEI), Secretary of Energy Samuel W. Bodman today announced that the U.S. Department

  6. First Direct Observation of Carbon Dioxide's Increasing Greenhouse Effect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Earth's Surface First Direct Observation of Carbon Dioxide's Increasing Greenhouse Effect at Earth's Surface First Direct Observation of Carbon Dioxide's Increasing Greenhouse Effect at Earth's Surface Researchers Link Rising CO₂ Levels from Fossil Fuels to Radiative Forcing February 25, 2015 Contact: Dan Krotz, dakrotz@lbl.gov, 510-486-4019 ARM Alaska Caption: The scientists used incredibly precise spectroscopic instruments at two sites operated by the Department of Energy's

  7. Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Reductions - Case Study, 2013 | Department of Energy Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study, 2013 Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study, 2013 BroadRock Renewables LLC, in collaboration with DCO Energy, operates combined cycle electric generating plants at the Central Landfill in Johnston, Rhode Island, and Olinda Alpha Landfill in Brea, California. The Rhode

  8. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect (OSTI)

    Curran, Scott; Theiss, Timothy J; Bunce, Michael

    2012-01-01

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  9. Raman Scattering Sensor for On-Line Monitoring of Amines and Acid Gases

    SciTech Connect (OSTI)

    Uibel, Rory; Smith, Lee

    2010-05-20

    Sulfur and CO2 removal from hydrocarbon streams and power plant effluents are a major problem. The sulfur is normally in the form of H2S. These two acid gases are scrubbed using aqueous amine solutions that are difficult to control with conventional technology. Process Instruments Inc. developed Raman scattering technology for on-line, real-time monitoring of amine streams to improve their efficiency in scrubbing H2S and CO2 from hydrocarbon streams and power plant effluents. Improved control of amine and acid gas concentrations will allow refineries, natural gas processes and power plants to more efficiently scrub Sulfur and CO2, saving energy, time and financial resources.

  10. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    SciTech Connect (OSTI)

    Mills, Evan

    2009-07-16

    The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the energy savings. Commissioning also improves worker comfort, mitigates indoor air quality problems

  11. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios

    SciTech Connect (OSTI)

    Gernaat, David; Calvin, Katherine V.; Lucas, Paul; Luderer, Gunnar; Otto, Sander; Rao, Shilpa; Strefler, Jessica; Van Vuuren, Detlef

    2015-07-01

    The combined 2010 emissions of methane (CH4), nitrous oxide (N2O) and the fluorinated gasses (F-gas) account for about 20-30% of total emissions and about 30% of radiative forcing. At the moment, most studies looking at reaching ambitious climate targets project the emission of carbon dioxide (CO2) to be reduced to zero (or less) by the end of the century. As for non-CO2 gases, the mitigation potential seem to be more constrained, we find that by the end of the century in the current deep mitigation scenarios non-CO2 emissions could form the lion’s share of remaining greenhouse gas emissions. In order to support effective climate policy strategies, in this paper we provide a more in-depth look at the role of non-CO2¬ emission sources (CH4, N2O and F-gases) in achieving deep mitigation targets (radiative forcing target of 2.8 W/m2 in 2100). Specifically, we look at the sectorial mitigation potential and the remaining non-CO2 emissions. By including a set of different models, we provide some insights into the associated uncertainty. Most of the remaining methane emissions in 2100 in the climate mitigation scenario come from the livestock sector. Strong reductions are seen in the energy supply sector across all models. For N2O, less reduction potential is seen compared to methane and the sectoral differences are larger between the models. The paper shows that the assumptions on remaining non-CO2 emissions are critical for the feasibility of reaching ambitious climate targets and the associated costs.

  12. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOE Patents [OSTI]

    Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

    1998-01-13

    Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.

  13. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOE Patents [OSTI]

    Mollot, Darren J.; Bonk, Donald L.; Dowdy, Thomas E.

    1998-01-01

    Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

  14. Cryogenic method for measuring nuclides and fission gases

    DOE Patents [OSTI]

    Perdue, P.T.; Haywood, F.F.

    1980-05-02

    A cryogenic method is provided for determining airborne gases and particulates from which gamma rays are emitted. A special dewar counting vessel is filled with the contents of the sampling flask which is immersed in liquid nitrogen. A vertically placed sodium-iodide or germanium-lithium gamma-ray detector is used. The device and method are of particular use in measuring and identifying the radioactive noble gases including emissions from coal-fired power plants, as well as fission gases released or escaping from nuclear power plants.

  15. Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    Broader source: Energy.gov [DOE]

    Numerous transportation strategies are directed at reducing energy use and greenhouse gas (GHG) emissions by changing the behavior of individual drivers or travelers. These behavioral changes may have the effect of reducing travel, shifting travel to more efficient modes, or improving the efficiency of existing travel. Since the 1970s, federal, regional, state and municipal agencies have tried to reduce energy use, emissions, and congestion by influencing travel behavior. This report reviews and summarizes the literature on relationships between these strategies and transportation-related energy use and GHG emissions to examine how changes to travel behavior can reduce transportation energy use and discuss the potential for federal actions to affect travel behavior.

  16. Process for the removal of acid forming gases from exhaust gases

    DOE Patents [OSTI]

    Chang, Shih-Ger; Liu, David K.

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. are attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO and SO.sub.2 can be removed in an economic fashion.

  17. Process for the removal of acid forming gases from exhaust gases

    DOE Patents [OSTI]

    Chang, S.G.; Liu, D.K.

    1992-11-17

    Exhaust gases are treated to remove NO or NO[sub x] and SO[sub 2] by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50 C is attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO[sub x] and SO[sub 2], alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO[sub x] and SO[sub 2] can be removed in an economic fashion. 9 figs.

  18. Assessment of well-to-wheel energy use and greenhouse gas emissions of Fischer-Tropsch diesel.

    SciTech Connect (OSTI)

    Wang, M.

    2001-12-13

    The middle distillate fuel produced from natural gas (NG) via the Fischer-Tropsch (FT) process has been proposed as a motor fuel for compression-ignition (CI) engine vehicles. FT diesel could help reduce U.S. dependence on imported oil. The U.S. Department of Energy (DOE) is evaluating the designation of FT diesel as an alternative motor fuel under the 1992 Energy Policy Act (EPACT). As part of this evaluation, DOE has asked the Center for Transportation Research at Argonne National Laboratory to conduct an assessment of well-to-wheels (WTW) energy use and greenhouse gas (GHG) emissions of FT diesel compared with conventional motor fuels (i.e., petroleum diesel). For this assessment, we applied Argonne's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model to conduct WTW analysis of FT diesel and petroleum diesel. This report documents Argonne's assessment. The results are presented in Section 2. Appendix A describes the methodologies and assumptions used in the assessment.

  19. Greenhouse Gas Emissions from U.S. Hydropower Reservoirs: FY2011 Annual Progress Report

    SciTech Connect (OSTI)

    Stewart, Arthur J; Mosher, Jennifer J; Mulholland, Patrick J; Fortner, Allison M; Phillips, Jana Randolph; Bevelhimer, Mark S

    2012-05-01

    The primary objective of this study is to quantify the net emissions of key greenhouse gases (GHG) - notably, CO{sub 2} and CH{sub 4} - from hydropower reservoirs in moist temperate areas within the U.S. The rationale for this objective is straightforward: if net emissions of GHG can be determined, it would be possible to directly compare hydropower to other power-producing methods on a carbon-emissions basis. Studies of GHG emissions from hydropower reservoirs elsewhere suggest that net emissions can be moderately high in tropical areas. In such areas, warm temperatures and relatively high supply rates of labile organic matter can encourage high rates of decomposition, which (depending upon local conditions) can result in elevated releases of CO{sub 2} and CH{sub 4}. CO{sub 2} and CH{sub 4} emissions also tend to be higher for younger reservoirs than for older reservoirs, because vegetation and labile soil organic matter that is inundated when a reservoir is created can continue to decompose for several years (Galy-Lacaux et al. 1997, Barros et al. 2011). Water bodies located in climatically cooler areas, such as in boreal forests, could be expected to have lower net emissions of CO{sub 2} and CH{sub 4} because their organic carbon supplies tend to be relatively recalcitrant to microbial action and because cooler water temperatures are less conducive to decomposition.

  20. Helium Isotopes In Geothermal And Volcanic Gases Of The Western...

    Open Energy Info (EERE)

    isotope ratios in gases of thirty hot springs and geothermal wells and of five natural gas wells in the western United States show no relationship to regional conductive heat...

  1. Method for monitoring stack gases for uranium activity

    DOE Patents [OSTI]

    Beverly, Claude R.; Ernstberger, Harold G.

    1988-01-01

    A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

  2. Method for monitoring stack gases for uranium activity

    DOE Patents [OSTI]

    Beverly, C.R.; Ernstberger, E.G.

    1985-07-03

    A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

  3. Geochemical Data on Waters, Gases, Scales, and Rocks from the...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley Region, Nevada (1996-1999)...

  4. METHOD FOR PUMPING GASES AT LOW VACUUM PRESSURES

    DOE Patents [OSTI]

    Milleron, N.

    1962-06-01

    A method is given for pumping overpressure "pulses" or "bursts" of gases without a significant rise in base pressure within a "gettering-type" vacuum pump having surfaces within the pumping cavity coated with or comprising clean gettering metal, e.g., Mo or Ta. The cavity is first pumped down by any convenient means to an equilibrium base pressure in the range desired, generally below 10/sup -6/ mm Hg. At this pressure, the metal immediately adsorbs overpressures or "bursts" of gases striking same with thermal motion without raising the base pressure significantiy. Desorption takes place at an equilibrium rate which, of course, is dependent upon the equilibrium pressure, and such desorbed gases are continuously removed by diffuaion pump or other pumping, whereby said overpressures or "bursts" of gases are removed without a rise in the equilibrium pressure and/or back diffusion of the gaseous pulse from the pumping cavity. (AEC)

  5. Biological production of ethanol from waste gases with Clostridium ljungdahlii

    DOE Patents [OSTI]

    Gaddy, James L.

    2000-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products is disclosed. The method includes introducing the waste gases into a bioreactor where they are fermented to various product, such as organic acids, alcohols H.sub.2, SCP, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  6. New model more accurately tracks gases for underground nuclear explosion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detection Model tracks gases for underground nuclear explosion detection New model more accurately tracks gases for underground nuclear explosion detection Scientists have developed a new, more thorough method for detecting underground nuclear explosions by coupling two fundamental elements-seismic models with gas-flow models. December 17, 2015 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and

  7. Phase Imprinting in Equilibrating Fermi Gases: The Transience of Vortex

    Office of Scientific and Technical Information (OSTI)

    Rings and Other Defects (Journal Article) | DOE PAGES Phase Imprinting in Equilibrating Fermi Gases: The Transience of Vortex Rings and Other Defects « Prev Next » Title: Phase Imprinting in Equilibrating Fermi Gases: The Transience of Vortex Rings and Other Defects Authors: Scherpelz, Peter ; Padavić, Karmela ; Rançon, Adam ; Glatz, Andreas ; Aranson, Igor S. ; Levin, K. Publication Date: 2014-09-16 OSTI Identifier: 1180434 Type: Publisher's Accepted Manuscript Journal Name: Physical

  8. Phase Imprinting in Equilibrating Fermi Gases: The Transience of Vortex

    Office of Scientific and Technical Information (OSTI)

    Rings and Other Defects (Journal Article) | SciTech Connect Phase Imprinting in Equilibrating Fermi Gases: The Transience of Vortex Rings and Other Defects Citation Details In-Document Search Title: Phase Imprinting in Equilibrating Fermi Gases: The Transience of Vortex Rings and Other Defects Authors: Scherpelz, Peter ; Padavić, Karmela ; Rançon, Adam ; Glatz, Andreas ; Aranson, Igor S. ; Levin, K. Publication Date: 2014-09-16 OSTI Identifier: 1180434 Type: Publisher's Accepted Manuscript

  9. Process for removal of carbonyl sulfide in liquified hydrocarbon gases with absorption of acid gases

    SciTech Connect (OSTI)

    Beavon, D.K.; Mackles, M.

    1980-11-11

    Liquified hydrocarbon gases containing at least carbonyl sulfide as an impurity are purified by intimately mixing the liquified hydrocarbon gas with an aqueous absorbent for hydrogen sulfide in a hydrolysis zone maintained at a temperature and a pressure sufficient to maintain the liquified hydrocarbon gas in the liquid state and hydrolyze the carbonyl sulfide to hydrogen sulfide and carbon dioxide. The liquified hydrocarbon gas containing at least a portion of the formed carbonyl sulfide and carbon dioxide is separated from the liquid absorbent and passed to an absorption zone where it is contacted with a liquid hydrogen sulfide absorbent where at least the formed hydrogen sulfide is separated from the liquified petroleum gas. A stage of absorption of at least hydrogen sulfide may proceed mixing of the liquified hydrocarbon gas with the absorbent in the hydrolysis reaction zone. The absorbent employed does not combine irreversibly with carbonyl sulfide, hydrogen sulfide, and carbon dioxide, and preferably is an aqueous solution of diethanolamine.

  10. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOE Patents [OSTI]

    Gross, Kenneth C.; Markun, Francis; Zawadzki, Mary T.

    1998-01-01

    An apparatus and method for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir.

  11. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOE Patents [OSTI]

    Gross, K.C.; Markun, F.; Zawadzki, M.T.

    1998-04-28

    An apparatus and method are disclosed for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir. 6 figs.

  12. Process for the removal of acid forming gases from exhaust gases and production of phosphoric acid

    DOE Patents [OSTI]

    Chang, Shih-Ger; Liu, David K.

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorous preferably in a wet scrubber. The addition of yellow phosphorous in the system induces the production of O.sub.3 which subsequently oxidizes NO to NO.sub.2. The resulting NO.sub.2 dissolves readily and can be reduced to form ammonium ions by dissolved SO.sub.2 under appropriate conditions. In a 20 acfm system, yellow phosphorous is oxidized to yield P.sub.2 O.sub.5 which picks up water to form H.sub.3 PO.sub.4 mists and can be collected as a valuable product. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, better than 90% of SO.sub.2 and NO in simulated flue gas can be removed. Stoichiometric ratios (P/NO) ranging between 0.6 and 1.5 were obtained.

  13. Photosensitive dopants for liquid noble gases

    DOE Patents [OSTI]

    Anderson, David F.

    1988-01-01

    In an ionization type detector for high energy radiation wherein the energy of incident radiation is absorbed through the ionization of a liquid noble gas and resulting free charge is collected to form a signal indicative of the energy of the incident radiation, an improvement comprising doping the liquid noble gas with photosensitive molecules to convert scintillation light due to recombination of ions, to additional free charge.

