Sample records for greenhouse gas protocol

  1. The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary...

    Open Energy Info (EERE)

    The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative:...

  2. The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport...

    Open Energy Info (EERE)

    calculation-toolsall-tools Cost: Free The Greenhouse Gas Protocol tool for mobile combustion is a free Excel spreadsheet calculator designed to calculate GHG emissions...

  3. The Greenhouse Gas Protocol Initiative: Measurement and Estimation...

    Open Energy Info (EERE)

    in conjunction with other WRI tools (e.g., the GHG Protocol tools for stationary combustion and purchased electricity), or in conjunction with other non-WRI tools that a...

  4. Greenhouse Gas Emissions (Minnesota)

    Broader source: Energy.gov [DOE]

    This statute sets goals for the reduction of statewide greenhouse gas emissions by at least 15 percent by 2015, 30 percent by 2025, and 80 percent by 2050, calculated relative to 2005 levels. These...

  5. Greenhouse Gas Basics

    Broader source: Energy.gov [DOE]

    Greenhouse gases are trace gases in the lower atmosphere that trap heat through a natural process called the "greenhouse effect."

  6. greenhouse gas inve green developmen

    E-Print Network [OSTI]

    Collins, Gary S.

    greenhouse gas inve green developmen energy conservation transportation carbon offs student facult;greenhouse gas inventory green development energy conservation transportation carbon offsets student faculty. Changi natural gas as a primary fuel allowed us to find cleaner and more effici university. Both in 1988

  7. Greenhouse Gas Guidance and Reporting

    Broader source: Energy.gov [DOE]

    Federal agencies are required to inventory and manage their greenhouse gas (GHG) emissions to meet Federal goals and mitigate climate change.

  8. Resources on Greenhouse Gas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    resources for reporting annual greenhouse gas activities. FedCenter Greenhouse Gas Inventory Reporting Website: Features additional information, training, and tools to assist...

  9. Federal Greenhouse Gas Inventories and Performance | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Agency Progress Toward Reduction Targets Fiscal Year (FY) 2012 Greenhouse Gas Inventory: Government Totals FY 2011 Greenhouse Gas Inventory: Government Totals FY 2010...

  10. RESEARCH ROADMAP FOR GREENHOUSE GAS INVENTORY

    E-Print Network [OSTI]

    RESEARCH ROADMAP FOR GREENHOUSE GAS INVENTORY METHODS Prepared For: California Energy Commission.........................................................................................................................1 Roadmap Organization

  11. 2005 Inventory of Greenhouse Gas Emissions Ascribable to the University of Washington

    E-Print Network [OSTI]

    Kaminsky, Werner

    2005 Inventory of Greenhouse Gas Emissions Ascribable to the University of Washington October 2007....................................................................................................................4 Corporate vs. Geographic Inventories...........................................................................4 Inventory Protocol

  12. Greenhouse Gas Reductions: SF6

    ScienceCinema (OSTI)

    Anderson, Diana

    2013-04-19T23:59:59.000Z

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas ? one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  13. Greenhouse Gas Reductions: SF6

    SciTech Connect (OSTI)

    Anderson, Diana

    2012-01-01T23:59:59.000Z

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas — one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  14. Federal Greenhouse Gas Inventories and Performance

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program provides performance data illustrating federal agency progress in meeting the greenhouse gas reduction targets established under Executive Order (E.O.) 13514, as well as the comprehensive greenhouse gas inventories as reported by federal agencies.

  15. Greenhouse Gas Emissions Reduction Act (Maryland)

    Broader source: Energy.gov [DOE]

    The Greenhouse Gas Emissions Reduction Act requires the Department of the Environment to publish and update an inventory of statewide greenhouse gas emissions for calendar year 2006 and requires...

  16. Greenhouse Gas Program Overview (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    Overview of the Federal Energy Management Program (FEMP) Greenhouse Gas program, including Federal requirements, FEMP services, and contacts.

  17. Carbon sequestration and greenhouse gas emissions in urban turf

    E-Print Network [OSTI]

    Townsend-Small, Amy; Czimczik, Claudia I

    2010-01-01T23:59:59.000Z

    Article Correction to “Carbon sequestration and greenhouseCor- rection to “Carbon sequestration and greenhouse gas1 ] In the paper “Carbon sequestration and greenhouse gas

  18. Greenhouse gas mitigation by agricultural intensification

    E-Print Network [OSTI]

    Burney, J. A; Davis, S. J; Lobell, D. B

    2010-01-01T23:59:59.000Z

    et al. (2007) Agriculture. Climate Change 2007: Mitigationagriculture’s future contributions to climate change,agriculture greenhouse gas emissions mitigation carbon price | land use change | climate

  19. Federal Register Notice for Life Cycle Greenhouse Gas Perspective...

    Energy Savers [EERE]

    Federal Register Notice for Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States Federal Register Notice for Life Cycle Greenhouse Gas...

  20. Understanding the carbon and greenhouse gas balance

    E-Print Network [OSTI]

    Understanding the carbon and greenhouse gas balance of forests in Britain Research Report #12;#12;Research Report Understanding the carbon and greenhouse gas balance of forests in Britain Forestry forest soil survey 29 3.5.2 Carbon storage in the main British forest soil types 30 3.5.3 Changes in soil

  1. Shale gas production: potential versus actual greenhouse gas emissions*

    E-Print Network [OSTI]

    Shale gas production: potential versus actual greenhouse gas emissions* Francis O, monitor and verify greenhouse gas emissions and climatic impacts. This reprint is one of a series intended Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential

  2. Navigating the Numbers: Greenhouse Gas Data and International...

    Open Energy Info (EERE)

    the Numbers: Greenhouse Gas Data and International Climate Policy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Navigating the Numbers: Greenhouse Gas Data and...

  3. Greenhouse Gas Guidance and Reporting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Reporting Greenhouse Gas Guidance and Reporting Federal agencies are required to inventory and manage their greenhouse gas (GHG) emissions to meet Federal goals and mitigate...

  4. DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas...

    Office of Environmental Management (EM)

    Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through...

  5. Energy Department Releases New Greenhouse Gas Reporting Guidance...

    Energy Savers [EERE]

    New Greenhouse Gas Reporting Guidance, Seeks Public Comment Energy Department Releases New Greenhouse Gas Reporting Guidance, Seeks Public Comment March 22, 2005 - 10:54am Addthis...

  6. Verifying Greenhouse Gas Emissions: Methods to Support International...

    Open Energy Info (EERE)

    Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements Jump to: navigation, search Tool Summary Name: Verifying Greenhouse Gas Emissions: Methods...

  7. A game of climate chicken : can EPA regulate greenhouse gases before the U.S. Senate ratifies the Kyoto Protocol?

    E-Print Network [OSTI]

    Bugnion, Véronique.; Reiner, David M.

    EPA's legal authority to regulate greenhouse gas emissions under the Clean Air Act is reviewed. While EPA clearly does not have the authority to implement the precise terms of the Kyoto Protocol, arguments could be put ...

  8. Shale gas production: potential versus actual greenhouse gas emissions

    E-Print Network [OSTI]

    O’Sullivan, Francis Martin

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

  9. Integrated Energy and Greenhouse Gas Management System

    E-Print Network [OSTI]

    Spates, C. N.

    2010-01-01T23:59:59.000Z

    With Climate Change legislation on the horizon, the need to integrate energy reduction initiatives with greenhouse gas reduction efforts is critical to manufactures competitiveness and financial strength going forward. MPC has developed...

  10. Integrated Energy and Greenhouse Gas Management System 

    E-Print Network [OSTI]

    Spates, C. N.

    2010-01-01T23:59:59.000Z

    With Climate Change legislation on the horizon, the need to integrate energy reduction initiatives with greenhouse gas reduction efforts is critical to manufactures competitiveness and financial strength going forward. MPC ...

  11. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    fuels (eg diesel, compressed natural gas). Electricity (infossil fuels, such as compressed natural gas and liquefied

  12. Bibliography of greenhouse-gas reduction strategies

    SciTech Connect (OSTI)

    Tompkins, M.M.; Mintz, M.M.

    1995-03-01T23:59:59.000Z

    A bibliography of greenhouse-gas reduction strategies has been compiled to assist the Climate change Action Plan Task Force in their consideration of strategies to reduce greenhouse-gas emissions from personal motor vehicles. The document contains a summary of the literature, including it major directions and implications; and annotated listing of 32 recent pertinent documents; and a listing of a larger group of related reports.

  13. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    natural gas and liquefied petroleum gas have continued to make small contributions to transportation,transportation actions include electric power sector actions, eg coal to natural gas

  14. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    energy coupled with carbon capture and storage, could yieldcoal to natural gas shift, carbon capture and sequestration,

  15. 2 Key Achievements 7 Greenhouse Gas Reduction

    E-Print Network [OSTI]

    Princeton University Reports Contents 2 Key Achievements 7 Greenhouse Gas Reduction Campus Energy was established in 2008, the University has invested $5.3 million in energy-savings projects, resulting in annual of a 5.2-megawatt solar collector field. · Audit the remaining 20 of the top 50 energy- consuming

  16. Fiscal Year 2007 Greenhouse Gas Inventory

    E-Print Network [OSTI]

    Escher, Christine

    Fiscal Year 2007 Greenhouse Gas Inventory Greg Smith Brandon Trelstad OSU Facilities Services June #12;#12;Acknowledgments Due to the broad scope of this inventory, a large number of people from many, geothermal, tidal or sea currents etc. (7) "OUS Method" refers to the inventory for FY07 that is similar

  17. Greenhouse gas balances of biomass energy systems

    SciTech Connect (OSTI)

    Marland, G. [Oak Ridge National Lab., TN (United States); Schlamadinger, B. [Institute for Energy Research, Joanneum Research, Graz, (Austria)

    1994-12-31T23:59:59.000Z

    A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol from corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large nonlinearities in the carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues.

  18. [Page Intentionally Left Blank] Life Cycle Greenhouse Gas Emissions from

    E-Print Network [OSTI]

    Reuter, Martin

    ..........................................................................11 4.2 Conventional Jet Fuel from Crude Oil2 June #12;[Page Intentionally Left Blank] #12;Life Cycle Greenhouse Gas Emissions from Alternative .......................................5 3.1 Life cycle Greenhouse Gas Emissions

  19. Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware)

    Broader source: Energy.gov [DOE]

    The Delaware Greenhouse Gas Reduction Projects Grant Program is funded by the Greenhouse Gas Reduction Projects Fund, established by the Act to Amend Title 7 of the Delaware Code Relating to a...

  20. Carbon Emissions Primer Symposium on Greenhouse Gas andSymposium on Greenhouse Gas and

    E-Print Network [OSTI]

    6/5/2013 1 Carbon Emissions Primer Symposium on Greenhouse Gas andSymposium on Greenhouse Gas Council June 4, 2013 Portland, OR 1 CO2 Chemistry 1 molecule of CO 1 atom carbon1 molecule of CO2 = 1 atom carbon + 2 atoms oxygen 2 #12;6/5/2013 2 CO2 Chemistry 1 mole of carbon = 6 02 x 1023 carbon atoms 1

  1. Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires

    E-Print Network [OSTI]

    Lin, Hsiao-Wen; Jin, Yufang; Giglio, Louis; Foley, Jonathan A; Randerson, James T

    2012-01-01T23:59:59.000Z

    27–29 in T. Wirth, editor. Inventory of U.S. greenhouse gasfor national greenhouse gas inventories. Volume 2.National Greenhouse Gas Inventories Programme Task Force

  2. Greenhouse Gas Management Program Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01T23:59:59.000Z

    Program fact sheet highlighting federal requirements for GHG emissions management, FEMP services to help agencies reduce emissions, and additional resources. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) assists Federal agencies with managing their greenhouse gas (GHG) emissions. GHG management entails measuring emissions and understanding their sources, setting a goal for reducing emissions, developing a plan to meet this goal, and implementing the plan to achieve reductions in emissions. FEMP provides the following services to help Federal agencies meet the requirements of inventorying and reducing their GHG emissions: (1) FEMP offers one-on-one technical assistance to help agencies understand and implement the Federal Greenhouse Gas Accounting and Reporting Guidance and fulfill their inventory reporting requirements. (2) FEMP provides training, tools, and resources on FedCenter to help agencies complete their annual inventories. (3) FEMP serves a leadership role in the interagency Federal Working Group on Greenhouse Gas Accounting and Reporting that develops recommendations to the Council on Environmental Quality (CEQ) for the Federal Greenhouse Gas Accounting and Reporting Guidance. (4) As the focus continues to shift from measuring emissions (completing inventories) to mitigating emissions (achieving reductions), FEMP is developing a strategic planning framework and resources for agencies to prioritize among a variety of options for mitigating their GHG emissions, so that they achieve their reduction goals in the most cost-effective manner. These resources will help agencies analyze their high-quality inventories to make strategic decisions about where to use limited resources to have the greatest impact on reducing emissions. Greenhouse gases trap heat in the lower atmosphere, warming the earth's surface temperature in a natural process known as the 'greenhouse effect.' GHGs include carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), perfluorocarbons (PFCs), hydrofluorocarbons (HFCs), and sulfur hexafluoride (SF{sub 6}). Human activities have caused a rapid increase in GHG concentrations. This rising level contributes to global climate change, which contributes to environmental and public health problems.

  3. Improving UK greenhouse gas emission estimates using tall tower observations 

    E-Print Network [OSTI]

    Howie, James Edward

    2014-06-30T23:59:59.000Z

    Greenhouse gases in the Earth’s atmosphere play an important role in regulating surface temperatures. The UK is signatory to international agreements that legally commit the UK to reduce its greenhouse gas emissions, and ...

  4. NREL: Sustainable NREL - Greenhouse Gas Reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCost of6DataEnergy SystemsGreenhouse Gas

  5. Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmenta...

    Open Energy Info (EERE)

    Liberalizing Trade in Environmental Goods Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental Goods...

  6. Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials...

    Open Energy Info (EERE)

    Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Agency...

  7. DOE Technical Assistance on Greenhouse Gas Reduction Strategies...

    Office of Environmental Management (EM)

    state, local, tribal and regional planning efforts related to reducing greenhouse gas emissions in the electric power sector. DOE is ready to support state, local, and tribal...

  8. Revised Draft Guidance on Consideration of Greenhouse Gas Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    how Federal departments and agencies should consider the effects of greenhouse gas emissions and climate change in their National Environmental Policy Act reviews. The revised...

  9. Greenhouse Gas Emissions from Aviation and Marine Transportation...

    Open Energy Info (EERE)

    Aviation and Marine Transportation: Mitigation Potentials and Policies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emissions from Aviation and Marine...

  10. Analysis of U.S. Greenhouse Gas Tax Proposals

    E-Print Network [OSTI]

    Metcalf, Gilbert E.

    The U.S. Congress is considering a set of bills designed to limit the nation’s greenhouse gas (GHG)

  11. Costa Rica-Mitigation of Greenhouse Gas Emissions through Avoided...

    Open Energy Info (EERE)

    Value Areas Jump to: navigation, search Name Costa Rica-Mitigation of Greenhouse Gas Emissions through Avoided Deforestation of Tropical Rainforests on Privately-owned Lands in...

  12. NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...

    Open Energy Info (EERE)

    Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model AgencyCompany Organization: National Energy Technology...

  13. annual greenhouse gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as a transportation mode. Federal government initiatives on the US 34 Nuclear Power PROS -No' greenhouse gas emissions Geosciences Websites Summary: Nuclear Power PROS -No'...

  14. agroecosystem greenhouse gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Websites Summary: Determining Air Quality and Greenhouse Gas Impacts of Hydrogen Infrastructure and Fuel Cell engine (ICE) vehicles has been proposed as a strategy to...

  15. Mitigating greenhouse gas emissions: Voluntary reporting

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  16. GREENHOUSE GAS (GHG) INVENTORY REPORT 20102011 Dalhousie Office of Sustainability

    E-Print Network [OSTI]

    Brownstone, Rob

    ..................................... 30 Appendix E: Canadian Default Factors for Calculating CO2 Emissions from Combustion of Natural Gas GREENHOUSE GAS (GHG) INVENTORY REPORT 20102011 Dalhousie Office of Sustainability ......................................................... 34 Appendix K: Fleet Vehicles on Campus .............

  17. An Assessment of Greenhouse Gas Emissions-Weighted

    E-Print Network [OSTI]

    Economic Analysis ­ Greenhouse Gas Emissions Prepared by Hawai`i Natural Energy Institute School of OceanAn Assessment of Greenhouse Gas Emissions-Weighted Clean Energy Standards Prepared for the U Hawai`i Distributed Energy Resource Technologies for Energy Security Subtask 12.3 Second Deliverable

  18. Transportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation

    E-Print Network [OSTI]

    .S. CO2 emissions sources. U.S. CO2 transportation emissions sources by mode. #12;Center% of the carbon dioxide we produce. As such it is a leading candidate for greenhouse gas ((GHG) (CO2, NH4, HFCsTransportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation Oak Ridge

  19. Fact #879: June 29, 2015 Greenhouse Gas Abatement Costs forEmployer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fact 879: June 29, 2015 Greenhouse Gas Abatement Costs for Employer-Subsidized Commuting Options Fact 879: June 29, 2015 Greenhouse Gas Abatement Costs for Employer-Subsidized...

  20. Fact #879: June 29, 2015 Greenhouse Gas Abatement Costs forEmployer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 879: June 29, 2015 Greenhouse Gas Abatement Costs for Employer-Subsidized Commuting Options - Dataset Fact 879: June 29, 2015 Greenhouse Gas Abatement Costs for...

  1. U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis...

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturing Energy Use and Greenhouse Gas Emissions Analysis, November 2012 U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis, November 2012 The report ranks...

  2. U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Energy Use and Greenhouse Gas Emissions Analysis U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis thumbenergyuselossemissionslg.gif How...

  3. Greenhouse Gas Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the lower atmosphere that trap heat through a natural process called the "greenhouse effect." This process keeps the planet habitable. International research has linked...

  4. Estonian greenhouse gas emissions inventory report

    SciTech Connect (OSTI)

    Punning, J.M.; Ilomets, M.; Karindi, A.; Mandre, M.; Reisner, V. [Inst. of Ecology, Tallinn (Estonia); Martins, A.; Pesur, A. [Inst. of Energy Research, Tallinn (Estonia); Roostalu, H.; Tullus, H. [Estonian Agricultural Univ., Tartu (Estonia)

    1996-07-01T23:59:59.000Z

    It is widely accepted that the increase of greenhouse gas concentrations in the atmosphere due to human activities would result in warming of the Earth`s surface. To examine this effect and better understand how the GHG increase in the atmosphere might change the climate in the future, how ecosystems and societies in different regions of the World should adapt to these changes, what must policymakers do for the mitigation of that effect, the worldwide project within the Framework Convention on Climate Change was generated by the initiative of United Nations. Estonia is one of more than 150 countries, which signed the Framework Convention on Climate Change at the United Nations Conference on Environment and Development held in Rio de Janeiro in June 1992. In 1994 a new project, Estonian Country Study was initiated within the US Country Studies Program. The project will help to compile the GHG inventory for Estonia, find contemporary trends to investigate the impact of climate change on the Estonian ecosystems and economy and to formulate national strategies for Estonia addressing to global climate change.

  5. Interagency Pilot of Greenhouse Gas Accounting Tools: Lessons Learned

    SciTech Connect (OSTI)

    Carpenter, A.; Hotchkiss, E.; Kandt, A.

    2013-02-01T23:59:59.000Z

    The Greater Yellowstone Area (GYA) and Tongass National Forest (Tongass) partnered with the National Renewable Energy Laboratory (NREL) to conduct a pilot study of three greenhouse gas (GHG) inventorying tools.

  6. Fiscal Year 2012 Greenhouse Gas Inventory: Government Totals

    Broader source: Energy.gov [DOE]

    Excel spreadsheet shows scope 1, 2, and 3 greenhouse gas inventories reported by federal agencies in fiscal year 2012. It includes emissions from sources not subject to the reduction targets.

  7. Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector

    E-Print Network [OSTI]

    Zhou, A.; Tutterow, V.; Harris, J.

    The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23...

  8. Energy Department Assisting Launch of Low Greenhouse Gas-Emitting...

    Broader source: Energy.gov (indexed) [DOE]

    to a jet fuel with lifecycle greenhouse gas emissions less than or equal to conventional petroleum-based jet fuel production, while remaining cost-competitive. To fuel the search,...

  9. Deep cuts in household greenhouse gas emissions Andrew Blakers

    E-Print Network [OSTI]

    Deep cuts in household greenhouse gas emissions Andrew Blakers Director, Centre for Sustainable Energy Systems Australian National University Ph 61 2 6125 5905 Andrew.blakers@anu.edu.au Web: http

  10. Secretary of Energy Memorandum on DOE Greenhouse Gas Emission...

    Office of Environmental Management (EM)

    to a low-carbon economy. We must also lead by example in reducing greenhouse gas emissions associated with our own operations and facilities. On October 5,2009, the President...

  11. Impacts of greenhouse gas mitigation policies on agricultural land

    E-Print Network [OSTI]

    Wang, Xiaodong, Ph. D. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    Greenhouse gas (GHG) emissions are widely acknowledged to be responsible for much of the global warming in the past century. A number of approaches have been proposed to mitigate GHG emissions. Since the burning of ...

  12. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to inform its decisions regarding the life cycle greenhouse gas (GHG) emissions of U.S. LNG exports for use in electric power generation. The LCA GHG Report compares life cycle...

  13. Biochar amendment and greenhouse gas emissions from agricultural soils 

    E-Print Network [OSTI]

    Case, Sean Daniel Charles

    2013-11-28T23:59:59.000Z

    The aim of this study was to investigate the effects of biochar amendment on soil greenhouse gas (GHG) emissions and to elucidate the mechanisms behind these effects. I investigated the suppression of soil carbon dioxide ...

  14. PG&E's Renewable Portfolio Standard & Greenhouse Gas Compliance

    E-Print Network [OSTI]

    Electric Transportation Natural Gas Capped at 334 MMT 80 MMT #12;(MMT CO2e Business as Usual ­ 2020 507 Electric and Natural Gas Sectors Energy Efficiency 12 Renewables 11 Other 2 Transportation Low Carbon FuelPG&E's Renewable Portfolio Standard & Greenhouse Gas Compliance Fong Wan Senior Vice President

  15. Greenhouse Gas Inventory and Registry (Iowa)

    Broader source: Energy.gov [DOE]

    The Iowa Department of Natural Resources is required to establish a method for collecting emissions estimates from producers of greenhouse gases. Reporting is mandatory for some entities, and the...

  16. Detection of greenhouse-gas-induced climatic change

    SciTech Connect (OSTI)

    Wigley, T.M.L.; Jones, P.D.

    1992-07-15T23:59:59.000Z

    The aims of the US Department of Energy's Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. This project will address: The regional and seasonal details of the expected climatic changes; how rapidly will these changes occur; how and when will the climatic effects of CO[sub 2] and other greenhouse gases be first detected; and the relationships between greenhouse-gas-induced climatic change and changes caused by other external and internal factors. The present project addresses all of these questions. Many of the diverse facets of greenhouse-gas-related climate research can be grouped under three interlinked subject areas: modeling, first detection and supporting data. This project will include the analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulation Models (GCMs).

  17. Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into account local.......................................................................................................................................................14 Chapter 1 Biofuels, greenhouse gases and climate change 1 Introduction

  18. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    National Lab Directors, . .

    2001-04-05T23:59:59.000Z

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions. These technology pathways (which are described in greater detail in Appendix B, Technology Pathways) address three areas: energy efficiency, clean energy, and carbon sequestration (removing carbon from emissions and enhancing carbon storage). Based on an assessment of each of these technology pathways over a 30-year planning horizon, the directors of the Department of Energy's (DOE's) national laboratories conclude that success will require pursuit of multiple technology pathways to provide choices and flexibility for reducing greenhouse gas emissions. Advances in science and technology are necessary to reduce greenhouse gas emissions from the United States while sustaining economic growth and providing collateral benefits to the nation.

  19. The Agricultural Sector and Greenhouse Gas Mitigation Model (ASMGHG)

    E-Print Network [OSTI]

    McCarl, Bruce A.

    ...................................................................................37 3.5.1.1 Direct Carbon Emissions Through Fossil Fuel Use.....................38 3.5.1.2 Indirect.5.2.2 Production of Fossil Fuel Substitutes...........................................49 3.5.2.3 Conversion Taxes and Sequestration Subsidies...............................66 3.8.2.4 Special Greenhouse Gas

  20. 2011 & 2012 Queen's University Greenhouse Gas (GHG) Inventory

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    2011 & 2012 Queen's University Greenhouse Gas (GHG) Inventory Summary Queen's University completes annual GHG inventories as part of the ongoing commitment to reduce GHG emissions and address climate in 2010. This is the fourth inventory report. This inventory report accounts for GHG emissions from

  1. Technology options and effective policies to reduce greenhouse gas

    E-Print Network [OSTI]

    Technology options and effective policies to reduce greenhouse gas emissions and improve security); DNE21+ model. · National Institute for Environmental Studies (Japan); AIM model. · Natural Resources both the climate problem and security of supply, and thus provide synergies, while others represent

  2. U.S. Agriculture's Role Greenhouse Gas Emission Mitigation World

    E-Print Network [OSTI]

    McCarl, Bruce A.

    U.S. Agriculture's Role in a Greenhouse Gas Emission Mitigation World: An Economic Perspective and Research Associate, respectively, Department of Agricultural Economics, Texas A&M University. Seniority of Authorship is shared. This research was supported by the Texas Agricultural Experiment Station through

  3. Land Use Greenhouse Gas Emissions from Conventional Oil

    E-Print Network [OSTI]

    Turetsky, Merritt

    emissions of California crude and in situ oil sands production (crude refineryLand Use Greenhouse Gas Emissions from Conventional Oil Production and Oil Sands S O N I A Y E H and Alberta as examples for conventional oil production as well as oil sands production in Alberta

  4. Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power

    E-Print Network [OSTI]

    . A facility with solar fraction less than 1 is a hybrid operating plant that combusts naturLife Cycle Greenhouse Gas Emissions from Concentrating Solar Power Over the last thirty years, more-scale concentrating solar power (CSP) systems. These LCAs have yielded wide-ranging results. Variation could

  5. Determining Air Quality and Greenhouse Gas Impacts of

    E-Print Network [OSTI]

    Dabdub, Donald

    Determining Air Quality and Greenhouse Gas Impacts of Hydrogen Infrastructure and Fuel Cell of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure

  6. II. Greenhouse gas markets, carbon dioxide credits and biofuels17

    E-Print Network [OSTI]

    15 II. Greenhouse gas markets, carbon dioxide credits and biofuels17 The previous chapter analysed biofuels production. GHG policies18 that create a carbon price either through an emissions trading system or directly by taxing GHG emissions also generate increased demand for biofuels. They do so by raising

  7. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics

    E-Print Network [OSTI]

    Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics Over the last thirty years, hundreds and utility-scale solar photovoltaic (PV) systems. These LCAs have yielded wide-ranging results. Variation of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. ~40 g CO2

  8. ANALYSIS OF MEASURES FOR REDUCING TRANSPORTATION SECTOR GREENHOUSE GAS

    E-Print Network [OSTI]

    (CO2) emission reduction estimates were obtained for each of the measures. The package of measures the problem of reducing greenhouse gas (GHG) emissions from the Canadian transportation sector. Reductions-makers will require estimates of both the potential emission reductions and the costs or benefits associated

  9. U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis...

    Broader source: Energy.gov (indexed) [DOE]

    is energy used in U.S. manufacturing? How much greenhouse gas (GHG) is emitted from combustion in manufacturing operations? The U.S. Manufacturing Energy Use and Greenhouse Gas...