  14. Enhancement of NMR and MRI in the presence of hyperpolarized noble gases

    DOE Patents [OSTI]

    Pines, Alexander; Budinger, Thomas; Navon, Gil; Song, Yi-Qiao; Appelt, Stephan; Bifone, Angelo; Taylor, Rebecca; Goodson, Boyd; Seydoux, Roberto; Room, Toomas; Pietrass, Tanja

    2004-11-16

    The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.

  15. Fossil fuel-fired peak heating for geothermal greenhouses

    SciTech Connect (OSTI)

    Rafferty, K.

    1997-01-01

    Greenhouses are a major application of low-temperature geothermal resources. In virtually all operating systems, the geothermal fluid is used in a hot water heating system to meet 100% of both the peak and annual heating requirements of the structure. This strategy is a result of the relatively low costs associated with the development of most US geothermal direct-use resources and past tax credit programs which penalized systems using any conventional fuel sources. Increasingly, greenhouse operations will encounter limitations in available geothermal resource flow due either to production or disposal considerations. As a result, it will be necessary to operate additions at reduced water temperatures reflective of the effluent from the existing operations. Water temperature has a strong influence on heating system design. Greenhouse operators tend to have unequivocal preferences regarding heating system equipment. Many growers, particularly cut flower and bedding plant operators, prefer the {open_quotes}bare tube{close_quotes} type heating system. This system places small diameter plastic tubes under the benches or adjacent to the plants. Hot water is circulated through the tubes providing heat to the plants and the air in the greenhouse. Advantages include the ability to provide the heat directly to the plants, low cost, simple installation and the lack of a requirement for fans to circulate air. The major disadvantage of the system is poor performance at low (<140{degrees}F) water temperatures, particularly in cold climates. Under these conditions, the quantity of tubing required to meet the peak heating load is substantial. In fact, under some conditions, it is simply impractical to install sufficient tubing in the greenhouse to meet the peak heating load.

  16. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Presented at ...

  17. Overview of the United States Department of Energy's ARM (Atmospheric...

    Office of Scientific and Technical Information (OSTI)

    of regional, and long-term climate change in response to increasing greenhouse gases. ... This effort will support the continued and rapid improvement of GCM predictive capability. ...

  18. Audit Report: IG-0812 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy (Department) to guarantee loans for new or significantly improved energy production technologies that avoid, reduce, or sequester air pollutants and other greenhouse gases. ...

  19. Metallic Membrane Materials Development for Hydrogen Production...

    Office of Scientific and Technical Information (OSTI)

    PRODUCTION; GREENHOUSE GASES The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High tech job creation; and...

  20. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    PRODUCTION; GREENHOUSE GASES",,"The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High tech job creation; and...

  1. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    PROCESSING PRODUCTION GREENHOUSE GASES The goals of Office of Clean Coal are Improved energy security Reduced green house gas emissions High tech job creation and Reduced...

  2. IMPACTS: Industrial Technologies Program, Summary of Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Because energy is an important input for many of the nation's key manufacturing ... greenhouse gases, and other emissions and will improve productivity per unit of output. ...

  3. Hard probes of strongly-interacting atomic gases

    SciTech Connect (OSTI)

    Nishida, Yusuke

    2012-06-18

    We investigate properties of an energetic atom propagating through strongly interacting atomic gases. The operator product expansion is used to systematically compute a quasiparticle energy and its scattering rate both in a spin-1/2 Fermi gas and in a spinless Bose gas. Reasonable agreement with recent quantum Monte Carlo simulations even at a relatively small momentum k/kF > 1.5 indicates that our large-momentum expansions are valid in a wide range of momentum. We also study a differential scattering rate when a probe atom is shot into atomic gases. Because the number density and current density of the target atomic gas contribute to the forward scattering only, its contact density (measure of short-range pair correlation) gives the leading contribution to the backward scattering. Therefore, such an experiment can be used to measure the contact density and thus provides a new local probe of strongly interacting atomic gases.

  4. U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Manufacturing Energy Use and Greenhouse Gas Emissions Analysis U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis thumb_energyuse_loss_emissions_lg.gif How effectively is energy used in U.S. manufacturing? How much greenhouse gas (GHG) is emitted from combustion in manufacturing operations? The U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis from the Oak Ridge National Laboratory traces energy from supply (fuel, electricity, and

  5. Statement from U.S. Energy Secretary Moniz on Mexico's Greenhouse Gas Emissions Targets

    Broader source: Energy.gov [DOE]

    Secretary Moniz welcomes the announcement by the Government of Mexico on new greenhouse gas emissions reduction targets.

  6. Radiolytic and thermal generation of gases from Hanford grout samples

    SciTech Connect (OSTI)

    Meisel, D.; Jonah, C.D.; Kapoor, S.; Matheson, M.S.; Mulac, W.A.

    1993-10-01

    Gamma irradiation of WHC-supplied samples of grouted Tank 102-AP simulated nonradioactive waste has been carried out at three dose rates, 0.25, 0.63, and 130 krad/hr. The low dose rate corresponds to that in the actual grout vaults; with the high dose rate, doses equivalent to more than 40 years in the grout vault were achieved. An average G(H{sub 2}) = 0.047 molecules/100 eV was found, independent of dose rate. The rate of H2 production decreases above 80 Mrad. For other gases, G(N{sub 2}) = 0.12, G(O{sub 2}) = 0.026, G(N{sub 2}O) = 0.011 and G(CO) = 0.0042 at 130 krad/hr were determined. At lower dose rates, N{sub 2} and O{sub 2} could not be measured because of interference by trapped air. The value of G(H{sub 2}) is higher than expected, suggesting segregation of water from nitrate and nitrite salts in the grout. The total pressure generated by the radiolysis at 130 krad/h has been independently measured, and total amounts of gases generated were calculated from this measurement. Good agreement between this measurement and the sum of all the gases that were independently determined was obtained. Therefore, the individual gas measurements account for most of the major components that are generated by the radiolysis. At 90 {degree}C, H{sub 2}, N{sub 2}, and N{sub 2}O were generated at a rate that could be described by exponential formation of each of the gases. Gases measured at the lower temperatures were probably residual trapped gases. An as yet unknown product interfered with oxygen determinations at temperatures above ambient. The thermal results do not affect the radiolytic findings.

  7. U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas intensity by 18% over the 2002 to 2012 time frame. For the purposes of the initiative, greenhouse gas intensity is defined as the ratio of total U.S. greenhouse gas emissions to economic output.

  8. Removal of sulfur and nitrogen containing pollutants from discharge gases

    DOE Patents [OSTI]

    Joubert, James I.

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  9. Other States Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Other States Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 NA NA NA NA NA NA NA NA NA NA NA NA 1997 513 491 515 539 557 534 541 579 574 585 558 573 1998 578 536 591 581 517 456 486 486 471 477 457 468 1999 466 438 489 495 499 510 547 557 544 555 541 579 2000 587 539 605 587 615 570 653 629 591 627 609 611 2001 658 591 677 690 718 694 692 679

  10. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOE Patents [OSTI]

    Senum, Gunnar I. (Patchogue, NY); Dietz, Russell N. (Patchogue, NY)

    1994-01-01

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons.

  11. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOE Patents [OSTI]

    Senum, G.I.; Dietz, R.N.

    1994-04-05

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons. 8 figures.

  12. Methods, systems, and devices for deep desulfurization of fuel gases

    DOE Patents [OSTI]

    Li, Liyu; King, David L.; Liu, Jun; Huo, Qisheng

    2012-04-17

    A highly effective and regenerable method, system and device that enables the desulfurization of warm fuel gases by passing these warm gasses over metal-based sorbents arranged in a mesoporous substrate. This technology will protect Fischer-Tropsch synthesis catalysts and other sulfur sensitive catalysts, without drastic cooling of the fuel gases. This invention can be utilized in a process either alone or alongside other separation processes, and allows the total sulfur in such a gas to be reduced to less than 500 ppb and in some instances as low as 50 ppb.

  13. Idaho National Laboratorys FY09 & FY10 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2011-06-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2009 and 2010 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL's GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries, but are a consequence of INL's activities). This inventory found that INL generated 103,590 and 102,413 MT of CO2-equivalent emissions during FY09 and FY10, respectively. The following conclusions were made from looking at the results of the individual contributors to INL's FY09 and FY10 GHG inventories: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  14. Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

    2005-03-30

    The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

  15. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-08-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.

  16. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-05-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and construction of the west-side 6-acre anaerobic cell is nearly complete with only the liquid addition system remaining. The current project status and preliminary monitoring results are summarized in this report.

  17. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-12-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.

  18. Curbing Air Pollution and Greenhouse Gas Emissions from Industrial Boilers in China

    SciTech Connect (OSTI)

    Shen, Bo; Price, Lynn K; Lu, Hongyou; Liu, Xu; Tsen, Katherine; Xiangyang, Wei; Yunpeng, Zhang; Jian, Guan; Rui, Hou; Junfeng, Zhang; Yuqun, Zhuo; Shumao, Xia; Yafeng, Han; Manzhi, Liu

    2015-10-28

    China’s industrial boiler systems consume 700 million tons of coal annually, accounting for 18% of the nation’s total coal consumption. Together these boiler systems are one of the major sources of China’s greenhouse gas (GHG) emissions, producing approximately 1.3 gigatons (Gt) of carbon dioxide (CO2) annually. These boiler systems are also responsible for 33% and 27% of total soot and sulfur dioxide (SO2) emissions in China, respectively, making a substantial contribution to China’s local environmental degradation. The Chinese government - at both the national and local level - is taking actions to mitigate the significant greenhouse gas (GHG) emissions and air pollution related to the country’s extensive use of coal-fired industrial boilers. The United States and China are pursuing a collaborative effort under the U.S.-China Climate Change Working Group to conduct a comprehensive assessment of China’s coal-fired industrial boilers and to develop an implementation roadmap that will improve industrial boiler efficiency and maximize fuel-switching opportunities. Two Chinese cities – Ningbo and Xi’an – have been selected for the assessment. These cities represent coastal areas with access to liquefied natural gas (LNG) imports and inland regions with access to interprovincial natural gas pipelines, respectively.

  19. Research on Greenhouse-Gas-Induced Climate Change

    SciTech Connect (OSTI)

    Schlesinger, M. E.

    2001-07-15

    During the 5 years of NSF grant ATM 95-22681 (Research on Greenhouse-Gas-Induced Climate Change, $1,605,000, 9/15/1995 to 8/31/2000) we have performed work which we are described in this report under three topics: (1) Development and Application of Atmosphere, Ocean, Photochemical-Transport, and Coupled Models; (2) Analysis Methods and Estimation; and (3) Climate-Change Scenarios, Impacts and Policy.

  20. Aerosol Observing System Greenhouse Gas (AOS GHG) Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Aerosol Observing System Greenhouse Gas (AOS GHG) Monitor Handbook SC Biraud K Reichl March 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

  1. Designing optimal greenhouse gas observing networks that consider performance and cost

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lucas, D. D.; Yver Kwok, C.; Cameron-Smith, P.; Graven, H.; Bergmann, D.; Guilderson, T. P.; Weiss, R.; Keeling, R.

    2014-12-23

    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototypemore » network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.« less

  2. Designing optimal greenhouse gas observing networks that consider performance and cost

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lucas, D. D.; Yver Kwok, C.; Cameron-Smith, P.; Graven, H.; Bergmann, D.; Guilderson, T. P.; Weiss, R.; Keeling, R.

    2015-06-16

    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototypemore » network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.« less

  3. Use of low temperature blowers for recirculation of hot gases

    DOE Patents [OSTI]

    Maru, H.C.; Forooque, M.

    1982-08-19

    An apparatus is described for maintaining motors at low operating temperatures during recirculation of hot gases in fuel cell operations and chemical processes such as fluidized bed coal gasification. The apparatus includes a means for separating the hot process gas from the motor using a secondary lower temperature gas, thereby minimizing the temperature increase of the motor and associated accessories.

  4. Process for coal liquefaction by separation of entrained gases from slurry exiting staged dissolvers

    DOE Patents [OSTI]

    Givens, Edwin N.; Ying, David H. S.

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a solvent, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals are separated from the condensed dissolver effluent. In accordance with the improved process, fresh hydrogen is fed to each dissolver and the entrained gas from each dissolver is separated from the slurry phase and removed from the reactor system before the condensed phase is passed to the next dissolver in the series. In accordance with another process, the feeds to the dissolvers are such that the top of each downstream dissolver is used as a gas-liquid separator.

  5. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect (OSTI)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  6. Global warming commitment concept and its application for relative evaluation of greenhouse gas current and future radiative forcing

    SciTech Connect (OSTI)

    Karol, I.L.; Frolkis, V.A.; Kiselev, A.A.

    1996-12-31

    The Global Warming Commitment (GWC) of gas X relative to standard gas A for time period T is proposed, as determined by the formula GWC{sub X}{sup T} = {integral}RF{sub X}(t)dt/{integral}RF{sub A}(t)dt both integrals between limits 0 and T, where RF{sub X}(t) = {Delta}F{sub X}(t) is the Radiative Forcing (RF) of gas X (the net total radiation flux change at the tropopause level caused by the gas X content variation during the 0 to t time period). The well known Global Warming Potential (GWP) is determined by the same formula, where {Delta}F{sub x}(t) is due to instantaneous releases into the atmosphere of the same definite mass (1 kg) of gas X and of standard gas A. In GWC the actual measured or modeled gas contents evolutions are used for estimation of gas X relative input into the current and future greenhouse warming. GWC of principal Greenhouse Gases (GG) are calculated and analyzed for the time period before 1990, based on observed GG content evolution. For periods from now to 2050 the modeled global GG content projections from radiative photochemical atmospheric model are used for several of IPCC-94 scenarios of GG anthropogenic emissions up to 2050. The GWC of CH{sub 4}, N{sub 2}O and CFCs with CO{sub 2} as standard GG are 2--4 times lower, and they are much more accurately reflecting the reality in the above periods than the widely used RFs of these GG relative to GG of CO{sub 2}, when the GG content evolutions during the time period T is not considered.

  7. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2001 Annual Report

    SciTech Connect (OSTI)

    Cushman, R.M.

    2002-10-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on climate and vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Director) of DOE's Office of Biological and Environmental Research. CDIAC represents DOE in the multi-agency Global Change Data and Information System (GCDIS). Wanda Ferrell is DOE's Program Manager with overall responsibility for CDIAC. Roger Dahlman is responsible for CDIAC's AmeriFlux tasks, and Anna Palmisano for CDIAC's Ocean Data tasks. CDIAC is made up of three groups: Data Systems, Information Services, and Computer Systems, with nineteen full-time or part-time staff. The following section provides details on CDIAC's staff and organization. The Data Systems Group identifies and obtains databases important to global-change research; analyzes data; compiles needed databases; provides data management and support to specific programs [e.g., NARSTO, Free-Air CO{sub 2} Enrichment (FACE), AmeriFlux, Oceans]; and prepares documentation to ensure the long-term utility of CDIAC's data holdings. The Information Services Group responds to data and information requests; maintains records of all request activities; analyzes user statistics; assists in Web development and maintenance; and produces CDIAC's newsletter (CDIAC Communications), the fiscal year annual reports, and various information materials. The Computer Systems Group provides computer system support for all CDIAC and WDC activities; designs and maintains CDIAC's computing system network; ensures compliance with ORNL/DOE computing security regulations; ensures long-term preservation of CDIAC data holdings through systematic backups; evaluates, develops, and implements software; ensures standards compliance; generates user statistics; provides Web design, development, and oversight; and provides systems analysis and programming assistance for scientific data projects.

  8. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 1999 Annual Report

    SciTech Connect (OSTI)

    Cushman, R.M.

    2000-03-31

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global-change data and information analysis center of the Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has--since its inception in 1982--enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea level. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Acting Director) of DOE's Office of Biological and Environmental Research. CDIAC's FY 1999 budget was 2.2M dollars. CDIAC represents the DOE in the multi-agency Global Change Data and Information System. Bobbi Parra, and Wanda Ferrell on an interim basis, is DOE's Program Manager with responsibility for CDIAC. CDIAC comprises three groups, Global Change Data, Computer Systems, and Information Services, with seventeen full-time and part-time staff. The Global Change Data group is responsible for identifying and obtaining databases important to global-change research, analyzing data, compiling needed databases, providing data management support to specific programs (e.g., NARSTO), and preparing documentation to ensure the long-term utility of CDIAC's data holdings. The Computer Systems group provides computer system support for all CDIAC and WDC activities, including designing and maintaining CDIAC's computing system network; ensuring compliance with ORNL/DOE computing security regulations; ensuring long-term preservation of CDIAC data holdings through systematic backups; evaluating, developing, and implementing software; ensuring standards compliance; generating user statistics; providing Web design, development, and oversight; and providing systems analysis and programming assistance for scientific data projects. The Information Services group responds to data and information requests; maintains records of all request activities; assists in Web development and maintenance; and produces CDIAC's newsletter, CDIAC Communications, catalog, glossary, and educational materials. The following section provides further details on CDIAC's organization.

  9. Synthesis and Exploratory Catalysis of 3d Metals: Group-Transfer Reactions, and the Activation and Functionalization of Small Molecules Including Greenhouse Gases

    SciTech Connect (OSTI)

    Mindiola, Daniel J.

    2014-05-07

    Our work over the past three years has resulted in the development of electron rich and low-coordinate vanadium fragments, molecular nitrides of vanadium and parent imide systems of titanium, and the synthesis of phosphorus containing molecules of the 3d transition metal series. Likewise, with financial support from BES Division in DOE (DE-FG02-07ER15893), we now completed the full characterization of the first single molecular magnet (SMM) of Fe(III). We demonstrated that this monomeric form of Fe(III) has an unusual slow relaxation of the magnetization under zero applied field. To make matters more interesting, this system also undergoes a rare example of an intermediate to high-spin transition (an S = 3/2 to S = 5/2 transition). In 2010 we reported the synthesis of the first neutral and low-coordinate vanadium complexes having the terminal nitride functionality. We have now completed a full study to understand formation of the nitride ligand from the metastable azide precursor, and have also explored the reactivity of the nitride ligand in the context of incomplete and complete N-atom transfer. During the 2010-2013 period we also discovered a facile approach to assemble low-coordinate and low-valent vanadium(II) complexes and exploit their multielectron chemistry ranging from 1-3 electrons. Consequently, we can now access 3d ligand frameworks such as cyclo-P3 (and its corresponding radical anion), nitride radical anions and cations, low-coordinate vanadium oxo’s, and the first example of a vanadium thionitrosyl complex. A cis-divacant iron(IV) imido having some ligand centered radical has been also discovered, and we are in the process of elucidating its electronic structure (in particular the sign of zero field splitting and the origin of its magnitude), bonding and reactivity. We have also revisited some paramagnetic and classic metallocene compounds with S >1/2 ground states in order to understand their reactivity patterns and electronic structure. Lastly, we are completing the synthesis and characterization of a titanium nitride anion and formation of the first example of boryl and aluminyl imido titanium complexes.

  10. Load Preheating Using Flue Gases from a Fuel-Fired Heating System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Load Preheating Using Flue Gases from a Fuel-Fired Heating System This tip sheet discusses ... PROCESS HEATING TIP SHEET 9 PDF icon Load Preheating Using Flue Gases from a Fuel-Fired ...

  11. Fact #825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen Oxide Emission Standards, Model Years 2017-2025 Fact 825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen ...

  12. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles traveled during CD operation is 25% for PHEV10 and 51% for PHEV40. Argonne's WTW analysis of PHEVs revealed that the following factors significantly impact the energy use and GHG emissions results for PHEVs and BEVs compared with baseline gasoline vehicle technologies: (1) the regional electricity generation mix for battery recharging and (2) the adjustment of fuel economy and electricity consumption to reflect real-world driving conditions. Although the analysis predicted the marginal electricity generation mixes for major regions in the United States, these mixes should be evaluated as possible scenarios for recharging PHEVs because significant uncertainties are associated with the assumed market penetration for these vehicles. Thus, the reported WTW results for PHEVs should be directly correlated with the underlying generation mix, rather than with the region linked to that mix.

  13. Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,813 3,440 3,591 7,549 6,265 8,763 9,872 18,776 13,652 9,971 1990's 9,981 - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  14. Clostridium strain which produces acetic acid from waste gases

    DOE Patents [OSTI]

    Gaddy, J.L.

    1997-01-14

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 4 figs.

  15. Clostridium stain which produces acetic acid from waste gases

    DOE Patents [OSTI]

    Gaddy, James L.

    1997-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  16. Apparatus for the plasma destruction of hazardous gases

    DOE Patents [OSTI]

    Kang, M.

    1995-02-07

    A plasma cell for destroying hazardous gases is described. An electric-discharge cell having an electrically conducting electrode onto which an alternating high-voltage waveform is impressed and a dielectric barrier adjacent thereto, together forming a high-voltage electrode, generates self-terminating discharges throughout a volume formed between this electrode and a grounded conducting liquid electrode. The gas to be transformed is passed through this volume. The liquid may be flowed, generating thereby a renewable surface. Moreover, since hydrochloric and hydrofluoric acids may be formed from destruction of various chlorofluorocarbons in the presence of water, a conducting liquid may be selected which will neutralize these corrosive compounds. The gases exiting the discharge region may be further scrubbed if additional purification is required. 4 figs.

  17. Apparatus for the plasma destruction of hazardous gases

    DOE Patents [OSTI]

    Kang, Michael

    1995-01-01

    A plasma cell for destroying hazardous gases. An electric-discharge cell having an electrically conducting electrode onto which an alternating high-voltage waveform is impressed and a dielectric barrier adjacent thereto, together forming a high-voltage electrode, generates self-terminating discharges throughout a volume formed between this electrode and a grounded conducting liquid electrode. The gas to be transformed is passed through this volume. The liquid may be flowed, generating thereby a renewable surface. Moreover, since hydrochloric and hydrofluoric acids may be formed from destruction of various chlorofluorocarbons in the presence of water, a conducting liquid may be selected which will neutralize these corrosive compounds. The gases exiting the discharge region may be further scrubbed if additional purification is required.

  18. Apparatus for hot-gas desulfurization of fuel gases

    DOE Patents [OSTI]

    Bissett, Larry A. (Morgantown, WV)

    1992-01-01

    An apparatus for removing sulfur values from a hot fuel gas stream in a fdized bed contactor containing particulate sorbent material by employing a riser tube regeneration arrangement. Sulfur-laden sorbent is continuously removed from the fluidized bed through a stand pipe to the riser tube and is rapidly regenerated in the riser tube during transport of the sorbent therethrough by employing an oxygen-containing sorbent regenerating gas stream. The riser tube extends from a location below the fluidized bed to an elevation above the fluidized bed where a gas-solid separating mechanism is utilized to separate the regenerated particulate sorbent from the regeneration gases and reaction gases so that the regenerated sorbent can be returned to the fluidized bed for reuse.

  19. Nanostructured carbon materials for adsorption of methane and other gases

    DOE Patents [OSTI]

    Stadie, Nicholas P.; Fultz, Brent T.; Ahn, Channing; Murialdo, Maxwell

    2015-06-30

    Provided are methods for storing gases on porous adsorbents, methods for optimizing the storage of gases on porous adsorbents, methods of making porous adsorbents, and methods of gas storage of optimized compositions, as in systems containing porous adsorbents and gas adsorbed on the surface of the porous adsorbent. The disclosed methods and systems feature a constant or increasing isosteric enthalpy of adsorption as a function of uptake of the gas onto the exposed surface of a porous adsorbent. Adsorbents with a porous geometry and surface dimensions suited to a particular adsorbate are exposed to the gas at elevated pressures in the specific regime where n/V (density) is larger than predicted by the ideal gas law by more than several percent.

  20. Decontamination of combustion gases in fluidized bed incinerators

    DOE Patents [OSTI]

    Leon, Albert M.

    1982-01-01

    Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.

  1. Flash pyrolysis of biomass with reactive and nonreactive gases

    SciTech Connect (OSTI)

    Sundaram, M.S.; Steinberg, M.; Fallon, P.

    1982-10-01

    Studies were done on the flash pyrolysis of Douglas fir wood in the presence of reactive and nonreactive gases including hydrogen, methane, and helium. Pyrolysis and gasification of the wood particles was done in one step, without catalysts. Almost complete (98%) gasification of the carbon in Douglas fir wood was achieved at 1000/sup 0/C and 500-psi hydrogen pressure. The reaction products were methane, ethane, ethylene, carbon monoxide, BTX, and water. Flash hydropyrolysis produced a large yield of hydrocarbon gases (up to 78% C) comprising methane and ethane. High yields of ethylene (up to 21% C) and BTX (up to 12% C) were obtained via methane pyrolysis of fir wood; a free-radical mechanism is proposed to explain the enhanced yield of ethylene in a methane atmosphere.

  2. System for trapping and storing gases for subsequent chemical reduction to solids

    DOE Patents [OSTI]

    Vogel, John S.; Ognibene, Ted J.; Bench, Graham S.; Peaslee, Graham F.

    2009-11-03

    A system for quantitatively reducing oxide gases. A pre-selected amount of zinc is provided in a vial. A tube is provided in the vial. The zinc and the tube are separated. A pre-selected amount of a catalyst is provided in the tube. Oxide gases are injected into the vial. The vial, tube, zinc, catalyst, and the oxide gases are cryogenically cooled. At least a portion of the vial, tube, zinc, catalyst, and oxide gases are heated.

  3. MOFs Can Tune the Critical Point of Gases | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome MOFs Can Tune the Critical Point of Gases

  4. Carbon emissions and sequestration in forests: Case studies from seven developing countries. Volume 2, Greenhouse gas emissions from deforestration in the Brazilian Amazon

    SciTech Connect (OSTI)

    Makundi, W.; Sathaye, J.; Fearnside, P.M.

    1992-08-01

    Deforestation in Brazilian Amazonia in 1990 was releasing approximately 281--282 X 10{sup 6} metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as ``committed carbon,`` or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous years will be equal to the future releases from the areas being cleared now. Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NO{sub x} and non-methane hydrocarbons released raises the impact by 22--37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of C0{sub 2}-equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7--8 times the 50 million MT annual carbon release from Brazil`s use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.

  5. Extraction of uranium from spent fuels using liquefied gases

    SciTech Connect (OSTI)

    Sawada, Kayo; Hirabayashi, Daisuke; Enokida, Youichi

    2007-07-01

    For reprocessing of spent nuclear fuels, a novel method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. As a fundamental study, the nitrate conversion with liquefied nitrogen dioxide and the nitrate extraction with supercritical carbon dioxide were demonstrated by using uranium dioxide powder, uranyl nitrate and tri-n-butylphosphate complex in the present study. (authors)

  6. Flask Samplers for Carbon Cycle Gases and Isotopes (FLASK) Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Flask Samplers for Carbon Cycle Gases and Isotopes (FLASK) Handbook S Biraud March 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  7. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Not Available

    1997-10-01

    This report serves as the technology basis of a needed national climate change technology strategy, with the confidence that a strong technology R&D program will deliver a portfolio of technologies with the potential to provide very substantial greenhouse gas emission reductions along with continued economic growth. Much more is needed to define such a strategy, including identification of complementary deployment policies and analysis to support the seeping and prioritization of R&D programs. A national strategy must be based upon governmental, industrial, and academic partnerships.

  8. New Generating Technology to Reduce Greenhouse Gas Emissions

    U.S. Energy Information Administration (EIA) Indexed Site

    Generating Technology to Reduce Greenhouse Gas Emissions ENERGY INFORMATION ADMINISTRATION 30 TH BIRTHDAY CONFERENCE April 7, 2008 Linda G. Stuntz Stuntz, Davis & Staffier, P.C. Stuntz, Davis & Staffier, P.C. 2 The Target * Energy related emissions of CO2 will increase by about 16% in AEO 2008 Reference Case between 2006 and 2030 (5,890 MM metric tons to 6,859 MM metric tons). (#s from Caruso Senate Energy testimony of 3/4/08). * Last year, emissions from electricity generation were 40%

  9. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect (OSTI)

    Marnay, Chris; Stadler, Michael; Lipman, Tim; Lai, Judy; Cardoso, Goncalo; Megel, Olivier

    2009-09-01

    The motivation and objective of this research is to determine the role of distributed generation (DG) in greenhouse gas reductions by: (1) applying the Distributed Energy Resources Customer Adoption Model (DER-CAM); (2) using the California Commercial End-Use Survey (CEUS) database for commercial buildings; (3) selecting buildings with electric peak loads between 100 kW and 5 MW; (4) considering fuel cells, micro-turbines, internal combustion engines, gas turbines with waste heat utilization, solar thermal, and PV; (5) testing of different policy instruments, e.g. feed-in tariff or investment subsidies.