  10. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric...

  11. Energy and Greenhouse Gas Impacts of Biofuels: A Framework for Analysis

    E-Print Network [OSTI]

    Kammen, Daniel M.; Farrell, Alexander E; Plevin, Richard J; Jones, Andrew; Nemet, Gregory F; Delucchi, Mark

    2008-01-01T23:59:59.000Z

    Greenhouse Gas Impacts of Biofuels Wang, M. (2001) "Energy & Greenhouse Gas Impacts of Biofuels Fuels and MotorLifecycle Analysis of Biofuels." Report UCD-ITS-RR-06-08.

  12. Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across the Continental United States Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across...

  13. Implications of ethanol-based fuels for greenhouse gas emissions

    SciTech Connect (OSTI)

    Marland, G. [Oak Ridge National Lab., TN (United States); DeLuchi, M.A. [Univ. of California, Davis, CA (United States). Inst. of Transportation Studies; Wyman, C. [National Renewable Energy Lab., Golden, CO (United States)

    1994-02-14T23:59:59.000Z

    The US Environmental Protection Agency has proposed a rule which would mandate that 30% of the oxygen content of reformulated gasoline be provided by renewable oxygenates. The rule would essentially require that biomass-based ethanol, or ETBE derived from ethanol, be used to supply 30% of the oxygen in reformulated gasoline. This short statement addresses the very narrow question, ``Would this rule result in a net decrease in greenhouse gas emissions?`` The challenge then is to determine how much greenhouse gas is emitted during the ethanol fuel cycle, a fuel cycle that is much less mature and less well documented than the petroleum fuel cycle. In the petroleum fuel cycle, most of the greenhouse gas emissions come from fuel combustion. In the ethanol fuel cycle most of the greenhouse gas emissions come from the fuel production processes. Details of corn productivity, fertilizer use, process efficiency, fuel source, etc. become very important. It is also important that the ethanol fuel cycle produces additional products and the greenhouse gas emissions have somehow to be allocated among the respective products. With so many variables in the ethanol fuel cycle, the concern is actually with ethanol-based additives which will be produced in response to the proposed rule, and not necessarily with the average of ethanol which is being produced now. A first important observation is that the difference between standard gasoline and reformulated gasoline is very small so that when differences are drawn against alternative fuels, it makes little difference whether the contrast is against standard or reformulated gasoline. A second observation is that for this base case comparison, emissions of CO{sub 2} alone are roughly 13% less for the ethanol fuel cycle than for the reformulated gasoline cycle.

  14. U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas intensity by 18% over the 2002 to 2012 time frame. For the purposes of the initiative, greenhouse gas intensity is defined as the ratio of total U.S. greenhouse gas emissions to economic output.

  15. aggressive city greenhouse-gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Natural Gas) (Scope 2) ... 17 2.9.5 Steam Consumption 28 Nuclear Power PROS -No' greenhouse gas emissions Geosciences Websites Summary: Nuclear Power PROS -No'...

  16. Estimating the greenhouse gas benefits of forestry projects: A Costa Rican Case Study

    SciTech Connect (OSTI)

    Busch, Christopher; Sathaye, Jayant; Sanchez Azofeifa, G. Arturo

    2000-09-01T23:59:59.000Z

    If the Clean Development Mechanism proposed under the Kyoto Protocol is to serve as an effective means for combating global climate change, it will depend upon reliable estimates of greenhouse gas benefits. This paper sketches the theoretical basis for estimating the greenhouse gas benefits of forestry projects and suggests lessons learned based on a case study of Costa Rica's Protected Areas Project, which is a 500,000 hectare effort to reduce deforestation and enhance reforestation. The Protected Areas Project in many senses advances the state of the art for Clean Development Mechanism-type forestry projects, as does the third-party verification work of SGS International Certification Services on the project. Nonetheless, sensitivity analysis shows that carbon benefit estimates for the project vary widely based on the imputed deforestation rate in the baseline scenario, e.g. the deforestation rate expected if the project were not implemented. This, along with a newly available national dataset that confirms other research showing a slower rate of deforestation in Costa Rica, suggests that the use of the 1979--1992 forest cover data originally as the basis for estimating carbon savings should be reconsidered. When the newly available data is substituted, carbon savings amount to 8.9 Mt (million tones) of carbon, down from the original estimate of 15.7 Mt. The primary general conclusion is that project developers should give more attention to the forecasting land use and land cover change scenarios underlying estimates of greenhouse gas benefits.

  17. Limiting net greenhouse gas emissions in the United States

    SciTech Connect (OSTI)

    Bradley, R A; Watts, E C; Williams, E R [eds.] [eds.

    1991-09-01T23:59:59.000Z

    In 2988 the Congress requested DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. This report presents the results of that study. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity), and the relationship between energy production and use and the emission of radiactively important gases. Topics discussed include: energy and environmental technology to reduce greenhouse gas emissions, fossil energy production and electricity generation technologies, nuclear energy technology, renewable energy technologies, energy storage, transmission, and distribution technology, transportation, technology, industrial technology, residential and commercial building technology, greenhouse gas removal technology, approaches to restructuring the demand for energy.

  18. Idaho National Laboratory FY12 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2013-03-01T23:59:59.000Z

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  19. Idaho National Laboratory's FY11 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2012-03-01T23:59:59.000Z

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2011 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho.

  20. Research on Greenhouse-Gas-Induced Climate Change

    SciTech Connect (OSTI)

    Schlesinger, M. E.

    2001-07-15T23:59:59.000Z

    During the 5 years of NSF grant ATM 95-22681 (Research on Greenhouse-Gas-Induced Climate Change, $1,605,000, 9/15/1995 to 8/31/2000) we have performed work which we are described in this report under three topics: (1) Development and Application of Atmosphere, Ocean, Photochemical-Transport, and Coupled Models; (2) Analysis Methods and Estimation; and (3) Climate-Change Scenarios, Impacts and Policy.

  1. Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities

    E-Print Network [OSTI]

    Hagan, Colin R.

    2012-01-01T23:59:59.000Z

    estimates shown here for Marcellus gas are similar toGreenhouse Gas Emissions of Marcellus Shale Gas, ENvr_.research- ers acknowledge, "Marcellus shale gas production

  2. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Not Available

    1997-10-01T23:59:59.000Z

    This report serves as the technology basis of a needed national climate change technology strategy, with the confidence that a strong technology R&D program will deliver a portfolio of technologies with the potential to provide very substantial greenhouse gas emission reductions along with continued economic growth. Much more is needed to define such a strategy, including identification of complementary deployment policies and analysis to support the seeping and prioritization of R&D programs. A national strategy must be based upon governmental, industrial, and academic partnerships.

  3. Life cycle greenhouse gas emissions of Marcellus shale gas This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Life cycle greenhouse gas emissions of Marcellus shale gas This article has been downloaded from.1088/1748-9326/6/3/034014 Life cycle greenhouse gas emissions of Marcellus shale gas Mohan Jiang1 , W Michael Griffin2,3 , Chris greenhouse gas (GHG) emissions from the production of Marcellus shale natural gas and compares its emissions

  4. Investigation of greenhouse gas reduction strategies by industries : an enterprise systems architecting approach

    E-Print Network [OSTI]

    Tanthullu Athmaram, Kumaresh Babu

    2012-01-01T23:59:59.000Z

    This thesis explores an enterprise systems architecting approach to investigate the greenhouse gas reduction strategies followed by industries, especially for automotive industry and Information Technology industry. The ...

  5. City Profile: Los Angeles A part of the study entitled: Reducing greenhouse gas emissions through local

    E-Print Network [OSTI]

    California at Davis, University of

    City Profile: Los Angeles A part of the study entitled: Reducing greenhouse gas emissions through, with its functions distributed across other city departments. Where possible, this profile references

  6. anthropogenic greenhouse-gas forcings: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Websites Summary: Determining Air Quality and Greenhouse Gas Impacts of Hydrogen Infrastructure and Fuel Cell engine (ICE) vehicles has been proposed as a strategy to...

  7. Incentive-based approaches for mitigating greenhouse gas emissions : issues and prospects for India

    E-Print Network [OSTI]

    Gupta, Shreekant.

    As a consequence of the flexibility mechanisms incorporated in the Kyoto Protocol, incentive-based policies such as emissions trading and the clean development mechanism are being widely discussed in the context of greenhouse ...

  8. Speaker to Address Impact of Natural Gas Production on Greenhouse Gas Emissions When used for power generation, Marcellus Shale natural gas can significantly reduce carbon

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    generation, Marcellus Shale natural gas can significantly reduce carbon dioxide emissions, but questions have been raised whether development of shale gas resources results in an overall lower greenhouse gas, "Life Cycle Greenhouse Gas Emissions of Marcellus Shale Gas," appeared in Environmental Research Letters

  9. Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities

    E-Print Network [OSTI]

    Hagan, Colin R.

    2012-01-01T23:59:59.000Z

    Inherently, natural gas combustion produces significantlygas turbines were fuel gas combustion devices and that theyof greenhouse gas emissions released during combustion. 5 0

  10. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing | Department of EnergyLieko Earlefrom the

  11. Multi-Gas Assessment of the Kyoto Protocol John Reilly,*

    E-Print Network [OSTI]

    Multi-Gas Assessment of the Kyoto Protocol John Reilly,* Ronald G. Prinn,* Jochen Harnisch,* Jean in the protocol appear to be an adequate representation of trace gas climatic effects. The principal reason for the success of this simplified GWP approach in our calculations is that the mix of gas emissions resulting

  12. Limiting net greenhouse gas emissions in the United States

    SciTech Connect (OSTI)

    Bradley, R A; Watts, E C; Williams, E R [eds.

    1991-09-01T23:59:59.000Z

    In 1988, Congress requested that DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity) and the relationship between energy production and use and the emission of radiatively important gases. Topics discussed include: state of the science in estimating atmosphere/climate change relationships, the potential consequences of atmosphere/climate change, us greenhouse emissions past and present, an approach to analyzing the technical potential and cost of reducing US energy-related greenhouse gas emissions, current policy base and National Energy Strategy actions, fiscal instruments, regulatory instruments, combined strategies and instruments, macroeconomic impacts, carbon taxation and international trade, a comparison to other studies.

  13. Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation

    E-Print Network [OSTI]

    McCarl, Bruce A.

    Words): Use of biofuels diminishes fossil fuel combustion thereby also reducing net greenhouse gasEconomic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation Uwe A. Schneider emissions. However, subsidies are needed to make agricultural biofuel production economically feasible

  14. Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas

    E-Print Network [OSTI]

    Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions constraint? Implications for energy and climate

  15. RESEARCH ARTICLE Greenhouse gas emissions (CO2, CH4, and N2O) from several

    E-Print Network [OSTI]

    Wehrli, Bernhard

    RESEARCH ARTICLE Greenhouse gas emissions (CO2, CH4, and N2O) from several perialpine and alpine hydropower reservoirs by diffusion and loss in turbines T. Diem · S. Koch · S. Schwarzenbach · B. Wehrli · C investigated greenhouse gas emissions (CO2, CH4, and N2O) from reservoirs located across an altitude gradient

  16. Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China

    E-Print Network [OSTI]

    Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China, Global Biogeochem. Cycles, 23, GB1007, doi:10.1029/2008GB003180. 1. Introduction [2] Carbon (C) sequestration has

  17. Greenhouse gas emissions and the surface transport of freight in Canada

    E-Print Network [OSTI]

    Greenhouse gas emissions and the surface transport of freight in Canada Paul Steenhof a,*, Clarence committed to reducing its greenhouse gas (GHG) emissions to 6% below 1990 levels between 2008 and 2012's emissions of 740 million metric tonnes of carbon dioxide (mmTCO2e), and 41% of the CO2e emitted from

  18. Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector

    SciTech Connect (OSTI)

    Bilello, D.; Katz, J.; Esterly, S.; Ogonowski, M.

    2014-09-01T23:59:59.000Z

    Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers as they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.

  19. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-08-15T23:59:59.000Z

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and not only by PV during sunny on-peak hours.

  20. The Greenhouse Gas Protocol Initiative: Allocation of Emissions...

    Open Energy Info (EERE)

    plant. The user should also input the assumed efficiency of steam and electricity combustion (defaults are provided in the tool). Outputs include: The tool outputs the emissions...

  1. The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased...

    Open Energy Info (EERE)

    within a community. Separate calculators are available for emissions from stationary combustion, transport or mobile sources, refrigeration and air conditioning equipment, and...

  2. The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigerati...

    Open Energy Info (EERE)

    within a community. Separate calculators are available for emissions from stationary combustion, transport or mobile sources, purchased electricity, and several industrial sectors....

  3. Greenhouse Gas Regional Inventory Protocol (GRIP) Website | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation,IISrlMassachusetts: Energy

  4. The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformation 2EnergyCity ofGeysers and SaltonLimited

  5. The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformation 2EnergyCity ofGeysers and SaltonLimitedMobil

  6. The Greenhouse Gas Protocol Initiative: Allocation of Emissions from a

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC Jump to:

  7. The Greenhouse Gas Protocol Initiative: Measurement and Estimation of

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC Jump to:Uncertainty of GHG Emissions | Open

  8. The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformationPolicy |Environmental BuildingTheElectricity

  9. The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformationPolicy |Environmental

  10. The Greenhouse Gas Protocol Initiative: Sector Specific Tools | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformationPolicy |EnvironmentalInformation The

  11. Federal, state and utility roles in reducing new building greenhouse gas emissions

    SciTech Connect (OSTI)

    Johnson, J.A.; Shankle, D. [Pacific Northwest Lab., Richland, WA (United States); Boulin, J. [USDOE, Washington, DC (United States)

    1995-03-01T23:59:59.000Z

    This paper will explore the role of implementation of building energy codes and standards in reducing US greenhouse gas emissions. It will discuss the role of utilities in supporting the US Department of Energy (DOE) and the Environmental Protection Agency in improving the efficiency of new buildings. The paper will summarize Federal policies and programs that improve code compliance and increase overall greenhouse gas emission reductions. Finally, the paper will discuss the role of code compliance and the energy and greenhouse gas emission reductions that have been realized from various Federal, State and utility programs that enhance compliance.

  12. Idaho National Laboratory's FY13 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2014-03-01T23:59:59.000Z

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2013 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only the large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  13. Estimating the potential of greenhouse gas mitigation in Kazakhstan

    SciTech Connect (OSTI)

    Monacrovich, E.; Pilifosova, O.; Danchuck, D. [Kazakh Scientific-Research Hydrometeorlogical Institute, Almaty (Kazakhstan)] [and others

    1996-09-01T23:59:59.000Z

    As part of the studies related to the obligations of the UN Framework Convention on Climate Change, the Republic of Kazakhstan started activities to inventory greenhouse gas (GHG) emissions and assess of GHG mitigation options, The objective of this paper is to present an estimate of the possibility of mitigating GHG emissions and determine the mitigation priorities. It presents a compilation of the possible options and their assessment in terms of major criteria and implementation feasibility. Taking into account the structure of GHG emissions in Kazakhstan in 1990, preliminary estimates of the potential for mitigation are presented for eight options for the energy sector and agriculture and forestry sector. The reference scenario prepared by expert assessments assumes a reduction of CO{sub 2} emissions in 1996-1998 by about 26% from the 1990 level due to general economic decline, but then emissions increase. It is estimated that the total potential for the mitigation of CO{sub 2} emissions for the year 2000 is 3% of the CO{sub 2} emissions in the reference scenario. The annual reduction in methane emissions due to the estimated options can amount to 5%-6% of the 1990 level. 10 refs., 1 fig., 4 tabs.

  14. Technology and Greenhouse Gas Emissions: An IntegratedScenario Analysis

    SciTech Connect (OSTI)

    Koomey, J.G.; Latiner, S.; Markel, R.J.; Marnay, C.; Richey, R.C.

    1998-09-01T23:59:59.000Z

    This report describes an analysis of possible technology-based scenarios for the U.S. energy system that would result in both carbon savings and net economic benefits. We use a modified version of the Energy Information Administration's National Energy Modeling System (LBNL-NEMS) to assess the potential energy, carbon, and bill savings from a portfolio of carbon saving options. This analysis is based on technology resource potentials estimated in previous bottom-up studies, but it uses the integrated LBNL-NEMS framework to assess interactions and synergies among these options. The analysis in this paper builds on previous estimates of possible "technology paths" to investigate four major components of an aggressive greenhouse gas reduction strategy: (1) the large scale implementation of demand-side efficiency, comparable in scale to that presented in two recent policy studies on this topic; (2) a variety of "alternative" electricity supply-side options, including biomass cofiring, extension of the renewable production tax credit for wind, increased industrial cogeneration, and hydropower refurbishment. (3) the economic retirement of older and less efficient existing fossil-find power plants; and (4) a permit charge of $23 per metric ton of carbon (1996 $/t),l assuming that carbon trading is implemented in the US, and that the carbon permit charge equilibrates at this level. This level of carbon permit charge, as discussed later in the report, is in the likely range for the Clinton Administration's position on this topic.

  15. Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere

    E-Print Network [OSTI]

    Montes-Hernandez, German

    Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere of anthropogenic emission of greenhouse gases into the atmosphere such as CO2, CH4, N2O and CFCs. The CO2 emissions to reflect, adsorb and emit the solar energy. However, the continuous emissions of CO2 into the atmosphere

  16. Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model

    SciTech Connect (OSTI)

    Greenblatt, Jeffery B.

    2013-10-10T23:59:59.000Z

    A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHG- emitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 ?m) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants, targets were less well-defined, but while all three scenarios were able to make significant reductions in ROG, NOx and PM2.5 both statewide and in the two regional air basins, they may nonetheless fall short of what will be required by future federal standards. Specifically, in Scenario 1, regional NOx emissions are approximately three times the estimated targets for both 2023 and 2032, and in Scenarios 2 and 3, NOx emissions are approximately twice the estimated targets. Further work is required in this area, including detailed regional air quality modeling, in order to determine likely pathways for attaining these stringent targets.

  17. Improving Energy Efficiency and Reducing Greenhouse Gas Emissions in BPs PTA Manufacturing Plants

    E-Print Network [OSTI]

    Clark, F.

    2008-01-01T23:59:59.000Z

    Improving Energy Efficiency and Reducing Greenhouse Gas Emissions in BPs PTA Manufacturing Plants Fred Clark Energy/GHG Advisor BP Aromatics & Acetyls Naperville, Illinois BP is the world?s leading producer of purified terephthalic acid...

  18. Air Emmissions Trading Program/Regional Greenhouse Gas Initiative (New Hampshire)

    Broader source: Energy.gov [DOE]

    The New Hampshire Regional Greenhouse Gas Initiative is a carbon dioxide emissions budget trading program. The program includes a statewide annual CO2 budget allowance of 8,620,460 tons between...

  19. The Impact of Biofuel and Greenhouse Gas Policies on Land Management, Agricultural Production, and Environmental Quality 

    E-Print Network [OSTI]

    Baker, Justin Scott

    2012-10-19T23:59:59.000Z

    This dissertation explores the combined effects of biofuel mandates and terrestrial greenhouse gas GHG mitigation incentives on land use, management intensity, commodity markets, welfare, and the full costs of GHG abatement through conceptual...

  20. Carbon Prices and Automobile Greenhouse Gas Emissions: The Extensive and Intensive Margins

    E-Print Network [OSTI]

    Knittel, Christopher Roland

    The transportation sector accounts for nearly one third of the United States' greenhouse gas emissions. While over the past number of decades, policy makers have avoided directly pricing the externalities from vehicles, ...

  1. A Strategy for a Global Observing System for Verification of National Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Prinn, Ronald G.

    With the risks of climate change becoming increasingly evident, there is growing discussion regarding international treaties and national regulations to lower greenhouse gas (GHG) emissions. Enforcement of such agreements ...

  2. The Impact of Biofuel and Greenhouse Gas Policies on Land Management, Agricultural Production, and Environmental Quality

    E-Print Network [OSTI]

    Baker, Justin Scott

    2012-10-19T23:59:59.000Z

    This dissertation explores the combined effects of biofuel mandates and terrestrial greenhouse gas GHG mitigation incentives on land use, management intensity, commodity markets, welfare, and the full costs of GHG abatement through conceptual...

  3. Greenhouse Gas Mitigation as a Structural Change and Policies that Offset Its Depressing Effects

    E-Print Network [OSTI]

    Babiker, Mustafa H.M.

    The current economic modeling of emissions limitations does not embody economic features that are likely to be particularly important in the short term, yet the politics of limiting greenhouse gas emissions are often ...

  4. Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production

    E-Print Network [OSTI]

    Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production Transportation Energy The Issue Algae biofuels directly address the Energy Commission's Public Interest Energy Research fuels more carbonintensive than conventional biofuels. Critics of this study argue that alternative

  5. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced

    SciTech Connect (OSTI)

    Kara G. Cafferty; Erin M. Searcy; Long Nguyen; Sabrina Spatari

    2014-11-01T23:59:59.000Z

    To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing “depots”, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this range can be minimized through optimizing the siting of preprocessing depots where ample rail infrastructure exists to supply biomass commodity to a regional biorefinery supply system

  6. Greenhouse Gases

    Broader source: Energy.gov [DOE]

    Federal agencies are required to inventory and manage greenhouse gas (GHG) emissions to meet Federal goals and mitigate climate change.

  7. Greenhouse gas emissions from contrasting beef production systems 

    E-Print Network [OSTI]

    Ricci, Patricia

    2014-06-30T23:59:59.000Z

    Agriculture has been reported to contribute a significant amount of greenhouse gases to the atmosphere among other anthropogenic activities. With still more than 870 million people in the world suffering from under-nutrition ...

  8. Comparing the effects of greenhouse gas emissions on global warming

    E-Print Network [OSTI]

    Eckaus, Richard S.

    1990-01-01T23:59:59.000Z

    Policies dealing with global warming require a measure of the effects of the emissions of greenhouse gases that create different magnitudes of instantaneous radiative forcing and have different lifetimes. The Global Warming ...

  9. Greenhouse gas emissions from Scottish arable agriculture and the potential for biochar to be used as an agricultural greenhouse gas mitigation option 

    E-Print Network [OSTI]

    Winning, Nicola Jane

    2015-06-30T23:59:59.000Z

    Nitrous oxide (N2O) is a powerful greenhouse gas (GHG) which has a global warming potential 296 times greater than that of carbon dioxide (CO2). Agriculture is a major source of N2O and in the UK approximately 71 % of ...

  10. An Economic Exploration of Biofuel basedAn Economic Exploration of Biofuel based Greenhouse Gas Emission MitigationGreenhouse Gas Emission Mitigation

    E-Print Network [OSTI]

    McCarl, Bruce A.

    An Economic Exploration of Biofuel basedAn Economic Exploration of Biofuel based Greenhouse Gas Afforestation, Forest management, Biofuels, Ag soil, Animals, Fertilization, Rice, Grassland expansion, Manure of Biofuel strategies Examine the dynamics of mitigation strategies #12;PolicyPolicy ContextContext U

  11. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    produced. Primary energy associated with coal products wasUse EJ China Residential Energy Use Gas Coal Oil Biomass GasUse EJ China Residential Energy Use Gas Coal Oil Gas Biomass

  12. California's Greenhouse Gas Policies: Local Solutions to a Global Problem?

    E-Print Network [OSTI]

    Bushnell, Jim B; Peterman, Carla Joy; Wolfram, Catherine D

    2007-01-01T23:59:59.000Z

    peak demand are natural gas fired combustion turbines. Thesenatural gas plants to “follow load” as the more nimble, combustion

  13. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    all fuels including electricity and syngas will be used forGas Electricity Biomass Syngas Space Heating Coal Oil Gas

  14. IMPLEMENTING GREENHOUSE GAS TRADING IN EUROPE: LESSONS FROM ECONOMIC LI-

    E-Print Network [OSTI]

    Boyer, Edmond

    trading, climate change policy, policy-making and implementation 4 #12;Introduction Following the Bonn to the European Climate Change Programme (European Commission, 2001b), there is a gap in the range of 6.6% and 8 the Kyoto Protocol. The Protocol will now enter into force if they are joined by Russia. Compliance

  15. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    utility electricity and natural gas purchases, amortized capital and maintenance costs for distributed generation (

  16. Chapter Four Assessing the Air Pollution, Greenhouse Gas, Air Quality, and Health Benefits of Clean Energy Initiatives

    E-Print Network [OSTI]

    unknown authors

    Many states and localities are exploring or implementing clean energy policies to achieve greenhouse gas (GHG) and criteria air pollutant1 emission reductions. Document map • Chapter one

  17. Greenhouse gas performance standards: From each according to his emission intensity or from each according to his emissions?

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2013-01-01T23:59:59.000Z

    2009. Stephen P Holland. Emissions taxes versus intensityindustry’s greenhouse gas emissions. Environmental Research2008. John CV Pezzey. Emission taxes and tradeable permits a

  18. Idaho National Laboratory’s Greenhouse Gas FY08 Baseline

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2011-06-01T23:59:59.000Z

    A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL's FY08 GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries but are a consequence of INL's activities). This inventory found that INL generated a total of 113,049 MT of CO2-equivalent emissions during FY08. The following conclusions were made from looking at the results of the individual contributors to INL's baseline GHG inventory: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  19. Idaho National Laboratory’s Greenhouse Gas FY08 Baseline

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2010-09-01T23:59:59.000Z

    A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at the INL. Additionally, the INL has a desire to see how its emissions compare with similar institutions, including other DOE-sponsored national laboratories. Executive Order 13514 requires that federally-sponsored agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL’s FY08 GHG inventory was calculated according to methodologies identified in Federal recommendations and an as-yet-unpublished Technical and Support Document (TSD) using operational control boundary. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL’s organizational boundaries but are a consequence of INL’s activities). This inventory found that INL generated a total of 114,256 MT of CO2-equivalent emissions during fiscal year 2008 (FY08). The following conclusions were made from looking at the results of the individual contributors to INL’s baseline GHG inventory: • Electricity is the largest contributor to INL’s GHG inventory, with over 50% of the net anthropogenic CO2e emissions • Other sources with high emissions were stationary combustion, fugitive emissions from the onsite landfill, mobile combustion (fleet fuels) and the employee commute • Sources with low emissions were contracted waste disposal, wastewater treatment (onsite and contracted) and fugitive emissions from refrigerants. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to stress that the methodology behind this inventory followed guidelines that have not yet been formally adopted. Thus, some modification of the conclusions may be necessary as additional guidance is received. Further, because this report differentiates between those portions of the INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  20. Estimating the benefits of greenhouse gas emission reduction from agricultural policy reform

    SciTech Connect (OSTI)

    Adger, W.N. (Univ. of East Anglia, Norwich (United Kingdom). Centre for Social and Economic Research on the Global Environment); Moran, D.C. (Univ. College, London (United Kingdom). Centre for Social and Economic Research on the Global Environment)

    1993-09-01T23:59:59.000Z

    Land use and agricultural activities contribute directly to the increased concentrations of atmospheric greenhouse gases. Economic support in industrialized countries generally increases agriculture's contribution to global greenhouse gas concentrations through fluxes associated with land use change and other sources. Changes in economic support offers opportunities to reduce net emissions, through this so far has gone unaccounted. Estimates are presented here of emissions of methane from livestock in the UK and show that, in monetary terms, when compared to the costs of reducing support, greenhouse gases are a significant factor. As signatory parties to the Climate Change Convection are required to stabilize emissions of all greenhouse gases, options for reduction of emissions of methane and other trace gases from the agricultural sector should form part of these strategies.