  10. Emission of reduced malodorous sulfur gases from wastewater treatment plants

    SciTech Connect (OSTI)

    Devai, I.; DeLaune, R.D.

    1999-03-01

    The emission of malodorous gaseous compounds from wastewater collection and treatment facilities is a growing maintenance and environmental problem. Numerous gaseous compounds with low odor detection thresholds are emitted from these facilities. Sulfur-bearing gases represent compounds with the lowest odor detection threshold. Using solid adsorbent preconcentration and gas chromatographic methods, the quantity and composition of reduced malodorous sulfur gases emitted from various steps of the treatment process were determined in wastewater treatment plants in Baton Rouge, Louisiana. Hydrogen sulfide, which is a malodorous, corrosive, and potentially toxic gas, was the most dominant volatile reduced sulfur (S) compound measured. Concentrations were not only more than the odor detection threshold of hydrogen sulfide, but above levels that may affect health during long-term exposure. The concentrations of methanethiol, dimethyl sulfide, carbon disulfide, and carbonyl sulfide were significantly less than hydrogen sulfide. However, even though emissions of reduced sulfur gases other than hydrogen sulfide were low, previous studies suggested that long-term exposure to such levels may cause respiratory problems and other symptoms.

  11. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass.

    SciTech Connect (OSTI)

    Xie, X.; Wang, M.; Han, J.

    2011-04-01

    This study expands and uses the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model to assess the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal cofeeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD). To demonstrate the influence of the coproduct credit methods on FTD life-cycle analysis (LCA) results, two allocation methods based on the energy value and the market revenue of different products and a hybrid method are employed. With the energy-based allocation method, fossil energy use of FTD is less than that of petroleum diesel, and GHG emissions of FTD could be close to zero or even less than zero with CCS when forest residue accounts for 55% or more of the total dry mass input to FTD plants. Without CCS, GHG emissions are reduced to a level equivalent to that from petroleum diesel plants when forest residue accounts for 61% of the total dry mass input. Moreover, we show that coproduct method selection is crucial for LCA results of FTD when a large amount of coproducts is produced.

  12. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of

    Energy Savers [EERE]

    Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions | Department of Energy Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions A complete vehicle fuel-cycle analysis, commonly called a well-to-wheels (WTW)

  13. NREL Develops More Precise Look at Cradle-to-Grave Greenhouse Gas Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Energy Technologies - News Releases | NREL NREL Develops More Precise Look at Cradle-to-Grave Greenhouse Gas Emissions for Energy Technologies May 4, 2012 A new approach to assessing greenhouse-gas emissions from coal, wind, solar and other energy technologies paints a much more precise picture of cradle-to-grave emissions and should help sharpen decisions on what new energy projects to build. The method - a harmonization of widely variant estimates of greenhouse gas emissions by the

  14. Cooling the greenhouse effect: Options and costs for reducing CO{sub 2} emissions from the American Electric Power Company

    SciTech Connect (OSTI)

    Helme, N.; Popovich, M.G.; Gille, J.

    1993-05-01

    A recent report from the National Academy of Sciences concludes that the earth is likely to face a doubling of preindustrial greenhouse gases in the next half century. This doubling could be expected to push average global temperatures. up from between 1.8 to 9 degrees Fahrenheit. Much of the potential for human impacts on the global climate is linked to fossil fuel consumption. Carbon dioxide emissions from energy consumption in the US totals about one-quarter of the world`s total emissions from energy consumption. Global warming is different from other environmental problems because CO{sub 2} emissions can be captured naturally by trees, grasses, soil, and other plants. In contrast, acid rain emissions reductions can only be accomplished through switching to lower-polluting fuels, conserving energy, or installing costly retrofit technologies. Terrestrial biota, such as trees, plants, grasses and soils, directly affect the CO{sub 2} concentrations in the atmosphere. A number of reports have concluded that forestry and land-use practices can increase CO{sub 2} sequestration and can help reduce or delay the threat of global warming.

  15. Spatial and Temporal Correlates of Greenhouse Gas Diffusion from a Hydropower Reservoir in the Southern United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mosher, Jennifer; Fortner, Allison M.; Phillips, Jana Randolph; Bevelhimer, Mark S.; Stewart, Arthur; Troia, Matthew J.

    2015-10-29

    Emissions of CO2 and CH4 from freshwater reservoirs constitute a globally significant source of atmospheric greenhouse gases (GHGs), but knowledge gaps remain with regard to spatiotemporal drivers of emissions. We document the spatial and seasonal variation in surface diffusion of CO2 and CH4 from Douglas Lake, a hydropower reservoir in Tennessee, USA. Monthly estimates across 13 reservoir sites from January to November 2010 indicated that surface diffusions ranged from 236 to 18,806 mg m-2 day-1 for CO2 and 0 to 0.95 mg m-2 day-1 for CH4. Next, we developed statistical models using spatial and physicochemical variables to predict surface diffusionsmore » of CO2 and CH4. Models explained 22.7 and 20.9% of the variation in CO2 and CH4 diffusions, respectively, and identified pH, temperature, dissolved oxygen, and Julian day as the most informative important predictors. These findings provide baseline estimates of GHG emissions from a reservoir in eastern temperate North America a region for which estimates of reservoir GHGs emissions are limited. Our statistical models effectively characterized non-linear and threshold relationships between physicochemical predictors and GHG emissions. Further refinement of such models will aid in predicting current GHG emissions in unsampled reservoirs and forecasting future GHG emissions.« less

  16. Solar greenhouse as an integral part of an earth-sheltered home: the first two years

    SciTech Connect (OSTI)

    Malott, R.W.

    1984-01-01

    The construction of a solar greenhouse as an integral part of an earth-sheltered home is discussed. The problems of building such a home are described.

  17. Statement from U.S. Energy Secretary Moniz on Mexico's Greenhouse...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "We warmly welcome the announcement by the Government of Mexico on new greenhouse gas emissions reduction targets. The commitment Mexico has made today sends a strong signal of ...

  18. U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis from the Oak Ridge National Laboratory traces energy from supply (fuel, electricity, and steam) to major ...

  19. Fuel Use and Greenhouse Gas Emissions from the Natural Gas System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Natural Gas System; Sankey Diagram Methodology Fuel Use and Greenhouse Gas Emissions from the Natural Gas System; Sankey Diagram Methodology As natural gas travels through ...

  20. Role of fourth-order phase-space moments in collective modes of trapped Fermi gases

    SciTech Connect (OSTI)

    Chiacchiera, Silvia; Lepers, Thomas; Davesne, Dany; Urban, Michael

    2011-10-15

    We study the transition from hydrodynamic to collisionless behavior in collective modes of ultracold trapped Fermi gases. To that end, we solve the Boltzmann equation for the trapped Fermi gas via the moments method. We showed previously that it is necessary to go beyond second-order moments if one wants to reproduce the results of a numerical solution of the Boltzmann equation. Here, we will give the detailed description of the method including fourth-order moments. We apply this method to the case of realistic parameters, and compare the results for the radial quadrupole and scissors modes at unitarity to experimental data obtained by the Innsbruck group. It turns out that the inclusion of fourth-order moments clearly improves the agreement with the experimental data. In particular, the fourth-order moments reduce the effect of collisions and therefore partially compensate the effect of the enhanced in-medium cross section at low temperatures.

  1. Commercialization Development of Oxygen Fired CFB for Greenhouse Gas Control

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2007-03-31

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic (i.e., man-made) CO{sub 2} emissions. In 2001, ALSTOM Power Inc. (ALSTOM) began a two-phase program to investigate the feasibility of various carbon capture technologies. This program was sponsored under a Cooperative Agreement from the US Department of Energy's National Energy Technology Laboratory (DOE). The first phase entailed a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen cases, representing various levels of technology development, were evaluated. Seven cases represented coal combustion in CFB type equipment. Four cases represented Integrated Gasification Combined Cycle (IGCC) systems. Two cases represented advanced Chemical Looping Combined Cycle systems. Marion, et al. reported the details of this work in 2003. One of the thirteen cases studied utilized an oxygen-fired circulating fluidized bed (CFB) boiler. In this concept, the fuel is fired with a mixture of oxygen and recirculated flue gas (mainly CO{sub 2}). This combustion process yields a flue gas containing over 80 percent (by volume) CO{sub 2}. This flue gas can be processed relatively easily to enrich the CO{sub 2} content to over 96 percent for use in enhanced oil or gas recovery (EOR or EGR) or simply dried for sequestration. The Phase I study identified the O{sub 2}-fired CFB as having a near term development potential, because it uses conventional commercial CFB technology and commercially available CO{sub 2} capture enabling technologies such as cryogenic air separation and simple rectification or distillation gas processing systems. In the long term, air separation technology advancements offer significant reductions in power requirements, which would improve plant efficiency and economics for the oxygen-fired technology. The second phase consisted of pilot-scale testing followed by a refined performance and economic evaluation of the O{sub 2} fired CFB concept. As a part of this workscope, ALSTOM modified its 3 MW{sub th} (9.9 MMBtu/hr) Multiuse Test Facility (MTF) pilot plant to operate with O{sub 2}/CO{sub 2} mixtures of up to 70 percent O{sub 2} by volume. Tests were conducted with coal and petroleum coke. The test objectives were to determine the impacts of oxygen firing on heat transfer, bed dynamics, potential agglomeration, and gaseous and particulate emissions. The test data results were used to refine the design, performance, costs, and economic models developed in Phase-I for the O{sub 2}-fired CFB with CO{sub 2} capture. Nsakala, Liljedahl, and Turek reported results from this study in 2004. ALSTOM identified several items needing further investigation in preparation for large scale demonstration of the oxygen-fired CFB concept, namely: (1) Operation and performance of the moving bed heat exchanger (MBHE) to avoid recarbonation and also for cost savings compared to the standard bubbling fluid bed heat exchanger (FBHE); (2) Performance of the back-end flash dryer absorber (FDA) for sulfur capture under high CO{sub 2}/high moisture flue gas environment using calcined limestone in the fly ash and using fresh commercial lime directly in the FDA; (3) Determination of the effect of recarbonation on fouling in the convective pass; (4) Assessment of the impact of oxygen firing on the mercury, other trace elements, and volatile organic compound (VOC) emissions; and (5) Develop a proposal-level oxygen-fired retrofit design for a relatively small existing CFB steam power plant in preparation for a large-scale demonstration of the O{sub 2} fired CFB concept. Hence, ALSTOM responded to a DOE Solicitation to address all these issues with further O{sub 2} fired MTF pilot testing and a subsequent retrofit design study of oxygen firing and CO{sub 2} capture on an existing air-fired CFB plant. ALSTOM received a contract award from the DOE to conduct a project entitled 'Commercialization Development of Oxygen Fired CFB for Greenhouse Gas Control', under Cooperative Agreement DE-FC26-04NT42205 that is the subject of this topical report.

  2. Solubilities of heavy fossil fuels in compressed gases

    SciTech Connect (OSTI)

    Monge, A. Jr.

    1982-01-01

    Design of processes for upgrading heavy fossil fuels such as coal-derived liquids, heavy petroleum fractions, tar sands, and shale oil, requires quantitative information for equilibrium properties of the fossil fuel in the presence of compressed light gases at elevated temperatures. Presented here are methods to predict and measure solubilities of heavy fossil fuels in compressed gases in the region ambient to 100 bar and 600 K. A molecular-thermodynamic model is used to predict heavy fossil-fuel solubilities. The heavy fuel is fractionated ina spinning-band column at low pressure and high reflux; each fraction is considered to be a pseudo-component. Each fraction is characterized by one vapor-pressure datum (obtained during fractionation), elemental analysis, and proton-NMR spectra (to determine aromaticity). Liquid-phase properties are obtained from the SWAP equation for vapor pressure and from a density correlation. Vapor-phase properties are obtained using the virial equation of state with virial coefficients from Kaul's correlation. The molecular-thermodynamic model has been used to establish a design-oriented computer program for calculating heavy, fossil-fuel solubility for general application in process design and, in particular, for isobaric condensation as a function of temperature as required for design of a continuous-flow heat exchanger. A total-vaporization technique is used to measure the solubilities of narrow-boiling, heavy fossil-fuel fractions in compressed gases. The solubility of a heavy fraction is determined from the volume of gas required to vaporize completely a small, measured mass of fossil-fuel sample. To test the molecular-thermodynamic model, the total-vaporization technique has been used to measure the solubilities of two Lurgi coal-tar fractions in compressed methane. Predicted and experimental solubilities agree well.

  3. Liquefaction and storage of thermal treatment off-gases

    SciTech Connect (OSTI)

    Stull, D.M. . Rocky Flats Plant); Golden, J.O. )

    1992-09-08

    A fluidized bed catalytic oxidation unit is being developed for use in the destruction of mixed waste at the Rocky Flats Plant. Cyclones, filters, in situ neutralization of acid gases, and a catalytic converter are used to meet emission standards. Because there is concern by the public that these measures may not be adequate, two off-gas capture systems were evaluated. Both systems involve liquefaction of carbon dioxide produced in the oxidation process. The carbon dioxide would be released only after analysis proved that all appropriate emission standards are met.

  4. Prospecting by sampling and analysis of airborne particulates and gases

    DOE Patents [OSTI]

    Sehmel, G.A.

    1984-05-01

    A method is claimed for prospecting by sampling airborne particulates or gases at a ground position and recording wind direction values at the time of sampling. The samples are subsequently analyzed to determine the concentrations of a desired material or the ratios of the desired material to other identifiable materials in the collected samples. By comparing the measured concentrations or ratios to expected background data in the vicinity sampled, one can select recorded wind directions indicative of the upwind position of the land-based source of the desired material.

  5. MAGNETIC METHOD FOR PRODUCING HIGH VELOCITY SHOCK WAVES IN GASES

    DOE Patents [OSTI]

    Josephson, V.

    1960-01-26

    A device is described for producing high-energy plasmas comprising a tapered shock tube of dielectric material and having a closed small end, an exceedingly low-inductance coll supported about and axially aligned with the small end of the tapered tube. an elongated multiturn coil supported upon the remninder of the exterior wall of the shock tube. a potential source and switch connected in series with the low-inductance coil, a potential source and switch connected in series with the elongated coil, means for hermetically sealing the large end of the tube, means for purging the tube of gases, and means for admitting a selected gas into the shock tube.

  6. Separation of gases through gas enrichment membrane composites

    DOE Patents [OSTI]

    Swedo, Raymond J.; Kurek, Paul R.