  1. Indonesia Greenhouse Gas Abatement Cost Curve | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua NewSmallholder SystemsIndo Norwegian SolarGreenhouse

  2. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    holidays ICE: Internal combustion engine, GT: Gas turbine,indicate that internal combustion engines (ICE) with heatdominance of internal combustion engines with heat exchanger

  3. Economic Implications of International Participation Alternatives for Agricultural Greenhouse Gas Emission Mitigation

    E-Print Network [OSTI]

    McCarl, Bruce A.

    of International Participation Alternatives for Agricultural Greenhouse Gas Emission Mitigation Abstract The world of biofuels. However, such options can be competitive with domestic food production. In a free trade arena of effects that would be observed due to the simplifying cost assumptions, indicate compliance causes supply

  4. Hybrid modeling of industrial energy consumption and greenhouse gas emissions with an application to Canada

    E-Print Network [OSTI]

    implemented in Canada, what would be the response of the industrial sector in terms of energy consumptionHybrid modeling of industrial energy consumption and greenhouse gas emissions with an application for modeling industrial energy consumption, among them a series of environmental and security externalities

  5. The Future of Coal in a Greenhouse Gas Constrained World Howard Herzog1

    E-Print Network [OSTI]

    1 The Future of Coal in a Greenhouse Gas Constrained World Howard Herzog1 , James Katzer1 1 M coal can make to the growing world energy demand during a period of increasing concern about global pursue in the short-term so that we can utilize coal in the longer-term and reduce its associated CO2

  6. Scaling Behavior of the Life Cycle Energy of Residential Buildings and Impacts on Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Hall, Sharon J.

    Scaling Behavior of the Life Cycle Energy of Residential Buildings and Impacts on Greenhouse Gas required for building the structure; and 2) the operational energy required for habitation energy used for space heating and cooling during the life of the building. Similar ratios are found

  7. 8 Prospects for Biological Carbon Sinks in Greenhouse Gas Emissions Trading Systems

    E-Print Network [OSTI]

    8 Prospects for Biological Carbon Sinks in Greenhouse Gas Emissions Trading Systems John Reilly1. With emissions trading, emitters who found they could cheaply reduce their emissions might have allowances- ing Australia, Canada, Japan and Russia. This group also pushed strongly for inter- national emissions

  8. Driving and Greenhouse Gas Emissions: The Evidence Base and How to Learn More

    E-Print Network [OSTI]

    California at Davis, University of

    Driving and Greenhouse Gas Emissions: The Evidence Base and How to Learn;SB 375 GHG Reduc2on Targets · SCAG (greater Los Angeles) ­ 189 ci2es and 6 as underlying data, rela2onships, and calibra2on. 2. Policies and Prac2ces a) Models

  9. Tax-versus-trading and efficient revenue recycling as issues for greenhouse gas abatement

    E-Print Network [OSTI]

    Pezzey, Jack

    Tax-versus-trading and efficient revenue recycling as issues for greenhouse gas abatement Final://people.anu.edu.au/jack.pezzey (J.C.V. Pezzey) Keywords: emission pricing, tax-versus-trading, uncertainties, revenue recycling, and revenue recycling. Including multiple, independent parties greatly reduces the welfare advantage

  10. A graphical technique for explaining the relationship between energy security and greenhouse gas emissions

    E-Print Network [OSTI]

    Hughes, Larry

    ERG/200806 A graphical technique for explaining the relationship between energy security the relationship between energy security and greenhouse gas emissions Larry Hughes and Nikita Sheth Abstract for explaining this relationship, based upon jurisdiction-specific data on energy supply, infrastructure

  11. GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2)

    E-Print Network [OSTI]

    Green, Donna

    GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2) from the combustion),2 China, Russia, Japan, India and Canada--accounted for more than 70 percent of energy-related CO2. Figure 1 Global Carbon Dioxide Emissions: 1850­2030 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940

  12. Assessing the fuel Use and greenhouse gas emissions of future light-duty vehicles in Japan

    E-Print Network [OSTI]

    Nishimura, Eriko

    2011-01-01T23:59:59.000Z

    Reducing greenhouse gas (GHG) emissions is of great concern in Japan, as well as elsewhere, such as in the U.S. and EU. More than 20% of GHG emissions in Japan come from the transportation sector, and a more than 70% ...

  13. Greenhouse Gas Pollution in the Stratosphere Due to Increasing Airplane Traffic, Effects On the Environment

    E-Print Network [OSTI]

    Murty, Katta G.

    Greenhouse Gas Pollution in the Stratosphere Due to Increasing Airplane Traffic, Effects On the Environment Katta G. Murty Department of Industrial and Operations Engineering University of Michigan, Ann to tremendous increases in the construction of huge airport facilities, the development of large jumbo

  14. Carbon and nitrogen dynamics in bioenergy ecosystems: 2. Potential greenhouse gas emissions and global

    E-Print Network [OSTI]

    Zhuang, Qianlai

    Carbon and nitrogen dynamics in bioenergy ecosystems: 2. Potential greenhouse gas emissions) from bioenergy ecosystems with a biogeochemical model AgTEM, assuming maize (Zea mays L.), switchgrass haĂ?1 yrĂ?1 . Among all three bioenergy crops, Miscanthus is the most biofuel productive and the least

  15. Energy, environmental and greenhouse gas effects of using alternative fuels in cement production

    E-Print Network [OSTI]

    Columbia University

    1 Energy, environmental and greenhouse gas effects of using alternative fuels in cement to an increase of AF use from 8.7% to 20.9% of the total energy consumption. 2. One of the alternative fuels used cement industry produces about 3.3 billion tonnes of cement annually. Cement production is energy

  16. Greenhouse-gas emission targets for limiting global warming to 2 6C

    E-Print Network [OSTI]

    Imamoglu, Atac

    LETTERS Greenhouse-gas emission targets for limiting global warming to 2 6C Malte Meinshausen1. Frame6,7 & Myles R. Allen7 More than 100 countries have adopted a global warming limit of 2 6C or below levels in 2050 are robust indicators of the probability that twenty-first century warming will not exceed

  17. The hydrogen energy economy: its long-term role in greenhouse gas reduction

    E-Print Network [OSTI]

    Watson, Andrew

    The hydrogen energy economy: its long-term role in greenhouse gas reduction Geoff Dutton, Abigail for Climate Change Research Technical Report 18 #12;The Hydrogen Energy Economy: its long term role 2005 This is the final report from Tyndall research project IT1.26 (The Hydrogen energy economy: its

  18. U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas (GHG) intensity-defined as the ratio of total U.S. GHG emissions to economic output-by 18% over the 2002 to 2012 time frame.

  19. Uncertainty in Life Cycle Greenhouse Gas Emissions from United States Coal

    E-Print Network [OSTI]

    Jaramillo, Paulina

    and transport, to compare its environmental impact with other fuels. Until recent years, LCA studies environmental impacts between two competing fuels/products are small. This study builds upon an existingUncertainty in Life Cycle Greenhouse Gas Emissions from United States Coal Aranya Venkatesh

  20. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the

    E-Print Network [OSTI]

    Vermont, University of

    Greenhouse gas emissions from alternative futures of deforestation and agricultural management climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006.8 to 15.9 Pg CO2-equivalents (CO2-e) from 2006 to 2050. Deforestation is the largest source of green

  1. TECHNICAL REPORTS The greenhouse gas (GHG) impact of composting a range

    E-Print Network [OSTI]

    Brown, Sally

    TECHNICAL REPORTS 1396 The greenhouse gas (GHG) impact of composting a range of potential by composting and GHG emissions during composting. The primary carbon credits associated with composting are through CH4 avoidance when feedstocks are composted instead of landfilled (municipal solid waste

  2. Potential for Biofuel-based Greenhouse Gas Emission Mitigation: Rationale and Potential

    E-Print Network [OSTI]

    McCarl, Bruce A.

    1 Potential for Biofuel-based Greenhouse Gas Emission Mitigation: Rationale and Potential By Bruce biofuel usage. Biofuel feedstocks are a source of raw material that can be transformed into petroleum for coal. In the USA, liquid fuel biofuel production has not proven to be broadly economically feasible

  3. Economic Potential of Greenhouse Gas Emission Reductions: Comparative Role for Soil Sequestration in Agriculture and Forestry

    E-Print Network [OSTI]

    McCarl, Bruce A.

    for presentation at DOE First National Conference on Carbon Sequestration, May 14-17, 2001, Washington D.C. #12 sequestration generally refers to the absorption of carbon dioxide from the atmosphere through photosyntheticEconomic Potential of Greenhouse Gas Emission Reductions: Comparative Role for Soil Sequestration

  4. 2007-No54-BoilingPoint Health and Greenhouse Gas Impacts of Biomass and Fossil Fuel

    E-Print Network [OSTI]

    Kammen, Daniel M.

    2007-No54-BoilingPoint Theme Health and Greenhouse Gas Impacts of Biomass and Fossil Fuel Energy of fossil-fuel energy systems. These scenarios are analysed for various environmental and health impacts from fossil fuels and other energy sources reported by IEA []. In all of these countries except Kenya

  5. Weigel, Southworth, and Meyer 1 Calculators for Estimating Greenhouse Gas Emissions from Public

    E-Print Network [OSTI]

    Weigel, Southworth, and Meyer 1 Calculators for Estimating Greenhouse Gas Emissions from Public-0171 Fax: (404) 894-2278 E-mail: frank.southworth@ce.gatech.edu Dr. Michael D. Meyer, P.E. Director-2278 E-mail: michael.meyer@ce.gatech.edu #12;Weigel, Southworth, and Meyer 2 Calculators for Estimating

  6. Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model

    E-Print Network [OSTI]

    Greenblatt, Jeffery B.

    2014-01-01T23:59:59.000Z

    decision support tool for landfill gas-to energy projects,”component of landfills to 100% HGWP gases a. HFC phase-out:

  7. California's Greenhouse Gas Policies: Local Solutions to a Global Problem?

    E-Print Network [OSTI]

    Bushnell, Jim B; Peterman, Carla Joy; Wolfram, Catherine D

    2007-01-01T23:59:59.000Z

    RPS programs of states in the WECC is from The Database forRenewables Natural Gas Oil Coal AZ-NM OR-WA Rest of WECCTotal WECC % Total WECC Source: Platt’s Powerdat database.

  8. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    fired natural gas chillers, waste heat or solar heat; • hot-with HX can utilize waste heat for heating or coolingto utilize all the waste heat just reduces overall energy

  9. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types.

    SciTech Connect (OSTI)

    Wang, M.; Wu, M.; Huo, H.; Energy Systems

    2007-04-01T23:59:59.000Z

    Since the United States began a program to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types--categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly--from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path.

  10. Science and Technology Development to Integrate Energy Production and Greenhouse Gas Management

    SciTech Connect (OSTI)

    Pendergast, D.

    2004-10-03T23:59:59.000Z

    This paper reviews the carbon cycle from the point of view of past and present human influence. Potential future human input to the cycle through science and technology to manage atmospheric greenhouse gas are considered. The review suggests that humans will need to ingeniously exploit even more energy to integrate its use with control of atmospheric greenhouse gases. Continuing development and application of energy is essential if the development of human society is to be sustained through the coming centuries. The continuing development of nuclear energy seems an essential energy supply component.

  11. Assessment of basic research needs for greenhouse gas control technologies

    SciTech Connect (OSTI)

    Benson, S.M.; Chandler, W.; Edmonds, J.; Houghton, J.; Levine, M.; Bates, L.; Chum, H.; Dooley, J.; Grether, D.; Logan, J.; Wiltsee, G.; Wright, L.

    1998-09-01T23:59:59.000Z

    This paper is an outgrowth of an effort undertaken by the Department of Energy's Office of Energy Research to assess the fundamental research needs to support a national program in carbon management. Five topics were identified as areas where carbon management strategies and technologies might be developed: (1) capture of carbon dioxide, decarbonization strategies, and carbon dioxide disposal and utilization; (2) hydrogen development and fuel cells; (3) enhancement of the natural carbon cycle; (4) biomass production and utilization; and (5) improvement of the efficiency of energy production, conversion, and utilization. Within each of these general areas, experts came together to identify targets of opportunity for fundamental research likely to lead to the development of mid- to long-term solutions for stabilizing or decreasing carbon dioxide and other greenhouse gases in the atmosphere. Basic research to support the options outlined above are far reaching-from understanding natural global processes such as the ocean and terrestrial carbon cycles to development of new materials and concepts for chemical separation. Examples of fundamental research needs are described in this paper.

  12. Mexico joins the venture: Joint Implementation and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Imaz, M.; Gay, C.; Friedmann, R.; Goldberg, B.

    1998-11-01T23:59:59.000Z

    Joint Implementation (JI) and its pilot phase of Activities Implemented Jointly (AIJ) are envisioned as an economic way of reducing global emissions of greenhouse gases. This paper draws upon the Mexican experience with AIJ to identify Mexican concerns with AIJ/JI and proposed solutions to these. Three approved Mexican AIJ projects (Ilumex, Scolel Te, and Salicornia) are described in detail. The Ilurnex project promotes the use of compact fluorescent lamps in Mexican homes of the States of Jalisco and Nuevo Leon, to reduce electric demand. Scolel Te is a sustainable forest management project in Chiapas. Salicornia examines the potential for carbon sequestration with a Halophyte-based crop irrigated with saline waters in Sonora. These three projects are reviewed to clarify the issues and concerns that Mexico has with AIJ and JI and propose measures to deal with them. These initial Mexican AIJ projects show that there is a need for creation of standard project evaluation procedures, and criteria and institutions to oversee project design, selection, and implementation. Further JI development will be facilitated by national and international clarification of key issues such as additionality criteria, carbon-credit sharing, and valuation of non-GHG environmental and/or social benefits and impacts for AIJ projects. Mexico is concerned that JI funding could negatively impact official development assistance or that OECD countries will use JI to avoid taking significant GHG mitigation actions in their own countries. The lack of carbon credit trading in the AIJ stage must be removed to provide useful experience on how to share carbon credits. National or international guidelines are needed to ensure that a portion of the carbon credits is allocated to Mexico.

  13. Greenhouse Gases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Greenhouse Gases Greenhouse Gases Executive Order 13514 requires Federal agencies to inventory and manage greenhouse gas (GHG) emissions to meet Federal goals and mitigate climate...

  14. Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThis Decision considersTable 1: PointsGas Reductions - Case Study,

  15. Commercialization Development of Oxygen Fired CFB for Greenhouse Gas Control

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2007-03-31T23:59:59.000Z

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic (i.e., man-made) CO{sub 2} emissions. In 2001, ALSTOM Power Inc. (ALSTOM) began a two-phase program to investigate the feasibility of various carbon capture technologies. This program was sponsored under a Cooperative Agreement from the US Department of Energy's National Energy Technology Laboratory (DOE). The first phase entailed a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen cases, representing various levels of technology development, were evaluated. Seven cases represented coal combustion in CFB type equipment. Four cases represented Integrated Gasification Combined Cycle (IGCC) systems. Two cases represented advanced Chemical Looping Combined Cycle systems. Marion, et al. reported the details of this work in 2003. One of the thirteen cases studied utilized an oxygen-fired circulating fluidized bed (CFB) boiler. In this concept, the fuel is fired with a mixture of oxygen and recirculated flue gas (mainly CO{sub 2}). This combustion process yields a flue gas containing over 80 percent (by volume) CO{sub 2}. This flue gas can be processed relatively easily to enrich the CO{sub 2} content to over 96 percent for use in enhanced oil or gas recovery (EOR or EGR) or simply dried for sequestration. The Phase I study identified the O{sub 2}-fired CFB as having a near term development potential, because it uses conventional commercial CFB technology and commercially available CO{sub 2} capture enabling technologies such as cryogenic air separation and simple rectification or distillation gas processing systems. In the long term, air separation technology advancements offer significant reductions in power requirements, which would improve plant efficiency and economics for the oxygen-fired technology. The second phase consisted of pilot-scale testing followed by a refined performance and economic evaluation of the O{sub 2} fired CFB concept. As a part of this workscope, ALSTOM modified its 3 MW{sub th} (9.9 MMBtu/hr) Multiuse Test Facility (MTF) pilot plant to operate with O{sub 2}/CO{sub 2} mixtures of up to 70 percent O{sub 2} by volume. Tests were conducted with coal and petroleum coke. The test objectives were to determine the impacts of oxygen firing on heat transfer, bed dynamics, potential agglomeration, and gaseous and particulate emissions. The test data results were used to refine the design, performance, costs, and economic models developed in Phase-I for the O{sub 2}-fired CFB with CO{sub 2} capture. Nsakala, Liljedahl, and Turek reported results from this study in 2004. ALSTOM identified several items needing further investigation in preparation for large scale demonstration of the oxygen-fired CFB concept, namely: (1) Operation and performance of the moving bed heat exchanger (MBHE) to avoid recarbonation and also for cost savings compared to the standard bubbling fluid bed heat exchanger (FBHE); (2) Performance of the back-end flash dryer absorber (FDA) for sulfur capture under high CO{sub 2}/high moisture flue gas environment using calcined limestone in the fly ash and using fresh commercial lime directly in the FDA; (3) Determination of the effect of recarbonation on fouling in the convective pass; (4) Assessment of the impact of oxygen firing on the mercury, other trace elements, and volatile organic compound (VOC) emissions; and (5) Develop a proposal-level oxygen-fired retrofit design for a relatively small existing CFB steam power plant in preparation for a large-scale demonstration of the O{sub 2} fired CFB concept. Hence, ALSTOM responded to a DOE Solicitation to address all these issues with further O{sub 2} fired MTF pilot testing and a subsequent retrofit design study of oxygen firing and CO{s

  16. Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European rapeseed and Brazilian soybeans

    E-Print Network [OSTI]

    Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European determinants of life cycle emissions of greenhouse gases linked to the life cycle of biodiesel from European rapeseed and Brazilian soybeans. For biodiesel from European rapeseed and for biodiesel from Brazilian

  17. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

  18. Renewable portfolio standards, Greenhouse gas reduction, and Long-Line transmission investments in the WECC

    SciTech Connect (OSTI)

    Olson, Arne; Orans, Ren; Allen, Doug; Moore, Jack; Woo, C.K.

    2009-11-15T23:59:59.000Z

    New, long-distance transmission lines to remote areas with concentrations of high-quality renewable resources can help western states meet the challenges of increasing renewable energy procurement and reducing greenhouse gas emissions more cost-effectively than reliance on local resources alone. The approach applied here to the Western Electricity Coordinating Council is useful for an initial determination of the net benefits of long-line transmission between regions with heterogeneous resource quality. (author)

  19. Well-To-Wheels Energy and Greenhouse Gas Analysis of Plug-In Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNew England MEDIA CONTACT:

  20. The Kyoto Protocol and developing countries

    E-Print Network [OSTI]

    Babiker, Mustafa H.M.; Reilly, John M.; Jacoby, Henry D.

    Under the Kyoto Protocol, the world's wealthier countries assumed binding commitments to reduce greenhouse gas emissions. The agreement requires these countries to consider ways to minimize adverse effects on developing ...

  1. Detection of greenhouse-gas-induced climatic change. Progress report, July 1, 1994--July 31, 1995

    SciTech Connect (OSTI)

    Jones, P.D.; Wigley, T.M.L.

    1995-07-21T23:59:59.000Z

    The objective of this research is to assembly and analyze instrumental climate data and to develop and apply climate models as a basis for detecting greenhouse-gas-induced climatic change, and validation of General Circulation Models. In addition to changes due to variations in anthropogenic forcing, including greenhouse gas and aerosol concentration changes, the global climate system exhibits a high degree of internally-generated and externally-forced natural variability. To detect the anthropogenic effect, its signal must be isolated from the ``noise`` of this natural climatic variability. A high quality, spatially extensive data base is required to define the noise and its spatial characteristics. To facilitate this, available land and marine data bases will be updated and expanded. The data will be analyzed to determine the potential effects on climate of greenhouse gas and aerosol concentration changes and other factors. Analyses will be guided by a variety of models, from simple energy balance climate models to coupled atmosphere ocean General Circulation Models. These analyses are oriented towards obtaining early evidence of anthropogenic climatic change that would lead either to confirmation, rejection or modification of model projections, and towards the statistical validation of General Circulation Model control runs and perturbation experiments.

  2. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    SciTech Connect (OSTI)

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01T23:59:59.000Z

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

  3. U.S. Greenhouse Gas Cap-and-Trade Proposals: Application of a Forward-Looking Computable General Equilibrium Model

    E-Print Network [OSTI]

    Gurgel, Angelo C.

    We develop a forward-looking version of the MIT Emissions Prediction and Policy Analysis (EPPA) model, and apply it to examine the economic implications of proposals in the U.S. Congress to limit greenhouse gas (GHG) ...

  4. Life cycle assessment of greenhouse gas emissions and non-CO? combustion effects from alternative jet fuels

    E-Print Network [OSTI]

    Stratton, Russell William

    2010-01-01T23:59:59.000Z

    The long-term viability and success of a transportation fuel depends on both economic and environmental sustainability. This thesis focuses specifically on assessing the life cycle greenhouse gas (GHG) emissions and non-CO ...

  5. Plant power : the cost of using biomass for power generation and potential for decreased greenhouse gas emissions

    E-Print Network [OSTI]

    Cuellar, Amanda Dulcinea

    2012-01-01T23:59:59.000Z

    To date, biomass has not been a large source of power generation in the United States, despite the potential for greenhouse gas (GHG) benefits from displacing coal with carbon neutral biomass. In this thesis, the fuel cycle ...

  6. Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

    2010-04-30T23:59:59.000Z

    Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

  7. Detection of greenhouse-gas-induced climatic change. Progress report, 1 December 1991--30 June 1992

    SciTech Connect (OSTI)

    Wigley, T.M.L.; Jones, P.D.

    1992-07-15T23:59:59.000Z

    The aims of the US Department of Energy`s Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. This project will address: The regional and seasonal details of the expected climatic changes; how rapidly will these changes occur; how and when will the climatic effects of CO{sub 2} and other greenhouse gases be first detected; and the relationships between greenhouse-gas-induced climatic change and changes caused by other external and internal factors. The present project addresses all of these questions. Many of the diverse facets of greenhouse-gas-related climate research can be grouped under three interlinked subject areas: modeling, first detection and supporting data. This project will include the analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulation Models (GCMs).

  8. Greenhouse gas emission impacts of alternative-fueled vehicles: Near-term vs. long-term technology options

    SciTech Connect (OSTI)

    Wang, M.Q.

    1997-05-20T23:59:59.000Z

    Alternative-fueled vehicle technologies have been promoted and used for reducing petroleum use, urban air pollution, and greenhouse gas emissions. In this paper, greenhouse gas emission impacts of near-term and long-term light-duty alternative-fueled vehicle technologies are evaluated. Near-term technologies, available now, include vehicles fueled with M85 (85% methanol and 15% gasoline by volume), E85 (85% ethanol that is produced from corn and 15% gasoline by volume), compressed natural gas, and liquefied petroleum gas. Long-term technologies, assumed to be available around the year 2010, include battery-powered electric vehicles, hybrid electric vehicles, vehicles fueled with E85 (ethanol produced from biomass), and fuel-cell vehicles fueled with hydrogen or methanol. The near-term technologies are found to have small to moderate effects on vehicle greenhouse gas emissions. On the other hand, the long-term technologies, especially those using renewable energy (such as biomass and solar energy), have great potential for reducing vehicle greenhouse gas emissions. In order to realize this greenhouse gas emission reduction potential, R and D efforts must continue on the long-term technology options so that they can compete successfully with conventional vehicle technology.

  9. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

    2012-01-01T23:59:59.000Z

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  10. Preliminary Estimates of Combined Heat and Power Greenhouse GasAbatement Potential for California in 2020

    SciTech Connect (OSTI)

    Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare,Kristina

    2007-07-31T23:59:59.000Z

    The objective of this scoping project is to help the California Energy Commission's (CEC) Public Interest Energy Research (PIER) Program determine where it should make investments in research to support combined heat and power (CHP) deployment. Specifically, this project will: {sm_bullet} Determine what impact CHP might have in reducing greenhouse gas (GHG) emissions, {sm_bullet} Determine which CHP strategies might encourage the most attractive early adoption, {sm_bullet} Identify the regulatory and technological barriers to the most attractive CHP strategies, and {sm_bullet} Make recommendations to the PIER program as to research that is needed to support the most attractive CHP strategies.

  11. Beyond the Inventory: An Interagency Collaboration to Reduce Greenhouse Gas Emissions in the Greater Yellowstone Area

    SciTech Connect (OSTI)

    Kandt, A.; Hotchkiss, E.; Fiebig, M.

    2010-10-01T23:59:59.000Z

    As one of the largest, intact ecosystems in the continental United States, land managers within the Greater Yellowstone Area (GYA) have recognized the importance of compiling and understanding agency greenhouse gas (GHG) emissions. The 10 Federal units within the GYA have taken an active role in compiling GHG inventories on a unit- and ecosystem-wide level, setting goals for GHG mitigation, and identifying mitigation strategies for achieving those goals. This paper details the processes, methodologies, challenges, solutions, and lessons learned by the 10 Federal units within the GYA throughout this ongoing effort.

  12. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: A case study of Ribeirăo Pires, Brazil

    SciTech Connect (OSTI)

    King, Megan F., E-mail: mfking@uvic.ca [The Community-Based Research Laboratory, Department of Geography, University of Victoria, PO Box 3060 STN CSC, Victoria, BC V8W 3R4 (Canada); Gutberlet, Jutta, E-mail: gutber@uvic.ca [Department of Geography, University of Victoria, PO Box 3060 STN CSC, Victoria, BC V8W 3R4 (Canada)

    2013-12-15T23:59:59.000Z

    Highlights: • Cooperative recycling achieves environmental, economic and social objectives. • We calculate GHG emissions reduction for a recycling cooperative in Săo Paulo, Brazil. • The cooperative merits consideration as a Clean Development Mechanism (CDM) project. • A CDM project would enhance the achievements of the recycling cooperative. • National and local waste management policies support the recycling cooperative. - Abstract: Solid waste, including municipal waste and its management, is a major challenge for most cities and among the key contributors to climate change. Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solid waste stream. In Săo Paulo, Brazil, recycling cooperatives play a crucial role in providing recycling services including collection, separation, cleaning, stocking, and sale of recyclable resources. The present research attempts to measure the greenhouse gas emission reductions achieved by the recycling cooperative Cooperpires, as well as highlight its socioeconomic benefits. Methods include participant observation, structured interviews, questionnaire application, and greenhouse gas accounting of recycling using a Clean Development Mechanism methodology. The results show that recycling cooperatives can achieve important energy savings and reductions in greenhouse gas emissions, and suggest there is an opportunity for Cooperpires and other similar recycling groups to participate in the carbon credit market. Based on these findings, the authors created a simple greenhouse gas accounting calculator for recyclers to estimate their emissions reductions.