    1988-01-01

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  7. Separation of gases through gas enrichment membrane composites

    DOE Patents [OSTI]

    Swedo, R.J.; Kurek, P.R.

    1988-07-19

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  8. Nonperturbative Predictions for Cold Atom Bose Gases with Tunable Interactions

    SciTech Connect (OSTI)

    Cooper, Fred; Chien, Chih-Chun; Mihaila, Bogdan; Timmermans, Eddy; Dawson, John F.

    2010-12-10

    We derive a theoretical description for dilute Bose gases as a loop expansion in terms of composite-field propagators by rewriting the Lagrangian in terms of auxiliary fields related to the normal and anomalous densities. We demonstrate that already in leading order this nonperturbative approach describes a large interval of coupling-constant values, satisfies Goldstone's theorem, yields a Bose-Einstein transition that is second order, and is consistent with the critical temperature predicted in the weak-coupling limit by the next-to-leading-order large-N expansion.

  9. Greenhouse gas emissions from landfill leachate treatment plants: A comparison of young and aged landfill

    SciTech Connect (OSTI)

    Wang, Xiaojun; Jia, Mingsheng; Chen, Xiaohai; Xu, Ying; Lin, Xiangyu; Kao, Chih Ming; Chen, Shaohua

    2014-07-15

    Highlights: • Young and aged leachate works accounted for 89.1% and 10.9% of 33.35 Gg CO{sub 2} yr{sup −1}. • Fresh leachate owned extremely low ORP and high organic matter content. • Strong CH{sub 4} emissions occurred in the fresh leachate ponds, but small in the aged. • N{sub 2}O emissions became dominant in the treatment units of both systems. • 8.45–11.9% of nitrogen was removed as the form of N{sub 2}O under steady-state. - Abstract: With limited assessment, leachate treatment of a specified landfill is considered to be a significant source of greenhouse gas (GHG) emissions. In our study, the cumulative GHG emitted from the storage ponds and process configurations that manage fresh or aged landfill leachate were investigated. Our results showed that strong CH{sub 4} emissions were observed from the fresh leachate storage pond, with the fluxes values (2219–26,489 mg C m{sup −2} h{sup −1}) extremely higher than those of N{sub 2}O (0.028–0.41 mg N m{sup −2} h{sup −1}). In contrast, the emission values for both CH{sub 4} and N{sub 2}O were low for the aged leachate tank. N{sub 2}O emissions became dominant once the leachate entered the treatment plants of both systems, accounting for 8–12% of the removal of N-species gases. Per capita, the N{sub 2}O emission based on both leachate treatment systems was estimated to be 7.99 g N{sub 2}O–N capita{sup −1} yr{sup −1}. An increase of 80% in N{sub 2}O emissions was observed when the bioreactor pH decreased by approximately 1 pH unit. The vast majority of carbon was removed in the form of CO{sub 2}, with a small portion as CH{sub 4} (<0.3%) during both treatment processes. The cumulative GHG emissions for fresh leachate storage ponds, fresh leachate treatment system and aged leachate treatment system were 19.10, 10.62 and 3.63 Gg CO{sub 2} eq yr{sup −1}, respectively, for a total that could be transformed to 9.09 kg CO{sub 2} eq capita{sup −1} yr{sup −1}.

  10. Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector

    SciTech Connect (OSTI)

    Bilello, D.; Katz, J.; Esterly, S.; Ogonowski, M.

    2014-09-01

    Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers as they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.

  11. Revised Draft Guidance on Consideration of Greenhouse Gas Emissions and Climate Change in NEPA Reviews

    Broader source: Energy.gov [DOE]

    On December 18, 2014, CEQ released revised draft guidance for public comment that describes how Federal departments and agencies should consider the effects of greenhouse gas emissions and climate change in their National Environmental Policy Act reviews. The revised draft guidance supersedes the draft greenhouse gas and climate change guidance released by CEQ in February 2010.

  12. Process for recovery of sulfur from acid gases

    DOE Patents [OSTI]

    Towler, Gavin P.; Lynn, Scott

    1995-01-01

    Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

  13. Instantaneous and efficient surface wave excitation of a low pressure gas or gases

    DOE Patents [OSTI]

    Levy, Donald J.; Berman, Samuel M.

    1988-01-01

    A system for instantaneously ionizing and continuously delivering energy in the form of surface waves to a low pressure gas or mixture of low pressure gases, comprising a source of rf energy, a discharge container, (such as a fluorescent lamp discharge tube), an rf shield, and a coupling device responsive to rf energy from the source to couple rf energy directly and efficiently to the gas or mixture of gases to ionize at least a portion of the gas or gases and to provide energy to the gas or gases in the form of surface waves. The majority of the rf power is transferred to the gas or gases near the inner surface of the discharge container to efficiently transfer rf energy as excitation energy for at least one of the gases. The most important use of the invention is to provide more efficient fluorescent and/or ultraviolet lamps.

  14. Detection And Discrimination Of Pure Gases And Binary Mixtures Using A

    Office of Scientific and Technical Information (OSTI)

    Single Microcantilever (Journal Article) | SciTech Connect Detection And Discrimination Of Pure Gases And Binary Mixtures Using A Single Microcantilever Citation Details In-Document Search Title: Detection And Discrimination Of Pure Gases And Binary Mixtures Using A Single Microcantilever A new method for detecting and discriminating pure gases and binary mixtures has been investigated. This approach combines two distinct physical mechanisms within a single piezoresistive microcantilever:

  15. Ultracold Bose gases in time-dependent one-dimensional superlattices:

    Office of Scientific and Technical Information (OSTI)

    Response and quasimomentum structure (Journal Article) | SciTech Connect Ultracold Bose gases in time-dependent one-dimensional superlattices: Response and quasimomentum structure Citation Details In-Document Search Title: Ultracold Bose gases in time-dependent one-dimensional superlattices: Response and quasimomentum structure The response of ultracold atomic Bose gases in time-dependent optical lattices is discussed based on direct simulations of the time-evolution of the many-body state

  16. Well-to-wheels Analysis of Energy Use and Greenhouse Gas Emissions of Hydrogen Produced with Nuclear Energy

    SciTech Connect (OSTI)

    Wu, Ye; Wang, Michael Q.; Vyas, Anant D.; Wade, David C.; Taiwo, Temitope A.

    2004-07-01

    A fuel-cycle model-called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model-has been developed at Argonne National Laboratory to evaluate well-to-wheels (WTW) energy and emission impacts of motor vehicle technologies fueled with various transportation fuels. The GREET model contains various hydrogen (H{sub 2}) production pathways for fuel-cell vehicles (FCVs) applications. In this effort, the GREET model was expanded to include four nuclear H{sub 2} production pathways: (1) H{sub 2} production at refueling stations via electrolysis using Light Water Reactor (LWR)-generated electricity; (2) H{sub 2} production in central plants via thermo-chemical water cracking using steam from High Temperature Gas cooled Reactor (HTGR); (3) H{sub 2} production in central plants via high-temperature electrolysis using HTGR-generated electricity and steam; and (4) H{sub 2} production at refueling stations via electrolysis using HTGR-generated electricity The WTW analysis of these four options include these stages: uranium ore mining and milling; uranium ore transportation; uranium conversion; uranium enrichment; uranium fuel fabrication; uranium fuel transportation; electricity or H{sub 2} production in nuclear power plants; H{sub 2} transportation; H{sub 2} compression; and H{sub 2} FCVs operation. Due to large differences in electricity requirements for uranium fuel enrichment between gas diffusion and centrifuge technologies, two scenarios were designed for uranium enrichment: (1) 55% of fuel enriched through gaseous diffusion technology and 45% through centrifuge technology (the current technology split for U.S. civilian nuclear power plants); and (2) 100% fuel enrichment using the centrifuge technology (a future trend). Our well-to-pump (WTP) results show that significant reductions in fossil energy use and greenhouse gas (GHG) emissions are achieved by nuclear-based H{sub 2} compared to natural gas-based H{sub 2} production via steam methane reforming for a unit of H{sub 2} delivered at refueling stations. In particular, 73-98% of GHG emissions and 81- 99% of fossil energy use are reduced by nuclear-based H{sub 2} relative to natural gas-based H{sub 2}, depending on the uranium enrichment technology and type of nuclear reactor used. When H{sub 2} is applied to FCVs, the WTW results also show large benefit in reducing fossil energy use and GHG emissions. (authors)

  17. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-08-15

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and not only by PV during sunny on-peak hours.

  18. Fuel cell stack with internal manifolds for reactant gases

    DOE Patents [OSTI]

    Schnacke, Arthur W. (Schenectady, NY)

    1985-01-01

    A fuel cell stack includes a plurality of plate-like fuel cells arranged along an axis generally parallel to cell thickness with electrically conductive separator plates between each pair of cells. A plurality of axial manifolds are provided at opposite sides of the stack in outer marginal portions beyond the edges of electrodes and electrolyte tiles. Sealing rings prevent cross-leakage of oxidant fuel gases through use of pairs of outwardly extending lips from opposite tile surfaces bonded to first and second electrode frames respectively. The frames provide transition between electrode edges and manifold perimeters. The pairs of extension lips are sealingly bonded together through an electrically insulative sealing ring with wedge shaped fastening members.

  19. Fuel cell stack with internal manifolds for reactant gases

    DOE Patents [OSTI]

    Schnacke, A.W.

    1983-10-12

    A fuel cell stack includes a plurality of plate-like fuel cells arranged along an axis generally parallel to cell thickness with electrically conductive separator plates between each pair of cells. A plurality of axial manifolds are provided at opposite sides of the stack in outer marginal portions beyond the edges of electrodes and electrolyte tiles. Sealing rings prevent cross-leakage of oxidant fuel gases through use of pairs of outwardly extending lips from opposite tile surfaces bonded to first and second electrode frames respectively. The frames provide transition between electrode edges and manifold perimeters. The pairs of extension lips are sealingly bonded together through an electrically insulative sealing ring with wedge shaped fastening members.

  20. Noble gases and cosmogenic radionuclides in the Eltanin Pacific meteorite

    SciTech Connect (OSTI)

    Bogard, D D; Garrison, D H; Caffee, M W; Kyte, F; Nishiizumi, K

    2000-01-14

    A 1.5 cm long, 1.2 g specimen of the Eltanin meteorite was found at 10.97 m depth in Polarstern piston core PS2704-1. The early studies indicated that the small fragments of the Eltanin meteorite was debris from a km-sized asteroid which impacted into the deep-ocean basin. In this study, the authors measured {sup 39}Ar-{sup 40}Ar age, noble gases, and cosmogenic radionuclides in splits of specimen as a part of consortium studies of Eltanin meteorite. They concluded that the specimen was about 3 m deep from the asteroid surface. The exposure age of the Eltanin asteroid was about 20 Myr.

  1. Nuclear magnetic resonance imaging with hyper-polarized noble gases

    SciTech Connect (OSTI)

    Schmidt, D.M.; George, J.S.; Penttila, S.I.; Caprihan, A.

    1997-10-01

    This is the final report of a six-month, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The nuclei of noble gases can be hyper polarized through a laser-driven spin exchange to a degree many orders of magnitude larger than that attainable by thermal polarization without requiring a strong magnetic field. The increased polarization from the laser pumping enables a good nuclear magnetic resonance (NMR) signal from a gas. The main goal of this project was to demonstrate diffusion-weighted imaging of such hyper-polarized noble gas with magnetic resonance imaging (MRI). Possible applications include characterizing porosity of materials and dynamically imaging pressure distributions in biological or acoustical systems.

  2. Wave speeds in the macroscopic extended model for ultrarelativistic gases

    SciTech Connect (OSTI)

    Borghero, F.; Demontis, F.; Pennisi, S.

    2013-11-15

    Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.

  3. Loschmidt echo in one-dimensional interacting Bose gases

    SciTech Connect (OSTI)

    Lelas, K.; Seva, T.; Buljan, H.

    2011-12-15

    We explore Loschmidt echo in two regimes of one-dimensional interacting Bose gases: the strongly interacting Tonks-Girardeau (TG) regime, and the weakly interacting mean-field regime. We find that the Loschmidt echo of a TG gas decays as a Gaussian when small (random and time independent) perturbations are added to the Hamiltonian. The exponent is proportional to the number of particles and the magnitude of a small perturbation squared. In the mean-field regime the Loschmidt echo shows richer behavior: it decays faster for larger nonlinearity, and the decay becomes more abrupt as the nonlinearity increases; it can be very sensitive to the particular realization of the noise potential, especially for relatively small nonlinearities.

  4. Catalytic process for removing toxic gases from gas streams

    SciTech Connect (OSTI)

    Baglio, J.A.; Gaudet, G.G.; Palilla, F.C.

    1983-02-22

    A multi-stage process for reducing the content of sulfurcontaining gases-notably hydrogen sulfide, sulfur dioxide, carbonyl sulfide and carbon disulfide-in waste gas streams is provided. In the first stage, the gas stream is passed through a reaction zone at a temperature between about 150 and 350/sup 0/C in the presence of a pretreated novel catalyst of the formula xLn/sub 2/O/sub 3/ in which Ln is yttrium or a rare earth element and T is cobalt, iron or nickel, and each of x and y is independently a number from 0 to 3, said catalyst being substantially non-crystalline and having a surface area of from about 10 m/sup 2//g to about 40 m/sup 2//g. The preferred catalyst is one in which Ln is lanthanum, T is cobalt, and x and y range from 1 to 3, including non-integers. The first stage yields a product stream having a reduced content of sulfur-containing gases, including specifically, substantial reduction of carbonyl sulfide and virtual elimination of carbon disulfide. An intermediate stage is a claus reaction, which may take place in one or more reaction zones, at temperatures less than about 130/sup 0/ C, in the presence of known catalysts such as bauxite, alumina or cobalt molybdates. The final stage is the air oxidation of hydrogen sulfide at a temperature between about 150 and 300/sup 0/ C in the presence of a catalyst usable in first stage.

  5. Technology and Greenhouse Gas Emissions: An IntegratedScenario Analysis

    SciTech Connect (OSTI)

    Koomey, J.G.; Latiner, S.; Markel, R.J.; Marnay, C.; Richey, R.C.