  13. Microbial communities and greenhouse gas emissions associated with the biodegradation of specified risk material in compost

    SciTech Connect (OSTI)

    Xu, Shanwei [Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (Canada); Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta, Canada T1J 4B1 (Canada); Reuter, Tim [Alberta Agriculture and Rural Development, Lethbridge, Alberta, Canada T1J 4V6 (Canada); Gilroyed, Brandon H. [Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta, Canada T1J 4B1 (Canada); Tymensen, Lisa [Alberta Agriculture and Rural Development, Lethbridge, Alberta, Canada T1J 4V6 (Canada); Hao, Yongxin; Hao, Xiying [Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta, Canada T1J 4B1 (Canada); Belosevic, Miodrag [Department of Biological Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 (Canada); Leonard, Jerry J. [Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (Canada); McAllister, Tim A., E-mail: tim.mcallister@agr.gc.ca [Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta, Canada T1J 4B1 (Canada)

    2013-06-15T23:59:59.000Z

    Highlights: ? Addition of feathers altered bacterial and fungal communities in compost. ? Microbial communities degrading SRM and compost matrix were distinct. ? Addition of feathers may enrich for microbial communities that degrade SRM. ? Inclusion of feather in compost increased both CH{sub 4} and N{sub 2}O emissions from compost. ? Density of methanogens and methanotrophs were weakly associated with CH{sub 4} emissions. - Abstract: Provided that infectious prions (PrP{sup Sc}) are inactivated, composting of specified risk material (SRM) may be a viable alternative to rendering and landfilling. In this study, bacterial and fungal communities as well as greenhouse gas emissions associated with the degradation of SRM were examined in laboratory composters over two 14 day composting cycles. Chicken feathers were mixed into compost to enrich for microbial communities involved in the degradation of keratin and other recalcitrant proteins such as prions. Feathers altered the composition of bacterial and fungal communities primarily during the first cycle. The bacterial genera Saccharomonospora, Thermobifida, Thermoactinomycetaceae, Thiohalospira, Pseudomonas, Actinomadura, and Enterobacter, and the fungal genera Dothideomycetes, Cladosporium, Chaetomium, and Trichaptum were identified as candidates involved in SRM degradation. Feathers increased (P < 0.05) headspace concentrations of CH{sub 4} primarily during the early stages of the first cycle and N{sub 2}O during the second. Although inclusion of feathers in compost increases greenhouse gas emissions, it may promote the establishment of microbial communities that are more adept at degrading SRM and recalcitrant proteins such as keratin and PrP{sup Sc}.

  14. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-09-01T23:59:59.000Z

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

  15. LowCostGHG ReductionCARB 3/03 Low-Cost and Near-Term Greenhouse Gas Emission Reduction

    E-Print Network [OSTI]

    Edwards, Paul N.

    LowCostGHG ReductionCARB 3/03 1 Low-Cost and Near-Term Greenhouse Gas Emission Reduction Marc Ross for Light Duty Vehicles Critical to the Pavley bill's goal to reduce greenhouse gas (GHG) emissions from trucks (large symbols). The emissions from midsize and smaller cars, emit about half as much. Question

  16. Molasses for ethanol: the economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis of sugarcane ethanol

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Molasses for ethanol: the economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis of sugarcane ethanol This article has been downloaded from IOPscience. Please scroll for ethanol: the economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis

  17. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    SciTech Connect (OSTI)

    Deborah L. Layton; Kimberly Frerichs

    2010-07-01T23:59:59.000Z

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

  18. Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency

    SciTech Connect (OSTI)

    Alterra, Swart; Masanet, Eric; Lecocq, Franck; Najam, Adil; Schaeffer, Robert; Winkler, Harald; Sathaye, Jayant

    2008-07-04T23:59:59.000Z

    There is a multiplicity of development pathways in which low energy sector emissions are not necessarily associated with low economic growth. However, changes in development pathways can rarely be imposed from the top. On this basis, examples of energy efficiency opportunities to change development pathways toward lower emissions are presented in this paper. We review opportunities at the sectoral and macro level. The potential for action on nonclimate policies that influence energy use and emissions are presented. Examples are drawn from policies already adopted and implemented in the energy sector. The paper discusses relationships between energy efficiency policies and their synergies and tradeoffs with sustainable development and greenhouse gas emissions. It points to ways that energy efficiency could be mainstreamed into devel?opment choices.

  19. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    SciTech Connect (OSTI)

    Deborah L. Layton; Kimberly Frerichs

    2011-12-01T23:59:59.000Z

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

  20. A fuel cycle framework for evaluating greenhouse gas emission reduction technology

    SciTech Connect (OSTI)

    Ashton, W.B.; Barns, D.W. (Pacific Northwest Lab., Richland, WA (USA)); Bradley, R.A. (USDOE Office of Policy, Planning and Analysis, Washington, DC (USA). Office of Environmental Analysis)

    1990-05-01T23:59:59.000Z

    Energy-related greenhouse gas (GHG) emissions arise from a number of fossil fuels, processes and equipment types throughout the full cycle from primary fuel production to end-use. Many technology alternatives are available for reducing emissions based on efficiency improvements, fuel switching to low-emission fuels, GHG removal, and changes in end-use demand. To conduct systematic analysis of how new technologies can be used to alter current emission levels, a conceptual framework helps develop a comprehensive picture of both the primary and secondary impacts of a new technology. This paper describes a broad generic fuel cycle framework which is useful for this purpose. The framework is used for cataloging emission source technologies and for evaluating technology solutions to reduce GHG emissions. It is important to evaluate fuel mix tradeoffs when investigating various technology strategies for emission reductions. For instance, while substituting natural gas for coal or oil in end-use applications to reduce CO{sub 2} emissions, natural gas emissions of methane in the production phase of the fuel cycle may increase. Example uses of the framework are given.

  1. Comparing the greenhouse gas emissions from three alternative waste combustion concepts

    SciTech Connect (OSTI)

    Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Tsupari, Eemeli; Sipilae, Kai [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FIN 20500 Turku (Finland)

    2012-03-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

  2. Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas1 emissions into the atmosphere2

    E-Print Network [OSTI]

    Boyer, Edmond

    dioxide sequestration process. The overall carbonation reaction includes the following steps: (1)23 CaCarbonation of alkaline paper mill waste to reduce CO2 greenhouse gas1 emissions change.20 This study investigates experimentally the aqueous carbonation mechanisms of an alkaline paper

  3. Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    #12;Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U on a mass emission per travel mile basis, the corn-to-ethanol fuel cycle for Midwest-produced ethanol% of total domestic ethanol production. That is, while the model still covers all alternative fuels and five

  4. State and Regional Comprehensive Carbon Pricing and Greenhouse Gas Regulation in the Power Sector under the EPA's Clean Power Plan

    E-Print Network [OSTI]

    California at Davis, University of

    1 State and Regional Comprehensive Carbon Pricing and Greenhouse Gas Regulation in the Power Sector goal of comprehensive carbon pricing along with various other policies (LCFS) · Into this setting drops rate" and the role of renewable energy and energy efficiency in the rate targets and in compliance

  5. Greenhouse Gas Mitigation Through Energy Crops in the U.S. With Implications for Asian-Pacific Countries

    E-Print Network [OSTI]

    McCarl, Bruce A.

    into energy crop production will most likely carry this price through increased purchasing cost and all energy the production of energy crops and other agricultural mitigation strategies. This analysis estimates the economicGreenhouse Gas Mitigation Through Energy Crops in the U.S. With Implications for Asian

  6. The effects of potential changes in United States beef production on global grazing systems and greenhouse gas emissions

    E-Print Network [OSTI]

    Zhou, Yaoqi

    and greenhouse gas emissions Jerome Dumortier1 , Dermot J Hayes2 , Miguel Carriquiry2 , Fengxia Dong3 , Xiaodong in the U.S. causes a net increase in GHG emissions on a global scale. We couple a global agricultural production in the United States. The effects on emissions from agricultural production (i.e., methane

  7. Emissions trading to reduce greenhouse gas emissions in the United States : the McCain-Lieberman Proposal

    E-Print Network [OSTI]

    Paltsev, Sergey.

    The Climate Stewardship Act of 2003 (S. 139) is the most detailed effort to date to design an economy-wide cap-and-trade system for US greenhouse gas emissions reductions. The Act caps sectors at their 2000 emissions in ...

  8. Molasses for ethanol: The economic and environmental impacts of a new pathway for the lifecycle greenhouse gas

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Molasses for ethanol: The economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis of sugarcane ethanol Anand R Gopal1,4,6 and Daniel M Kammen1,2,3,5 1 Energy supplying country for the production of sugarcane ethanol; fresh mill-pressed cane juice from a Brazilian

  9. Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    for minimum life cycle greenhouse gas emissions and cost Elizabeth Traut a,n , Chris Hendrickson b,1 , Erica and dedicated workplace charging infrastructure in the fleet for minimum life cycle cost or GHG emissions over vehicle and battery costs are the major drivers for PHEVs and BEVs to enter and dominate the cost

  10. Spatial and temporal variability of annual greenhouse gas fluxes from a constructed wetland in an arid region

    E-Print Network [OSTI]

    Hall, Sharon J.

    (CO2). - Many constructed treatment wetland systems (CWS) have been developed to remove nutrients fromSpatial and temporal variability of annual greenhouse gas fluxes from a constructed wetland of Sustainability, 3Wetland Ecosystem Ecology Lab, Arizona State University, Tempe, AZ, USA. - Wetlands support

  11. Evaluation of metrics and baselines for tracking greenhouse gas emissions trends: Recommendations for the California climate action registry

    SciTech Connect (OSTI)

    Price, Lynn; Murtishaw, Scott; Worrell, Ernst

    2003-06-01T23:59:59.000Z

    Executive Summary: The California Climate Action Registry, which was initially established in 2000 and began operation in Fall 2002, is a voluntary registry for recording annual greenhouse gas (GHG) emissions. The purpose of the Registry is to assist California businesses and organizations in their efforts to inventory and document emissions in order to establish a baseline and to document early actions to increase energy efficiency and decrease GHG emissions. The State of California has committed to use its ''best efforts'' to ensure that entities that establish GHG emissions baselines and register their emissions will receive ''appropriate consideration under any future international, federal, or state regulatory scheme relating to greenhouse gas emissions.'' Reporting of GHG emissions involves documentation of both ''direct'' emissions from sources that are under the entity's control and indirect emissions controlled by others. Electricity generated by an off-site power source is consider ed to be an indirect GHG emission and is required to be included in the entity's report. Registry participants include businesses, non-profit organizations, municipalities, state agencies, and other entities. Participants are required to register the GHG emissions of all operations in California, and are encouraged to report nationwide. For the first three years of participation, the Registry only requires the reporting of carbon dioxide (CO2) emissions, although participants are encouraged to report the remaining five Kyoto Protocol GHGs (CH4, N2O, HFCs, PFCs, and SF6). After three years, reporting of all six Kyoto GHG emissions is required. The enabling legislation for the Registry (SB 527) requires total GHG emissions to be registered and requires reporting of ''industry-specific metrics'' once such metrics have been adopted by the Registry. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) was asked to provide technical assistance to the California Energy Commission (Energy Commission) related to the Registry in three areas: (1) assessing the availability and usefulness of industry-specific metrics, (2) evaluating various methods for establishing baselines for calculating GHG emissions reductions related to specific actions taken by Registry participants, and (3) establishing methods for calculating electricity CO2 emission factors. The third area of research was completed in 2002 and is documented in Estimating Carbon Dioxide Emissions Factors for the California Electric Power Sector (Marnay et al., 2002). This report documents our findings related to the first areas of research. For the first area of research, the overall objective was to evaluate the metrics, such as emissions per economic unit or emissions per unit of production that can be used to report GHG emissions trends for potential Registry participants. This research began with an effort to identify methodologies, benchmarking programs, inventories, protocols, and registries that u se industry-specific metrics to track trends in energy use or GHG emissions in order to determine what types of metrics have already been developed. The next step in developing industry-specific metrics was to assess the availability of data needed to determine metric development priorities. Berkeley Lab also determined the relative importance of different potential Registry participant categories in order to asses s the availability of sectoral or industry-specific metrics and then identified industry-specific metrics in use around the world. While a plethora of metrics was identified, no one metric that adequately tracks trends in GHG emissions while maintaining confidentiality of data was identified. As a result of this review, Berkeley Lab recommends the development of a GHG intensity index as a new metric for reporting and tracking GHG emissions trends.Such an index could provide an industry-specific metric for reporting and tracking GHG emissions trends to accurately reflect year to year changes while protecting proprietary data. This GHG intensity index changes

  12. Greenhouse Gas Dissonance: The History of EPA's Regulations and the Incongruity of Recent Legal Challenges

    E-Print Network [OSTI]

    Moreno, Robert B.; Zalzal, Peter

    2012-01-01T23:59:59.000Z

    forty percent of all U.S. oil consumption"). GREENHOUSE GAStroleum consumption." I" 4 Importing foreign oil is widely

  13. Life Cycle Greenhouse Gas Analysis of Natural Gas Extraction & Delivery in the United Statesy

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    ? 7 #12;Domestic Natural Gas Consumption Sectoral Trends and Projections: 2010 Total Consumption = 23 Timothy J. Skone, P.E. Office of Strategic Energy Analysis and Planning May 12 2011May 12, 2011 Presented for reducing 2 GHG emissions? #12;Question #1: Who is NETL? 3 #12;National Energy Technology Laboratory MISSION

  14. Life Cycle Analysis on Greenhouse Gas (GHG) Emissions of Marcellus Shale Gas Supporting Information

    E-Print Network [OSTI]

    Jaramillo, Paulina

    the well pad drilling site and the location for accommodation. The rig and auxiliary equipments for hydraulic fracturing process are trucked in trailers to the drilling site. Several wells on one multi-well 1. GHG Emissions Estimation for Production of Marcellus Shale Gas 1.1 Preparation of Well Pad

  15. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1998-12-16T23:59:59.000Z

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  16. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15T23:59:59.000Z

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

  17. Transitional strategies for the reduction of "greenhouse gas" emission in the United States electric power sector

    E-Print Network [OSTI]

    Monroe, Burt L.

    1990-01-01T23:59:59.000Z

    Environmental issues have become increasingly important in the political arena, particularly with growing concern over the "greenhouse effect," a potential global climatic warming caused by increases in anthropogenic ...

  18. Evaluating greenhouse gas emissions from hydropower complexes on large rivers in Eastern Washington

    SciTech Connect (OSTI)

    Arntzen, Evan V.; Miller, Benjamin L.; O'Toole, Amanda C.; Niehus, Sara E.; Richmond, Marshall C.

    2013-03-15T23:59:59.000Z

    Water bodies, such as freshwater lakes, are known to be net emitters of carbon dioxide (CO2), and methane (CH4). In recent years, significant greenhouse gas (GHG) emissions from tropical, boreal, and mid-latitude reservoirs have been reported. At a time when hydropower is increasing worldwide, better understanding of seasonal and regional variation in GHG emissions is needed in order to develop a predictive understanding of such fluxes within man-made impoundments. We examined power-producing dam complexes within xeric temperate locations in the northwestern United States. Sampling environments on the Snake (Lower Monumental Dam Complex) and Columbia Rivers (Priest Rapids Dam Complex) included tributary, mainstem, embayment, forebay, and tailrace areas during winter and summer 2012. At each sampling location, GHG measurement pathways included surface gas flux, degassing as water passed through dams during power generation, ebullition within littoral embayments, and direct sampling of hyporheic pore-water. Measurements were also carried out in a free-flowing reach of the Columbia River to estimate unaltered conditions. Surface flux resulted in very low emissions, with reservoirs acting as a sink for CO2 (up to –262 mg m-2 d-1, which is within the range previously reported for similarly located reservoirs). Surface flux of methane remained below 1 mg CH4 m-2d-1, a value well below fluxes reported previously for temperate reservoirs. Water passing through hydroelectric projects acted as a sink for CO2 during winter and a small source during summer, with mean degassing fluxes of –117 and 4.5 t CO2 d-1, respectively. Degassing of CH4 was minimal, with mean fluxes of 3.1 × 10-6 and –5.6 × 10-4 t CH4 d-1 during winter and summer, respectively. Gas flux due to ebullition was greater in coves located within reservoirs than in coves within the free flowing Hanford Reach–and CH4 flux exceeded that of CO2. Methane emissions varied widely across sampling locations, ranging from 10.5 to 1039 mg CH4 m-2 d-1, with mean fluxes of 324 mg CH4 m-2 d-1in Lower Monumental Dam reservoir and 482 mg CH4 m-2d-1 in the Priest Rapids Dam reservoir. The magnitude of methane flux due to ebullition was unexpectedly high, and falls within the range recently reported for other temperate reservoirs around the world, further suggesting that this methane source should be considered in estimates of global greenhouse gas emissions. Methane flux from sediment pore-water within littoral embayments averaged 4.2 mg m-2 d-1 during winter and 8.1 mg m-2 d-1 during summer, with a peak flux of 19.8 mg m-2d-1 (at the same location where CH4 ebullition was also the greatest). Carbon dioxide flux from sediment pore-water averaged approximately 80 mg m-2d-1 with little difference between winter and summer. Similar to emissions from ebullition, flux from sediment pore-water was higher in reservoirs than in the free flowing reach.

  19. A Greenhouse-Gas Information System: Monitoring and Validating Emissions Reporting and Mitigation

    SciTech Connect (OSTI)

    Jonietz, Karl K. [Los Alamos National Laboratory; Dimotakis, Paul E. [JPL/CAL Tech; Rotman, Douglas A. [Lawrence Livermore National Laboratory; Walker, Bruce C. [Sandia National Laboratory

    2011-09-26T23:59:59.000Z

    This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a system that meets specifications derived from imposed requirements; the need for rigorous calibration, verification, and validation (CV&V) standards, processes, and records for all measurement and modeling/data-inversion data; the need to develop and adopt an uncertainty-quantification (UQ) regimen for all measurement and modeling data; and the requirement that GHGIS products can be subjected to third-party questioning and scientific scrutiny. This report examines and assesses presently available capabilities that could contribute to a future GHGIS. These capabilities include sensors and measurement technologies; data analysis and data uncertainty quantification (UQ) practices and methods; and model-based data-inversion practices, methods, and their associated UQ. The report further examines the need for traceable calibration, verification, and validation processes and attached metadata; differences between present science-/research-oriented needs and those that would be required for an operational GHGIS; the development, operation, and maintenance of a GHGIS missions-operations center (GMOC); and the complex systems engineering and integration that would be required to develop, operate, and evolve a future GHGIS.

  20. Non-Kyoto Radiative Forcing in Long-Run Greenhouse Gas Emissions and Climate Change Scenarios

    SciTech Connect (OSTI)

    Rose, Steven K.; Richels, Richard G.; Smith, Steven J.; Riahi, Keywan; Stefler, Jessica; Van Vuuren, Detlef

    2014-04-27T23:59:59.000Z

    Climate policies designed to achieve climate change objectives must consider radiative forcing from the Kyoto greenhouse gas, as well as other forcing constituents, such as aerosols and tropospheric ozone. Net positive forcing leads to global average temperature increases. Modeling of non-Kyoto forcing is a relatively new component of climate management scenarios. Five of the nineteen models in the EMF-27 Study model both Kyoto and non-Kyoto forcing. This paper describes and assesses current non-Kyoto radiative forcing modeling within these integrated assessment models. The study finds negative forcing from aerosols masking significant positive forcing in reference non-climate policy projections. There are however large differences across models in projected non-Kyoto emissions and forcing, with differences stemming from differences in relationships between Kyoto and non-Kyoto emissions and fundamental differences in modeling structure and assumptions. Air pollution and non-Kyoto forcing decline in the climate policy scenarios. However, non-Kyoto forcing appears to be influencing mitigation results, including allowable carbon dioxide emissions, and further evaluation is merited. Overall, there is substantial uncertainty related to non-Kyoto forcing that must be considered.

  1. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    SciTech Connect (OSTI)

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30T23:59:59.000Z

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  2. Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.

    2011-09-01T23:59:59.000Z

    In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

  3. Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020

    E-Print Network [OSTI]

    Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

    2007-01-01T23:59:59.000Z

    MW Reciprocating Engine 3 MW Gas Turbine 1 MW ReciprocatingEngine 5 MW Gas Turbine 3MW Gas Turbine 40 MW Gas Turbine 1 MW Reciprocating Engine

  4. Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes.

    SciTech Connect (OSTI)

    Wang, M.; Han, J.; Haq, Z; Tyner, .W.; Wu, M.; Elgowainy, A. (Energy Systems)

    2011-05-01T23:59:59.000Z

    Use of ethanol as a transportation fuel in the United States has grown from 76 dam{sup 3} in 1980 to over 40.1 hm{sup 3} in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

  5. Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles

    E-Print Network [OSTI]

    Evans, Christopher W. (Christopher William)

    2008-01-01T23:59:59.000Z

    The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

  6. An Analysis of the Effectiveness and Impact of Mandatory Company Greenhouse Gas Emission Reporting Under The Companies Act 2006 (Strategic Report and Directors’ Report) Regulations 2013 

    E-Print Network [OSTI]

    Plaza, Celina

    2014-11-22T23:59:59.000Z

    The intent of this research is to examine the effectiveness and impact of the UK’s mandatory reporting of company greenhouse gas emissions, otherwise known as carbon dioxide equivalent (CO2e) emissions, in accordance to ...

  7. Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of How the Refinery Industry is Capitalizing on ENERGY STAR

    E-Print Network [OSTI]

    Patrick, K.

    2008-01-01T23:59:59.000Z

    Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of how the Refinery Industry is Capitalizing on ENERGY STAR Kelly Patrick U.S. Environmental Protection Agency kelly...

  8. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Warner, E. S.; Heath, G. A.

    2012-04-01T23:59:59.000Z

    A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

  9. Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery

    SciTech Connect (OSTI)

    Yang Na [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Zhang Hua, E-mail: zhanghua_tj@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Chen Miao; Shao Liming [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); He Pinjing, E-mail: xhpjk@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2012-12-15T23:59:59.000Z

    Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO{sub 2}-eq t{sup -1} rw. Within all process stages, the emission of fossil CO{sub 2} from the combustion of MSW was the main contributor (111-254 kg CO{sub 2}-eq t{sup -1} rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO{sub 2}-eq t{sup -1} rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

  10. Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Dolan, S. L.; Heath, G. A.

    2012-04-01T23:59:59.000Z

    A systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems was performed to determine the causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions. Screening of approximately 240 LCAs of onshore and offshore systems yielded 72 references meeting minimum thresholds for quality, transparency, and relevance. Of those, 49 references provided 126 estimates of life cycle GHG emissions. Published estimates ranged from 1.7 to 81 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), with median and interquartile range (IQR) both at 12 g CO{sub 2}-eq/kWh. After adjusting the published estimates to use consistent gross system boundaries and values for several important system parameters, the total range was reduced by 47% to 3.0 to 45 g CO{sub 2}-eq/kWh and the IQR was reduced by 14% to 10 g CO{sub 2}-eq/kWh, while the median remained relatively constant (11 g CO{sub 2}-eq/kWh). Harmonization of capacity factor resulted in the largest reduction in variability in life cycle GHG emission estimates. This study concludes that the large number of previously published life cycle GHG emission estimates of wind power systems and their tight distribution suggest that new process-based LCAs of similar wind turbine technologies are unlikely to differ greatly. However, additional consequential LCAs would enhance the understanding of true life cycle GHG emissions of wind power (e.g., changes to other generators operations when wind electricity is added to the grid), although even those are unlikely to fundamentally change the comparison of wind to other electricity generation sources.

  11. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01T23:59:59.000Z

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  12. o meet the challenges of global climate change, greenhouse-gas emissions must

    E-Print Network [OSTI]

    Lehmann, Johannes

    . Emissions from fossil fuels are the largest contributor to the anthropo- genic greenhouse effect, so . In my view, it is therefore an attractive target for energy subsidies and for inclusion in the global

  13. Modeling & learning from the design recommendations for California's Greenhouse Gas Cap-and-Trade System

    E-Print Network [OSTI]

    Fernandes, Chester, S.M. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    Climate Change has become a Major issue beginning with our generation. Governments the world over are now recognizing that industry cannot continue to pollute in a business-as-usual manner. Emitting Greenhouse gases has a ...

  14. GREENHOUSE GAS EMISSION CONTROL OPTIONS: ASSESSING TRANSPORTATION AND ELECTRICITY GENERATION TECHNOLOGIES AND

    E-Print Network [OSTI]

    Kockelman, Kara M.

    power generation, energy policy, fuel economy ABSTRACT Prioritizing the numerous technology and policy Publications for book titled "Energy Consumption: Impacts of Human Activity, Current and Future Challenges, Environmental and Ecological Effects," August 2013. KEY WORDS: Greenhouse gases, transportation energy, electric

  15. Detection of greenhouse-gas-induced climatic change. Progress report, 1 December 1991--30 June 1994

    SciTech Connect (OSTI)

    Wigley, T.M.L.; Jones, P.D.

    1994-07-01T23:59:59.000Z

    In addition to changes due to variations in greenhouse gas concentrations, the global climate system exhibits a high degree of internally-generated and externally-forced natural variability. To detect the enhanced greenhouse effect, its signal must be isolated from the ``noise`` of this natural climatic variability. A high quality, spatially extensive data base is required to define the noise and its spatial characteristics. To facilitate this, available land and marine data bases will be updated and expanded. The data will be analyzed to determine the potential effects on climate of greenhouse gas concentration changes and other factors. Analyses will be guided by a variety of models, from simple energy balance climate models to ocean General Circulation Models. Appendices A--G contain the following seven papers: (A) Recent global warmth moderated by the effects of the Mount Pinatubo eruption; (B) Recent warming in global temperature series; (C) Correlation methods in fingerprint detection studies; (D) Balancing the carbon budget. Implications for projections of future carbon dioxide concentration changes; (E) A simple model for estimating methane concentration and lifetime variations; (F) Implications for climate and sea level of revised IPCC emissions scenarios; and (G) Sulfate aerosol and climatic change.

  16. The Transportation Greenhouse Gas Inventory: A First Step Toward City-Driven Emissions Rationalization

    E-Print Network [OSTI]

    Ganson, Chris

    2008-01-01T23:59:59.000Z

    Passenger vehicles Residential Natural Gas ResidentialNatural Gas Residential Electricity Passenger vehiclesEnd Attribution, Vehicle Life Cycle Commercial Natural Gas

  17. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    E-Print Network [OSTI]

    Kahrl, Fredrich James

    2011-01-01T23:59:59.000Z

    Commission (NDRC), 2007. Natural Gas Use Policy [??? ????].Commission (NDRC), 2007. Natural Gas Use Policy [??? ????].coal, crude oil, and natural gas. Hydropower, nuclear, and

  18. Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    Denholm, P.

    2007-03-01T23:59:59.000Z

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

  19. Idaho National Laboratory’s FY09 & FY10 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2011-06-01T23:59:59.000Z

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2009 and 2010 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL's GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries, but are a consequence of INL's activities). This inventory found that INL generated 103,590 and 102,413 MT of CO2-equivalent emissions during FY09 and FY10, respectively. The following conclusions were made from looking at the results of the individual contributors to INL's FY09 and FY10 GHG inventories: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  20. Strategies for the Commercialization and Deployment of Greenhouse Gas Intensity-Reducing Technologies and Practices

    SciTech Connect (OSTI)

    Committee on Climate Change Science and Technology Integration (CCCSTI)

    2009-01-01T23:59:59.000Z

    New technologies will be a critical component--perhaps the critical component--of our efforts to tackle the related challenges of energy security, climate change, and air pollution, all the while maintaining a strong economy. But just developing new technologies is not enough. Our ability to accelerate the market penetration of clean energy, enabling, and other climate-related technologies will have a determining impact on our ability to slow, stop, and reverse the growth in greenhouse gas (GHG) emissions. Title XVI, Subtitle A, of the Energy Policy Act of 2005 (EPAct 2005) directs the Administration to report on its strategy to promote the commercialization and deployment (C&D) of GHG intensity-reducing technologies and practices. The Act also requests the Administration to prepare an inventory of climate-friendly technologies suitable for deployment and to identify the barriers and commercial risks facing advanced technologies. Because these issues are related, they are integrated here within a single report that we, representing the Committee on Climate Change Science and Technology Integration (CCCSTI), are pleased to provide the President, the Congress, and the public. Over the past eight years, the Administration of President George W. Bush has pursued a series of policies and measures aimed at encouraging the development and deployment of advanced technologies to reduce GHG emissions. This report highlights these policies and measures, discusses the barriers to each, and integrates them within a larger body of other extant policy. Taken together, more than 300 policies and measures described in this document may be viewed in conjunction with the U.S. Climate Change Technology Program's (CCTP's) Strategic Plan, published in September 2006, which focuses primarily on the role of advanced technology and associated research and development (R&D) for mitigating GHG emissions. The CCTP, a multi-agency technology planning and coordination program, initiated by President Bush, and subsequently authorized in EPAct2005, is responsible for preparing this report on behalf CCCSTI. This report systematically examines the market readiness of key technologies important to meeting climate change mitigation goals. It assesses the barriers and business risks impeding their progress and greater market application. Importantly, by documenting the hundreds of Federal policies, programs, regulations, incentives, and other activities that are in effect and operating today to address these barriers, it provides a broad context for evaluating the adequacy of current policy and the potential need, if any, for additional measures that might be undertaken by government or industry. Finally, it draws conclusions about the current situation, identifies gaps and opportunities, and suggests analytical principles that should be applied to assess and formulate policies and measures to accelerate the commercialization and deployment of these technologies.

  1. Detection of greenhouse-gas-induced climatic change. Progress report, 1 December 1992--30 June 1993

    SciTech Connect (OSTI)

    Wigley, T.M.L.; Jones, P.D.

    1993-07-09T23:59:59.000Z

    The aims of the US Department of Energy`s Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. The main research areas covered by this proposal are (b), First Detection and (c) Supporting Data. The project will also include work under area (a), Modeling: specifically, analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulating Models (GCMs).

  2. Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020

    E-Print Network [OSTI]

    Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

    2007-01-01T23:59:59.000Z

    that during this forecast period, natural gas will be the7. 2020 forecasts of California electricity and natural gasEnergy Prices Forecasts of 2020 natural gas prices are taken

  3. D i s c l a i m e r The Proposed Final Opinion on Greenhouse Gas Regulatory Strategies has been

    E-Print Network [OSTI]

    its contents. #12;1 Summary of Proposed Final Opinion on Greenhouse Gas Policies The Global Warming half (52 percent) of residents surveyed said that global warming is a very serious threat to the state levels by 2020. The electricity and natural gas sectors will play a critical role in achieving

  4. Post Doctoral Research Fellowship Simulating the greenhouse gas emission from boreal region reservoirs

    E-Print Network [OSTI]

    of greenhouse gases from northern boreal reservoirs as part of a Natural Sciences and Engineering Research modified the DeNitrification-DeComposition (DNDC) model to simulate the exchange of CO2 between boreal by the creation of reservoirs for the production of hydro-electricity. We have recently developed a water column

  5. SMARTTool Greenhouse Gas Inventory Report Reporting Entity: University of Northern British Columbia

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Reporting Year: Calendar Year 2010 Greenhouse Gases in Tonnes Measure Quantity CO2 CH4 N2O tCO2e1 Scope 1.30 Emissions from Biomass Total Biomass Emissions 0.83 0.00 0.00 0.83 Total Emissions, Calendar Year 2010 5

  6. Integrated Chemical Complex and Cogeneration Analysis System: Energy Conservation and Greenhouse Gas Management Solutions

    E-Print Network [OSTI]

    Pike, Ralph W.

    19f Integrated Chemical Complex and Cogeneration Analysis System: Energy Conservation and Cogeneration Analysis System is an advanced technology for energy conservation and pollution prevention, Beaumont, TX 77710, hopperjr@hal.lamar.edu, yawscl@hal.lamar.edu Key words; Energy Conservation, Greenhouse

  7. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    SciTech Connect (OSTI)

    Mills, Evan

    2009-07-16T23:59:59.000Z

    The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the energy savings. Commissioning also improves worker comfort, mitigates indoor air quality problems

  8. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    E-Print Network [OSTI]

    Mills, Evan

    2010-01-01T23:59:59.000Z

    Report—California Commissioning Market Characterization Study. ” A Report Prepared for Pacific Gas and

  9. Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020

    E-Print Network [OSTI]

    Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

    2007-01-01T23:59:59.000Z

    generation: 50% of electricity from central grid natural gas plantsgeneration: 100% of electricity from central grid natural gas plantselectricity comes from central station natural-gas- fired combined cycle generation, and the other half comes from natural-gas-fired single cycle plants. •

  10. A greenhouse-gas information system monitoring and validating emissions reporting and mitigation

    SciTech Connect (OSTI)

    Jonietz, Karl K [Los Alamos National Laboratory; Dimotakis, Paul E [JPL/CAL TECH; Roman, Douglas A [LLNL; Walker, Bruce C [SNL

    2011-09-26T23:59:59.000Z

    Current GHG-mitigating regimes, whether internationally agreed or self-imposed, rely on the aggregation of self-reported data, with limited checks for consistency and accuracy, for monitoring. As nations commit to more stringent GHG emissions-mitigation actions and as economic rewards or penalties are attached to emission levels, self-reported data will require independent confirmation that they are accurate and reliable, if they are to provide the basis for critical choices and actions that may be required. Supporting emissions-mitigation efforts and agreements, as well as monitoring energy- and fossil-fuel intensive national and global activities would be best achieved by a process of: (1) monitoring of emissions and emission-mitigation actions, based, in part, on, (2) (self-) reporting of pertinent bottom-up inventory data, (3) verification that reported data derive from and are consistent with agreed-upon processes and procedures, and (4) validation that reported emissions and emissions-mitigation action data are correct, based on independent measurements (top-down) derived from a suite of sensors in space, air, land, and, possibly, sea, used to deduce and attribute anthropogenic emissions. These data would be assessed and used to deduce and attribute measured GHG concentrations to anthropogenic emissions, attributed geographically and, to the extent possible, by economic sector. The validation element is needed to provide independent assurance that emissions are in accord with reported values, and should be considered as an important addition to the accepted MRV process, leading to a MRV&V process. This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a system that meets specifications derived from imposed requirements; the need for rigorous calibration, verification, and validation (CV&V) standards, processes, and records for all measurement and modeling/data-inversion data; the need to develop and adopt an uncertainty-quantification (UQ) regimen for all measurement and modeling data; and the requirement that GHGIS products can be subjected to third-party questioning and scientific scrutiny. This report examines and assesses presently available capabilities that could contribute to a future GHGIS. These capabilities include sensors and measurement technologies; data analysis and data uncertainty quantification (UQ) practices and methods; and model-based data-inversion practices, methods, and their associated UQ. The report further examines the need for traceable calibration, verification, and validation processes and attached metadata; differences between present science-/research-oriented needs and those that would be required for an operational GHGIS; the development, operation, and maintenance of a GHGIS missions-operations center (GMOC); and the complex systems engineering and integration that would be required to develop, operate, and evolve a future GHGIS. Present monitoring systems would be heavily relied on in any GHGIS implementation at the outset and would likely continue to provide valuable future contributions to GHGIS. However, present monitoring systems were developed to serve science/research purposes. This study concludes that no component or capability presently available is at the level of technological maturity and readiness required for implementation in an operational GHGIS today. However, purpose-designed and -built components could be developed and implemented in support of a future GHGIS. The study concludes that it is possible to develop and provide a capability-driven prototype GHGIS, as part of a Phase-1 effort, within three years from project-funding start, that would make use of and integrate existing sensing and system capabilities. As part of a Phase-2 effort, a requirem

  11. HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 Greenhouse gases andGreenhouse gases and

    E-Print Network [OSTI]

    Zevenhoven, Ron

    in gas turbinecombustion in gas turbine HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 Effect of COEffect-depleting gases ·· COCO22 removal for gas purificationremoval for gas purification ·· COCO22 removal for greenhouse gas emissions reductionremoval for greenhouse gas emissions reduction ·· Other greenhouse gases

  12. Knowledge Partnership for Measuring Air Pollution and Greenhouse...

    Open Energy Info (EERE)

    Measuring Air Pollution and Greenhouse Gas Emissions in Asia Jump to: navigation, search Name Knowledge Partnership for Measuring Air Pollution and Greenhouse Gas Emissions in Asia...

  13. White House Announces New Executive Order To Reduce Greenhouse...

    Energy Savers [EERE]

    White House Announces New Executive Order To Reduce Greenhouse Gas Emissions in the Federal Government White House Announces New Executive Order To Reduce Greenhouse Gas Emissions...

  14. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    E-Print Network [OSTI]

    Kahrl, Fredrich James

    2011-01-01T23:59:59.000Z

    coal mining, petroleum extraction and refining, coking, andCoal Mining and Dressing Petroleum and Natural Gas Extraction Petroleum Processing, Coking andCoal Mining and Dressing Petroleum and Natural Gas Extraction Petroleum Processing, Coking and

  15. Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    w i t h the market shares o f other heating appliances, suchresidential heating equipments. Gas Fan Heaters The market

  16. Greenhouse Gas Return on Investment: A New Metric for Energy Technology

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01T23:59:59.000Z

    Gas INTRODUCTION Alternative energy technologies such asmotivations of alternative energy technologies: mitigatingaddresses the goal of alternative energy technology –

  17. Author's personal copy International Journal of Greenhouse Gas Control 7 (2012) 2029

    E-Print Network [OSTI]

    Johnson, Peter D.

    in geological formations (such as depleted oil and gas reservoirs, deep brine-filled permeable formations, coal for oil and gas exploration and production, gas permeable channels/faults in the caprocks (Annunziatellis et al., 2008), or geomechanical disruptions due to increased pressure in the reservoir, etc. (Gasda

  18. Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    i n g s , including Fluorocarbon Leakage: Study o f Thermalgreenhouse gas emissions o f fluorocarbon leakage associatedwarming Impact o f Fluorocarbons used i n Thermal Insulation

  19. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    E-Print Network [OSTI]

    Kahrl, Fredrich James

    2011-01-01T23:59:59.000Z

    renewables, including large hydropower, by 2020. In 2009,coal mining and hydropower), iron and steel, machinery, andoil, and natural gas. Hydropower, nuclear, and wind energy

  20. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    E-Print Network [OSTI]

    Kahrl, Fredrich James

    2011-01-01T23:59:59.000Z

    China Electricity Council. partial load in the evening whenof coal units run at partial load would make gas attractivemonth that is run at partial load, while other generators

  1. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01T23:59:59.000Z

    Gas Reductions under Low Carbon Fuel Standards? Americanto Implement the Low Carbon Fuel Standard, Volume I Sta?Paper Series Multi-objective fuel policies: Renewable fuel

  2. Overview of Avista GHG Modeling NPCC Greenhouse Gas and the Regional Power System Conference

    E-Print Network [OSTI]

    Natural Gas CO2 Emissions A Bridge to a Low Carbon Future, or the Future? 815 1,190 lbs/MWh Gas CCCT has 210 CCCT CT Colstrip 3/4 #12;6/5/2013 2 Avista CO2 Emissions Forecast Rising emissions overall 2030 2031 2032 2033 #12;6/5/2013 4 WECC CO2 Emissions Forecast CO2 Prices

  3. Development and application of the EPIC model for carbon cycle, greenhouse-gas mitigation, and biofuel studies

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Mcgill, William B.; Williams, J.R.

    2012-06-01T23:59:59.000Z

    This chapter provides a comprehensive review of the EPIC model in relation to carbon cycle, greenhouse-gas mitigation, and biofuel applications. From its original capabilities and purpose (i.e., quantify the impacts or erosion on soil productivity), the EPIC model has evolved into a comprehensive terrestrial ecosystem model for simulating with more or less process-level detail many ecosystem processes such as weather, hydrology, plant growth and development, carbon cycle (including erosion), nutrient cycling, greenhouse-gas emissions, and the most complete set of manipulations that can be implemented on a parcel of land (e.g. tillage, harvest, fertilization, irrigation, drainage, liming, burning, pesticide application). The chapter also provides details and examples of the latest efforts in model development such as the coupled carbon-nitrogen model, a microbial denitrification model with feedback to the carbon decomposition model, updates on calculation of ecosystem carbon balances, and carbon emissions from fossil fuels. The chapter has included examples of applications of the EPIC model in soil carbon sequestration, net ecosystem carbon balance, and biofuel studies. Finally, the chapter provides the reader with an update on upcoming improvements in EPIC such as the additions of modules for simulating biochar amendments, sorption of soluble C in subsoil horizons, nitrification including the release of N2O, and the formation and consumption of methane in soils. Completion of these model development activities will render an EPIC model with one of the most complete representation of biogeochemical processes and capable of simulating the dynamic feedback of soils to climate and management in terms not only of transient processes (e.g., soil water content, heterotrophic respiration, N2O emissions) but also of fundamental soil properties (e.g. soil depth, soil organic matter, soil bulk density, water limits).

  4. Uncertainty in Life Cycle Greenhouse Gas Emissions from United States Natural Gas and its Effects on Policy

    E-Print Network [OSTI]

    Jaramillo, Paulina

    presented in the Inventory (5). These activities include methane emissions due to well drilling, completion fuel by gas wells, fields and lease operations during the production of natural gas by state (2 to the production emissions that occurred once or a fixed number of times during the lifetime of a well were also

  5. Greenhouse Gas Concerns and Power Sector Planning (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    Concerns about potential climate change driven by rising atmospheric concentrations of Greenhouse Gases (GHG) have grown over the past two decades, both domestically and abroad. In the United States, potential policies to limit or reduce GHG emissions are in various stages of development at the state, regional, and federal levels. In addition to ongoing uncertainty with respect to future growth in energy demand and the costs of fuel, labor, and new plant construction, U.S. electric power companies must consider the effects of potential policy changes to limit or reduce GHG emissions that would significantly alter their planning and operating decisions. The possibility of such changes may already be affecting planning decisions for new generating capacity.

  6. Pilot application of PalmGHG, the RSPO greenhouse gas calculator for oil palm products , Chase L.D.C.b

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and consumption of sustainable palm oil through a voluntary certification scheme. This certification scheme1 Pilot application of PalmGHG, the RSPO greenhouse gas calculator for oil palm products Bessou C, France b Independent Consultant in Tropical Agriculture, High Trees, Martineau Drive, Dorking, Surrey RH4

  7. Executive Summary of the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 19902009 1 n emissions inventory that identifies and quantifies a country's primary anthropogenic1

    E-Print Network [OSTI]

    Little, John B.

    Executive Summary of the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990­2009 1 n emissions inventory that identifies and quantifies a country's primary anthropogenic1 In 1992, the United climate change. This inventory adheres to both (1) a comprehensive and detailed set of methodologies

  8. Combined heat and power has the potential to significantly increase energy production efficiency and thus reduce greenhouse gas emissions, however current market penetration

    E-Print Network [OSTI]

    Kammen, Daniel M.

    1 Combined heat and power has the potential to significantly increase energy production efficiency and thus reduce greenhouse gas emissions, however current market penetration analyses suggest that California will not reach the targets for combined heat and power set for it by the Air Resources Board (ARB

  9. Airborne greenhouse gas (GHG) measurements provide essential constraints for estimating surface emissions. Until recently, dedicated research-grade instruments have been required

    E-Print Network [OSTI]

    GHG columns · Quantifying local to regional GHG enhancements for emissions inventory verificationAbstract Airborne greenhouse gas (GHG) measurements provide essential constraints for estimating with another Cessna 210 over Central California quantified enhancements in CO2 and CH4 from urban

  10. Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020

    E-Print Network [OSTI]

    Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

    2007-01-01T23:59:59.000Z

    for out-of-state coal generation, then clearly the GHGElectricity Generation (TWh/a) Natural Gas Coal Natural Gascoal becomes the marginal fuel. Note that the marginal generation

  11. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies

    E-Print Network [OSTI]

    McCollum, David L; Gould, Gregory; Greene, David L

    2010-01-01T23:59:59.000Z

    natural gas for heavy fuel oil (i.e. , residual fuel oil).fuel oil (also called heavy fuel oil (HFO)) can be replacedaboard ships (e.g. , heavy fuel oil and residual fuel oil)

  12. A methodology for assessing MIT's energy used and greenhouse gas emissions

    E-Print Network [OSTI]

    Groode, Tiffany Amber, 1979-

    2004-01-01T23:59:59.000Z

    (cont.) actions can be made to decrease losses and therefore increase plant efficiencies. As production efficiencies are maximized, fuel use and thus emissions are minimized. From fiscal year 1998 to 2003, the gas turbine ...

  13. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies

    E-Print Network [OSTI]

    McCollum, David L; Gould, Gregory; Greene, David L

    2010-01-01T23:59:59.000Z

    Liquefied natural gas (LNG), Wind power (sails) Aviationand Policies the use of LNG will result in a small 2 percentbe a much greater potential to use LNG aboard most ships if

  14. Greenhouse Gas Emissions from U.S. Hydropower Reservoirs: FY2011 Annual Progress Report

    SciTech Connect (OSTI)

    Stewart, Arthur J [ORNL; Mosher, Jennifer J [ORNL; Mulholland, Patrick J [ORNL; Fortner, Allison M [ORNL; Phillips, Jana Randolph [ORNL; Bevelhimer, Mark S [ORNL

    2012-05-01T23:59:59.000Z

    The primary objective of this study is to quantify the net emissions of key greenhouse gases (GHG) - notably, CO{sub 2} and CH{sub 4} - from hydropower reservoirs in moist temperate areas within the U.S. The rationale for this objective is straightforward: if net emissions of GHG can be determined, it would be possible to directly compare hydropower to other power-producing methods on a carbon-emissions basis. Studies of GHG emissions from hydropower reservoirs elsewhere suggest that net emissions can be moderately high in tropical areas. In such areas, warm temperatures and relatively high supply rates of labile organic matter can encourage high rates of decomposition, which (depending upon local conditions) can result in elevated releases of CO{sub 2} and CH{sub 4}. CO{sub 2} and CH{sub 4} emissions also tend to be higher for younger reservoirs than for older reservoirs, because vegetation and labile soil organic matter that is inundated when a reservoir is created can continue to decompose for several years (Galy-Lacaux et al. 1997, Barros et al. 2011). Water bodies located in climatically cooler areas, such as in boreal forests, could be expected to have lower net emissions of CO{sub 2} and CH{sub 4} because their organic carbon supplies tend to be relatively recalcitrant to microbial action and because cooler water temperatures are less conducive to decomposition.

  15. The impact of municipal solid waste treatment methods on greenhouse gas emissions in Lahore, Pakistan

    SciTech Connect (OSTI)

    Batool, Syeda Adila [Department of Space Science, Punjab University, Lahore 54600 (Pakistan)], E-mail: aadila_batool@yahoo.com; Chuadhry, Muhammad Nawaz [College of Earth and Environmental Sciences, University of the Punjab, Lahore (Pakistan)], E-mail: muhammadnawazchaudhry@yahoo.com

    2009-01-15T23:59:59.000Z

    The contribution of existing municipal solid waste management to emission of greenhouse gases and the alternative scenarios to reduce emissions were analyzed for Data Ganj Bukhsh Town (DGBT) in Lahore, Pakistan using the life cycle assessment methodology. DGBT has a population of 1,624,169 people living in 232,024 dwellings. Total waste generated is 500,000 tons per year with an average per capita rate of 0.84 kg per day. Alternative scenarios were developed and evaluated according to the environmental, economic, and social atmosphere of the study area. Solid waste management options considered include the collection and transportation of waste, collection of recyclables with single and mixed material bank container systems (SMBCS, MMBCS), material recovery facilities (MRF), composting, biogasification and landfilling. A life cycle inventory (LCI) of the six scenarios along with the baseline scenario was completed; this helped to quantify the CO{sub 2} equivalents, emitted and avoided, for energy consumption, production, fuel consumption, and methane (CH{sub 4}) emissions. LCI results showed that the contribution of the baseline scenario to the global warming potential as CO{sub 2} equivalents was a maximum of 838,116 tons. The sixth scenario had a maximum reduction of GHG emissions in terms of CO{sub 2} equivalents of -33,773 tons, but the most workable scenario for the current situation in the study area is scenario 5. It saves 25% in CO{sub 2} equivalents compared to the baseline scenario.

  16. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect (OSTI)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

    2012-07-06T23:59:59.000Z

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  17. International Journal of Greenhouse Gas Control 27 (2014) 279288 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Jaramillo, Paulina

    2014-01-01T23:59:59.000Z

    benefits of flexible CCS range from 0 to 35%. Most of the potential benefit is capital savings from.elsevier.com/locate/ijggc Profitability of CCS with flue gas bypass and solvent storage David Luke Oatesa, , Peter Versteega , Eric Accepted 3 June 2014 Keywords: Carbon capture and storage Carbon capture and sequestration Flexible CCS

  18. Response to Comment on "Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power"

    E-Print Network [OSTI]

    the common misconception that the electric energy produced by different electricity sources is interchangeable. For near-term mitigation of climate change and air pollution, fossil fuel sources of base load power such as coal and natural gas (i.e., those that can provide essentially continuous power) are most

  19. Carbon brainprint – An estimate of the intellectual contribution of research institutions to reducing greenhouse gas emissions

    E-Print Network [OSTI]

    Chatterton, Julia; Parsons, David; Nicholls, John; Longhurst, Phil; Bernon, Mike; Palmer, Andrew; Brennan, Feargal; Kolios, Athanasios; Wilson, Ian; Ishiyama, Edward; Clements-Croome, Derek; Elmualim, Abbas; Darby, Howard; Yearley, Thomas; Davies, Gareth

    2015-05-07T23:59:59.000Z

    turbine blades to improve engine efficiency Cranfield Improved delivery vehicle logistics to save fuel Cranfield Training for landfill gas inspectors to improve methane capture Cranfield Novel offshore vertical axis wind turbines compared... , this was 196 excluded from the assessment. 197 3.2 Novel offshore vertical axis wind turbines 198 Researchers within the School of Engineering at Cranfield University were part of a 199 consortium to develop further the concept of Novel Offshore Vertical...

  20. U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSSCoal ProductionLiquefied Natural GasDepartment

  1. Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2008-01-01T23:59:59.000Z

    of U.S. Croplands for Biofuels Increases Greenhouse GasesGHG Emissions from Biofuels . in STEPS Research Symposium .NRDC, Growing Energy: How Biofuels Can Help End America's

  2. Impact of the renewable oxygenate standard for reformulated gasoline on ethanol demand, energy use, and greenhouse gas emissions

    SciTech Connect (OSTI)

    Stork, K.C.; Singh, M.K.

    1995-04-01T23:59:59.000Z

    To assure a place for renewable oxygenates in the national reformulated gasoline (RFG) program, the US Environmental Protection Agency has promulgated the renewable oxygenate standard (ROS) for RFG. It is assumed that ethanol derived from corn will be the only broadly available renewable oxygenate during Phase I of the RFG program. This report analyzes the impact that the ROS could have on the supply of ethanol, its transported volume, and its displacement from existing markets. It also considers the energy and crude oil consumption and greenhouse gas (GHG) emissions that could result from the production and use of various RFGs that could meet the ROS requirements. The report concludes that on the basis of current and projected near-term ethanol capacity, if ethanol is the only available renewable oxygenate used to meet the requirements of the ROS, diversion of ethanol from existing use as a fuel is likely to be necessary. Year-round use of ethanol and ETBE would eliminate the need for diversion by reducing winter demand for ethanol. On an RFG-program-wide basis, using ethanol and ETBE to satisfy the ROS can be expected to slightly reduce fossil energy use, increase crude oil use, and have essentially no effect on GHG emissions or total energy use relative to using RFG oxygenated only with MTBE.

  3. Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-01T23:59:59.000Z

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  4. Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: A case study of Tianjin, China

    SciTech Connect (OSTI)

    Zhao Wei, E-mail: zhaowei.tju@gmail.com [College of Civil Engineering and Architecture, Liaoning University of Technology, 121000 Jinzhou (China); Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands); Huppes, Gjalt, E-mail: huppes@cml.leidenuniv.nl [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands); Voet, Ester van der, E-mail: Voet@cml.leidenuniv.nl [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands)

    2011-06-15T23:59:59.000Z

    The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further.

  5. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Burkhardt, J. J.; Heath, G.; Cohen, E.

    2012-04-01T23:59:59.000Z

    In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

  6. Using ArcGIS to extrapolate greenhouse gas emissions on the Pengxi River, a tributary of the Three Gorges Reservoir in China

    E-Print Network [OSTI]

    Yasarer, Lindsey

    2014-11-19T23:59:59.000Z

    Using ArcGIS to extrapolate greenhouse gas emissions on the Pengxi River, a tributary of the Three Gorges Reservoir in China Lindsey MW Yasarer, PhD Candidate, University of Kansas Dr. Zhe Li, Associate Professor, Chongqing University Dr...D Student, Chongqing University • Zhengyu Zhang and Xiao Yao, Masters Students, Chongqing University • CSTEC: China Science and Technology Exchange Center • NSF EAPSI Program The research was funded by the National Natural Science Foundation of China...