    1998-09-01

    This report describes an analysis of possible technology-based scenarios for the U.S. energy system that would result in both carbon savings and net economic benefits. We use a modified version of the Energy Information Administration's National Energy Modeling System (LBNL-NEMS) to assess the potential energy, carbon, and bill savings from a portfolio of carbon saving options. This analysis is based on technology resource potentials estimated in previous bottom-up studies, but it uses the integrated LBNL-NEMS framework to assess interactions and synergies among these options. The analysis in this paper builds on previous estimates of possible "technology paths" to investigate four major components of an aggressive greenhouse gas reduction strategy: (1) the large scale implementation of demand-side efficiency, comparable in scale to that presented in two recent policy studies on this topic; (2) a variety of "alternative" electricity supply-side options, including biomass cofiring, extension of the renewable production tax credit for wind, increased industrial cogeneration, and hydropower refurbishment. (3) the economic retirement of older and less efficient existing fossil-find power plants; and (4) a permit charge of $23 per metric ton of carbon (1996 $/t),l assuming that carbon trading is implemented in the US, and that the carbon permit charge equilibrates at this level. This level of carbon permit charge, as discussed later in the report, is in the likely range for the Clinton Administration's position on this topic.

  6. Estimating the potential of greenhouse gas mitigation in Kazakhstan

    SciTech Connect (OSTI)

    Monacrovich, E.; Pilifosova, O.; Danchuck, D.

    1996-09-01

    As part of the studies related to the obligations of the UN Framework Convention on Climate Change, the Republic of Kazakhstan started activities to inventory greenhouse gas (GHG) emissions and assess of GHG mitigation options, The objective of this paper is to present an estimate of the possibility of mitigating GHG emissions and determine the mitigation priorities. It presents a compilation of the possible options and their assessment in terms of major criteria and implementation feasibility. Taking into account the structure of GHG emissions in Kazakhstan in 1990, preliminary estimates of the potential for mitigation are presented for eight options for the energy sector and agriculture and forestry sector. The reference scenario prepared by expert assessments assumes a reduction of CO{sub 2} emissions in 1996-1998 by about 26% from the 1990 level due to general economic decline, but then emissions increase. It is estimated that the total potential for the mitigation of CO{sub 2} emissions for the year 2000 is 3% of the CO{sub 2} emissions in the reference scenario. The annual reduction in methane emissions due to the estimated options can amount to 5%-6% of the 1990 level. 10 refs., 1 fig., 4 tabs.

  7. Co-benefits of mitigating global greenhouse gas emissions for future air

    Office of Scientific and Technical Information (OSTI)

    quality and human health (Journal Article) | SciTech Connect Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health Citation Details In-Document Search Title: Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health Reducing greenhouse gas (GHG) emissions also influences air quality. We simulate the co-benefits of global GHG reductions on air quality and human health via two mechanisms: a) reducing co-emitted

  8. Spatial and Temporal Correlates of Greenhouse Gas Diffusion from a Hydropower Reservoir in the Southern United States

    SciTech Connect (OSTI)

    Mosher, Jennifer; Fortner, Allison M.; Phillips, Jana Randolph; Bevelhimer, Mark S.; Stewart, Arthur; Troia, Matthew J.

    2015-10-29

    Emissions of CO2 and CH4 from freshwater reservoirs constitute a globally significant source of atmospheric greenhouse gases (GHGs), but knowledge gaps remain with regard to spatiotemporal drivers of emissions. We document the spatial and seasonal variation in surface diffusion of CO2 and CH4 from Douglas Lake, a hydropower reservoir in Tennessee, USA. Monthly estimates across 13 reservoir sites from January to November 2010 indicated that surface diffusions ranged from 236 to 18,806 mg m-2 day-1 for CO2 and 0 to 0.95 mg m-2 day-1 for CH4. Next, we developed statistical models using spatial and physicochemical variables to predict surface diffusions of CO2 and CH4. Models explained 22.7 and 20.9% of the variation in CO2 and CH4 diffusions, respectively, and identified pH, temperature, dissolved oxygen, and Julian day as the most informative important predictors. These findings provide baseline estimates of GHG emissions from a reservoir in eastern temperate North America a region for which estimates of reservoir GHGs emissions are limited. Our statistical models effectively characterized non-linear and threshold relationships between physicochemical predictors and GHG emissions. Further refinement of such models will aid in predicting current GHG emissions in unsampled reservoirs and forecasting future GHG emissions.

  9. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles This report examines energy use and emissions from primary energy source ...

  10. Fact #879: June 29, 2015 Greenhouse Gas Abatement Costs for Employer-Subsidized Commuting Options

    Broader source: Energy.gov [DOE]

    Providing workplace charging is one of the more effective ways for businesses to reduce the greenhouse gas emissions of their employees’ daily commute. Offering a bike purchase subsidy can be even...

  11. Fact #608: February 1, 2010 Changes in Greenhouse Gas Emissions since 1990

    Office of Energy Efficiency and Renewable Energy (EERE)

    In October of 2009, the United Nations (UN) released greenhouse gas inventory data for 1990 to 2007 for all countries that submitted data in accordance with the UN Framework Convention on Climate...

  12. Land-use change and greenhouse gas emissions from corn and cellulosic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Land-use change and greenhouse gas emissions from corn and cellulosic ethanol July 16, ... Estimates of LUC GHG emissions focus mainly on corn ethanol and vary widely. Increasing ...

  13. Demonstration Results From Greenhouse Heating with Liquified Wood

    SciTech Connect (OSTI)

    Steele, Philip; Parish, Don; Cooper, Jerome

    2011-07-01

    A boiler fuel known as Lignocellulosic Boiler Fuel (LBF) was developed at the Department of Forest Products, Mississippi State University for potential application for heating agricultural buildings. LBF was field tested to heat green houses in cooperation with Natchez Trace Greenhouses (NTG) located in Kosciusko, Mississippi. MSU modified an idled natural gas boiler located at NTG to combust the LBF. Thirty gallons of bio-oil were produced at the MSU Bio-oil Research Laboratory. The bio-oil was produced from the fast-pyrolysis of southern pine (15 gal) and white oak (15 gal) feedstocks and subsequently upgraded by a proprietary process. Preliminary field testing was conducted at (NTG). The LBF was produced from each wood species was tested separately and co-fed with diesel fuel to yield three fuel formulations: (1) 100% diesel; (2) 87.5% LBF from southern pine bio-oil co-fed with 12.5% diesel and (3) 87.5% LBF from white oak co-fed with 12.5% diesel fuel formulations. Each fuel formulation was combusted in a retrofit NTG boiler. Fuel consumption and water temperature were measured periodically. Flue gas from the boiler was analyzed by gas chromatograph. The 100% diesel fuel increased water temperature at a rate of 4 °F per min. for 35 min. to achieve the target 140 °F water temperature increase. The 87.5% pine LBF fuel cofed with 12.5%) diesel attained the 140 °F water temperature increase in 62 min. at a rate of 2.3 °F per min. The 87.5% white oak LBF fuel co-fed with 12.5% diesel reached the 140 °F water temperature increase in 85 min. at a rate of 1.6 °F per min. Fuel that contained 87.5% pine LBF co-fed with 12.5% diesel yielded nitrogen and oxygen at a ratio of 5.3 and carbon dioxide and carbon monoxide at a ratio of 22.2. Fuel formulations that contained 87.5% white oak LBF co-fed with 12.5% diesel yielded nitrogen and oxygen at a ratio of 4.9 and carbon dioxide and carbon monoxide at a ratio of 16.4. Neither the pine LBF nor the white oak LBF fuel showed any measureable methane emissions from the NTG boiler flue gas. These results indicate a viable potential for mildly upgraded bio-oil to become an alternative fuel source for greenhouse operations.

  14. Electricity price impacts of alternative Greenhouse gas emission cap-and-trade programs

    SciTech Connect (OSTI)

    Edelston, Bruce; Armstrong, Dave; Kirsch, Laurence D.; Morey, Mathew J.

    2009-07-15

    Limits on greenhouse gas emissions would raise the prices of the goods and services that require such emissions for their production, including electricity. Looking at a variety of emission limit cases and scenarios for selling or allocating allowances to load-serving entities, the authors estimate how the burden of greenhouse gas limits are likely to be distributed among electricity consumers in different states. (author)

  15. Aluminum Bronze Alloys to Improve Furnace Component Life | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Aluminum Bronze Alloys to Improve Furnace Component Life Aluminum Bronze Alloys to Improve Furnace Component Life Improved System Increases Steelmaking Furnace Efficiency, Safety, and Productivity Hoods, roofs, and sidewall systems in basic oxygen furnaces (BOFs) and electric arc furnaces (EAFs) enable effluent gases in excess of 3000°F to be properly captured, cooled, and processed prior to delivery to the environmental control equipment. Traditionally, these carbon steel components

  16. Device for accurately measuring mass flow of gases

    DOE Patents [OSTI]

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  17. Device for accurately measuring mass flow of gases

    DOE Patents [OSTI]

    Hylton, J.O.; Remenyik, C.J.

    1994-08-09

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

  18. On flame kernel formation and propagation in premixed gases

    SciTech Connect (OSTI)

    Eisazadeh-Far, Kian; Metghalchi, Hameed [Northeastern University, Mechanical and Industrial Engineering Department, Boston, MA 02115 (United States); Parsinejad, Farzan [Chevron Oronite Company LLC, Richmond, CA 94801 (United States); Keck, James C. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2010-12-15

    Flame kernel formation and propagation in premixed gases have been studied experimentally and theoretically. The experiments have been carried out at constant pressure and temperature in a constant volume vessel located in a high speed shadowgraph system. The formation and propagation of the hot plasma kernel has been simulated for inert gas mixtures using a thermodynamic model. The effects of various parameters including the discharge energy, radiation losses, initial temperature and initial volume of the plasma have been studied in detail. The experiments have been extended to flame kernel formation and propagation of methane/air mixtures. The effect of energy terms including spark energy, chemical energy and energy losses on flame kernel formation and propagation have been investigated. The inputs for this model are the initial conditions of the mixture and experimental data for flame radii. It is concluded that these are the most important parameters effecting plasma kernel growth. The results of laminar burning speeds have been compared with previously published results and are in good agreement. (author)

  19. Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0

  20. Glass surface deactivants for sulfur-containing gases

    SciTech Connect (OSTI)

    Farwell, S.O.; Gluck, S.J.

    1980-10-01

    In gas chromatographic technique for measuring reduced sulfur-containing gases in biogenic air fluxes, the major problem seemed to be the irreversible adsorption of the polar sulfur compounds on the glass surfaces of the cryogenic sampling traps. This article discusses the comparative degrees of Pyrex glass surface passivation for over 25 chemical deactivants and their related pretreatment procedures. Since H/sub 2/S was discovered to be the sulfur compound with a consistently lower recovery efficiency than COS, CH/sub 3/SH, CH/sub 3/SCH, CS/sub 2/ or CH/sub 3/SSCH/sub 3/, the percent recovery for H/sub 2/S was employed as the indicator of effectiveness for the various deactivation treatments. Tables are presented summarizing the mean H/sub 2/S recoveries for chlorosilane deactivants and for the mean H/sub 2/S recoveries for different pyrex surface pretreatments with an octadecyltrialkoxysilane deactivation. The general conclusion of this investigation is that the relative degree of passivation for glass surfaces by present deactivation techniques is dependent on the types of analyzed compounds and the nature of the glass surface.

  1. Process for removal of sulfur compounds from fuel gases

    DOE Patents [OSTI]

    Moore, Raymond H.; Stegen, Gary E.

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  2. Auxiliary field formalism for dilute fermionic atom gases with tunable interactions

    SciTech Connect (OSTI)

    Mihaila, Bogdan; Chien, Chih-Chun; Timmermans, Eddy; Dawson, John F.; Cooper, Fred

    2011-05-15

    We develop the auxiliary field formalism corresponding to a dilute system of spin-1/2 fermions. This theory represents the Fermi counterpart of the Bose-Einstein condensation (BEC) theory developed recently by F. Cooper et al. [Phys. Rev. Lett. 105, 240402 (2010)] to describe a dilute gas of Bose particles. Assuming tunable interactions, this formalism is appropriate for the study of the crossover from the regime of Bardeen-Cooper-Schriffer (BCS) pairing to the regime of BEC in ultracold fermionic atom gases. We show that when applied to the Fermi case at zero temperature, the leading-order auxiliary field (LOAF) approximation gives the same equations as obtained in the standard BCS variational picture. At finite temperature, LOAF leads to the theory discussed by Sa de Melo, Randeria, and Engelbrecht [Phys. Rev. Lett. 71, 3202 (1993); Phys. Rev. B 55, 15153 (1997)]. As such, LOAF provides a unified framework to study the interacting Fermi gas. The mean-field results discussed here can be systematically improved on by calculating the one-particle irreducible action corrections, order by order.

  3. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    DOE Patents [OSTI]

    Xiong, Yongliang; Wang, Yifeng

    2015-02-03

    Advanced, fire-resistant activated carbon compositions useful in adsorbing gases; and having vastly improved fire resistance are provided, and methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard. They also have superior performance to Mordenites in both adsorption capacities and kinetics. In addition, the advanced compositions do not pose the fibrous inhalation hazard that exists with use of Mordenites. The fire-resistant compositions combine activated carbon mixed with one or more hydrated and/or carbonate-containing minerals that release H.sub.2O and/or CO.sub.2 when heated. This effect raises the spontaneous ignition temperature to over 500.degree. C. in most examples, and over 800.degree. C. in some examples. Also provided are methods for removing and/or separating target gases, such as Krypton or Argon, from a gas stream by using such advanced activated carbons.

  4. Methods for separating oxygen from oxygen-containing gases

    DOE Patents [OSTI]

    Mackay, Richard; Schwartz, Michael; Sammells, Anthony F.

    2000-01-01

    This invention provides mixed conducting metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes. The materials of this invention have the general formula: A.sub.x A'.sub.x A".sub.2-(x+x') B.sub.y B'.sub.y B".sub.2-(y+y') O.sub.5+z ; where x and x' are greater than 0; y and y' are greater than 0; x+x' is less than or equal to 2; y+y' is less than or equal to 2; z is a number that makes the metal oxide charge neutral; A is an element selected from the f block lanthanide elements; A' is an element selected from Be, Mg, Ca, Sr, Ba and Ra; A" is an element selected from the f block lanthanides or Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof; and B' and B" are different elements and are independently selected from the group of elements Mg or the d-block transition elements. The invention also provides methods for oxygen separation and oxygen enrichment of oxygen deficient gases which employ mixed conducting metal oxides of the above formula. Examples of the materials used for the preparation of the membrane include A.sub.x Sr.sub.x' B.sub.y Fe.sub.y' Co.sub.2-(y+y') O.sub.5+z, where x is about 0.3 to about 0.5, x' is about 1.5 to about 1.7, y is 0.6, y' is between about 1.0 and 1.4 and B is Ga or Al.