  7. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils

    SciTech Connect (OSTI)

    Rigby, H.; Smith, S.R., E-mail: s.r.smith@imperial.ac.uk

    2013-12-15T23:59:59.000Z

    Highlights: • Nitrogen release in digestate-amended soil depends on the digestate type. • Overall N release is modulated by digestate mineral and mineralisable N contents. • Microbial immobilisation does not influence overall release of digestate N in soil. • Digestate physical properties and soil type interact to affect overall N recovery. • High labile C inputs in digestate may promote denitrification in fine-textured soil. - Abstract: Recycling biowaste digestates on agricultural land diverts biodegradable waste from landfill disposal and represents a sustainable source of nutrients and organic matter (OM) to improve soil for crop production. However, the dynamics of nitrogen (N) release from these organic N sources must be determined to optimise their fertiliser value and management. This laboratory incubation experiment examined the effects of digestate type (aerobic and anaerobic), waste type (industrial, agricultural and municipal solid waste or sewage sludge) and soil type (sandy loam, sandy silt loam and silty clay) on N availability in digestate-amended soils and also quantified the extent and significance of the immobilisation of N within the soil microbial biomass, as a possible regulatory mechanism of N release. The digestate types examined included: dewatered, anaerobically digested biosolids (DMAD); dewatered, anaerobic mesophilic digestate from the organic fraction of municipal solid waste (DMADMSW); liquid, anaerobic co-digestate of food and animal slurry (LcoMAD) and liquid, thermophilic aerobic digestate of food waste (LTAD). Ammonium chloride (NH{sub 4}Cl) was included as a reference treatment for mineral N. After 48 days, the final, maximum net recoveries of mineral N relative to the total N (TN) addition in the different digestates and unamended control treatments were in the decreasing order: LcoMAD, 68%; LTAD, 37%, DMAD, 20%; and DMADMSW, 11%. A transient increase in microbial biomass N (MBN) was observed with LTAD application, indicating greater microbial activity in amended soil and reflecting the lower stability of this OM source, compared to the other, anaerobic digestate types, which showed no consistent effects on MBN compared to the control. Thus, the overall net release of digestate N in different soil types was not regulated by N transfer into the soil microbial biomass, but was determined primarily by digestate properties and the capacity of the soil type to process and turnover digestate N. In contrast to the sandy soil types, where nitrate (NO{sub 3}{sup -}) concentrations increased during incubation, there was an absence of NO{sub 3}{sup -} accumulation in the silty clay soil amended with LTAD and DMADMSW. This provided indirect evidence for denitrification activity and the gaseous loss of N, and the associated increased risk of greenhouse gas emissions under certain conditions of labile C supply and/or digestate physical structure in fine-textured soil types. The significance and influence of the interaction between soil type and digestate stability and physical properties on denitrification processes in digestate-amended soils require urgent investigation to ensure management practices are appropriate to minimise greenhouse gas emissions from land applied biowastes.

  8. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21T23:59:59.000Z

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  9. Kalman-filtered compressive sensing for high resolution estimation of anthropogenic greenhouse gas emissions from sparse measurements.

    SciTech Connect (OSTI)

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet [Carnegie Institution for Science, Stanford, CA; Michalak, Anna M. [Carnegie Institution for Science, Stanford, CA; van Bloemen Waanders, Bart Gustaaf [Sandia National Laboratories, Albuquerque NM; McKenna, Sean Andrew [IBM Research, Mulhuddart, Dublin, Ireland

    2013-09-01T23:59:59.000Z

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. The limited nature of the measured data leads to a severely-underdetermined estimation problem. If the estimation is performed at fine spatial resolutions, it can also be computationally expensive. In order to enable such estimations, advances are needed in the spatial representation of ffCO2 emissions, scalable inversion algorithms and the identification of observables to measure. To that end, we investigate parsimonious spatial parameterizations of ffCO2 emissions which can be used in atmospheric inversions. We devise and test three random field models, based on wavelets, Gaussian kernels and covariance structures derived from easily-observed proxies of human activity. In doing so, we constructed a novel inversion algorithm, based on compressive sensing and sparse reconstruction, to perform the estimation. We also address scalable ensemble Kalman filters as an inversion mechanism and quantify the impact of Gaussian assumptions inherent in them. We find that the assumption does not impact the estimates of mean ffCO2 source strengths appreciably, but a comparison with Markov chain Monte Carlo estimates show significant differences in the variance of the source strengths. Finally, we study if the very different spatial natures of biogenic and ffCO2 emissions can be used to estimate them, in a disaggregated fashion, solely from CO2 concentration measurements, without extra information from products of incomplete combustion e.g., CO. We find that this is possible during the winter months, though the errors can be as large as 50%.

  10. E85, Flex-Fuel Vehicles, and AB 1493 Integrating biofuels into California's vehicular greenhouse gas regulations

    E-Print Network [OSTI]

    Kammen, Daniel M.

    E85, Flex-Fuel Vehicles, and AB 1493 Integrating biofuels into California's vehicular greenhouse.................................................................................................. 5 1.1.3 CALIFORNIA CLEAN FUELS PROGRAM ....................................... 6 1.1.5 AB 1007: THE ALTERNATIVE FUELS PLAN

  11. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-07-31T23:59:59.000Z

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

  12. Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2008-01-01T23:59:59.000Z

    Hydrogen (Natural Gas, pipeline) Hydrogen (Natural Gas,liquid H2 truck) Hydrogen (Coal, pipeline) Electricity (production? Hydrogen Production Mix Natural Gas, pipeline,

  13. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles trav

  14. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31T23:59:59.000Z

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

  15. Greenhouse gas (GHG) mitigation and monitoring technology performance: Activities of the GHG Technology Verification Center. Report for January 1998--January 1999

    SciTech Connect (OSTI)

    Masemore, S.; Kirchgessner, D.A.

    1999-05-01T23:59:59.000Z

    The paper discusses greenhouse gas (GHG) mitigation and monitoring technology performance activities of the GHG Technology Verification Center. The Center is a public/private partnership between Southern Research Institute and the US EPA`s Office of Research and Development. The Center is part of EPA`s Environmental Technology Verification (ETV) Program, which has established 12 verification centers to evaluate a wide range of technologies in various environmental media and technology areas. The Center has published the results of its first verification: use of a phosphoric acid fuel cell to produce electricity from landfill gas. It has also initiated three new field verifications, two on technologies that reduce methane emissions from natural gas transmissions compressors, and one on a new microturbine electricity production technology.

  16. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the US pulp and paper industry

    SciTech Connect (OSTI)

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01T23:59:59.000Z

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the US (US EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the US This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the cost-effective energy savings potential in case B increases to 22%.

  17. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry

    SciTech Connect (OSTI)

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01T23:59:59.000Z

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the U.S. (U.S. EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the U.S. This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the cost-effective energy savings potential in case B increases to 22%.

  18. Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2008-01-01T23:59:59.000Z

    natural gas reformation with pipeline distribution (64%),gas reformation (71%), centralized biomass gasification with pipeline distribution (pipeline distribution (65%), and onsite electrolysis (67%); and electricity generation from: biomass (40%), coal (45%) and natural gas

  19. Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities

    E-Print Network [OSTI]

    Hagan, Colin R.

    2012-01-01T23:59:59.000Z

    gas emissions from conven- tional power sources like coal.total emissions from coal- or natural gas-fired power plantsemissions, the lifecycle for natural gas power production is more complicated than that of coal.

  20. Greenhouse gas performance standards: From each according to his emission intensity or from each according to his emissions?

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2013-01-01T23:59:59.000Z

    status. Sector Conv. Oil and Gas Oilsand Coal Electricitypointing out that for oil and gas sector and oilsand sector,that for Conventional oil and gas, Oilsands, Fertilizers and

  1. The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse Gas

    E-Print Network [OSTI]

    Victoria, University of

    and wind power in three Canadian jurisdictions, namely British Columbia, Ontario and Alberta. An Optimal baseload mixtures. The large premium paid for displacing hydro or nuclear power with wind power does littleThe Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse

  2. Energy and Greenhouse Impacts of Biofuels: A Framework for Analysis

    E-Print Network [OSTI]

    Kammen, Daniel M.; Farrell, Alexander E.; Plevin, Richard J.; Jones, Andrew D.; Nemet, Gregory F.; Delucchi, Mark A.

    2008-01-01T23:59:59.000Z

    Greenhouse Gas Impacts of Biofuels Wang, M. (2001) "Energy & Greenhouse Gas Impacts of Biofuels Fuels and MotorLifecycle Analysis of Biofuels." Report UCD-ITS-RR-06-08.

  3. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    panels, solar thermal equipment, and storage systems. Consequently, natural gas purchases for heating

  4. International Journal of Greenhouse Gas Control 12 (2013) 124135 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Long, Bernard

    ), and depleted oil or gas reservoirs (Holloway, 1997; Wildenborg and Lokhorst, 2005) where physicochemical

  5. anesthesia gas-guided protocol: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    extensions, while the more complex of these protocols are expensive to implement on SCADA host systems, and are difficult (if not impossible) to implement on older and slower...

  6. Greenhouse gas reduction by recovery and utilization of landfill methane and CO{sub 2} technical and market feasibility study, Boului Landfill, Bucharest, Romania. Final report, September 30, 1997--September 19, 1998

    SciTech Connect (OSTI)

    Cook, W.J.; Brown, W.R.; Siwajek, L. [Acrion Technologies, Inc., Cleveland, OH (United States); Sanders, W.I. [Power Management Corp., Bellevue, WA (United States); Botgros, I. [Petrodesign, SA, Bucharest (Romania)

    1998-09-01T23:59:59.000Z

    The project is a landfill gas to energy project rated at about 4 megawatts (electric) at startup, increasing to 8 megawatts over time. The project site is Boului Landfill, near Bucharest, Romania. The project improves regional air quality, reduces emission of greenhouse gases, controls and utilizes landfill methane, and supplies electric power to the local grid. The technical and economic feasibility of pre-treating Boului landfill gas with Acrion`s new landfill gas cleanup technology prior to combustion for power production us attractive. Acrion`s gas treatment provides several benefits to the currently structured electric generation project: (1) increase energy density of landfill gas from about 500 Btu/ft{sup 3} to about 750 Btu/ft{sup 3}; (2) remove contaminants from landfill gas to prolong engine life and reduce maintenance;; (3) recover carbon dioxide from landfill gas for Romanian markets; and (4) reduce emission of greenhouse gases methane and carbon dioxide. Greenhouse gas emissions reduction attributable to successful implementation of the landfill gas to electric project, with commercial liquid CO{sub 2} recovery, is estimated to be 53 million metric tons of CO{sub 2} equivalent of its 15 year life.

  7. What are the likely roles of fossil fuels in the next 15, 50, and 100 years, with or without active controls on greenhouse gas emissions

    SciTech Connect (OSTI)

    Kane, R.L. (USDOE Assistant Secretary for Fossil Energy, Washington, DC (USA)); South, D.W. (Argonne National Lab., IL (USA))

    1990-01-01T23:59:59.000Z

    Since the industrial revolution, the production and utilization of fossil fuels have been an engine driving economic and industrial development in many countries worldwide. However, future reliance on fossil fuels has been questioned due to emerging concerns about greenhouse gas (GHG) emissions, particularly carbon dioxide (CO{sub 2}), and its potential contribution to global climate change (GCC). While substantial uncertainties exist regarding the ability to accurately predict climate change and the role of various greenhouse gases, some scientists and policymakers have called for immediate action. As a result, there have been many proposals and worldwide initiatives to address the perceived problem. In many of these proposals, the premise is that CO{sub 2} emissions constitute the principal problem, and, correspondingly, that fossil-fuel combustion must be curtailed to resolve this problem. This paper demonstrates that the worldwide fossil fuel resource base and infrastructure are extensive and thus, will continue to be relied on in developed and developing countries. Furthermore, in the electric generating sector (the focus of this paper), numerous clean coal technologies (CCTs) are currently being demonstrated (or are under development) that have higher conversion efficiencies, and thus lower CO{sub 2} emission rates than conventional coal-based technologies. As these technologies are deployed in new power plant or repowering applications to meet electrical load growth, CO{sub 2} (and other GHG) emission levels per unit of electricity generated will be lower than that produced by conventional fossil-fuel technologies. 37 refs., 14 figs., 11 tabs.

  8. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass.

    SciTech Connect (OSTI)

    Xie, X.; Wang, M.; Han, J. (Energy Systems)

    2011-04-01T23:59:59.000Z

    This study expands and uses the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model to assess the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal cofeeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD). To demonstrate the influence of the coproduct credit methods on FTD life-cycle analysis (LCA) results, two allocation methods based on the energy value and the market revenue of different products and a hybrid method are employed. With the energy-based allocation method, fossil energy use of FTD is less than that of petroleum diesel, and GHG emissions of FTD could be close to zero or even less than zero with CCS when forest residue accounts for 55% or more of the total dry mass input to FTD plants. Without CCS, GHG emissions are reduced to a level equivalent to that from petroleum diesel plants when forest residue accounts for 61% of the total dry mass input. Moreover, we show that coproduct method selection is crucial for LCA results of FTD when a large amount of coproducts is produced.

  9. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry

    E-Print Network [OSTI]

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-01-01T23:59:59.000Z

    Atlas, 1996b (? ). “Black Liquor gasification –IntroductionBerglin, N. July, 1998. Black Liquor Gasifier/Gas TurbinePreliminary Economics of Black Liquor Gasification Combined

  10. Energy Efficiency and Renewable Energy Research, Development, and Deployment in Meeting Greenhouse Gas Mitigation Goals: The Case of the Lieberman-Warner Climate Security Act of 2007 (S.2191)

    SciTech Connect (OSTI)

    Showalter, S.; Wood, F.; Vimmerstedt, L.

    2010-06-01T23:59:59.000Z

    The U.S. federal government is considering actions to reduce greenhouse gas emissions. Renewable energy and energy efficiency technologies could help reduce greenhouse gas emissions, so the cost of these technologies could significantly influence the overall cost of meeting greenhouse gas limits. This paper examines the potential benefit of reduced technology cost by analyzing the case of the Lieberman-Warner Climate Security Act of 2007 (S.2191). This act had a goal of reducing national carbon emissions in 2050 to levels 72 percent below 2006 emission levels. In April 2008, the U.S. Department of Energy, Energy Information Administration (EIA) published an analysis of the effects of S.2191 on the U.S. energy sector. This report presents a similar analysis: both analyses examined the impacts of S.2191, and both used versions of the National Energy Modeling System. The analysis reported here used modified technology assumptions to reflect U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) program goals. The results show that achieving EERE program goals could reduce the cost of meeting greenhouse gas limits, reduce the cost of renewable electricity generation and biofuels, and reduce energy intensity.

  11. Quantification of greenhouse gas emissions from waste management processes for municipalities - A comparative review focusing on Africa

    SciTech Connect (OSTI)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

    2011-07-15T23:59:59.000Z

    The amount of greenhouse gases (GHG) emitted due to waste management in the cities of developing countries is predicted to rise considerably in the near future; however, these countries have a series of problems in accounting and reporting these gases. Some of these problems are related to the status quo of waste management in the developing world and some to the lack of a coherent framework for accounting and reporting of greenhouse gases from waste at municipal level. This review summarizes and compares GHG emissions from individual waste management processes which make up a municipal waste management system, with an emphasis on developing countries and, in particular, Africa. It should be seen as a first step towards developing a more holistic GHG accounting model for municipalities. The comparison between these emissions from developed and developing countries at process level, reveals that there is agreement on the magnitude of the emissions expected from each process (generation of waste, collection and transport, disposal and recycling). The highest GHG savings are achieved through recycling, and these savings would be even higher in developing countries which rely on coal for energy production (e.g. South Africa, India and China) and where non-motorized collection and transport is used. The highest emissions are due to the methane released by dumpsites and landfills, and these emissions are predicted to increase significantly, unless more of the methane is captured and either flared or used for energy generation. The clean development mechanism (CDM) projects implemented in the developing world have made some progress in this field; however, African countries lag behind.

  12. Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities

    E-Print Network [OSTI]

    Hagan, Colin R.

    2012-01-01T23:59:59.000Z

    associated with coal generation occur at the smokestack. Theassociated with coal-fired electricity generation by up toCoal, Domestic Natural Gas, LNG, and SNG for Electricity Generation,

  13. A comparison of ground source heat pumps and micro-combined heat and power as residential greenhouse gas reduction strategies

    E-Print Network [OSTI]

    Guyer, Brittany (Brittany Leigh)

    2009-01-01T23:59:59.000Z

    Both ground source heat pumps operating on electricity and micro-combined heat and power systems operating on fossil fuels offer potential for the reduction of green house gas emissions in comparison to the conventional ...

  14. International Journal of Greenhouse Gas Control 9 (2012) 1023 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    strata other than depleted hydrocarbon reservoirs (e.g. in saline aquifers), relatively little indefinitely in the pore space of the rock. Potential storage sites include saline brine reservoirs, depleted oil and gas reservoirs, and coal seams. The technology

  15. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors

    SciTech Connect (OSTI)

    Townsend, Aaron K., E-mail: aarontownsend@utexas.edu [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States); Webber, Michael E. [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States)

    2012-07-15T23:59:59.000Z

    This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

  16. acid gas emissions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gas ((GHG) (CO2, NH4, HFCs 26 INTRODUCTION Greenhouse Gas Emissions in an Urban Environment Environmental Sciences and Ecology Websites Summary: INTRODUCTION Greenhouse Gas...

  17. Greenhouse gases and agriculture. Book chapter

    SciTech Connect (OSTI)

    Jackson, R.B.

    1993-01-01T23:59:59.000Z

    Agriculture ranks third in its contribution to Earth's anthropogenically enhanced greenhouse effect. (Energy use and production and chlorofluorocarbons are ranked first and second, respectively.) Specifically, greenhouse gas sources and sinks are increased, and sinks are decreased, by conversion of land to agricultural use, using fertilizers, cultivating paddy rice, producing other plant and animal crops, and by creating and managing animal and plant wastes. However, some of these same activities increase greenhouse gas sinks and decrease greenhouse gas sources so the net effects are not obvious. The paper identifies the agricultural inputs, outputs, and wastes that alter atmospheric concentrations of carbon dioxide, methane, and nitrous oxides, and discusses agriculture's net impact on greenhouse gas fluxes.

  18. Carbon emissions and sequestration in forests: Case studies from seven developing countries. Volume 2, Greenhouse gas emissions from deforestration in the Brazilian Amazon

    SciTech Connect (OSTI)

    Makundi, W.; Sathaye, J. [eds.] [Lawrence Berkeley Lab., CA (United States); Fearnside, P.M. [Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM (Brazil). Departmento de Ecologia

    1992-08-01T23:59:59.000Z

    Deforestation in Brazilian Amazonia in 1990 was releasing approximately 281--282 X 10{sup 6} metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as ``committed carbon,`` or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous years will be equal to the future releases from the areas being cleared now. Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NO{sub x} and non-methane hydrocarbons released raises the impact by 22--37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of C0{sub 2}-equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7--8 times the 50 million MT annual carbon release from Brazil`s use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.

  19. International Journal of Greenhouse Gas Control 16 (2013) 129144 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Jaramillo, Paulina

    a coal-fed Integrated Gasification Combined Cycle (IGCC) plant. Net emissions were further reduced to 0 Gas Combined Cycle (NGCC) plant, and 0.39 ± 0.03 t/bbl (63.3 ± 4.4 g/MJ) when using livestock manure

  20. Where do California's greenhouse gases come from?

    ScienceCinema (OSTI)

    Fischer, Marc

    2013-05-29T23:59:59.000Z

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  1. Fact #589: September 21, 2009 Proposed Fuel Economy and Greenhouse...

    Broader source: Energy.gov (indexed) [DOE]

    national standards for greenhouse gas (GHG) emissions and Corporate Average Fuel Economy (CAFE). The standards would apply to model year 2012 - 2016 passenger cars and light...

  2. CEQ Issues Revised Draft Guidance on Consideration of Greenhouse...

    Broader source: Energy.gov (indexed) [DOE]

    revised draft guidance on consideration of greenhouse gas (GHG) emissions and the effects of climate change in National Environmental Policy Act (NEPA) reviews on December 18,...

  3. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    SciTech Connect (OSTI)

    Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

    2011-05-25T23:59:59.000Z

    Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling energy in India. Meteorological simulations in this study indicated that a reduction of 2C in air temperature in the Hyderabad area would be likely if a combination of increased surface albedo and vegetative cover are used as urban heat-island control strategies. In addition, air-temperature reductions on the order of 2.5-3.5C could be achieved if moderate and aggressive heat-island mitigation measures are adopted, respectively. A large-scale deployment of mitigation measures can bring additional indirect benefit to the urban area. For example, cooling outside air can improve the efficiency of cooling systems, reduce smog and greenhouse gas (GHG) emissions, and indirectly reduce pollution from power plants - all improving environmental health quality. This study has demonstrated the effectiveness of cool-roof technology as one of the urban heat-island control strategies for the Indian industrial and scientific communities and has provided an estimate of the national energy savings potential of cool roofs in India. These outcomes can be used for developing cool-roof building standards and related policies in India. Additional field studies, built upon the successes and lessons learned from this project, may be helpful to further confirm the scale of potential energy savings from the application of cooler roofs in various regions of India. In the future, a more rigorous meteorological simulation using urbanized (meso-urban) meteorological models should be conducted, which may produce a more accurate estimate of the air-temperature reductions for the entire urban area.

  4. Opportunities for market-based programs worldwide that reduce greenhouse gas emissions: Initial Observations from Missions to the Philippines, South Africa, and Mexico

    SciTech Connect (OSTI)

    Stanton-Hoyle, D.R.

    1998-07-01T23:59:59.000Z

    Globally, governments and industries are implementing innovative voluntary programs to reduce greenhouse gas emissions. Often these programs encourage groups to use cost effective technologies that capture market-based forces. These programs are successful because they capitalize on existing opportunities where both the environment and the participants can benefit (i.e., win-win opportunities). This paper documents efforts to investigate these kinds of win-win opportunities in three developing countries: the Philippines, South Africa, and Mexico. Initial observations are provided as fresh information from the field, drawing on six missions during the last nine months. Utility costs, interest rates, and overall economic health appear to critically affect opportunities in each country. By contrast, details of heating, ventilating and air-conditioning (HVAC) design and local climate were often important differences between countries. These affect opportunities, for example, to achieve significant savings from cooling systems or not. Looking at the success of ESCOs was somewhat surprising. One might expect to see the most successful ESCO activity where utility costs are high and upgrade opportunities are plentiful (such as in the Philippines). This was not the case, however, as research in the Philippines did not reveal even one active ESCO contract yet. Design practices for new construction were in need of the same thing that helps US design teams do a better job of energy-efficient design, better communications between design team members. Finally, industrial firms were doing a variety of EE upgrades in each country, but this level of activity was relatively small compared to what should be cost effective.

  5. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    vehicles with hydrogen (and fuel cells) and electricity,vehicles and hydrogen powered fuel cell vehicles. Such

  6. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    thereby contributing to energy security. Most also reducesuch as improved energy security, many transport GHGincluding energy cost savings, oil security, and pollution

  7. EIA - Greenhouse Gas Emissions Overview

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual23.A1.

  8. EIA - Greenhouse Gas Emissions Overview

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual23.A1.1.

  9. EIA - Greenhouse Gas Emissions Overview

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual23.A1.1.A2.

  10. EIA - Greenhouse Gas Emissions Overview

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms

  11. EIA - Greenhouse Gas Emissions Overview

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOrigin State Glossary Home > Coal>‹

  12. Field Laboratory in the Osage Reservation -- Determination of the Status of Oil and Gas Operations: Task 1. Development of Survey Procedures and Protocols

    SciTech Connect (OSTI)

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27T23:59:59.000Z

    Procedures and protocols were developed for the determination of the status of oil, gas, and other mineral operations on the Osage Mineral Reservation Estate. The strategy for surveying Osage County, Oklahoma, was developed and then tested in the field. Two Osage Tribal Council members and two Native American college students (who are members of the Osage Tribe) were trained in the field as a test of the procedures and protocols developed in Task 1. Active and inactive surface mining operations, industrial sites, and hydrocarbon-producing fields were located on maps of the county, which was divided into four more or less equal areas for future investigation. Field testing of the procedures, protocols, and training was successful. No significant damage was found at petroleum production operations in a relatively new production operation and in a mature waterflood operation.

  13. Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.

    2008-11-18T23:59:59.000Z

    This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

  14. Chapter 22 Greenhouse Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    water vapor (the most abundant GHG) accounts for the largest percentage of the greenhouse effect. However, water vapor concentrations fluctuate regionally, and human activity...

  15. Voluntary reporting of greenhouse gases 1997

    SciTech Connect (OSTI)

    NONE

    1999-05-01T23:59:59.000Z

    The Voluntary Reporting of Greenhouse Gases Program, required by Section 1605(b) of the Energy Policy Act of 1992, records the results of voluntary measures to reduce, avoid, or sequester greenhouse gas emissions. In 1998, 156 US companies and other organizations reported to the Energy information Administration that, during 1997, they had achieved greenhouse gas emission reductions and carbon sequestration equivalent to 166 million tons of carbon dioxide, or about 2.5% of total US emissions for the year. For the 1,229 emission reduction projects reported, reductions usually were measured by comparing an estimate of actual emissions with an estimate of what emissions would have been had the project not been implemented.

  16. Statement from U.S. Energy Secretary Moniz on Mexico's Greenhouse...

    Broader source: Energy.gov (indexed) [DOE]

    Government of Mexico on new greenhouse gas emissions reduction targets. The commitment Mexico has made today sends a strong signal of Mexico's determination to do its share in...

  17. The Greenhouse Effect without Feedbacks

    E-Print Network [OSTI]

    The Greenhouse Effect without Feedbacks #12;Three Pillars Behind Climate Change! #12;1. Global. Greenhouse Gases have been on the increase. #12;3. The Greenhouse effect is a powerful theory that explains! natural greenhouse effect! · an empirical introduction #12;Moral of the story: The doubling of CO2 causes

  18. Natural Gas Infrastructure Implications of Increased Demand from...

    Energy Savers [EERE]

    natural gas prices, the combination of favorable economics and the lower conventional air pollution and greenhouse gas emissions associated with natural gas relative to other...

  19. Tapping Landfill Gas to Provide Significant Energy Savings and...

    Office of Environmental Management (EM)

    Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study, 2013 Tapping Landfill Gas to Provide Significant Energy Savings and...

  20. Detailed Modeling of Industrial Energy Use and Greenhouse Gas Emissions in an Integrated Assessment Model of Long-term Global Change

    E-Print Network [OSTI]

    Sinha, P.; Wise, M.; Smith, S.

    2006-01-01T23:59:59.000Z

    in the manufacturing sector, about 26% is electricity, 58% is natural gas, 10% is coal (excluding coal coke and breeze) and the remainder is from liquid fuels. 1 AdaptedfromTableE6.4. EndUsesofFuelConsumption,1998(URL: ftp://ftp.eia.doe.gov/pub/consumption/industry/d98...FuelConsumptionbyEnd-UseforallMECSIndustries,1998,trillionBTU Electricity Liquid Fuels Natural Gas Coal (excluding Coal Cokeand Breeze) Total BoilerFuel 29 308 2,538 770 3,645 ProcessHeating 363 185 3,187 331 4,066 ProcessCoolingand Refrigeration 209 2 22 233 MachineDrive 1,881 25 99 7 2...