  5. Surface interactions involved in flashover with high density electronegative gases.

    SciTech Connect (OSTI)

    Hodge, Keith Conquest; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wallace, Zachariah Red; Lehr, Jane Marie

    2010-01-01

    This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

  6. Sectoral trends in global energy use and greenhouse gasemissions

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

    2006-07-24

    In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth, intermediate levels of economic development, and less rapid and more diverse technological change (Nakicenovic et al., 2000). Data were obtained from the SRES modeling teams that provide more detail than that reported in the SRES. For the A1 marker scenario, the modeling team provided final energy demand and carbon dioxide (CO{sub 2}) emissions by fuel for industry, buildings, and transportation for nine world regions. Final energy use and CO{sub 2} emissions for three sectors (industry, transport, buildings) for the four SRES world regions were provided for the B2 marker scenario. This report describes the results of a disaggregation of the SRES projected energy use and energy-related CO{sub 2} emissions for the industrial, transport, and buildings sectors for 10 world regions (see Appendix 1) to 2030. An example of further disaggregation of the two SRES scenarios for the residential buildings sector in China is provided, illustrating how such aggregate scenarios can be interpreted at the end use level.

  7. Idaho National Laboratorys Greenhouse Gas FY08 Baseline

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2011-06-01

    A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL's FY08 GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries but are a consequence of INL's activities). This inventory found that INL generated a total of 113,049 MT of CO2-equivalent emissions during FY08. The following conclusions were made from looking at the results of the individual contributors to INL's baseline GHG inventory: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  8. Idaho National Laboratorys Greenhouse Gas FY08 Baseline

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2010-09-01

    A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at the INL. Additionally, the INL has a desire to see how its emissions compare with similar institutions, including other DOE-sponsored national laboratories. Executive Order 13514 requires that federally-sponsored agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INLs FY08 GHG inventory was calculated according to methodologies identified in Federal recommendations and an as-yet-unpublished Technical and Support Document (TSD) using operational control boundary. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INLs organizational boundaries but are a consequence of INLs activities). This inventory found that INL generated a total of 114,256 MT of CO2-equivalent emissions during fiscal year 2008 (FY08). The following conclusions were made from looking at the results of the individual contributors to INLs baseline GHG inventory: Electricity is the largest contributor to INLs GHG inventory, with over 50% of the net anthropogenic CO2e emissions Other sources with high emissions were stationary combustion, fugitive emissions from the onsite landfill, mobile combustion (fleet fuels) and the employee commute Sources with low emissions were contracted waste disposal, wastewater treatment (onsite and contracted) and fugitive emissions from refrigerants. This report details the methods behind quantifying INLs GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to stress that the methodology behind this inventory followed guidelines that have not yet been formally adopted. Thus, some modification of the conclusions may be necessary as additional guidance is received. Further, because this report differentiates between those portions of the INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  9. Novel Material for Efficient and Low-Cost Separation of Gases for Fuels and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plastics | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Novel Material for Efficient and Low-Cost Separation of Gases for Fuels and Plastics

  10. Method and apparatus for separating mixtures of gases using an acoustic wave

    DOE Patents [OSTI]

    Geller, Drew A.; Swift, Gregory W.; Backhaus, Scott N.

    2004-05-11

    A thermoacoustic device separates a mixture of gases. An elongated duct is provided with first and second ends and has a length that is greater than the wavelength of sound in the mixture of gases at a selected frequency, and a diameter that is greater than a thermal penetration depth in the mixture of gases. A first acoustic source is located at the first end of the duct to generate acoustic power at the selected frequency. A plurality of side branch acoustic sources are spaced along the length of the duct and are configured to introduce acoustic power into the mixture of gases so that a first gas is concentrated at the first end of the duct and a second gas is concentrated at the second end of the duct.

  11. System and method for converting wellhead gas to liquefied petroleum gases (LPG)

    SciTech Connect (OSTI)

    May, R.L.; Snow, N.J. Jr.

    1983-12-06

    A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a well-head; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; and separating LPG from gas vapors of the refrigerated natural gas. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for cooling the compressed gases therefrom; and a product separator downstream of the refrigeration unit for receiving cooled and compressed gases discharged from the refrigeration unit and separating LPG therein from gases remaining in vapor form.

  12. Global and regional evolution of short-lived radiatively-active gases and

    Office of Scientific and Technical Information (OSTI)

    aerosols in the Representative Concentration Pathways (Journal Article) | SciTech Connect Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways Citation Details In-Document Search Title: Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways In this paper, we discuss the results of 2000-2100 simulations with a chemistry-climate model, focusing on

  13. Radon and helium in soil gases in the Phlegraean Fields, central Italy

    SciTech Connect (OSTI)

    Lombardi, S. ); Reimer, G.M. )

    1990-05-01

    The distribution and migration of radon and helium soil-gas concentrations in the Phlegraean Fields, Italy, are controlled by the tectonic features of the area. Radon is supplied from surficial sources and helium has both surficial and deep origins. There is no direct correlation between the two noble gases on a point-to-point basis but the areal distribution of both gases is similar, suggesting that the distribution is controlled primarily by fractures and movement of geothermal fluids.

  14. Detection And Discrimination Of Pure Gases And Binary Mixtures Using A

    Office of Scientific and Technical Information (OSTI)

    Single Microcantilever (Journal Article) | SciTech Connect Detection And Discrimination Of Pure Gases And Binary Mixtures Using A Single Microcantilever Citation Details In-Document Search Title: Detection And Discrimination Of Pure Gases And Binary Mixtures Using A Single Microcantilever × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public

  15. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    DOE Patents [OSTI]

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  16. Methods of forming and using porous structures for energy efficient separation of light gases by capillary condensation

    DOE Patents [OSTI]

    Calamur, Narasimhan; Carrera, Martin E.; Devlin, David J.; Archuleta, Tom

    2000-01-01

    The present invention relates to an improved method and apparatus for separating one or more condensable compounds from a mixture of two or more gases of differing volatilities by capillary fractionation in a membrane-type apparatus, and a method of forming porous structures therefor. More particularly, the invention includes methods of forming and using an apparatus consisting, at least in part, of a porous structure having capillary-type passages extending between a plurality of small openings on the first side and larger openings on a second side of the structure, the passages being adapted to permit a condensed liquid to flow therethrough substantially by capillary forces, whereby vapors from the mixture are condensed, at least in part, and substantially in and adjacent to the openings on the first side, and are caused to flow in a condensed liquid state, substantially in the absence of vapor, from the openings on the first side to the openings on the second side.

  17. Studies of scattering mechanisms in gate tunable InAs/(Al,Ga)Sb two dimensional electron gases

    SciTech Connect (OSTI)

    Shojaei, B.; McFadden, A.; Schultz, B. D.; Shabani, J.; Palmstrøm, C. J.

    2015-06-01

    A study of scattering mechanisms in gate tunable two dimensional electron gases confined to InAs/(Al,Ga)Sb heterostructures with varying interface roughness and dislocation density is presented. By integrating an insulated gate structure the evolution of the low temperature electron mobility and single-particle lifetime was determined for a previously unexplored density regime, 10{sup 11}–10{sup 12 }cm{sup −2}, in this system. Existing theoretical models were used to analyze the density dependence of the electron mobility and single particle lifetime in InAs quantum wells. Scattering was found to be dominated by charged dislocations and interface roughness. It was demonstrated that the growth of InAs quantum wells on nearly lattice matched GaSb substrate results in fewer dislocations, lower interface roughness, and improved low temperature transport properties compared to growth on lattice mismatched GaAs substrates.

  18. Table 2. U.S. greenhouse gas intensity and related factors, 1990 to 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    greenhouse gas intensity and related factors, 1990 to 2009" ,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 "Gross Domestic Product (Billion 2000 Dollars)",8033.9,8015.1,8287.1,8523.4,8870.7,9093.7,9433.9,9854.3,10283.5,10779.8,11226,11347.2,11553,11840.7,12263.8,12638.4,12976.2,13228.9,13228.8,12880.6 "Greenhouse Gas Emissions

  19. Table 3. Distribution of total U.S. greenhouse gas emissions by sector, 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Distribution of total U.S. greenhouse gas emissions by sector, 2009 " "Greenhouse Gas and Source","Sector" ,"Residential","Commercial","Industrial","Transportation","Total" "Carbon Dioxide" " Energy-Related",1172.297835,1012.323586,1417.683142,1757.250685,5359.555248 " Industrial Processes",,,87.282832,,87.282832 "Total CO2",1172.297835,1012.323586,1504.965974,1757.250685,5446.83808

  20. Process for removing sulfur from sulfur-containing gases

    DOE Patents [OSTI]

    Rochelle, Gary T.; Jozewicz, Wojciech

    1989-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accorda The government may own certain rights in the present invention pursuant to EPA Cooperative Agreement CR 81-1531.

  1. Investigation of Tunable Diode Spectroscopy for Monitoring Gases in Geothermal Plants

    SciTech Connect (OSTI)

    J. K. Partin

    2006-08-01

    The results of an investigation directed at the development of instrument-tation for the real-time monitoring of gases, such as hydrogen sulfide (H2S) and chloride (HCl), in geothermal process streams is described. The geothermal power industry has an interest in the development of new low maintenance techniques since improved capabilities could lead to considerable cost savings through the optimization of various gas abatement processes. Tunable diode laser spectroscopy was identified as a candidate tech-nology for this application and a commercial instrument was specified and procured for testing. The measurement principle involved the use of solid state diode lasers and frequency modulation techniques. The gallium arsenide diode lasers employed emit light in the 0.7 to 2.0 micron region of the electromagnetic spectrum. This region contains the overtone and combination absorption bands of a number of species of industrial interest, including H2S and HCl. A particular device can be tuned over a small range to match the absorption line by changing its applied temperature and current. The diode current can also be sinusoidally modulated in frequency as it is tuned across the line. This modulation allows measurements to be conducted at frequencies where the laser intensity noise is minimal; and therefore, very high signal-to-noise measurements are possible. The feasibility of using this technology in various types of geothermal process streams has been explored. The results of laboratory and field studies are presented along with new advances in laser technology that could allow more sensitive and selective measurements to be performed.

  2. State Commission electricity regulation under Federal Greenhouse gas cap-and-trade policy

    SciTech Connect (OSTI)

    Keeler, Andrew G.

    2008-05-15

    Given the current uncertainty about the timing and severity of greenhouse gas constraints on electric generation that will result from a federal program, commissions need to begin crafting strategies and procedures to best serve the public interest in this new environment. (author)

  3. Regulating greenhouse gas 'leakage': how California can evade the impending constitutional attacks

    SciTech Connect (OSTI)

    Brian H. Potts

    2006-06-15

    Federalist greenhouse gas regulation poses many constitutional pitfalls, and some fear that California's cap-and-trade and procurement cap proposals are vulnerable to constitutional challenge. An attack under the commerce clause seems to pose the biggest threat, but the author proposes an alternative that can eliminate this threat: market participation.

  4. U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas (GHG) intensity-defined as the ratio of total U.S. GHG emissions to economic output-by 18% over the 2002 to 2012 time frame.

  5. System and method for converting wellhead gas to liquefied petroleum gases (LPG)

    SciTech Connect (OSTI)

    May, R.L.; Sinclair, B.W.

    1984-07-31

    A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a wellhead; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; separating LPG from gas vapors of the refrigerated natural gas; storing the separated LPG in a storage tank with a vapor space therein; and recirculating a portion of the LPG vapors in the storage tank with the natural gas exiting the wellhead to enhance recovery of LPG. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for refrigerating the compressed gases therefrom; at least one product separator downstream of the refrigerator unit for receiving refrigerated and compressed gases discharged from the refrigerator unit and separating LPG therein from gases remaining in vapor form; and a storage tank for receiving and storing the separated LPG therein, the storage tank having a vapor space therein connected upstream of the gas compressor through a pressure regulator allowing recirculation of some LPG vapors with the natural gases through said system.

  6. Mass transfer apparatus and method for separation of gases

    DOE Patents [OSTI]

    Blount, Gerald C.

    2015-10-13

    A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.

  7. Energetic Materials for EGS Well Stimulation (solids, liquids, gases) |

    Broader source: Energy.gov (indexed) [DOE]

    RSS Welcome to the Building Technologies Office's Building Energy Modeling blog. May 3, 2016 The U.S. Army Corps of Engineers B-Hut test site in Champaign, IL. Performance of two energy efficient B-Huts (improved B-hut on left and SIP hut on right), designed with the help of EnergyPlus, is being compared to baseline B-Hut (middle).<br />Credit: Oak Ridge National Laboratory. When Saving Energy Helps Save Lives National lab researchers are working with U.S. Military to design energy

  8. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

    SciTech Connect (OSTI)

    Cafferty, Kara G.; Searcy, Erin M.; Nguyen, Long; Spatari, Sabrina

    2014-11-01

    To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing “depots”, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this range can be minimized through optimizing the siting of preprocessing depots where ample rail infrastructure exists to supply biomass commodity to a regional biorefinery supply system

  9. Method of removing oxides of sulfur and oxides of nitrogen from exhaust gases

    DOE Patents [OSTI]

    Walker, Richard J.

    1986-01-01

    A continuous method is presented for removing both oxides of sulfur and oxides of nitrogen from combustion or exhaust gases with the regeneration of the absorbent. Exhaust gas is cleaned of particulates and HCl by a water scrub prior to contact with a liquid absorbent that includes an aqueous solution of bisulfite and sulfite ions along with a metal chelate, such as, an iron or zinc aminopolycarboxylic acid. Following contact with the combustion gases the spent absorbent is subjected to electrodialysis to transfer bisulfite ions into a sulfuric acid solution while splitting water with hydroxide and hydrogen ion migration to equalize electrical charge. The electrodialysis stack includes alternate layers of anion selective and bipolar membranes. Oxides of nitrogen are removed from the liquid absorbent by air stripping at an elevated temperature and the regenerated liquid absorbent is returned to contact with exhaust gases for removal of sulfur oxides and nitrogen oxides.

  10. Natural Gas Methane Emissions in the United States Greenhouse Gas Inventory: Sources, Uncertainties and Opportunities for Improvement

    SciTech Connect (OSTI)

    Heath, Garvin; Warner, Ethan; Steinberg, Daniel; Brandt, Adam

    2015-11-19

    Presentation summarizing key findings of a Joint Institute for Strategic Energy Analysis Report at an Environmental Protection Agency workshop: 'Stakeholder Workshop on EPA GHG Data on Petroleum and Natural Gas Systems' on November 19, 2015. For additional information see the JISEA report, 'Estimating U.S. Methane Emissions from the Natural Gas Supply Chain: Approaches, Uncertainties, Current Estimates, and Future Studies' NREL/TP-6A50-62820.