  1. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUID BED BOILERS (Phase II--Evaluation of the Oxyfuel CFB Concept)

    SciTech Connect (OSTI)

    John L. Marion; Nsakala ya Nsakala

    2003-11-09T23:59:59.000Z

    The overall project goal is to determine if carbon dioxide can be captured and sequestered at a cost of about $10/ton of carbon avoided, using a newly constructed Circulating Fluidized Bed combustor while burning coal with a mixture of oxygen and recycled flue gas, instead of air. This project is structured in two Phases. Phase I was performed between September 28, 2001 and May 15, 2002. Results from Phase I were documented in a Topical Report issued on May 15, 2003 (Nsakala, et al., 2003), with the recommendation to evaluate, during Phase II, the Oxyfuel-fired CFB concept. DOE NETL accepted this recommendation, and, hence approved the project continuation into Phase II. Phase 2. The second phase of the project--which includes pilot-scale tests of an oxygen-fired circulating fluidized bed test facility with performance and economic analyses--is currently underway at ALSTOM's Power Plant Laboratories, located in Windsor, CT (US). The objective of the pilot-scale testing is to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in oxygen/carbon dioxide mixtures. Results will be used in the design of oxygen-fired CFB boilers--both retrofit and new Greenfield--as well as to provide a generic performance database for other researchers. At the conclusion of Phase 2, revised costs and performance will be estimated for both retrofit and new Greenfield design concepts with CO2 capture, purification, compression, and liquefaction.

  2. The Greenhouse Effect Temperature Equilibrium

    E-Print Network [OSTI]

    Walter, Frederick M.

    The Greenhouse Effect #12;Temperature Equilibrium The Earth is in equilibrium with the Sun temperature is about 14C, or 287K. The 40K difference is due to the greenhouse effect. Essentially all

  3. The Greenhouse Culture Oral History

    E-Print Network [OSTI]

    Scholz, Jared; Sipp, Kalah; Stratton, Emily

    2013-06-26T23:59:59.000Z

    Oral history interview with Jared Scholz and Kalah Sipp conducted by Emily Stratton in Lawrence, Kansas, on June 26, 2013. Jared Scholz is the founder and Senior Pastor of The Greenhouse Culture; Kalah Sipp is The Greenhouse ...

  4. Space Science : Atmosphere Greenhouse Effect

    E-Print Network [OSTI]

    Johnson, Robert E.

    Space Science : Atmosphere Greenhouse Effect Part-5a Solar + Earth Spectrum IR Absorbers Grey Atmosphere Greenhouse Effect #12;Radiation: Solar and Earth Surface B"(T) Planck Ideal Emission Integrate at the carbon cycle #12;However, #12;Greenhouse Effect is Complex #12;PLANETARY ENERGY BALANCE G+W fig 3-5

  5. 2, 289337, 2002 Greenhouse effect

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 2, 289­337, 2002 Greenhouse effect and climate stability V. G. Gorshkov and A. M. Makarieva water vapour concentration, dependence of the planetary greenhouse effect on atmospheric water content to dynamic singularities in the physical temperature-dependent behaviour of the greenhouse effect. We

  6. GLOBAL WARMING THE GREENHOUSE EFFECT

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    GLOBAL WARMING THE GREENHOUSE EFFECT AND YOUR FAMILY'S CONTRIBUTION TO IT Stephen E. Schwartz September 22, 2004 http://www.ecd.bnl.gov/steve/schwartz.html #12;#12;THE GREENHOUSE EFFECT #12;GLOBAL does anything about it. ­ Mark Twain­ Mark Twain Now with the greenhouse effect, we ARE doing something

  7. GLOBAL WARMING THE GREENHOUSE EFFECT

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    GLOBAL WARMING THE GREENHOUSE EFFECT AND YOUR FAMILY'S CONTRIBUTION TO IT Stephen E. Schwartz GREENHOUSE EFFECT #12;GLOBAL ENERGY BALANCE Global and annual average energy fluxes in watts per square meter about it.But nobody does anything about it. ­ Mark Twain­ Mark Twain Now with the greenhouse effect, we

  8. arterial gas embolism: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developmen energy conservation transportation carbon offs student facult;greenhouse gas inventory green development energy conservation transportation carbon offsets student...

  9. Impacts of the Kyoto protocol on U.S. energy markets and economic activity

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    The Intergovernmental Panel on Climate Change (IPCC) was established by the World Meteorological Organization and the United Nations Environment Program in 1988 to assess the available scientific, technical, and socioeconomic information in the field of climate change. The most recent report of the IPCC concluded that ``Our ability to quantify the human influence on global climate is currently limited because the expected signal is still emerging from the noise of natural variability, and because there are uncertainties in key factors. These include the magnitudes and patterns of long-term variability and the time-evolving pattern of forcing by, and response to, changes in concentrations of greenhouse gases and aerosols, and land surface changes. Nevertheless the balance of evidence suggests that there is a discernible human influence on global climate. The first and second Conference of the Parties in 1995 and 1996 agreed to address the issue of greenhouse gas emissions for the period beyond 2000, and to negotiate quantified emission limitations and reductions for the third Conference of the Parties. On December 1 through 11, 1997, representatives from more than 160 countries met in Kyoto, Japan, to negotiate binding limits on greenhouse gas emissions for developed nations. The resulting Kyoto Protocol established emissions targets for each of the participating developed countries--the Annex 1 countries--relative to their 1990 emissions levels. 114 refs., 138 figs., 33 tabs.

  10. Energy Efficency and Greenhouse Gas Connection

    U.S. Energy Information Administration (EIA) Indexed Site

    Efficiency and Carbon Emissions Efficiency and Carbon Emissions Energy use for various services has a number of impacts on the environment. Energy combustion by-products include...

  11. Greenhouse gas emissions in biogas production systems

    E-Print Network [OSTI]

    Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

    2009-01-01T23:59:59.000Z

    from soils amended with biogas waste compared to otherCrutzen et al. 2008). Biogas production from organicamounts of fermentation effluent (biogas waste) remain after

  12. RESEARCH ARTICLE A Greenhouse Gas Inventory

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    - servation competitions to energy efficiency projects to renewable-energy installations such as wind­2008. UIC conducted a commuter survey to obtain data regarding the commuting habits of its faculty, staff materials consumed ~e.g., food, water, paper!, energy to waste man- agement practices, and emissions

  13. Nuclear Power PROS -`No' greenhouse gas emissions

    E-Print Network [OSTI]

    Toohey, Darin W.

    /transporting U! Coal Power PROS -Cheep -Easy to attain (Russia and US) -Infrastructure and technology well known provides a clean base load electricity that produces waste just a size of a coke can as compared to a coal,000 tons of coal to produce same amount of electricity) -Natural abundance of U (48th among the most

  14. Greenhouse gas budgets of crop production current

    E-Print Network [OSTI]

    Levi, Ran

    production and distribution 16 2.7.2 Emissions associated with other agrochemicals 17 2.7.3 On-farm energy

  15. Greenhouse gas emissions in biogas production systems

    E-Print Network [OSTI]

    Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

    2009-01-01T23:59:59.000Z

    biogas waste) remain after fermentation which may serve as valuable nutrient source for agricultural

  16. Simon Fraser University 2007 Greenhouse Gas

    E-Print Network [OSTI]

    .9.1 Electricity Consumption (Scope 2)...................................... 16 2.9.2 Electricity Consumption) ............................................. 18 2.9.7 Diesel Consumption (Electricity Generation) (Scope 3).......... 18 2.9.8 Paper Consumption.8.4 Business Travel ............................................................... 15 2.8.5 Paper Consumption

  17. Sandia National Laboratories: greenhouse gas emission reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    emergency backup systems, and light-duty trucks, to name a few. Providing auxiliary power to ships in berth may be added to that list soon. Joe Pratt (Energy Systems...

  18. What does stabilizing greenhouse gas concentrations mean?

    E-Print Network [OSTI]

    Jacoby, Henry D.; Schmalensee, Richard.; Reiner, David M.

    The MIT Emissions Prediction and Policy Analysis (EPPA) model is applied to an exploration of the national emissions obligations that would be required to stabilize atmospheric CO2 concentrations at levels now under active ...

  19. Danish Greenhouse Gas Reduction Scenarios for 2020

    E-Print Network [OSTI]

    Environmental Protection Agency, Danish Energy Authority and Danish Ministry of Finance. The consultancy report.4 ECONOMIC GROWTH 51 2.5 GROWTH IN ENERGY SERVICES 52 2.6 FUEL PRICES 53 2.7 CO2-PRICE 54 2.8 TECHNOLOGY DATA, DEVELOPMENT & DEMONSTRATION 93 #12;4 6 REFERENCES 95 6.1 TRANSPORT TECHNOLOGIES 96 7 APPENDIX 97 TECHNOLOGY

  20. The contribution that reporting of greenhouse gas

    E-Print Network [OSTI]

    . November 2010 London: The Stationery Office ÂŁ14.75 #12;2 Department for Environment, Food and Rural Affairs copyright 2010 You may re-use this information (not including logos) free of charge in any format or medium on the Defra website: http://www.defra.gov.uk/environment/business/reporting/index.htm ISBN:9780102969283

  1. A Novel Paradigm in Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    of valuable organic compounds, including synthetic fuels by Fischer­Tropsch process. Thus, the technique effect, carbon dioxide, water vapor, Fischer­Tropsch synthe- sis, iron, magnetite, maghemite, fuel cells

  2. Greenhouse gas emissions in biogas production systems

    E-Print Network [OSTI]

    Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

    2009-01-01T23:59:59.000Z

    Cameron KC. Nitrous oxide emissions from two dairy pastureand land use on N 2 O emissions from an imperfectly drainedoptions for N 2 O emissions from differently managed

  3. EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual2 EIA372.

  4. EIA - Greenhouse Gas Emissions - Land use

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual2

  5. EIA - Greenhouse Gas Emissions - Methane Emissions

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual23. Methane

  6. EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual23.

  7. Greenhouse Gas Technology Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | Open Energy Information Impacts

  8. Climate VISION: Private Sector Initiatives: Oil and Gas: GHG...

    Office of Scientific and Technical Information (OSTI)

    Toward a Consistent Methodology for Estimating Greenhouse Gas Emissions from Oil and Natural Gas Industry Operations (PDF 378 KB) Download Acrobat Reader Addressing climate...

  9. Kolstad: EKC Dec 2005 Interpreting Estimated Environmental Kuznets Curves for Greenhouse Gases

    E-Print Network [OSTI]

    Kolstad, Charles

    Kolstad: EKC Dec 2005 Interpreting Estimated Environmental Kuznets Curves for Greenhouse Gases to interpret a relationship between income and carbon emissions in a country (the environmental Kuznets curve), it was primarily concerned with Environmental Kuznets Curves (EKC) for greenhouse gas emissions. The EKC literature

  10. Geothermal carbon dioxide for use in greenhouses

    SciTech Connect (OSTI)

    Dunstall, M.G. [Univ. of Auckland (New Zealand); Graeber, G. [Univ. of Stuttgart (Germany)

    1997-01-01T23:59:59.000Z

    Geothermal fluids often contain carbon dioxide, which is a very effective growth stimulant for plants in greenhouses. Studies have shown that as CO{sub 2} concentration is increased from a normal level of 300 ppm (mmol/kmol) to levels of approximately 1000 ppm crop yields may increase by up to 15% (Ullmann`s Encyclopedia of Industrial Chemistry, 1989). It is suggested that geothermal greenhouse heating offers a further opportunity for utilization of the carbon dioxide present in the fluid. The main difficulty is that plants react adversely to hydrogen sulphide which is invariably mixed, at some concentration, with the CO{sub 2} from geothermal fluids. Even very low H{sub 2}S concentrations of 0.03 mg/kg can have negative effects on the growth of plants (National Research Council, 1979). Therefore, an appropriate purification process for the CO{sub 2} must be used to avoid elevated H{sub 2}S levels in the greenhouses. The use of adsorption and absorption processes is proposed. Two purification processes have been modelled using the ASOEN PLUS software package, using the Geothermal Greenhouses Ltd. Operation Kawerau New Zealand and an example. A greenhouse area of 8,000 m{sup 2}, which would create a demand for approximately 20 kg CO{sub 2} per hour, was chosen based on a proposed expansion at Kawerau. The Kawerau operation currently takes geothermal steam (and gas) from a high temperature 2-phase well to heat an area of 1650 m{sup 2}. Bottled carbon dioxide is utilized at a rate of about 50 kg per day, to provide CO{sub 2} levels of 800 mg/kg when the greenhouse is closed and 300 to 350 mg/kg whilst venting. In England and the Netherlands, CO{sub 2} levels of 1000 mg/kg are often used (Ullmann`s Encyclopedia of Industrial Chemistry, 1989) and similar concentrations are desired at Kawerau, but current costs of 0.60 NZ$/kg for bottled CO{sub 2} are too high (Foster, 1995).

  11. Voluntary Reporting of Greenhouse Gases

    Reports and Publications (EIA)

    2011-01-01T23:59:59.000Z

    The Voluntary Reporting of Greenhouse Gases Program was suspended May 2011. It was a mechanism by which corporations, government agencies, individuals, voluntary organizations, etc., could report to the Energy Information Administration, any actions taken that have or are expected to reduce/avoid emissions of greenhouse gases or sequester carbon.

  12. UNFINISHED BUSINESS: The Economics of The Kyoto Protocol

    SciTech Connect (OSTI)

    JA Edmonds; CN MacCracken; RD Sands; SH Kim

    2000-07-06T23:59:59.000Z

    The Kyoto Protocol to the Framework Convention on Climate Change (FCCC) was completed on the morning of December 11, 1997, following over two years of negotiations. The product of these deliberations is a complex and incomplete document knitting together the diversity of interests and perspectives represented by the more than 150 delegations. Because the document is complex, its implications are not immediately obvious. If it enters into force, the Kyoto Protocol will have far-reaching implications for all nations--both nations with obligations under the Protocol and those without obligations. National energy systems, and the world's energy system, could be forever changed. In this paper the authors develop an assessment of the energy and economic implications of achieving the goals of the Kyoto Protocol. They find that many of the details of the Protocol that remain to be worked out introduce critical uncertainties affecting the cost of compliance. There are also a variety of uncertainties that further complicate the analysis. These include future non-CO{sub 2} greenhouse gas emissions and the cost of their mitigation. Other uncertainties include the resolution of negotiations to establish rules for determining and allocating land-use emissions rights, mechanisms for Annex 1 trading, and participation by non-Annex 1 members in the Clean Development Mechanism. In addition, there are economic uncertainties, such as the behavior of Eastern Europe and the former Soviet Union in supplying emissions credits under Annex 1 trading. These uncertainties in turn could affect private sector investments in anticipation of the Protocol's entrance into force. The longer the nature of future obligations remains unclear, the less able decision makers will be to incorporate these rules into their investment decisions. They find that the cost of implementing the Protocol in the US can vary by more than an order of magnitude. The marginal cost could be as low as $26 per tonne of carbon if a global system of emissions mitigation could be quickly and effectively implemented. But it could also exceed $250 per tonne of carbon if the US must meet its emissions limitations entirely through domestic actions, and if mitigation obligations are not adequately anticipated by decision-makers.

  13. Opportunities and Challenges for the 20th Anniversary of the Montréal Protocol

    E-Print Network [OSTI]

    Norman, Catherine S.; DECANIO, STEPHEN J; Fan, Lin

    2007-01-01T23:59:59.000Z

    the current PWTP for either ODS or greenhouse gas emissionsmultilateral funding of ODS-reducing investments inin the massive reductions in ODS use worldwide since 1986.

  14. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    SciTech Connect (OSTI)

    DeLuchi, M.A. [Argonne National Lab., IL (United States); [Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

    1993-11-01T23:59:59.000Z

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  15. Welcome to Greenhouse Gases: Science and Technology: Editorial

    SciTech Connect (OSTI)

    Oldenburg, C.M.; Maroto-Valer, M.M.

    2011-02-01T23:59:59.000Z

    This editorial introduces readers and contributors to a new online journal. Through the publication of articles ranging from peer-reviewed research papers and short communications, to editorials and interviews on greenhouse gas emissions science and technology, this journal will disseminate research results and information that address the global crisis of anthropogenic climate change. The scope of the journal includes the full spectrum of research areas from capture and separation of greenhouse gases from flue gases and ambient air, to beneficial utilization, and to sequestration in deep geologic formations and terrestrial (plant and soil) systems, as well as policy and technoeconomic analyses of these approaches.

  16. (Limiting the greenhouse effect)

    SciTech Connect (OSTI)

    Rayner, S.

    1991-01-07T23:59:59.000Z

    Traveler attended the Dahlem Research Conference organized by the Freien Universitat, Berlin. The subject of the conference was Limiting the Greenhouse Effect: Options for Controlling Atmospheric CO{sub 2} Accumulation. Like all Dahlem workshops, this was a meeting of scientific experts, although the disciplines represented were broader than usual, ranging across anthropology, economics, international relations, forestry, engineering, and atmospheric chemistry. Participation by scientists from developing countries was limited. The conference was divided into four multidisciplinary working groups. Traveler acted as moderator for Group 3 which examined the question What knowledge is required to tackle the principal social and institutional barriers to reducing CO{sub 2} emissions'' The working rapporteur was Jesse Ausubel of Rockefeller University. Other working groups examined the economic costs, benefits, and technical feasibility of options to reduce emissions per unit of energy service; the options for reducing energy use per unit of GNP; and the significant of linkage between strategies to reduce CO{sub 2} emissions and other goals. Draft reports of the working groups are appended. Overall, the conference identified a number of important research needs in all four areas. It may prove particularly important in bringing the social and institutional research needs relevant to climate change closer to the forefront of the scientific and policy communities than hitherto.

  17. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofsDepartment UnderEnergy

  18. Life Cycle Greenhouse Gas Emissions: Natural Gas and Power Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14

  19. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999InspectionsAnnual Financial Report |Programsfrom the United

  20. Ahimsa Media -For Educators -The Greenhouse Effect The Greenhouse Effect: Extension Activity

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Ahimsa Media - For Educators - The Greenhouse Effect The Greenhouse Effect: Extension Activity. Clean up and restore a natural habitat. http://www.ahimsamedia.com/lessonGreenhouseEffect.htm (1 of 5

  1. Shale Gas Production: Potential versus Actual GHG Emissions

    E-Print Network [OSTI]

    O'Sullivan, Francis

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

  2. New Evidence of an Enhanced Greenhouse Effect

    E-Print Network [OSTI]

    Benestad, Rasmus E

    2011-01-01T23:59:59.000Z

    The state of earth's climate is constrained by well-known physical principles such as energy balance and the conservation of energy. Increased greenhouse gas concentrations affect the atmospheric optical depth, and physical consistency implies that changes in the energy transfer in terms of infra-red light must be compensated by other means of energy flow. Here, a simple heuristic and comprehensive model is used to interpret new aspects of real-world data. It is shown that trends in tropospheric overturning activity and the estimated altitude where earth's bulk heat loss should place are two independent indicators of climate change. There has been increased vertical overturning in the middle and upper parts of the troposphere since 1995 on a global scale. Greater overturning compensates for reduced radiative energy transfer associated with increased optical depth. An increased optical depth is also expected to raise the altitude from where planetary bulk heat loss takes place according to the heuristic model,...

  3. The Greenhouse Effect Does Exist!

    E-Print Network [OSTI]

    Ebel, Jochen

    2009-01-01T23:59:59.000Z

    In particular, without the greenhouse effect, essential features of the atmospheric temperature profile as a function of height cannot be described, i.e., the existence of the tropopause above which we see an almost isothermal temperature curve, whereas beneath it the temperature curve is nearly adiabatic. The relationship between the greenhouse effect and observed temperature curve is explained and the paper by Gerlich and Tscheuschner [arXiv:0707.1161] critically analyzed. Gerlich and Tscheuschner called for this discussion in their paper.

  4. Soil Carbon Sequestration and the Greenhouse Effect

    E-Print Network [OSTI]

    Archer, Steven R.

    Soil Carbon Sequestration and the Greenhouse Effect Second edition Rattan Lal & Ronald F. Follett. Printed in the United States of America. #12;181 Soil Carbon Sequestration and the Greenhouse Effect, 2nd

  5. THE GREENHOUSE EFFECT Stephen E. Schwartz

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    THE GREENHOUSE EFFECT Stephen E. Schwartz Atmospheric Sciences Division CSSP Lecture July 27, 2005 http://www.ecd.bnl.gov/steve/schwartz.html #12;#12;THE GREENHOUSE EFFECT #12;GLOBAL ENERGY BALANCE Twain­ Mark Twain Now with the greenhouse effect, we ARE doing something about it. What are we doing

  6. THE GREENHOUSE EFFECT Stephen E. Schwartz

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    THE GREENHOUSE EFFECT Stephen E. Schwartz Science Honor Society Center Moriches High School Center about how this drug affects brain chemistry. #12;#12;THE GREENHOUSE EFFECT #12;Everybody talks about about it. ­ Mark Twain­ Mark Twain Now with the greenhouse effect, we ARE doing something about it. What

  7. advanced automotive gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the environment and legislation introduced to reduce greenhouse gas emissions and improve resource efficiency, eco product design and manufacturing strategies have to be developed...

  8. Climate VISION: Private Sector Initiatives: Oil and Gas: Resources...

    Office of Scientific and Technical Information (OSTI)

    Fossil Energy and other organizations: Office of Fossil Energy Office of Energy Efficiency and Renewable Energy International Energy Agency (IEA) IEA Greenhouse Gas R&D Programme...

  9. Life Cycle Assessment of Hydrogen Production via Natural Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. 27637.pdf More Documents & Publications...

  10. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2004-10-27T23:59:59.000Z

    Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in O{sub 2}/CO{sub 2} mixtures. Firing rates in the pilot test facility ranged from 2.2 to 7.9 MM-Btu/hr. Pilot-scale testing was performed at ALSTOM's Multi-use Test Facility (MTF), located in Windsor, Connecticut.

  11. Testimony to the US Senate on the greenhouse effect

    SciTech Connect (OSTI)

    Wigley, T.M.L.

    1987-01-01T23:59:59.000Z

    This testimony was presented on January 28, 1987 at the hearing on ''The Greenhouse Effect, Climate Change and Ozone Depletion,'' United States Senate Committee on Environment and Public Works, Subcommittee on Environmental Protection and Subcommittee on Hazardous Wastes and Toxic Substances. The testimony concerns the observed global warming that has occurred over the past 100 years. How this temperature record was obtained is summarized and the details of the record described, with particular reference to the most recent decades and to the differences between the records for Northern and Southern Hemispheres. The record is compared with the predicted warming over the same period due to the effects of increasing greenhouse gas concentrations in the atmosphere. The projected warming over the next 70 years is compared with global temperature changes that have occurred over the past few million years. (ACR)

  12. Protocol for House Parties

    Broader source: Energy.gov [DOE]

    Protocol for House Parties, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  13. Greenhouse gases accounting and reporting for waste management - A South African perspective

    SciTech Connect (OSTI)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.z [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Surveying and Construction, Howard College Campus, Durban (South Africa); Trois, Cristina [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Surveying and Construction, Howard College Campus, Durban (South Africa)

    2010-11-15T23:59:59.000Z

    This paper investigates how greenhouse gases are accounted and reported in the waste sector in South Africa. Developing countries (including South Africa) do not have binding emission reduction targets, but many of them publish different greenhouse gas emissions data which have been accounted and reported in different ways. Results show that for South Africa, inventories at national and municipal level are the most important tools in the process of accounting and reporting greenhouse gases from waste. For the development of these inventories international initiatives were important catalysts at national and municipal levels, and assisted in developing local expertise, resulting in increased output quality. However, discrepancies in the methodology used to account greenhouse gases from waste between inventories still remain a concern. This is a challenging issue for developing countries, especially African ones, since higher accuracy methods are more data intensive. Analysis of the South African inventories shows that results from the recent inventories can not be compared with older ones due to the use of different accounting methodologies. More recently the use of Clean Development Mechanism (CDM) procedures in Africa, geared towards direct measurements of greenhouse gases from landfill sites, has increased and resulted in an improvement of the quality of greenhouse gas inventories at municipal level.

  14. GreenhouseSupervisor Mendel is a private agbiotech/agchem company developing solutions for the sustainable production of

    E-Print Network [OSTI]

    Mazzotti, Frank

    for the sustainable production of food, fiber and fuel. We have had longstanding collaborations with Monsanto, Bayer. Mendel is seeking a Greenhouse Supervisor. The qualified candidate will be responsible for planning special attention (small size, altered flowering, etc.) and adjust protocols as needed · Quality Control

  15. College Of Wooster 2012 Greenhouse Gas Emissions From Coal and Natural Gas Combustion Default Values From EPA Greenhouse Gas Rule

    E-Print Network [OSTI]

    Wilson, Mark A.

    56410 CO2 = 1 X 10 -3 X Fuel X HHV X EF Where CO2 = Annual CO2 mass emissions for the specific fuel type high heat value. EF =Fuel default CO2 Emission Factor from Table C-1Page 56410 CO2 Coal CO2 = 1 X 10 -3 Default CO2 Emission Factor For Bituminous Coal = 93.40 kg/mmbtu Default CH4 Emission Factor

  16. THE GREENHOUSE EFFECT Stephen E. Schwartz

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    THE GREENHOUSE EFFECT Stephen E. Schwartz Atmospheric Sciences Division CSSP Lecture July 30, 2002 . . . IS TO PUT TWO PEOPLE IN IT! #12;YOUR FAMILY'S CONTRIBUTION TO THE GREENHOUSE EFFECT 0.8 0.6 0.4 0.2 0.0 CO2 of carbon a year in the form of carbon dioxide. #12;YOUR CONTRIBUTION TO THE GREENHOUSE EFFECT At half

  17. Curbing Greenhouse Gases: Agriculture's Role

    E-Print Network [OSTI]

    McCarl, Bruce A.

    the Kyoto results in more detail elsewhere in this issue. Emissions trading - Creating a market for emission rights Importantly, the Protocol encourages emissions trading. Emissions are limited by country emissions trading system, much like the trading scheme used in the U.S. acid #12;3 rain program. The total

  18. Geothermal: Sponsored by OSTI -- Geothermal Greenhouse Information...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greenhouse Information Package Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News...

  19. Voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992: General Guidelines

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, Congress authorized a voluntary program for the public to report achievements in reducing those gases. This document offers guidance on recording historic and current greenhouse gas emissions, emissions reductions, and carbon sequestration. Under the Energy Policy Act (EPAct) reporters will have the opportunity to highlight specific achievements. If you have taken actions to lessen the greenhouse gas effect, either by decreasing greenhouse gas emissions or by sequestering carbon, the Department of Energy (DOE) encourages you to report your achievements under this program. The program has two related, but distinct parts. First, the program offers you an opportunity to report your annual emissions of greenhouse gases. Second, the program records your specific projects to reduce greenhouse gas emissions and increase carbon sequestration. Although participants in the program are strongly encouraged to submit reports on both, reports on either annual emissions or emissions reductions and carbon sequestration projects will be accepted. These guidelines and the supporting technical documents outline the rationale for the program and approaches to analyzing emissions and emissions reduction projects. Your annual emissions and emissions reductions achievements will be reported.

  20. THE RIMINI PROTOCOL Oil Depletion Protocol

    E-Print Network [OSTI]

    Keeling, Stephen L.

    Soaring oil prices have drawn attention to the issue of the relative supply and demand for crude oil1 THE RIMINI PROTOCOL an Oil Depletion Protocol ~ Heading Off Economic Chaos and Political Conflict During the Second Half of the Age of Oil As proposed at the 2003 Pio Manzu Conference

  1. Emissions of greenhouse gases in the United States 1996

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1990, with annual updates thereafter. This report is the fifth annual update, covering national emissions over the period 1989--1995, with preliminary estimates of emissions for 1996. The estimates contained in this report have been revised from those in last year`s report. Emissions estimates for carbon dioxide are reported in metric tons of carbon; estimates for other gases are reported in metric tons of gas. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapter 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Five appendixes are included with this report. 216 refs., 11 figs., 38 tabs.

  2. Montenegro Greenhouse Ornamental Production Workshop October 2007

    E-Print Network [OSTI]

    Lieth, J. Heinrich

    Montenegro Greenhouse Ornamental Production Workshop October 2007 Heiner Lieth Plant Sciences of Montenegro is promotion of the their greenhouse flower production industry. At the time when the program was planned it was unknown what level of interest and expertise would be available on-site in Montenegro. Thus

  3. Chapter 14: Chiller Evaluation Protocol

    SciTech Connect (OSTI)

    Tiessen, A.

    2014-09-01T23:59:59.000Z

    This protocol defines a chiller measure as a project that directly impacts equipment within the boundary of a chiller plant. A chiller plant encompasses a chiller--or multiple chillers--and associated auxiliary equipment. This protocol primarily covers electric-driven chillers and chiller plants. It does not include thermal energy storage and absorption chillers fired by natural gas or steam, although a similar methodology may be applicable to these chilled water system components. Chillers provide mechanical cooling for commercial, institutional, multiunit residential, and industrial facilities. Cooling may be required for facility heating, ventilation, and air conditioning systems or for process cooling loads (e.g., data centers, manufacturing process cooling). The vapor compression cycle, or refrigeration cycle, cools water in the chilled water loop by absorbing heat and rejecting it to either a condensing water loop (water cooled chillers) or to the ambient air (air-cooled chillers).

  4. Proceedings of the International Workshop on Sustainable ForestManagement: Monitoring and Verification of Greenhouse Gases

    SciTech Connect (OSTI)

    Sathaye (Ed.), Jayant; Makundi (Ed.), Willy; Goldberg (Ed.),Beth; Andrasko (Ed.), Ken; Sanchez (Ed.), Arturo

    1997-07-01T23:59:59.000Z

    The International Workshop on Sustainable Forest Management: Monitoring and Verification of Greenhouse Gases was held in San Jose, Costa Rica, July 29-31, 1996. The main objectives of the workshop were to: (1) assemble key practitioners of forestry greenhouse gas (GHG) or carbon offset projects, remote sensing of land cover change, guidelines development, and the forest products certification movement, to offer presentations and small group discussions on findings relevant to the crucial need for the development of guidelines for monitoring and verifying offset projects, and (2) disseminate the findings to interested carbon offset project developers and forestry and climate change policy makers, who need guidance and consistency of methods to reduce project transaction costs and increase probable reliability of carbon benefits, at appropriate venues. The workshop brought together about 45 participants from developed, developing, and transition countries. The participants included researchers, government officials, project developers, and staff from regional and international agencies. Each shared his or her perspectives based on experience in the development and use of methods for monitoring and verifying carbon flows from forest areas and projects. A shared sense among the participants was that methods for monitoring forestry projects are well established, and the techniques are known and used extensively, particularly in production forestry. Introducing climate change with its long-term perspective is often in conflict with the shorter-term perspective of most forestry projects and standard accounting principles. The resolution of these conflicts may require national and international agreements among the affected parties. The establishment of guidelines and protocols for better methods that are sensitive to regional issues will be an important first step to increase the credibility of forestry projects as viable mitigation options. The workshop deliberations led to three primary outputs: (1) a Workshop Statement in the JI Quarterly, September, 1996; (2) the publication of a series of selected peer-reviewed technical papers from the workshop in a report of the Lawrence Berkeley National Laboratory (LBNL. 40501); and (3) a special issue of the journal ''Mitigation and Adaptation Strategies for Global Change'', Kluwer Academic Publishers. The outputs will be distributed to practitioners in this field and to negotiators attending the Framework Convention on Climate Change (FCCC) deliberations leading up to the Third conference of Parties in Kyoto, in December 1997.

  5. Application Protocol Reference Architecture Application Protocol Reference Architecture

    E-Print Network [OSTI]

    van Sinderen, Marten

    Application Protocol Reference Architecture 165 Chapter 7 Application Protocol Reference Architecture This chapter proposes an alternative reference architecture for application protocols. The proposed reference architecture consists of the set of possible architectures for application protocols

  6. Webinar: Hydrogen Refueling Protocols

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Refueling Protocols, originally presented on February 22, 2013.

  7. Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production on Greenhouse

    E-Print Network [OSTI]

    Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production on Greenhouse Gas on recycled paper #12;1 Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production. Melillo*, John M. Reilly§ , and Sergey Paltsev§ Abstract The production of cellulosic biofuels may have

  8. Wednesday, January 30, 2013 Infrared Trapping the "Greenhouse Effect"

    E-Print Network [OSTI]

    Toohey, Darin W.

    Wednesday, January 30, 2013 Infrared Trapping ­ the "Greenhouse Effect" Goals ­ to look is the same as a 1.8 degree F change. #12;Last time - Greenhouse effect demo Selective absorption. Greenhouse

  9. The Runaway Greenhouse: implications for future climate change, geoengineering and planetary atmospheres

    E-Print Network [OSTI]

    Goldblatt, Colin

    2012-01-01T23:59:59.000Z

    The ultimate climate emergency is a "runaway greenhouse": a hot and water vapour rich atmosphere limits the emission of thermal radiation to space, causing runaway warming. Warming ceases only once the surface reaches ~1400K and emits radiation in the near-infrared, where water is not a good greenhouse gas. This would evaporate the entire ocean and exterminate all planetary life. Venus experienced a runaway greenhouse in the past, and we expect that Earth will in around 2 billion years as solar luminosity increases. But could we bring on such a catastrophe prematurely, by our current climate-altering activities? Here we review what is known about the runaway greenhouse to answer this question, describing the various limits on outgoing radiation and how climate will evolve between these. The good news is that almost all lines of evidence lead us to believe that is unlikely to be possible, even in principle, to trigger full a runaway greenhouse by addition of non-condensible greenhouse gases such as carbon diox...

  10. Greenhouse Gas Laser Imaging Tomography Experiment (GreenLITE): Evaluation of a new method to look at high resolution spatial/temporal distributions of carbon over key sub km sites

    SciTech Connect (OSTI)

    Dobler, Jeremy; Zaccheo, T. Scott; Blume, Nathan; Braun, Michael; Perninit, Timothy; McGregor, Doug; Botos, Chris; Dobeck, Laura

    2015-01-01T23:59:59.000Z

    Recently a new laser based approach for measuring area with potential for producing 2D estimates of the concentration spatial distribution has been developed through a cooperative agreement with the National Energy and Technology Laboratory of the Department of Energy, Exelis Inc. and AER Inc. The new approach is based on a pair of continuous wave intensity modulated laser absorption spectrometer transceivers, combined with a series of retro reflectors located around the perimeter of the area being monitored. The main goal of this cooperative agreement is monitoring, reporting and verification for ground carbon capture and storage projects. The system was recently tested at the Zero Emission Research and Technology site in Bozeman, MT, with underground leak rates ranging from 0.1 – 0.3 metric ton per day (T/d), as well as a 0.8 T/d surface release. Over 200 hours of data were collected over a rectangular grid 180m x 200m between August 18th and September 9th. In addition, multiple days of in situ data were acquired for the same site, using a Licor gas analyzer systems. Initial comparisons between the laser-based system and the in situ agree very well. The system is designed to operate remotely and transmit the data via a 3G/4G connection along with weather data for the site. An all web-based system ingests the data, populates a database, performs the inversion to ppm CO2 using the Line-by-Line Radiative Transfer Model (LBLRTM), and displays plots and statistics for the retrieved data. We will present an overview of the GreenLITE measurement system, outline the retrieval and reconstruction approach, and discuss results from extensive field testing.

  11. atmospheric greenhouse effect: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Surface. This process is the natural greenhouse effect. The earths surface receives solar energy and energy reradiated 9 Falsification Of The Atmospheric CO2 Greenhouse...

  12. Energy Efficiency and Greenhouse Gases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency and Greenhouse Gases Energy Efficiency and Greenhouse Gases Mission The team establishes an energy conservation program, as deemed appropriate for LM operations...

  13. Greenhouse gases in the corn-to-fuel ethanol pathway.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1998-06-18T23:59:59.000Z

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen.

  14. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect (OSTI)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

    2012-01-27T23:59:59.000Z

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  15. Voluntary reporting of greenhouse gases, 1995

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  16. Solar greenhouses and sunspaces: lessons learned

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    The experiences of the DOE Appropriate Technology grantees provide valuable information for others to use in building and operating better sunspaces and greenhouses. Their experiences are the basis for Solar Greenhouses and Sunspaces: Lessons Learned. This publication is divided into six major categories: design; construction tips; management, maintenance, and safety; horticulture; greenhouse construction workshops; and information sources. Each chapter presents basic background material on the topic and relevant information from selected project reports. A question and answer format is used to present information on ways greenhouses and sunspaces can be improved. This publication has been developed as a supplement to the existing literature to help prospective sunspace/greenhouse owner/builders get started in the right direction. It is not a text book, and is not a substitute for any of the good ''how-to'' greenhouse books available. Its purpose is to identify common mistakes in design, construction and/or operation that affect performance, and provide useful advice to help consumers avoid these mistakes.

  17. Reducing Greenhouse Emissions and Fuel Consumption

    E-Print Network [OSTI]

    Shaheen, Susan; Lipman, Timothy

    2007-01-01T23:59:59.000Z

    CNGV: compressed natural gas vehicle Dl CI DV: direct-Compressed natural gas (CNG) vehicles offer similar emissionvehicle ICE : internal combustion engine NG : natural gas

  18. Reducing Greenhouse Emissions and Fuel Consumption

    E-Print Network [OSTI]

    Shaheen, Susan; Lipman, Timothy

    2007-01-01T23:59:59.000Z

    ethanol, methanol, compressed natural gas, liquefied propaneelectric vehicle CNGV: compressed natural gas vehicle Dl CIgasoline vehicles. Compressed natural gas (CNG) vehicles

  19. APS Protocol for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protocol for RECEIPT OF HAZARDOUS MATERIAL SHIPMENTS (Updated January 22, 2007) Scope & Application Throughout this document, the term hazardous material means any material...

  20. Shale Gas Production: Potential versus Actual GHG Emissions

    E-Print Network [OSTI]

    Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

  1. Emissions of greenhouse gases in the United States, 1987--1994

    SciTech Connect (OSTI)

    NONE

    1995-09-25T23:59:59.000Z

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1992, with annual updates thereafter. This is the third annual update report,covering national emissions over the period 1987--1993, with preliminary estimates of US carbon dioxide and halocarbon emissions for 1994. Calculating national aggregate emissions(or ``national inventories``) of greenhouse gases is a recently developed form of intellectual endeavor. Greenhouse gas emissions are rarely measured directly or reported to statistical agencies. Thus, to prepare emissions inventories usually requires inferring emissions indirectly from information collected for other purposes. Both the available information and the inferences drawn may be of varying reliability. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapters 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes.

  2. California's Greenhouse Gas Policies: Local Solutions to a Global Problem?

    E-Print Network [OSTI]

    Bushnell, Jim B; Peterman, Carla Joy; Wolfram, Catherine D

    2007-01-01T23:59:59.000Z

    end-users in California. All power plants from whom theseCalifornia could cover its baseload power needs from clean plantsCalifornia that takes delivery of power generated by a plant

  3. Uncertainty Analysis of Life Cycle Greenhouse Gas Emissions from

    E-Print Network [OSTI]

    Jaramillo, Paulina

    (EIA) reports that the U.S. transportation sector consumes about 30% of all primary energy, of which 95 Engineering Department, Department of Engineering and Public Policy, and Tepper School of Business, Carnegie change impacts of U.S. petroleum-based fuels consumption have contributed to the development

  4. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    and may also be charged by CHP systems during off-peak andDarrow, K et al. (2009), “CHP Market Assessment”, Integratedwith combined heat and power (CHP) may be implemented within

  5. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    E-Print Network [OSTI]

    Marnay, Chris

    2010-01-01T23:59:59.000Z

    2020 S00 S/t of carbon mpared to CHP, PV a n d solar t h e rm a l as options in DE R-CAM only CHP as optioninDER-CAM CHP Capacity: 2.25 GW CHP Electricity: 10.05 TWh

  6. REDUCING GREENHOUSE GAS EMISSIONS FROM DEFORESTATION IN DEVELOPING

    E-Print Network [OSTI]

    Watson, Andrew

    mitigation effort post-2012. Reducing GHG emissions from Deforestation and Degradation (REDD)2 in developing of Environment of Mexico1 Esteve Corbera and Katrina Brown Tyndall Centre for Climate Change Research, UK School of Mexico or the Mexican Government. #12;ABSTRACT This paper provides a critical perspective to the debate

  7. Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects...

    Broader source: Energy.gov (indexed) [DOE]

    Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provide end-use energy efficiency, or avoid...

  8. Regional GHG Emissions O tlook Greenhouse Gas and the Regional

    E-Print Network [OSTI]

    Information Administration Annual Energy Outlook for 2013 (AEO2013) along with the modeled curve Outlook with No Federal CO2 Regulatory Cost 70 Annual CO2 Emission from Power System 30 40 50 60 Million25 GHG Emission Outlook with a Federal CO2 Regulatory Cost 70 Annual CO2 Emission from Power System

  9. Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California

    E-Print Network [OSTI]

    , such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three

  10. South Africa - Greenhouse Gas Emission Baselines and Reduction...

    Open Energy Info (EERE)

    from Buildings AgencyCompany Organization United Nations Environment Programme Sector Energy Focus Area Buildings Topics Baseline projection, GHG inventory, Pathways analysis,...

  11. California's Greenhouse Gas Policies: Local Solutions to a Global Problem?

    E-Print Network [OSTI]

    Bushnell, Jim B; Peterman, Carla Joy; Wolfram, Catherine D

    2007-01-01T23:59:59.000Z

    useful if it displaces coal generation in Canada, than if itbeyond discarding all coal generation and the current RPS2,000(coal/trash/wood))*fuel BTU]/ net generation MWh. For

  12. Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Reich-Weiser, Corinne

    2010-01-01T23:59:59.000Z

    and engine parts Wiring devices Mechanical measuring devices Laboratory and optical instruments Plastics materials and resins Magnetic and

  13. California's Greenhouse Gas Policies: Local Solutions to a Global Problem?

    E-Print Network [OSTI]

    Bushnell, Jim B; Peterman, Carla Joy; Wolfram, Catherine D

    2007-01-01T23:59:59.000Z

    the main query. This database uses data from EIA forms EIA-is from EIA-906 and FERC form 423. From this database theEIA-860. An additional 427 plants were added to the database

  14. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    heat energy demand is only met by fossil fuel and biomass.fossil fuels can be used to meet thermal energy requirements, but such substitutability is not possible for meeting electric demand.

  15. Economics of Lifecycle analysis and greenhouse gas regulations

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2009-01-01T23:59:59.000Z

    sig- nificant share of the oil market. Today, ethanol (fromsuch as the effect on oil markets, on fertilizer marketsapproach. A model of the oil market with two fuels gasoline

  16. California's Greenhouse Gas Policies: Local Solutions to a Global Problem?

    E-Print Network [OSTI]

    Bushnell, Jim B; Peterman, Carla Joy; Wolfram, Catherine D

    2007-01-01T23:59:59.000Z

    from the electricity sector. * bushnell@haas.berkeley.edu ,on carbon emissions from the electricity sector. Others haveFurther, if the electricity sector is allowed to trade with

  17. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    in Building Sector Electricity Consumption parameterin Building Sector Electricity Consumption Appendix 1. WorldElectricity in Building Sector Electricity Consumption iii

  18. Economics of Lifecycle analysis and greenhouse gas regulations

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2009-01-01T23:59:59.000Z

    ?P 2 ) when supply and demand for oil is more inelastic. TheBiofuels reduce the demand for oil and increase the demandBiofuels reduce the demand for oil and increase the demand

  19. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    on significant levels of hydroelectric power have a lowerhas a high share of hydroelectric power has the lowest CO 2

  20. Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Reich-Weiser, Corinne

    2010-01-01T23:59:59.000Z

    Environmental impacts of PV electricity generation - a critical comparison of energy supply options,” Proceedings of the 21st European Photovoltaic Solar

  1. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    emissions associated with petroleum products production werefactors for the production of petroleum products wereemissions due to the production of petroleum products among

  2. RESULTS Greenhouse Gas Time Series SUMMARY AND CONCLUSIONS

    E-Print Network [OSTI]

    for soil respiration is 5.1 at 3 C and 4.2 at 5 C. · Figure 5b shows that CO2 residual fluxes are water - Sampling location vs. soil temperature and water content CO2 model residuals. The variables on the x fitting method2 . · Soil temperature at 5 cm taken concurrently with chambers · Soil water content of top

  3. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    97-110, 1996. International Energy Agency (IEA), 2002. WorldEnergy Outlook. Paris: IEA/OECD.International Energy Agency (IEA), 2004a. Energy Balances of

  4. Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Reich-Weiser, Corinne

    2010-01-01T23:59:59.000Z

    Concentrator design to minimize LCOE,” Proceedings of thetool at SolFocus [122]. The LCOE cost model provides theinstallation variables, the LCOE metric is a step beyond the

  5. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Agency (IEA), 2002. World Energy Outlook. Paris: IEA/OECD.Agency (IEA), 2004d. World Energy Outlook, Paris, IEA/OECD.Comparison of SRES and World Energy Outlook Scenarios This

  6. Transportation in Developing Countries: Greenhouse Gas Scenarios for Delhi, India

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    gaso- line vehicle (on a full fuel cycle basis). 17 However,emissions from the full fuel cycle (from “well to wheels”).

  7. GREENHOUSE GAS (GHG) INVENTORY REPORT 20102011 Dalhousie Office of Sustainability

    E-Print Network [OSTI]

    Brownstone, Rob

    Caption. LSC Solar thermal panels installed 20102011. #12;Page | 1 TableofContents Table ......................................................................................... 35 Appendix I: Nova Scotia Power Emission Factors ......

  8. Center for Greenhouse Gas Mitigation through Natural Resource Management (CGGM)

    E-Print Network [OSTI]

    MacDonald, Lee

    production can increase animal productivity, yield renewable energy (CH4 capture from manure storage), and improve air quality. Over the longer term, renewable energy from agricultural biomass offers great within the US and abroad, working with representatives of industries, state and federal agencies, and non

  9. VOL 5, ISSUE 4 Greenhouse Gas Emmissions in the

    E-Print Network [OSTI]

    Peak, Derek

    Elliott, Editor, Western Policy Analyst Under the Copenhagen Accord, the government of Canada committed emissions from electricity production not from commercial, industrial, or residential users of electricity, the new carbon- capture facility a

  10. Economics of Lifecycle analysis and greenhouse gas regulations

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2009-01-01T23:59:59.000Z

    fuel price on macro-economic indicators such as balance of payments, overall inflation, and poverty,

  11. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    of projected world energy consumption by fuel type. For theTable 1. World Primary Energy Consumption, A1 and B2has slightly higher world final energy consumption values,

  12. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    and not only by PV / solar thermal systems. To satisfy theheat exchangers, solar thermal collectors, absorptionphotovoltaics and solar thermal collectors; • electrical

  13. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Building Sector Electricity Consumption parameter logisticin Building Sector Electricity Consumption iii iv Sectoralsome water with electricity consumption, it is not possible

  14. Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01T23:59:59.000Z

    Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

  15. Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Reich-Weiser, Corinne

    2010-01-01T23:59:59.000Z

    by location (e.g. , heating and technology differences atby location (e.g. , heating, technology) C 42 b 42 C 21 b 21

  16. NF 3 , the greenhouse gas missing from Kyoto

    E-Print Network [OSTI]

    Prather, Michael J; Hsu, Juno

    2008-01-01T23:59:59.000Z

    Moreover, there is an economic incentive, a tradeoff betweenthere are economic as well as environmental incentives not

  17. Greenhouse Gas Reductions under Low Carbon Fuel Standards?

    E-Print Network [OSTI]

    Holland, Stephen P; Knittel, Christopher R; Hughes, Jonathan E.

    2008-01-01T23:59:59.000Z

    Association, Historic U.S. Fuel Ethanol Production. http://state subsides for fuel ethanol are excluded. The constantblending more ethanol into the fuel supply. The assumption

  18. Greenhouse Gas Reductions Under Low Carbon Fuel Standards?

    E-Print Network [OSTI]

    Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

    2007-01-01T23:59:59.000Z

    Association, Historic U.S. Fuel Ethanol Production. http://state subsides for fuel ethanol are excluded. The constantblending more ethanol into the fuel supply. The assumption

  19. Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Reich-Weiser, Corinne

    2010-01-01T23:59:59.000Z

    to GHG/kWh of the USA electricity supply chain are coalGHG/kWh of electricity example based on USA. Distributionnuclear (USA) are different because of the electricity mix

  20. California's Greenhouse Gas Policies: Local Solutions to a Global Problem?

    E-Print Network [OSTI]

    Bushnell, Jim B; Peterman, Carla Joy; Wolfram, Catherine D

    2007-01-01T23:59:59.000Z

    in carbon-intensive generating plants before the overallCalifornia, Mexico. Mohave generating plant is included in

  1. Economics of Lifecycle analysis and greenhouse gas regulations

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2009-01-01T23:59:59.000Z

    2 The role of economics in lifecycle environmental impact3 Economics of biofuels: Impact on food and 3.1Agricultural & Resource Economics, UCB, page 1058, 2008. [5

  2. Economics of Lifecycle analysis and greenhouse gas regulations

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2009-01-01T23:59:59.000Z

    estimate 8. Price of coal energy: average delivered price toin gCO2e/liter Price of coal energy 0.0020 ($/MJ) Price of0.09 uses only coal based energy net GHG displacement if

  3. Greenhouse Gas emissions from California Geothermal Power Plants

    SciTech Connect (OSTI)

    Sullivan, John

    2014-03-14T23:59:59.000Z

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  4. Economics of Lifecycle analysis and greenhouse gas regulations

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2009-01-01T23:59:59.000Z

    the promise of second-generation biofuels, namely, biofuelsdepends on the second generation biofuels from cel- lulosicsecond generation feedstock such as cellulosic biomass will weaken the linkage that has developed because of biofuels

  5. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Agency (IEA), 2002. World Energy Outlook. Paris: IEA/OECD.Agency (IEA), 2004d. World Energy Outlook, Paris, IEA/OECD.Energy Agency’s World Energy Outlook 2004 Reference

  6. Greenhouse Gas Reductions under Low Carbon Fuel Standards?

    E-Print Network [OSTI]

    Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

    2008-01-01T23:59:59.000Z

    relative to historic energy production, can attain the ?rst-associated with energy production. To illustrate the mainor decrease total energy production. If the LCFS increases

  7. Greenhouse Gas Reductions Under Low Carbon Fuel Standards?

    E-Print Network [OSTI]

    Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

    2007-01-01T23:59:59.000Z

    relative to historic energy production, can attain the ?rst-associated with energy production. To illustrate the mainor decrease total energy production. If the LCFS increases

  8. California's Greenhouse Gas Policies: Local Solutions to a Global Problem?

    E-Print Network [OSTI]

    Bushnell, Jim B; Peterman, Carla Joy; Wolfram, Catherine D

    2007-01-01T23:59:59.000Z

    1368 by shifting their power purchases to low- carbon powerCalifornia firms could purchase power under SB 1368. Carbonterm purchases, such as the daily wholesale power market,

  9. Deep cuts in household greenhouse gas emissions Andrew Blakers

    E-Print Network [OSTI]

    ) of carbon dioxide (CO2) by a coal fired power station. ActewAGL currently charges 13 cents for each k

  10. Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Reich-Weiser, Corinne

    2010-01-01T23:59:59.000Z

    SolFocus Concentrating Photovoltaics 6.1 Metrics DevelopmentConcentrator Solar Photovoltaics . . Analysis Using Carnegieand E. Alsema, “Photovoltaics energy payback times,

  11. Greenhouse Gas Reductions Under Low Carbon Fuel Standards?

    E-Print Network [OSTI]

    Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

    2007-01-01T23:59:59.000Z

    power, and asymmetric ?rms are discussed in the section on trading.market power in the two industries for future work. Tradingpower. In Section 4, we discuss meeting the LCFS by trading

  12. Greenhouse Gas Reductions under Low Carbon Fuel Standards?

    E-Print Network [OSTI]

    Holland, Stephen P; Knittel, Christopher R; Hughes, Jonathan E.

    2008-01-01T23:59:59.000Z

    power, and asymmetric ?rms are discussed in the section on trading.market power in the two industries for future work. Tradingpower. In Section 4, we discuss meeting the LCFS by trading

  13. European Greenhouse Gas Emissions Trading: A System in Transition*

    E-Print Network [OSTI]

    methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model, Yu and ecosystem impacts, and analysis of mitigation strategies, need to be based on realistic evaluation

  14. Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Reich-Weiser, Corinne

    2010-01-01T23:59:59.000Z

    engines and engine parts Wiring devices Mechanical measuring devices Laboratory and optical instruments Plastics materials and resins Magnetic

  15. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.

  16. Economics of Lifecycle analysis and greenhouse gas regulations

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2009-01-01T23:59:59.000Z

    3.4 Food inventory and biofuels . . . . . . . . . 3.53 Economics of biofuels: Impact on food and 3.1Net welfare change due to biofuels under the three

  17. Economics of Lifecycle analysis and greenhouse gas regulations

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2009-01-01T23:59:59.000Z

    is at the product-level, when lifecycle emissions are notduring the lifecycle of a product. LCA is a systems approachfootprint of a product over its entire lifecycle from raw

  18. Greenhouse Gas Reductions: SF6 | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    00:03:25 Topic Community Site environmental protection Site waste management Site sustainability Environment Environmental science & technology Video ID http:youtu.be...

  19. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    subsidy 14 for lead acid batteries is given and this bringsMWh) adopoted lead acid batteries (MWh) adopted PV (MW)thermal lead acid absorption solar photo- storage batteries

  20. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    and the IEA Total Primary Energy Supply (TPES). An averagetotal energy supply worldwide is lost into upstream processes that transform primary energy