  11. Remote NMR/MRI detection of laser polarized gases

    DOE Patents [OSTI]

    Pines, Alexander; Saxena, Sunil; Moule, Adam; Spence, Megan; Seeley, Juliette A.; Pierce, Kimberly L.; Han, Song-I; Granwehr, Josef

    2006-06-13

    An apparatus and method for remote NMR/MRI spectroscopy having an encoding coil with a sample chamber, a supply of signal carriers, preferably hyperpolarized xenon and a detector allowing the spatial and temporal separation of signal preparation and signal detection steps. This separation allows the physical conditions and methods of the encoding and detection steps to be optimized independently. The encoding of the carrier molecules may take place in a high or a low magnetic field and conventional NMR pulse sequences can be split between encoding and detection steps. In one embodiment, the detector is a high magnetic field NMR apparatus. In another embodiment, the detector is a superconducting quantum interference device. A further embodiment uses optical detection of Rb--Xe spin exchange. Another embodiment uses an optical magnetometer using non-linear Faraday rotation. Concentration of the signal carriers in the detector can greatly improve the signal to noise ratio.

  12. Emission of biogenic sulfur gases from Chinese paddy soil and rice plant

    SciTech Connect (OSTI)

    Zhen Yang [Nanjing Univ. of Science and Technology (China); Li Kong [Nanjing Agricultural Univ. (China)

    1996-12-31

    Biogenic sulfur gases emitted from terrestrial ecosystem may play in important role in global sulfur cycle and have a profound influence on global climate change. But very little is known concerning emissions from paddy soil and rice plant, which are abundant in many parts of the world. As a big agricultural country, this is about 33 million hectare rice planted in China. With laboratory incubation and closed chamber method in the field, the biogenic sulfur gases emitted from Chinese paddy soil and rice plant were detected in both conditions: hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), methyl mercaptan (MSH), carbon disulfide (CS{sub 2}), dimethyl sulfide (DMS) and dimethyl disulfide (DMDS). Among which, DMS was predominant part of sulfur emission. Emission of sulfur gases from different paddy field exhibit high spatial and temporal variability. The application of fertilizer and organic manure, total sulfur content in wetland, air temperature were positively correlated to the emission of volatile sulfur gases from paddy soil. Diurnal and seasonal variation of total volatile sulfur gases and DMS indicate that their emissions were greatly influenced by the activity of the rice plant. The annual emission of total volatile sulfur gases, from Nanjing paddy field is ranged from 4.0 to 9.5 mg S m{sup -2}yr{sup -1}, that of DMS is ranged from 3.1 to 6.5 mg S m{sup -2}yr{sup -1}. Rice plant could absorb COS gas, that may be one of the sinks of COS.

  13. High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1982-07-07

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  14. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, John E.; Jalan, Vinod M.

    1984-01-01

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  15. ,"Ohio Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonhydrocarbon Gases Removed (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel

  16. ,"Pennsylvania Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonhydrocarbon Gases Removed (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016"

  17. ,"South Dakota Natural Gas Nonhydrocarbon Gases Removed (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonhydrocarbon Gases Removed (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Nonhydrocarbon Gases Removed (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  18. ,"Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonhydrocarbon Gases Removed (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016"

  19. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1984-06-19

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  20. ,"Indiana Natural Gas Nonhydrocarbon Gases Removed (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonhydrocarbon Gases Removed (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Nonhydrocarbon Gases Removed (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  1. Three-body Recombination in Bose Gases with Large Scattering Length

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Three-body Recombination in Bose Gases with Large Scattering Length Citation Details In-Document Search Title: Three-body Recombination in Bose Gases with Large Scattering Length An effective field theory for the three-body system with large scattering length is applied to three-body recombination to a weakly bound s -wave state in a Bose gas. Our model independent analysis demonstrates that the three-body recombination constant {alpha} is not universal,

  2. Sorption of organic gases in residential bedrooms andbathrooms

    SciTech Connect (OSTI)

    Singer, B.C.; Hodgson, A.T.; Hotchi, T.; Ming, K.Y.; Sextro,R.G.; Wood, E.E.; Brown, N.J.

    2005-01-05

    Experiments were conducted to characterize organic gas sorption in residential bedrooms (n=4), bathrooms (n=2), and a furnished test chamber. Rooms were studied ''as-is'' with material surfaces and furnishings unaltered. Surface materials were characterized and areas quantified. Experiments included rapid volatilization of a volatile organic compound (VOC) mixture with the room closed and sealed for a 5-h Adsorb phase, followed by 30-min Flush and 2-h closed-room Desorb phases. The mixture included n-alkanes, aromatics, glycol ethers, 2-ethyl-1-hexanol, dichlorobenzene, and organophosphorus compounds. Measured gas-phase concentrations were fit to three variations of a mathematical model that considers sorption occurring at one surface sink and one potential embedded sink. The 2-parameter sink model tracked measurements for most compounds, but improved fits were obtained for some VOCs with a 3-parameter sink-diffusion or a 4-parameter two-sink model. Sorptive partitioning and initial adsorption rates increased with decreasing vapor pressure within each chemical class.

  3. Enhanced ignition for I. C. engines with premixed gases

    SciTech Connect (OSTI)

    Dale, J.D.; Oppenheim, A.K.

    1981-01-01

    The development of lean charge, fast burn engines depends crucially on enhanced ignition. Enhanced ignition involves not only high energies and long duration of ignition, but also a wide dispersion of its sources, so that combustion is carried out at as many sites throughout the charge as possible. Upon this premise, various ignition systems for I.C. engines, operating with premixed charge, are reviewed. The systems are grouped as follows: high energy spark plugs; plasma jet igniters; photochemical, laser, and microwave ignition concepts; torch cells; divided chamber stratified charge engines; flame jet igniters; combustion jet ignition concepts; EGR ignition system. The first three derive the power from electrical energy, the rest are powered by exothermic chemical reactions. The review emphasizes the concept of staging the processes of initiation and propagation of combustion. Relative positions of various ignition systems are expressed on the plane of relative energies (the ratio of energy consumed by the ignition system, or contained in a pre-chamber, to that of the compressed charge in the main chamber) and relative volumes (the ratio of the volume of the pre-chamber to that of the compressed charge). In principle, ignition systems for engines operating with premixed charge lie on the half-plane of relative energies below one, between 10/sup -5/ for standard spark plugs to 10/sup -1/ for divided chamber stratified charge engines, while their relative volumes extend from 0 for spark igniters to 0.2 for stratified charge engines. This suggests that proper compartmentization of the combustion process may lead to significant improvements in both pollution emissions from the cylinder and specific fuel consumption of I.C. engines.

  4. Evolution of Some Particle Detectors Based On the Discharge in Gases

    DOE R&D Accomplishments [OSTI]

    Charpak, G.

    1969-11-19

    Summary of the properties of some of the detectors that are commonly used in counter experiments to localize charged particles, and which are based on discharge in gases under the influence of electric fields and some basic facts of gaseous amplification in homogeneous and inhomogeneous fields.

  5. Full-Column Greenhouse Gas Sampling 2012-2014 Campaign Report

    Office of Scientific and Technical Information (OSTI)

    10 Full-Column Greenhouse Gas Sampling 2012-2014 Final Campaign Report ML Fischer January 2016 CLIMATE RESEARCH FACILITY DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  6. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

  7. Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling

    Broader source: Energy.gov (indexed) [DOE]

    Across the Continental United States | Department of Energy Data analysis from this study will provide insight into real-world performance of current emissions reduction devices, under various operating conditions, and with respect to greenhouse gas emissions. PDF icon p-03_carder.pdf More Documents & Publications On-Road Particle Matter Emissions from a MY 2010 Compliant HD Diesel Vehicle Driving Across the U.S. Measurement of Real-World Emissions from Heavy-Duty Diesel Vehicles: The

  8. Fuel Use and Greenhouse Gas Emissions from the Natural Gas System; Sankey Diagram Methodology

    Broader source: Energy.gov [DOE]

    As natural gas travels through infrastructure, from well-head to customer meter, small portions are routinely used as fuel, vented, flared, or inadvertently leaked to the atmosphere. This paper describes the analytical and methodological basis for three diagrams that illustrate the natural gas losses and greenhouse gas emissions that result from these processes. The paper examines these emissions in some detail, focusing in particular on the production, processing, transmission and storage, and distribution segments of natural gas infrastructure.

  9. Advancing Development and Greenhouse Gas Reductions in Vietnams Wind Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector June 19, 2014 Daniel Bilello, Jessica Katz, Sean Esterly National Renewable Energy Laboratory Matthew Ogonowski U.S. Agency for International Development EC-LEDS is managed by the U.S. Agency for International Development (USAID) and Department of State with support from the U.S. Department of Energy, U.S. Environmental Protection Agency, U.S. Department of Agriculture, and U.S. Forest Service. Printed with a

  10. Greenhouse gas and air pollutant emission reduction potentials of renewable energy - case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan

    SciTech Connect (OSTI)

    Yu-Ming Kuo; Yasuhiro Fukushima

    2009-03-15

    To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. 15 refs., 8 figs., 11 tabs.

  11. Estimating the greenhouse gas benefits of forestry projects: A Costa Rican Case Study

    SciTech Connect (OSTI)

    Busch, Christopher; Sathaye, Jayant; Sanchez Azofeifa, G. Arturo

    2000-09-01

    If the Clean Development Mechanism proposed under the Kyoto Protocol is to serve as an effective means for combating global climate change, it will depend upon reliable estimates of greenhouse gas benefits. This paper sketches the theoretical basis for estimating the greenhouse gas benefits of forestry projects and suggests lessons learned based on a case study of Costa Rica's Protected Areas Project, which is a 500,000 hectare effort to reduce deforestation and enhance reforestation. The Protected Areas Project in many senses advances the state of the art for Clean Development Mechanism-type forestry projects, as does the third-party verification work of SGS International Certification Services on the project. Nonetheless, sensitivity analysis shows that carbon benefit estimates for the project vary widely based on the imputed deforestation rate in the baseline scenario, e.g. the deforestation rate expected if the project were not implemented. This, along with a newly available national dataset that confirms other research showing a slower rate of deforestation in Costa Rica, suggests that the use of the 1979--1992 forest cover data originally as the basis for estimating carbon savings should be reconsidered. When the newly available data is substituted, carbon savings amount to 8.9 Mt (million tones) of carbon, down from the original estimate of 15.7 Mt. The primary general conclusion is that project developers should give more attention to the forecasting land use and land cover change scenarios underlying estimates of greenhouse gas benefits.

  12. Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

    2010-04-30

    Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

  13. Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents

    DOE Patents [OSTI]

    Judkins, R.R.; Burchell, T.D.

    1999-07-20

    A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known pressure swing adsorption'' technique utilizing the same sorption material. 1 fig.

  14. Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents

    DOE Patents [OSTI]

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-01-01

    A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known "pressure swing adsorption" technique utilizing the same sorption material.

  15. CEQ Issues Revised Draft Guidance on Consideration of Greenhouse Gas Emissions and the Effects of Climate Change in NEPA Reviews

    Broader source: Energy.gov [DOE]

    The Council on Environmental Quality (CEQ) issued revised draft guidance on consideration of greenhouse gas (GHG) emissions and the effects of climate change in National Environmental Policy Act (NEPA) reviews on December 18, 2014

  16. Federal Register Notice for Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy of the Department of Energy gives notice of the availability of the report Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United...

  17. Interstate Electrification Improvement Project

    SciTech Connect (OSTI)

    Puckette, Margaret; Kim, Jeff

    2015-07-01

    The Interstate Electrification Improvement Project, publicly known as the Shorepower Truck Electrification Project (STEP), started in May 2011 and ended in March 2015. The project grant was awarded by the Department of Energy’s Vehicles Technology Office in the amount of $22.2 million. It had three overarching missions: 1. Reduce the idling of Class 8 tractors when parked at truck stops, to reduce diesel fuel consumption and thus U.S. dependence on foreign petroleum; 2. Stimulate job creation and economic activity as part of the American Reinvestment and Recovery Act of 2009; 3. Reduce greenhouse gas emissions (GHG) from diesel combustion and the carbon footprint of the truck transportation industry. The project design was straightforward. First, build fifty Truck Stop Electrification (TSE) facilities in truck stop parking lots across the country so trucks could plug-in to 110V, 220V, or 480VAC, and shut down the engine instead of idling. These facilities were strategically located at fifty truck stops along major U.S. Interstates with heavy truck traffic. Approximately 1,350 connection points were installed, including 150 high-voltage electric standby Transport Refrigeration Unit (eTRU) plugs--eTRUs are capable of plugging in to shore power1 to cool the refrigerated trailer for loads such as produce, meats and ice cream. Second, the project provided financial incentives on idle reduction equipment to 5,000 trucks in the form of rebates, to install equipment compatible with shore power. This equipment enables drivers to shut down the main engine when parked, to heat or cool their cab, charge batteries, or use other household appliances without idling—a common practice that uses approximately 1 gallon of diesel per hour. The rebate recipients were intended to be the first fleets to plug into Shorepower to save diesel fuel and ensure there is significant population of shore power capable trucks. This two part project was designed to complement each other by providing: 1) the infrastructure to plug into and 2) the on-board equipment capable of plugging into the infrastructure. This project generated the largest dataset to date on shore power TSE utilization and use patterns, providing: insight into driver behavior and acceptance; evidence of cost savings; experience with system operations and management; and data for guiding future development of shore power, whether as a private enterprise or a publicly-subsidized service for meeting air quality goals.

  18. Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions (Transportation Energy Futures Series)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEMAND Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions TRANSPORTATION ENERGY FUTURES SERIES: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL

  19. Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors (Transportation Energy Futures Series)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEMAND Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors TRANSPORTATION ENERGY FUTURES SERIES: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL

  20. Improved aethalometer

    DOE Patents [OSTI]

    Hansen, A.D.

    1988-01-25

    An improved aethalometer having a single light source and a single light detector and two light paths from the light source to the light detector. A quartz fiber filter is inserted in the device, the filter having a collection area in one light path and a reference area in the other light path. A gas flow path through the aethalometer housing allows ambient air to flow through the collection area of the filter so that aerosol particles can be collected on the filter. A rotating disk with an opening therethrough allows light for the light source to pass alternately through the two light paths. The voltage output of the detector is applied to a VCO and the VCO pulses for light transmission separately through the two light paths, are counted and compared to determine the absorption coefficient of the collected aerosol particles. 5 figs.